xref: /linux/mm/memory.c (revision 268531be211f18c55f7ff5a1641d32c0fd0571cd)
1 
2 // SPDX-License-Identifier: GPL-2.0-only
3 /*
4  *  linux/mm/memory.c
5  *
6  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
7  */
8 
9 /*
10  * demand-loading started 01.12.91 - seems it is high on the list of
11  * things wanted, and it should be easy to implement. - Linus
12  */
13 
14 /*
15  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16  * pages started 02.12.91, seems to work. - Linus.
17  *
18  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19  * would have taken more than the 6M I have free, but it worked well as
20  * far as I could see.
21  *
22  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23  */
24 
25 /*
26  * Real VM (paging to/from disk) started 18.12.91. Much more work and
27  * thought has to go into this. Oh, well..
28  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
29  *		Found it. Everything seems to work now.
30  * 20.12.91  -  Ok, making the swap-device changeable like the root.
31  */
32 
33 /*
34  * 05.04.94  -  Multi-page memory management added for v1.1.
35  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
36  *
37  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
38  *		(Gerhard.Wichert@pdb.siemens.de)
39  *
40  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41  */
42 
43 #include <linux/kernel_stat.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/sched/mm.h>
47 #include <linux/sched/coredump.h>
48 #include <linux/sched/numa_balancing.h>
49 #include <linux/sched/task.h>
50 #include <linux/hugetlb.h>
51 #include <linux/mman.h>
52 #include <linux/swap.h>
53 #include <linux/highmem.h>
54 #include <linux/pagemap.h>
55 #include <linux/memremap.h>
56 #include <linux/kmsan.h>
57 #include <linux/ksm.h>
58 #include <linux/rmap.h>
59 #include <linux/export.h>
60 #include <linux/delayacct.h>
61 #include <linux/init.h>
62 #include <linux/pfn_t.h>
63 #include <linux/writeback.h>
64 #include <linux/memcontrol.h>
65 #include <linux/mmu_notifier.h>
66 #include <linux/swapops.h>
67 #include <linux/elf.h>
68 #include <linux/gfp.h>
69 #include <linux/migrate.h>
70 #include <linux/string.h>
71 #include <linux/memory-tiers.h>
72 #include <linux/debugfs.h>
73 #include <linux/userfaultfd_k.h>
74 #include <linux/dax.h>
75 #include <linux/oom.h>
76 #include <linux/numa.h>
77 #include <linux/perf_event.h>
78 #include <linux/ptrace.h>
79 #include <linux/vmalloc.h>
80 #include <linux/sched/sysctl.h>
81 
82 #include <trace/events/kmem.h>
83 
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90 
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94 
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98 
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 		return false;
119 
120 	return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122 
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
127  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
128  * and ZONE_HIGHMEM.
129  */
130 void *high_memory;
131 EXPORT_SYMBOL(high_memory);
132 
133 /*
134  * Randomize the address space (stacks, mmaps, brk, etc.).
135  *
136  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137  *   as ancient (libc5 based) binaries can segfault. )
138  */
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
141 					1;
142 #else
143 					2;
144 #endif
145 
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149 	/*
150 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 	 * some architectures, even if it's performed in hardware. By
152 	 * default, "false" means prefaulted entries will be 'young'.
153 	 */
154 	return false;
155 }
156 #endif
157 
158 static int __init disable_randmaps(char *s)
159 {
160 	randomize_va_space = 0;
161 	return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164 
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167 
168 unsigned long highest_memmap_pfn __read_mostly;
169 
170 /*
171  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172  */
173 static int __init init_zero_pfn(void)
174 {
175 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 	return 0;
177 }
178 early_initcall(init_zero_pfn);
179 
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182 	trace_rss_stat(mm, member);
183 }
184 
185 /*
186  * Note: this doesn't free the actual pages themselves. That
187  * has been handled earlier when unmapping all the memory regions.
188  */
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 			   unsigned long addr)
191 {
192 	pgtable_t token = pmd_pgtable(*pmd);
193 	pmd_clear(pmd);
194 	pte_free_tlb(tlb, token, addr);
195 	mm_dec_nr_ptes(tlb->mm);
196 }
197 
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 				unsigned long addr, unsigned long end,
200 				unsigned long floor, unsigned long ceiling)
201 {
202 	pmd_t *pmd;
203 	unsigned long next;
204 	unsigned long start;
205 
206 	start = addr;
207 	pmd = pmd_offset(pud, addr);
208 	do {
209 		next = pmd_addr_end(addr, end);
210 		if (pmd_none_or_clear_bad(pmd))
211 			continue;
212 		free_pte_range(tlb, pmd, addr);
213 	} while (pmd++, addr = next, addr != end);
214 
215 	start &= PUD_MASK;
216 	if (start < floor)
217 		return;
218 	if (ceiling) {
219 		ceiling &= PUD_MASK;
220 		if (!ceiling)
221 			return;
222 	}
223 	if (end - 1 > ceiling - 1)
224 		return;
225 
226 	pmd = pmd_offset(pud, start);
227 	pud_clear(pud);
228 	pmd_free_tlb(tlb, pmd, start);
229 	mm_dec_nr_pmds(tlb->mm);
230 }
231 
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 				unsigned long addr, unsigned long end,
234 				unsigned long floor, unsigned long ceiling)
235 {
236 	pud_t *pud;
237 	unsigned long next;
238 	unsigned long start;
239 
240 	start = addr;
241 	pud = pud_offset(p4d, addr);
242 	do {
243 		next = pud_addr_end(addr, end);
244 		if (pud_none_or_clear_bad(pud))
245 			continue;
246 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 	} while (pud++, addr = next, addr != end);
248 
249 	start &= P4D_MASK;
250 	if (start < floor)
251 		return;
252 	if (ceiling) {
253 		ceiling &= P4D_MASK;
254 		if (!ceiling)
255 			return;
256 	}
257 	if (end - 1 > ceiling - 1)
258 		return;
259 
260 	pud = pud_offset(p4d, start);
261 	p4d_clear(p4d);
262 	pud_free_tlb(tlb, pud, start);
263 	mm_dec_nr_puds(tlb->mm);
264 }
265 
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 				unsigned long addr, unsigned long end,
268 				unsigned long floor, unsigned long ceiling)
269 {
270 	p4d_t *p4d;
271 	unsigned long next;
272 	unsigned long start;
273 
274 	start = addr;
275 	p4d = p4d_offset(pgd, addr);
276 	do {
277 		next = p4d_addr_end(addr, end);
278 		if (p4d_none_or_clear_bad(p4d))
279 			continue;
280 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 	} while (p4d++, addr = next, addr != end);
282 
283 	start &= PGDIR_MASK;
284 	if (start < floor)
285 		return;
286 	if (ceiling) {
287 		ceiling &= PGDIR_MASK;
288 		if (!ceiling)
289 			return;
290 	}
291 	if (end - 1 > ceiling - 1)
292 		return;
293 
294 	p4d = p4d_offset(pgd, start);
295 	pgd_clear(pgd);
296 	p4d_free_tlb(tlb, p4d, start);
297 }
298 
299 /*
300  * This function frees user-level page tables of a process.
301  */
302 void free_pgd_range(struct mmu_gather *tlb,
303 			unsigned long addr, unsigned long end,
304 			unsigned long floor, unsigned long ceiling)
305 {
306 	pgd_t *pgd;
307 	unsigned long next;
308 
309 	/*
310 	 * The next few lines have given us lots of grief...
311 	 *
312 	 * Why are we testing PMD* at this top level?  Because often
313 	 * there will be no work to do at all, and we'd prefer not to
314 	 * go all the way down to the bottom just to discover that.
315 	 *
316 	 * Why all these "- 1"s?  Because 0 represents both the bottom
317 	 * of the address space and the top of it (using -1 for the
318 	 * top wouldn't help much: the masks would do the wrong thing).
319 	 * The rule is that addr 0 and floor 0 refer to the bottom of
320 	 * the address space, but end 0 and ceiling 0 refer to the top
321 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 	 * that end 0 case should be mythical).
323 	 *
324 	 * Wherever addr is brought up or ceiling brought down, we must
325 	 * be careful to reject "the opposite 0" before it confuses the
326 	 * subsequent tests.  But what about where end is brought down
327 	 * by PMD_SIZE below? no, end can't go down to 0 there.
328 	 *
329 	 * Whereas we round start (addr) and ceiling down, by different
330 	 * masks at different levels, in order to test whether a table
331 	 * now has no other vmas using it, so can be freed, we don't
332 	 * bother to round floor or end up - the tests don't need that.
333 	 */
334 
335 	addr &= PMD_MASK;
336 	if (addr < floor) {
337 		addr += PMD_SIZE;
338 		if (!addr)
339 			return;
340 	}
341 	if (ceiling) {
342 		ceiling &= PMD_MASK;
343 		if (!ceiling)
344 			return;
345 	}
346 	if (end - 1 > ceiling - 1)
347 		end -= PMD_SIZE;
348 	if (addr > end - 1)
349 		return;
350 	/*
351 	 * We add page table cache pages with PAGE_SIZE,
352 	 * (see pte_free_tlb()), flush the tlb if we need
353 	 */
354 	tlb_change_page_size(tlb, PAGE_SIZE);
355 	pgd = pgd_offset(tlb->mm, addr);
356 	do {
357 		next = pgd_addr_end(addr, end);
358 		if (pgd_none_or_clear_bad(pgd))
359 			continue;
360 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 	} while (pgd++, addr = next, addr != end);
362 }
363 
364 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
365 		   struct vm_area_struct *vma, unsigned long floor,
366 		   unsigned long ceiling, bool mm_wr_locked)
367 {
368 	do {
369 		unsigned long addr = vma->vm_start;
370 		struct vm_area_struct *next;
371 
372 		/*
373 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 		 * be 0.  This will underflow and is okay.
375 		 */
376 		next = mas_find(mas, ceiling - 1);
377 
378 		/*
379 		 * Hide vma from rmap and truncate_pagecache before freeing
380 		 * pgtables
381 		 */
382 		if (mm_wr_locked)
383 			vma_start_write(vma);
384 		unlink_anon_vmas(vma);
385 		unlink_file_vma(vma);
386 
387 		if (is_vm_hugetlb_page(vma)) {
388 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
389 				floor, next ? next->vm_start : ceiling);
390 		} else {
391 			/*
392 			 * Optimization: gather nearby vmas into one call down
393 			 */
394 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
395 			       && !is_vm_hugetlb_page(next)) {
396 				vma = next;
397 				next = mas_find(mas, ceiling - 1);
398 				if (mm_wr_locked)
399 					vma_start_write(vma);
400 				unlink_anon_vmas(vma);
401 				unlink_file_vma(vma);
402 			}
403 			free_pgd_range(tlb, addr, vma->vm_end,
404 				floor, next ? next->vm_start : ceiling);
405 		}
406 		vma = next;
407 	} while (vma);
408 }
409 
410 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
411 {
412 	spinlock_t *ptl = pmd_lock(mm, pmd);
413 
414 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
415 		mm_inc_nr_ptes(mm);
416 		/*
417 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
418 		 * visible before the pte is made visible to other CPUs by being
419 		 * put into page tables.
420 		 *
421 		 * The other side of the story is the pointer chasing in the page
422 		 * table walking code (when walking the page table without locking;
423 		 * ie. most of the time). Fortunately, these data accesses consist
424 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
425 		 * being the notable exception) will already guarantee loads are
426 		 * seen in-order. See the alpha page table accessors for the
427 		 * smp_rmb() barriers in page table walking code.
428 		 */
429 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
430 		pmd_populate(mm, pmd, *pte);
431 		*pte = NULL;
432 	}
433 	spin_unlock(ptl);
434 }
435 
436 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
437 {
438 	pgtable_t new = pte_alloc_one(mm);
439 	if (!new)
440 		return -ENOMEM;
441 
442 	pmd_install(mm, pmd, &new);
443 	if (new)
444 		pte_free(mm, new);
445 	return 0;
446 }
447 
448 int __pte_alloc_kernel(pmd_t *pmd)
449 {
450 	pte_t *new = pte_alloc_one_kernel(&init_mm);
451 	if (!new)
452 		return -ENOMEM;
453 
454 	spin_lock(&init_mm.page_table_lock);
455 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
456 		smp_wmb(); /* See comment in pmd_install() */
457 		pmd_populate_kernel(&init_mm, pmd, new);
458 		new = NULL;
459 	}
460 	spin_unlock(&init_mm.page_table_lock);
461 	if (new)
462 		pte_free_kernel(&init_mm, new);
463 	return 0;
464 }
465 
466 static inline void init_rss_vec(int *rss)
467 {
468 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
469 }
470 
471 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
472 {
473 	int i;
474 
475 	for (i = 0; i < NR_MM_COUNTERS; i++)
476 		if (rss[i])
477 			add_mm_counter(mm, i, rss[i]);
478 }
479 
480 /*
481  * This function is called to print an error when a bad pte
482  * is found. For example, we might have a PFN-mapped pte in
483  * a region that doesn't allow it.
484  *
485  * The calling function must still handle the error.
486  */
487 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
488 			  pte_t pte, struct page *page)
489 {
490 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
491 	p4d_t *p4d = p4d_offset(pgd, addr);
492 	pud_t *pud = pud_offset(p4d, addr);
493 	pmd_t *pmd = pmd_offset(pud, addr);
494 	struct address_space *mapping;
495 	pgoff_t index;
496 	static unsigned long resume;
497 	static unsigned long nr_shown;
498 	static unsigned long nr_unshown;
499 
500 	/*
501 	 * Allow a burst of 60 reports, then keep quiet for that minute;
502 	 * or allow a steady drip of one report per second.
503 	 */
504 	if (nr_shown == 60) {
505 		if (time_before(jiffies, resume)) {
506 			nr_unshown++;
507 			return;
508 		}
509 		if (nr_unshown) {
510 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
511 				 nr_unshown);
512 			nr_unshown = 0;
513 		}
514 		nr_shown = 0;
515 	}
516 	if (nr_shown++ == 0)
517 		resume = jiffies + 60 * HZ;
518 
519 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
520 	index = linear_page_index(vma, addr);
521 
522 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
523 		 current->comm,
524 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
525 	if (page)
526 		dump_page(page, "bad pte");
527 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
528 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
529 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
530 		 vma->vm_file,
531 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
532 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
533 		 mapping ? mapping->a_ops->read_folio : NULL);
534 	dump_stack();
535 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
536 }
537 
538 /*
539  * vm_normal_page -- This function gets the "struct page" associated with a pte.
540  *
541  * "Special" mappings do not wish to be associated with a "struct page" (either
542  * it doesn't exist, or it exists but they don't want to touch it). In this
543  * case, NULL is returned here. "Normal" mappings do have a struct page.
544  *
545  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
546  * pte bit, in which case this function is trivial. Secondly, an architecture
547  * may not have a spare pte bit, which requires a more complicated scheme,
548  * described below.
549  *
550  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
551  * special mapping (even if there are underlying and valid "struct pages").
552  * COWed pages of a VM_PFNMAP are always normal.
553  *
554  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
555  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
556  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
557  * mapping will always honor the rule
558  *
559  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
560  *
561  * And for normal mappings this is false.
562  *
563  * This restricts such mappings to be a linear translation from virtual address
564  * to pfn. To get around this restriction, we allow arbitrary mappings so long
565  * as the vma is not a COW mapping; in that case, we know that all ptes are
566  * special (because none can have been COWed).
567  *
568  *
569  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
570  *
571  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
572  * page" backing, however the difference is that _all_ pages with a struct
573  * page (that is, those where pfn_valid is true) are refcounted and considered
574  * normal pages by the VM. The disadvantage is that pages are refcounted
575  * (which can be slower and simply not an option for some PFNMAP users). The
576  * advantage is that we don't have to follow the strict linearity rule of
577  * PFNMAP mappings in order to support COWable mappings.
578  *
579  */
580 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
581 			    pte_t pte)
582 {
583 	unsigned long pfn = pte_pfn(pte);
584 
585 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
586 		if (likely(!pte_special(pte)))
587 			goto check_pfn;
588 		if (vma->vm_ops && vma->vm_ops->find_special_page)
589 			return vma->vm_ops->find_special_page(vma, addr);
590 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
591 			return NULL;
592 		if (is_zero_pfn(pfn))
593 			return NULL;
594 		if (pte_devmap(pte))
595 		/*
596 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
597 		 * and will have refcounts incremented on their struct pages
598 		 * when they are inserted into PTEs, thus they are safe to
599 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
600 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
601 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
602 		 */
603 			return NULL;
604 
605 		print_bad_pte(vma, addr, pte, NULL);
606 		return NULL;
607 	}
608 
609 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
610 
611 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
612 		if (vma->vm_flags & VM_MIXEDMAP) {
613 			if (!pfn_valid(pfn))
614 				return NULL;
615 			goto out;
616 		} else {
617 			unsigned long off;
618 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
619 			if (pfn == vma->vm_pgoff + off)
620 				return NULL;
621 			if (!is_cow_mapping(vma->vm_flags))
622 				return NULL;
623 		}
624 	}
625 
626 	if (is_zero_pfn(pfn))
627 		return NULL;
628 
629 check_pfn:
630 	if (unlikely(pfn > highest_memmap_pfn)) {
631 		print_bad_pte(vma, addr, pte, NULL);
632 		return NULL;
633 	}
634 
635 	/*
636 	 * NOTE! We still have PageReserved() pages in the page tables.
637 	 * eg. VDSO mappings can cause them to exist.
638 	 */
639 out:
640 	return pfn_to_page(pfn);
641 }
642 
643 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
644 			    pte_t pte)
645 {
646 	struct page *page = vm_normal_page(vma, addr, pte);
647 
648 	if (page)
649 		return page_folio(page);
650 	return NULL;
651 }
652 
653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
654 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
655 				pmd_t pmd)
656 {
657 	unsigned long pfn = pmd_pfn(pmd);
658 
659 	/*
660 	 * There is no pmd_special() but there may be special pmds, e.g.
661 	 * in a direct-access (dax) mapping, so let's just replicate the
662 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
663 	 */
664 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
665 		if (vma->vm_flags & VM_MIXEDMAP) {
666 			if (!pfn_valid(pfn))
667 				return NULL;
668 			goto out;
669 		} else {
670 			unsigned long off;
671 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
672 			if (pfn == vma->vm_pgoff + off)
673 				return NULL;
674 			if (!is_cow_mapping(vma->vm_flags))
675 				return NULL;
676 		}
677 	}
678 
679 	if (pmd_devmap(pmd))
680 		return NULL;
681 	if (is_huge_zero_pmd(pmd))
682 		return NULL;
683 	if (unlikely(pfn > highest_memmap_pfn))
684 		return NULL;
685 
686 	/*
687 	 * NOTE! We still have PageReserved() pages in the page tables.
688 	 * eg. VDSO mappings can cause them to exist.
689 	 */
690 out:
691 	return pfn_to_page(pfn);
692 }
693 
694 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
695 				  unsigned long addr, pmd_t pmd)
696 {
697 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
698 
699 	if (page)
700 		return page_folio(page);
701 	return NULL;
702 }
703 #endif
704 
705 static void restore_exclusive_pte(struct vm_area_struct *vma,
706 				  struct page *page, unsigned long address,
707 				  pte_t *ptep)
708 {
709 	pte_t orig_pte;
710 	pte_t pte;
711 	swp_entry_t entry;
712 
713 	orig_pte = ptep_get(ptep);
714 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
715 	if (pte_swp_soft_dirty(orig_pte))
716 		pte = pte_mksoft_dirty(pte);
717 
718 	entry = pte_to_swp_entry(orig_pte);
719 	if (pte_swp_uffd_wp(orig_pte))
720 		pte = pte_mkuffd_wp(pte);
721 	else if (is_writable_device_exclusive_entry(entry))
722 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
723 
724 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
725 
726 	/*
727 	 * No need to take a page reference as one was already
728 	 * created when the swap entry was made.
729 	 */
730 	if (PageAnon(page))
731 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
732 	else
733 		/*
734 		 * Currently device exclusive access only supports anonymous
735 		 * memory so the entry shouldn't point to a filebacked page.
736 		 */
737 		WARN_ON_ONCE(1);
738 
739 	set_pte_at(vma->vm_mm, address, ptep, pte);
740 
741 	/*
742 	 * No need to invalidate - it was non-present before. However
743 	 * secondary CPUs may have mappings that need invalidating.
744 	 */
745 	update_mmu_cache(vma, address, ptep);
746 }
747 
748 /*
749  * Tries to restore an exclusive pte if the page lock can be acquired without
750  * sleeping.
751  */
752 static int
753 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
754 			unsigned long addr)
755 {
756 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
757 	struct page *page = pfn_swap_entry_to_page(entry);
758 
759 	if (trylock_page(page)) {
760 		restore_exclusive_pte(vma, page, addr, src_pte);
761 		unlock_page(page);
762 		return 0;
763 	}
764 
765 	return -EBUSY;
766 }
767 
768 /*
769  * copy one vm_area from one task to the other. Assumes the page tables
770  * already present in the new task to be cleared in the whole range
771  * covered by this vma.
772  */
773 
774 static unsigned long
775 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
776 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
777 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
778 {
779 	unsigned long vm_flags = dst_vma->vm_flags;
780 	pte_t orig_pte = ptep_get(src_pte);
781 	pte_t pte = orig_pte;
782 	struct page *page;
783 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
784 
785 	if (likely(!non_swap_entry(entry))) {
786 		if (swap_duplicate(entry) < 0)
787 			return -EIO;
788 
789 		/* make sure dst_mm is on swapoff's mmlist. */
790 		if (unlikely(list_empty(&dst_mm->mmlist))) {
791 			spin_lock(&mmlist_lock);
792 			if (list_empty(&dst_mm->mmlist))
793 				list_add(&dst_mm->mmlist,
794 						&src_mm->mmlist);
795 			spin_unlock(&mmlist_lock);
796 		}
797 		/* Mark the swap entry as shared. */
798 		if (pte_swp_exclusive(orig_pte)) {
799 			pte = pte_swp_clear_exclusive(orig_pte);
800 			set_pte_at(src_mm, addr, src_pte, pte);
801 		}
802 		rss[MM_SWAPENTS]++;
803 	} else if (is_migration_entry(entry)) {
804 		page = pfn_swap_entry_to_page(entry);
805 
806 		rss[mm_counter(page)]++;
807 
808 		if (!is_readable_migration_entry(entry) &&
809 				is_cow_mapping(vm_flags)) {
810 			/*
811 			 * COW mappings require pages in both parent and child
812 			 * to be set to read. A previously exclusive entry is
813 			 * now shared.
814 			 */
815 			entry = make_readable_migration_entry(
816 							swp_offset(entry));
817 			pte = swp_entry_to_pte(entry);
818 			if (pte_swp_soft_dirty(orig_pte))
819 				pte = pte_swp_mksoft_dirty(pte);
820 			if (pte_swp_uffd_wp(orig_pte))
821 				pte = pte_swp_mkuffd_wp(pte);
822 			set_pte_at(src_mm, addr, src_pte, pte);
823 		}
824 	} else if (is_device_private_entry(entry)) {
825 		page = pfn_swap_entry_to_page(entry);
826 
827 		/*
828 		 * Update rss count even for unaddressable pages, as
829 		 * they should treated just like normal pages in this
830 		 * respect.
831 		 *
832 		 * We will likely want to have some new rss counters
833 		 * for unaddressable pages, at some point. But for now
834 		 * keep things as they are.
835 		 */
836 		get_page(page);
837 		rss[mm_counter(page)]++;
838 		/* Cannot fail as these pages cannot get pinned. */
839 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
840 
841 		/*
842 		 * We do not preserve soft-dirty information, because so
843 		 * far, checkpoint/restore is the only feature that
844 		 * requires that. And checkpoint/restore does not work
845 		 * when a device driver is involved (you cannot easily
846 		 * save and restore device driver state).
847 		 */
848 		if (is_writable_device_private_entry(entry) &&
849 		    is_cow_mapping(vm_flags)) {
850 			entry = make_readable_device_private_entry(
851 							swp_offset(entry));
852 			pte = swp_entry_to_pte(entry);
853 			if (pte_swp_uffd_wp(orig_pte))
854 				pte = pte_swp_mkuffd_wp(pte);
855 			set_pte_at(src_mm, addr, src_pte, pte);
856 		}
857 	} else if (is_device_exclusive_entry(entry)) {
858 		/*
859 		 * Make device exclusive entries present by restoring the
860 		 * original entry then copying as for a present pte. Device
861 		 * exclusive entries currently only support private writable
862 		 * (ie. COW) mappings.
863 		 */
864 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
865 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
866 			return -EBUSY;
867 		return -ENOENT;
868 	} else if (is_pte_marker_entry(entry)) {
869 		pte_marker marker = copy_pte_marker(entry, dst_vma);
870 
871 		if (marker)
872 			set_pte_at(dst_mm, addr, dst_pte,
873 				   make_pte_marker(marker));
874 		return 0;
875 	}
876 	if (!userfaultfd_wp(dst_vma))
877 		pte = pte_swp_clear_uffd_wp(pte);
878 	set_pte_at(dst_mm, addr, dst_pte, pte);
879 	return 0;
880 }
881 
882 /*
883  * Copy a present and normal page.
884  *
885  * NOTE! The usual case is that this isn't required;
886  * instead, the caller can just increase the page refcount
887  * and re-use the pte the traditional way.
888  *
889  * And if we need a pre-allocated page but don't yet have
890  * one, return a negative error to let the preallocation
891  * code know so that it can do so outside the page table
892  * lock.
893  */
894 static inline int
895 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
896 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
897 		  struct folio **prealloc, struct page *page)
898 {
899 	struct folio *new_folio;
900 	pte_t pte;
901 
902 	new_folio = *prealloc;
903 	if (!new_folio)
904 		return -EAGAIN;
905 
906 	/*
907 	 * We have a prealloc page, all good!  Take it
908 	 * over and copy the page & arm it.
909 	 */
910 	*prealloc = NULL;
911 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
912 	__folio_mark_uptodate(new_folio);
913 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
914 	folio_add_lru_vma(new_folio, dst_vma);
915 	rss[MM_ANONPAGES]++;
916 
917 	/* All done, just insert the new page copy in the child */
918 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
919 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
920 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
921 		/* Uffd-wp needs to be delivered to dest pte as well */
922 		pte = pte_mkuffd_wp(pte);
923 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
924 	return 0;
925 }
926 
927 /*
928  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
929  * is required to copy this pte.
930  */
931 static inline int
932 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
933 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
934 		 struct folio **prealloc)
935 {
936 	struct mm_struct *src_mm = src_vma->vm_mm;
937 	unsigned long vm_flags = src_vma->vm_flags;
938 	pte_t pte = ptep_get(src_pte);
939 	struct page *page;
940 	struct folio *folio;
941 
942 	page = vm_normal_page(src_vma, addr, pte);
943 	if (page)
944 		folio = page_folio(page);
945 	if (page && folio_test_anon(folio)) {
946 		/*
947 		 * If this page may have been pinned by the parent process,
948 		 * copy the page immediately for the child so that we'll always
949 		 * guarantee the pinned page won't be randomly replaced in the
950 		 * future.
951 		 */
952 		folio_get(folio);
953 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
954 			/* Page may be pinned, we have to copy. */
955 			folio_put(folio);
956 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
957 						 addr, rss, prealloc, page);
958 		}
959 		rss[MM_ANONPAGES]++;
960 	} else if (page) {
961 		folio_get(folio);
962 		page_dup_file_rmap(page, false);
963 		rss[mm_counter_file(page)]++;
964 	}
965 
966 	/*
967 	 * If it's a COW mapping, write protect it both
968 	 * in the parent and the child
969 	 */
970 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
971 		ptep_set_wrprotect(src_mm, addr, src_pte);
972 		pte = pte_wrprotect(pte);
973 	}
974 	VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
975 
976 	/*
977 	 * If it's a shared mapping, mark it clean in
978 	 * the child
979 	 */
980 	if (vm_flags & VM_SHARED)
981 		pte = pte_mkclean(pte);
982 	pte = pte_mkold(pte);
983 
984 	if (!userfaultfd_wp(dst_vma))
985 		pte = pte_clear_uffd_wp(pte);
986 
987 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
988 	return 0;
989 }
990 
991 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
992 		struct vm_area_struct *vma, unsigned long addr)
993 {
994 	struct folio *new_folio;
995 
996 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
997 	if (!new_folio)
998 		return NULL;
999 
1000 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1001 		folio_put(new_folio);
1002 		return NULL;
1003 	}
1004 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1005 
1006 	return new_folio;
1007 }
1008 
1009 static int
1010 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1011 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1012 	       unsigned long end)
1013 {
1014 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1015 	struct mm_struct *src_mm = src_vma->vm_mm;
1016 	pte_t *orig_src_pte, *orig_dst_pte;
1017 	pte_t *src_pte, *dst_pte;
1018 	pte_t ptent;
1019 	spinlock_t *src_ptl, *dst_ptl;
1020 	int progress, ret = 0;
1021 	int rss[NR_MM_COUNTERS];
1022 	swp_entry_t entry = (swp_entry_t){0};
1023 	struct folio *prealloc = NULL;
1024 
1025 again:
1026 	progress = 0;
1027 	init_rss_vec(rss);
1028 
1029 	/*
1030 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1031 	 * error handling here, assume that exclusive mmap_lock on dst and src
1032 	 * protects anon from unexpected THP transitions; with shmem and file
1033 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1034 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1035 	 * can remove such assumptions later, but this is good enough for now.
1036 	 */
1037 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1038 	if (!dst_pte) {
1039 		ret = -ENOMEM;
1040 		goto out;
1041 	}
1042 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1043 	if (!src_pte) {
1044 		pte_unmap_unlock(dst_pte, dst_ptl);
1045 		/* ret == 0 */
1046 		goto out;
1047 	}
1048 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1049 	orig_src_pte = src_pte;
1050 	orig_dst_pte = dst_pte;
1051 	arch_enter_lazy_mmu_mode();
1052 
1053 	do {
1054 		/*
1055 		 * We are holding two locks at this point - either of them
1056 		 * could generate latencies in another task on another CPU.
1057 		 */
1058 		if (progress >= 32) {
1059 			progress = 0;
1060 			if (need_resched() ||
1061 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1062 				break;
1063 		}
1064 		ptent = ptep_get(src_pte);
1065 		if (pte_none(ptent)) {
1066 			progress++;
1067 			continue;
1068 		}
1069 		if (unlikely(!pte_present(ptent))) {
1070 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1071 						  dst_pte, src_pte,
1072 						  dst_vma, src_vma,
1073 						  addr, rss);
1074 			if (ret == -EIO) {
1075 				entry = pte_to_swp_entry(ptep_get(src_pte));
1076 				break;
1077 			} else if (ret == -EBUSY) {
1078 				break;
1079 			} else if (!ret) {
1080 				progress += 8;
1081 				continue;
1082 			}
1083 
1084 			/*
1085 			 * Device exclusive entry restored, continue by copying
1086 			 * the now present pte.
1087 			 */
1088 			WARN_ON_ONCE(ret != -ENOENT);
1089 		}
1090 		/* copy_present_pte() will clear `*prealloc' if consumed */
1091 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1092 				       addr, rss, &prealloc);
1093 		/*
1094 		 * If we need a pre-allocated page for this pte, drop the
1095 		 * locks, allocate, and try again.
1096 		 */
1097 		if (unlikely(ret == -EAGAIN))
1098 			break;
1099 		if (unlikely(prealloc)) {
1100 			/*
1101 			 * pre-alloc page cannot be reused by next time so as
1102 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1103 			 * will allocate page according to address).  This
1104 			 * could only happen if one pinned pte changed.
1105 			 */
1106 			folio_put(prealloc);
1107 			prealloc = NULL;
1108 		}
1109 		progress += 8;
1110 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1111 
1112 	arch_leave_lazy_mmu_mode();
1113 	pte_unmap_unlock(orig_src_pte, src_ptl);
1114 	add_mm_rss_vec(dst_mm, rss);
1115 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1116 	cond_resched();
1117 
1118 	if (ret == -EIO) {
1119 		VM_WARN_ON_ONCE(!entry.val);
1120 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1121 			ret = -ENOMEM;
1122 			goto out;
1123 		}
1124 		entry.val = 0;
1125 	} else if (ret == -EBUSY) {
1126 		goto out;
1127 	} else if (ret ==  -EAGAIN) {
1128 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1129 		if (!prealloc)
1130 			return -ENOMEM;
1131 	} else if (ret) {
1132 		VM_WARN_ON_ONCE(1);
1133 	}
1134 
1135 	/* We've captured and resolved the error. Reset, try again. */
1136 	ret = 0;
1137 
1138 	if (addr != end)
1139 		goto again;
1140 out:
1141 	if (unlikely(prealloc))
1142 		folio_put(prealloc);
1143 	return ret;
1144 }
1145 
1146 static inline int
1147 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1148 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1149 	       unsigned long end)
1150 {
1151 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1152 	struct mm_struct *src_mm = src_vma->vm_mm;
1153 	pmd_t *src_pmd, *dst_pmd;
1154 	unsigned long next;
1155 
1156 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1157 	if (!dst_pmd)
1158 		return -ENOMEM;
1159 	src_pmd = pmd_offset(src_pud, addr);
1160 	do {
1161 		next = pmd_addr_end(addr, end);
1162 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1163 			|| pmd_devmap(*src_pmd)) {
1164 			int err;
1165 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1166 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1167 					    addr, dst_vma, src_vma);
1168 			if (err == -ENOMEM)
1169 				return -ENOMEM;
1170 			if (!err)
1171 				continue;
1172 			/* fall through */
1173 		}
1174 		if (pmd_none_or_clear_bad(src_pmd))
1175 			continue;
1176 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1177 				   addr, next))
1178 			return -ENOMEM;
1179 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1180 	return 0;
1181 }
1182 
1183 static inline int
1184 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1185 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1186 	       unsigned long end)
1187 {
1188 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1189 	struct mm_struct *src_mm = src_vma->vm_mm;
1190 	pud_t *src_pud, *dst_pud;
1191 	unsigned long next;
1192 
1193 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1194 	if (!dst_pud)
1195 		return -ENOMEM;
1196 	src_pud = pud_offset(src_p4d, addr);
1197 	do {
1198 		next = pud_addr_end(addr, end);
1199 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1200 			int err;
1201 
1202 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1203 			err = copy_huge_pud(dst_mm, src_mm,
1204 					    dst_pud, src_pud, addr, src_vma);
1205 			if (err == -ENOMEM)
1206 				return -ENOMEM;
1207 			if (!err)
1208 				continue;
1209 			/* fall through */
1210 		}
1211 		if (pud_none_or_clear_bad(src_pud))
1212 			continue;
1213 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1214 				   addr, next))
1215 			return -ENOMEM;
1216 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1217 	return 0;
1218 }
1219 
1220 static inline int
1221 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1222 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1223 	       unsigned long end)
1224 {
1225 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1226 	p4d_t *src_p4d, *dst_p4d;
1227 	unsigned long next;
1228 
1229 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1230 	if (!dst_p4d)
1231 		return -ENOMEM;
1232 	src_p4d = p4d_offset(src_pgd, addr);
1233 	do {
1234 		next = p4d_addr_end(addr, end);
1235 		if (p4d_none_or_clear_bad(src_p4d))
1236 			continue;
1237 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1238 				   addr, next))
1239 			return -ENOMEM;
1240 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1241 	return 0;
1242 }
1243 
1244 /*
1245  * Return true if the vma needs to copy the pgtable during this fork().  Return
1246  * false when we can speed up fork() by allowing lazy page faults later until
1247  * when the child accesses the memory range.
1248  */
1249 static bool
1250 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1251 {
1252 	/*
1253 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1254 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1255 	 * contains uffd-wp protection information, that's something we can't
1256 	 * retrieve from page cache, and skip copying will lose those info.
1257 	 */
1258 	if (userfaultfd_wp(dst_vma))
1259 		return true;
1260 
1261 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1262 		return true;
1263 
1264 	if (src_vma->anon_vma)
1265 		return true;
1266 
1267 	/*
1268 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1269 	 * becomes much lighter when there are big shared or private readonly
1270 	 * mappings. The tradeoff is that copy_page_range is more efficient
1271 	 * than faulting.
1272 	 */
1273 	return false;
1274 }
1275 
1276 int
1277 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1278 {
1279 	pgd_t *src_pgd, *dst_pgd;
1280 	unsigned long next;
1281 	unsigned long addr = src_vma->vm_start;
1282 	unsigned long end = src_vma->vm_end;
1283 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1284 	struct mm_struct *src_mm = src_vma->vm_mm;
1285 	struct mmu_notifier_range range;
1286 	bool is_cow;
1287 	int ret;
1288 
1289 	if (!vma_needs_copy(dst_vma, src_vma))
1290 		return 0;
1291 
1292 	if (is_vm_hugetlb_page(src_vma))
1293 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1294 
1295 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1296 		/*
1297 		 * We do not free on error cases below as remove_vma
1298 		 * gets called on error from higher level routine
1299 		 */
1300 		ret = track_pfn_copy(src_vma);
1301 		if (ret)
1302 			return ret;
1303 	}
1304 
1305 	/*
1306 	 * We need to invalidate the secondary MMU mappings only when
1307 	 * there could be a permission downgrade on the ptes of the
1308 	 * parent mm. And a permission downgrade will only happen if
1309 	 * is_cow_mapping() returns true.
1310 	 */
1311 	is_cow = is_cow_mapping(src_vma->vm_flags);
1312 
1313 	if (is_cow) {
1314 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1315 					0, src_mm, addr, end);
1316 		mmu_notifier_invalidate_range_start(&range);
1317 		/*
1318 		 * Disabling preemption is not needed for the write side, as
1319 		 * the read side doesn't spin, but goes to the mmap_lock.
1320 		 *
1321 		 * Use the raw variant of the seqcount_t write API to avoid
1322 		 * lockdep complaining about preemptibility.
1323 		 */
1324 		vma_assert_write_locked(src_vma);
1325 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1326 	}
1327 
1328 	ret = 0;
1329 	dst_pgd = pgd_offset(dst_mm, addr);
1330 	src_pgd = pgd_offset(src_mm, addr);
1331 	do {
1332 		next = pgd_addr_end(addr, end);
1333 		if (pgd_none_or_clear_bad(src_pgd))
1334 			continue;
1335 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1336 					    addr, next))) {
1337 			untrack_pfn_clear(dst_vma);
1338 			ret = -ENOMEM;
1339 			break;
1340 		}
1341 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1342 
1343 	if (is_cow) {
1344 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1345 		mmu_notifier_invalidate_range_end(&range);
1346 	}
1347 	return ret;
1348 }
1349 
1350 /* Whether we should zap all COWed (private) pages too */
1351 static inline bool should_zap_cows(struct zap_details *details)
1352 {
1353 	/* By default, zap all pages */
1354 	if (!details)
1355 		return true;
1356 
1357 	/* Or, we zap COWed pages only if the caller wants to */
1358 	return details->even_cows;
1359 }
1360 
1361 /* Decides whether we should zap this page with the page pointer specified */
1362 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1363 {
1364 	/* If we can make a decision without *page.. */
1365 	if (should_zap_cows(details))
1366 		return true;
1367 
1368 	/* E.g. the caller passes NULL for the case of a zero page */
1369 	if (!page)
1370 		return true;
1371 
1372 	/* Otherwise we should only zap non-anon pages */
1373 	return !PageAnon(page);
1374 }
1375 
1376 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1377 {
1378 	if (!details)
1379 		return false;
1380 
1381 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1382 }
1383 
1384 /*
1385  * This function makes sure that we'll replace the none pte with an uffd-wp
1386  * swap special pte marker when necessary. Must be with the pgtable lock held.
1387  */
1388 static inline void
1389 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1390 			      unsigned long addr, pte_t *pte,
1391 			      struct zap_details *details, pte_t pteval)
1392 {
1393 	/* Zap on anonymous always means dropping everything */
1394 	if (vma_is_anonymous(vma))
1395 		return;
1396 
1397 	if (zap_drop_file_uffd_wp(details))
1398 		return;
1399 
1400 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1401 }
1402 
1403 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1404 				struct vm_area_struct *vma, pmd_t *pmd,
1405 				unsigned long addr, unsigned long end,
1406 				struct zap_details *details)
1407 {
1408 	struct mm_struct *mm = tlb->mm;
1409 	int force_flush = 0;
1410 	int rss[NR_MM_COUNTERS];
1411 	spinlock_t *ptl;
1412 	pte_t *start_pte;
1413 	pte_t *pte;
1414 	swp_entry_t entry;
1415 
1416 	tlb_change_page_size(tlb, PAGE_SIZE);
1417 	init_rss_vec(rss);
1418 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1419 	if (!pte)
1420 		return addr;
1421 
1422 	flush_tlb_batched_pending(mm);
1423 	arch_enter_lazy_mmu_mode();
1424 	do {
1425 		pte_t ptent = ptep_get(pte);
1426 		struct page *page;
1427 
1428 		if (pte_none(ptent))
1429 			continue;
1430 
1431 		if (need_resched())
1432 			break;
1433 
1434 		if (pte_present(ptent)) {
1435 			unsigned int delay_rmap;
1436 
1437 			page = vm_normal_page(vma, addr, ptent);
1438 			if (unlikely(!should_zap_page(details, page)))
1439 				continue;
1440 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1441 							tlb->fullmm);
1442 			arch_check_zapped_pte(vma, ptent);
1443 			tlb_remove_tlb_entry(tlb, pte, addr);
1444 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1445 						      ptent);
1446 			if (unlikely(!page)) {
1447 				ksm_might_unmap_zero_page(mm, ptent);
1448 				continue;
1449 			}
1450 
1451 			delay_rmap = 0;
1452 			if (!PageAnon(page)) {
1453 				if (pte_dirty(ptent)) {
1454 					set_page_dirty(page);
1455 					if (tlb_delay_rmap(tlb)) {
1456 						delay_rmap = 1;
1457 						force_flush = 1;
1458 					}
1459 				}
1460 				if (pte_young(ptent) && likely(vma_has_recency(vma)))
1461 					mark_page_accessed(page);
1462 			}
1463 			rss[mm_counter(page)]--;
1464 			if (!delay_rmap) {
1465 				page_remove_rmap(page, vma, false);
1466 				if (unlikely(page_mapcount(page) < 0))
1467 					print_bad_pte(vma, addr, ptent, page);
1468 			}
1469 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1470 				force_flush = 1;
1471 				addr += PAGE_SIZE;
1472 				break;
1473 			}
1474 			continue;
1475 		}
1476 
1477 		entry = pte_to_swp_entry(ptent);
1478 		if (is_device_private_entry(entry) ||
1479 		    is_device_exclusive_entry(entry)) {
1480 			page = pfn_swap_entry_to_page(entry);
1481 			if (unlikely(!should_zap_page(details, page)))
1482 				continue;
1483 			/*
1484 			 * Both device private/exclusive mappings should only
1485 			 * work with anonymous page so far, so we don't need to
1486 			 * consider uffd-wp bit when zap. For more information,
1487 			 * see zap_install_uffd_wp_if_needed().
1488 			 */
1489 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1490 			rss[mm_counter(page)]--;
1491 			if (is_device_private_entry(entry))
1492 				page_remove_rmap(page, vma, false);
1493 			put_page(page);
1494 		} else if (!non_swap_entry(entry)) {
1495 			/* Genuine swap entry, hence a private anon page */
1496 			if (!should_zap_cows(details))
1497 				continue;
1498 			rss[MM_SWAPENTS]--;
1499 			if (unlikely(!free_swap_and_cache(entry)))
1500 				print_bad_pte(vma, addr, ptent, NULL);
1501 		} else if (is_migration_entry(entry)) {
1502 			page = pfn_swap_entry_to_page(entry);
1503 			if (!should_zap_page(details, page))
1504 				continue;
1505 			rss[mm_counter(page)]--;
1506 		} else if (pte_marker_entry_uffd_wp(entry)) {
1507 			/*
1508 			 * For anon: always drop the marker; for file: only
1509 			 * drop the marker if explicitly requested.
1510 			 */
1511 			if (!vma_is_anonymous(vma) &&
1512 			    !zap_drop_file_uffd_wp(details))
1513 				continue;
1514 		} else if (is_hwpoison_entry(entry) ||
1515 			   is_poisoned_swp_entry(entry)) {
1516 			if (!should_zap_cows(details))
1517 				continue;
1518 		} else {
1519 			/* We should have covered all the swap entry types */
1520 			pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1521 			WARN_ON_ONCE(1);
1522 		}
1523 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1524 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1525 	} while (pte++, addr += PAGE_SIZE, addr != end);
1526 
1527 	add_mm_rss_vec(mm, rss);
1528 	arch_leave_lazy_mmu_mode();
1529 
1530 	/* Do the actual TLB flush before dropping ptl */
1531 	if (force_flush) {
1532 		tlb_flush_mmu_tlbonly(tlb);
1533 		tlb_flush_rmaps(tlb, vma);
1534 	}
1535 	pte_unmap_unlock(start_pte, ptl);
1536 
1537 	/*
1538 	 * If we forced a TLB flush (either due to running out of
1539 	 * batch buffers or because we needed to flush dirty TLB
1540 	 * entries before releasing the ptl), free the batched
1541 	 * memory too. Come back again if we didn't do everything.
1542 	 */
1543 	if (force_flush)
1544 		tlb_flush_mmu(tlb);
1545 
1546 	return addr;
1547 }
1548 
1549 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1550 				struct vm_area_struct *vma, pud_t *pud,
1551 				unsigned long addr, unsigned long end,
1552 				struct zap_details *details)
1553 {
1554 	pmd_t *pmd;
1555 	unsigned long next;
1556 
1557 	pmd = pmd_offset(pud, addr);
1558 	do {
1559 		next = pmd_addr_end(addr, end);
1560 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1561 			if (next - addr != HPAGE_PMD_SIZE)
1562 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1563 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1564 				addr = next;
1565 				continue;
1566 			}
1567 			/* fall through */
1568 		} else if (details && details->single_folio &&
1569 			   folio_test_pmd_mappable(details->single_folio) &&
1570 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1571 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1572 			/*
1573 			 * Take and drop THP pmd lock so that we cannot return
1574 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1575 			 * but not yet decremented compound_mapcount().
1576 			 */
1577 			spin_unlock(ptl);
1578 		}
1579 		if (pmd_none(*pmd)) {
1580 			addr = next;
1581 			continue;
1582 		}
1583 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1584 		if (addr != next)
1585 			pmd--;
1586 	} while (pmd++, cond_resched(), addr != end);
1587 
1588 	return addr;
1589 }
1590 
1591 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1592 				struct vm_area_struct *vma, p4d_t *p4d,
1593 				unsigned long addr, unsigned long end,
1594 				struct zap_details *details)
1595 {
1596 	pud_t *pud;
1597 	unsigned long next;
1598 
1599 	pud = pud_offset(p4d, addr);
1600 	do {
1601 		next = pud_addr_end(addr, end);
1602 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1603 			if (next - addr != HPAGE_PUD_SIZE) {
1604 				mmap_assert_locked(tlb->mm);
1605 				split_huge_pud(vma, pud, addr);
1606 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1607 				goto next;
1608 			/* fall through */
1609 		}
1610 		if (pud_none_or_clear_bad(pud))
1611 			continue;
1612 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1613 next:
1614 		cond_resched();
1615 	} while (pud++, addr = next, addr != end);
1616 
1617 	return addr;
1618 }
1619 
1620 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1621 				struct vm_area_struct *vma, pgd_t *pgd,
1622 				unsigned long addr, unsigned long end,
1623 				struct zap_details *details)
1624 {
1625 	p4d_t *p4d;
1626 	unsigned long next;
1627 
1628 	p4d = p4d_offset(pgd, addr);
1629 	do {
1630 		next = p4d_addr_end(addr, end);
1631 		if (p4d_none_or_clear_bad(p4d))
1632 			continue;
1633 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1634 	} while (p4d++, addr = next, addr != end);
1635 
1636 	return addr;
1637 }
1638 
1639 void unmap_page_range(struct mmu_gather *tlb,
1640 			     struct vm_area_struct *vma,
1641 			     unsigned long addr, unsigned long end,
1642 			     struct zap_details *details)
1643 {
1644 	pgd_t *pgd;
1645 	unsigned long next;
1646 
1647 	BUG_ON(addr >= end);
1648 	tlb_start_vma(tlb, vma);
1649 	pgd = pgd_offset(vma->vm_mm, addr);
1650 	do {
1651 		next = pgd_addr_end(addr, end);
1652 		if (pgd_none_or_clear_bad(pgd))
1653 			continue;
1654 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1655 	} while (pgd++, addr = next, addr != end);
1656 	tlb_end_vma(tlb, vma);
1657 }
1658 
1659 
1660 static void unmap_single_vma(struct mmu_gather *tlb,
1661 		struct vm_area_struct *vma, unsigned long start_addr,
1662 		unsigned long end_addr,
1663 		struct zap_details *details, bool mm_wr_locked)
1664 {
1665 	unsigned long start = max(vma->vm_start, start_addr);
1666 	unsigned long end;
1667 
1668 	if (start >= vma->vm_end)
1669 		return;
1670 	end = min(vma->vm_end, end_addr);
1671 	if (end <= vma->vm_start)
1672 		return;
1673 
1674 	if (vma->vm_file)
1675 		uprobe_munmap(vma, start, end);
1676 
1677 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1678 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1679 
1680 	if (start != end) {
1681 		if (unlikely(is_vm_hugetlb_page(vma))) {
1682 			/*
1683 			 * It is undesirable to test vma->vm_file as it
1684 			 * should be non-null for valid hugetlb area.
1685 			 * However, vm_file will be NULL in the error
1686 			 * cleanup path of mmap_region. When
1687 			 * hugetlbfs ->mmap method fails,
1688 			 * mmap_region() nullifies vma->vm_file
1689 			 * before calling this function to clean up.
1690 			 * Since no pte has actually been setup, it is
1691 			 * safe to do nothing in this case.
1692 			 */
1693 			if (vma->vm_file) {
1694 				zap_flags_t zap_flags = details ?
1695 				    details->zap_flags : 0;
1696 				__unmap_hugepage_range(tlb, vma, start, end,
1697 							     NULL, zap_flags);
1698 			}
1699 		} else
1700 			unmap_page_range(tlb, vma, start, end, details);
1701 	}
1702 }
1703 
1704 /**
1705  * unmap_vmas - unmap a range of memory covered by a list of vma's
1706  * @tlb: address of the caller's struct mmu_gather
1707  * @mas: the maple state
1708  * @vma: the starting vma
1709  * @start_addr: virtual address at which to start unmapping
1710  * @end_addr: virtual address at which to end unmapping
1711  * @tree_end: The maximum index to check
1712  * @mm_wr_locked: lock flag
1713  *
1714  * Unmap all pages in the vma list.
1715  *
1716  * Only addresses between `start' and `end' will be unmapped.
1717  *
1718  * The VMA list must be sorted in ascending virtual address order.
1719  *
1720  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1721  * range after unmap_vmas() returns.  So the only responsibility here is to
1722  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1723  * drops the lock and schedules.
1724  */
1725 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1726 		struct vm_area_struct *vma, unsigned long start_addr,
1727 		unsigned long end_addr, unsigned long tree_end,
1728 		bool mm_wr_locked)
1729 {
1730 	struct mmu_notifier_range range;
1731 	struct zap_details details = {
1732 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1733 		/* Careful - we need to zap private pages too! */
1734 		.even_cows = true,
1735 	};
1736 
1737 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1738 				start_addr, end_addr);
1739 	mmu_notifier_invalidate_range_start(&range);
1740 	do {
1741 		unsigned long start = start_addr;
1742 		unsigned long end = end_addr;
1743 		hugetlb_zap_begin(vma, &start, &end);
1744 		unmap_single_vma(tlb, vma, start, end, &details,
1745 				 mm_wr_locked);
1746 		hugetlb_zap_end(vma, &details);
1747 	} while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1748 	mmu_notifier_invalidate_range_end(&range);
1749 }
1750 
1751 /**
1752  * zap_page_range_single - remove user pages in a given range
1753  * @vma: vm_area_struct holding the applicable pages
1754  * @address: starting address of pages to zap
1755  * @size: number of bytes to zap
1756  * @details: details of shared cache invalidation
1757  *
1758  * The range must fit into one VMA.
1759  */
1760 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1761 		unsigned long size, struct zap_details *details)
1762 {
1763 	const unsigned long end = address + size;
1764 	struct mmu_notifier_range range;
1765 	struct mmu_gather tlb;
1766 
1767 	lru_add_drain();
1768 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1769 				address, end);
1770 	hugetlb_zap_begin(vma, &range.start, &range.end);
1771 	tlb_gather_mmu(&tlb, vma->vm_mm);
1772 	update_hiwater_rss(vma->vm_mm);
1773 	mmu_notifier_invalidate_range_start(&range);
1774 	/*
1775 	 * unmap 'address-end' not 'range.start-range.end' as range
1776 	 * could have been expanded for hugetlb pmd sharing.
1777 	 */
1778 	unmap_single_vma(&tlb, vma, address, end, details, false);
1779 	mmu_notifier_invalidate_range_end(&range);
1780 	tlb_finish_mmu(&tlb);
1781 	hugetlb_zap_end(vma, details);
1782 }
1783 
1784 /**
1785  * zap_vma_ptes - remove ptes mapping the vma
1786  * @vma: vm_area_struct holding ptes to be zapped
1787  * @address: starting address of pages to zap
1788  * @size: number of bytes to zap
1789  *
1790  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1791  *
1792  * The entire address range must be fully contained within the vma.
1793  *
1794  */
1795 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1796 		unsigned long size)
1797 {
1798 	if (!range_in_vma(vma, address, address + size) ||
1799 	    		!(vma->vm_flags & VM_PFNMAP))
1800 		return;
1801 
1802 	zap_page_range_single(vma, address, size, NULL);
1803 }
1804 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1805 
1806 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1807 {
1808 	pgd_t *pgd;
1809 	p4d_t *p4d;
1810 	pud_t *pud;
1811 	pmd_t *pmd;
1812 
1813 	pgd = pgd_offset(mm, addr);
1814 	p4d = p4d_alloc(mm, pgd, addr);
1815 	if (!p4d)
1816 		return NULL;
1817 	pud = pud_alloc(mm, p4d, addr);
1818 	if (!pud)
1819 		return NULL;
1820 	pmd = pmd_alloc(mm, pud, addr);
1821 	if (!pmd)
1822 		return NULL;
1823 
1824 	VM_BUG_ON(pmd_trans_huge(*pmd));
1825 	return pmd;
1826 }
1827 
1828 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1829 			spinlock_t **ptl)
1830 {
1831 	pmd_t *pmd = walk_to_pmd(mm, addr);
1832 
1833 	if (!pmd)
1834 		return NULL;
1835 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1836 }
1837 
1838 static int validate_page_before_insert(struct page *page)
1839 {
1840 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1841 		return -EINVAL;
1842 	flush_dcache_page(page);
1843 	return 0;
1844 }
1845 
1846 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1847 			unsigned long addr, struct page *page, pgprot_t prot)
1848 {
1849 	if (!pte_none(ptep_get(pte)))
1850 		return -EBUSY;
1851 	/* Ok, finally just insert the thing.. */
1852 	get_page(page);
1853 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1854 	page_add_file_rmap(page, vma, false);
1855 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1856 	return 0;
1857 }
1858 
1859 /*
1860  * This is the old fallback for page remapping.
1861  *
1862  * For historical reasons, it only allows reserved pages. Only
1863  * old drivers should use this, and they needed to mark their
1864  * pages reserved for the old functions anyway.
1865  */
1866 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1867 			struct page *page, pgprot_t prot)
1868 {
1869 	int retval;
1870 	pte_t *pte;
1871 	spinlock_t *ptl;
1872 
1873 	retval = validate_page_before_insert(page);
1874 	if (retval)
1875 		goto out;
1876 	retval = -ENOMEM;
1877 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1878 	if (!pte)
1879 		goto out;
1880 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1881 	pte_unmap_unlock(pte, ptl);
1882 out:
1883 	return retval;
1884 }
1885 
1886 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1887 			unsigned long addr, struct page *page, pgprot_t prot)
1888 {
1889 	int err;
1890 
1891 	if (!page_count(page))
1892 		return -EINVAL;
1893 	err = validate_page_before_insert(page);
1894 	if (err)
1895 		return err;
1896 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1897 }
1898 
1899 /* insert_pages() amortizes the cost of spinlock operations
1900  * when inserting pages in a loop.
1901  */
1902 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1903 			struct page **pages, unsigned long *num, pgprot_t prot)
1904 {
1905 	pmd_t *pmd = NULL;
1906 	pte_t *start_pte, *pte;
1907 	spinlock_t *pte_lock;
1908 	struct mm_struct *const mm = vma->vm_mm;
1909 	unsigned long curr_page_idx = 0;
1910 	unsigned long remaining_pages_total = *num;
1911 	unsigned long pages_to_write_in_pmd;
1912 	int ret;
1913 more:
1914 	ret = -EFAULT;
1915 	pmd = walk_to_pmd(mm, addr);
1916 	if (!pmd)
1917 		goto out;
1918 
1919 	pages_to_write_in_pmd = min_t(unsigned long,
1920 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1921 
1922 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1923 	ret = -ENOMEM;
1924 	if (pte_alloc(mm, pmd))
1925 		goto out;
1926 
1927 	while (pages_to_write_in_pmd) {
1928 		int pte_idx = 0;
1929 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1930 
1931 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1932 		if (!start_pte) {
1933 			ret = -EFAULT;
1934 			goto out;
1935 		}
1936 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1937 			int err = insert_page_in_batch_locked(vma, pte,
1938 				addr, pages[curr_page_idx], prot);
1939 			if (unlikely(err)) {
1940 				pte_unmap_unlock(start_pte, pte_lock);
1941 				ret = err;
1942 				remaining_pages_total -= pte_idx;
1943 				goto out;
1944 			}
1945 			addr += PAGE_SIZE;
1946 			++curr_page_idx;
1947 		}
1948 		pte_unmap_unlock(start_pte, pte_lock);
1949 		pages_to_write_in_pmd -= batch_size;
1950 		remaining_pages_total -= batch_size;
1951 	}
1952 	if (remaining_pages_total)
1953 		goto more;
1954 	ret = 0;
1955 out:
1956 	*num = remaining_pages_total;
1957 	return ret;
1958 }
1959 
1960 /**
1961  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1962  * @vma: user vma to map to
1963  * @addr: target start user address of these pages
1964  * @pages: source kernel pages
1965  * @num: in: number of pages to map. out: number of pages that were *not*
1966  * mapped. (0 means all pages were successfully mapped).
1967  *
1968  * Preferred over vm_insert_page() when inserting multiple pages.
1969  *
1970  * In case of error, we may have mapped a subset of the provided
1971  * pages. It is the caller's responsibility to account for this case.
1972  *
1973  * The same restrictions apply as in vm_insert_page().
1974  */
1975 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1976 			struct page **pages, unsigned long *num)
1977 {
1978 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1979 
1980 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1981 		return -EFAULT;
1982 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1983 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1984 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1985 		vm_flags_set(vma, VM_MIXEDMAP);
1986 	}
1987 	/* Defer page refcount checking till we're about to map that page. */
1988 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1989 }
1990 EXPORT_SYMBOL(vm_insert_pages);
1991 
1992 /**
1993  * vm_insert_page - insert single page into user vma
1994  * @vma: user vma to map to
1995  * @addr: target user address of this page
1996  * @page: source kernel page
1997  *
1998  * This allows drivers to insert individual pages they've allocated
1999  * into a user vma.
2000  *
2001  * The page has to be a nice clean _individual_ kernel allocation.
2002  * If you allocate a compound page, you need to have marked it as
2003  * such (__GFP_COMP), or manually just split the page up yourself
2004  * (see split_page()).
2005  *
2006  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2007  * took an arbitrary page protection parameter. This doesn't allow
2008  * that. Your vma protection will have to be set up correctly, which
2009  * means that if you want a shared writable mapping, you'd better
2010  * ask for a shared writable mapping!
2011  *
2012  * The page does not need to be reserved.
2013  *
2014  * Usually this function is called from f_op->mmap() handler
2015  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2016  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2017  * function from other places, for example from page-fault handler.
2018  *
2019  * Return: %0 on success, negative error code otherwise.
2020  */
2021 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2022 			struct page *page)
2023 {
2024 	if (addr < vma->vm_start || addr >= vma->vm_end)
2025 		return -EFAULT;
2026 	if (!page_count(page))
2027 		return -EINVAL;
2028 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2029 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2030 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2031 		vm_flags_set(vma, VM_MIXEDMAP);
2032 	}
2033 	return insert_page(vma, addr, page, vma->vm_page_prot);
2034 }
2035 EXPORT_SYMBOL(vm_insert_page);
2036 
2037 /*
2038  * __vm_map_pages - maps range of kernel pages into user vma
2039  * @vma: user vma to map to
2040  * @pages: pointer to array of source kernel pages
2041  * @num: number of pages in page array
2042  * @offset: user's requested vm_pgoff
2043  *
2044  * This allows drivers to map range of kernel pages into a user vma.
2045  *
2046  * Return: 0 on success and error code otherwise.
2047  */
2048 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2049 				unsigned long num, unsigned long offset)
2050 {
2051 	unsigned long count = vma_pages(vma);
2052 	unsigned long uaddr = vma->vm_start;
2053 	int ret, i;
2054 
2055 	/* Fail if the user requested offset is beyond the end of the object */
2056 	if (offset >= num)
2057 		return -ENXIO;
2058 
2059 	/* Fail if the user requested size exceeds available object size */
2060 	if (count > num - offset)
2061 		return -ENXIO;
2062 
2063 	for (i = 0; i < count; i++) {
2064 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2065 		if (ret < 0)
2066 			return ret;
2067 		uaddr += PAGE_SIZE;
2068 	}
2069 
2070 	return 0;
2071 }
2072 
2073 /**
2074  * vm_map_pages - maps range of kernel pages starts with non zero offset
2075  * @vma: user vma to map to
2076  * @pages: pointer to array of source kernel pages
2077  * @num: number of pages in page array
2078  *
2079  * Maps an object consisting of @num pages, catering for the user's
2080  * requested vm_pgoff
2081  *
2082  * If we fail to insert any page into the vma, the function will return
2083  * immediately leaving any previously inserted pages present.  Callers
2084  * from the mmap handler may immediately return the error as their caller
2085  * will destroy the vma, removing any successfully inserted pages. Other
2086  * callers should make their own arrangements for calling unmap_region().
2087  *
2088  * Context: Process context. Called by mmap handlers.
2089  * Return: 0 on success and error code otherwise.
2090  */
2091 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2092 				unsigned long num)
2093 {
2094 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2095 }
2096 EXPORT_SYMBOL(vm_map_pages);
2097 
2098 /**
2099  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2100  * @vma: user vma to map to
2101  * @pages: pointer to array of source kernel pages
2102  * @num: number of pages in page array
2103  *
2104  * Similar to vm_map_pages(), except that it explicitly sets the offset
2105  * to 0. This function is intended for the drivers that did not consider
2106  * vm_pgoff.
2107  *
2108  * Context: Process context. Called by mmap handlers.
2109  * Return: 0 on success and error code otherwise.
2110  */
2111 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2112 				unsigned long num)
2113 {
2114 	return __vm_map_pages(vma, pages, num, 0);
2115 }
2116 EXPORT_SYMBOL(vm_map_pages_zero);
2117 
2118 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2119 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2120 {
2121 	struct mm_struct *mm = vma->vm_mm;
2122 	pte_t *pte, entry;
2123 	spinlock_t *ptl;
2124 
2125 	pte = get_locked_pte(mm, addr, &ptl);
2126 	if (!pte)
2127 		return VM_FAULT_OOM;
2128 	entry = ptep_get(pte);
2129 	if (!pte_none(entry)) {
2130 		if (mkwrite) {
2131 			/*
2132 			 * For read faults on private mappings the PFN passed
2133 			 * in may not match the PFN we have mapped if the
2134 			 * mapped PFN is a writeable COW page.  In the mkwrite
2135 			 * case we are creating a writable PTE for a shared
2136 			 * mapping and we expect the PFNs to match. If they
2137 			 * don't match, we are likely racing with block
2138 			 * allocation and mapping invalidation so just skip the
2139 			 * update.
2140 			 */
2141 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2142 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2143 				goto out_unlock;
2144 			}
2145 			entry = pte_mkyoung(entry);
2146 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2147 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2148 				update_mmu_cache(vma, addr, pte);
2149 		}
2150 		goto out_unlock;
2151 	}
2152 
2153 	/* Ok, finally just insert the thing.. */
2154 	if (pfn_t_devmap(pfn))
2155 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2156 	else
2157 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2158 
2159 	if (mkwrite) {
2160 		entry = pte_mkyoung(entry);
2161 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2162 	}
2163 
2164 	set_pte_at(mm, addr, pte, entry);
2165 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2166 
2167 out_unlock:
2168 	pte_unmap_unlock(pte, ptl);
2169 	return VM_FAULT_NOPAGE;
2170 }
2171 
2172 /**
2173  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2174  * @vma: user vma to map to
2175  * @addr: target user address of this page
2176  * @pfn: source kernel pfn
2177  * @pgprot: pgprot flags for the inserted page
2178  *
2179  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2180  * to override pgprot on a per-page basis.
2181  *
2182  * This only makes sense for IO mappings, and it makes no sense for
2183  * COW mappings.  In general, using multiple vmas is preferable;
2184  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2185  * impractical.
2186  *
2187  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2188  * caching- and encryption bits different than those of @vma->vm_page_prot,
2189  * because the caching- or encryption mode may not be known at mmap() time.
2190  *
2191  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2192  * to set caching and encryption bits for those vmas (except for COW pages).
2193  * This is ensured by core vm only modifying these page table entries using
2194  * functions that don't touch caching- or encryption bits, using pte_modify()
2195  * if needed. (See for example mprotect()).
2196  *
2197  * Also when new page-table entries are created, this is only done using the
2198  * fault() callback, and never using the value of vma->vm_page_prot,
2199  * except for page-table entries that point to anonymous pages as the result
2200  * of COW.
2201  *
2202  * Context: Process context.  May allocate using %GFP_KERNEL.
2203  * Return: vm_fault_t value.
2204  */
2205 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2206 			unsigned long pfn, pgprot_t pgprot)
2207 {
2208 	/*
2209 	 * Technically, architectures with pte_special can avoid all these
2210 	 * restrictions (same for remap_pfn_range).  However we would like
2211 	 * consistency in testing and feature parity among all, so we should
2212 	 * try to keep these invariants in place for everybody.
2213 	 */
2214 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2215 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2216 						(VM_PFNMAP|VM_MIXEDMAP));
2217 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2218 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2219 
2220 	if (addr < vma->vm_start || addr >= vma->vm_end)
2221 		return VM_FAULT_SIGBUS;
2222 
2223 	if (!pfn_modify_allowed(pfn, pgprot))
2224 		return VM_FAULT_SIGBUS;
2225 
2226 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2227 
2228 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2229 			false);
2230 }
2231 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2232 
2233 /**
2234  * vmf_insert_pfn - insert single pfn into user vma
2235  * @vma: user vma to map to
2236  * @addr: target user address of this page
2237  * @pfn: source kernel pfn
2238  *
2239  * Similar to vm_insert_page, this allows drivers to insert individual pages
2240  * they've allocated into a user vma. Same comments apply.
2241  *
2242  * This function should only be called from a vm_ops->fault handler, and
2243  * in that case the handler should return the result of this function.
2244  *
2245  * vma cannot be a COW mapping.
2246  *
2247  * As this is called only for pages that do not currently exist, we
2248  * do not need to flush old virtual caches or the TLB.
2249  *
2250  * Context: Process context.  May allocate using %GFP_KERNEL.
2251  * Return: vm_fault_t value.
2252  */
2253 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2254 			unsigned long pfn)
2255 {
2256 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2257 }
2258 EXPORT_SYMBOL(vmf_insert_pfn);
2259 
2260 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2261 {
2262 	/* these checks mirror the abort conditions in vm_normal_page */
2263 	if (vma->vm_flags & VM_MIXEDMAP)
2264 		return true;
2265 	if (pfn_t_devmap(pfn))
2266 		return true;
2267 	if (pfn_t_special(pfn))
2268 		return true;
2269 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2270 		return true;
2271 	return false;
2272 }
2273 
2274 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2275 		unsigned long addr, pfn_t pfn, bool mkwrite)
2276 {
2277 	pgprot_t pgprot = vma->vm_page_prot;
2278 	int err;
2279 
2280 	BUG_ON(!vm_mixed_ok(vma, pfn));
2281 
2282 	if (addr < vma->vm_start || addr >= vma->vm_end)
2283 		return VM_FAULT_SIGBUS;
2284 
2285 	track_pfn_insert(vma, &pgprot, pfn);
2286 
2287 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2288 		return VM_FAULT_SIGBUS;
2289 
2290 	/*
2291 	 * If we don't have pte special, then we have to use the pfn_valid()
2292 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2293 	 * refcount the page if pfn_valid is true (hence insert_page rather
2294 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2295 	 * without pte special, it would there be refcounted as a normal page.
2296 	 */
2297 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2298 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2299 		struct page *page;
2300 
2301 		/*
2302 		 * At this point we are committed to insert_page()
2303 		 * regardless of whether the caller specified flags that
2304 		 * result in pfn_t_has_page() == false.
2305 		 */
2306 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2307 		err = insert_page(vma, addr, page, pgprot);
2308 	} else {
2309 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2310 	}
2311 
2312 	if (err == -ENOMEM)
2313 		return VM_FAULT_OOM;
2314 	if (err < 0 && err != -EBUSY)
2315 		return VM_FAULT_SIGBUS;
2316 
2317 	return VM_FAULT_NOPAGE;
2318 }
2319 
2320 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2321 		pfn_t pfn)
2322 {
2323 	return __vm_insert_mixed(vma, addr, pfn, false);
2324 }
2325 EXPORT_SYMBOL(vmf_insert_mixed);
2326 
2327 /*
2328  *  If the insertion of PTE failed because someone else already added a
2329  *  different entry in the mean time, we treat that as success as we assume
2330  *  the same entry was actually inserted.
2331  */
2332 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2333 		unsigned long addr, pfn_t pfn)
2334 {
2335 	return __vm_insert_mixed(vma, addr, pfn, true);
2336 }
2337 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2338 
2339 /*
2340  * maps a range of physical memory into the requested pages. the old
2341  * mappings are removed. any references to nonexistent pages results
2342  * in null mappings (currently treated as "copy-on-access")
2343  */
2344 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2345 			unsigned long addr, unsigned long end,
2346 			unsigned long pfn, pgprot_t prot)
2347 {
2348 	pte_t *pte, *mapped_pte;
2349 	spinlock_t *ptl;
2350 	int err = 0;
2351 
2352 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2353 	if (!pte)
2354 		return -ENOMEM;
2355 	arch_enter_lazy_mmu_mode();
2356 	do {
2357 		BUG_ON(!pte_none(ptep_get(pte)));
2358 		if (!pfn_modify_allowed(pfn, prot)) {
2359 			err = -EACCES;
2360 			break;
2361 		}
2362 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2363 		pfn++;
2364 	} while (pte++, addr += PAGE_SIZE, addr != end);
2365 	arch_leave_lazy_mmu_mode();
2366 	pte_unmap_unlock(mapped_pte, ptl);
2367 	return err;
2368 }
2369 
2370 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2371 			unsigned long addr, unsigned long end,
2372 			unsigned long pfn, pgprot_t prot)
2373 {
2374 	pmd_t *pmd;
2375 	unsigned long next;
2376 	int err;
2377 
2378 	pfn -= addr >> PAGE_SHIFT;
2379 	pmd = pmd_alloc(mm, pud, addr);
2380 	if (!pmd)
2381 		return -ENOMEM;
2382 	VM_BUG_ON(pmd_trans_huge(*pmd));
2383 	do {
2384 		next = pmd_addr_end(addr, end);
2385 		err = remap_pte_range(mm, pmd, addr, next,
2386 				pfn + (addr >> PAGE_SHIFT), prot);
2387 		if (err)
2388 			return err;
2389 	} while (pmd++, addr = next, addr != end);
2390 	return 0;
2391 }
2392 
2393 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2394 			unsigned long addr, unsigned long end,
2395 			unsigned long pfn, pgprot_t prot)
2396 {
2397 	pud_t *pud;
2398 	unsigned long next;
2399 	int err;
2400 
2401 	pfn -= addr >> PAGE_SHIFT;
2402 	pud = pud_alloc(mm, p4d, addr);
2403 	if (!pud)
2404 		return -ENOMEM;
2405 	do {
2406 		next = pud_addr_end(addr, end);
2407 		err = remap_pmd_range(mm, pud, addr, next,
2408 				pfn + (addr >> PAGE_SHIFT), prot);
2409 		if (err)
2410 			return err;
2411 	} while (pud++, addr = next, addr != end);
2412 	return 0;
2413 }
2414 
2415 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2416 			unsigned long addr, unsigned long end,
2417 			unsigned long pfn, pgprot_t prot)
2418 {
2419 	p4d_t *p4d;
2420 	unsigned long next;
2421 	int err;
2422 
2423 	pfn -= addr >> PAGE_SHIFT;
2424 	p4d = p4d_alloc(mm, pgd, addr);
2425 	if (!p4d)
2426 		return -ENOMEM;
2427 	do {
2428 		next = p4d_addr_end(addr, end);
2429 		err = remap_pud_range(mm, p4d, addr, next,
2430 				pfn + (addr >> PAGE_SHIFT), prot);
2431 		if (err)
2432 			return err;
2433 	} while (p4d++, addr = next, addr != end);
2434 	return 0;
2435 }
2436 
2437 /*
2438  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2439  * must have pre-validated the caching bits of the pgprot_t.
2440  */
2441 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2442 		unsigned long pfn, unsigned long size, pgprot_t prot)
2443 {
2444 	pgd_t *pgd;
2445 	unsigned long next;
2446 	unsigned long end = addr + PAGE_ALIGN(size);
2447 	struct mm_struct *mm = vma->vm_mm;
2448 	int err;
2449 
2450 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2451 		return -EINVAL;
2452 
2453 	/*
2454 	 * Physically remapped pages are special. Tell the
2455 	 * rest of the world about it:
2456 	 *   VM_IO tells people not to look at these pages
2457 	 *	(accesses can have side effects).
2458 	 *   VM_PFNMAP tells the core MM that the base pages are just
2459 	 *	raw PFN mappings, and do not have a "struct page" associated
2460 	 *	with them.
2461 	 *   VM_DONTEXPAND
2462 	 *      Disable vma merging and expanding with mremap().
2463 	 *   VM_DONTDUMP
2464 	 *      Omit vma from core dump, even when VM_IO turned off.
2465 	 *
2466 	 * There's a horrible special case to handle copy-on-write
2467 	 * behaviour that some programs depend on. We mark the "original"
2468 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2469 	 * See vm_normal_page() for details.
2470 	 */
2471 	if (is_cow_mapping(vma->vm_flags)) {
2472 		if (addr != vma->vm_start || end != vma->vm_end)
2473 			return -EINVAL;
2474 		vma->vm_pgoff = pfn;
2475 	}
2476 
2477 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2478 
2479 	BUG_ON(addr >= end);
2480 	pfn -= addr >> PAGE_SHIFT;
2481 	pgd = pgd_offset(mm, addr);
2482 	flush_cache_range(vma, addr, end);
2483 	do {
2484 		next = pgd_addr_end(addr, end);
2485 		err = remap_p4d_range(mm, pgd, addr, next,
2486 				pfn + (addr >> PAGE_SHIFT), prot);
2487 		if (err)
2488 			return err;
2489 	} while (pgd++, addr = next, addr != end);
2490 
2491 	return 0;
2492 }
2493 
2494 /**
2495  * remap_pfn_range - remap kernel memory to userspace
2496  * @vma: user vma to map to
2497  * @addr: target page aligned user address to start at
2498  * @pfn: page frame number of kernel physical memory address
2499  * @size: size of mapping area
2500  * @prot: page protection flags for this mapping
2501  *
2502  * Note: this is only safe if the mm semaphore is held when called.
2503  *
2504  * Return: %0 on success, negative error code otherwise.
2505  */
2506 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2507 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2508 {
2509 	int err;
2510 
2511 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2512 	if (err)
2513 		return -EINVAL;
2514 
2515 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2516 	if (err)
2517 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2518 	return err;
2519 }
2520 EXPORT_SYMBOL(remap_pfn_range);
2521 
2522 /**
2523  * vm_iomap_memory - remap memory to userspace
2524  * @vma: user vma to map to
2525  * @start: start of the physical memory to be mapped
2526  * @len: size of area
2527  *
2528  * This is a simplified io_remap_pfn_range() for common driver use. The
2529  * driver just needs to give us the physical memory range to be mapped,
2530  * we'll figure out the rest from the vma information.
2531  *
2532  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2533  * whatever write-combining details or similar.
2534  *
2535  * Return: %0 on success, negative error code otherwise.
2536  */
2537 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2538 {
2539 	unsigned long vm_len, pfn, pages;
2540 
2541 	/* Check that the physical memory area passed in looks valid */
2542 	if (start + len < start)
2543 		return -EINVAL;
2544 	/*
2545 	 * You *really* shouldn't map things that aren't page-aligned,
2546 	 * but we've historically allowed it because IO memory might
2547 	 * just have smaller alignment.
2548 	 */
2549 	len += start & ~PAGE_MASK;
2550 	pfn = start >> PAGE_SHIFT;
2551 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2552 	if (pfn + pages < pfn)
2553 		return -EINVAL;
2554 
2555 	/* We start the mapping 'vm_pgoff' pages into the area */
2556 	if (vma->vm_pgoff > pages)
2557 		return -EINVAL;
2558 	pfn += vma->vm_pgoff;
2559 	pages -= vma->vm_pgoff;
2560 
2561 	/* Can we fit all of the mapping? */
2562 	vm_len = vma->vm_end - vma->vm_start;
2563 	if (vm_len >> PAGE_SHIFT > pages)
2564 		return -EINVAL;
2565 
2566 	/* Ok, let it rip */
2567 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2568 }
2569 EXPORT_SYMBOL(vm_iomap_memory);
2570 
2571 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2572 				     unsigned long addr, unsigned long end,
2573 				     pte_fn_t fn, void *data, bool create,
2574 				     pgtbl_mod_mask *mask)
2575 {
2576 	pte_t *pte, *mapped_pte;
2577 	int err = 0;
2578 	spinlock_t *ptl;
2579 
2580 	if (create) {
2581 		mapped_pte = pte = (mm == &init_mm) ?
2582 			pte_alloc_kernel_track(pmd, addr, mask) :
2583 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2584 		if (!pte)
2585 			return -ENOMEM;
2586 	} else {
2587 		mapped_pte = pte = (mm == &init_mm) ?
2588 			pte_offset_kernel(pmd, addr) :
2589 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2590 		if (!pte)
2591 			return -EINVAL;
2592 	}
2593 
2594 	arch_enter_lazy_mmu_mode();
2595 
2596 	if (fn) {
2597 		do {
2598 			if (create || !pte_none(ptep_get(pte))) {
2599 				err = fn(pte++, addr, data);
2600 				if (err)
2601 					break;
2602 			}
2603 		} while (addr += PAGE_SIZE, addr != end);
2604 	}
2605 	*mask |= PGTBL_PTE_MODIFIED;
2606 
2607 	arch_leave_lazy_mmu_mode();
2608 
2609 	if (mm != &init_mm)
2610 		pte_unmap_unlock(mapped_pte, ptl);
2611 	return err;
2612 }
2613 
2614 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2615 				     unsigned long addr, unsigned long end,
2616 				     pte_fn_t fn, void *data, bool create,
2617 				     pgtbl_mod_mask *mask)
2618 {
2619 	pmd_t *pmd;
2620 	unsigned long next;
2621 	int err = 0;
2622 
2623 	BUG_ON(pud_huge(*pud));
2624 
2625 	if (create) {
2626 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2627 		if (!pmd)
2628 			return -ENOMEM;
2629 	} else {
2630 		pmd = pmd_offset(pud, addr);
2631 	}
2632 	do {
2633 		next = pmd_addr_end(addr, end);
2634 		if (pmd_none(*pmd) && !create)
2635 			continue;
2636 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2637 			return -EINVAL;
2638 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2639 			if (!create)
2640 				continue;
2641 			pmd_clear_bad(pmd);
2642 		}
2643 		err = apply_to_pte_range(mm, pmd, addr, next,
2644 					 fn, data, create, mask);
2645 		if (err)
2646 			break;
2647 	} while (pmd++, addr = next, addr != end);
2648 
2649 	return err;
2650 }
2651 
2652 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2653 				     unsigned long addr, unsigned long end,
2654 				     pte_fn_t fn, void *data, bool create,
2655 				     pgtbl_mod_mask *mask)
2656 {
2657 	pud_t *pud;
2658 	unsigned long next;
2659 	int err = 0;
2660 
2661 	if (create) {
2662 		pud = pud_alloc_track(mm, p4d, addr, mask);
2663 		if (!pud)
2664 			return -ENOMEM;
2665 	} else {
2666 		pud = pud_offset(p4d, addr);
2667 	}
2668 	do {
2669 		next = pud_addr_end(addr, end);
2670 		if (pud_none(*pud) && !create)
2671 			continue;
2672 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2673 			return -EINVAL;
2674 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2675 			if (!create)
2676 				continue;
2677 			pud_clear_bad(pud);
2678 		}
2679 		err = apply_to_pmd_range(mm, pud, addr, next,
2680 					 fn, data, create, mask);
2681 		if (err)
2682 			break;
2683 	} while (pud++, addr = next, addr != end);
2684 
2685 	return err;
2686 }
2687 
2688 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2689 				     unsigned long addr, unsigned long end,
2690 				     pte_fn_t fn, void *data, bool create,
2691 				     pgtbl_mod_mask *mask)
2692 {
2693 	p4d_t *p4d;
2694 	unsigned long next;
2695 	int err = 0;
2696 
2697 	if (create) {
2698 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2699 		if (!p4d)
2700 			return -ENOMEM;
2701 	} else {
2702 		p4d = p4d_offset(pgd, addr);
2703 	}
2704 	do {
2705 		next = p4d_addr_end(addr, end);
2706 		if (p4d_none(*p4d) && !create)
2707 			continue;
2708 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2709 			return -EINVAL;
2710 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2711 			if (!create)
2712 				continue;
2713 			p4d_clear_bad(p4d);
2714 		}
2715 		err = apply_to_pud_range(mm, p4d, addr, next,
2716 					 fn, data, create, mask);
2717 		if (err)
2718 			break;
2719 	} while (p4d++, addr = next, addr != end);
2720 
2721 	return err;
2722 }
2723 
2724 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2725 				 unsigned long size, pte_fn_t fn,
2726 				 void *data, bool create)
2727 {
2728 	pgd_t *pgd;
2729 	unsigned long start = addr, next;
2730 	unsigned long end = addr + size;
2731 	pgtbl_mod_mask mask = 0;
2732 	int err = 0;
2733 
2734 	if (WARN_ON(addr >= end))
2735 		return -EINVAL;
2736 
2737 	pgd = pgd_offset(mm, addr);
2738 	do {
2739 		next = pgd_addr_end(addr, end);
2740 		if (pgd_none(*pgd) && !create)
2741 			continue;
2742 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2743 			return -EINVAL;
2744 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2745 			if (!create)
2746 				continue;
2747 			pgd_clear_bad(pgd);
2748 		}
2749 		err = apply_to_p4d_range(mm, pgd, addr, next,
2750 					 fn, data, create, &mask);
2751 		if (err)
2752 			break;
2753 	} while (pgd++, addr = next, addr != end);
2754 
2755 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2756 		arch_sync_kernel_mappings(start, start + size);
2757 
2758 	return err;
2759 }
2760 
2761 /*
2762  * Scan a region of virtual memory, filling in page tables as necessary
2763  * and calling a provided function on each leaf page table.
2764  */
2765 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2766 			unsigned long size, pte_fn_t fn, void *data)
2767 {
2768 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2769 }
2770 EXPORT_SYMBOL_GPL(apply_to_page_range);
2771 
2772 /*
2773  * Scan a region of virtual memory, calling a provided function on
2774  * each leaf page table where it exists.
2775  *
2776  * Unlike apply_to_page_range, this does _not_ fill in page tables
2777  * where they are absent.
2778  */
2779 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2780 				 unsigned long size, pte_fn_t fn, void *data)
2781 {
2782 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2783 }
2784 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2785 
2786 /*
2787  * handle_pte_fault chooses page fault handler according to an entry which was
2788  * read non-atomically.  Before making any commitment, on those architectures
2789  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2790  * parts, do_swap_page must check under lock before unmapping the pte and
2791  * proceeding (but do_wp_page is only called after already making such a check;
2792  * and do_anonymous_page can safely check later on).
2793  */
2794 static inline int pte_unmap_same(struct vm_fault *vmf)
2795 {
2796 	int same = 1;
2797 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2798 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2799 		spin_lock(vmf->ptl);
2800 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2801 		spin_unlock(vmf->ptl);
2802 	}
2803 #endif
2804 	pte_unmap(vmf->pte);
2805 	vmf->pte = NULL;
2806 	return same;
2807 }
2808 
2809 /*
2810  * Return:
2811  *	0:		copied succeeded
2812  *	-EHWPOISON:	copy failed due to hwpoison in source page
2813  *	-EAGAIN:	copied failed (some other reason)
2814  */
2815 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2816 				      struct vm_fault *vmf)
2817 {
2818 	int ret;
2819 	void *kaddr;
2820 	void __user *uaddr;
2821 	struct vm_area_struct *vma = vmf->vma;
2822 	struct mm_struct *mm = vma->vm_mm;
2823 	unsigned long addr = vmf->address;
2824 
2825 	if (likely(src)) {
2826 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2827 			memory_failure_queue(page_to_pfn(src), 0);
2828 			return -EHWPOISON;
2829 		}
2830 		return 0;
2831 	}
2832 
2833 	/*
2834 	 * If the source page was a PFN mapping, we don't have
2835 	 * a "struct page" for it. We do a best-effort copy by
2836 	 * just copying from the original user address. If that
2837 	 * fails, we just zero-fill it. Live with it.
2838 	 */
2839 	kaddr = kmap_atomic(dst);
2840 	uaddr = (void __user *)(addr & PAGE_MASK);
2841 
2842 	/*
2843 	 * On architectures with software "accessed" bits, we would
2844 	 * take a double page fault, so mark it accessed here.
2845 	 */
2846 	vmf->pte = NULL;
2847 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2848 		pte_t entry;
2849 
2850 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2851 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2852 			/*
2853 			 * Other thread has already handled the fault
2854 			 * and update local tlb only
2855 			 */
2856 			if (vmf->pte)
2857 				update_mmu_tlb(vma, addr, vmf->pte);
2858 			ret = -EAGAIN;
2859 			goto pte_unlock;
2860 		}
2861 
2862 		entry = pte_mkyoung(vmf->orig_pte);
2863 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2864 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
2865 	}
2866 
2867 	/*
2868 	 * This really shouldn't fail, because the page is there
2869 	 * in the page tables. But it might just be unreadable,
2870 	 * in which case we just give up and fill the result with
2871 	 * zeroes.
2872 	 */
2873 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2874 		if (vmf->pte)
2875 			goto warn;
2876 
2877 		/* Re-validate under PTL if the page is still mapped */
2878 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2879 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2880 			/* The PTE changed under us, update local tlb */
2881 			if (vmf->pte)
2882 				update_mmu_tlb(vma, addr, vmf->pte);
2883 			ret = -EAGAIN;
2884 			goto pte_unlock;
2885 		}
2886 
2887 		/*
2888 		 * The same page can be mapped back since last copy attempt.
2889 		 * Try to copy again under PTL.
2890 		 */
2891 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2892 			/*
2893 			 * Give a warn in case there can be some obscure
2894 			 * use-case
2895 			 */
2896 warn:
2897 			WARN_ON_ONCE(1);
2898 			clear_page(kaddr);
2899 		}
2900 	}
2901 
2902 	ret = 0;
2903 
2904 pte_unlock:
2905 	if (vmf->pte)
2906 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2907 	kunmap_atomic(kaddr);
2908 	flush_dcache_page(dst);
2909 
2910 	return ret;
2911 }
2912 
2913 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2914 {
2915 	struct file *vm_file = vma->vm_file;
2916 
2917 	if (vm_file)
2918 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2919 
2920 	/*
2921 	 * Special mappings (e.g. VDSO) do not have any file so fake
2922 	 * a default GFP_KERNEL for them.
2923 	 */
2924 	return GFP_KERNEL;
2925 }
2926 
2927 /*
2928  * Notify the address space that the page is about to become writable so that
2929  * it can prohibit this or wait for the page to get into an appropriate state.
2930  *
2931  * We do this without the lock held, so that it can sleep if it needs to.
2932  */
2933 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2934 {
2935 	vm_fault_t ret;
2936 	unsigned int old_flags = vmf->flags;
2937 
2938 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2939 
2940 	if (vmf->vma->vm_file &&
2941 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2942 		return VM_FAULT_SIGBUS;
2943 
2944 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2945 	/* Restore original flags so that caller is not surprised */
2946 	vmf->flags = old_flags;
2947 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2948 		return ret;
2949 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2950 		folio_lock(folio);
2951 		if (!folio->mapping) {
2952 			folio_unlock(folio);
2953 			return 0; /* retry */
2954 		}
2955 		ret |= VM_FAULT_LOCKED;
2956 	} else
2957 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2958 	return ret;
2959 }
2960 
2961 /*
2962  * Handle dirtying of a page in shared file mapping on a write fault.
2963  *
2964  * The function expects the page to be locked and unlocks it.
2965  */
2966 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2967 {
2968 	struct vm_area_struct *vma = vmf->vma;
2969 	struct address_space *mapping;
2970 	struct folio *folio = page_folio(vmf->page);
2971 	bool dirtied;
2972 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2973 
2974 	dirtied = folio_mark_dirty(folio);
2975 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2976 	/*
2977 	 * Take a local copy of the address_space - folio.mapping may be zeroed
2978 	 * by truncate after folio_unlock().   The address_space itself remains
2979 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
2980 	 * release semantics to prevent the compiler from undoing this copying.
2981 	 */
2982 	mapping = folio_raw_mapping(folio);
2983 	folio_unlock(folio);
2984 
2985 	if (!page_mkwrite)
2986 		file_update_time(vma->vm_file);
2987 
2988 	/*
2989 	 * Throttle page dirtying rate down to writeback speed.
2990 	 *
2991 	 * mapping may be NULL here because some device drivers do not
2992 	 * set page.mapping but still dirty their pages
2993 	 *
2994 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2995 	 * is pinning the mapping, as per above.
2996 	 */
2997 	if ((dirtied || page_mkwrite) && mapping) {
2998 		struct file *fpin;
2999 
3000 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3001 		balance_dirty_pages_ratelimited(mapping);
3002 		if (fpin) {
3003 			fput(fpin);
3004 			return VM_FAULT_COMPLETED;
3005 		}
3006 	}
3007 
3008 	return 0;
3009 }
3010 
3011 /*
3012  * Handle write page faults for pages that can be reused in the current vma
3013  *
3014  * This can happen either due to the mapping being with the VM_SHARED flag,
3015  * or due to us being the last reference standing to the page. In either
3016  * case, all we need to do here is to mark the page as writable and update
3017  * any related book-keeping.
3018  */
3019 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3020 	__releases(vmf->ptl)
3021 {
3022 	struct vm_area_struct *vma = vmf->vma;
3023 	pte_t entry;
3024 
3025 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3026 
3027 	if (folio) {
3028 		VM_BUG_ON(folio_test_anon(folio) &&
3029 			  !PageAnonExclusive(vmf->page));
3030 		/*
3031 		 * Clear the folio's cpupid information as the existing
3032 		 * information potentially belongs to a now completely
3033 		 * unrelated process.
3034 		 */
3035 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3036 	}
3037 
3038 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3039 	entry = pte_mkyoung(vmf->orig_pte);
3040 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3041 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3042 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3043 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3044 	count_vm_event(PGREUSE);
3045 }
3046 
3047 /*
3048  * We could add a bitflag somewhere, but for now, we know that all
3049  * vm_ops that have a ->map_pages have been audited and don't need
3050  * the mmap_lock to be held.
3051  */
3052 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3053 {
3054 	struct vm_area_struct *vma = vmf->vma;
3055 
3056 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3057 		return 0;
3058 	vma_end_read(vma);
3059 	return VM_FAULT_RETRY;
3060 }
3061 
3062 static vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3063 {
3064 	struct vm_area_struct *vma = vmf->vma;
3065 
3066 	if (likely(vma->anon_vma))
3067 		return 0;
3068 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3069 		vma_end_read(vma);
3070 		return VM_FAULT_RETRY;
3071 	}
3072 	if (__anon_vma_prepare(vma))
3073 		return VM_FAULT_OOM;
3074 	return 0;
3075 }
3076 
3077 /*
3078  * Handle the case of a page which we actually need to copy to a new page,
3079  * either due to COW or unsharing.
3080  *
3081  * Called with mmap_lock locked and the old page referenced, but
3082  * without the ptl held.
3083  *
3084  * High level logic flow:
3085  *
3086  * - Allocate a page, copy the content of the old page to the new one.
3087  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3088  * - Take the PTL. If the pte changed, bail out and release the allocated page
3089  * - If the pte is still the way we remember it, update the page table and all
3090  *   relevant references. This includes dropping the reference the page-table
3091  *   held to the old page, as well as updating the rmap.
3092  * - In any case, unlock the PTL and drop the reference we took to the old page.
3093  */
3094 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3095 {
3096 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3097 	struct vm_area_struct *vma = vmf->vma;
3098 	struct mm_struct *mm = vma->vm_mm;
3099 	struct folio *old_folio = NULL;
3100 	struct folio *new_folio = NULL;
3101 	pte_t entry;
3102 	int page_copied = 0;
3103 	struct mmu_notifier_range range;
3104 	vm_fault_t ret;
3105 
3106 	delayacct_wpcopy_start();
3107 
3108 	if (vmf->page)
3109 		old_folio = page_folio(vmf->page);
3110 	ret = vmf_anon_prepare(vmf);
3111 	if (unlikely(ret))
3112 		goto out;
3113 
3114 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3115 		new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3116 		if (!new_folio)
3117 			goto oom;
3118 	} else {
3119 		int err;
3120 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3121 				vmf->address, false);
3122 		if (!new_folio)
3123 			goto oom;
3124 
3125 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3126 		if (err) {
3127 			/*
3128 			 * COW failed, if the fault was solved by other,
3129 			 * it's fine. If not, userspace would re-fault on
3130 			 * the same address and we will handle the fault
3131 			 * from the second attempt.
3132 			 * The -EHWPOISON case will not be retried.
3133 			 */
3134 			folio_put(new_folio);
3135 			if (old_folio)
3136 				folio_put(old_folio);
3137 
3138 			delayacct_wpcopy_end();
3139 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3140 		}
3141 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3142 	}
3143 
3144 	if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3145 		goto oom_free_new;
3146 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
3147 
3148 	__folio_mark_uptodate(new_folio);
3149 
3150 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3151 				vmf->address & PAGE_MASK,
3152 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3153 	mmu_notifier_invalidate_range_start(&range);
3154 
3155 	/*
3156 	 * Re-check the pte - we dropped the lock
3157 	 */
3158 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3159 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3160 		if (old_folio) {
3161 			if (!folio_test_anon(old_folio)) {
3162 				dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3163 				inc_mm_counter(mm, MM_ANONPAGES);
3164 			}
3165 		} else {
3166 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3167 			inc_mm_counter(mm, MM_ANONPAGES);
3168 		}
3169 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3170 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3171 		entry = pte_sw_mkyoung(entry);
3172 		if (unlikely(unshare)) {
3173 			if (pte_soft_dirty(vmf->orig_pte))
3174 				entry = pte_mksoft_dirty(entry);
3175 			if (pte_uffd_wp(vmf->orig_pte))
3176 				entry = pte_mkuffd_wp(entry);
3177 		} else {
3178 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3179 		}
3180 
3181 		/*
3182 		 * Clear the pte entry and flush it first, before updating the
3183 		 * pte with the new entry, to keep TLBs on different CPUs in
3184 		 * sync. This code used to set the new PTE then flush TLBs, but
3185 		 * that left a window where the new PTE could be loaded into
3186 		 * some TLBs while the old PTE remains in others.
3187 		 */
3188 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3189 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3190 		folio_add_lru_vma(new_folio, vma);
3191 		/*
3192 		 * We call the notify macro here because, when using secondary
3193 		 * mmu page tables (such as kvm shadow page tables), we want the
3194 		 * new page to be mapped directly into the secondary page table.
3195 		 */
3196 		BUG_ON(unshare && pte_write(entry));
3197 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3198 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3199 		if (old_folio) {
3200 			/*
3201 			 * Only after switching the pte to the new page may
3202 			 * we remove the mapcount here. Otherwise another
3203 			 * process may come and find the rmap count decremented
3204 			 * before the pte is switched to the new page, and
3205 			 * "reuse" the old page writing into it while our pte
3206 			 * here still points into it and can be read by other
3207 			 * threads.
3208 			 *
3209 			 * The critical issue is to order this
3210 			 * page_remove_rmap with the ptp_clear_flush above.
3211 			 * Those stores are ordered by (if nothing else,)
3212 			 * the barrier present in the atomic_add_negative
3213 			 * in page_remove_rmap.
3214 			 *
3215 			 * Then the TLB flush in ptep_clear_flush ensures that
3216 			 * no process can access the old page before the
3217 			 * decremented mapcount is visible. And the old page
3218 			 * cannot be reused until after the decremented
3219 			 * mapcount is visible. So transitively, TLBs to
3220 			 * old page will be flushed before it can be reused.
3221 			 */
3222 			page_remove_rmap(vmf->page, vma, false);
3223 		}
3224 
3225 		/* Free the old page.. */
3226 		new_folio = old_folio;
3227 		page_copied = 1;
3228 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3229 	} else if (vmf->pte) {
3230 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3231 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3232 	}
3233 
3234 	mmu_notifier_invalidate_range_end(&range);
3235 
3236 	if (new_folio)
3237 		folio_put(new_folio);
3238 	if (old_folio) {
3239 		if (page_copied)
3240 			free_swap_cache(&old_folio->page);
3241 		folio_put(old_folio);
3242 	}
3243 
3244 	delayacct_wpcopy_end();
3245 	return 0;
3246 oom_free_new:
3247 	folio_put(new_folio);
3248 oom:
3249 	ret = VM_FAULT_OOM;
3250 out:
3251 	if (old_folio)
3252 		folio_put(old_folio);
3253 
3254 	delayacct_wpcopy_end();
3255 	return ret;
3256 }
3257 
3258 /**
3259  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3260  *			  writeable once the page is prepared
3261  *
3262  * @vmf: structure describing the fault
3263  * @folio: the folio of vmf->page
3264  *
3265  * This function handles all that is needed to finish a write page fault in a
3266  * shared mapping due to PTE being read-only once the mapped page is prepared.
3267  * It handles locking of PTE and modifying it.
3268  *
3269  * The function expects the page to be locked or other protection against
3270  * concurrent faults / writeback (such as DAX radix tree locks).
3271  *
3272  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3273  * we acquired PTE lock.
3274  */
3275 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3276 {
3277 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3278 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3279 				       &vmf->ptl);
3280 	if (!vmf->pte)
3281 		return VM_FAULT_NOPAGE;
3282 	/*
3283 	 * We might have raced with another page fault while we released the
3284 	 * pte_offset_map_lock.
3285 	 */
3286 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3287 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3288 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3289 		return VM_FAULT_NOPAGE;
3290 	}
3291 	wp_page_reuse(vmf, folio);
3292 	return 0;
3293 }
3294 
3295 /*
3296  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3297  * mapping
3298  */
3299 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3300 {
3301 	struct vm_area_struct *vma = vmf->vma;
3302 
3303 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3304 		vm_fault_t ret;
3305 
3306 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3307 		ret = vmf_can_call_fault(vmf);
3308 		if (ret)
3309 			return ret;
3310 
3311 		vmf->flags |= FAULT_FLAG_MKWRITE;
3312 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3313 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3314 			return ret;
3315 		return finish_mkwrite_fault(vmf, NULL);
3316 	}
3317 	wp_page_reuse(vmf, NULL);
3318 	return 0;
3319 }
3320 
3321 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3322 	__releases(vmf->ptl)
3323 {
3324 	struct vm_area_struct *vma = vmf->vma;
3325 	vm_fault_t ret = 0;
3326 
3327 	folio_get(folio);
3328 
3329 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3330 		vm_fault_t tmp;
3331 
3332 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3333 		tmp = vmf_can_call_fault(vmf);
3334 		if (tmp) {
3335 			folio_put(folio);
3336 			return tmp;
3337 		}
3338 
3339 		tmp = do_page_mkwrite(vmf, folio);
3340 		if (unlikely(!tmp || (tmp &
3341 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3342 			folio_put(folio);
3343 			return tmp;
3344 		}
3345 		tmp = finish_mkwrite_fault(vmf, folio);
3346 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3347 			folio_unlock(folio);
3348 			folio_put(folio);
3349 			return tmp;
3350 		}
3351 	} else {
3352 		wp_page_reuse(vmf, folio);
3353 		folio_lock(folio);
3354 	}
3355 	ret |= fault_dirty_shared_page(vmf);
3356 	folio_put(folio);
3357 
3358 	return ret;
3359 }
3360 
3361 static bool wp_can_reuse_anon_folio(struct folio *folio,
3362 				    struct vm_area_struct *vma)
3363 {
3364 	/*
3365 	 * We have to verify under folio lock: these early checks are
3366 	 * just an optimization to avoid locking the folio and freeing
3367 	 * the swapcache if there is little hope that we can reuse.
3368 	 *
3369 	 * KSM doesn't necessarily raise the folio refcount.
3370 	 */
3371 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3372 		return false;
3373 	if (!folio_test_lru(folio))
3374 		/*
3375 		 * We cannot easily detect+handle references from
3376 		 * remote LRU caches or references to LRU folios.
3377 		 */
3378 		lru_add_drain();
3379 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3380 		return false;
3381 	if (!folio_trylock(folio))
3382 		return false;
3383 	if (folio_test_swapcache(folio))
3384 		folio_free_swap(folio);
3385 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3386 		folio_unlock(folio);
3387 		return false;
3388 	}
3389 	/*
3390 	 * Ok, we've got the only folio reference from our mapping
3391 	 * and the folio is locked, it's dark out, and we're wearing
3392 	 * sunglasses. Hit it.
3393 	 */
3394 	folio_move_anon_rmap(folio, vma);
3395 	folio_unlock(folio);
3396 	return true;
3397 }
3398 
3399 /*
3400  * This routine handles present pages, when
3401  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3402  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3403  *   (FAULT_FLAG_UNSHARE)
3404  *
3405  * It is done by copying the page to a new address and decrementing the
3406  * shared-page counter for the old page.
3407  *
3408  * Note that this routine assumes that the protection checks have been
3409  * done by the caller (the low-level page fault routine in most cases).
3410  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3411  * done any necessary COW.
3412  *
3413  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3414  * though the page will change only once the write actually happens. This
3415  * avoids a few races, and potentially makes it more efficient.
3416  *
3417  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3418  * but allow concurrent faults), with pte both mapped and locked.
3419  * We return with mmap_lock still held, but pte unmapped and unlocked.
3420  */
3421 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3422 	__releases(vmf->ptl)
3423 {
3424 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3425 	struct vm_area_struct *vma = vmf->vma;
3426 	struct folio *folio = NULL;
3427 	pte_t pte;
3428 
3429 	if (likely(!unshare)) {
3430 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3431 			if (!userfaultfd_wp_async(vma)) {
3432 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3433 				return handle_userfault(vmf, VM_UFFD_WP);
3434 			}
3435 
3436 			/*
3437 			 * Nothing needed (cache flush, TLB invalidations,
3438 			 * etc.) because we're only removing the uffd-wp bit,
3439 			 * which is completely invisible to the user.
3440 			 */
3441 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3442 
3443 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3444 			/*
3445 			 * Update this to be prepared for following up CoW
3446 			 * handling
3447 			 */
3448 			vmf->orig_pte = pte;
3449 		}
3450 
3451 		/*
3452 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3453 		 * is flushed in this case before copying.
3454 		 */
3455 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3456 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3457 			flush_tlb_page(vmf->vma, vmf->address);
3458 	}
3459 
3460 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3461 
3462 	if (vmf->page)
3463 		folio = page_folio(vmf->page);
3464 
3465 	/*
3466 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3467 	 * FAULT_FLAG_WRITE set at this point.
3468 	 */
3469 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3470 		/*
3471 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3472 		 * VM_PFNMAP VMA.
3473 		 *
3474 		 * We should not cow pages in a shared writeable mapping.
3475 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3476 		 */
3477 		if (!vmf->page)
3478 			return wp_pfn_shared(vmf);
3479 		return wp_page_shared(vmf, folio);
3480 	}
3481 
3482 	/*
3483 	 * Private mapping: create an exclusive anonymous page copy if reuse
3484 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3485 	 *
3486 	 * If we encounter a page that is marked exclusive, we must reuse
3487 	 * the page without further checks.
3488 	 */
3489 	if (folio && folio_test_anon(folio) &&
3490 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3491 		if (!PageAnonExclusive(vmf->page))
3492 			SetPageAnonExclusive(vmf->page);
3493 		if (unlikely(unshare)) {
3494 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3495 			return 0;
3496 		}
3497 		wp_page_reuse(vmf, folio);
3498 		return 0;
3499 	}
3500 	/*
3501 	 * Ok, we need to copy. Oh, well..
3502 	 */
3503 	if (folio)
3504 		folio_get(folio);
3505 
3506 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3507 #ifdef CONFIG_KSM
3508 	if (folio && folio_test_ksm(folio))
3509 		count_vm_event(COW_KSM);
3510 #endif
3511 	return wp_page_copy(vmf);
3512 }
3513 
3514 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3515 		unsigned long start_addr, unsigned long end_addr,
3516 		struct zap_details *details)
3517 {
3518 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3519 }
3520 
3521 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3522 					    pgoff_t first_index,
3523 					    pgoff_t last_index,
3524 					    struct zap_details *details)
3525 {
3526 	struct vm_area_struct *vma;
3527 	pgoff_t vba, vea, zba, zea;
3528 
3529 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3530 		vba = vma->vm_pgoff;
3531 		vea = vba + vma_pages(vma) - 1;
3532 		zba = max(first_index, vba);
3533 		zea = min(last_index, vea);
3534 
3535 		unmap_mapping_range_vma(vma,
3536 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3537 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3538 				details);
3539 	}
3540 }
3541 
3542 /**
3543  * unmap_mapping_folio() - Unmap single folio from processes.
3544  * @folio: The locked folio to be unmapped.
3545  *
3546  * Unmap this folio from any userspace process which still has it mmaped.
3547  * Typically, for efficiency, the range of nearby pages has already been
3548  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3549  * truncation or invalidation holds the lock on a folio, it may find that
3550  * the page has been remapped again: and then uses unmap_mapping_folio()
3551  * to unmap it finally.
3552  */
3553 void unmap_mapping_folio(struct folio *folio)
3554 {
3555 	struct address_space *mapping = folio->mapping;
3556 	struct zap_details details = { };
3557 	pgoff_t	first_index;
3558 	pgoff_t	last_index;
3559 
3560 	VM_BUG_ON(!folio_test_locked(folio));
3561 
3562 	first_index = folio->index;
3563 	last_index = folio_next_index(folio) - 1;
3564 
3565 	details.even_cows = false;
3566 	details.single_folio = folio;
3567 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3568 
3569 	i_mmap_lock_read(mapping);
3570 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3571 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3572 					 last_index, &details);
3573 	i_mmap_unlock_read(mapping);
3574 }
3575 
3576 /**
3577  * unmap_mapping_pages() - Unmap pages from processes.
3578  * @mapping: The address space containing pages to be unmapped.
3579  * @start: Index of first page to be unmapped.
3580  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3581  * @even_cows: Whether to unmap even private COWed pages.
3582  *
3583  * Unmap the pages in this address space from any userspace process which
3584  * has them mmaped.  Generally, you want to remove COWed pages as well when
3585  * a file is being truncated, but not when invalidating pages from the page
3586  * cache.
3587  */
3588 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3589 		pgoff_t nr, bool even_cows)
3590 {
3591 	struct zap_details details = { };
3592 	pgoff_t	first_index = start;
3593 	pgoff_t	last_index = start + nr - 1;
3594 
3595 	details.even_cows = even_cows;
3596 	if (last_index < first_index)
3597 		last_index = ULONG_MAX;
3598 
3599 	i_mmap_lock_read(mapping);
3600 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3601 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3602 					 last_index, &details);
3603 	i_mmap_unlock_read(mapping);
3604 }
3605 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3606 
3607 /**
3608  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3609  * address_space corresponding to the specified byte range in the underlying
3610  * file.
3611  *
3612  * @mapping: the address space containing mmaps to be unmapped.
3613  * @holebegin: byte in first page to unmap, relative to the start of
3614  * the underlying file.  This will be rounded down to a PAGE_SIZE
3615  * boundary.  Note that this is different from truncate_pagecache(), which
3616  * must keep the partial page.  In contrast, we must get rid of
3617  * partial pages.
3618  * @holelen: size of prospective hole in bytes.  This will be rounded
3619  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3620  * end of the file.
3621  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3622  * but 0 when invalidating pagecache, don't throw away private data.
3623  */
3624 void unmap_mapping_range(struct address_space *mapping,
3625 		loff_t const holebegin, loff_t const holelen, int even_cows)
3626 {
3627 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3628 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3629 
3630 	/* Check for overflow. */
3631 	if (sizeof(holelen) > sizeof(hlen)) {
3632 		long long holeend =
3633 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3634 		if (holeend & ~(long long)ULONG_MAX)
3635 			hlen = ULONG_MAX - hba + 1;
3636 	}
3637 
3638 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3639 }
3640 EXPORT_SYMBOL(unmap_mapping_range);
3641 
3642 /*
3643  * Restore a potential device exclusive pte to a working pte entry
3644  */
3645 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3646 {
3647 	struct folio *folio = page_folio(vmf->page);
3648 	struct vm_area_struct *vma = vmf->vma;
3649 	struct mmu_notifier_range range;
3650 	vm_fault_t ret;
3651 
3652 	/*
3653 	 * We need a reference to lock the folio because we don't hold
3654 	 * the PTL so a racing thread can remove the device-exclusive
3655 	 * entry and unmap it. If the folio is free the entry must
3656 	 * have been removed already. If it happens to have already
3657 	 * been re-allocated after being freed all we do is lock and
3658 	 * unlock it.
3659 	 */
3660 	if (!folio_try_get(folio))
3661 		return 0;
3662 
3663 	ret = folio_lock_or_retry(folio, vmf);
3664 	if (ret) {
3665 		folio_put(folio);
3666 		return ret;
3667 	}
3668 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3669 				vma->vm_mm, vmf->address & PAGE_MASK,
3670 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3671 	mmu_notifier_invalidate_range_start(&range);
3672 
3673 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3674 				&vmf->ptl);
3675 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3676 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3677 
3678 	if (vmf->pte)
3679 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3680 	folio_unlock(folio);
3681 	folio_put(folio);
3682 
3683 	mmu_notifier_invalidate_range_end(&range);
3684 	return 0;
3685 }
3686 
3687 static inline bool should_try_to_free_swap(struct folio *folio,
3688 					   struct vm_area_struct *vma,
3689 					   unsigned int fault_flags)
3690 {
3691 	if (!folio_test_swapcache(folio))
3692 		return false;
3693 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3694 	    folio_test_mlocked(folio))
3695 		return true;
3696 	/*
3697 	 * If we want to map a page that's in the swapcache writable, we
3698 	 * have to detect via the refcount if we're really the exclusive
3699 	 * user. Try freeing the swapcache to get rid of the swapcache
3700 	 * reference only in case it's likely that we'll be the exlusive user.
3701 	 */
3702 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3703 		folio_ref_count(folio) == 2;
3704 }
3705 
3706 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3707 {
3708 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3709 				       vmf->address, &vmf->ptl);
3710 	if (!vmf->pte)
3711 		return 0;
3712 	/*
3713 	 * Be careful so that we will only recover a special uffd-wp pte into a
3714 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3715 	 *
3716 	 * This should also cover the case where e.g. the pte changed
3717 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3718 	 * So is_pte_marker() check is not enough to safely drop the pte.
3719 	 */
3720 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3721 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3722 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3723 	return 0;
3724 }
3725 
3726 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3727 {
3728 	if (vma_is_anonymous(vmf->vma))
3729 		return do_anonymous_page(vmf);
3730 	else
3731 		return do_fault(vmf);
3732 }
3733 
3734 /*
3735  * This is actually a page-missing access, but with uffd-wp special pte
3736  * installed.  It means this pte was wr-protected before being unmapped.
3737  */
3738 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3739 {
3740 	/*
3741 	 * Just in case there're leftover special ptes even after the region
3742 	 * got unregistered - we can simply clear them.
3743 	 */
3744 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3745 		return pte_marker_clear(vmf);
3746 
3747 	return do_pte_missing(vmf);
3748 }
3749 
3750 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3751 {
3752 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3753 	unsigned long marker = pte_marker_get(entry);
3754 
3755 	/*
3756 	 * PTE markers should never be empty.  If anything weird happened,
3757 	 * the best thing to do is to kill the process along with its mm.
3758 	 */
3759 	if (WARN_ON_ONCE(!marker))
3760 		return VM_FAULT_SIGBUS;
3761 
3762 	/* Higher priority than uffd-wp when data corrupted */
3763 	if (marker & PTE_MARKER_POISONED)
3764 		return VM_FAULT_HWPOISON;
3765 
3766 	if (pte_marker_entry_uffd_wp(entry))
3767 		return pte_marker_handle_uffd_wp(vmf);
3768 
3769 	/* This is an unknown pte marker */
3770 	return VM_FAULT_SIGBUS;
3771 }
3772 
3773 /*
3774  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3775  * but allow concurrent faults), and pte mapped but not yet locked.
3776  * We return with pte unmapped and unlocked.
3777  *
3778  * We return with the mmap_lock locked or unlocked in the same cases
3779  * as does filemap_fault().
3780  */
3781 vm_fault_t do_swap_page(struct vm_fault *vmf)
3782 {
3783 	struct vm_area_struct *vma = vmf->vma;
3784 	struct folio *swapcache, *folio = NULL;
3785 	struct page *page;
3786 	struct swap_info_struct *si = NULL;
3787 	rmap_t rmap_flags = RMAP_NONE;
3788 	bool exclusive = false;
3789 	swp_entry_t entry;
3790 	pte_t pte;
3791 	vm_fault_t ret = 0;
3792 	void *shadow = NULL;
3793 
3794 	if (!pte_unmap_same(vmf))
3795 		goto out;
3796 
3797 	entry = pte_to_swp_entry(vmf->orig_pte);
3798 	if (unlikely(non_swap_entry(entry))) {
3799 		if (is_migration_entry(entry)) {
3800 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3801 					     vmf->address);
3802 		} else if (is_device_exclusive_entry(entry)) {
3803 			vmf->page = pfn_swap_entry_to_page(entry);
3804 			ret = remove_device_exclusive_entry(vmf);
3805 		} else if (is_device_private_entry(entry)) {
3806 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3807 				/*
3808 				 * migrate_to_ram is not yet ready to operate
3809 				 * under VMA lock.
3810 				 */
3811 				vma_end_read(vma);
3812 				ret = VM_FAULT_RETRY;
3813 				goto out;
3814 			}
3815 
3816 			vmf->page = pfn_swap_entry_to_page(entry);
3817 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3818 					vmf->address, &vmf->ptl);
3819 			if (unlikely(!vmf->pte ||
3820 				     !pte_same(ptep_get(vmf->pte),
3821 							vmf->orig_pte)))
3822 				goto unlock;
3823 
3824 			/*
3825 			 * Get a page reference while we know the page can't be
3826 			 * freed.
3827 			 */
3828 			get_page(vmf->page);
3829 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3830 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3831 			put_page(vmf->page);
3832 		} else if (is_hwpoison_entry(entry)) {
3833 			ret = VM_FAULT_HWPOISON;
3834 		} else if (is_pte_marker_entry(entry)) {
3835 			ret = handle_pte_marker(vmf);
3836 		} else {
3837 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3838 			ret = VM_FAULT_SIGBUS;
3839 		}
3840 		goto out;
3841 	}
3842 
3843 	/* Prevent swapoff from happening to us. */
3844 	si = get_swap_device(entry);
3845 	if (unlikely(!si))
3846 		goto out;
3847 
3848 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3849 	if (folio)
3850 		page = folio_file_page(folio, swp_offset(entry));
3851 	swapcache = folio;
3852 
3853 	if (!folio) {
3854 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3855 		    __swap_count(entry) == 1) {
3856 			/* skip swapcache */
3857 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3858 						vma, vmf->address, false);
3859 			page = &folio->page;
3860 			if (folio) {
3861 				__folio_set_locked(folio);
3862 				__folio_set_swapbacked(folio);
3863 
3864 				if (mem_cgroup_swapin_charge_folio(folio,
3865 							vma->vm_mm, GFP_KERNEL,
3866 							entry)) {
3867 					ret = VM_FAULT_OOM;
3868 					goto out_page;
3869 				}
3870 				mem_cgroup_swapin_uncharge_swap(entry);
3871 
3872 				shadow = get_shadow_from_swap_cache(entry);
3873 				if (shadow)
3874 					workingset_refault(folio, shadow);
3875 
3876 				folio_add_lru(folio);
3877 
3878 				/* To provide entry to swap_readpage() */
3879 				folio->swap = entry;
3880 				swap_readpage(page, true, NULL);
3881 				folio->private = NULL;
3882 			}
3883 		} else {
3884 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3885 						vmf);
3886 			if (page)
3887 				folio = page_folio(page);
3888 			swapcache = folio;
3889 		}
3890 
3891 		if (!folio) {
3892 			/*
3893 			 * Back out if somebody else faulted in this pte
3894 			 * while we released the pte lock.
3895 			 */
3896 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3897 					vmf->address, &vmf->ptl);
3898 			if (likely(vmf->pte &&
3899 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3900 				ret = VM_FAULT_OOM;
3901 			goto unlock;
3902 		}
3903 
3904 		/* Had to read the page from swap area: Major fault */
3905 		ret = VM_FAULT_MAJOR;
3906 		count_vm_event(PGMAJFAULT);
3907 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3908 	} else if (PageHWPoison(page)) {
3909 		/*
3910 		 * hwpoisoned dirty swapcache pages are kept for killing
3911 		 * owner processes (which may be unknown at hwpoison time)
3912 		 */
3913 		ret = VM_FAULT_HWPOISON;
3914 		goto out_release;
3915 	}
3916 
3917 	ret |= folio_lock_or_retry(folio, vmf);
3918 	if (ret & VM_FAULT_RETRY)
3919 		goto out_release;
3920 
3921 	if (swapcache) {
3922 		/*
3923 		 * Make sure folio_free_swap() or swapoff did not release the
3924 		 * swapcache from under us.  The page pin, and pte_same test
3925 		 * below, are not enough to exclude that.  Even if it is still
3926 		 * swapcache, we need to check that the page's swap has not
3927 		 * changed.
3928 		 */
3929 		if (unlikely(!folio_test_swapcache(folio) ||
3930 			     page_swap_entry(page).val != entry.val))
3931 			goto out_page;
3932 
3933 		/*
3934 		 * KSM sometimes has to copy on read faults, for example, if
3935 		 * page->index of !PageKSM() pages would be nonlinear inside the
3936 		 * anon VMA -- PageKSM() is lost on actual swapout.
3937 		 */
3938 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3939 		if (unlikely(!page)) {
3940 			ret = VM_FAULT_OOM;
3941 			goto out_page;
3942 		} else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3943 			ret = VM_FAULT_HWPOISON;
3944 			goto out_page;
3945 		}
3946 		folio = page_folio(page);
3947 
3948 		/*
3949 		 * If we want to map a page that's in the swapcache writable, we
3950 		 * have to detect via the refcount if we're really the exclusive
3951 		 * owner. Try removing the extra reference from the local LRU
3952 		 * caches if required.
3953 		 */
3954 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3955 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3956 			lru_add_drain();
3957 	}
3958 
3959 	folio_throttle_swaprate(folio, GFP_KERNEL);
3960 
3961 	/*
3962 	 * Back out if somebody else already faulted in this pte.
3963 	 */
3964 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3965 			&vmf->ptl);
3966 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3967 		goto out_nomap;
3968 
3969 	if (unlikely(!folio_test_uptodate(folio))) {
3970 		ret = VM_FAULT_SIGBUS;
3971 		goto out_nomap;
3972 	}
3973 
3974 	/*
3975 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3976 	 * must never point at an anonymous page in the swapcache that is
3977 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3978 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3979 	 * check after taking the PT lock and making sure that nobody
3980 	 * concurrently faulted in this page and set PG_anon_exclusive.
3981 	 */
3982 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3983 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3984 
3985 	/*
3986 	 * Check under PT lock (to protect against concurrent fork() sharing
3987 	 * the swap entry concurrently) for certainly exclusive pages.
3988 	 */
3989 	if (!folio_test_ksm(folio)) {
3990 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3991 		if (folio != swapcache) {
3992 			/*
3993 			 * We have a fresh page that is not exposed to the
3994 			 * swapcache -> certainly exclusive.
3995 			 */
3996 			exclusive = true;
3997 		} else if (exclusive && folio_test_writeback(folio) &&
3998 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3999 			/*
4000 			 * This is tricky: not all swap backends support
4001 			 * concurrent page modifications while under writeback.
4002 			 *
4003 			 * So if we stumble over such a page in the swapcache
4004 			 * we must not set the page exclusive, otherwise we can
4005 			 * map it writable without further checks and modify it
4006 			 * while still under writeback.
4007 			 *
4008 			 * For these problematic swap backends, simply drop the
4009 			 * exclusive marker: this is perfectly fine as we start
4010 			 * writeback only if we fully unmapped the page and
4011 			 * there are no unexpected references on the page after
4012 			 * unmapping succeeded. After fully unmapped, no
4013 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4014 			 * appear, so dropping the exclusive marker and mapping
4015 			 * it only R/O is fine.
4016 			 */
4017 			exclusive = false;
4018 		}
4019 	}
4020 
4021 	/*
4022 	 * Some architectures may have to restore extra metadata to the page
4023 	 * when reading from swap. This metadata may be indexed by swap entry
4024 	 * so this must be called before swap_free().
4025 	 */
4026 	arch_swap_restore(entry, folio);
4027 
4028 	/*
4029 	 * Remove the swap entry and conditionally try to free up the swapcache.
4030 	 * We're already holding a reference on the page but haven't mapped it
4031 	 * yet.
4032 	 */
4033 	swap_free(entry);
4034 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4035 		folio_free_swap(folio);
4036 
4037 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4038 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
4039 	pte = mk_pte(page, vma->vm_page_prot);
4040 
4041 	/*
4042 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4043 	 * certainly not shared either because we just allocated them without
4044 	 * exposing them to the swapcache or because the swap entry indicates
4045 	 * exclusivity.
4046 	 */
4047 	if (!folio_test_ksm(folio) &&
4048 	    (exclusive || folio_ref_count(folio) == 1)) {
4049 		if (vmf->flags & FAULT_FLAG_WRITE) {
4050 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4051 			vmf->flags &= ~FAULT_FLAG_WRITE;
4052 		}
4053 		rmap_flags |= RMAP_EXCLUSIVE;
4054 	}
4055 	flush_icache_page(vma, page);
4056 	if (pte_swp_soft_dirty(vmf->orig_pte))
4057 		pte = pte_mksoft_dirty(pte);
4058 	if (pte_swp_uffd_wp(vmf->orig_pte))
4059 		pte = pte_mkuffd_wp(pte);
4060 	vmf->orig_pte = pte;
4061 
4062 	/* ksm created a completely new copy */
4063 	if (unlikely(folio != swapcache && swapcache)) {
4064 		page_add_new_anon_rmap(page, vma, vmf->address);
4065 		folio_add_lru_vma(folio, vma);
4066 	} else {
4067 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4068 	}
4069 
4070 	VM_BUG_ON(!folio_test_anon(folio) ||
4071 			(pte_write(pte) && !PageAnonExclusive(page)));
4072 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4073 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4074 
4075 	folio_unlock(folio);
4076 	if (folio != swapcache && swapcache) {
4077 		/*
4078 		 * Hold the lock to avoid the swap entry to be reused
4079 		 * until we take the PT lock for the pte_same() check
4080 		 * (to avoid false positives from pte_same). For
4081 		 * further safety release the lock after the swap_free
4082 		 * so that the swap count won't change under a
4083 		 * parallel locked swapcache.
4084 		 */
4085 		folio_unlock(swapcache);
4086 		folio_put(swapcache);
4087 	}
4088 
4089 	if (vmf->flags & FAULT_FLAG_WRITE) {
4090 		ret |= do_wp_page(vmf);
4091 		if (ret & VM_FAULT_ERROR)
4092 			ret &= VM_FAULT_ERROR;
4093 		goto out;
4094 	}
4095 
4096 	/* No need to invalidate - it was non-present before */
4097 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4098 unlock:
4099 	if (vmf->pte)
4100 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4101 out:
4102 	if (si)
4103 		put_swap_device(si);
4104 	return ret;
4105 out_nomap:
4106 	if (vmf->pte)
4107 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4108 out_page:
4109 	folio_unlock(folio);
4110 out_release:
4111 	folio_put(folio);
4112 	if (folio != swapcache && swapcache) {
4113 		folio_unlock(swapcache);
4114 		folio_put(swapcache);
4115 	}
4116 	if (si)
4117 		put_swap_device(si);
4118 	return ret;
4119 }
4120 
4121 /*
4122  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4123  * but allow concurrent faults), and pte mapped but not yet locked.
4124  * We return with mmap_lock still held, but pte unmapped and unlocked.
4125  */
4126 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4127 {
4128 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4129 	struct vm_area_struct *vma = vmf->vma;
4130 	struct folio *folio;
4131 	vm_fault_t ret = 0;
4132 	pte_t entry;
4133 
4134 	/* File mapping without ->vm_ops ? */
4135 	if (vma->vm_flags & VM_SHARED)
4136 		return VM_FAULT_SIGBUS;
4137 
4138 	/*
4139 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4140 	 * be distinguished from a transient failure of pte_offset_map().
4141 	 */
4142 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4143 		return VM_FAULT_OOM;
4144 
4145 	/* Use the zero-page for reads */
4146 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4147 			!mm_forbids_zeropage(vma->vm_mm)) {
4148 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4149 						vma->vm_page_prot));
4150 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4151 				vmf->address, &vmf->ptl);
4152 		if (!vmf->pte)
4153 			goto unlock;
4154 		if (vmf_pte_changed(vmf)) {
4155 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4156 			goto unlock;
4157 		}
4158 		ret = check_stable_address_space(vma->vm_mm);
4159 		if (ret)
4160 			goto unlock;
4161 		/* Deliver the page fault to userland, check inside PT lock */
4162 		if (userfaultfd_missing(vma)) {
4163 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4164 			return handle_userfault(vmf, VM_UFFD_MISSING);
4165 		}
4166 		goto setpte;
4167 	}
4168 
4169 	/* Allocate our own private page. */
4170 	if (unlikely(anon_vma_prepare(vma)))
4171 		goto oom;
4172 	folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4173 	if (!folio)
4174 		goto oom;
4175 
4176 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4177 		goto oom_free_page;
4178 	folio_throttle_swaprate(folio, GFP_KERNEL);
4179 
4180 	/*
4181 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4182 	 * preceding stores to the page contents become visible before
4183 	 * the set_pte_at() write.
4184 	 */
4185 	__folio_mark_uptodate(folio);
4186 
4187 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4188 	entry = pte_sw_mkyoung(entry);
4189 	if (vma->vm_flags & VM_WRITE)
4190 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4191 
4192 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4193 			&vmf->ptl);
4194 	if (!vmf->pte)
4195 		goto release;
4196 	if (vmf_pte_changed(vmf)) {
4197 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4198 		goto release;
4199 	}
4200 
4201 	ret = check_stable_address_space(vma->vm_mm);
4202 	if (ret)
4203 		goto release;
4204 
4205 	/* Deliver the page fault to userland, check inside PT lock */
4206 	if (userfaultfd_missing(vma)) {
4207 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4208 		folio_put(folio);
4209 		return handle_userfault(vmf, VM_UFFD_MISSING);
4210 	}
4211 
4212 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4213 	folio_add_new_anon_rmap(folio, vma, vmf->address);
4214 	folio_add_lru_vma(folio, vma);
4215 setpte:
4216 	if (uffd_wp)
4217 		entry = pte_mkuffd_wp(entry);
4218 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4219 
4220 	/* No need to invalidate - it was non-present before */
4221 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4222 unlock:
4223 	if (vmf->pte)
4224 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4225 	return ret;
4226 release:
4227 	folio_put(folio);
4228 	goto unlock;
4229 oom_free_page:
4230 	folio_put(folio);
4231 oom:
4232 	return VM_FAULT_OOM;
4233 }
4234 
4235 /*
4236  * The mmap_lock must have been held on entry, and may have been
4237  * released depending on flags and vma->vm_ops->fault() return value.
4238  * See filemap_fault() and __lock_page_retry().
4239  */
4240 static vm_fault_t __do_fault(struct vm_fault *vmf)
4241 {
4242 	struct vm_area_struct *vma = vmf->vma;
4243 	vm_fault_t ret;
4244 
4245 	/*
4246 	 * Preallocate pte before we take page_lock because this might lead to
4247 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4248 	 *				lock_page(A)
4249 	 *				SetPageWriteback(A)
4250 	 *				unlock_page(A)
4251 	 * lock_page(B)
4252 	 *				lock_page(B)
4253 	 * pte_alloc_one
4254 	 *   shrink_page_list
4255 	 *     wait_on_page_writeback(A)
4256 	 *				SetPageWriteback(B)
4257 	 *				unlock_page(B)
4258 	 *				# flush A, B to clear the writeback
4259 	 */
4260 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4261 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4262 		if (!vmf->prealloc_pte)
4263 			return VM_FAULT_OOM;
4264 	}
4265 
4266 	ret = vma->vm_ops->fault(vmf);
4267 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4268 			    VM_FAULT_DONE_COW)))
4269 		return ret;
4270 
4271 	if (unlikely(PageHWPoison(vmf->page))) {
4272 		struct page *page = vmf->page;
4273 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4274 		if (ret & VM_FAULT_LOCKED) {
4275 			if (page_mapped(page))
4276 				unmap_mapping_pages(page_mapping(page),
4277 						    page->index, 1, false);
4278 			/* Retry if a clean page was removed from the cache. */
4279 			if (invalidate_inode_page(page))
4280 				poisonret = VM_FAULT_NOPAGE;
4281 			unlock_page(page);
4282 		}
4283 		put_page(page);
4284 		vmf->page = NULL;
4285 		return poisonret;
4286 	}
4287 
4288 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4289 		lock_page(vmf->page);
4290 	else
4291 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4292 
4293 	return ret;
4294 }
4295 
4296 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4297 static void deposit_prealloc_pte(struct vm_fault *vmf)
4298 {
4299 	struct vm_area_struct *vma = vmf->vma;
4300 
4301 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4302 	/*
4303 	 * We are going to consume the prealloc table,
4304 	 * count that as nr_ptes.
4305 	 */
4306 	mm_inc_nr_ptes(vma->vm_mm);
4307 	vmf->prealloc_pte = NULL;
4308 }
4309 
4310 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4311 {
4312 	struct vm_area_struct *vma = vmf->vma;
4313 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4314 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4315 	pmd_t entry;
4316 	vm_fault_t ret = VM_FAULT_FALLBACK;
4317 
4318 	if (!transhuge_vma_suitable(vma, haddr))
4319 		return ret;
4320 
4321 	page = compound_head(page);
4322 	if (compound_order(page) != HPAGE_PMD_ORDER)
4323 		return ret;
4324 
4325 	/*
4326 	 * Just backoff if any subpage of a THP is corrupted otherwise
4327 	 * the corrupted page may mapped by PMD silently to escape the
4328 	 * check.  This kind of THP just can be PTE mapped.  Access to
4329 	 * the corrupted subpage should trigger SIGBUS as expected.
4330 	 */
4331 	if (unlikely(PageHasHWPoisoned(page)))
4332 		return ret;
4333 
4334 	/*
4335 	 * Archs like ppc64 need additional space to store information
4336 	 * related to pte entry. Use the preallocated table for that.
4337 	 */
4338 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4339 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4340 		if (!vmf->prealloc_pte)
4341 			return VM_FAULT_OOM;
4342 	}
4343 
4344 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4345 	if (unlikely(!pmd_none(*vmf->pmd)))
4346 		goto out;
4347 
4348 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
4349 
4350 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4351 	if (write)
4352 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4353 
4354 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4355 	page_add_file_rmap(page, vma, true);
4356 
4357 	/*
4358 	 * deposit and withdraw with pmd lock held
4359 	 */
4360 	if (arch_needs_pgtable_deposit())
4361 		deposit_prealloc_pte(vmf);
4362 
4363 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4364 
4365 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4366 
4367 	/* fault is handled */
4368 	ret = 0;
4369 	count_vm_event(THP_FILE_MAPPED);
4370 out:
4371 	spin_unlock(vmf->ptl);
4372 	return ret;
4373 }
4374 #else
4375 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4376 {
4377 	return VM_FAULT_FALLBACK;
4378 }
4379 #endif
4380 
4381 /**
4382  * set_pte_range - Set a range of PTEs to point to pages in a folio.
4383  * @vmf: Fault decription.
4384  * @folio: The folio that contains @page.
4385  * @page: The first page to create a PTE for.
4386  * @nr: The number of PTEs to create.
4387  * @addr: The first address to create a PTE for.
4388  */
4389 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4390 		struct page *page, unsigned int nr, unsigned long addr)
4391 {
4392 	struct vm_area_struct *vma = vmf->vma;
4393 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4394 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4395 	bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
4396 	pte_t entry;
4397 
4398 	flush_icache_pages(vma, page, nr);
4399 	entry = mk_pte(page, vma->vm_page_prot);
4400 
4401 	if (prefault && arch_wants_old_prefaulted_pte())
4402 		entry = pte_mkold(entry);
4403 	else
4404 		entry = pte_sw_mkyoung(entry);
4405 
4406 	if (write)
4407 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4408 	if (unlikely(uffd_wp))
4409 		entry = pte_mkuffd_wp(entry);
4410 	/* copy-on-write page */
4411 	if (write && !(vma->vm_flags & VM_SHARED)) {
4412 		add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4413 		VM_BUG_ON_FOLIO(nr != 1, folio);
4414 		folio_add_new_anon_rmap(folio, vma, addr);
4415 		folio_add_lru_vma(folio, vma);
4416 	} else {
4417 		add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4418 		folio_add_file_rmap_range(folio, page, nr, vma, false);
4419 	}
4420 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4421 
4422 	/* no need to invalidate: a not-present page won't be cached */
4423 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
4424 }
4425 
4426 static bool vmf_pte_changed(struct vm_fault *vmf)
4427 {
4428 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4429 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4430 
4431 	return !pte_none(ptep_get(vmf->pte));
4432 }
4433 
4434 /**
4435  * finish_fault - finish page fault once we have prepared the page to fault
4436  *
4437  * @vmf: structure describing the fault
4438  *
4439  * This function handles all that is needed to finish a page fault once the
4440  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4441  * given page, adds reverse page mapping, handles memcg charges and LRU
4442  * addition.
4443  *
4444  * The function expects the page to be locked and on success it consumes a
4445  * reference of a page being mapped (for the PTE which maps it).
4446  *
4447  * Return: %0 on success, %VM_FAULT_ code in case of error.
4448  */
4449 vm_fault_t finish_fault(struct vm_fault *vmf)
4450 {
4451 	struct vm_area_struct *vma = vmf->vma;
4452 	struct page *page;
4453 	vm_fault_t ret;
4454 
4455 	/* Did we COW the page? */
4456 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4457 		page = vmf->cow_page;
4458 	else
4459 		page = vmf->page;
4460 
4461 	/*
4462 	 * check even for read faults because we might have lost our CoWed
4463 	 * page
4464 	 */
4465 	if (!(vma->vm_flags & VM_SHARED)) {
4466 		ret = check_stable_address_space(vma->vm_mm);
4467 		if (ret)
4468 			return ret;
4469 	}
4470 
4471 	if (pmd_none(*vmf->pmd)) {
4472 		if (PageTransCompound(page)) {
4473 			ret = do_set_pmd(vmf, page);
4474 			if (ret != VM_FAULT_FALLBACK)
4475 				return ret;
4476 		}
4477 
4478 		if (vmf->prealloc_pte)
4479 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4480 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4481 			return VM_FAULT_OOM;
4482 	}
4483 
4484 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4485 				      vmf->address, &vmf->ptl);
4486 	if (!vmf->pte)
4487 		return VM_FAULT_NOPAGE;
4488 
4489 	/* Re-check under ptl */
4490 	if (likely(!vmf_pte_changed(vmf))) {
4491 		struct folio *folio = page_folio(page);
4492 
4493 		set_pte_range(vmf, folio, page, 1, vmf->address);
4494 		ret = 0;
4495 	} else {
4496 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4497 		ret = VM_FAULT_NOPAGE;
4498 	}
4499 
4500 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4501 	return ret;
4502 }
4503 
4504 static unsigned long fault_around_pages __read_mostly =
4505 	65536 >> PAGE_SHIFT;
4506 
4507 #ifdef CONFIG_DEBUG_FS
4508 static int fault_around_bytes_get(void *data, u64 *val)
4509 {
4510 	*val = fault_around_pages << PAGE_SHIFT;
4511 	return 0;
4512 }
4513 
4514 /*
4515  * fault_around_bytes must be rounded down to the nearest page order as it's
4516  * what do_fault_around() expects to see.
4517  */
4518 static int fault_around_bytes_set(void *data, u64 val)
4519 {
4520 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4521 		return -EINVAL;
4522 
4523 	/*
4524 	 * The minimum value is 1 page, however this results in no fault-around
4525 	 * at all. See should_fault_around().
4526 	 */
4527 	fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4528 
4529 	return 0;
4530 }
4531 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4532 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4533 
4534 static int __init fault_around_debugfs(void)
4535 {
4536 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4537 				   &fault_around_bytes_fops);
4538 	return 0;
4539 }
4540 late_initcall(fault_around_debugfs);
4541 #endif
4542 
4543 /*
4544  * do_fault_around() tries to map few pages around the fault address. The hope
4545  * is that the pages will be needed soon and this will lower the number of
4546  * faults to handle.
4547  *
4548  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4549  * not ready to be mapped: not up-to-date, locked, etc.
4550  *
4551  * This function doesn't cross VMA or page table boundaries, in order to call
4552  * map_pages() and acquire a PTE lock only once.
4553  *
4554  * fault_around_pages defines how many pages we'll try to map.
4555  * do_fault_around() expects it to be set to a power of two less than or equal
4556  * to PTRS_PER_PTE.
4557  *
4558  * The virtual address of the area that we map is naturally aligned to
4559  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4560  * (and therefore to page order).  This way it's easier to guarantee
4561  * that we don't cross page table boundaries.
4562  */
4563 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4564 {
4565 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4566 	pgoff_t pte_off = pte_index(vmf->address);
4567 	/* The page offset of vmf->address within the VMA. */
4568 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4569 	pgoff_t from_pte, to_pte;
4570 	vm_fault_t ret;
4571 
4572 	/* The PTE offset of the start address, clamped to the VMA. */
4573 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4574 		       pte_off - min(pte_off, vma_off));
4575 
4576 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4577 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4578 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4579 
4580 	if (pmd_none(*vmf->pmd)) {
4581 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4582 		if (!vmf->prealloc_pte)
4583 			return VM_FAULT_OOM;
4584 	}
4585 
4586 	rcu_read_lock();
4587 	ret = vmf->vma->vm_ops->map_pages(vmf,
4588 			vmf->pgoff + from_pte - pte_off,
4589 			vmf->pgoff + to_pte - pte_off);
4590 	rcu_read_unlock();
4591 
4592 	return ret;
4593 }
4594 
4595 /* Return true if we should do read fault-around, false otherwise */
4596 static inline bool should_fault_around(struct vm_fault *vmf)
4597 {
4598 	/* No ->map_pages?  No way to fault around... */
4599 	if (!vmf->vma->vm_ops->map_pages)
4600 		return false;
4601 
4602 	if (uffd_disable_fault_around(vmf->vma))
4603 		return false;
4604 
4605 	/* A single page implies no faulting 'around' at all. */
4606 	return fault_around_pages > 1;
4607 }
4608 
4609 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4610 {
4611 	vm_fault_t ret = 0;
4612 	struct folio *folio;
4613 
4614 	/*
4615 	 * Let's call ->map_pages() first and use ->fault() as fallback
4616 	 * if page by the offset is not ready to be mapped (cold cache or
4617 	 * something).
4618 	 */
4619 	if (should_fault_around(vmf)) {
4620 		ret = do_fault_around(vmf);
4621 		if (ret)
4622 			return ret;
4623 	}
4624 
4625 	ret = vmf_can_call_fault(vmf);
4626 	if (ret)
4627 		return ret;
4628 
4629 	ret = __do_fault(vmf);
4630 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4631 		return ret;
4632 
4633 	ret |= finish_fault(vmf);
4634 	folio = page_folio(vmf->page);
4635 	folio_unlock(folio);
4636 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4637 		folio_put(folio);
4638 	return ret;
4639 }
4640 
4641 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4642 {
4643 	struct vm_area_struct *vma = vmf->vma;
4644 	vm_fault_t ret;
4645 
4646 	ret = vmf_can_call_fault(vmf);
4647 	if (!ret)
4648 		ret = vmf_anon_prepare(vmf);
4649 	if (ret)
4650 		return ret;
4651 
4652 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4653 	if (!vmf->cow_page)
4654 		return VM_FAULT_OOM;
4655 
4656 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4657 				GFP_KERNEL)) {
4658 		put_page(vmf->cow_page);
4659 		return VM_FAULT_OOM;
4660 	}
4661 	folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4662 
4663 	ret = __do_fault(vmf);
4664 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4665 		goto uncharge_out;
4666 	if (ret & VM_FAULT_DONE_COW)
4667 		return ret;
4668 
4669 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4670 	__SetPageUptodate(vmf->cow_page);
4671 
4672 	ret |= finish_fault(vmf);
4673 	unlock_page(vmf->page);
4674 	put_page(vmf->page);
4675 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4676 		goto uncharge_out;
4677 	return ret;
4678 uncharge_out:
4679 	put_page(vmf->cow_page);
4680 	return ret;
4681 }
4682 
4683 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4684 {
4685 	struct vm_area_struct *vma = vmf->vma;
4686 	vm_fault_t ret, tmp;
4687 	struct folio *folio;
4688 
4689 	ret = vmf_can_call_fault(vmf);
4690 	if (ret)
4691 		return ret;
4692 
4693 	ret = __do_fault(vmf);
4694 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4695 		return ret;
4696 
4697 	folio = page_folio(vmf->page);
4698 
4699 	/*
4700 	 * Check if the backing address space wants to know that the page is
4701 	 * about to become writable
4702 	 */
4703 	if (vma->vm_ops->page_mkwrite) {
4704 		folio_unlock(folio);
4705 		tmp = do_page_mkwrite(vmf, folio);
4706 		if (unlikely(!tmp ||
4707 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4708 			folio_put(folio);
4709 			return tmp;
4710 		}
4711 	}
4712 
4713 	ret |= finish_fault(vmf);
4714 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4715 					VM_FAULT_RETRY))) {
4716 		folio_unlock(folio);
4717 		folio_put(folio);
4718 		return ret;
4719 	}
4720 
4721 	ret |= fault_dirty_shared_page(vmf);
4722 	return ret;
4723 }
4724 
4725 /*
4726  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4727  * but allow concurrent faults).
4728  * The mmap_lock may have been released depending on flags and our
4729  * return value.  See filemap_fault() and __folio_lock_or_retry().
4730  * If mmap_lock is released, vma may become invalid (for example
4731  * by other thread calling munmap()).
4732  */
4733 static vm_fault_t do_fault(struct vm_fault *vmf)
4734 {
4735 	struct vm_area_struct *vma = vmf->vma;
4736 	struct mm_struct *vm_mm = vma->vm_mm;
4737 	vm_fault_t ret;
4738 
4739 	/*
4740 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4741 	 */
4742 	if (!vma->vm_ops->fault) {
4743 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4744 					       vmf->address, &vmf->ptl);
4745 		if (unlikely(!vmf->pte))
4746 			ret = VM_FAULT_SIGBUS;
4747 		else {
4748 			/*
4749 			 * Make sure this is not a temporary clearing of pte
4750 			 * by holding ptl and checking again. A R/M/W update
4751 			 * of pte involves: take ptl, clearing the pte so that
4752 			 * we don't have concurrent modification by hardware
4753 			 * followed by an update.
4754 			 */
4755 			if (unlikely(pte_none(ptep_get(vmf->pte))))
4756 				ret = VM_FAULT_SIGBUS;
4757 			else
4758 				ret = VM_FAULT_NOPAGE;
4759 
4760 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4761 		}
4762 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4763 		ret = do_read_fault(vmf);
4764 	else if (!(vma->vm_flags & VM_SHARED))
4765 		ret = do_cow_fault(vmf);
4766 	else
4767 		ret = do_shared_fault(vmf);
4768 
4769 	/* preallocated pagetable is unused: free it */
4770 	if (vmf->prealloc_pte) {
4771 		pte_free(vm_mm, vmf->prealloc_pte);
4772 		vmf->prealloc_pte = NULL;
4773 	}
4774 	return ret;
4775 }
4776 
4777 int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
4778 		      unsigned long addr, int page_nid, int *flags)
4779 {
4780 	folio_get(folio);
4781 
4782 	/* Record the current PID acceesing VMA */
4783 	vma_set_access_pid_bit(vma);
4784 
4785 	count_vm_numa_event(NUMA_HINT_FAULTS);
4786 	if (page_nid == numa_node_id()) {
4787 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4788 		*flags |= TNF_FAULT_LOCAL;
4789 	}
4790 
4791 	return mpol_misplaced(folio, vma, addr);
4792 }
4793 
4794 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4795 {
4796 	struct vm_area_struct *vma = vmf->vma;
4797 	struct folio *folio = NULL;
4798 	int nid = NUMA_NO_NODE;
4799 	bool writable = false;
4800 	int last_cpupid;
4801 	int target_nid;
4802 	pte_t pte, old_pte;
4803 	int flags = 0;
4804 
4805 	/*
4806 	 * The "pte" at this point cannot be used safely without
4807 	 * validation through pte_unmap_same(). It's of NUMA type but
4808 	 * the pfn may be screwed if the read is non atomic.
4809 	 */
4810 	spin_lock(vmf->ptl);
4811 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4812 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4813 		goto out;
4814 	}
4815 
4816 	/* Get the normal PTE  */
4817 	old_pte = ptep_get(vmf->pte);
4818 	pte = pte_modify(old_pte, vma->vm_page_prot);
4819 
4820 	/*
4821 	 * Detect now whether the PTE could be writable; this information
4822 	 * is only valid while holding the PT lock.
4823 	 */
4824 	writable = pte_write(pte);
4825 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4826 	    can_change_pte_writable(vma, vmf->address, pte))
4827 		writable = true;
4828 
4829 	folio = vm_normal_folio(vma, vmf->address, pte);
4830 	if (!folio || folio_is_zone_device(folio))
4831 		goto out_map;
4832 
4833 	/* TODO: handle PTE-mapped THP */
4834 	if (folio_test_large(folio))
4835 		goto out_map;
4836 
4837 	/*
4838 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4839 	 * much anyway since they can be in shared cache state. This misses
4840 	 * the case where a mapping is writable but the process never writes
4841 	 * to it but pte_write gets cleared during protection updates and
4842 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4843 	 * background writeback, dirty balancing and application behaviour.
4844 	 */
4845 	if (!writable)
4846 		flags |= TNF_NO_GROUP;
4847 
4848 	/*
4849 	 * Flag if the folio is shared between multiple address spaces. This
4850 	 * is later used when determining whether to group tasks together
4851 	 */
4852 	if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED))
4853 		flags |= TNF_SHARED;
4854 
4855 	nid = folio_nid(folio);
4856 	/*
4857 	 * For memory tiering mode, cpupid of slow memory page is used
4858 	 * to record page access time.  So use default value.
4859 	 */
4860 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4861 	    !node_is_toptier(nid))
4862 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4863 	else
4864 		last_cpupid = folio_last_cpupid(folio);
4865 	target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags);
4866 	if (target_nid == NUMA_NO_NODE) {
4867 		folio_put(folio);
4868 		goto out_map;
4869 	}
4870 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4871 	writable = false;
4872 
4873 	/* Migrate to the requested node */
4874 	if (migrate_misplaced_folio(folio, vma, target_nid)) {
4875 		nid = target_nid;
4876 		flags |= TNF_MIGRATED;
4877 	} else {
4878 		flags |= TNF_MIGRATE_FAIL;
4879 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4880 					       vmf->address, &vmf->ptl);
4881 		if (unlikely(!vmf->pte))
4882 			goto out;
4883 		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4884 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4885 			goto out;
4886 		}
4887 		goto out_map;
4888 	}
4889 
4890 out:
4891 	if (nid != NUMA_NO_NODE)
4892 		task_numa_fault(last_cpupid, nid, 1, flags);
4893 	return 0;
4894 out_map:
4895 	/*
4896 	 * Make it present again, depending on how arch implements
4897 	 * non-accessible ptes, some can allow access by kernel mode.
4898 	 */
4899 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4900 	pte = pte_modify(old_pte, vma->vm_page_prot);
4901 	pte = pte_mkyoung(pte);
4902 	if (writable)
4903 		pte = pte_mkwrite(pte, vma);
4904 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4905 	update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
4906 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4907 	goto out;
4908 }
4909 
4910 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4911 {
4912 	struct vm_area_struct *vma = vmf->vma;
4913 	if (vma_is_anonymous(vma))
4914 		return do_huge_pmd_anonymous_page(vmf);
4915 	if (vma->vm_ops->huge_fault)
4916 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4917 	return VM_FAULT_FALLBACK;
4918 }
4919 
4920 /* `inline' is required to avoid gcc 4.1.2 build error */
4921 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4922 {
4923 	struct vm_area_struct *vma = vmf->vma;
4924 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4925 	vm_fault_t ret;
4926 
4927 	if (vma_is_anonymous(vma)) {
4928 		if (likely(!unshare) &&
4929 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
4930 			if (userfaultfd_wp_async(vmf->vma))
4931 				goto split;
4932 			return handle_userfault(vmf, VM_UFFD_WP);
4933 		}
4934 		return do_huge_pmd_wp_page(vmf);
4935 	}
4936 
4937 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4938 		if (vma->vm_ops->huge_fault) {
4939 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
4940 			if (!(ret & VM_FAULT_FALLBACK))
4941 				return ret;
4942 		}
4943 	}
4944 
4945 split:
4946 	/* COW or write-notify handled on pte level: split pmd. */
4947 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4948 
4949 	return VM_FAULT_FALLBACK;
4950 }
4951 
4952 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4953 {
4954 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4955 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4956 	struct vm_area_struct *vma = vmf->vma;
4957 	/* No support for anonymous transparent PUD pages yet */
4958 	if (vma_is_anonymous(vma))
4959 		return VM_FAULT_FALLBACK;
4960 	if (vma->vm_ops->huge_fault)
4961 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4962 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4963 	return VM_FAULT_FALLBACK;
4964 }
4965 
4966 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4967 {
4968 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4969 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4970 	struct vm_area_struct *vma = vmf->vma;
4971 	vm_fault_t ret;
4972 
4973 	/* No support for anonymous transparent PUD pages yet */
4974 	if (vma_is_anonymous(vma))
4975 		goto split;
4976 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4977 		if (vma->vm_ops->huge_fault) {
4978 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
4979 			if (!(ret & VM_FAULT_FALLBACK))
4980 				return ret;
4981 		}
4982 	}
4983 split:
4984 	/* COW or write-notify not handled on PUD level: split pud.*/
4985 	__split_huge_pud(vma, vmf->pud, vmf->address);
4986 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4987 	return VM_FAULT_FALLBACK;
4988 }
4989 
4990 /*
4991  * These routines also need to handle stuff like marking pages dirty
4992  * and/or accessed for architectures that don't do it in hardware (most
4993  * RISC architectures).  The early dirtying is also good on the i386.
4994  *
4995  * There is also a hook called "update_mmu_cache()" that architectures
4996  * with external mmu caches can use to update those (ie the Sparc or
4997  * PowerPC hashed page tables that act as extended TLBs).
4998  *
4999  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5000  * concurrent faults).
5001  *
5002  * The mmap_lock may have been released depending on flags and our return value.
5003  * See filemap_fault() and __folio_lock_or_retry().
5004  */
5005 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5006 {
5007 	pte_t entry;
5008 
5009 	if (unlikely(pmd_none(*vmf->pmd))) {
5010 		/*
5011 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5012 		 * want to allocate huge page, and if we expose page table
5013 		 * for an instant, it will be difficult to retract from
5014 		 * concurrent faults and from rmap lookups.
5015 		 */
5016 		vmf->pte = NULL;
5017 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5018 	} else {
5019 		/*
5020 		 * A regular pmd is established and it can't morph into a huge
5021 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5022 		 * mode; but shmem or file collapse to THP could still morph
5023 		 * it into a huge pmd: just retry later if so.
5024 		 */
5025 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5026 						 vmf->address, &vmf->ptl);
5027 		if (unlikely(!vmf->pte))
5028 			return 0;
5029 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5030 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5031 
5032 		if (pte_none(vmf->orig_pte)) {
5033 			pte_unmap(vmf->pte);
5034 			vmf->pte = NULL;
5035 		}
5036 	}
5037 
5038 	if (!vmf->pte)
5039 		return do_pte_missing(vmf);
5040 
5041 	if (!pte_present(vmf->orig_pte))
5042 		return do_swap_page(vmf);
5043 
5044 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5045 		return do_numa_page(vmf);
5046 
5047 	spin_lock(vmf->ptl);
5048 	entry = vmf->orig_pte;
5049 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5050 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5051 		goto unlock;
5052 	}
5053 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5054 		if (!pte_write(entry))
5055 			return do_wp_page(vmf);
5056 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5057 			entry = pte_mkdirty(entry);
5058 	}
5059 	entry = pte_mkyoung(entry);
5060 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5061 				vmf->flags & FAULT_FLAG_WRITE)) {
5062 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5063 				vmf->pte, 1);
5064 	} else {
5065 		/* Skip spurious TLB flush for retried page fault */
5066 		if (vmf->flags & FAULT_FLAG_TRIED)
5067 			goto unlock;
5068 		/*
5069 		 * This is needed only for protection faults but the arch code
5070 		 * is not yet telling us if this is a protection fault or not.
5071 		 * This still avoids useless tlb flushes for .text page faults
5072 		 * with threads.
5073 		 */
5074 		if (vmf->flags & FAULT_FLAG_WRITE)
5075 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5076 						     vmf->pte);
5077 	}
5078 unlock:
5079 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5080 	return 0;
5081 }
5082 
5083 /*
5084  * On entry, we hold either the VMA lock or the mmap_lock
5085  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5086  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5087  * and __folio_lock_or_retry().
5088  */
5089 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5090 		unsigned long address, unsigned int flags)
5091 {
5092 	struct vm_fault vmf = {
5093 		.vma = vma,
5094 		.address = address & PAGE_MASK,
5095 		.real_address = address,
5096 		.flags = flags,
5097 		.pgoff = linear_page_index(vma, address),
5098 		.gfp_mask = __get_fault_gfp_mask(vma),
5099 	};
5100 	struct mm_struct *mm = vma->vm_mm;
5101 	unsigned long vm_flags = vma->vm_flags;
5102 	pgd_t *pgd;
5103 	p4d_t *p4d;
5104 	vm_fault_t ret;
5105 
5106 	pgd = pgd_offset(mm, address);
5107 	p4d = p4d_alloc(mm, pgd, address);
5108 	if (!p4d)
5109 		return VM_FAULT_OOM;
5110 
5111 	vmf.pud = pud_alloc(mm, p4d, address);
5112 	if (!vmf.pud)
5113 		return VM_FAULT_OOM;
5114 retry_pud:
5115 	if (pud_none(*vmf.pud) &&
5116 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5117 		ret = create_huge_pud(&vmf);
5118 		if (!(ret & VM_FAULT_FALLBACK))
5119 			return ret;
5120 	} else {
5121 		pud_t orig_pud = *vmf.pud;
5122 
5123 		barrier();
5124 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5125 
5126 			/*
5127 			 * TODO once we support anonymous PUDs: NUMA case and
5128 			 * FAULT_FLAG_UNSHARE handling.
5129 			 */
5130 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5131 				ret = wp_huge_pud(&vmf, orig_pud);
5132 				if (!(ret & VM_FAULT_FALLBACK))
5133 					return ret;
5134 			} else {
5135 				huge_pud_set_accessed(&vmf, orig_pud);
5136 				return 0;
5137 			}
5138 		}
5139 	}
5140 
5141 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5142 	if (!vmf.pmd)
5143 		return VM_FAULT_OOM;
5144 
5145 	/* Huge pud page fault raced with pmd_alloc? */
5146 	if (pud_trans_unstable(vmf.pud))
5147 		goto retry_pud;
5148 
5149 	if (pmd_none(*vmf.pmd) &&
5150 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5151 		ret = create_huge_pmd(&vmf);
5152 		if (!(ret & VM_FAULT_FALLBACK))
5153 			return ret;
5154 	} else {
5155 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5156 
5157 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5158 			VM_BUG_ON(thp_migration_supported() &&
5159 					  !is_pmd_migration_entry(vmf.orig_pmd));
5160 			if (is_pmd_migration_entry(vmf.orig_pmd))
5161 				pmd_migration_entry_wait(mm, vmf.pmd);
5162 			return 0;
5163 		}
5164 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5165 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5166 				return do_huge_pmd_numa_page(&vmf);
5167 
5168 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5169 			    !pmd_write(vmf.orig_pmd)) {
5170 				ret = wp_huge_pmd(&vmf);
5171 				if (!(ret & VM_FAULT_FALLBACK))
5172 					return ret;
5173 			} else {
5174 				huge_pmd_set_accessed(&vmf);
5175 				return 0;
5176 			}
5177 		}
5178 	}
5179 
5180 	return handle_pte_fault(&vmf);
5181 }
5182 
5183 /**
5184  * mm_account_fault - Do page fault accounting
5185  * @mm: mm from which memcg should be extracted. It can be NULL.
5186  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5187  *        of perf event counters, but we'll still do the per-task accounting to
5188  *        the task who triggered this page fault.
5189  * @address: the faulted address.
5190  * @flags: the fault flags.
5191  * @ret: the fault retcode.
5192  *
5193  * This will take care of most of the page fault accounting.  Meanwhile, it
5194  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5195  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5196  * still be in per-arch page fault handlers at the entry of page fault.
5197  */
5198 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5199 				    unsigned long address, unsigned int flags,
5200 				    vm_fault_t ret)
5201 {
5202 	bool major;
5203 
5204 	/* Incomplete faults will be accounted upon completion. */
5205 	if (ret & VM_FAULT_RETRY)
5206 		return;
5207 
5208 	/*
5209 	 * To preserve the behavior of older kernels, PGFAULT counters record
5210 	 * both successful and failed faults, as opposed to perf counters,
5211 	 * which ignore failed cases.
5212 	 */
5213 	count_vm_event(PGFAULT);
5214 	count_memcg_event_mm(mm, PGFAULT);
5215 
5216 	/*
5217 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5218 	 * valid).  That includes arch_vma_access_permitted() failing before
5219 	 * reaching here. So this is not a "this many hardware page faults"
5220 	 * counter.  We should use the hw profiling for that.
5221 	 */
5222 	if (ret & VM_FAULT_ERROR)
5223 		return;
5224 
5225 	/*
5226 	 * We define the fault as a major fault when the final successful fault
5227 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5228 	 * handle it immediately previously).
5229 	 */
5230 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5231 
5232 	if (major)
5233 		current->maj_flt++;
5234 	else
5235 		current->min_flt++;
5236 
5237 	/*
5238 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5239 	 * accounting for the per thread fault counters who triggered the
5240 	 * fault, and we skip the perf event updates.
5241 	 */
5242 	if (!regs)
5243 		return;
5244 
5245 	if (major)
5246 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5247 	else
5248 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5249 }
5250 
5251 #ifdef CONFIG_LRU_GEN
5252 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5253 {
5254 	/* the LRU algorithm only applies to accesses with recency */
5255 	current->in_lru_fault = vma_has_recency(vma);
5256 }
5257 
5258 static void lru_gen_exit_fault(void)
5259 {
5260 	current->in_lru_fault = false;
5261 }
5262 #else
5263 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5264 {
5265 }
5266 
5267 static void lru_gen_exit_fault(void)
5268 {
5269 }
5270 #endif /* CONFIG_LRU_GEN */
5271 
5272 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5273 				       unsigned int *flags)
5274 {
5275 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5276 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5277 			return VM_FAULT_SIGSEGV;
5278 		/*
5279 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5280 		 * just treat it like an ordinary read-fault otherwise.
5281 		 */
5282 		if (!is_cow_mapping(vma->vm_flags))
5283 			*flags &= ~FAULT_FLAG_UNSHARE;
5284 	} else if (*flags & FAULT_FLAG_WRITE) {
5285 		/* Write faults on read-only mappings are impossible ... */
5286 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5287 			return VM_FAULT_SIGSEGV;
5288 		/* ... and FOLL_FORCE only applies to COW mappings. */
5289 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5290 				 !is_cow_mapping(vma->vm_flags)))
5291 			return VM_FAULT_SIGSEGV;
5292 	}
5293 #ifdef CONFIG_PER_VMA_LOCK
5294 	/*
5295 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5296 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
5297 	 */
5298 	if (WARN_ON_ONCE((*flags &
5299 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5300 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5301 		return VM_FAULT_SIGSEGV;
5302 #endif
5303 
5304 	return 0;
5305 }
5306 
5307 /*
5308  * By the time we get here, we already hold the mm semaphore
5309  *
5310  * The mmap_lock may have been released depending on flags and our
5311  * return value.  See filemap_fault() and __folio_lock_or_retry().
5312  */
5313 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5314 			   unsigned int flags, struct pt_regs *regs)
5315 {
5316 	/* If the fault handler drops the mmap_lock, vma may be freed */
5317 	struct mm_struct *mm = vma->vm_mm;
5318 	vm_fault_t ret;
5319 
5320 	__set_current_state(TASK_RUNNING);
5321 
5322 	ret = sanitize_fault_flags(vma, &flags);
5323 	if (ret)
5324 		goto out;
5325 
5326 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5327 					    flags & FAULT_FLAG_INSTRUCTION,
5328 					    flags & FAULT_FLAG_REMOTE)) {
5329 		ret = VM_FAULT_SIGSEGV;
5330 		goto out;
5331 	}
5332 
5333 	/*
5334 	 * Enable the memcg OOM handling for faults triggered in user
5335 	 * space.  Kernel faults are handled more gracefully.
5336 	 */
5337 	if (flags & FAULT_FLAG_USER)
5338 		mem_cgroup_enter_user_fault();
5339 
5340 	lru_gen_enter_fault(vma);
5341 
5342 	if (unlikely(is_vm_hugetlb_page(vma)))
5343 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5344 	else
5345 		ret = __handle_mm_fault(vma, address, flags);
5346 
5347 	lru_gen_exit_fault();
5348 
5349 	if (flags & FAULT_FLAG_USER) {
5350 		mem_cgroup_exit_user_fault();
5351 		/*
5352 		 * The task may have entered a memcg OOM situation but
5353 		 * if the allocation error was handled gracefully (no
5354 		 * VM_FAULT_OOM), there is no need to kill anything.
5355 		 * Just clean up the OOM state peacefully.
5356 		 */
5357 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5358 			mem_cgroup_oom_synchronize(false);
5359 	}
5360 out:
5361 	mm_account_fault(mm, regs, address, flags, ret);
5362 
5363 	return ret;
5364 }
5365 EXPORT_SYMBOL_GPL(handle_mm_fault);
5366 
5367 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5368 #include <linux/extable.h>
5369 
5370 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5371 {
5372 	if (likely(mmap_read_trylock(mm)))
5373 		return true;
5374 
5375 	if (regs && !user_mode(regs)) {
5376 		unsigned long ip = instruction_pointer(regs);
5377 		if (!search_exception_tables(ip))
5378 			return false;
5379 	}
5380 
5381 	return !mmap_read_lock_killable(mm);
5382 }
5383 
5384 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5385 {
5386 	/*
5387 	 * We don't have this operation yet.
5388 	 *
5389 	 * It should be easy enough to do: it's basically a
5390 	 *    atomic_long_try_cmpxchg_acquire()
5391 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5392 	 * it also needs the proper lockdep magic etc.
5393 	 */
5394 	return false;
5395 }
5396 
5397 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5398 {
5399 	mmap_read_unlock(mm);
5400 	if (regs && !user_mode(regs)) {
5401 		unsigned long ip = instruction_pointer(regs);
5402 		if (!search_exception_tables(ip))
5403 			return false;
5404 	}
5405 	return !mmap_write_lock_killable(mm);
5406 }
5407 
5408 /*
5409  * Helper for page fault handling.
5410  *
5411  * This is kind of equivalend to "mmap_read_lock()" followed
5412  * by "find_extend_vma()", except it's a lot more careful about
5413  * the locking (and will drop the lock on failure).
5414  *
5415  * For example, if we have a kernel bug that causes a page
5416  * fault, we don't want to just use mmap_read_lock() to get
5417  * the mm lock, because that would deadlock if the bug were
5418  * to happen while we're holding the mm lock for writing.
5419  *
5420  * So this checks the exception tables on kernel faults in
5421  * order to only do this all for instructions that are actually
5422  * expected to fault.
5423  *
5424  * We can also actually take the mm lock for writing if we
5425  * need to extend the vma, which helps the VM layer a lot.
5426  */
5427 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5428 			unsigned long addr, struct pt_regs *regs)
5429 {
5430 	struct vm_area_struct *vma;
5431 
5432 	if (!get_mmap_lock_carefully(mm, regs))
5433 		return NULL;
5434 
5435 	vma = find_vma(mm, addr);
5436 	if (likely(vma && (vma->vm_start <= addr)))
5437 		return vma;
5438 
5439 	/*
5440 	 * Well, dang. We might still be successful, but only
5441 	 * if we can extend a vma to do so.
5442 	 */
5443 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5444 		mmap_read_unlock(mm);
5445 		return NULL;
5446 	}
5447 
5448 	/*
5449 	 * We can try to upgrade the mmap lock atomically,
5450 	 * in which case we can continue to use the vma
5451 	 * we already looked up.
5452 	 *
5453 	 * Otherwise we'll have to drop the mmap lock and
5454 	 * re-take it, and also look up the vma again,
5455 	 * re-checking it.
5456 	 */
5457 	if (!mmap_upgrade_trylock(mm)) {
5458 		if (!upgrade_mmap_lock_carefully(mm, regs))
5459 			return NULL;
5460 
5461 		vma = find_vma(mm, addr);
5462 		if (!vma)
5463 			goto fail;
5464 		if (vma->vm_start <= addr)
5465 			goto success;
5466 		if (!(vma->vm_flags & VM_GROWSDOWN))
5467 			goto fail;
5468 	}
5469 
5470 	if (expand_stack_locked(vma, addr))
5471 		goto fail;
5472 
5473 success:
5474 	mmap_write_downgrade(mm);
5475 	return vma;
5476 
5477 fail:
5478 	mmap_write_unlock(mm);
5479 	return NULL;
5480 }
5481 #endif
5482 
5483 #ifdef CONFIG_PER_VMA_LOCK
5484 /*
5485  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5486  * stable and not isolated. If the VMA is not found or is being modified the
5487  * function returns NULL.
5488  */
5489 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5490 					  unsigned long address)
5491 {
5492 	MA_STATE(mas, &mm->mm_mt, address, address);
5493 	struct vm_area_struct *vma;
5494 
5495 	rcu_read_lock();
5496 retry:
5497 	vma = mas_walk(&mas);
5498 	if (!vma)
5499 		goto inval;
5500 
5501 	if (!vma_start_read(vma))
5502 		goto inval;
5503 
5504 	/*
5505 	 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5506 	 * This check must happen after vma_start_read(); otherwise, a
5507 	 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5508 	 * from its anon_vma.
5509 	 */
5510 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
5511 		goto inval_end_read;
5512 
5513 	/* Check since vm_start/vm_end might change before we lock the VMA */
5514 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5515 		goto inval_end_read;
5516 
5517 	/* Check if the VMA got isolated after we found it */
5518 	if (vma->detached) {
5519 		vma_end_read(vma);
5520 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5521 		/* The area was replaced with another one */
5522 		goto retry;
5523 	}
5524 
5525 	rcu_read_unlock();
5526 	return vma;
5527 
5528 inval_end_read:
5529 	vma_end_read(vma);
5530 inval:
5531 	rcu_read_unlock();
5532 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5533 	return NULL;
5534 }
5535 #endif /* CONFIG_PER_VMA_LOCK */
5536 
5537 #ifndef __PAGETABLE_P4D_FOLDED
5538 /*
5539  * Allocate p4d page table.
5540  * We've already handled the fast-path in-line.
5541  */
5542 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5543 {
5544 	p4d_t *new = p4d_alloc_one(mm, address);
5545 	if (!new)
5546 		return -ENOMEM;
5547 
5548 	spin_lock(&mm->page_table_lock);
5549 	if (pgd_present(*pgd)) {	/* Another has populated it */
5550 		p4d_free(mm, new);
5551 	} else {
5552 		smp_wmb(); /* See comment in pmd_install() */
5553 		pgd_populate(mm, pgd, new);
5554 	}
5555 	spin_unlock(&mm->page_table_lock);
5556 	return 0;
5557 }
5558 #endif /* __PAGETABLE_P4D_FOLDED */
5559 
5560 #ifndef __PAGETABLE_PUD_FOLDED
5561 /*
5562  * Allocate page upper directory.
5563  * We've already handled the fast-path in-line.
5564  */
5565 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5566 {
5567 	pud_t *new = pud_alloc_one(mm, address);
5568 	if (!new)
5569 		return -ENOMEM;
5570 
5571 	spin_lock(&mm->page_table_lock);
5572 	if (!p4d_present(*p4d)) {
5573 		mm_inc_nr_puds(mm);
5574 		smp_wmb(); /* See comment in pmd_install() */
5575 		p4d_populate(mm, p4d, new);
5576 	} else	/* Another has populated it */
5577 		pud_free(mm, new);
5578 	spin_unlock(&mm->page_table_lock);
5579 	return 0;
5580 }
5581 #endif /* __PAGETABLE_PUD_FOLDED */
5582 
5583 #ifndef __PAGETABLE_PMD_FOLDED
5584 /*
5585  * Allocate page middle directory.
5586  * We've already handled the fast-path in-line.
5587  */
5588 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5589 {
5590 	spinlock_t *ptl;
5591 	pmd_t *new = pmd_alloc_one(mm, address);
5592 	if (!new)
5593 		return -ENOMEM;
5594 
5595 	ptl = pud_lock(mm, pud);
5596 	if (!pud_present(*pud)) {
5597 		mm_inc_nr_pmds(mm);
5598 		smp_wmb(); /* See comment in pmd_install() */
5599 		pud_populate(mm, pud, new);
5600 	} else {	/* Another has populated it */
5601 		pmd_free(mm, new);
5602 	}
5603 	spin_unlock(ptl);
5604 	return 0;
5605 }
5606 #endif /* __PAGETABLE_PMD_FOLDED */
5607 
5608 /**
5609  * follow_pte - look up PTE at a user virtual address
5610  * @mm: the mm_struct of the target address space
5611  * @address: user virtual address
5612  * @ptepp: location to store found PTE
5613  * @ptlp: location to store the lock for the PTE
5614  *
5615  * On a successful return, the pointer to the PTE is stored in @ptepp;
5616  * the corresponding lock is taken and its location is stored in @ptlp.
5617  * The contents of the PTE are only stable until @ptlp is released;
5618  * any further use, if any, must be protected against invalidation
5619  * with MMU notifiers.
5620  *
5621  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5622  * should be taken for read.
5623  *
5624  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5625  * it is not a good general-purpose API.
5626  *
5627  * Return: zero on success, -ve otherwise.
5628  */
5629 int follow_pte(struct mm_struct *mm, unsigned long address,
5630 	       pte_t **ptepp, spinlock_t **ptlp)
5631 {
5632 	pgd_t *pgd;
5633 	p4d_t *p4d;
5634 	pud_t *pud;
5635 	pmd_t *pmd;
5636 	pte_t *ptep;
5637 
5638 	pgd = pgd_offset(mm, address);
5639 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5640 		goto out;
5641 
5642 	p4d = p4d_offset(pgd, address);
5643 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5644 		goto out;
5645 
5646 	pud = pud_offset(p4d, address);
5647 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5648 		goto out;
5649 
5650 	pmd = pmd_offset(pud, address);
5651 	VM_BUG_ON(pmd_trans_huge(*pmd));
5652 
5653 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5654 	if (!ptep)
5655 		goto out;
5656 	if (!pte_present(ptep_get(ptep)))
5657 		goto unlock;
5658 	*ptepp = ptep;
5659 	return 0;
5660 unlock:
5661 	pte_unmap_unlock(ptep, *ptlp);
5662 out:
5663 	return -EINVAL;
5664 }
5665 EXPORT_SYMBOL_GPL(follow_pte);
5666 
5667 /**
5668  * follow_pfn - look up PFN at a user virtual address
5669  * @vma: memory mapping
5670  * @address: user virtual address
5671  * @pfn: location to store found PFN
5672  *
5673  * Only IO mappings and raw PFN mappings are allowed.
5674  *
5675  * This function does not allow the caller to read the permissions
5676  * of the PTE.  Do not use it.
5677  *
5678  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5679  */
5680 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5681 	unsigned long *pfn)
5682 {
5683 	int ret = -EINVAL;
5684 	spinlock_t *ptl;
5685 	pte_t *ptep;
5686 
5687 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5688 		return ret;
5689 
5690 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5691 	if (ret)
5692 		return ret;
5693 	*pfn = pte_pfn(ptep_get(ptep));
5694 	pte_unmap_unlock(ptep, ptl);
5695 	return 0;
5696 }
5697 EXPORT_SYMBOL(follow_pfn);
5698 
5699 #ifdef CONFIG_HAVE_IOREMAP_PROT
5700 int follow_phys(struct vm_area_struct *vma,
5701 		unsigned long address, unsigned int flags,
5702 		unsigned long *prot, resource_size_t *phys)
5703 {
5704 	int ret = -EINVAL;
5705 	pte_t *ptep, pte;
5706 	spinlock_t *ptl;
5707 
5708 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5709 		goto out;
5710 
5711 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5712 		goto out;
5713 	pte = ptep_get(ptep);
5714 
5715 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5716 		goto unlock;
5717 
5718 	*prot = pgprot_val(pte_pgprot(pte));
5719 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5720 
5721 	ret = 0;
5722 unlock:
5723 	pte_unmap_unlock(ptep, ptl);
5724 out:
5725 	return ret;
5726 }
5727 
5728 /**
5729  * generic_access_phys - generic implementation for iomem mmap access
5730  * @vma: the vma to access
5731  * @addr: userspace address, not relative offset within @vma
5732  * @buf: buffer to read/write
5733  * @len: length of transfer
5734  * @write: set to FOLL_WRITE when writing, otherwise reading
5735  *
5736  * This is a generic implementation for &vm_operations_struct.access for an
5737  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5738  * not page based.
5739  */
5740 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5741 			void *buf, int len, int write)
5742 {
5743 	resource_size_t phys_addr;
5744 	unsigned long prot = 0;
5745 	void __iomem *maddr;
5746 	pte_t *ptep, pte;
5747 	spinlock_t *ptl;
5748 	int offset = offset_in_page(addr);
5749 	int ret = -EINVAL;
5750 
5751 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5752 		return -EINVAL;
5753 
5754 retry:
5755 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5756 		return -EINVAL;
5757 	pte = ptep_get(ptep);
5758 	pte_unmap_unlock(ptep, ptl);
5759 
5760 	prot = pgprot_val(pte_pgprot(pte));
5761 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5762 
5763 	if ((write & FOLL_WRITE) && !pte_write(pte))
5764 		return -EINVAL;
5765 
5766 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5767 	if (!maddr)
5768 		return -ENOMEM;
5769 
5770 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5771 		goto out_unmap;
5772 
5773 	if (!pte_same(pte, ptep_get(ptep))) {
5774 		pte_unmap_unlock(ptep, ptl);
5775 		iounmap(maddr);
5776 
5777 		goto retry;
5778 	}
5779 
5780 	if (write)
5781 		memcpy_toio(maddr + offset, buf, len);
5782 	else
5783 		memcpy_fromio(buf, maddr + offset, len);
5784 	ret = len;
5785 	pte_unmap_unlock(ptep, ptl);
5786 out_unmap:
5787 	iounmap(maddr);
5788 
5789 	return ret;
5790 }
5791 EXPORT_SYMBOL_GPL(generic_access_phys);
5792 #endif
5793 
5794 /*
5795  * Access another process' address space as given in mm.
5796  */
5797 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
5798 			      void *buf, int len, unsigned int gup_flags)
5799 {
5800 	void *old_buf = buf;
5801 	int write = gup_flags & FOLL_WRITE;
5802 
5803 	if (mmap_read_lock_killable(mm))
5804 		return 0;
5805 
5806 	/* Untag the address before looking up the VMA */
5807 	addr = untagged_addr_remote(mm, addr);
5808 
5809 	/* Avoid triggering the temporary warning in __get_user_pages */
5810 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5811 		return 0;
5812 
5813 	/* ignore errors, just check how much was successfully transferred */
5814 	while (len) {
5815 		int bytes, offset;
5816 		void *maddr;
5817 		struct vm_area_struct *vma = NULL;
5818 		struct page *page = get_user_page_vma_remote(mm, addr,
5819 							     gup_flags, &vma);
5820 
5821 		if (IS_ERR(page)) {
5822 			/* We might need to expand the stack to access it */
5823 			vma = vma_lookup(mm, addr);
5824 			if (!vma) {
5825 				vma = expand_stack(mm, addr);
5826 
5827 				/* mmap_lock was dropped on failure */
5828 				if (!vma)
5829 					return buf - old_buf;
5830 
5831 				/* Try again if stack expansion worked */
5832 				continue;
5833 			}
5834 
5835 			/*
5836 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5837 			 * we can access using slightly different code.
5838 			 */
5839 			bytes = 0;
5840 #ifdef CONFIG_HAVE_IOREMAP_PROT
5841 			if (vma->vm_ops && vma->vm_ops->access)
5842 				bytes = vma->vm_ops->access(vma, addr, buf,
5843 							    len, write);
5844 #endif
5845 			if (bytes <= 0)
5846 				break;
5847 		} else {
5848 			bytes = len;
5849 			offset = addr & (PAGE_SIZE-1);
5850 			if (bytes > PAGE_SIZE-offset)
5851 				bytes = PAGE_SIZE-offset;
5852 
5853 			maddr = kmap(page);
5854 			if (write) {
5855 				copy_to_user_page(vma, page, addr,
5856 						  maddr + offset, buf, bytes);
5857 				set_page_dirty_lock(page);
5858 			} else {
5859 				copy_from_user_page(vma, page, addr,
5860 						    buf, maddr + offset, bytes);
5861 			}
5862 			kunmap(page);
5863 			put_page(page);
5864 		}
5865 		len -= bytes;
5866 		buf += bytes;
5867 		addr += bytes;
5868 	}
5869 	mmap_read_unlock(mm);
5870 
5871 	return buf - old_buf;
5872 }
5873 
5874 /**
5875  * access_remote_vm - access another process' address space
5876  * @mm:		the mm_struct of the target address space
5877  * @addr:	start address to access
5878  * @buf:	source or destination buffer
5879  * @len:	number of bytes to transfer
5880  * @gup_flags:	flags modifying lookup behaviour
5881  *
5882  * The caller must hold a reference on @mm.
5883  *
5884  * Return: number of bytes copied from source to destination.
5885  */
5886 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5887 		void *buf, int len, unsigned int gup_flags)
5888 {
5889 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5890 }
5891 
5892 /*
5893  * Access another process' address space.
5894  * Source/target buffer must be kernel space,
5895  * Do not walk the page table directly, use get_user_pages
5896  */
5897 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5898 		void *buf, int len, unsigned int gup_flags)
5899 {
5900 	struct mm_struct *mm;
5901 	int ret;
5902 
5903 	mm = get_task_mm(tsk);
5904 	if (!mm)
5905 		return 0;
5906 
5907 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5908 
5909 	mmput(mm);
5910 
5911 	return ret;
5912 }
5913 EXPORT_SYMBOL_GPL(access_process_vm);
5914 
5915 /*
5916  * Print the name of a VMA.
5917  */
5918 void print_vma_addr(char *prefix, unsigned long ip)
5919 {
5920 	struct mm_struct *mm = current->mm;
5921 	struct vm_area_struct *vma;
5922 
5923 	/*
5924 	 * we might be running from an atomic context so we cannot sleep
5925 	 */
5926 	if (!mmap_read_trylock(mm))
5927 		return;
5928 
5929 	vma = find_vma(mm, ip);
5930 	if (vma && vma->vm_file) {
5931 		struct file *f = vma->vm_file;
5932 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5933 		if (buf) {
5934 			char *p;
5935 
5936 			p = file_path(f, buf, PAGE_SIZE);
5937 			if (IS_ERR(p))
5938 				p = "?";
5939 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5940 					vma->vm_start,
5941 					vma->vm_end - vma->vm_start);
5942 			free_page((unsigned long)buf);
5943 		}
5944 	}
5945 	mmap_read_unlock(mm);
5946 }
5947 
5948 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5949 void __might_fault(const char *file, int line)
5950 {
5951 	if (pagefault_disabled())
5952 		return;
5953 	__might_sleep(file, line);
5954 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5955 	if (current->mm)
5956 		might_lock_read(&current->mm->mmap_lock);
5957 #endif
5958 }
5959 EXPORT_SYMBOL(__might_fault);
5960 #endif
5961 
5962 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5963 /*
5964  * Process all subpages of the specified huge page with the specified
5965  * operation.  The target subpage will be processed last to keep its
5966  * cache lines hot.
5967  */
5968 static inline int process_huge_page(
5969 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5970 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
5971 	void *arg)
5972 {
5973 	int i, n, base, l, ret;
5974 	unsigned long addr = addr_hint &
5975 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5976 
5977 	/* Process target subpage last to keep its cache lines hot */
5978 	might_sleep();
5979 	n = (addr_hint - addr) / PAGE_SIZE;
5980 	if (2 * n <= pages_per_huge_page) {
5981 		/* If target subpage in first half of huge page */
5982 		base = 0;
5983 		l = n;
5984 		/* Process subpages at the end of huge page */
5985 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5986 			cond_resched();
5987 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5988 			if (ret)
5989 				return ret;
5990 		}
5991 	} else {
5992 		/* If target subpage in second half of huge page */
5993 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5994 		l = pages_per_huge_page - n;
5995 		/* Process subpages at the begin of huge page */
5996 		for (i = 0; i < base; i++) {
5997 			cond_resched();
5998 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5999 			if (ret)
6000 				return ret;
6001 		}
6002 	}
6003 	/*
6004 	 * Process remaining subpages in left-right-left-right pattern
6005 	 * towards the target subpage
6006 	 */
6007 	for (i = 0; i < l; i++) {
6008 		int left_idx = base + i;
6009 		int right_idx = base + 2 * l - 1 - i;
6010 
6011 		cond_resched();
6012 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6013 		if (ret)
6014 			return ret;
6015 		cond_resched();
6016 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6017 		if (ret)
6018 			return ret;
6019 	}
6020 	return 0;
6021 }
6022 
6023 static void clear_gigantic_page(struct page *page,
6024 				unsigned long addr,
6025 				unsigned int pages_per_huge_page)
6026 {
6027 	int i;
6028 	struct page *p;
6029 
6030 	might_sleep();
6031 	for (i = 0; i < pages_per_huge_page; i++) {
6032 		p = nth_page(page, i);
6033 		cond_resched();
6034 		clear_user_highpage(p, addr + i * PAGE_SIZE);
6035 	}
6036 }
6037 
6038 static int clear_subpage(unsigned long addr, int idx, void *arg)
6039 {
6040 	struct page *page = arg;
6041 
6042 	clear_user_highpage(page + idx, addr);
6043 	return 0;
6044 }
6045 
6046 void clear_huge_page(struct page *page,
6047 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
6048 {
6049 	unsigned long addr = addr_hint &
6050 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6051 
6052 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6053 		clear_gigantic_page(page, addr, pages_per_huge_page);
6054 		return;
6055 	}
6056 
6057 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6058 }
6059 
6060 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6061 				     unsigned long addr,
6062 				     struct vm_area_struct *vma,
6063 				     unsigned int pages_per_huge_page)
6064 {
6065 	int i;
6066 	struct page *dst_page;
6067 	struct page *src_page;
6068 
6069 	for (i = 0; i < pages_per_huge_page; i++) {
6070 		dst_page = folio_page(dst, i);
6071 		src_page = folio_page(src, i);
6072 
6073 		cond_resched();
6074 		if (copy_mc_user_highpage(dst_page, src_page,
6075 					  addr + i*PAGE_SIZE, vma)) {
6076 			memory_failure_queue(page_to_pfn(src_page), 0);
6077 			return -EHWPOISON;
6078 		}
6079 	}
6080 	return 0;
6081 }
6082 
6083 struct copy_subpage_arg {
6084 	struct page *dst;
6085 	struct page *src;
6086 	struct vm_area_struct *vma;
6087 };
6088 
6089 static int copy_subpage(unsigned long addr, int idx, void *arg)
6090 {
6091 	struct copy_subpage_arg *copy_arg = arg;
6092 
6093 	if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6094 				  addr, copy_arg->vma)) {
6095 		memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6096 		return -EHWPOISON;
6097 	}
6098 	return 0;
6099 }
6100 
6101 int copy_user_large_folio(struct folio *dst, struct folio *src,
6102 			  unsigned long addr_hint, struct vm_area_struct *vma)
6103 {
6104 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6105 	unsigned long addr = addr_hint &
6106 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6107 	struct copy_subpage_arg arg = {
6108 		.dst = &dst->page,
6109 		.src = &src->page,
6110 		.vma = vma,
6111 	};
6112 
6113 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6114 		return copy_user_gigantic_page(dst, src, addr, vma,
6115 					       pages_per_huge_page);
6116 
6117 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6118 }
6119 
6120 long copy_folio_from_user(struct folio *dst_folio,
6121 			   const void __user *usr_src,
6122 			   bool allow_pagefault)
6123 {
6124 	void *kaddr;
6125 	unsigned long i, rc = 0;
6126 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6127 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6128 	struct page *subpage;
6129 
6130 	for (i = 0; i < nr_pages; i++) {
6131 		subpage = folio_page(dst_folio, i);
6132 		kaddr = kmap_local_page(subpage);
6133 		if (!allow_pagefault)
6134 			pagefault_disable();
6135 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6136 		if (!allow_pagefault)
6137 			pagefault_enable();
6138 		kunmap_local(kaddr);
6139 
6140 		ret_val -= (PAGE_SIZE - rc);
6141 		if (rc)
6142 			break;
6143 
6144 		flush_dcache_page(subpage);
6145 
6146 		cond_resched();
6147 	}
6148 	return ret_val;
6149 }
6150 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6151 
6152 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6153 
6154 static struct kmem_cache *page_ptl_cachep;
6155 
6156 void __init ptlock_cache_init(void)
6157 {
6158 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6159 			SLAB_PANIC, NULL);
6160 }
6161 
6162 bool ptlock_alloc(struct ptdesc *ptdesc)
6163 {
6164 	spinlock_t *ptl;
6165 
6166 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6167 	if (!ptl)
6168 		return false;
6169 	ptdesc->ptl = ptl;
6170 	return true;
6171 }
6172 
6173 void ptlock_free(struct ptdesc *ptdesc)
6174 {
6175 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6176 }
6177 #endif
6178