1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/pfn_t.h> 61 #include <linux/writeback.h> 62 #include <linux/memcontrol.h> 63 #include <linux/mmu_notifier.h> 64 #include <linux/swapops.h> 65 #include <linux/elf.h> 66 #include <linux/gfp.h> 67 #include <linux/migrate.h> 68 #include <linux/string.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 80 #include <trace/events/kmem.h> 81 82 #include <asm/io.h> 83 #include <asm/mmu_context.h> 84 #include <asm/pgalloc.h> 85 #include <linux/uaccess.h> 86 #include <asm/tlb.h> 87 #include <asm/tlbflush.h> 88 89 #include "pgalloc-track.h" 90 #include "internal.h" 91 #include "swap.h" 92 93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 95 #endif 96 97 static vm_fault_t do_fault(struct vm_fault *vmf); 98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 99 static bool vmf_pte_changed(struct vm_fault *vmf); 100 101 /* 102 * Return true if the original pte was a uffd-wp pte marker (so the pte was 103 * wr-protected). 104 */ 105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 106 { 107 if (!userfaultfd_wp(vmf->vma)) 108 return false; 109 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 110 return false; 111 112 return pte_marker_uffd_wp(vmf->orig_pte); 113 } 114 115 /* 116 * Randomize the address space (stacks, mmaps, brk, etc.). 117 * 118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 119 * as ancient (libc5 based) binaries can segfault. ) 120 */ 121 int randomize_va_space __read_mostly = 122 #ifdef CONFIG_COMPAT_BRK 123 1; 124 #else 125 2; 126 #endif 127 128 static const struct ctl_table mmu_sysctl_table[] = { 129 { 130 .procname = "randomize_va_space", 131 .data = &randomize_va_space, 132 .maxlen = sizeof(int), 133 .mode = 0644, 134 .proc_handler = proc_dointvec, 135 }, 136 }; 137 138 static int __init init_mm_sysctl(void) 139 { 140 register_sysctl_init("kernel", mmu_sysctl_table); 141 return 0; 142 } 143 144 subsys_initcall(init_mm_sysctl); 145 146 #ifndef arch_wants_old_prefaulted_pte 147 static inline bool arch_wants_old_prefaulted_pte(void) 148 { 149 /* 150 * Transitioning a PTE from 'old' to 'young' can be expensive on 151 * some architectures, even if it's performed in hardware. By 152 * default, "false" means prefaulted entries will be 'young'. 153 */ 154 return false; 155 } 156 #endif 157 158 static int __init disable_randmaps(char *s) 159 { 160 randomize_va_space = 0; 161 return 1; 162 } 163 __setup("norandmaps", disable_randmaps); 164 165 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 167 168 unsigned long highest_memmap_pfn __read_mostly; 169 170 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 173 static int __init init_zero_pfn(void) 174 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177 } 178 early_initcall(init_zero_pfn); 179 180 void mm_trace_rss_stat(struct mm_struct *mm, int member) 181 { 182 trace_rss_stat(mm, member); 183 } 184 185 /* 186 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all the memory regions. 188 */ 189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 191 { 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196 } 197 198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long addr, unsigned long end, 200 unsigned long floor, unsigned long ceiling) 201 { 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd)) 211 continue; 212 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != end); 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230 } 231 232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235 { 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud)) 245 continue; 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != end); 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264 } 265 266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d)) 279 continue; 280 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297 } 298 299 /** 300 * free_pgd_range - Unmap and free page tables in the range 301 * @tlb: the mmu_gather containing pending TLB flush info 302 * @addr: virtual address start 303 * @end: virtual address end 304 * @floor: lowest address boundary 305 * @ceiling: highest address boundary 306 * 307 * This function tears down all user-level page tables in the 308 * specified virtual address range [@addr..@end). It is part of 309 * the memory unmap flow. 310 */ 311 void free_pgd_range(struct mmu_gather *tlb, 312 unsigned long addr, unsigned long end, 313 unsigned long floor, unsigned long ceiling) 314 { 315 pgd_t *pgd; 316 unsigned long next; 317 318 /* 319 * The next few lines have given us lots of grief... 320 * 321 * Why are we testing PMD* at this top level? Because often 322 * there will be no work to do at all, and we'd prefer not to 323 * go all the way down to the bottom just to discover that. 324 * 325 * Why all these "- 1"s? Because 0 represents both the bottom 326 * of the address space and the top of it (using -1 for the 327 * top wouldn't help much: the masks would do the wrong thing). 328 * The rule is that addr 0 and floor 0 refer to the bottom of 329 * the address space, but end 0 and ceiling 0 refer to the top 330 * Comparisons need to use "end - 1" and "ceiling - 1" (though 331 * that end 0 case should be mythical). 332 * 333 * Wherever addr is brought up or ceiling brought down, we must 334 * be careful to reject "the opposite 0" before it confuses the 335 * subsequent tests. But what about where end is brought down 336 * by PMD_SIZE below? no, end can't go down to 0 there. 337 * 338 * Whereas we round start (addr) and ceiling down, by different 339 * masks at different levels, in order to test whether a table 340 * now has no other vmas using it, so can be freed, we don't 341 * bother to round floor or end up - the tests don't need that. 342 */ 343 344 addr &= PMD_MASK; 345 if (addr < floor) { 346 addr += PMD_SIZE; 347 if (!addr) 348 return; 349 } 350 if (ceiling) { 351 ceiling &= PMD_MASK; 352 if (!ceiling) 353 return; 354 } 355 if (end - 1 > ceiling - 1) 356 end -= PMD_SIZE; 357 if (addr > end - 1) 358 return; 359 /* 360 * We add page table cache pages with PAGE_SIZE, 361 * (see pte_free_tlb()), flush the tlb if we need 362 */ 363 tlb_change_page_size(tlb, PAGE_SIZE); 364 pgd = pgd_offset(tlb->mm, addr); 365 do { 366 next = pgd_addr_end(addr, end); 367 if (pgd_none_or_clear_bad(pgd)) 368 continue; 369 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 370 } while (pgd++, addr = next, addr != end); 371 } 372 373 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 374 struct vm_area_struct *vma, unsigned long floor, 375 unsigned long ceiling, bool mm_wr_locked) 376 { 377 struct unlink_vma_file_batch vb; 378 379 tlb_free_vmas(tlb); 380 381 do { 382 unsigned long addr = vma->vm_start; 383 struct vm_area_struct *next; 384 385 /* 386 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 387 * be 0. This will underflow and is okay. 388 */ 389 next = mas_find(mas, ceiling - 1); 390 if (unlikely(xa_is_zero(next))) 391 next = NULL; 392 393 /* 394 * Hide vma from rmap and truncate_pagecache before freeing 395 * pgtables 396 */ 397 if (mm_wr_locked) 398 vma_start_write(vma); 399 unlink_anon_vmas(vma); 400 401 if (is_vm_hugetlb_page(vma)) { 402 unlink_file_vma(vma); 403 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 404 floor, next ? next->vm_start : ceiling); 405 } else { 406 unlink_file_vma_batch_init(&vb); 407 unlink_file_vma_batch_add(&vb, vma); 408 409 /* 410 * Optimization: gather nearby vmas into one call down 411 */ 412 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 413 && !is_vm_hugetlb_page(next)) { 414 vma = next; 415 next = mas_find(mas, ceiling - 1); 416 if (unlikely(xa_is_zero(next))) 417 next = NULL; 418 if (mm_wr_locked) 419 vma_start_write(vma); 420 unlink_anon_vmas(vma); 421 unlink_file_vma_batch_add(&vb, vma); 422 } 423 unlink_file_vma_batch_final(&vb); 424 free_pgd_range(tlb, addr, vma->vm_end, 425 floor, next ? next->vm_start : ceiling); 426 } 427 vma = next; 428 } while (vma); 429 } 430 431 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 432 { 433 spinlock_t *ptl = pmd_lock(mm, pmd); 434 435 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 436 mm_inc_nr_ptes(mm); 437 /* 438 * Ensure all pte setup (eg. pte page lock and page clearing) are 439 * visible before the pte is made visible to other CPUs by being 440 * put into page tables. 441 * 442 * The other side of the story is the pointer chasing in the page 443 * table walking code (when walking the page table without locking; 444 * ie. most of the time). Fortunately, these data accesses consist 445 * of a chain of data-dependent loads, meaning most CPUs (alpha 446 * being the notable exception) will already guarantee loads are 447 * seen in-order. See the alpha page table accessors for the 448 * smp_rmb() barriers in page table walking code. 449 */ 450 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 451 pmd_populate(mm, pmd, *pte); 452 *pte = NULL; 453 } 454 spin_unlock(ptl); 455 } 456 457 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 458 { 459 pgtable_t new = pte_alloc_one(mm); 460 if (!new) 461 return -ENOMEM; 462 463 pmd_install(mm, pmd, &new); 464 if (new) 465 pte_free(mm, new); 466 return 0; 467 } 468 469 int __pte_alloc_kernel(pmd_t *pmd) 470 { 471 pte_t *new = pte_alloc_one_kernel(&init_mm); 472 if (!new) 473 return -ENOMEM; 474 475 spin_lock(&init_mm.page_table_lock); 476 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 477 smp_wmb(); /* See comment in pmd_install() */ 478 pmd_populate_kernel(&init_mm, pmd, new); 479 new = NULL; 480 } 481 spin_unlock(&init_mm.page_table_lock); 482 if (new) 483 pte_free_kernel(&init_mm, new); 484 return 0; 485 } 486 487 static inline void init_rss_vec(int *rss) 488 { 489 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 490 } 491 492 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 493 { 494 int i; 495 496 for (i = 0; i < NR_MM_COUNTERS; i++) 497 if (rss[i]) 498 add_mm_counter(mm, i, rss[i]); 499 } 500 501 /* 502 * This function is called to print an error when a bad pte 503 * is found. For example, we might have a PFN-mapped pte in 504 * a region that doesn't allow it. 505 * 506 * The calling function must still handle the error. 507 */ 508 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 509 pte_t pte, struct page *page) 510 { 511 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 512 p4d_t *p4d = p4d_offset(pgd, addr); 513 pud_t *pud = pud_offset(p4d, addr); 514 pmd_t *pmd = pmd_offset(pud, addr); 515 struct address_space *mapping; 516 pgoff_t index; 517 static unsigned long resume; 518 static unsigned long nr_shown; 519 static unsigned long nr_unshown; 520 521 /* 522 * Allow a burst of 60 reports, then keep quiet for that minute; 523 * or allow a steady drip of one report per second. 524 */ 525 if (nr_shown == 60) { 526 if (time_before(jiffies, resume)) { 527 nr_unshown++; 528 return; 529 } 530 if (nr_unshown) { 531 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 532 nr_unshown); 533 nr_unshown = 0; 534 } 535 nr_shown = 0; 536 } 537 if (nr_shown++ == 0) 538 resume = jiffies + 60 * HZ; 539 540 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 541 index = linear_page_index(vma, addr); 542 543 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 544 current->comm, 545 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 546 if (page) 547 dump_page(page, "bad pte"); 548 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 549 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 550 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n", 551 vma->vm_file, 552 vma->vm_ops ? vma->vm_ops->fault : NULL, 553 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 554 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL, 555 mapping ? mapping->a_ops->read_folio : NULL); 556 dump_stack(); 557 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 558 } 559 560 /* 561 * vm_normal_page -- This function gets the "struct page" associated with a pte. 562 * 563 * "Special" mappings do not wish to be associated with a "struct page" (either 564 * it doesn't exist, or it exists but they don't want to touch it). In this 565 * case, NULL is returned here. "Normal" mappings do have a struct page. 566 * 567 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 568 * pte bit, in which case this function is trivial. Secondly, an architecture 569 * may not have a spare pte bit, which requires a more complicated scheme, 570 * described below. 571 * 572 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 573 * special mapping (even if there are underlying and valid "struct pages"). 574 * COWed pages of a VM_PFNMAP are always normal. 575 * 576 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 577 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 578 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 579 * mapping will always honor the rule 580 * 581 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 582 * 583 * And for normal mappings this is false. 584 * 585 * This restricts such mappings to be a linear translation from virtual address 586 * to pfn. To get around this restriction, we allow arbitrary mappings so long 587 * as the vma is not a COW mapping; in that case, we know that all ptes are 588 * special (because none can have been COWed). 589 * 590 * 591 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 592 * 593 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 594 * page" backing, however the difference is that _all_ pages with a struct 595 * page (that is, those where pfn_valid is true) are refcounted and considered 596 * normal pages by the VM. The only exception are zeropages, which are 597 * *never* refcounted. 598 * 599 * The disadvantage is that pages are refcounted (which can be slower and 600 * simply not an option for some PFNMAP users). The advantage is that we 601 * don't have to follow the strict linearity rule of PFNMAP mappings in 602 * order to support COWable mappings. 603 * 604 */ 605 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 606 pte_t pte) 607 { 608 unsigned long pfn = pte_pfn(pte); 609 610 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 611 if (likely(!pte_special(pte))) 612 goto check_pfn; 613 if (vma->vm_ops && vma->vm_ops->find_special_page) 614 return vma->vm_ops->find_special_page(vma, addr); 615 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 616 return NULL; 617 if (is_zero_pfn(pfn)) 618 return NULL; 619 if (pte_devmap(pte)) 620 /* 621 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 622 * and will have refcounts incremented on their struct pages 623 * when they are inserted into PTEs, thus they are safe to 624 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 625 * do not have refcounts. Example of legacy ZONE_DEVICE is 626 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 627 */ 628 return NULL; 629 630 print_bad_pte(vma, addr, pte, NULL); 631 return NULL; 632 } 633 634 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 635 636 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 637 if (vma->vm_flags & VM_MIXEDMAP) { 638 if (!pfn_valid(pfn)) 639 return NULL; 640 if (is_zero_pfn(pfn)) 641 return NULL; 642 goto out; 643 } else { 644 unsigned long off; 645 off = (addr - vma->vm_start) >> PAGE_SHIFT; 646 if (pfn == vma->vm_pgoff + off) 647 return NULL; 648 if (!is_cow_mapping(vma->vm_flags)) 649 return NULL; 650 } 651 } 652 653 if (is_zero_pfn(pfn)) 654 return NULL; 655 656 check_pfn: 657 if (unlikely(pfn > highest_memmap_pfn)) { 658 print_bad_pte(vma, addr, pte, NULL); 659 return NULL; 660 } 661 662 /* 663 * NOTE! We still have PageReserved() pages in the page tables. 664 * eg. VDSO mappings can cause them to exist. 665 */ 666 out: 667 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 668 return pfn_to_page(pfn); 669 } 670 671 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 672 pte_t pte) 673 { 674 struct page *page = vm_normal_page(vma, addr, pte); 675 676 if (page) 677 return page_folio(page); 678 return NULL; 679 } 680 681 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 682 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 683 pmd_t pmd) 684 { 685 unsigned long pfn = pmd_pfn(pmd); 686 687 /* Currently it's only used for huge pfnmaps */ 688 if (unlikely(pmd_special(pmd))) 689 return NULL; 690 691 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 692 if (vma->vm_flags & VM_MIXEDMAP) { 693 if (!pfn_valid(pfn)) 694 return NULL; 695 goto out; 696 } else { 697 unsigned long off; 698 off = (addr - vma->vm_start) >> PAGE_SHIFT; 699 if (pfn == vma->vm_pgoff + off) 700 return NULL; 701 if (!is_cow_mapping(vma->vm_flags)) 702 return NULL; 703 } 704 } 705 706 if (pmd_devmap(pmd)) 707 return NULL; 708 if (is_huge_zero_pmd(pmd)) 709 return NULL; 710 if (unlikely(pfn > highest_memmap_pfn)) 711 return NULL; 712 713 /* 714 * NOTE! We still have PageReserved() pages in the page tables. 715 * eg. VDSO mappings can cause them to exist. 716 */ 717 out: 718 return pfn_to_page(pfn); 719 } 720 721 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 722 unsigned long addr, pmd_t pmd) 723 { 724 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 725 726 if (page) 727 return page_folio(page); 728 return NULL; 729 } 730 #endif 731 732 /** 733 * restore_exclusive_pte - Restore a device-exclusive entry 734 * @vma: VMA covering @address 735 * @folio: the mapped folio 736 * @page: the mapped folio page 737 * @address: the virtual address 738 * @ptep: pte pointer into the locked page table mapping the folio page 739 * @orig_pte: pte value at @ptep 740 * 741 * Restore a device-exclusive non-swap entry to an ordinary present pte. 742 * 743 * The folio and the page table must be locked, and MMU notifiers must have 744 * been called to invalidate any (exclusive) device mappings. 745 * 746 * Locking the folio makes sure that anybody who just converted the pte to 747 * a device-exclusive entry can map it into the device to make forward 748 * progress without others converting it back until the folio was unlocked. 749 * 750 * If the folio lock ever becomes an issue, we can stop relying on the folio 751 * lock; it might make some scenarios with heavy thrashing less likely to 752 * make forward progress, but these scenarios might not be valid use cases. 753 * 754 * Note that the folio lock does not protect against all cases of concurrent 755 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers 756 * must use MMU notifiers to sync against any concurrent changes. 757 */ 758 static void restore_exclusive_pte(struct vm_area_struct *vma, 759 struct folio *folio, struct page *page, unsigned long address, 760 pte_t *ptep, pte_t orig_pte) 761 { 762 pte_t pte; 763 764 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 765 766 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 767 if (pte_swp_soft_dirty(orig_pte)) 768 pte = pte_mksoft_dirty(pte); 769 770 if (pte_swp_uffd_wp(orig_pte)) 771 pte = pte_mkuffd_wp(pte); 772 773 if ((vma->vm_flags & VM_WRITE) && 774 can_change_pte_writable(vma, address, pte)) { 775 if (folio_test_dirty(folio)) 776 pte = pte_mkdirty(pte); 777 pte = pte_mkwrite(pte, vma); 778 } 779 set_pte_at(vma->vm_mm, address, ptep, pte); 780 781 /* 782 * No need to invalidate - it was non-present before. However 783 * secondary CPUs may have mappings that need invalidating. 784 */ 785 update_mmu_cache(vma, address, ptep); 786 } 787 788 /* 789 * Tries to restore an exclusive pte if the page lock can be acquired without 790 * sleeping. 791 */ 792 static int try_restore_exclusive_pte(struct vm_area_struct *vma, 793 unsigned long addr, pte_t *ptep, pte_t orig_pte) 794 { 795 struct page *page = pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte)); 796 struct folio *folio = page_folio(page); 797 798 if (folio_trylock(folio)) { 799 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte); 800 folio_unlock(folio); 801 return 0; 802 } 803 804 return -EBUSY; 805 } 806 807 /* 808 * copy one vm_area from one task to the other. Assumes the page tables 809 * already present in the new task to be cleared in the whole range 810 * covered by this vma. 811 */ 812 813 static unsigned long 814 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 815 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 816 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 817 { 818 unsigned long vm_flags = dst_vma->vm_flags; 819 pte_t orig_pte = ptep_get(src_pte); 820 pte_t pte = orig_pte; 821 struct folio *folio; 822 struct page *page; 823 swp_entry_t entry = pte_to_swp_entry(orig_pte); 824 825 if (likely(!non_swap_entry(entry))) { 826 if (swap_duplicate(entry) < 0) 827 return -EIO; 828 829 /* make sure dst_mm is on swapoff's mmlist. */ 830 if (unlikely(list_empty(&dst_mm->mmlist))) { 831 spin_lock(&mmlist_lock); 832 if (list_empty(&dst_mm->mmlist)) 833 list_add(&dst_mm->mmlist, 834 &src_mm->mmlist); 835 spin_unlock(&mmlist_lock); 836 } 837 /* Mark the swap entry as shared. */ 838 if (pte_swp_exclusive(orig_pte)) { 839 pte = pte_swp_clear_exclusive(orig_pte); 840 set_pte_at(src_mm, addr, src_pte, pte); 841 } 842 rss[MM_SWAPENTS]++; 843 } else if (is_migration_entry(entry)) { 844 folio = pfn_swap_entry_folio(entry); 845 846 rss[mm_counter(folio)]++; 847 848 if (!is_readable_migration_entry(entry) && 849 is_cow_mapping(vm_flags)) { 850 /* 851 * COW mappings require pages in both parent and child 852 * to be set to read. A previously exclusive entry is 853 * now shared. 854 */ 855 entry = make_readable_migration_entry( 856 swp_offset(entry)); 857 pte = swp_entry_to_pte(entry); 858 if (pte_swp_soft_dirty(orig_pte)) 859 pte = pte_swp_mksoft_dirty(pte); 860 if (pte_swp_uffd_wp(orig_pte)) 861 pte = pte_swp_mkuffd_wp(pte); 862 set_pte_at(src_mm, addr, src_pte, pte); 863 } 864 } else if (is_device_private_entry(entry)) { 865 page = pfn_swap_entry_to_page(entry); 866 folio = page_folio(page); 867 868 /* 869 * Update rss count even for unaddressable pages, as 870 * they should treated just like normal pages in this 871 * respect. 872 * 873 * We will likely want to have some new rss counters 874 * for unaddressable pages, at some point. But for now 875 * keep things as they are. 876 */ 877 folio_get(folio); 878 rss[mm_counter(folio)]++; 879 /* Cannot fail as these pages cannot get pinned. */ 880 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma); 881 882 /* 883 * We do not preserve soft-dirty information, because so 884 * far, checkpoint/restore is the only feature that 885 * requires that. And checkpoint/restore does not work 886 * when a device driver is involved (you cannot easily 887 * save and restore device driver state). 888 */ 889 if (is_writable_device_private_entry(entry) && 890 is_cow_mapping(vm_flags)) { 891 entry = make_readable_device_private_entry( 892 swp_offset(entry)); 893 pte = swp_entry_to_pte(entry); 894 if (pte_swp_uffd_wp(orig_pte)) 895 pte = pte_swp_mkuffd_wp(pte); 896 set_pte_at(src_mm, addr, src_pte, pte); 897 } 898 } else if (is_device_exclusive_entry(entry)) { 899 /* 900 * Make device exclusive entries present by restoring the 901 * original entry then copying as for a present pte. Device 902 * exclusive entries currently only support private writable 903 * (ie. COW) mappings. 904 */ 905 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 906 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte)) 907 return -EBUSY; 908 return -ENOENT; 909 } else if (is_pte_marker_entry(entry)) { 910 pte_marker marker = copy_pte_marker(entry, dst_vma); 911 912 if (marker) 913 set_pte_at(dst_mm, addr, dst_pte, 914 make_pte_marker(marker)); 915 return 0; 916 } 917 if (!userfaultfd_wp(dst_vma)) 918 pte = pte_swp_clear_uffd_wp(pte); 919 set_pte_at(dst_mm, addr, dst_pte, pte); 920 return 0; 921 } 922 923 /* 924 * Copy a present and normal page. 925 * 926 * NOTE! The usual case is that this isn't required; 927 * instead, the caller can just increase the page refcount 928 * and re-use the pte the traditional way. 929 * 930 * And if we need a pre-allocated page but don't yet have 931 * one, return a negative error to let the preallocation 932 * code know so that it can do so outside the page table 933 * lock. 934 */ 935 static inline int 936 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 937 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 938 struct folio **prealloc, struct page *page) 939 { 940 struct folio *new_folio; 941 pte_t pte; 942 943 new_folio = *prealloc; 944 if (!new_folio) 945 return -EAGAIN; 946 947 /* 948 * We have a prealloc page, all good! Take it 949 * over and copy the page & arm it. 950 */ 951 952 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 953 return -EHWPOISON; 954 955 *prealloc = NULL; 956 __folio_mark_uptodate(new_folio); 957 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 958 folio_add_lru_vma(new_folio, dst_vma); 959 rss[MM_ANONPAGES]++; 960 961 /* All done, just insert the new page copy in the child */ 962 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot); 963 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 964 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 965 /* Uffd-wp needs to be delivered to dest pte as well */ 966 pte = pte_mkuffd_wp(pte); 967 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 968 return 0; 969 } 970 971 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 972 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 973 pte_t pte, unsigned long addr, int nr) 974 { 975 struct mm_struct *src_mm = src_vma->vm_mm; 976 977 /* If it's a COW mapping, write protect it both processes. */ 978 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 979 wrprotect_ptes(src_mm, addr, src_pte, nr); 980 pte = pte_wrprotect(pte); 981 } 982 983 /* If it's a shared mapping, mark it clean in the child. */ 984 if (src_vma->vm_flags & VM_SHARED) 985 pte = pte_mkclean(pte); 986 pte = pte_mkold(pte); 987 988 if (!userfaultfd_wp(dst_vma)) 989 pte = pte_clear_uffd_wp(pte); 990 991 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 992 } 993 994 /* 995 * Copy one present PTE, trying to batch-process subsequent PTEs that map 996 * consecutive pages of the same folio by copying them as well. 997 * 998 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 999 * Otherwise, returns the number of copied PTEs (at least 1). 1000 */ 1001 static inline int 1002 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1003 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 1004 int max_nr, int *rss, struct folio **prealloc) 1005 { 1006 struct page *page; 1007 struct folio *folio; 1008 bool any_writable; 1009 fpb_t flags = 0; 1010 int err, nr; 1011 1012 page = vm_normal_page(src_vma, addr, pte); 1013 if (unlikely(!page)) 1014 goto copy_pte; 1015 1016 folio = page_folio(page); 1017 1018 /* 1019 * If we likely have to copy, just don't bother with batching. Make 1020 * sure that the common "small folio" case is as fast as possible 1021 * by keeping the batching logic separate. 1022 */ 1023 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1024 if (src_vma->vm_flags & VM_SHARED) 1025 flags |= FPB_IGNORE_DIRTY; 1026 if (!vma_soft_dirty_enabled(src_vma)) 1027 flags |= FPB_IGNORE_SOFT_DIRTY; 1028 1029 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 1030 &any_writable, NULL, NULL); 1031 folio_ref_add(folio, nr); 1032 if (folio_test_anon(folio)) { 1033 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1034 nr, dst_vma, src_vma))) { 1035 folio_ref_sub(folio, nr); 1036 return -EAGAIN; 1037 } 1038 rss[MM_ANONPAGES] += nr; 1039 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1040 } else { 1041 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma); 1042 rss[mm_counter_file(folio)] += nr; 1043 } 1044 if (any_writable) 1045 pte = pte_mkwrite(pte, src_vma); 1046 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1047 addr, nr); 1048 return nr; 1049 } 1050 1051 folio_get(folio); 1052 if (folio_test_anon(folio)) { 1053 /* 1054 * If this page may have been pinned by the parent process, 1055 * copy the page immediately for the child so that we'll always 1056 * guarantee the pinned page won't be randomly replaced in the 1057 * future. 1058 */ 1059 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) { 1060 /* Page may be pinned, we have to copy. */ 1061 folio_put(folio); 1062 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1063 addr, rss, prealloc, page); 1064 return err ? err : 1; 1065 } 1066 rss[MM_ANONPAGES]++; 1067 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1068 } else { 1069 folio_dup_file_rmap_pte(folio, page, dst_vma); 1070 rss[mm_counter_file(folio)]++; 1071 } 1072 1073 copy_pte: 1074 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1075 return 1; 1076 } 1077 1078 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1079 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1080 { 1081 struct folio *new_folio; 1082 1083 if (need_zero) 1084 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1085 else 1086 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1087 1088 if (!new_folio) 1089 return NULL; 1090 1091 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1092 folio_put(new_folio); 1093 return NULL; 1094 } 1095 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1096 1097 return new_folio; 1098 } 1099 1100 static int 1101 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1102 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1103 unsigned long end) 1104 { 1105 struct mm_struct *dst_mm = dst_vma->vm_mm; 1106 struct mm_struct *src_mm = src_vma->vm_mm; 1107 pte_t *orig_src_pte, *orig_dst_pte; 1108 pte_t *src_pte, *dst_pte; 1109 pmd_t dummy_pmdval; 1110 pte_t ptent; 1111 spinlock_t *src_ptl, *dst_ptl; 1112 int progress, max_nr, ret = 0; 1113 int rss[NR_MM_COUNTERS]; 1114 swp_entry_t entry = (swp_entry_t){0}; 1115 struct folio *prealloc = NULL; 1116 int nr; 1117 1118 again: 1119 progress = 0; 1120 init_rss_vec(rss); 1121 1122 /* 1123 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1124 * error handling here, assume that exclusive mmap_lock on dst and src 1125 * protects anon from unexpected THP transitions; with shmem and file 1126 * protected by mmap_lock-less collapse skipping areas with anon_vma 1127 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1128 * can remove such assumptions later, but this is good enough for now. 1129 */ 1130 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1131 if (!dst_pte) { 1132 ret = -ENOMEM; 1133 goto out; 1134 } 1135 1136 /* 1137 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1138 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1139 * the PTE page is stable, and there is no need to get pmdval and do 1140 * pmd_same() check. 1141 */ 1142 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1143 &src_ptl); 1144 if (!src_pte) { 1145 pte_unmap_unlock(dst_pte, dst_ptl); 1146 /* ret == 0 */ 1147 goto out; 1148 } 1149 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1150 orig_src_pte = src_pte; 1151 orig_dst_pte = dst_pte; 1152 arch_enter_lazy_mmu_mode(); 1153 1154 do { 1155 nr = 1; 1156 1157 /* 1158 * We are holding two locks at this point - either of them 1159 * could generate latencies in another task on another CPU. 1160 */ 1161 if (progress >= 32) { 1162 progress = 0; 1163 if (need_resched() || 1164 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1165 break; 1166 } 1167 ptent = ptep_get(src_pte); 1168 if (pte_none(ptent)) { 1169 progress++; 1170 continue; 1171 } 1172 if (unlikely(!pte_present(ptent))) { 1173 ret = copy_nonpresent_pte(dst_mm, src_mm, 1174 dst_pte, src_pte, 1175 dst_vma, src_vma, 1176 addr, rss); 1177 if (ret == -EIO) { 1178 entry = pte_to_swp_entry(ptep_get(src_pte)); 1179 break; 1180 } else if (ret == -EBUSY) { 1181 break; 1182 } else if (!ret) { 1183 progress += 8; 1184 continue; 1185 } 1186 ptent = ptep_get(src_pte); 1187 VM_WARN_ON_ONCE(!pte_present(ptent)); 1188 1189 /* 1190 * Device exclusive entry restored, continue by copying 1191 * the now present pte. 1192 */ 1193 WARN_ON_ONCE(ret != -ENOENT); 1194 } 1195 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1196 max_nr = (end - addr) / PAGE_SIZE; 1197 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1198 ptent, addr, max_nr, rss, &prealloc); 1199 /* 1200 * If we need a pre-allocated page for this pte, drop the 1201 * locks, allocate, and try again. 1202 * If copy failed due to hwpoison in source page, break out. 1203 */ 1204 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1205 break; 1206 if (unlikely(prealloc)) { 1207 /* 1208 * pre-alloc page cannot be reused by next time so as 1209 * to strictly follow mempolicy (e.g., alloc_page_vma() 1210 * will allocate page according to address). This 1211 * could only happen if one pinned pte changed. 1212 */ 1213 folio_put(prealloc); 1214 prealloc = NULL; 1215 } 1216 nr = ret; 1217 progress += 8 * nr; 1218 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1219 addr != end); 1220 1221 arch_leave_lazy_mmu_mode(); 1222 pte_unmap_unlock(orig_src_pte, src_ptl); 1223 add_mm_rss_vec(dst_mm, rss); 1224 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1225 cond_resched(); 1226 1227 if (ret == -EIO) { 1228 VM_WARN_ON_ONCE(!entry.val); 1229 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1230 ret = -ENOMEM; 1231 goto out; 1232 } 1233 entry.val = 0; 1234 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1235 goto out; 1236 } else if (ret == -EAGAIN) { 1237 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1238 if (!prealloc) 1239 return -ENOMEM; 1240 } else if (ret < 0) { 1241 VM_WARN_ON_ONCE(1); 1242 } 1243 1244 /* We've captured and resolved the error. Reset, try again. */ 1245 ret = 0; 1246 1247 if (addr != end) 1248 goto again; 1249 out: 1250 if (unlikely(prealloc)) 1251 folio_put(prealloc); 1252 return ret; 1253 } 1254 1255 static inline int 1256 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1257 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1258 unsigned long end) 1259 { 1260 struct mm_struct *dst_mm = dst_vma->vm_mm; 1261 struct mm_struct *src_mm = src_vma->vm_mm; 1262 pmd_t *src_pmd, *dst_pmd; 1263 unsigned long next; 1264 1265 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1266 if (!dst_pmd) 1267 return -ENOMEM; 1268 src_pmd = pmd_offset(src_pud, addr); 1269 do { 1270 next = pmd_addr_end(addr, end); 1271 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1272 || pmd_devmap(*src_pmd)) { 1273 int err; 1274 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1275 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1276 addr, dst_vma, src_vma); 1277 if (err == -ENOMEM) 1278 return -ENOMEM; 1279 if (!err) 1280 continue; 1281 /* fall through */ 1282 } 1283 if (pmd_none_or_clear_bad(src_pmd)) 1284 continue; 1285 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1286 addr, next)) 1287 return -ENOMEM; 1288 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1289 return 0; 1290 } 1291 1292 static inline int 1293 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1294 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1295 unsigned long end) 1296 { 1297 struct mm_struct *dst_mm = dst_vma->vm_mm; 1298 struct mm_struct *src_mm = src_vma->vm_mm; 1299 pud_t *src_pud, *dst_pud; 1300 unsigned long next; 1301 1302 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1303 if (!dst_pud) 1304 return -ENOMEM; 1305 src_pud = pud_offset(src_p4d, addr); 1306 do { 1307 next = pud_addr_end(addr, end); 1308 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1309 int err; 1310 1311 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1312 err = copy_huge_pud(dst_mm, src_mm, 1313 dst_pud, src_pud, addr, src_vma); 1314 if (err == -ENOMEM) 1315 return -ENOMEM; 1316 if (!err) 1317 continue; 1318 /* fall through */ 1319 } 1320 if (pud_none_or_clear_bad(src_pud)) 1321 continue; 1322 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1323 addr, next)) 1324 return -ENOMEM; 1325 } while (dst_pud++, src_pud++, addr = next, addr != end); 1326 return 0; 1327 } 1328 1329 static inline int 1330 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1331 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1332 unsigned long end) 1333 { 1334 struct mm_struct *dst_mm = dst_vma->vm_mm; 1335 p4d_t *src_p4d, *dst_p4d; 1336 unsigned long next; 1337 1338 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1339 if (!dst_p4d) 1340 return -ENOMEM; 1341 src_p4d = p4d_offset(src_pgd, addr); 1342 do { 1343 next = p4d_addr_end(addr, end); 1344 if (p4d_none_or_clear_bad(src_p4d)) 1345 continue; 1346 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1347 addr, next)) 1348 return -ENOMEM; 1349 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1350 return 0; 1351 } 1352 1353 /* 1354 * Return true if the vma needs to copy the pgtable during this fork(). Return 1355 * false when we can speed up fork() by allowing lazy page faults later until 1356 * when the child accesses the memory range. 1357 */ 1358 static bool 1359 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1360 { 1361 /* 1362 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1363 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1364 * contains uffd-wp protection information, that's something we can't 1365 * retrieve from page cache, and skip copying will lose those info. 1366 */ 1367 if (userfaultfd_wp(dst_vma)) 1368 return true; 1369 1370 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1371 return true; 1372 1373 if (src_vma->anon_vma) 1374 return true; 1375 1376 /* 1377 * Don't copy ptes where a page fault will fill them correctly. Fork 1378 * becomes much lighter when there are big shared or private readonly 1379 * mappings. The tradeoff is that copy_page_range is more efficient 1380 * than faulting. 1381 */ 1382 return false; 1383 } 1384 1385 int 1386 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1387 { 1388 pgd_t *src_pgd, *dst_pgd; 1389 unsigned long addr = src_vma->vm_start; 1390 unsigned long end = src_vma->vm_end; 1391 struct mm_struct *dst_mm = dst_vma->vm_mm; 1392 struct mm_struct *src_mm = src_vma->vm_mm; 1393 struct mmu_notifier_range range; 1394 unsigned long next; 1395 bool is_cow; 1396 int ret; 1397 1398 if (!vma_needs_copy(dst_vma, src_vma)) 1399 return 0; 1400 1401 if (is_vm_hugetlb_page(src_vma)) 1402 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1403 1404 /* 1405 * We need to invalidate the secondary MMU mappings only when 1406 * there could be a permission downgrade on the ptes of the 1407 * parent mm. And a permission downgrade will only happen if 1408 * is_cow_mapping() returns true. 1409 */ 1410 is_cow = is_cow_mapping(src_vma->vm_flags); 1411 1412 if (is_cow) { 1413 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1414 0, src_mm, addr, end); 1415 mmu_notifier_invalidate_range_start(&range); 1416 /* 1417 * Disabling preemption is not needed for the write side, as 1418 * the read side doesn't spin, but goes to the mmap_lock. 1419 * 1420 * Use the raw variant of the seqcount_t write API to avoid 1421 * lockdep complaining about preemptibility. 1422 */ 1423 vma_assert_write_locked(src_vma); 1424 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1425 } 1426 1427 ret = 0; 1428 dst_pgd = pgd_offset(dst_mm, addr); 1429 src_pgd = pgd_offset(src_mm, addr); 1430 do { 1431 next = pgd_addr_end(addr, end); 1432 if (pgd_none_or_clear_bad(src_pgd)) 1433 continue; 1434 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1435 addr, next))) { 1436 ret = -ENOMEM; 1437 break; 1438 } 1439 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1440 1441 if (is_cow) { 1442 raw_write_seqcount_end(&src_mm->write_protect_seq); 1443 mmu_notifier_invalidate_range_end(&range); 1444 } 1445 return ret; 1446 } 1447 1448 /* Whether we should zap all COWed (private) pages too */ 1449 static inline bool should_zap_cows(struct zap_details *details) 1450 { 1451 /* By default, zap all pages */ 1452 if (!details || details->reclaim_pt) 1453 return true; 1454 1455 /* Or, we zap COWed pages only if the caller wants to */ 1456 return details->even_cows; 1457 } 1458 1459 /* Decides whether we should zap this folio with the folio pointer specified */ 1460 static inline bool should_zap_folio(struct zap_details *details, 1461 struct folio *folio) 1462 { 1463 /* If we can make a decision without *folio.. */ 1464 if (should_zap_cows(details)) 1465 return true; 1466 1467 /* Otherwise we should only zap non-anon folios */ 1468 return !folio_test_anon(folio); 1469 } 1470 1471 static inline bool zap_drop_markers(struct zap_details *details) 1472 { 1473 if (!details) 1474 return false; 1475 1476 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1477 } 1478 1479 /* 1480 * This function makes sure that we'll replace the none pte with an uffd-wp 1481 * swap special pte marker when necessary. Must be with the pgtable lock held. 1482 * 1483 * Returns true if uffd-wp ptes was installed, false otherwise. 1484 */ 1485 static inline bool 1486 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1487 unsigned long addr, pte_t *pte, int nr, 1488 struct zap_details *details, pte_t pteval) 1489 { 1490 bool was_installed = false; 1491 1492 #ifdef CONFIG_PTE_MARKER_UFFD_WP 1493 /* Zap on anonymous always means dropping everything */ 1494 if (vma_is_anonymous(vma)) 1495 return false; 1496 1497 if (zap_drop_markers(details)) 1498 return false; 1499 1500 for (;;) { 1501 /* the PFN in the PTE is irrelevant. */ 1502 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1503 was_installed = true; 1504 if (--nr == 0) 1505 break; 1506 pte++; 1507 addr += PAGE_SIZE; 1508 } 1509 #endif 1510 return was_installed; 1511 } 1512 1513 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1514 struct vm_area_struct *vma, struct folio *folio, 1515 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1516 unsigned long addr, struct zap_details *details, int *rss, 1517 bool *force_flush, bool *force_break, bool *any_skipped) 1518 { 1519 struct mm_struct *mm = tlb->mm; 1520 bool delay_rmap = false; 1521 1522 if (!folio_test_anon(folio)) { 1523 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1524 if (pte_dirty(ptent)) { 1525 folio_mark_dirty(folio); 1526 if (tlb_delay_rmap(tlb)) { 1527 delay_rmap = true; 1528 *force_flush = true; 1529 } 1530 } 1531 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1532 folio_mark_accessed(folio); 1533 rss[mm_counter(folio)] -= nr; 1534 } else { 1535 /* We don't need up-to-date accessed/dirty bits. */ 1536 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1537 rss[MM_ANONPAGES] -= nr; 1538 } 1539 /* Checking a single PTE in a batch is sufficient. */ 1540 arch_check_zapped_pte(vma, ptent); 1541 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1542 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1543 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1544 nr, details, ptent); 1545 1546 if (!delay_rmap) { 1547 folio_remove_rmap_ptes(folio, page, nr, vma); 1548 1549 if (unlikely(folio_mapcount(folio) < 0)) 1550 print_bad_pte(vma, addr, ptent, page); 1551 } 1552 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1553 *force_flush = true; 1554 *force_break = true; 1555 } 1556 } 1557 1558 /* 1559 * Zap or skip at least one present PTE, trying to batch-process subsequent 1560 * PTEs that map consecutive pages of the same folio. 1561 * 1562 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1563 */ 1564 static inline int zap_present_ptes(struct mmu_gather *tlb, 1565 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1566 unsigned int max_nr, unsigned long addr, 1567 struct zap_details *details, int *rss, bool *force_flush, 1568 bool *force_break, bool *any_skipped) 1569 { 1570 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1571 struct mm_struct *mm = tlb->mm; 1572 struct folio *folio; 1573 struct page *page; 1574 int nr; 1575 1576 page = vm_normal_page(vma, addr, ptent); 1577 if (!page) { 1578 /* We don't need up-to-date accessed/dirty bits. */ 1579 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1580 arch_check_zapped_pte(vma, ptent); 1581 tlb_remove_tlb_entry(tlb, pte, addr); 1582 if (userfaultfd_pte_wp(vma, ptent)) 1583 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1584 pte, 1, details, ptent); 1585 ksm_might_unmap_zero_page(mm, ptent); 1586 return 1; 1587 } 1588 1589 folio = page_folio(page); 1590 if (unlikely(!should_zap_folio(details, folio))) { 1591 *any_skipped = true; 1592 return 1; 1593 } 1594 1595 /* 1596 * Make sure that the common "small folio" case is as fast as possible 1597 * by keeping the batching logic separate. 1598 */ 1599 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1600 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1601 NULL, NULL, NULL); 1602 1603 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1604 addr, details, rss, force_flush, 1605 force_break, any_skipped); 1606 return nr; 1607 } 1608 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1609 details, rss, force_flush, force_break, any_skipped); 1610 return 1; 1611 } 1612 1613 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1614 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1615 unsigned int max_nr, unsigned long addr, 1616 struct zap_details *details, int *rss, bool *any_skipped) 1617 { 1618 swp_entry_t entry; 1619 int nr = 1; 1620 1621 *any_skipped = true; 1622 entry = pte_to_swp_entry(ptent); 1623 if (is_device_private_entry(entry) || 1624 is_device_exclusive_entry(entry)) { 1625 struct page *page = pfn_swap_entry_to_page(entry); 1626 struct folio *folio = page_folio(page); 1627 1628 if (unlikely(!should_zap_folio(details, folio))) 1629 return 1; 1630 /* 1631 * Both device private/exclusive mappings should only 1632 * work with anonymous page so far, so we don't need to 1633 * consider uffd-wp bit when zap. For more information, 1634 * see zap_install_uffd_wp_if_needed(). 1635 */ 1636 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1637 rss[mm_counter(folio)]--; 1638 folio_remove_rmap_pte(folio, page, vma); 1639 folio_put(folio); 1640 } else if (!non_swap_entry(entry)) { 1641 /* Genuine swap entries, hence a private anon pages */ 1642 if (!should_zap_cows(details)) 1643 return 1; 1644 1645 nr = swap_pte_batch(pte, max_nr, ptent); 1646 rss[MM_SWAPENTS] -= nr; 1647 free_swap_and_cache_nr(entry, nr); 1648 } else if (is_migration_entry(entry)) { 1649 struct folio *folio = pfn_swap_entry_folio(entry); 1650 1651 if (!should_zap_folio(details, folio)) 1652 return 1; 1653 rss[mm_counter(folio)]--; 1654 } else if (pte_marker_entry_uffd_wp(entry)) { 1655 /* 1656 * For anon: always drop the marker; for file: only 1657 * drop the marker if explicitly requested. 1658 */ 1659 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1660 return 1; 1661 } else if (is_guard_swp_entry(entry)) { 1662 /* 1663 * Ordinary zapping should not remove guard PTE 1664 * markers. Only do so if we should remove PTE markers 1665 * in general. 1666 */ 1667 if (!zap_drop_markers(details)) 1668 return 1; 1669 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { 1670 if (!should_zap_cows(details)) 1671 return 1; 1672 } else { 1673 /* We should have covered all the swap entry types */ 1674 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1675 WARN_ON_ONCE(1); 1676 } 1677 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1678 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1679 1680 return nr; 1681 } 1682 1683 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1684 struct vm_area_struct *vma, pte_t *pte, 1685 unsigned long addr, unsigned long end, 1686 struct zap_details *details, int *rss, 1687 bool *force_flush, bool *force_break, 1688 bool *any_skipped) 1689 { 1690 pte_t ptent = ptep_get(pte); 1691 int max_nr = (end - addr) / PAGE_SIZE; 1692 int nr = 0; 1693 1694 /* Skip all consecutive none ptes */ 1695 if (pte_none(ptent)) { 1696 for (nr = 1; nr < max_nr; nr++) { 1697 ptent = ptep_get(pte + nr); 1698 if (!pte_none(ptent)) 1699 break; 1700 } 1701 max_nr -= nr; 1702 if (!max_nr) 1703 return nr; 1704 pte += nr; 1705 addr += nr * PAGE_SIZE; 1706 } 1707 1708 if (pte_present(ptent)) 1709 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1710 details, rss, force_flush, force_break, 1711 any_skipped); 1712 else 1713 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1714 details, rss, any_skipped); 1715 1716 return nr; 1717 } 1718 1719 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1720 struct vm_area_struct *vma, pmd_t *pmd, 1721 unsigned long addr, unsigned long end, 1722 struct zap_details *details) 1723 { 1724 bool force_flush = false, force_break = false; 1725 struct mm_struct *mm = tlb->mm; 1726 int rss[NR_MM_COUNTERS]; 1727 spinlock_t *ptl; 1728 pte_t *start_pte; 1729 pte_t *pte; 1730 pmd_t pmdval; 1731 unsigned long start = addr; 1732 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1733 bool direct_reclaim = true; 1734 int nr; 1735 1736 retry: 1737 tlb_change_page_size(tlb, PAGE_SIZE); 1738 init_rss_vec(rss); 1739 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1740 if (!pte) 1741 return addr; 1742 1743 flush_tlb_batched_pending(mm); 1744 arch_enter_lazy_mmu_mode(); 1745 do { 1746 bool any_skipped = false; 1747 1748 if (need_resched()) { 1749 direct_reclaim = false; 1750 break; 1751 } 1752 1753 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1754 &force_flush, &force_break, &any_skipped); 1755 if (any_skipped) 1756 can_reclaim_pt = false; 1757 if (unlikely(force_break)) { 1758 addr += nr * PAGE_SIZE; 1759 direct_reclaim = false; 1760 break; 1761 } 1762 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1763 1764 /* 1765 * Fast path: try to hold the pmd lock and unmap the PTE page. 1766 * 1767 * If the pte lock was released midway (retry case), or if the attempt 1768 * to hold the pmd lock failed, then we need to recheck all pte entries 1769 * to ensure they are still none, thereby preventing the pte entries 1770 * from being repopulated by another thread. 1771 */ 1772 if (can_reclaim_pt && direct_reclaim && addr == end) 1773 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1774 1775 add_mm_rss_vec(mm, rss); 1776 arch_leave_lazy_mmu_mode(); 1777 1778 /* Do the actual TLB flush before dropping ptl */ 1779 if (force_flush) { 1780 tlb_flush_mmu_tlbonly(tlb); 1781 tlb_flush_rmaps(tlb, vma); 1782 } 1783 pte_unmap_unlock(start_pte, ptl); 1784 1785 /* 1786 * If we forced a TLB flush (either due to running out of 1787 * batch buffers or because we needed to flush dirty TLB 1788 * entries before releasing the ptl), free the batched 1789 * memory too. Come back again if we didn't do everything. 1790 */ 1791 if (force_flush) 1792 tlb_flush_mmu(tlb); 1793 1794 if (addr != end) { 1795 cond_resched(); 1796 force_flush = false; 1797 force_break = false; 1798 goto retry; 1799 } 1800 1801 if (can_reclaim_pt) { 1802 if (direct_reclaim) 1803 free_pte(mm, start, tlb, pmdval); 1804 else 1805 try_to_free_pte(mm, pmd, start, tlb); 1806 } 1807 1808 return addr; 1809 } 1810 1811 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1812 struct vm_area_struct *vma, pud_t *pud, 1813 unsigned long addr, unsigned long end, 1814 struct zap_details *details) 1815 { 1816 pmd_t *pmd; 1817 unsigned long next; 1818 1819 pmd = pmd_offset(pud, addr); 1820 do { 1821 next = pmd_addr_end(addr, end); 1822 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1823 if (next - addr != HPAGE_PMD_SIZE) 1824 __split_huge_pmd(vma, pmd, addr, false); 1825 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1826 addr = next; 1827 continue; 1828 } 1829 /* fall through */ 1830 } else if (details && details->single_folio && 1831 folio_test_pmd_mappable(details->single_folio) && 1832 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1833 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1834 /* 1835 * Take and drop THP pmd lock so that we cannot return 1836 * prematurely, while zap_huge_pmd() has cleared *pmd, 1837 * but not yet decremented compound_mapcount(). 1838 */ 1839 spin_unlock(ptl); 1840 } 1841 if (pmd_none(*pmd)) { 1842 addr = next; 1843 continue; 1844 } 1845 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1846 if (addr != next) 1847 pmd--; 1848 } while (pmd++, cond_resched(), addr != end); 1849 1850 return addr; 1851 } 1852 1853 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1854 struct vm_area_struct *vma, p4d_t *p4d, 1855 unsigned long addr, unsigned long end, 1856 struct zap_details *details) 1857 { 1858 pud_t *pud; 1859 unsigned long next; 1860 1861 pud = pud_offset(p4d, addr); 1862 do { 1863 next = pud_addr_end(addr, end); 1864 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1865 if (next - addr != HPAGE_PUD_SIZE) { 1866 mmap_assert_locked(tlb->mm); 1867 split_huge_pud(vma, pud, addr); 1868 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1869 goto next; 1870 /* fall through */ 1871 } 1872 if (pud_none_or_clear_bad(pud)) 1873 continue; 1874 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1875 next: 1876 cond_resched(); 1877 } while (pud++, addr = next, addr != end); 1878 1879 return addr; 1880 } 1881 1882 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1883 struct vm_area_struct *vma, pgd_t *pgd, 1884 unsigned long addr, unsigned long end, 1885 struct zap_details *details) 1886 { 1887 p4d_t *p4d; 1888 unsigned long next; 1889 1890 p4d = p4d_offset(pgd, addr); 1891 do { 1892 next = p4d_addr_end(addr, end); 1893 if (p4d_none_or_clear_bad(p4d)) 1894 continue; 1895 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1896 } while (p4d++, addr = next, addr != end); 1897 1898 return addr; 1899 } 1900 1901 void unmap_page_range(struct mmu_gather *tlb, 1902 struct vm_area_struct *vma, 1903 unsigned long addr, unsigned long end, 1904 struct zap_details *details) 1905 { 1906 pgd_t *pgd; 1907 unsigned long next; 1908 1909 BUG_ON(addr >= end); 1910 tlb_start_vma(tlb, vma); 1911 pgd = pgd_offset(vma->vm_mm, addr); 1912 do { 1913 next = pgd_addr_end(addr, end); 1914 if (pgd_none_or_clear_bad(pgd)) 1915 continue; 1916 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1917 } while (pgd++, addr = next, addr != end); 1918 tlb_end_vma(tlb, vma); 1919 } 1920 1921 1922 static void unmap_single_vma(struct mmu_gather *tlb, 1923 struct vm_area_struct *vma, unsigned long start_addr, 1924 unsigned long end_addr, 1925 struct zap_details *details, bool mm_wr_locked) 1926 { 1927 unsigned long start = max(vma->vm_start, start_addr); 1928 unsigned long end; 1929 1930 if (start >= vma->vm_end) 1931 return; 1932 end = min(vma->vm_end, end_addr); 1933 if (end <= vma->vm_start) 1934 return; 1935 1936 if (vma->vm_file) 1937 uprobe_munmap(vma, start, end); 1938 1939 if (start != end) { 1940 if (unlikely(is_vm_hugetlb_page(vma))) { 1941 /* 1942 * It is undesirable to test vma->vm_file as it 1943 * should be non-null for valid hugetlb area. 1944 * However, vm_file will be NULL in the error 1945 * cleanup path of mmap_region. When 1946 * hugetlbfs ->mmap method fails, 1947 * mmap_region() nullifies vma->vm_file 1948 * before calling this function to clean up. 1949 * Since no pte has actually been setup, it is 1950 * safe to do nothing in this case. 1951 */ 1952 if (vma->vm_file) { 1953 zap_flags_t zap_flags = details ? 1954 details->zap_flags : 0; 1955 __unmap_hugepage_range(tlb, vma, start, end, 1956 NULL, zap_flags); 1957 } 1958 } else 1959 unmap_page_range(tlb, vma, start, end, details); 1960 } 1961 } 1962 1963 /** 1964 * unmap_vmas - unmap a range of memory covered by a list of vma's 1965 * @tlb: address of the caller's struct mmu_gather 1966 * @mas: the maple state 1967 * @vma: the starting vma 1968 * @start_addr: virtual address at which to start unmapping 1969 * @end_addr: virtual address at which to end unmapping 1970 * @tree_end: The maximum index to check 1971 * @mm_wr_locked: lock flag 1972 * 1973 * Unmap all pages in the vma list. 1974 * 1975 * Only addresses between `start' and `end' will be unmapped. 1976 * 1977 * The VMA list must be sorted in ascending virtual address order. 1978 * 1979 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1980 * range after unmap_vmas() returns. So the only responsibility here is to 1981 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1982 * drops the lock and schedules. 1983 */ 1984 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1985 struct vm_area_struct *vma, unsigned long start_addr, 1986 unsigned long end_addr, unsigned long tree_end, 1987 bool mm_wr_locked) 1988 { 1989 struct mmu_notifier_range range; 1990 struct zap_details details = { 1991 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1992 /* Careful - we need to zap private pages too! */ 1993 .even_cows = true, 1994 }; 1995 1996 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1997 start_addr, end_addr); 1998 mmu_notifier_invalidate_range_start(&range); 1999 do { 2000 unsigned long start = start_addr; 2001 unsigned long end = end_addr; 2002 hugetlb_zap_begin(vma, &start, &end); 2003 unmap_single_vma(tlb, vma, start, end, &details, 2004 mm_wr_locked); 2005 hugetlb_zap_end(vma, &details); 2006 vma = mas_find(mas, tree_end - 1); 2007 } while (vma && likely(!xa_is_zero(vma))); 2008 mmu_notifier_invalidate_range_end(&range); 2009 } 2010 2011 /** 2012 * zap_page_range_single_batched - remove user pages in a given range 2013 * @tlb: pointer to the caller's struct mmu_gather 2014 * @vma: vm_area_struct holding the applicable pages 2015 * @address: starting address of pages to remove 2016 * @size: number of bytes to remove 2017 * @details: details of shared cache invalidation 2018 * 2019 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for 2020 * hugetlb, @tlb is flushed and re-initialized by this function. 2021 */ 2022 void zap_page_range_single_batched(struct mmu_gather *tlb, 2023 struct vm_area_struct *vma, unsigned long address, 2024 unsigned long size, struct zap_details *details) 2025 { 2026 const unsigned long end = address + size; 2027 struct mmu_notifier_range range; 2028 2029 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm); 2030 2031 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2032 address, end); 2033 hugetlb_zap_begin(vma, &range.start, &range.end); 2034 update_hiwater_rss(vma->vm_mm); 2035 mmu_notifier_invalidate_range_start(&range); 2036 /* 2037 * unmap 'address-end' not 'range.start-range.end' as range 2038 * could have been expanded for hugetlb pmd sharing. 2039 */ 2040 unmap_single_vma(tlb, vma, address, end, details, false); 2041 mmu_notifier_invalidate_range_end(&range); 2042 if (is_vm_hugetlb_page(vma)) { 2043 /* 2044 * flush tlb and free resources before hugetlb_zap_end(), to 2045 * avoid concurrent page faults' allocation failure. 2046 */ 2047 tlb_finish_mmu(tlb); 2048 hugetlb_zap_end(vma, details); 2049 tlb_gather_mmu(tlb, vma->vm_mm); 2050 } 2051 } 2052 2053 /** 2054 * zap_page_range_single - remove user pages in a given range 2055 * @vma: vm_area_struct holding the applicable pages 2056 * @address: starting address of pages to zap 2057 * @size: number of bytes to zap 2058 * @details: details of shared cache invalidation 2059 * 2060 * The range must fit into one VMA. 2061 */ 2062 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2063 unsigned long size, struct zap_details *details) 2064 { 2065 struct mmu_gather tlb; 2066 2067 tlb_gather_mmu(&tlb, vma->vm_mm); 2068 zap_page_range_single_batched(&tlb, vma, address, size, details); 2069 tlb_finish_mmu(&tlb); 2070 } 2071 2072 /** 2073 * zap_vma_ptes - remove ptes mapping the vma 2074 * @vma: vm_area_struct holding ptes to be zapped 2075 * @address: starting address of pages to zap 2076 * @size: number of bytes to zap 2077 * 2078 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2079 * 2080 * The entire address range must be fully contained within the vma. 2081 * 2082 */ 2083 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2084 unsigned long size) 2085 { 2086 if (!range_in_vma(vma, address, address + size) || 2087 !(vma->vm_flags & VM_PFNMAP)) 2088 return; 2089 2090 zap_page_range_single(vma, address, size, NULL); 2091 } 2092 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2093 2094 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2095 { 2096 pgd_t *pgd; 2097 p4d_t *p4d; 2098 pud_t *pud; 2099 pmd_t *pmd; 2100 2101 pgd = pgd_offset(mm, addr); 2102 p4d = p4d_alloc(mm, pgd, addr); 2103 if (!p4d) 2104 return NULL; 2105 pud = pud_alloc(mm, p4d, addr); 2106 if (!pud) 2107 return NULL; 2108 pmd = pmd_alloc(mm, pud, addr); 2109 if (!pmd) 2110 return NULL; 2111 2112 VM_BUG_ON(pmd_trans_huge(*pmd)); 2113 return pmd; 2114 } 2115 2116 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2117 spinlock_t **ptl) 2118 { 2119 pmd_t *pmd = walk_to_pmd(mm, addr); 2120 2121 if (!pmd) 2122 return NULL; 2123 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2124 } 2125 2126 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2127 { 2128 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2129 /* 2130 * Whoever wants to forbid the zeropage after some zeropages 2131 * might already have been mapped has to scan the page tables and 2132 * bail out on any zeropages. Zeropages in COW mappings can 2133 * be unshared using FAULT_FLAG_UNSHARE faults. 2134 */ 2135 if (mm_forbids_zeropage(vma->vm_mm)) 2136 return false; 2137 /* zeropages in COW mappings are common and unproblematic. */ 2138 if (is_cow_mapping(vma->vm_flags)) 2139 return true; 2140 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2141 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2142 return true; 2143 /* 2144 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2145 * find the shared zeropage and longterm-pin it, which would 2146 * be problematic as soon as the zeropage gets replaced by a different 2147 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2148 * now differ to what GUP looked up. FSDAX is incompatible to 2149 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2150 * check_vma_flags). 2151 */ 2152 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2153 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2154 } 2155 2156 static int validate_page_before_insert(struct vm_area_struct *vma, 2157 struct page *page) 2158 { 2159 struct folio *folio = page_folio(page); 2160 2161 if (!folio_ref_count(folio)) 2162 return -EINVAL; 2163 if (unlikely(is_zero_folio(folio))) { 2164 if (!vm_mixed_zeropage_allowed(vma)) 2165 return -EINVAL; 2166 return 0; 2167 } 2168 if (folio_test_anon(folio) || folio_test_slab(folio) || 2169 page_has_type(page)) 2170 return -EINVAL; 2171 flush_dcache_folio(folio); 2172 return 0; 2173 } 2174 2175 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2176 unsigned long addr, struct page *page, 2177 pgprot_t prot, bool mkwrite) 2178 { 2179 struct folio *folio = page_folio(page); 2180 pte_t pteval = ptep_get(pte); 2181 2182 if (!pte_none(pteval)) { 2183 if (!mkwrite) 2184 return -EBUSY; 2185 2186 /* see insert_pfn(). */ 2187 if (pte_pfn(pteval) != page_to_pfn(page)) { 2188 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval))); 2189 return -EFAULT; 2190 } 2191 pteval = maybe_mkwrite(pteval, vma); 2192 pteval = pte_mkyoung(pteval); 2193 if (ptep_set_access_flags(vma, addr, pte, pteval, 1)) 2194 update_mmu_cache(vma, addr, pte); 2195 return 0; 2196 } 2197 2198 /* Ok, finally just insert the thing.. */ 2199 pteval = mk_pte(page, prot); 2200 if (unlikely(is_zero_folio(folio))) { 2201 pteval = pte_mkspecial(pteval); 2202 } else { 2203 folio_get(folio); 2204 pteval = mk_pte(page, prot); 2205 if (mkwrite) { 2206 pteval = pte_mkyoung(pteval); 2207 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma); 2208 } 2209 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2210 folio_add_file_rmap_pte(folio, page, vma); 2211 } 2212 set_pte_at(vma->vm_mm, addr, pte, pteval); 2213 return 0; 2214 } 2215 2216 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2217 struct page *page, pgprot_t prot, bool mkwrite) 2218 { 2219 int retval; 2220 pte_t *pte; 2221 spinlock_t *ptl; 2222 2223 retval = validate_page_before_insert(vma, page); 2224 if (retval) 2225 goto out; 2226 retval = -ENOMEM; 2227 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2228 if (!pte) 2229 goto out; 2230 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot, 2231 mkwrite); 2232 pte_unmap_unlock(pte, ptl); 2233 out: 2234 return retval; 2235 } 2236 2237 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2238 unsigned long addr, struct page *page, pgprot_t prot) 2239 { 2240 int err; 2241 2242 err = validate_page_before_insert(vma, page); 2243 if (err) 2244 return err; 2245 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false); 2246 } 2247 2248 /* insert_pages() amortizes the cost of spinlock operations 2249 * when inserting pages in a loop. 2250 */ 2251 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2252 struct page **pages, unsigned long *num, pgprot_t prot) 2253 { 2254 pmd_t *pmd = NULL; 2255 pte_t *start_pte, *pte; 2256 spinlock_t *pte_lock; 2257 struct mm_struct *const mm = vma->vm_mm; 2258 unsigned long curr_page_idx = 0; 2259 unsigned long remaining_pages_total = *num; 2260 unsigned long pages_to_write_in_pmd; 2261 int ret; 2262 more: 2263 ret = -EFAULT; 2264 pmd = walk_to_pmd(mm, addr); 2265 if (!pmd) 2266 goto out; 2267 2268 pages_to_write_in_pmd = min_t(unsigned long, 2269 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2270 2271 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2272 ret = -ENOMEM; 2273 if (pte_alloc(mm, pmd)) 2274 goto out; 2275 2276 while (pages_to_write_in_pmd) { 2277 int pte_idx = 0; 2278 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2279 2280 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2281 if (!start_pte) { 2282 ret = -EFAULT; 2283 goto out; 2284 } 2285 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2286 int err = insert_page_in_batch_locked(vma, pte, 2287 addr, pages[curr_page_idx], prot); 2288 if (unlikely(err)) { 2289 pte_unmap_unlock(start_pte, pte_lock); 2290 ret = err; 2291 remaining_pages_total -= pte_idx; 2292 goto out; 2293 } 2294 addr += PAGE_SIZE; 2295 ++curr_page_idx; 2296 } 2297 pte_unmap_unlock(start_pte, pte_lock); 2298 pages_to_write_in_pmd -= batch_size; 2299 remaining_pages_total -= batch_size; 2300 } 2301 if (remaining_pages_total) 2302 goto more; 2303 ret = 0; 2304 out: 2305 *num = remaining_pages_total; 2306 return ret; 2307 } 2308 2309 /** 2310 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2311 * @vma: user vma to map to 2312 * @addr: target start user address of these pages 2313 * @pages: source kernel pages 2314 * @num: in: number of pages to map. out: number of pages that were *not* 2315 * mapped. (0 means all pages were successfully mapped). 2316 * 2317 * Preferred over vm_insert_page() when inserting multiple pages. 2318 * 2319 * In case of error, we may have mapped a subset of the provided 2320 * pages. It is the caller's responsibility to account for this case. 2321 * 2322 * The same restrictions apply as in vm_insert_page(). 2323 */ 2324 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2325 struct page **pages, unsigned long *num) 2326 { 2327 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2328 2329 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2330 return -EFAULT; 2331 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2332 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2333 BUG_ON(vma->vm_flags & VM_PFNMAP); 2334 vm_flags_set(vma, VM_MIXEDMAP); 2335 } 2336 /* Defer page refcount checking till we're about to map that page. */ 2337 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2338 } 2339 EXPORT_SYMBOL(vm_insert_pages); 2340 2341 /** 2342 * vm_insert_page - insert single page into user vma 2343 * @vma: user vma to map to 2344 * @addr: target user address of this page 2345 * @page: source kernel page 2346 * 2347 * This allows drivers to insert individual pages they've allocated 2348 * into a user vma. The zeropage is supported in some VMAs, 2349 * see vm_mixed_zeropage_allowed(). 2350 * 2351 * The page has to be a nice clean _individual_ kernel allocation. 2352 * If you allocate a compound page, you need to have marked it as 2353 * such (__GFP_COMP), or manually just split the page up yourself 2354 * (see split_page()). 2355 * 2356 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2357 * took an arbitrary page protection parameter. This doesn't allow 2358 * that. Your vma protection will have to be set up correctly, which 2359 * means that if you want a shared writable mapping, you'd better 2360 * ask for a shared writable mapping! 2361 * 2362 * The page does not need to be reserved. 2363 * 2364 * Usually this function is called from f_op->mmap() handler 2365 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2366 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2367 * function from other places, for example from page-fault handler. 2368 * 2369 * Return: %0 on success, negative error code otherwise. 2370 */ 2371 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2372 struct page *page) 2373 { 2374 if (addr < vma->vm_start || addr >= vma->vm_end) 2375 return -EFAULT; 2376 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2377 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2378 BUG_ON(vma->vm_flags & VM_PFNMAP); 2379 vm_flags_set(vma, VM_MIXEDMAP); 2380 } 2381 return insert_page(vma, addr, page, vma->vm_page_prot, false); 2382 } 2383 EXPORT_SYMBOL(vm_insert_page); 2384 2385 /* 2386 * __vm_map_pages - maps range of kernel pages into user vma 2387 * @vma: user vma to map to 2388 * @pages: pointer to array of source kernel pages 2389 * @num: number of pages in page array 2390 * @offset: user's requested vm_pgoff 2391 * 2392 * This allows drivers to map range of kernel pages into a user vma. 2393 * The zeropage is supported in some VMAs, see 2394 * vm_mixed_zeropage_allowed(). 2395 * 2396 * Return: 0 on success and error code otherwise. 2397 */ 2398 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2399 unsigned long num, unsigned long offset) 2400 { 2401 unsigned long count = vma_pages(vma); 2402 unsigned long uaddr = vma->vm_start; 2403 int ret, i; 2404 2405 /* Fail if the user requested offset is beyond the end of the object */ 2406 if (offset >= num) 2407 return -ENXIO; 2408 2409 /* Fail if the user requested size exceeds available object size */ 2410 if (count > num - offset) 2411 return -ENXIO; 2412 2413 for (i = 0; i < count; i++) { 2414 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2415 if (ret < 0) 2416 return ret; 2417 uaddr += PAGE_SIZE; 2418 } 2419 2420 return 0; 2421 } 2422 2423 /** 2424 * vm_map_pages - maps range of kernel pages starts with non zero offset 2425 * @vma: user vma to map to 2426 * @pages: pointer to array of source kernel pages 2427 * @num: number of pages in page array 2428 * 2429 * Maps an object consisting of @num pages, catering for the user's 2430 * requested vm_pgoff 2431 * 2432 * If we fail to insert any page into the vma, the function will return 2433 * immediately leaving any previously inserted pages present. Callers 2434 * from the mmap handler may immediately return the error as their caller 2435 * will destroy the vma, removing any successfully inserted pages. Other 2436 * callers should make their own arrangements for calling unmap_region(). 2437 * 2438 * Context: Process context. Called by mmap handlers. 2439 * Return: 0 on success and error code otherwise. 2440 */ 2441 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2442 unsigned long num) 2443 { 2444 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2445 } 2446 EXPORT_SYMBOL(vm_map_pages); 2447 2448 /** 2449 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2450 * @vma: user vma to map to 2451 * @pages: pointer to array of source kernel pages 2452 * @num: number of pages in page array 2453 * 2454 * Similar to vm_map_pages(), except that it explicitly sets the offset 2455 * to 0. This function is intended for the drivers that did not consider 2456 * vm_pgoff. 2457 * 2458 * Context: Process context. Called by mmap handlers. 2459 * Return: 0 on success and error code otherwise. 2460 */ 2461 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2462 unsigned long num) 2463 { 2464 return __vm_map_pages(vma, pages, num, 0); 2465 } 2466 EXPORT_SYMBOL(vm_map_pages_zero); 2467 2468 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2469 pfn_t pfn, pgprot_t prot, bool mkwrite) 2470 { 2471 struct mm_struct *mm = vma->vm_mm; 2472 pte_t *pte, entry; 2473 spinlock_t *ptl; 2474 2475 pte = get_locked_pte(mm, addr, &ptl); 2476 if (!pte) 2477 return VM_FAULT_OOM; 2478 entry = ptep_get(pte); 2479 if (!pte_none(entry)) { 2480 if (mkwrite) { 2481 /* 2482 * For read faults on private mappings the PFN passed 2483 * in may not match the PFN we have mapped if the 2484 * mapped PFN is a writeable COW page. In the mkwrite 2485 * case we are creating a writable PTE for a shared 2486 * mapping and we expect the PFNs to match. If they 2487 * don't match, we are likely racing with block 2488 * allocation and mapping invalidation so just skip the 2489 * update. 2490 */ 2491 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2492 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2493 goto out_unlock; 2494 } 2495 entry = pte_mkyoung(entry); 2496 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2497 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2498 update_mmu_cache(vma, addr, pte); 2499 } 2500 goto out_unlock; 2501 } 2502 2503 /* Ok, finally just insert the thing.. */ 2504 if (pfn_t_devmap(pfn)) 2505 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2506 else 2507 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2508 2509 if (mkwrite) { 2510 entry = pte_mkyoung(entry); 2511 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2512 } 2513 2514 set_pte_at(mm, addr, pte, entry); 2515 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2516 2517 out_unlock: 2518 pte_unmap_unlock(pte, ptl); 2519 return VM_FAULT_NOPAGE; 2520 } 2521 2522 /** 2523 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2524 * @vma: user vma to map to 2525 * @addr: target user address of this page 2526 * @pfn: source kernel pfn 2527 * @pgprot: pgprot flags for the inserted page 2528 * 2529 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2530 * to override pgprot on a per-page basis. 2531 * 2532 * This only makes sense for IO mappings, and it makes no sense for 2533 * COW mappings. In general, using multiple vmas is preferable; 2534 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2535 * impractical. 2536 * 2537 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2538 * caching- and encryption bits different than those of @vma->vm_page_prot, 2539 * because the caching- or encryption mode may not be known at mmap() time. 2540 * 2541 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2542 * to set caching and encryption bits for those vmas (except for COW pages). 2543 * This is ensured by core vm only modifying these page table entries using 2544 * functions that don't touch caching- or encryption bits, using pte_modify() 2545 * if needed. (See for example mprotect()). 2546 * 2547 * Also when new page-table entries are created, this is only done using the 2548 * fault() callback, and never using the value of vma->vm_page_prot, 2549 * except for page-table entries that point to anonymous pages as the result 2550 * of COW. 2551 * 2552 * Context: Process context. May allocate using %GFP_KERNEL. 2553 * Return: vm_fault_t value. 2554 */ 2555 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2556 unsigned long pfn, pgprot_t pgprot) 2557 { 2558 /* 2559 * Technically, architectures with pte_special can avoid all these 2560 * restrictions (same for remap_pfn_range). However we would like 2561 * consistency in testing and feature parity among all, so we should 2562 * try to keep these invariants in place for everybody. 2563 */ 2564 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2565 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2566 (VM_PFNMAP|VM_MIXEDMAP)); 2567 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2568 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2569 2570 if (addr < vma->vm_start || addr >= vma->vm_end) 2571 return VM_FAULT_SIGBUS; 2572 2573 if (!pfn_modify_allowed(pfn, pgprot)) 2574 return VM_FAULT_SIGBUS; 2575 2576 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2577 2578 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2579 false); 2580 } 2581 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2582 2583 /** 2584 * vmf_insert_pfn - insert single pfn into user vma 2585 * @vma: user vma to map to 2586 * @addr: target user address of this page 2587 * @pfn: source kernel pfn 2588 * 2589 * Similar to vm_insert_page, this allows drivers to insert individual pages 2590 * they've allocated into a user vma. Same comments apply. 2591 * 2592 * This function should only be called from a vm_ops->fault handler, and 2593 * in that case the handler should return the result of this function. 2594 * 2595 * vma cannot be a COW mapping. 2596 * 2597 * As this is called only for pages that do not currently exist, we 2598 * do not need to flush old virtual caches or the TLB. 2599 * 2600 * Context: Process context. May allocate using %GFP_KERNEL. 2601 * Return: vm_fault_t value. 2602 */ 2603 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2604 unsigned long pfn) 2605 { 2606 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2607 } 2608 EXPORT_SYMBOL(vmf_insert_pfn); 2609 2610 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite) 2611 { 2612 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) && 2613 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2614 return false; 2615 /* these checks mirror the abort conditions in vm_normal_page */ 2616 if (vma->vm_flags & VM_MIXEDMAP) 2617 return true; 2618 if (pfn_t_devmap(pfn)) 2619 return true; 2620 if (pfn_t_special(pfn)) 2621 return true; 2622 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2623 return true; 2624 return false; 2625 } 2626 2627 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2628 unsigned long addr, pfn_t pfn, bool mkwrite) 2629 { 2630 pgprot_t pgprot = vma->vm_page_prot; 2631 int err; 2632 2633 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2634 return VM_FAULT_SIGBUS; 2635 2636 if (addr < vma->vm_start || addr >= vma->vm_end) 2637 return VM_FAULT_SIGBUS; 2638 2639 pfnmap_setup_cachemode_pfn(pfn_t_to_pfn(pfn), &pgprot); 2640 2641 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2642 return VM_FAULT_SIGBUS; 2643 2644 /* 2645 * If we don't have pte special, then we have to use the pfn_valid() 2646 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2647 * refcount the page if pfn_valid is true (hence insert_page rather 2648 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2649 * without pte special, it would there be refcounted as a normal page. 2650 */ 2651 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2652 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2653 struct page *page; 2654 2655 /* 2656 * At this point we are committed to insert_page() 2657 * regardless of whether the caller specified flags that 2658 * result in pfn_t_has_page() == false. 2659 */ 2660 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2661 err = insert_page(vma, addr, page, pgprot, mkwrite); 2662 } else { 2663 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2664 } 2665 2666 if (err == -ENOMEM) 2667 return VM_FAULT_OOM; 2668 if (err < 0 && err != -EBUSY) 2669 return VM_FAULT_SIGBUS; 2670 2671 return VM_FAULT_NOPAGE; 2672 } 2673 2674 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 2675 bool write) 2676 { 2677 pgprot_t pgprot = vmf->vma->vm_page_prot; 2678 unsigned long addr = vmf->address; 2679 int err; 2680 2681 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end) 2682 return VM_FAULT_SIGBUS; 2683 2684 err = insert_page(vmf->vma, addr, page, pgprot, write); 2685 if (err == -ENOMEM) 2686 return VM_FAULT_OOM; 2687 if (err < 0 && err != -EBUSY) 2688 return VM_FAULT_SIGBUS; 2689 2690 return VM_FAULT_NOPAGE; 2691 } 2692 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite); 2693 2694 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2695 pfn_t pfn) 2696 { 2697 return __vm_insert_mixed(vma, addr, pfn, false); 2698 } 2699 EXPORT_SYMBOL(vmf_insert_mixed); 2700 2701 /* 2702 * If the insertion of PTE failed because someone else already added a 2703 * different entry in the mean time, we treat that as success as we assume 2704 * the same entry was actually inserted. 2705 */ 2706 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2707 unsigned long addr, pfn_t pfn) 2708 { 2709 return __vm_insert_mixed(vma, addr, pfn, true); 2710 } 2711 2712 /* 2713 * maps a range of physical memory into the requested pages. the old 2714 * mappings are removed. any references to nonexistent pages results 2715 * in null mappings (currently treated as "copy-on-access") 2716 */ 2717 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2718 unsigned long addr, unsigned long end, 2719 unsigned long pfn, pgprot_t prot) 2720 { 2721 pte_t *pte, *mapped_pte; 2722 spinlock_t *ptl; 2723 int err = 0; 2724 2725 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2726 if (!pte) 2727 return -ENOMEM; 2728 arch_enter_lazy_mmu_mode(); 2729 do { 2730 BUG_ON(!pte_none(ptep_get(pte))); 2731 if (!pfn_modify_allowed(pfn, prot)) { 2732 err = -EACCES; 2733 break; 2734 } 2735 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2736 pfn++; 2737 } while (pte++, addr += PAGE_SIZE, addr != end); 2738 arch_leave_lazy_mmu_mode(); 2739 pte_unmap_unlock(mapped_pte, ptl); 2740 return err; 2741 } 2742 2743 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2744 unsigned long addr, unsigned long end, 2745 unsigned long pfn, pgprot_t prot) 2746 { 2747 pmd_t *pmd; 2748 unsigned long next; 2749 int err; 2750 2751 pfn -= addr >> PAGE_SHIFT; 2752 pmd = pmd_alloc(mm, pud, addr); 2753 if (!pmd) 2754 return -ENOMEM; 2755 VM_BUG_ON(pmd_trans_huge(*pmd)); 2756 do { 2757 next = pmd_addr_end(addr, end); 2758 err = remap_pte_range(mm, pmd, addr, next, 2759 pfn + (addr >> PAGE_SHIFT), prot); 2760 if (err) 2761 return err; 2762 } while (pmd++, addr = next, addr != end); 2763 return 0; 2764 } 2765 2766 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2767 unsigned long addr, unsigned long end, 2768 unsigned long pfn, pgprot_t prot) 2769 { 2770 pud_t *pud; 2771 unsigned long next; 2772 int err; 2773 2774 pfn -= addr >> PAGE_SHIFT; 2775 pud = pud_alloc(mm, p4d, addr); 2776 if (!pud) 2777 return -ENOMEM; 2778 do { 2779 next = pud_addr_end(addr, end); 2780 err = remap_pmd_range(mm, pud, addr, next, 2781 pfn + (addr >> PAGE_SHIFT), prot); 2782 if (err) 2783 return err; 2784 } while (pud++, addr = next, addr != end); 2785 return 0; 2786 } 2787 2788 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2789 unsigned long addr, unsigned long end, 2790 unsigned long pfn, pgprot_t prot) 2791 { 2792 p4d_t *p4d; 2793 unsigned long next; 2794 int err; 2795 2796 pfn -= addr >> PAGE_SHIFT; 2797 p4d = p4d_alloc(mm, pgd, addr); 2798 if (!p4d) 2799 return -ENOMEM; 2800 do { 2801 next = p4d_addr_end(addr, end); 2802 err = remap_pud_range(mm, p4d, addr, next, 2803 pfn + (addr >> PAGE_SHIFT), prot); 2804 if (err) 2805 return err; 2806 } while (p4d++, addr = next, addr != end); 2807 return 0; 2808 } 2809 2810 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2811 unsigned long pfn, unsigned long size, pgprot_t prot) 2812 { 2813 pgd_t *pgd; 2814 unsigned long next; 2815 unsigned long end = addr + PAGE_ALIGN(size); 2816 struct mm_struct *mm = vma->vm_mm; 2817 int err; 2818 2819 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2820 return -EINVAL; 2821 2822 /* 2823 * Physically remapped pages are special. Tell the 2824 * rest of the world about it: 2825 * VM_IO tells people not to look at these pages 2826 * (accesses can have side effects). 2827 * VM_PFNMAP tells the core MM that the base pages are just 2828 * raw PFN mappings, and do not have a "struct page" associated 2829 * with them. 2830 * VM_DONTEXPAND 2831 * Disable vma merging and expanding with mremap(). 2832 * VM_DONTDUMP 2833 * Omit vma from core dump, even when VM_IO turned off. 2834 * 2835 * There's a horrible special case to handle copy-on-write 2836 * behaviour that some programs depend on. We mark the "original" 2837 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2838 * See vm_normal_page() for details. 2839 */ 2840 if (is_cow_mapping(vma->vm_flags)) { 2841 if (addr != vma->vm_start || end != vma->vm_end) 2842 return -EINVAL; 2843 vma->vm_pgoff = pfn; 2844 } 2845 2846 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2847 2848 BUG_ON(addr >= end); 2849 pfn -= addr >> PAGE_SHIFT; 2850 pgd = pgd_offset(mm, addr); 2851 flush_cache_range(vma, addr, end); 2852 do { 2853 next = pgd_addr_end(addr, end); 2854 err = remap_p4d_range(mm, pgd, addr, next, 2855 pfn + (addr >> PAGE_SHIFT), prot); 2856 if (err) 2857 return err; 2858 } while (pgd++, addr = next, addr != end); 2859 2860 return 0; 2861 } 2862 2863 /* 2864 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2865 * must have pre-validated the caching bits of the pgprot_t. 2866 */ 2867 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2868 unsigned long pfn, unsigned long size, pgprot_t prot) 2869 { 2870 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2871 2872 if (!error) 2873 return 0; 2874 2875 /* 2876 * A partial pfn range mapping is dangerous: it does not 2877 * maintain page reference counts, and callers may free 2878 * pages due to the error. So zap it early. 2879 */ 2880 zap_page_range_single(vma, addr, size, NULL); 2881 return error; 2882 } 2883 2884 #ifdef __HAVE_PFNMAP_TRACKING 2885 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn, 2886 unsigned long size, pgprot_t *prot) 2887 { 2888 struct pfnmap_track_ctx *ctx; 2889 2890 if (pfnmap_track(pfn, size, prot)) 2891 return ERR_PTR(-EINVAL); 2892 2893 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 2894 if (unlikely(!ctx)) { 2895 pfnmap_untrack(pfn, size); 2896 return ERR_PTR(-ENOMEM); 2897 } 2898 2899 ctx->pfn = pfn; 2900 ctx->size = size; 2901 kref_init(&ctx->kref); 2902 return ctx; 2903 } 2904 2905 void pfnmap_track_ctx_release(struct kref *ref) 2906 { 2907 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref); 2908 2909 pfnmap_untrack(ctx->pfn, ctx->size); 2910 kfree(ctx); 2911 } 2912 #endif /* __HAVE_PFNMAP_TRACKING */ 2913 2914 /** 2915 * remap_pfn_range - remap kernel memory to userspace 2916 * @vma: user vma to map to 2917 * @addr: target page aligned user address to start at 2918 * @pfn: page frame number of kernel physical memory address 2919 * @size: size of mapping area 2920 * @prot: page protection flags for this mapping 2921 * 2922 * Note: this is only safe if the mm semaphore is held when called. 2923 * 2924 * Return: %0 on success, negative error code otherwise. 2925 */ 2926 #ifdef __HAVE_PFNMAP_TRACKING 2927 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2928 unsigned long pfn, unsigned long size, pgprot_t prot) 2929 { 2930 struct pfnmap_track_ctx *ctx = NULL; 2931 int err; 2932 2933 size = PAGE_ALIGN(size); 2934 2935 /* 2936 * If we cover the full VMA, we'll perform actual tracking, and 2937 * remember to untrack when the last reference to our tracking 2938 * context from a VMA goes away. We'll keep tracking the whole pfn 2939 * range even during VMA splits and partial unmapping. 2940 * 2941 * If we only cover parts of the VMA, we'll only setup the cachemode 2942 * in the pgprot for the pfn range. 2943 */ 2944 if (addr == vma->vm_start && addr + size == vma->vm_end) { 2945 if (vma->pfnmap_track_ctx) 2946 return -EINVAL; 2947 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot); 2948 if (IS_ERR(ctx)) 2949 return PTR_ERR(ctx); 2950 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) { 2951 return -EINVAL; 2952 } 2953 2954 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2955 if (ctx) { 2956 if (err) 2957 kref_put(&ctx->kref, pfnmap_track_ctx_release); 2958 else 2959 vma->pfnmap_track_ctx = ctx; 2960 } 2961 return err; 2962 } 2963 2964 #else 2965 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2966 unsigned long pfn, unsigned long size, pgprot_t prot) 2967 { 2968 return remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2969 } 2970 #endif 2971 EXPORT_SYMBOL(remap_pfn_range); 2972 2973 /** 2974 * vm_iomap_memory - remap memory to userspace 2975 * @vma: user vma to map to 2976 * @start: start of the physical memory to be mapped 2977 * @len: size of area 2978 * 2979 * This is a simplified io_remap_pfn_range() for common driver use. The 2980 * driver just needs to give us the physical memory range to be mapped, 2981 * we'll figure out the rest from the vma information. 2982 * 2983 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2984 * whatever write-combining details or similar. 2985 * 2986 * Return: %0 on success, negative error code otherwise. 2987 */ 2988 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2989 { 2990 unsigned long vm_len, pfn, pages; 2991 2992 /* Check that the physical memory area passed in looks valid */ 2993 if (start + len < start) 2994 return -EINVAL; 2995 /* 2996 * You *really* shouldn't map things that aren't page-aligned, 2997 * but we've historically allowed it because IO memory might 2998 * just have smaller alignment. 2999 */ 3000 len += start & ~PAGE_MASK; 3001 pfn = start >> PAGE_SHIFT; 3002 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 3003 if (pfn + pages < pfn) 3004 return -EINVAL; 3005 3006 /* We start the mapping 'vm_pgoff' pages into the area */ 3007 if (vma->vm_pgoff > pages) 3008 return -EINVAL; 3009 pfn += vma->vm_pgoff; 3010 pages -= vma->vm_pgoff; 3011 3012 /* Can we fit all of the mapping? */ 3013 vm_len = vma->vm_end - vma->vm_start; 3014 if (vm_len >> PAGE_SHIFT > pages) 3015 return -EINVAL; 3016 3017 /* Ok, let it rip */ 3018 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 3019 } 3020 EXPORT_SYMBOL(vm_iomap_memory); 3021 3022 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 3023 unsigned long addr, unsigned long end, 3024 pte_fn_t fn, void *data, bool create, 3025 pgtbl_mod_mask *mask) 3026 { 3027 pte_t *pte, *mapped_pte; 3028 int err = 0; 3029 spinlock_t *ptl; 3030 3031 if (create) { 3032 mapped_pte = pte = (mm == &init_mm) ? 3033 pte_alloc_kernel_track(pmd, addr, mask) : 3034 pte_alloc_map_lock(mm, pmd, addr, &ptl); 3035 if (!pte) 3036 return -ENOMEM; 3037 } else { 3038 mapped_pte = pte = (mm == &init_mm) ? 3039 pte_offset_kernel(pmd, addr) : 3040 pte_offset_map_lock(mm, pmd, addr, &ptl); 3041 if (!pte) 3042 return -EINVAL; 3043 } 3044 3045 arch_enter_lazy_mmu_mode(); 3046 3047 if (fn) { 3048 do { 3049 if (create || !pte_none(ptep_get(pte))) { 3050 err = fn(pte, addr, data); 3051 if (err) 3052 break; 3053 } 3054 } while (pte++, addr += PAGE_SIZE, addr != end); 3055 } 3056 *mask |= PGTBL_PTE_MODIFIED; 3057 3058 arch_leave_lazy_mmu_mode(); 3059 3060 if (mm != &init_mm) 3061 pte_unmap_unlock(mapped_pte, ptl); 3062 return err; 3063 } 3064 3065 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 3066 unsigned long addr, unsigned long end, 3067 pte_fn_t fn, void *data, bool create, 3068 pgtbl_mod_mask *mask) 3069 { 3070 pmd_t *pmd; 3071 unsigned long next; 3072 int err = 0; 3073 3074 BUG_ON(pud_leaf(*pud)); 3075 3076 if (create) { 3077 pmd = pmd_alloc_track(mm, pud, addr, mask); 3078 if (!pmd) 3079 return -ENOMEM; 3080 } else { 3081 pmd = pmd_offset(pud, addr); 3082 } 3083 do { 3084 next = pmd_addr_end(addr, end); 3085 if (pmd_none(*pmd) && !create) 3086 continue; 3087 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 3088 return -EINVAL; 3089 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 3090 if (!create) 3091 continue; 3092 pmd_clear_bad(pmd); 3093 } 3094 err = apply_to_pte_range(mm, pmd, addr, next, 3095 fn, data, create, mask); 3096 if (err) 3097 break; 3098 } while (pmd++, addr = next, addr != end); 3099 3100 return err; 3101 } 3102 3103 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 3104 unsigned long addr, unsigned long end, 3105 pte_fn_t fn, void *data, bool create, 3106 pgtbl_mod_mask *mask) 3107 { 3108 pud_t *pud; 3109 unsigned long next; 3110 int err = 0; 3111 3112 if (create) { 3113 pud = pud_alloc_track(mm, p4d, addr, mask); 3114 if (!pud) 3115 return -ENOMEM; 3116 } else { 3117 pud = pud_offset(p4d, addr); 3118 } 3119 do { 3120 next = pud_addr_end(addr, end); 3121 if (pud_none(*pud) && !create) 3122 continue; 3123 if (WARN_ON_ONCE(pud_leaf(*pud))) 3124 return -EINVAL; 3125 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 3126 if (!create) 3127 continue; 3128 pud_clear_bad(pud); 3129 } 3130 err = apply_to_pmd_range(mm, pud, addr, next, 3131 fn, data, create, mask); 3132 if (err) 3133 break; 3134 } while (pud++, addr = next, addr != end); 3135 3136 return err; 3137 } 3138 3139 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 3140 unsigned long addr, unsigned long end, 3141 pte_fn_t fn, void *data, bool create, 3142 pgtbl_mod_mask *mask) 3143 { 3144 p4d_t *p4d; 3145 unsigned long next; 3146 int err = 0; 3147 3148 if (create) { 3149 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3150 if (!p4d) 3151 return -ENOMEM; 3152 } else { 3153 p4d = p4d_offset(pgd, addr); 3154 } 3155 do { 3156 next = p4d_addr_end(addr, end); 3157 if (p4d_none(*p4d) && !create) 3158 continue; 3159 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3160 return -EINVAL; 3161 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3162 if (!create) 3163 continue; 3164 p4d_clear_bad(p4d); 3165 } 3166 err = apply_to_pud_range(mm, p4d, addr, next, 3167 fn, data, create, mask); 3168 if (err) 3169 break; 3170 } while (p4d++, addr = next, addr != end); 3171 3172 return err; 3173 } 3174 3175 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3176 unsigned long size, pte_fn_t fn, 3177 void *data, bool create) 3178 { 3179 pgd_t *pgd; 3180 unsigned long start = addr, next; 3181 unsigned long end = addr + size; 3182 pgtbl_mod_mask mask = 0; 3183 int err = 0; 3184 3185 if (WARN_ON(addr >= end)) 3186 return -EINVAL; 3187 3188 pgd = pgd_offset(mm, addr); 3189 do { 3190 next = pgd_addr_end(addr, end); 3191 if (pgd_none(*pgd) && !create) 3192 continue; 3193 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3194 err = -EINVAL; 3195 break; 3196 } 3197 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3198 if (!create) 3199 continue; 3200 pgd_clear_bad(pgd); 3201 } 3202 err = apply_to_p4d_range(mm, pgd, addr, next, 3203 fn, data, create, &mask); 3204 if (err) 3205 break; 3206 } while (pgd++, addr = next, addr != end); 3207 3208 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3209 arch_sync_kernel_mappings(start, start + size); 3210 3211 return err; 3212 } 3213 3214 /* 3215 * Scan a region of virtual memory, filling in page tables as necessary 3216 * and calling a provided function on each leaf page table. 3217 */ 3218 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3219 unsigned long size, pte_fn_t fn, void *data) 3220 { 3221 return __apply_to_page_range(mm, addr, size, fn, data, true); 3222 } 3223 EXPORT_SYMBOL_GPL(apply_to_page_range); 3224 3225 /* 3226 * Scan a region of virtual memory, calling a provided function on 3227 * each leaf page table where it exists. 3228 * 3229 * Unlike apply_to_page_range, this does _not_ fill in page tables 3230 * where they are absent. 3231 */ 3232 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3233 unsigned long size, pte_fn_t fn, void *data) 3234 { 3235 return __apply_to_page_range(mm, addr, size, fn, data, false); 3236 } 3237 3238 /* 3239 * handle_pte_fault chooses page fault handler according to an entry which was 3240 * read non-atomically. Before making any commitment, on those architectures 3241 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3242 * parts, do_swap_page must check under lock before unmapping the pte and 3243 * proceeding (but do_wp_page is only called after already making such a check; 3244 * and do_anonymous_page can safely check later on). 3245 */ 3246 static inline int pte_unmap_same(struct vm_fault *vmf) 3247 { 3248 int same = 1; 3249 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3250 if (sizeof(pte_t) > sizeof(unsigned long)) { 3251 spin_lock(vmf->ptl); 3252 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3253 spin_unlock(vmf->ptl); 3254 } 3255 #endif 3256 pte_unmap(vmf->pte); 3257 vmf->pte = NULL; 3258 return same; 3259 } 3260 3261 /* 3262 * Return: 3263 * 0: copied succeeded 3264 * -EHWPOISON: copy failed due to hwpoison in source page 3265 * -EAGAIN: copied failed (some other reason) 3266 */ 3267 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3268 struct vm_fault *vmf) 3269 { 3270 int ret; 3271 void *kaddr; 3272 void __user *uaddr; 3273 struct vm_area_struct *vma = vmf->vma; 3274 struct mm_struct *mm = vma->vm_mm; 3275 unsigned long addr = vmf->address; 3276 3277 if (likely(src)) { 3278 if (copy_mc_user_highpage(dst, src, addr, vma)) 3279 return -EHWPOISON; 3280 return 0; 3281 } 3282 3283 /* 3284 * If the source page was a PFN mapping, we don't have 3285 * a "struct page" for it. We do a best-effort copy by 3286 * just copying from the original user address. If that 3287 * fails, we just zero-fill it. Live with it. 3288 */ 3289 kaddr = kmap_local_page(dst); 3290 pagefault_disable(); 3291 uaddr = (void __user *)(addr & PAGE_MASK); 3292 3293 /* 3294 * On architectures with software "accessed" bits, we would 3295 * take a double page fault, so mark it accessed here. 3296 */ 3297 vmf->pte = NULL; 3298 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3299 pte_t entry; 3300 3301 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3302 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3303 /* 3304 * Other thread has already handled the fault 3305 * and update local tlb only 3306 */ 3307 if (vmf->pte) 3308 update_mmu_tlb(vma, addr, vmf->pte); 3309 ret = -EAGAIN; 3310 goto pte_unlock; 3311 } 3312 3313 entry = pte_mkyoung(vmf->orig_pte); 3314 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3315 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3316 } 3317 3318 /* 3319 * This really shouldn't fail, because the page is there 3320 * in the page tables. But it might just be unreadable, 3321 * in which case we just give up and fill the result with 3322 * zeroes. 3323 */ 3324 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3325 if (vmf->pte) 3326 goto warn; 3327 3328 /* Re-validate under PTL if the page is still mapped */ 3329 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3330 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3331 /* The PTE changed under us, update local tlb */ 3332 if (vmf->pte) 3333 update_mmu_tlb(vma, addr, vmf->pte); 3334 ret = -EAGAIN; 3335 goto pte_unlock; 3336 } 3337 3338 /* 3339 * The same page can be mapped back since last copy attempt. 3340 * Try to copy again under PTL. 3341 */ 3342 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3343 /* 3344 * Give a warn in case there can be some obscure 3345 * use-case 3346 */ 3347 warn: 3348 WARN_ON_ONCE(1); 3349 clear_page(kaddr); 3350 } 3351 } 3352 3353 ret = 0; 3354 3355 pte_unlock: 3356 if (vmf->pte) 3357 pte_unmap_unlock(vmf->pte, vmf->ptl); 3358 pagefault_enable(); 3359 kunmap_local(kaddr); 3360 flush_dcache_page(dst); 3361 3362 return ret; 3363 } 3364 3365 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3366 { 3367 struct file *vm_file = vma->vm_file; 3368 3369 if (vm_file) 3370 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3371 3372 /* 3373 * Special mappings (e.g. VDSO) do not have any file so fake 3374 * a default GFP_KERNEL for them. 3375 */ 3376 return GFP_KERNEL; 3377 } 3378 3379 /* 3380 * Notify the address space that the page is about to become writable so that 3381 * it can prohibit this or wait for the page to get into an appropriate state. 3382 * 3383 * We do this without the lock held, so that it can sleep if it needs to. 3384 */ 3385 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3386 { 3387 vm_fault_t ret; 3388 unsigned int old_flags = vmf->flags; 3389 3390 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3391 3392 if (vmf->vma->vm_file && 3393 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3394 return VM_FAULT_SIGBUS; 3395 3396 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3397 /* Restore original flags so that caller is not surprised */ 3398 vmf->flags = old_flags; 3399 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3400 return ret; 3401 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3402 folio_lock(folio); 3403 if (!folio->mapping) { 3404 folio_unlock(folio); 3405 return 0; /* retry */ 3406 } 3407 ret |= VM_FAULT_LOCKED; 3408 } else 3409 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3410 return ret; 3411 } 3412 3413 /* 3414 * Handle dirtying of a page in shared file mapping on a write fault. 3415 * 3416 * The function expects the page to be locked and unlocks it. 3417 */ 3418 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3419 { 3420 struct vm_area_struct *vma = vmf->vma; 3421 struct address_space *mapping; 3422 struct folio *folio = page_folio(vmf->page); 3423 bool dirtied; 3424 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3425 3426 dirtied = folio_mark_dirty(folio); 3427 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3428 /* 3429 * Take a local copy of the address_space - folio.mapping may be zeroed 3430 * by truncate after folio_unlock(). The address_space itself remains 3431 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3432 * release semantics to prevent the compiler from undoing this copying. 3433 */ 3434 mapping = folio_raw_mapping(folio); 3435 folio_unlock(folio); 3436 3437 if (!page_mkwrite) 3438 file_update_time(vma->vm_file); 3439 3440 /* 3441 * Throttle page dirtying rate down to writeback speed. 3442 * 3443 * mapping may be NULL here because some device drivers do not 3444 * set page.mapping but still dirty their pages 3445 * 3446 * Drop the mmap_lock before waiting on IO, if we can. The file 3447 * is pinning the mapping, as per above. 3448 */ 3449 if ((dirtied || page_mkwrite) && mapping) { 3450 struct file *fpin; 3451 3452 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3453 balance_dirty_pages_ratelimited(mapping); 3454 if (fpin) { 3455 fput(fpin); 3456 return VM_FAULT_COMPLETED; 3457 } 3458 } 3459 3460 return 0; 3461 } 3462 3463 /* 3464 * Handle write page faults for pages that can be reused in the current vma 3465 * 3466 * This can happen either due to the mapping being with the VM_SHARED flag, 3467 * or due to us being the last reference standing to the page. In either 3468 * case, all we need to do here is to mark the page as writable and update 3469 * any related book-keeping. 3470 */ 3471 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3472 __releases(vmf->ptl) 3473 { 3474 struct vm_area_struct *vma = vmf->vma; 3475 pte_t entry; 3476 3477 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3478 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3479 3480 if (folio) { 3481 VM_BUG_ON(folio_test_anon(folio) && 3482 !PageAnonExclusive(vmf->page)); 3483 /* 3484 * Clear the folio's cpupid information as the existing 3485 * information potentially belongs to a now completely 3486 * unrelated process. 3487 */ 3488 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3489 } 3490 3491 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3492 entry = pte_mkyoung(vmf->orig_pte); 3493 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3494 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3495 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3496 pte_unmap_unlock(vmf->pte, vmf->ptl); 3497 count_vm_event(PGREUSE); 3498 } 3499 3500 /* 3501 * We could add a bitflag somewhere, but for now, we know that all 3502 * vm_ops that have a ->map_pages have been audited and don't need 3503 * the mmap_lock to be held. 3504 */ 3505 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3506 { 3507 struct vm_area_struct *vma = vmf->vma; 3508 3509 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3510 return 0; 3511 vma_end_read(vma); 3512 return VM_FAULT_RETRY; 3513 } 3514 3515 /** 3516 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3517 * @vmf: The vm_fault descriptor passed from the fault handler. 3518 * 3519 * When preparing to insert an anonymous page into a VMA from a 3520 * fault handler, call this function rather than anon_vma_prepare(). 3521 * If this vma does not already have an associated anon_vma and we are 3522 * only protected by the per-VMA lock, the caller must retry with the 3523 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3524 * determine if this VMA can share its anon_vma, and that's not safe to 3525 * do with only the per-VMA lock held for this VMA. 3526 * 3527 * Return: 0 if fault handling can proceed. Any other value should be 3528 * returned to the caller. 3529 */ 3530 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3531 { 3532 struct vm_area_struct *vma = vmf->vma; 3533 vm_fault_t ret = 0; 3534 3535 if (likely(vma->anon_vma)) 3536 return 0; 3537 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3538 if (!mmap_read_trylock(vma->vm_mm)) 3539 return VM_FAULT_RETRY; 3540 } 3541 if (__anon_vma_prepare(vma)) 3542 ret = VM_FAULT_OOM; 3543 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3544 mmap_read_unlock(vma->vm_mm); 3545 return ret; 3546 } 3547 3548 /* 3549 * Handle the case of a page which we actually need to copy to a new page, 3550 * either due to COW or unsharing. 3551 * 3552 * Called with mmap_lock locked and the old page referenced, but 3553 * without the ptl held. 3554 * 3555 * High level logic flow: 3556 * 3557 * - Allocate a page, copy the content of the old page to the new one. 3558 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3559 * - Take the PTL. If the pte changed, bail out and release the allocated page 3560 * - If the pte is still the way we remember it, update the page table and all 3561 * relevant references. This includes dropping the reference the page-table 3562 * held to the old page, as well as updating the rmap. 3563 * - In any case, unlock the PTL and drop the reference we took to the old page. 3564 */ 3565 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3566 { 3567 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3568 struct vm_area_struct *vma = vmf->vma; 3569 struct mm_struct *mm = vma->vm_mm; 3570 struct folio *old_folio = NULL; 3571 struct folio *new_folio = NULL; 3572 pte_t entry; 3573 int page_copied = 0; 3574 struct mmu_notifier_range range; 3575 vm_fault_t ret; 3576 bool pfn_is_zero; 3577 3578 delayacct_wpcopy_start(); 3579 3580 if (vmf->page) 3581 old_folio = page_folio(vmf->page); 3582 ret = vmf_anon_prepare(vmf); 3583 if (unlikely(ret)) 3584 goto out; 3585 3586 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3587 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3588 if (!new_folio) 3589 goto oom; 3590 3591 if (!pfn_is_zero) { 3592 int err; 3593 3594 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3595 if (err) { 3596 /* 3597 * COW failed, if the fault was solved by other, 3598 * it's fine. If not, userspace would re-fault on 3599 * the same address and we will handle the fault 3600 * from the second attempt. 3601 * The -EHWPOISON case will not be retried. 3602 */ 3603 folio_put(new_folio); 3604 if (old_folio) 3605 folio_put(old_folio); 3606 3607 delayacct_wpcopy_end(); 3608 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3609 } 3610 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3611 } 3612 3613 __folio_mark_uptodate(new_folio); 3614 3615 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3616 vmf->address & PAGE_MASK, 3617 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3618 mmu_notifier_invalidate_range_start(&range); 3619 3620 /* 3621 * Re-check the pte - we dropped the lock 3622 */ 3623 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3624 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3625 if (old_folio) { 3626 if (!folio_test_anon(old_folio)) { 3627 dec_mm_counter(mm, mm_counter_file(old_folio)); 3628 inc_mm_counter(mm, MM_ANONPAGES); 3629 } 3630 } else { 3631 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3632 inc_mm_counter(mm, MM_ANONPAGES); 3633 } 3634 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3635 entry = folio_mk_pte(new_folio, vma->vm_page_prot); 3636 entry = pte_sw_mkyoung(entry); 3637 if (unlikely(unshare)) { 3638 if (pte_soft_dirty(vmf->orig_pte)) 3639 entry = pte_mksoft_dirty(entry); 3640 if (pte_uffd_wp(vmf->orig_pte)) 3641 entry = pte_mkuffd_wp(entry); 3642 } else { 3643 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3644 } 3645 3646 /* 3647 * Clear the pte entry and flush it first, before updating the 3648 * pte with the new entry, to keep TLBs on different CPUs in 3649 * sync. This code used to set the new PTE then flush TLBs, but 3650 * that left a window where the new PTE could be loaded into 3651 * some TLBs while the old PTE remains in others. 3652 */ 3653 ptep_clear_flush(vma, vmf->address, vmf->pte); 3654 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3655 folio_add_lru_vma(new_folio, vma); 3656 BUG_ON(unshare && pte_write(entry)); 3657 set_pte_at(mm, vmf->address, vmf->pte, entry); 3658 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3659 if (old_folio) { 3660 /* 3661 * Only after switching the pte to the new page may 3662 * we remove the mapcount here. Otherwise another 3663 * process may come and find the rmap count decremented 3664 * before the pte is switched to the new page, and 3665 * "reuse" the old page writing into it while our pte 3666 * here still points into it and can be read by other 3667 * threads. 3668 * 3669 * The critical issue is to order this 3670 * folio_remove_rmap_pte() with the ptp_clear_flush 3671 * above. Those stores are ordered by (if nothing else,) 3672 * the barrier present in the atomic_add_negative 3673 * in folio_remove_rmap_pte(); 3674 * 3675 * Then the TLB flush in ptep_clear_flush ensures that 3676 * no process can access the old page before the 3677 * decremented mapcount is visible. And the old page 3678 * cannot be reused until after the decremented 3679 * mapcount is visible. So transitively, TLBs to 3680 * old page will be flushed before it can be reused. 3681 */ 3682 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3683 } 3684 3685 /* Free the old page.. */ 3686 new_folio = old_folio; 3687 page_copied = 1; 3688 pte_unmap_unlock(vmf->pte, vmf->ptl); 3689 } else if (vmf->pte) { 3690 update_mmu_tlb(vma, vmf->address, vmf->pte); 3691 pte_unmap_unlock(vmf->pte, vmf->ptl); 3692 } 3693 3694 mmu_notifier_invalidate_range_end(&range); 3695 3696 if (new_folio) 3697 folio_put(new_folio); 3698 if (old_folio) { 3699 if (page_copied) 3700 free_swap_cache(old_folio); 3701 folio_put(old_folio); 3702 } 3703 3704 delayacct_wpcopy_end(); 3705 return 0; 3706 oom: 3707 ret = VM_FAULT_OOM; 3708 out: 3709 if (old_folio) 3710 folio_put(old_folio); 3711 3712 delayacct_wpcopy_end(); 3713 return ret; 3714 } 3715 3716 /** 3717 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3718 * writeable once the page is prepared 3719 * 3720 * @vmf: structure describing the fault 3721 * @folio: the folio of vmf->page 3722 * 3723 * This function handles all that is needed to finish a write page fault in a 3724 * shared mapping due to PTE being read-only once the mapped page is prepared. 3725 * It handles locking of PTE and modifying it. 3726 * 3727 * The function expects the page to be locked or other protection against 3728 * concurrent faults / writeback (such as DAX radix tree locks). 3729 * 3730 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3731 * we acquired PTE lock. 3732 */ 3733 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3734 { 3735 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3736 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3737 &vmf->ptl); 3738 if (!vmf->pte) 3739 return VM_FAULT_NOPAGE; 3740 /* 3741 * We might have raced with another page fault while we released the 3742 * pte_offset_map_lock. 3743 */ 3744 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3745 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3746 pte_unmap_unlock(vmf->pte, vmf->ptl); 3747 return VM_FAULT_NOPAGE; 3748 } 3749 wp_page_reuse(vmf, folio); 3750 return 0; 3751 } 3752 3753 /* 3754 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3755 * mapping 3756 */ 3757 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3758 { 3759 struct vm_area_struct *vma = vmf->vma; 3760 3761 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3762 vm_fault_t ret; 3763 3764 pte_unmap_unlock(vmf->pte, vmf->ptl); 3765 ret = vmf_can_call_fault(vmf); 3766 if (ret) 3767 return ret; 3768 3769 vmf->flags |= FAULT_FLAG_MKWRITE; 3770 ret = vma->vm_ops->pfn_mkwrite(vmf); 3771 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3772 return ret; 3773 return finish_mkwrite_fault(vmf, NULL); 3774 } 3775 wp_page_reuse(vmf, NULL); 3776 return 0; 3777 } 3778 3779 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3780 __releases(vmf->ptl) 3781 { 3782 struct vm_area_struct *vma = vmf->vma; 3783 vm_fault_t ret = 0; 3784 3785 folio_get(folio); 3786 3787 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3788 vm_fault_t tmp; 3789 3790 pte_unmap_unlock(vmf->pte, vmf->ptl); 3791 tmp = vmf_can_call_fault(vmf); 3792 if (tmp) { 3793 folio_put(folio); 3794 return tmp; 3795 } 3796 3797 tmp = do_page_mkwrite(vmf, folio); 3798 if (unlikely(!tmp || (tmp & 3799 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3800 folio_put(folio); 3801 return tmp; 3802 } 3803 tmp = finish_mkwrite_fault(vmf, folio); 3804 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3805 folio_unlock(folio); 3806 folio_put(folio); 3807 return tmp; 3808 } 3809 } else { 3810 wp_page_reuse(vmf, folio); 3811 folio_lock(folio); 3812 } 3813 ret |= fault_dirty_shared_page(vmf); 3814 folio_put(folio); 3815 3816 return ret; 3817 } 3818 3819 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3820 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3821 struct vm_area_struct *vma) 3822 { 3823 bool exclusive = false; 3824 3825 /* Let's just free up a large folio if only a single page is mapped. */ 3826 if (folio_large_mapcount(folio) <= 1) 3827 return false; 3828 3829 /* 3830 * The assumption for anonymous folios is that each page can only get 3831 * mapped once into each MM. The only exception are KSM folios, which 3832 * are always small. 3833 * 3834 * Each taken mapcount must be paired with exactly one taken reference, 3835 * whereby the refcount must be incremented before the mapcount when 3836 * mapping a page, and the refcount must be decremented after the 3837 * mapcount when unmapping a page. 3838 * 3839 * If all folio references are from mappings, and all mappings are in 3840 * the page tables of this MM, then this folio is exclusive to this MM. 3841 */ 3842 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3843 return false; 3844 3845 VM_WARN_ON_ONCE(folio_test_ksm(folio)); 3846 3847 if (unlikely(folio_test_swapcache(folio))) { 3848 /* 3849 * Note: freeing up the swapcache will fail if some PTEs are 3850 * still swap entries. 3851 */ 3852 if (!folio_trylock(folio)) 3853 return false; 3854 folio_free_swap(folio); 3855 folio_unlock(folio); 3856 } 3857 3858 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3859 return false; 3860 3861 /* Stabilize the mapcount vs. refcount and recheck. */ 3862 folio_lock_large_mapcount(folio); 3863 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio); 3864 3865 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3866 goto unlock; 3867 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3868 goto unlock; 3869 3870 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio); 3871 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio); 3872 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id && 3873 folio_mm_id(folio, 1) != vma->vm_mm->mm_id); 3874 3875 /* 3876 * Do we need the folio lock? Likely not. If there would have been 3877 * references from page migration/swapout, we would have detected 3878 * an additional folio reference and never ended up here. 3879 */ 3880 exclusive = true; 3881 unlock: 3882 folio_unlock_large_mapcount(folio); 3883 return exclusive; 3884 } 3885 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 3886 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3887 struct vm_area_struct *vma) 3888 { 3889 BUILD_BUG(); 3890 } 3891 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3892 3893 static bool wp_can_reuse_anon_folio(struct folio *folio, 3894 struct vm_area_struct *vma) 3895 { 3896 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio)) 3897 return __wp_can_reuse_large_anon_folio(folio, vma); 3898 3899 /* 3900 * We have to verify under folio lock: these early checks are 3901 * just an optimization to avoid locking the folio and freeing 3902 * the swapcache if there is little hope that we can reuse. 3903 * 3904 * KSM doesn't necessarily raise the folio refcount. 3905 */ 3906 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3907 return false; 3908 if (!folio_test_lru(folio)) 3909 /* 3910 * We cannot easily detect+handle references from 3911 * remote LRU caches or references to LRU folios. 3912 */ 3913 lru_add_drain(); 3914 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3915 return false; 3916 if (!folio_trylock(folio)) 3917 return false; 3918 if (folio_test_swapcache(folio)) 3919 folio_free_swap(folio); 3920 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3921 folio_unlock(folio); 3922 return false; 3923 } 3924 /* 3925 * Ok, we've got the only folio reference from our mapping 3926 * and the folio is locked, it's dark out, and we're wearing 3927 * sunglasses. Hit it. 3928 */ 3929 folio_move_anon_rmap(folio, vma); 3930 folio_unlock(folio); 3931 return true; 3932 } 3933 3934 /* 3935 * This routine handles present pages, when 3936 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3937 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3938 * (FAULT_FLAG_UNSHARE) 3939 * 3940 * It is done by copying the page to a new address and decrementing the 3941 * shared-page counter for the old page. 3942 * 3943 * Note that this routine assumes that the protection checks have been 3944 * done by the caller (the low-level page fault routine in most cases). 3945 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3946 * done any necessary COW. 3947 * 3948 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3949 * though the page will change only once the write actually happens. This 3950 * avoids a few races, and potentially makes it more efficient. 3951 * 3952 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3953 * but allow concurrent faults), with pte both mapped and locked. 3954 * We return with mmap_lock still held, but pte unmapped and unlocked. 3955 */ 3956 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3957 __releases(vmf->ptl) 3958 { 3959 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3960 struct vm_area_struct *vma = vmf->vma; 3961 struct folio *folio = NULL; 3962 pte_t pte; 3963 3964 if (likely(!unshare)) { 3965 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3966 if (!userfaultfd_wp_async(vma)) { 3967 pte_unmap_unlock(vmf->pte, vmf->ptl); 3968 return handle_userfault(vmf, VM_UFFD_WP); 3969 } 3970 3971 /* 3972 * Nothing needed (cache flush, TLB invalidations, 3973 * etc.) because we're only removing the uffd-wp bit, 3974 * which is completely invisible to the user. 3975 */ 3976 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3977 3978 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3979 /* 3980 * Update this to be prepared for following up CoW 3981 * handling 3982 */ 3983 vmf->orig_pte = pte; 3984 } 3985 3986 /* 3987 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3988 * is flushed in this case before copying. 3989 */ 3990 if (unlikely(userfaultfd_wp(vmf->vma) && 3991 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3992 flush_tlb_page(vmf->vma, vmf->address); 3993 } 3994 3995 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3996 3997 if (vmf->page) 3998 folio = page_folio(vmf->page); 3999 4000 /* 4001 * Shared mapping: we are guaranteed to have VM_WRITE and 4002 * FAULT_FLAG_WRITE set at this point. 4003 */ 4004 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4005 /* 4006 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 4007 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called. 4008 * 4009 * We should not cow pages in a shared writeable mapping. 4010 * Just mark the pages writable and/or call ops->pfn_mkwrite. 4011 */ 4012 if (!vmf->page || is_fsdax_page(vmf->page)) { 4013 vmf->page = NULL; 4014 return wp_pfn_shared(vmf); 4015 } 4016 return wp_page_shared(vmf, folio); 4017 } 4018 4019 /* 4020 * Private mapping: create an exclusive anonymous page copy if reuse 4021 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 4022 * 4023 * If we encounter a page that is marked exclusive, we must reuse 4024 * the page without further checks. 4025 */ 4026 if (folio && folio_test_anon(folio) && 4027 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 4028 if (!PageAnonExclusive(vmf->page)) 4029 SetPageAnonExclusive(vmf->page); 4030 if (unlikely(unshare)) { 4031 pte_unmap_unlock(vmf->pte, vmf->ptl); 4032 return 0; 4033 } 4034 wp_page_reuse(vmf, folio); 4035 return 0; 4036 } 4037 /* 4038 * Ok, we need to copy. Oh, well.. 4039 */ 4040 if (folio) 4041 folio_get(folio); 4042 4043 pte_unmap_unlock(vmf->pte, vmf->ptl); 4044 #ifdef CONFIG_KSM 4045 if (folio && folio_test_ksm(folio)) 4046 count_vm_event(COW_KSM); 4047 #endif 4048 return wp_page_copy(vmf); 4049 } 4050 4051 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 4052 unsigned long start_addr, unsigned long end_addr, 4053 struct zap_details *details) 4054 { 4055 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 4056 } 4057 4058 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 4059 pgoff_t first_index, 4060 pgoff_t last_index, 4061 struct zap_details *details) 4062 { 4063 struct vm_area_struct *vma; 4064 pgoff_t vba, vea, zba, zea; 4065 4066 vma_interval_tree_foreach(vma, root, first_index, last_index) { 4067 vba = vma->vm_pgoff; 4068 vea = vba + vma_pages(vma) - 1; 4069 zba = max(first_index, vba); 4070 zea = min(last_index, vea); 4071 4072 unmap_mapping_range_vma(vma, 4073 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 4074 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 4075 details); 4076 } 4077 } 4078 4079 /** 4080 * unmap_mapping_folio() - Unmap single folio from processes. 4081 * @folio: The locked folio to be unmapped. 4082 * 4083 * Unmap this folio from any userspace process which still has it mmaped. 4084 * Typically, for efficiency, the range of nearby pages has already been 4085 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 4086 * truncation or invalidation holds the lock on a folio, it may find that 4087 * the page has been remapped again: and then uses unmap_mapping_folio() 4088 * to unmap it finally. 4089 */ 4090 void unmap_mapping_folio(struct folio *folio) 4091 { 4092 struct address_space *mapping = folio->mapping; 4093 struct zap_details details = { }; 4094 pgoff_t first_index; 4095 pgoff_t last_index; 4096 4097 VM_BUG_ON(!folio_test_locked(folio)); 4098 4099 first_index = folio->index; 4100 last_index = folio_next_index(folio) - 1; 4101 4102 details.even_cows = false; 4103 details.single_folio = folio; 4104 details.zap_flags = ZAP_FLAG_DROP_MARKER; 4105 4106 i_mmap_lock_read(mapping); 4107 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4108 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4109 last_index, &details); 4110 i_mmap_unlock_read(mapping); 4111 } 4112 4113 /** 4114 * unmap_mapping_pages() - Unmap pages from processes. 4115 * @mapping: The address space containing pages to be unmapped. 4116 * @start: Index of first page to be unmapped. 4117 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 4118 * @even_cows: Whether to unmap even private COWed pages. 4119 * 4120 * Unmap the pages in this address space from any userspace process which 4121 * has them mmaped. Generally, you want to remove COWed pages as well when 4122 * a file is being truncated, but not when invalidating pages from the page 4123 * cache. 4124 */ 4125 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 4126 pgoff_t nr, bool even_cows) 4127 { 4128 struct zap_details details = { }; 4129 pgoff_t first_index = start; 4130 pgoff_t last_index = start + nr - 1; 4131 4132 details.even_cows = even_cows; 4133 if (last_index < first_index) 4134 last_index = ULONG_MAX; 4135 4136 i_mmap_lock_read(mapping); 4137 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4138 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4139 last_index, &details); 4140 i_mmap_unlock_read(mapping); 4141 } 4142 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 4143 4144 /** 4145 * unmap_mapping_range - unmap the portion of all mmaps in the specified 4146 * address_space corresponding to the specified byte range in the underlying 4147 * file. 4148 * 4149 * @mapping: the address space containing mmaps to be unmapped. 4150 * @holebegin: byte in first page to unmap, relative to the start of 4151 * the underlying file. This will be rounded down to a PAGE_SIZE 4152 * boundary. Note that this is different from truncate_pagecache(), which 4153 * must keep the partial page. In contrast, we must get rid of 4154 * partial pages. 4155 * @holelen: size of prospective hole in bytes. This will be rounded 4156 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 4157 * end of the file. 4158 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 4159 * but 0 when invalidating pagecache, don't throw away private data. 4160 */ 4161 void unmap_mapping_range(struct address_space *mapping, 4162 loff_t const holebegin, loff_t const holelen, int even_cows) 4163 { 4164 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 4165 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 4166 4167 /* Check for overflow. */ 4168 if (sizeof(holelen) > sizeof(hlen)) { 4169 long long holeend = 4170 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 4171 if (holeend & ~(long long)ULONG_MAX) 4172 hlen = ULONG_MAX - hba + 1; 4173 } 4174 4175 unmap_mapping_pages(mapping, hba, hlen, even_cows); 4176 } 4177 EXPORT_SYMBOL(unmap_mapping_range); 4178 4179 /* 4180 * Restore a potential device exclusive pte to a working pte entry 4181 */ 4182 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 4183 { 4184 struct folio *folio = page_folio(vmf->page); 4185 struct vm_area_struct *vma = vmf->vma; 4186 struct mmu_notifier_range range; 4187 vm_fault_t ret; 4188 4189 /* 4190 * We need a reference to lock the folio because we don't hold 4191 * the PTL so a racing thread can remove the device-exclusive 4192 * entry and unmap it. If the folio is free the entry must 4193 * have been removed already. If it happens to have already 4194 * been re-allocated after being freed all we do is lock and 4195 * unlock it. 4196 */ 4197 if (!folio_try_get(folio)) 4198 return 0; 4199 4200 ret = folio_lock_or_retry(folio, vmf); 4201 if (ret) { 4202 folio_put(folio); 4203 return ret; 4204 } 4205 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0, 4206 vma->vm_mm, vmf->address & PAGE_MASK, 4207 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 4208 mmu_notifier_invalidate_range_start(&range); 4209 4210 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4211 &vmf->ptl); 4212 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4213 restore_exclusive_pte(vma, folio, vmf->page, vmf->address, 4214 vmf->pte, vmf->orig_pte); 4215 4216 if (vmf->pte) 4217 pte_unmap_unlock(vmf->pte, vmf->ptl); 4218 folio_unlock(folio); 4219 folio_put(folio); 4220 4221 mmu_notifier_invalidate_range_end(&range); 4222 return 0; 4223 } 4224 4225 static inline bool should_try_to_free_swap(struct folio *folio, 4226 struct vm_area_struct *vma, 4227 unsigned int fault_flags) 4228 { 4229 if (!folio_test_swapcache(folio)) 4230 return false; 4231 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4232 folio_test_mlocked(folio)) 4233 return true; 4234 /* 4235 * If we want to map a page that's in the swapcache writable, we 4236 * have to detect via the refcount if we're really the exclusive 4237 * user. Try freeing the swapcache to get rid of the swapcache 4238 * reference only in case it's likely that we'll be the exlusive user. 4239 */ 4240 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4241 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4242 } 4243 4244 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4245 { 4246 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4247 vmf->address, &vmf->ptl); 4248 if (!vmf->pte) 4249 return 0; 4250 /* 4251 * Be careful so that we will only recover a special uffd-wp pte into a 4252 * none pte. Otherwise it means the pte could have changed, so retry. 4253 * 4254 * This should also cover the case where e.g. the pte changed 4255 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4256 * So is_pte_marker() check is not enough to safely drop the pte. 4257 */ 4258 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4259 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4260 pte_unmap_unlock(vmf->pte, vmf->ptl); 4261 return 0; 4262 } 4263 4264 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4265 { 4266 if (vma_is_anonymous(vmf->vma)) 4267 return do_anonymous_page(vmf); 4268 else 4269 return do_fault(vmf); 4270 } 4271 4272 /* 4273 * This is actually a page-missing access, but with uffd-wp special pte 4274 * installed. It means this pte was wr-protected before being unmapped. 4275 */ 4276 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4277 { 4278 /* 4279 * Just in case there're leftover special ptes even after the region 4280 * got unregistered - we can simply clear them. 4281 */ 4282 if (unlikely(!userfaultfd_wp(vmf->vma))) 4283 return pte_marker_clear(vmf); 4284 4285 return do_pte_missing(vmf); 4286 } 4287 4288 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4289 { 4290 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4291 unsigned long marker = pte_marker_get(entry); 4292 4293 /* 4294 * PTE markers should never be empty. If anything weird happened, 4295 * the best thing to do is to kill the process along with its mm. 4296 */ 4297 if (WARN_ON_ONCE(!marker)) 4298 return VM_FAULT_SIGBUS; 4299 4300 /* Higher priority than uffd-wp when data corrupted */ 4301 if (marker & PTE_MARKER_POISONED) 4302 return VM_FAULT_HWPOISON; 4303 4304 /* Hitting a guard page is always a fatal condition. */ 4305 if (marker & PTE_MARKER_GUARD) 4306 return VM_FAULT_SIGSEGV; 4307 4308 if (pte_marker_entry_uffd_wp(entry)) 4309 return pte_marker_handle_uffd_wp(vmf); 4310 4311 /* This is an unknown pte marker */ 4312 return VM_FAULT_SIGBUS; 4313 } 4314 4315 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4316 { 4317 struct vm_area_struct *vma = vmf->vma; 4318 struct folio *folio; 4319 swp_entry_t entry; 4320 4321 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4322 if (!folio) 4323 return NULL; 4324 4325 entry = pte_to_swp_entry(vmf->orig_pte); 4326 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4327 GFP_KERNEL, entry)) { 4328 folio_put(folio); 4329 return NULL; 4330 } 4331 4332 return folio; 4333 } 4334 4335 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4336 /* 4337 * Check if the PTEs within a range are contiguous swap entries 4338 * and have consistent swapcache, zeromap. 4339 */ 4340 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4341 { 4342 unsigned long addr; 4343 swp_entry_t entry; 4344 int idx; 4345 pte_t pte; 4346 4347 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4348 idx = (vmf->address - addr) / PAGE_SIZE; 4349 pte = ptep_get(ptep); 4350 4351 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4352 return false; 4353 entry = pte_to_swp_entry(pte); 4354 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4355 return false; 4356 4357 /* 4358 * swap_read_folio() can't handle the case a large folio is hybridly 4359 * from different backends. And they are likely corner cases. Similar 4360 * things might be added once zswap support large folios. 4361 */ 4362 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4363 return false; 4364 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4365 return false; 4366 4367 return true; 4368 } 4369 4370 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4371 unsigned long addr, 4372 unsigned long orders) 4373 { 4374 int order, nr; 4375 4376 order = highest_order(orders); 4377 4378 /* 4379 * To swap in a THP with nr pages, we require that its first swap_offset 4380 * is aligned with that number, as it was when the THP was swapped out. 4381 * This helps filter out most invalid entries. 4382 */ 4383 while (orders) { 4384 nr = 1 << order; 4385 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4386 break; 4387 order = next_order(&orders, order); 4388 } 4389 4390 return orders; 4391 } 4392 4393 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4394 { 4395 struct vm_area_struct *vma = vmf->vma; 4396 unsigned long orders; 4397 struct folio *folio; 4398 unsigned long addr; 4399 swp_entry_t entry; 4400 spinlock_t *ptl; 4401 pte_t *pte; 4402 gfp_t gfp; 4403 int order; 4404 4405 /* 4406 * If uffd is active for the vma we need per-page fault fidelity to 4407 * maintain the uffd semantics. 4408 */ 4409 if (unlikely(userfaultfd_armed(vma))) 4410 goto fallback; 4411 4412 /* 4413 * A large swapped out folio could be partially or fully in zswap. We 4414 * lack handling for such cases, so fallback to swapping in order-0 4415 * folio. 4416 */ 4417 if (!zswap_never_enabled()) 4418 goto fallback; 4419 4420 entry = pte_to_swp_entry(vmf->orig_pte); 4421 /* 4422 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4423 * and suitable for swapping THP. 4424 */ 4425 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4426 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4427 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4428 orders = thp_swap_suitable_orders(swp_offset(entry), 4429 vmf->address, orders); 4430 4431 if (!orders) 4432 goto fallback; 4433 4434 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4435 vmf->address & PMD_MASK, &ptl); 4436 if (unlikely(!pte)) 4437 goto fallback; 4438 4439 /* 4440 * For do_swap_page, find the highest order where the aligned range is 4441 * completely swap entries with contiguous swap offsets. 4442 */ 4443 order = highest_order(orders); 4444 while (orders) { 4445 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4446 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4447 break; 4448 order = next_order(&orders, order); 4449 } 4450 4451 pte_unmap_unlock(pte, ptl); 4452 4453 /* Try allocating the highest of the remaining orders. */ 4454 gfp = vma_thp_gfp_mask(vma); 4455 while (orders) { 4456 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4457 folio = vma_alloc_folio(gfp, order, vma, addr); 4458 if (folio) { 4459 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4460 gfp, entry)) 4461 return folio; 4462 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4463 folio_put(folio); 4464 } 4465 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4466 order = next_order(&orders, order); 4467 } 4468 4469 fallback: 4470 return __alloc_swap_folio(vmf); 4471 } 4472 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4473 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4474 { 4475 return __alloc_swap_folio(vmf); 4476 } 4477 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4478 4479 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4480 4481 /* 4482 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4483 * but allow concurrent faults), and pte mapped but not yet locked. 4484 * We return with pte unmapped and unlocked. 4485 * 4486 * We return with the mmap_lock locked or unlocked in the same cases 4487 * as does filemap_fault(). 4488 */ 4489 vm_fault_t do_swap_page(struct vm_fault *vmf) 4490 { 4491 struct vm_area_struct *vma = vmf->vma; 4492 struct folio *swapcache, *folio = NULL; 4493 DECLARE_WAITQUEUE(wait, current); 4494 struct page *page; 4495 struct swap_info_struct *si = NULL; 4496 rmap_t rmap_flags = RMAP_NONE; 4497 bool need_clear_cache = false; 4498 bool exclusive = false; 4499 swp_entry_t entry; 4500 pte_t pte; 4501 vm_fault_t ret = 0; 4502 void *shadow = NULL; 4503 int nr_pages; 4504 unsigned long page_idx; 4505 unsigned long address; 4506 pte_t *ptep; 4507 4508 if (!pte_unmap_same(vmf)) 4509 goto out; 4510 4511 entry = pte_to_swp_entry(vmf->orig_pte); 4512 if (unlikely(non_swap_entry(entry))) { 4513 if (is_migration_entry(entry)) { 4514 migration_entry_wait(vma->vm_mm, vmf->pmd, 4515 vmf->address); 4516 } else if (is_device_exclusive_entry(entry)) { 4517 vmf->page = pfn_swap_entry_to_page(entry); 4518 ret = remove_device_exclusive_entry(vmf); 4519 } else if (is_device_private_entry(entry)) { 4520 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4521 /* 4522 * migrate_to_ram is not yet ready to operate 4523 * under VMA lock. 4524 */ 4525 vma_end_read(vma); 4526 ret = VM_FAULT_RETRY; 4527 goto out; 4528 } 4529 4530 vmf->page = pfn_swap_entry_to_page(entry); 4531 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4532 vmf->address, &vmf->ptl); 4533 if (unlikely(!vmf->pte || 4534 !pte_same(ptep_get(vmf->pte), 4535 vmf->orig_pte))) 4536 goto unlock; 4537 4538 /* 4539 * Get a page reference while we know the page can't be 4540 * freed. 4541 */ 4542 if (trylock_page(vmf->page)) { 4543 struct dev_pagemap *pgmap; 4544 4545 get_page(vmf->page); 4546 pte_unmap_unlock(vmf->pte, vmf->ptl); 4547 pgmap = page_pgmap(vmf->page); 4548 ret = pgmap->ops->migrate_to_ram(vmf); 4549 unlock_page(vmf->page); 4550 put_page(vmf->page); 4551 } else { 4552 pte_unmap_unlock(vmf->pte, vmf->ptl); 4553 } 4554 } else if (is_hwpoison_entry(entry)) { 4555 ret = VM_FAULT_HWPOISON; 4556 } else if (is_pte_marker_entry(entry)) { 4557 ret = handle_pte_marker(vmf); 4558 } else { 4559 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4560 ret = VM_FAULT_SIGBUS; 4561 } 4562 goto out; 4563 } 4564 4565 /* Prevent swapoff from happening to us. */ 4566 si = get_swap_device(entry); 4567 if (unlikely(!si)) 4568 goto out; 4569 4570 folio = swap_cache_get_folio(entry, vma, vmf->address); 4571 if (folio) 4572 page = folio_file_page(folio, swp_offset(entry)); 4573 swapcache = folio; 4574 4575 if (!folio) { 4576 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4577 __swap_count(entry) == 1) { 4578 /* skip swapcache */ 4579 folio = alloc_swap_folio(vmf); 4580 if (folio) { 4581 __folio_set_locked(folio); 4582 __folio_set_swapbacked(folio); 4583 4584 nr_pages = folio_nr_pages(folio); 4585 if (folio_test_large(folio)) 4586 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4587 /* 4588 * Prevent parallel swapin from proceeding with 4589 * the cache flag. Otherwise, another thread 4590 * may finish swapin first, free the entry, and 4591 * swapout reusing the same entry. It's 4592 * undetectable as pte_same() returns true due 4593 * to entry reuse. 4594 */ 4595 if (swapcache_prepare(entry, nr_pages)) { 4596 /* 4597 * Relax a bit to prevent rapid 4598 * repeated page faults. 4599 */ 4600 add_wait_queue(&swapcache_wq, &wait); 4601 schedule_timeout_uninterruptible(1); 4602 remove_wait_queue(&swapcache_wq, &wait); 4603 goto out_page; 4604 } 4605 need_clear_cache = true; 4606 4607 memcg1_swapin(entry, nr_pages); 4608 4609 shadow = get_shadow_from_swap_cache(entry); 4610 if (shadow) 4611 workingset_refault(folio, shadow); 4612 4613 folio_add_lru(folio); 4614 4615 /* To provide entry to swap_read_folio() */ 4616 folio->swap = entry; 4617 swap_read_folio(folio, NULL); 4618 folio->private = NULL; 4619 } 4620 } else { 4621 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4622 vmf); 4623 swapcache = folio; 4624 } 4625 4626 if (!folio) { 4627 /* 4628 * Back out if somebody else faulted in this pte 4629 * while we released the pte lock. 4630 */ 4631 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4632 vmf->address, &vmf->ptl); 4633 if (likely(vmf->pte && 4634 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4635 ret = VM_FAULT_OOM; 4636 goto unlock; 4637 } 4638 4639 /* Had to read the page from swap area: Major fault */ 4640 ret = VM_FAULT_MAJOR; 4641 count_vm_event(PGMAJFAULT); 4642 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4643 page = folio_file_page(folio, swp_offset(entry)); 4644 } else if (PageHWPoison(page)) { 4645 /* 4646 * hwpoisoned dirty swapcache pages are kept for killing 4647 * owner processes (which may be unknown at hwpoison time) 4648 */ 4649 ret = VM_FAULT_HWPOISON; 4650 goto out_release; 4651 } 4652 4653 ret |= folio_lock_or_retry(folio, vmf); 4654 if (ret & VM_FAULT_RETRY) 4655 goto out_release; 4656 4657 if (swapcache) { 4658 /* 4659 * Make sure folio_free_swap() or swapoff did not release the 4660 * swapcache from under us. The page pin, and pte_same test 4661 * below, are not enough to exclude that. Even if it is still 4662 * swapcache, we need to check that the page's swap has not 4663 * changed. 4664 */ 4665 if (unlikely(!folio_test_swapcache(folio) || 4666 page_swap_entry(page).val != entry.val)) 4667 goto out_page; 4668 4669 /* 4670 * KSM sometimes has to copy on read faults, for example, if 4671 * folio->index of non-ksm folios would be nonlinear inside the 4672 * anon VMA -- the ksm flag is lost on actual swapout. 4673 */ 4674 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4675 if (unlikely(!folio)) { 4676 ret = VM_FAULT_OOM; 4677 folio = swapcache; 4678 goto out_page; 4679 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4680 ret = VM_FAULT_HWPOISON; 4681 folio = swapcache; 4682 goto out_page; 4683 } 4684 if (folio != swapcache) 4685 page = folio_page(folio, 0); 4686 4687 /* 4688 * If we want to map a page that's in the swapcache writable, we 4689 * have to detect via the refcount if we're really the exclusive 4690 * owner. Try removing the extra reference from the local LRU 4691 * caches if required. 4692 */ 4693 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4694 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4695 lru_add_drain(); 4696 } 4697 4698 folio_throttle_swaprate(folio, GFP_KERNEL); 4699 4700 /* 4701 * Back out if somebody else already faulted in this pte. 4702 */ 4703 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4704 &vmf->ptl); 4705 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4706 goto out_nomap; 4707 4708 if (unlikely(!folio_test_uptodate(folio))) { 4709 ret = VM_FAULT_SIGBUS; 4710 goto out_nomap; 4711 } 4712 4713 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4714 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4715 unsigned long nr = folio_nr_pages(folio); 4716 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4717 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4718 pte_t *folio_ptep = vmf->pte - idx; 4719 pte_t folio_pte = ptep_get(folio_ptep); 4720 4721 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4722 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4723 goto out_nomap; 4724 4725 page_idx = idx; 4726 address = folio_start; 4727 ptep = folio_ptep; 4728 goto check_folio; 4729 } 4730 4731 nr_pages = 1; 4732 page_idx = 0; 4733 address = vmf->address; 4734 ptep = vmf->pte; 4735 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4736 int nr = folio_nr_pages(folio); 4737 unsigned long idx = folio_page_idx(folio, page); 4738 unsigned long folio_start = address - idx * PAGE_SIZE; 4739 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4740 pte_t *folio_ptep; 4741 pte_t folio_pte; 4742 4743 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4744 goto check_folio; 4745 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4746 goto check_folio; 4747 4748 folio_ptep = vmf->pte - idx; 4749 folio_pte = ptep_get(folio_ptep); 4750 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4751 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4752 goto check_folio; 4753 4754 page_idx = idx; 4755 address = folio_start; 4756 ptep = folio_ptep; 4757 nr_pages = nr; 4758 entry = folio->swap; 4759 page = &folio->page; 4760 } 4761 4762 check_folio: 4763 /* 4764 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4765 * must never point at an anonymous page in the swapcache that is 4766 * PG_anon_exclusive. Sanity check that this holds and especially, that 4767 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4768 * check after taking the PT lock and making sure that nobody 4769 * concurrently faulted in this page and set PG_anon_exclusive. 4770 */ 4771 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4772 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4773 4774 /* 4775 * Check under PT lock (to protect against concurrent fork() sharing 4776 * the swap entry concurrently) for certainly exclusive pages. 4777 */ 4778 if (!folio_test_ksm(folio)) { 4779 exclusive = pte_swp_exclusive(vmf->orig_pte); 4780 if (folio != swapcache) { 4781 /* 4782 * We have a fresh page that is not exposed to the 4783 * swapcache -> certainly exclusive. 4784 */ 4785 exclusive = true; 4786 } else if (exclusive && folio_test_writeback(folio) && 4787 data_race(si->flags & SWP_STABLE_WRITES)) { 4788 /* 4789 * This is tricky: not all swap backends support 4790 * concurrent page modifications while under writeback. 4791 * 4792 * So if we stumble over such a page in the swapcache 4793 * we must not set the page exclusive, otherwise we can 4794 * map it writable without further checks and modify it 4795 * while still under writeback. 4796 * 4797 * For these problematic swap backends, simply drop the 4798 * exclusive marker: this is perfectly fine as we start 4799 * writeback only if we fully unmapped the page and 4800 * there are no unexpected references on the page after 4801 * unmapping succeeded. After fully unmapped, no 4802 * further GUP references (FOLL_GET and FOLL_PIN) can 4803 * appear, so dropping the exclusive marker and mapping 4804 * it only R/O is fine. 4805 */ 4806 exclusive = false; 4807 } 4808 } 4809 4810 /* 4811 * Some architectures may have to restore extra metadata to the page 4812 * when reading from swap. This metadata may be indexed by swap entry 4813 * so this must be called before swap_free(). 4814 */ 4815 arch_swap_restore(folio_swap(entry, folio), folio); 4816 4817 /* 4818 * Remove the swap entry and conditionally try to free up the swapcache. 4819 * We're already holding a reference on the page but haven't mapped it 4820 * yet. 4821 */ 4822 swap_free_nr(entry, nr_pages); 4823 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4824 folio_free_swap(folio); 4825 4826 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4827 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4828 pte = mk_pte(page, vma->vm_page_prot); 4829 if (pte_swp_soft_dirty(vmf->orig_pte)) 4830 pte = pte_mksoft_dirty(pte); 4831 if (pte_swp_uffd_wp(vmf->orig_pte)) 4832 pte = pte_mkuffd_wp(pte); 4833 4834 /* 4835 * Same logic as in do_wp_page(); however, optimize for pages that are 4836 * certainly not shared either because we just allocated them without 4837 * exposing them to the swapcache or because the swap entry indicates 4838 * exclusivity. 4839 */ 4840 if (!folio_test_ksm(folio) && 4841 (exclusive || folio_ref_count(folio) == 1)) { 4842 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4843 !pte_needs_soft_dirty_wp(vma, pte)) { 4844 pte = pte_mkwrite(pte, vma); 4845 if (vmf->flags & FAULT_FLAG_WRITE) { 4846 pte = pte_mkdirty(pte); 4847 vmf->flags &= ~FAULT_FLAG_WRITE; 4848 } 4849 } 4850 rmap_flags |= RMAP_EXCLUSIVE; 4851 } 4852 folio_ref_add(folio, nr_pages - 1); 4853 flush_icache_pages(vma, page, nr_pages); 4854 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4855 4856 /* ksm created a completely new copy */ 4857 if (unlikely(folio != swapcache && swapcache)) { 4858 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4859 folio_add_lru_vma(folio, vma); 4860 } else if (!folio_test_anon(folio)) { 4861 /* 4862 * We currently only expect small !anon folios which are either 4863 * fully exclusive or fully shared, or new allocated large 4864 * folios which are fully exclusive. If we ever get large 4865 * folios within swapcache here, we have to be careful. 4866 */ 4867 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4868 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4869 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4870 } else { 4871 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4872 rmap_flags); 4873 } 4874 4875 VM_BUG_ON(!folio_test_anon(folio) || 4876 (pte_write(pte) && !PageAnonExclusive(page))); 4877 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4878 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4879 pte, pte, nr_pages); 4880 4881 folio_unlock(folio); 4882 if (folio != swapcache && swapcache) { 4883 /* 4884 * Hold the lock to avoid the swap entry to be reused 4885 * until we take the PT lock for the pte_same() check 4886 * (to avoid false positives from pte_same). For 4887 * further safety release the lock after the swap_free 4888 * so that the swap count won't change under a 4889 * parallel locked swapcache. 4890 */ 4891 folio_unlock(swapcache); 4892 folio_put(swapcache); 4893 } 4894 4895 if (vmf->flags & FAULT_FLAG_WRITE) { 4896 ret |= do_wp_page(vmf); 4897 if (ret & VM_FAULT_ERROR) 4898 ret &= VM_FAULT_ERROR; 4899 goto out; 4900 } 4901 4902 /* No need to invalidate - it was non-present before */ 4903 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4904 unlock: 4905 if (vmf->pte) 4906 pte_unmap_unlock(vmf->pte, vmf->ptl); 4907 out: 4908 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4909 if (need_clear_cache) { 4910 swapcache_clear(si, entry, nr_pages); 4911 if (waitqueue_active(&swapcache_wq)) 4912 wake_up(&swapcache_wq); 4913 } 4914 if (si) 4915 put_swap_device(si); 4916 return ret; 4917 out_nomap: 4918 if (vmf->pte) 4919 pte_unmap_unlock(vmf->pte, vmf->ptl); 4920 out_page: 4921 folio_unlock(folio); 4922 out_release: 4923 folio_put(folio); 4924 if (folio != swapcache && swapcache) { 4925 folio_unlock(swapcache); 4926 folio_put(swapcache); 4927 } 4928 if (need_clear_cache) { 4929 swapcache_clear(si, entry, nr_pages); 4930 if (waitqueue_active(&swapcache_wq)) 4931 wake_up(&swapcache_wq); 4932 } 4933 if (si) 4934 put_swap_device(si); 4935 return ret; 4936 } 4937 4938 static bool pte_range_none(pte_t *pte, int nr_pages) 4939 { 4940 int i; 4941 4942 for (i = 0; i < nr_pages; i++) { 4943 if (!pte_none(ptep_get_lockless(pte + i))) 4944 return false; 4945 } 4946 4947 return true; 4948 } 4949 4950 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4951 { 4952 struct vm_area_struct *vma = vmf->vma; 4953 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4954 unsigned long orders; 4955 struct folio *folio; 4956 unsigned long addr; 4957 pte_t *pte; 4958 gfp_t gfp; 4959 int order; 4960 4961 /* 4962 * If uffd is active for the vma we need per-page fault fidelity to 4963 * maintain the uffd semantics. 4964 */ 4965 if (unlikely(userfaultfd_armed(vma))) 4966 goto fallback; 4967 4968 /* 4969 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4970 * for this vma. Then filter out the orders that can't be allocated over 4971 * the faulting address and still be fully contained in the vma. 4972 */ 4973 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4974 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4975 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4976 4977 if (!orders) 4978 goto fallback; 4979 4980 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4981 if (!pte) 4982 return ERR_PTR(-EAGAIN); 4983 4984 /* 4985 * Find the highest order where the aligned range is completely 4986 * pte_none(). Note that all remaining orders will be completely 4987 * pte_none(). 4988 */ 4989 order = highest_order(orders); 4990 while (orders) { 4991 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4992 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4993 break; 4994 order = next_order(&orders, order); 4995 } 4996 4997 pte_unmap(pte); 4998 4999 if (!orders) 5000 goto fallback; 5001 5002 /* Try allocating the highest of the remaining orders. */ 5003 gfp = vma_thp_gfp_mask(vma); 5004 while (orders) { 5005 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 5006 folio = vma_alloc_folio(gfp, order, vma, addr); 5007 if (folio) { 5008 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 5009 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 5010 folio_put(folio); 5011 goto next; 5012 } 5013 folio_throttle_swaprate(folio, gfp); 5014 /* 5015 * When a folio is not zeroed during allocation 5016 * (__GFP_ZERO not used) or user folios require special 5017 * handling, folio_zero_user() is used to make sure 5018 * that the page corresponding to the faulting address 5019 * will be hot in the cache after zeroing. 5020 */ 5021 if (user_alloc_needs_zeroing()) 5022 folio_zero_user(folio, vmf->address); 5023 return folio; 5024 } 5025 next: 5026 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 5027 order = next_order(&orders, order); 5028 } 5029 5030 fallback: 5031 #endif 5032 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 5033 } 5034 5035 /* 5036 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5037 * but allow concurrent faults), and pte mapped but not yet locked. 5038 * We return with mmap_lock still held, but pte unmapped and unlocked. 5039 */ 5040 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 5041 { 5042 struct vm_area_struct *vma = vmf->vma; 5043 unsigned long addr = vmf->address; 5044 struct folio *folio; 5045 vm_fault_t ret = 0; 5046 int nr_pages = 1; 5047 pte_t entry; 5048 5049 /* File mapping without ->vm_ops ? */ 5050 if (vma->vm_flags & VM_SHARED) 5051 return VM_FAULT_SIGBUS; 5052 5053 /* 5054 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 5055 * be distinguished from a transient failure of pte_offset_map(). 5056 */ 5057 if (pte_alloc(vma->vm_mm, vmf->pmd)) 5058 return VM_FAULT_OOM; 5059 5060 /* Use the zero-page for reads */ 5061 if (!(vmf->flags & FAULT_FLAG_WRITE) && 5062 !mm_forbids_zeropage(vma->vm_mm)) { 5063 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 5064 vma->vm_page_prot)); 5065 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5066 vmf->address, &vmf->ptl); 5067 if (!vmf->pte) 5068 goto unlock; 5069 if (vmf_pte_changed(vmf)) { 5070 update_mmu_tlb(vma, vmf->address, vmf->pte); 5071 goto unlock; 5072 } 5073 ret = check_stable_address_space(vma->vm_mm); 5074 if (ret) 5075 goto unlock; 5076 /* Deliver the page fault to userland, check inside PT lock */ 5077 if (userfaultfd_missing(vma)) { 5078 pte_unmap_unlock(vmf->pte, vmf->ptl); 5079 return handle_userfault(vmf, VM_UFFD_MISSING); 5080 } 5081 goto setpte; 5082 } 5083 5084 /* Allocate our own private page. */ 5085 ret = vmf_anon_prepare(vmf); 5086 if (ret) 5087 return ret; 5088 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 5089 folio = alloc_anon_folio(vmf); 5090 if (IS_ERR(folio)) 5091 return 0; 5092 if (!folio) 5093 goto oom; 5094 5095 nr_pages = folio_nr_pages(folio); 5096 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 5097 5098 /* 5099 * The memory barrier inside __folio_mark_uptodate makes sure that 5100 * preceding stores to the page contents become visible before 5101 * the set_pte_at() write. 5102 */ 5103 __folio_mark_uptodate(folio); 5104 5105 entry = folio_mk_pte(folio, vma->vm_page_prot); 5106 entry = pte_sw_mkyoung(entry); 5107 if (vma->vm_flags & VM_WRITE) 5108 entry = pte_mkwrite(pte_mkdirty(entry), vma); 5109 5110 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 5111 if (!vmf->pte) 5112 goto release; 5113 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 5114 update_mmu_tlb(vma, addr, vmf->pte); 5115 goto release; 5116 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5117 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5118 goto release; 5119 } 5120 5121 ret = check_stable_address_space(vma->vm_mm); 5122 if (ret) 5123 goto release; 5124 5125 /* Deliver the page fault to userland, check inside PT lock */ 5126 if (userfaultfd_missing(vma)) { 5127 pte_unmap_unlock(vmf->pte, vmf->ptl); 5128 folio_put(folio); 5129 return handle_userfault(vmf, VM_UFFD_MISSING); 5130 } 5131 5132 folio_ref_add(folio, nr_pages - 1); 5133 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 5134 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 5135 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5136 folio_add_lru_vma(folio, vma); 5137 setpte: 5138 if (vmf_orig_pte_uffd_wp(vmf)) 5139 entry = pte_mkuffd_wp(entry); 5140 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 5141 5142 /* No need to invalidate - it was non-present before */ 5143 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 5144 unlock: 5145 if (vmf->pte) 5146 pte_unmap_unlock(vmf->pte, vmf->ptl); 5147 return ret; 5148 release: 5149 folio_put(folio); 5150 goto unlock; 5151 oom: 5152 return VM_FAULT_OOM; 5153 } 5154 5155 /* 5156 * The mmap_lock must have been held on entry, and may have been 5157 * released depending on flags and vma->vm_ops->fault() return value. 5158 * See filemap_fault() and __lock_page_retry(). 5159 */ 5160 static vm_fault_t __do_fault(struct vm_fault *vmf) 5161 { 5162 struct vm_area_struct *vma = vmf->vma; 5163 struct folio *folio; 5164 vm_fault_t ret; 5165 5166 /* 5167 * Preallocate pte before we take page_lock because this might lead to 5168 * deadlocks for memcg reclaim which waits for pages under writeback: 5169 * lock_page(A) 5170 * SetPageWriteback(A) 5171 * unlock_page(A) 5172 * lock_page(B) 5173 * lock_page(B) 5174 * pte_alloc_one 5175 * shrink_folio_list 5176 * wait_on_page_writeback(A) 5177 * SetPageWriteback(B) 5178 * unlock_page(B) 5179 * # flush A, B to clear the writeback 5180 */ 5181 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 5182 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5183 if (!vmf->prealloc_pte) 5184 return VM_FAULT_OOM; 5185 } 5186 5187 ret = vma->vm_ops->fault(vmf); 5188 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 5189 VM_FAULT_DONE_COW))) 5190 return ret; 5191 5192 folio = page_folio(vmf->page); 5193 if (unlikely(PageHWPoison(vmf->page))) { 5194 vm_fault_t poisonret = VM_FAULT_HWPOISON; 5195 if (ret & VM_FAULT_LOCKED) { 5196 if (page_mapped(vmf->page)) 5197 unmap_mapping_folio(folio); 5198 /* Retry if a clean folio was removed from the cache. */ 5199 if (mapping_evict_folio(folio->mapping, folio)) 5200 poisonret = VM_FAULT_NOPAGE; 5201 folio_unlock(folio); 5202 } 5203 folio_put(folio); 5204 vmf->page = NULL; 5205 return poisonret; 5206 } 5207 5208 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5209 folio_lock(folio); 5210 else 5211 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5212 5213 return ret; 5214 } 5215 5216 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5217 static void deposit_prealloc_pte(struct vm_fault *vmf) 5218 { 5219 struct vm_area_struct *vma = vmf->vma; 5220 5221 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5222 /* 5223 * We are going to consume the prealloc table, 5224 * count that as nr_ptes. 5225 */ 5226 mm_inc_nr_ptes(vma->vm_mm); 5227 vmf->prealloc_pte = NULL; 5228 } 5229 5230 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5231 { 5232 struct vm_area_struct *vma = vmf->vma; 5233 bool write = vmf->flags & FAULT_FLAG_WRITE; 5234 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5235 pmd_t entry; 5236 vm_fault_t ret = VM_FAULT_FALLBACK; 5237 5238 /* 5239 * It is too late to allocate a small folio, we already have a large 5240 * folio in the pagecache: especially s390 KVM cannot tolerate any 5241 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5242 * PMD mappings if THPs are disabled. 5243 */ 5244 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) 5245 return ret; 5246 5247 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5248 return ret; 5249 5250 if (folio_order(folio) != HPAGE_PMD_ORDER) 5251 return ret; 5252 page = &folio->page; 5253 5254 /* 5255 * Just backoff if any subpage of a THP is corrupted otherwise 5256 * the corrupted page may mapped by PMD silently to escape the 5257 * check. This kind of THP just can be PTE mapped. Access to 5258 * the corrupted subpage should trigger SIGBUS as expected. 5259 */ 5260 if (unlikely(folio_test_has_hwpoisoned(folio))) 5261 return ret; 5262 5263 /* 5264 * Archs like ppc64 need additional space to store information 5265 * related to pte entry. Use the preallocated table for that. 5266 */ 5267 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5268 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5269 if (!vmf->prealloc_pte) 5270 return VM_FAULT_OOM; 5271 } 5272 5273 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5274 if (unlikely(!pmd_none(*vmf->pmd))) 5275 goto out; 5276 5277 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5278 5279 entry = folio_mk_pmd(folio, vma->vm_page_prot); 5280 if (write) 5281 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5282 5283 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5284 folio_add_file_rmap_pmd(folio, page, vma); 5285 5286 /* 5287 * deposit and withdraw with pmd lock held 5288 */ 5289 if (arch_needs_pgtable_deposit()) 5290 deposit_prealloc_pte(vmf); 5291 5292 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5293 5294 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5295 5296 /* fault is handled */ 5297 ret = 0; 5298 count_vm_event(THP_FILE_MAPPED); 5299 out: 5300 spin_unlock(vmf->ptl); 5301 return ret; 5302 } 5303 #else 5304 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5305 { 5306 return VM_FAULT_FALLBACK; 5307 } 5308 #endif 5309 5310 /** 5311 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5312 * @vmf: Fault decription. 5313 * @folio: The folio that contains @page. 5314 * @page: The first page to create a PTE for. 5315 * @nr: The number of PTEs to create. 5316 * @addr: The first address to create a PTE for. 5317 */ 5318 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5319 struct page *page, unsigned int nr, unsigned long addr) 5320 { 5321 struct vm_area_struct *vma = vmf->vma; 5322 bool write = vmf->flags & FAULT_FLAG_WRITE; 5323 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5324 pte_t entry; 5325 5326 flush_icache_pages(vma, page, nr); 5327 entry = mk_pte(page, vma->vm_page_prot); 5328 5329 if (prefault && arch_wants_old_prefaulted_pte()) 5330 entry = pte_mkold(entry); 5331 else 5332 entry = pte_sw_mkyoung(entry); 5333 5334 if (write) 5335 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5336 else if (pte_write(entry) && folio_test_dirty(folio)) 5337 entry = pte_mkdirty(entry); 5338 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5339 entry = pte_mkuffd_wp(entry); 5340 /* copy-on-write page */ 5341 if (write && !(vma->vm_flags & VM_SHARED)) { 5342 VM_BUG_ON_FOLIO(nr != 1, folio); 5343 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5344 folio_add_lru_vma(folio, vma); 5345 } else { 5346 folio_add_file_rmap_ptes(folio, page, nr, vma); 5347 } 5348 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5349 5350 /* no need to invalidate: a not-present page won't be cached */ 5351 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5352 } 5353 5354 static bool vmf_pte_changed(struct vm_fault *vmf) 5355 { 5356 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5357 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5358 5359 return !pte_none(ptep_get(vmf->pte)); 5360 } 5361 5362 /** 5363 * finish_fault - finish page fault once we have prepared the page to fault 5364 * 5365 * @vmf: structure describing the fault 5366 * 5367 * This function handles all that is needed to finish a page fault once the 5368 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5369 * given page, adds reverse page mapping, handles memcg charges and LRU 5370 * addition. 5371 * 5372 * The function expects the page to be locked and on success it consumes a 5373 * reference of a page being mapped (for the PTE which maps it). 5374 * 5375 * Return: %0 on success, %VM_FAULT_ code in case of error. 5376 */ 5377 vm_fault_t finish_fault(struct vm_fault *vmf) 5378 { 5379 struct vm_area_struct *vma = vmf->vma; 5380 struct page *page; 5381 struct folio *folio; 5382 vm_fault_t ret; 5383 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5384 !(vma->vm_flags & VM_SHARED); 5385 int type, nr_pages; 5386 unsigned long addr; 5387 bool needs_fallback = false; 5388 5389 fallback: 5390 addr = vmf->address; 5391 5392 /* Did we COW the page? */ 5393 if (is_cow) 5394 page = vmf->cow_page; 5395 else 5396 page = vmf->page; 5397 5398 folio = page_folio(page); 5399 /* 5400 * check even for read faults because we might have lost our CoWed 5401 * page 5402 */ 5403 if (!(vma->vm_flags & VM_SHARED)) { 5404 ret = check_stable_address_space(vma->vm_mm); 5405 if (ret) 5406 return ret; 5407 } 5408 5409 if (pmd_none(*vmf->pmd)) { 5410 if (folio_test_pmd_mappable(folio)) { 5411 ret = do_set_pmd(vmf, folio, page); 5412 if (ret != VM_FAULT_FALLBACK) 5413 return ret; 5414 } 5415 5416 if (vmf->prealloc_pte) 5417 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5418 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5419 return VM_FAULT_OOM; 5420 } 5421 5422 nr_pages = folio_nr_pages(folio); 5423 5424 /* 5425 * Using per-page fault to maintain the uffd semantics, and same 5426 * approach also applies to non-anonymous-shmem faults to avoid 5427 * inflating the RSS of the process. 5428 */ 5429 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) || 5430 unlikely(needs_fallback)) { 5431 nr_pages = 1; 5432 } else if (nr_pages > 1) { 5433 pgoff_t idx = folio_page_idx(folio, page); 5434 /* The page offset of vmf->address within the VMA. */ 5435 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5436 /* The index of the entry in the pagetable for fault page. */ 5437 pgoff_t pte_off = pte_index(vmf->address); 5438 5439 /* 5440 * Fallback to per-page fault in case the folio size in page 5441 * cache beyond the VMA limits and PMD pagetable limits. 5442 */ 5443 if (unlikely(vma_off < idx || 5444 vma_off + (nr_pages - idx) > vma_pages(vma) || 5445 pte_off < idx || 5446 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5447 nr_pages = 1; 5448 } else { 5449 /* Now we can set mappings for the whole large folio. */ 5450 addr = vmf->address - idx * PAGE_SIZE; 5451 page = &folio->page; 5452 } 5453 } 5454 5455 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5456 addr, &vmf->ptl); 5457 if (!vmf->pte) 5458 return VM_FAULT_NOPAGE; 5459 5460 /* Re-check under ptl */ 5461 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5462 update_mmu_tlb(vma, addr, vmf->pte); 5463 ret = VM_FAULT_NOPAGE; 5464 goto unlock; 5465 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5466 needs_fallback = true; 5467 pte_unmap_unlock(vmf->pte, vmf->ptl); 5468 goto fallback; 5469 } 5470 5471 folio_ref_add(folio, nr_pages - 1); 5472 set_pte_range(vmf, folio, page, nr_pages, addr); 5473 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5474 add_mm_counter(vma->vm_mm, type, nr_pages); 5475 ret = 0; 5476 5477 unlock: 5478 pte_unmap_unlock(vmf->pte, vmf->ptl); 5479 return ret; 5480 } 5481 5482 static unsigned long fault_around_pages __read_mostly = 5483 65536 >> PAGE_SHIFT; 5484 5485 #ifdef CONFIG_DEBUG_FS 5486 static int fault_around_bytes_get(void *data, u64 *val) 5487 { 5488 *val = fault_around_pages << PAGE_SHIFT; 5489 return 0; 5490 } 5491 5492 /* 5493 * fault_around_bytes must be rounded down to the nearest page order as it's 5494 * what do_fault_around() expects to see. 5495 */ 5496 static int fault_around_bytes_set(void *data, u64 val) 5497 { 5498 if (val / PAGE_SIZE > PTRS_PER_PTE) 5499 return -EINVAL; 5500 5501 /* 5502 * The minimum value is 1 page, however this results in no fault-around 5503 * at all. See should_fault_around(). 5504 */ 5505 val = max(val, PAGE_SIZE); 5506 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5507 5508 return 0; 5509 } 5510 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5511 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5512 5513 static int __init fault_around_debugfs(void) 5514 { 5515 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5516 &fault_around_bytes_fops); 5517 return 0; 5518 } 5519 late_initcall(fault_around_debugfs); 5520 #endif 5521 5522 /* 5523 * do_fault_around() tries to map few pages around the fault address. The hope 5524 * is that the pages will be needed soon and this will lower the number of 5525 * faults to handle. 5526 * 5527 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5528 * not ready to be mapped: not up-to-date, locked, etc. 5529 * 5530 * This function doesn't cross VMA or page table boundaries, in order to call 5531 * map_pages() and acquire a PTE lock only once. 5532 * 5533 * fault_around_pages defines how many pages we'll try to map. 5534 * do_fault_around() expects it to be set to a power of two less than or equal 5535 * to PTRS_PER_PTE. 5536 * 5537 * The virtual address of the area that we map is naturally aligned to 5538 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5539 * (and therefore to page order). This way it's easier to guarantee 5540 * that we don't cross page table boundaries. 5541 */ 5542 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5543 { 5544 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5545 pgoff_t pte_off = pte_index(vmf->address); 5546 /* The page offset of vmf->address within the VMA. */ 5547 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5548 pgoff_t from_pte, to_pte; 5549 vm_fault_t ret; 5550 5551 /* The PTE offset of the start address, clamped to the VMA. */ 5552 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5553 pte_off - min(pte_off, vma_off)); 5554 5555 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5556 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5557 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5558 5559 if (pmd_none(*vmf->pmd)) { 5560 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5561 if (!vmf->prealloc_pte) 5562 return VM_FAULT_OOM; 5563 } 5564 5565 rcu_read_lock(); 5566 ret = vmf->vma->vm_ops->map_pages(vmf, 5567 vmf->pgoff + from_pte - pte_off, 5568 vmf->pgoff + to_pte - pte_off); 5569 rcu_read_unlock(); 5570 5571 return ret; 5572 } 5573 5574 /* Return true if we should do read fault-around, false otherwise */ 5575 static inline bool should_fault_around(struct vm_fault *vmf) 5576 { 5577 /* No ->map_pages? No way to fault around... */ 5578 if (!vmf->vma->vm_ops->map_pages) 5579 return false; 5580 5581 if (uffd_disable_fault_around(vmf->vma)) 5582 return false; 5583 5584 /* A single page implies no faulting 'around' at all. */ 5585 return fault_around_pages > 1; 5586 } 5587 5588 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5589 { 5590 vm_fault_t ret = 0; 5591 struct folio *folio; 5592 5593 /* 5594 * Let's call ->map_pages() first and use ->fault() as fallback 5595 * if page by the offset is not ready to be mapped (cold cache or 5596 * something). 5597 */ 5598 if (should_fault_around(vmf)) { 5599 ret = do_fault_around(vmf); 5600 if (ret) 5601 return ret; 5602 } 5603 5604 ret = vmf_can_call_fault(vmf); 5605 if (ret) 5606 return ret; 5607 5608 ret = __do_fault(vmf); 5609 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5610 return ret; 5611 5612 ret |= finish_fault(vmf); 5613 folio = page_folio(vmf->page); 5614 folio_unlock(folio); 5615 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5616 folio_put(folio); 5617 return ret; 5618 } 5619 5620 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5621 { 5622 struct vm_area_struct *vma = vmf->vma; 5623 struct folio *folio; 5624 vm_fault_t ret; 5625 5626 ret = vmf_can_call_fault(vmf); 5627 if (!ret) 5628 ret = vmf_anon_prepare(vmf); 5629 if (ret) 5630 return ret; 5631 5632 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5633 if (!folio) 5634 return VM_FAULT_OOM; 5635 5636 vmf->cow_page = &folio->page; 5637 5638 ret = __do_fault(vmf); 5639 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5640 goto uncharge_out; 5641 if (ret & VM_FAULT_DONE_COW) 5642 return ret; 5643 5644 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5645 ret = VM_FAULT_HWPOISON; 5646 goto unlock; 5647 } 5648 __folio_mark_uptodate(folio); 5649 5650 ret |= finish_fault(vmf); 5651 unlock: 5652 unlock_page(vmf->page); 5653 put_page(vmf->page); 5654 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5655 goto uncharge_out; 5656 return ret; 5657 uncharge_out: 5658 folio_put(folio); 5659 return ret; 5660 } 5661 5662 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5663 { 5664 struct vm_area_struct *vma = vmf->vma; 5665 vm_fault_t ret, tmp; 5666 struct folio *folio; 5667 5668 ret = vmf_can_call_fault(vmf); 5669 if (ret) 5670 return ret; 5671 5672 ret = __do_fault(vmf); 5673 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5674 return ret; 5675 5676 folio = page_folio(vmf->page); 5677 5678 /* 5679 * Check if the backing address space wants to know that the page is 5680 * about to become writable 5681 */ 5682 if (vma->vm_ops->page_mkwrite) { 5683 folio_unlock(folio); 5684 tmp = do_page_mkwrite(vmf, folio); 5685 if (unlikely(!tmp || 5686 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5687 folio_put(folio); 5688 return tmp; 5689 } 5690 } 5691 5692 ret |= finish_fault(vmf); 5693 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5694 VM_FAULT_RETRY))) { 5695 folio_unlock(folio); 5696 folio_put(folio); 5697 return ret; 5698 } 5699 5700 ret |= fault_dirty_shared_page(vmf); 5701 return ret; 5702 } 5703 5704 /* 5705 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5706 * but allow concurrent faults). 5707 * The mmap_lock may have been released depending on flags and our 5708 * return value. See filemap_fault() and __folio_lock_or_retry(). 5709 * If mmap_lock is released, vma may become invalid (for example 5710 * by other thread calling munmap()). 5711 */ 5712 static vm_fault_t do_fault(struct vm_fault *vmf) 5713 { 5714 struct vm_area_struct *vma = vmf->vma; 5715 struct mm_struct *vm_mm = vma->vm_mm; 5716 vm_fault_t ret; 5717 5718 /* 5719 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5720 */ 5721 if (!vma->vm_ops->fault) { 5722 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5723 vmf->address, &vmf->ptl); 5724 if (unlikely(!vmf->pte)) 5725 ret = VM_FAULT_SIGBUS; 5726 else { 5727 /* 5728 * Make sure this is not a temporary clearing of pte 5729 * by holding ptl and checking again. A R/M/W update 5730 * of pte involves: take ptl, clearing the pte so that 5731 * we don't have concurrent modification by hardware 5732 * followed by an update. 5733 */ 5734 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5735 ret = VM_FAULT_SIGBUS; 5736 else 5737 ret = VM_FAULT_NOPAGE; 5738 5739 pte_unmap_unlock(vmf->pte, vmf->ptl); 5740 } 5741 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5742 ret = do_read_fault(vmf); 5743 else if (!(vma->vm_flags & VM_SHARED)) 5744 ret = do_cow_fault(vmf); 5745 else 5746 ret = do_shared_fault(vmf); 5747 5748 /* preallocated pagetable is unused: free it */ 5749 if (vmf->prealloc_pte) { 5750 pte_free(vm_mm, vmf->prealloc_pte); 5751 vmf->prealloc_pte = NULL; 5752 } 5753 return ret; 5754 } 5755 5756 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5757 unsigned long addr, int *flags, 5758 bool writable, int *last_cpupid) 5759 { 5760 struct vm_area_struct *vma = vmf->vma; 5761 5762 /* 5763 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5764 * much anyway since they can be in shared cache state. This misses 5765 * the case where a mapping is writable but the process never writes 5766 * to it but pte_write gets cleared during protection updates and 5767 * pte_dirty has unpredictable behaviour between PTE scan updates, 5768 * background writeback, dirty balancing and application behaviour. 5769 */ 5770 if (!writable) 5771 *flags |= TNF_NO_GROUP; 5772 5773 /* 5774 * Flag if the folio is shared between multiple address spaces. This 5775 * is later used when determining whether to group tasks together 5776 */ 5777 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5778 *flags |= TNF_SHARED; 5779 /* 5780 * For memory tiering mode, cpupid of slow memory page is used 5781 * to record page access time. So use default value. 5782 */ 5783 if (folio_use_access_time(folio)) 5784 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5785 else 5786 *last_cpupid = folio_last_cpupid(folio); 5787 5788 /* Record the current PID acceesing VMA */ 5789 vma_set_access_pid_bit(vma); 5790 5791 count_vm_numa_event(NUMA_HINT_FAULTS); 5792 #ifdef CONFIG_NUMA_BALANCING 5793 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5794 #endif 5795 if (folio_nid(folio) == numa_node_id()) { 5796 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5797 *flags |= TNF_FAULT_LOCAL; 5798 } 5799 5800 return mpol_misplaced(folio, vmf, addr); 5801 } 5802 5803 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5804 unsigned long fault_addr, pte_t *fault_pte, 5805 bool writable) 5806 { 5807 pte_t pte, old_pte; 5808 5809 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5810 pte = pte_modify(old_pte, vma->vm_page_prot); 5811 pte = pte_mkyoung(pte); 5812 if (writable) 5813 pte = pte_mkwrite(pte, vma); 5814 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5815 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5816 } 5817 5818 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5819 struct folio *folio, pte_t fault_pte, 5820 bool ignore_writable, bool pte_write_upgrade) 5821 { 5822 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5823 unsigned long start, end, addr = vmf->address; 5824 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5825 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5826 pte_t *start_ptep; 5827 5828 /* Stay within the VMA and within the page table. */ 5829 start = max3(addr_start, pt_start, vma->vm_start); 5830 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5831 vma->vm_end); 5832 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5833 5834 /* Restore all PTEs' mapping of the large folio */ 5835 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5836 pte_t ptent = ptep_get(start_ptep); 5837 bool writable = false; 5838 5839 if (!pte_present(ptent) || !pte_protnone(ptent)) 5840 continue; 5841 5842 if (pfn_folio(pte_pfn(ptent)) != folio) 5843 continue; 5844 5845 if (!ignore_writable) { 5846 ptent = pte_modify(ptent, vma->vm_page_prot); 5847 writable = pte_write(ptent); 5848 if (!writable && pte_write_upgrade && 5849 can_change_pte_writable(vma, addr, ptent)) 5850 writable = true; 5851 } 5852 5853 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5854 } 5855 } 5856 5857 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5858 { 5859 struct vm_area_struct *vma = vmf->vma; 5860 struct folio *folio = NULL; 5861 int nid = NUMA_NO_NODE; 5862 bool writable = false, ignore_writable = false; 5863 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5864 int last_cpupid; 5865 int target_nid; 5866 pte_t pte, old_pte; 5867 int flags = 0, nr_pages; 5868 5869 /* 5870 * The pte cannot be used safely until we verify, while holding the page 5871 * table lock, that its contents have not changed during fault handling. 5872 */ 5873 spin_lock(vmf->ptl); 5874 /* Read the live PTE from the page tables: */ 5875 old_pte = ptep_get(vmf->pte); 5876 5877 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5878 pte_unmap_unlock(vmf->pte, vmf->ptl); 5879 return 0; 5880 } 5881 5882 pte = pte_modify(old_pte, vma->vm_page_prot); 5883 5884 /* 5885 * Detect now whether the PTE could be writable; this information 5886 * is only valid while holding the PT lock. 5887 */ 5888 writable = pte_write(pte); 5889 if (!writable && pte_write_upgrade && 5890 can_change_pte_writable(vma, vmf->address, pte)) 5891 writable = true; 5892 5893 folio = vm_normal_folio(vma, vmf->address, pte); 5894 if (!folio || folio_is_zone_device(folio)) 5895 goto out_map; 5896 5897 nid = folio_nid(folio); 5898 nr_pages = folio_nr_pages(folio); 5899 5900 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5901 writable, &last_cpupid); 5902 if (target_nid == NUMA_NO_NODE) 5903 goto out_map; 5904 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5905 flags |= TNF_MIGRATE_FAIL; 5906 goto out_map; 5907 } 5908 /* The folio is isolated and isolation code holds a folio reference. */ 5909 pte_unmap_unlock(vmf->pte, vmf->ptl); 5910 writable = false; 5911 ignore_writable = true; 5912 5913 /* Migrate to the requested node */ 5914 if (!migrate_misplaced_folio(folio, target_nid)) { 5915 nid = target_nid; 5916 flags |= TNF_MIGRATED; 5917 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5918 return 0; 5919 } 5920 5921 flags |= TNF_MIGRATE_FAIL; 5922 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5923 vmf->address, &vmf->ptl); 5924 if (unlikely(!vmf->pte)) 5925 return 0; 5926 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5927 pte_unmap_unlock(vmf->pte, vmf->ptl); 5928 return 0; 5929 } 5930 out_map: 5931 /* 5932 * Make it present again, depending on how arch implements 5933 * non-accessible ptes, some can allow access by kernel mode. 5934 */ 5935 if (folio && folio_test_large(folio)) 5936 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5937 pte_write_upgrade); 5938 else 5939 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5940 writable); 5941 pte_unmap_unlock(vmf->pte, vmf->ptl); 5942 5943 if (nid != NUMA_NO_NODE) 5944 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5945 return 0; 5946 } 5947 5948 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5949 { 5950 struct vm_area_struct *vma = vmf->vma; 5951 if (vma_is_anonymous(vma)) 5952 return do_huge_pmd_anonymous_page(vmf); 5953 if (vma->vm_ops->huge_fault) 5954 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5955 return VM_FAULT_FALLBACK; 5956 } 5957 5958 /* `inline' is required to avoid gcc 4.1.2 build error */ 5959 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5960 { 5961 struct vm_area_struct *vma = vmf->vma; 5962 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5963 vm_fault_t ret; 5964 5965 if (vma_is_anonymous(vma)) { 5966 if (likely(!unshare) && 5967 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5968 if (userfaultfd_wp_async(vmf->vma)) 5969 goto split; 5970 return handle_userfault(vmf, VM_UFFD_WP); 5971 } 5972 return do_huge_pmd_wp_page(vmf); 5973 } 5974 5975 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5976 if (vma->vm_ops->huge_fault) { 5977 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5978 if (!(ret & VM_FAULT_FALLBACK)) 5979 return ret; 5980 } 5981 } 5982 5983 split: 5984 /* COW or write-notify handled on pte level: split pmd. */ 5985 __split_huge_pmd(vma, vmf->pmd, vmf->address, false); 5986 5987 return VM_FAULT_FALLBACK; 5988 } 5989 5990 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5991 { 5992 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5993 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5994 struct vm_area_struct *vma = vmf->vma; 5995 /* No support for anonymous transparent PUD pages yet */ 5996 if (vma_is_anonymous(vma)) 5997 return VM_FAULT_FALLBACK; 5998 if (vma->vm_ops->huge_fault) 5999 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6000 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 6001 return VM_FAULT_FALLBACK; 6002 } 6003 6004 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 6005 { 6006 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 6007 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 6008 struct vm_area_struct *vma = vmf->vma; 6009 vm_fault_t ret; 6010 6011 /* No support for anonymous transparent PUD pages yet */ 6012 if (vma_is_anonymous(vma)) 6013 goto split; 6014 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 6015 if (vma->vm_ops->huge_fault) { 6016 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 6017 if (!(ret & VM_FAULT_FALLBACK)) 6018 return ret; 6019 } 6020 } 6021 split: 6022 /* COW or write-notify not handled on PUD level: split pud.*/ 6023 __split_huge_pud(vma, vmf->pud, vmf->address); 6024 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 6025 return VM_FAULT_FALLBACK; 6026 } 6027 6028 /* 6029 * These routines also need to handle stuff like marking pages dirty 6030 * and/or accessed for architectures that don't do it in hardware (most 6031 * RISC architectures). The early dirtying is also good on the i386. 6032 * 6033 * There is also a hook called "update_mmu_cache()" that architectures 6034 * with external mmu caches can use to update those (ie the Sparc or 6035 * PowerPC hashed page tables that act as extended TLBs). 6036 * 6037 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 6038 * concurrent faults). 6039 * 6040 * The mmap_lock may have been released depending on flags and our return value. 6041 * See filemap_fault() and __folio_lock_or_retry(). 6042 */ 6043 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 6044 { 6045 pte_t entry; 6046 6047 if (unlikely(pmd_none(*vmf->pmd))) { 6048 /* 6049 * Leave __pte_alloc() until later: because vm_ops->fault may 6050 * want to allocate huge page, and if we expose page table 6051 * for an instant, it will be difficult to retract from 6052 * concurrent faults and from rmap lookups. 6053 */ 6054 vmf->pte = NULL; 6055 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 6056 } else { 6057 pmd_t dummy_pmdval; 6058 6059 /* 6060 * A regular pmd is established and it can't morph into a huge 6061 * pmd by anon khugepaged, since that takes mmap_lock in write 6062 * mode; but shmem or file collapse to THP could still morph 6063 * it into a huge pmd: just retry later if so. 6064 * 6065 * Use the maywrite version to indicate that vmf->pte may be 6066 * modified, but since we will use pte_same() to detect the 6067 * change of the !pte_none() entry, there is no need to recheck 6068 * the pmdval. Here we chooes to pass a dummy variable instead 6069 * of NULL, which helps new user think about why this place is 6070 * special. 6071 */ 6072 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 6073 vmf->address, &dummy_pmdval, 6074 &vmf->ptl); 6075 if (unlikely(!vmf->pte)) 6076 return 0; 6077 vmf->orig_pte = ptep_get_lockless(vmf->pte); 6078 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 6079 6080 if (pte_none(vmf->orig_pte)) { 6081 pte_unmap(vmf->pte); 6082 vmf->pte = NULL; 6083 } 6084 } 6085 6086 if (!vmf->pte) 6087 return do_pte_missing(vmf); 6088 6089 if (!pte_present(vmf->orig_pte)) 6090 return do_swap_page(vmf); 6091 6092 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 6093 return do_numa_page(vmf); 6094 6095 spin_lock(vmf->ptl); 6096 entry = vmf->orig_pte; 6097 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 6098 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 6099 goto unlock; 6100 } 6101 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6102 if (!pte_write(entry)) 6103 return do_wp_page(vmf); 6104 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 6105 entry = pte_mkdirty(entry); 6106 } 6107 entry = pte_mkyoung(entry); 6108 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 6109 vmf->flags & FAULT_FLAG_WRITE)) { 6110 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 6111 vmf->pte, 1); 6112 } else { 6113 /* Skip spurious TLB flush for retried page fault */ 6114 if (vmf->flags & FAULT_FLAG_TRIED) 6115 goto unlock; 6116 /* 6117 * This is needed only for protection faults but the arch code 6118 * is not yet telling us if this is a protection fault or not. 6119 * This still avoids useless tlb flushes for .text page faults 6120 * with threads. 6121 */ 6122 if (vmf->flags & FAULT_FLAG_WRITE) 6123 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 6124 vmf->pte); 6125 } 6126 unlock: 6127 pte_unmap_unlock(vmf->pte, vmf->ptl); 6128 return 0; 6129 } 6130 6131 /* 6132 * On entry, we hold either the VMA lock or the mmap_lock 6133 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 6134 * the result, the mmap_lock is not held on exit. See filemap_fault() 6135 * and __folio_lock_or_retry(). 6136 */ 6137 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 6138 unsigned long address, unsigned int flags) 6139 { 6140 struct vm_fault vmf = { 6141 .vma = vma, 6142 .address = address & PAGE_MASK, 6143 .real_address = address, 6144 .flags = flags, 6145 .pgoff = linear_page_index(vma, address), 6146 .gfp_mask = __get_fault_gfp_mask(vma), 6147 }; 6148 struct mm_struct *mm = vma->vm_mm; 6149 unsigned long vm_flags = vma->vm_flags; 6150 pgd_t *pgd; 6151 p4d_t *p4d; 6152 vm_fault_t ret; 6153 6154 pgd = pgd_offset(mm, address); 6155 p4d = p4d_alloc(mm, pgd, address); 6156 if (!p4d) 6157 return VM_FAULT_OOM; 6158 6159 vmf.pud = pud_alloc(mm, p4d, address); 6160 if (!vmf.pud) 6161 return VM_FAULT_OOM; 6162 retry_pud: 6163 if (pud_none(*vmf.pud) && 6164 thp_vma_allowable_order(vma, vm_flags, 6165 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 6166 ret = create_huge_pud(&vmf); 6167 if (!(ret & VM_FAULT_FALLBACK)) 6168 return ret; 6169 } else { 6170 pud_t orig_pud = *vmf.pud; 6171 6172 barrier(); 6173 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 6174 6175 /* 6176 * TODO once we support anonymous PUDs: NUMA case and 6177 * FAULT_FLAG_UNSHARE handling. 6178 */ 6179 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 6180 ret = wp_huge_pud(&vmf, orig_pud); 6181 if (!(ret & VM_FAULT_FALLBACK)) 6182 return ret; 6183 } else { 6184 huge_pud_set_accessed(&vmf, orig_pud); 6185 return 0; 6186 } 6187 } 6188 } 6189 6190 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 6191 if (!vmf.pmd) 6192 return VM_FAULT_OOM; 6193 6194 /* Huge pud page fault raced with pmd_alloc? */ 6195 if (pud_trans_unstable(vmf.pud)) 6196 goto retry_pud; 6197 6198 if (pmd_none(*vmf.pmd) && 6199 thp_vma_allowable_order(vma, vm_flags, 6200 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 6201 ret = create_huge_pmd(&vmf); 6202 if (!(ret & VM_FAULT_FALLBACK)) 6203 return ret; 6204 } else { 6205 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6206 6207 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 6208 VM_BUG_ON(thp_migration_supported() && 6209 !is_pmd_migration_entry(vmf.orig_pmd)); 6210 if (is_pmd_migration_entry(vmf.orig_pmd)) 6211 pmd_migration_entry_wait(mm, vmf.pmd); 6212 return 0; 6213 } 6214 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 6215 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6216 return do_huge_pmd_numa_page(&vmf); 6217 6218 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6219 !pmd_write(vmf.orig_pmd)) { 6220 ret = wp_huge_pmd(&vmf); 6221 if (!(ret & VM_FAULT_FALLBACK)) 6222 return ret; 6223 } else { 6224 huge_pmd_set_accessed(&vmf); 6225 return 0; 6226 } 6227 } 6228 } 6229 6230 return handle_pte_fault(&vmf); 6231 } 6232 6233 /** 6234 * mm_account_fault - Do page fault accounting 6235 * @mm: mm from which memcg should be extracted. It can be NULL. 6236 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6237 * of perf event counters, but we'll still do the per-task accounting to 6238 * the task who triggered this page fault. 6239 * @address: the faulted address. 6240 * @flags: the fault flags. 6241 * @ret: the fault retcode. 6242 * 6243 * This will take care of most of the page fault accounting. Meanwhile, it 6244 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6245 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6246 * still be in per-arch page fault handlers at the entry of page fault. 6247 */ 6248 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6249 unsigned long address, unsigned int flags, 6250 vm_fault_t ret) 6251 { 6252 bool major; 6253 6254 /* Incomplete faults will be accounted upon completion. */ 6255 if (ret & VM_FAULT_RETRY) 6256 return; 6257 6258 /* 6259 * To preserve the behavior of older kernels, PGFAULT counters record 6260 * both successful and failed faults, as opposed to perf counters, 6261 * which ignore failed cases. 6262 */ 6263 count_vm_event(PGFAULT); 6264 count_memcg_event_mm(mm, PGFAULT); 6265 6266 /* 6267 * Do not account for unsuccessful faults (e.g. when the address wasn't 6268 * valid). That includes arch_vma_access_permitted() failing before 6269 * reaching here. So this is not a "this many hardware page faults" 6270 * counter. We should use the hw profiling for that. 6271 */ 6272 if (ret & VM_FAULT_ERROR) 6273 return; 6274 6275 /* 6276 * We define the fault as a major fault when the final successful fault 6277 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6278 * handle it immediately previously). 6279 */ 6280 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6281 6282 if (major) 6283 current->maj_flt++; 6284 else 6285 current->min_flt++; 6286 6287 /* 6288 * If the fault is done for GUP, regs will be NULL. We only do the 6289 * accounting for the per thread fault counters who triggered the 6290 * fault, and we skip the perf event updates. 6291 */ 6292 if (!regs) 6293 return; 6294 6295 if (major) 6296 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6297 else 6298 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6299 } 6300 6301 #ifdef CONFIG_LRU_GEN 6302 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6303 { 6304 /* the LRU algorithm only applies to accesses with recency */ 6305 current->in_lru_fault = vma_has_recency(vma); 6306 } 6307 6308 static void lru_gen_exit_fault(void) 6309 { 6310 current->in_lru_fault = false; 6311 } 6312 #else 6313 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6314 { 6315 } 6316 6317 static void lru_gen_exit_fault(void) 6318 { 6319 } 6320 #endif /* CONFIG_LRU_GEN */ 6321 6322 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6323 unsigned int *flags) 6324 { 6325 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6326 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6327 return VM_FAULT_SIGSEGV; 6328 /* 6329 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6330 * just treat it like an ordinary read-fault otherwise. 6331 */ 6332 if (!is_cow_mapping(vma->vm_flags)) 6333 *flags &= ~FAULT_FLAG_UNSHARE; 6334 } else if (*flags & FAULT_FLAG_WRITE) { 6335 /* Write faults on read-only mappings are impossible ... */ 6336 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6337 return VM_FAULT_SIGSEGV; 6338 /* ... and FOLL_FORCE only applies to COW mappings. */ 6339 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6340 !is_cow_mapping(vma->vm_flags))) 6341 return VM_FAULT_SIGSEGV; 6342 } 6343 #ifdef CONFIG_PER_VMA_LOCK 6344 /* 6345 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6346 * the assumption that lock is dropped on VM_FAULT_RETRY. 6347 */ 6348 if (WARN_ON_ONCE((*flags & 6349 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6350 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6351 return VM_FAULT_SIGSEGV; 6352 #endif 6353 6354 return 0; 6355 } 6356 6357 /* 6358 * By the time we get here, we already hold either the VMA lock or the 6359 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6360 * 6361 * The mmap_lock may have been released depending on flags and our 6362 * return value. See filemap_fault() and __folio_lock_or_retry(). 6363 */ 6364 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6365 unsigned int flags, struct pt_regs *regs) 6366 { 6367 /* If the fault handler drops the mmap_lock, vma may be freed */ 6368 struct mm_struct *mm = vma->vm_mm; 6369 vm_fault_t ret; 6370 bool is_droppable; 6371 6372 __set_current_state(TASK_RUNNING); 6373 6374 ret = sanitize_fault_flags(vma, &flags); 6375 if (ret) 6376 goto out; 6377 6378 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6379 flags & FAULT_FLAG_INSTRUCTION, 6380 flags & FAULT_FLAG_REMOTE)) { 6381 ret = VM_FAULT_SIGSEGV; 6382 goto out; 6383 } 6384 6385 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6386 6387 /* 6388 * Enable the memcg OOM handling for faults triggered in user 6389 * space. Kernel faults are handled more gracefully. 6390 */ 6391 if (flags & FAULT_FLAG_USER) 6392 mem_cgroup_enter_user_fault(); 6393 6394 lru_gen_enter_fault(vma); 6395 6396 if (unlikely(is_vm_hugetlb_page(vma))) 6397 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6398 else 6399 ret = __handle_mm_fault(vma, address, flags); 6400 6401 /* 6402 * Warning: It is no longer safe to dereference vma-> after this point, 6403 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6404 * vma might be destroyed from underneath us. 6405 */ 6406 6407 lru_gen_exit_fault(); 6408 6409 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6410 if (is_droppable) 6411 ret &= ~VM_FAULT_OOM; 6412 6413 if (flags & FAULT_FLAG_USER) { 6414 mem_cgroup_exit_user_fault(); 6415 /* 6416 * The task may have entered a memcg OOM situation but 6417 * if the allocation error was handled gracefully (no 6418 * VM_FAULT_OOM), there is no need to kill anything. 6419 * Just clean up the OOM state peacefully. 6420 */ 6421 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6422 mem_cgroup_oom_synchronize(false); 6423 } 6424 out: 6425 mm_account_fault(mm, regs, address, flags, ret); 6426 6427 return ret; 6428 } 6429 EXPORT_SYMBOL_GPL(handle_mm_fault); 6430 6431 #ifndef __PAGETABLE_P4D_FOLDED 6432 /* 6433 * Allocate p4d page table. 6434 * We've already handled the fast-path in-line. 6435 */ 6436 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6437 { 6438 p4d_t *new = p4d_alloc_one(mm, address); 6439 if (!new) 6440 return -ENOMEM; 6441 6442 spin_lock(&mm->page_table_lock); 6443 if (pgd_present(*pgd)) { /* Another has populated it */ 6444 p4d_free(mm, new); 6445 } else { 6446 smp_wmb(); /* See comment in pmd_install() */ 6447 pgd_populate(mm, pgd, new); 6448 } 6449 spin_unlock(&mm->page_table_lock); 6450 return 0; 6451 } 6452 #endif /* __PAGETABLE_P4D_FOLDED */ 6453 6454 #ifndef __PAGETABLE_PUD_FOLDED 6455 /* 6456 * Allocate page upper directory. 6457 * We've already handled the fast-path in-line. 6458 */ 6459 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6460 { 6461 pud_t *new = pud_alloc_one(mm, address); 6462 if (!new) 6463 return -ENOMEM; 6464 6465 spin_lock(&mm->page_table_lock); 6466 if (!p4d_present(*p4d)) { 6467 mm_inc_nr_puds(mm); 6468 smp_wmb(); /* See comment in pmd_install() */ 6469 p4d_populate(mm, p4d, new); 6470 } else /* Another has populated it */ 6471 pud_free(mm, new); 6472 spin_unlock(&mm->page_table_lock); 6473 return 0; 6474 } 6475 #endif /* __PAGETABLE_PUD_FOLDED */ 6476 6477 #ifndef __PAGETABLE_PMD_FOLDED 6478 /* 6479 * Allocate page middle directory. 6480 * We've already handled the fast-path in-line. 6481 */ 6482 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6483 { 6484 spinlock_t *ptl; 6485 pmd_t *new = pmd_alloc_one(mm, address); 6486 if (!new) 6487 return -ENOMEM; 6488 6489 ptl = pud_lock(mm, pud); 6490 if (!pud_present(*pud)) { 6491 mm_inc_nr_pmds(mm); 6492 smp_wmb(); /* See comment in pmd_install() */ 6493 pud_populate(mm, pud, new); 6494 } else { /* Another has populated it */ 6495 pmd_free(mm, new); 6496 } 6497 spin_unlock(ptl); 6498 return 0; 6499 } 6500 #endif /* __PAGETABLE_PMD_FOLDED */ 6501 6502 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6503 spinlock_t *lock, pte_t *ptep, 6504 pgprot_t pgprot, unsigned long pfn_base, 6505 unsigned long addr_mask, bool writable, 6506 bool special) 6507 { 6508 args->lock = lock; 6509 args->ptep = ptep; 6510 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6511 args->addr_mask = addr_mask; 6512 args->pgprot = pgprot; 6513 args->writable = writable; 6514 args->special = special; 6515 } 6516 6517 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6518 { 6519 #ifdef CONFIG_LOCKDEP 6520 struct file *file = vma->vm_file; 6521 struct address_space *mapping = file ? file->f_mapping : NULL; 6522 6523 if (mapping) 6524 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6525 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6526 else 6527 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6528 #endif 6529 } 6530 6531 /** 6532 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6533 * @args: Pointer to struct @follow_pfnmap_args 6534 * 6535 * The caller needs to setup args->vma and args->address to point to the 6536 * virtual address as the target of such lookup. On a successful return, 6537 * the results will be put into other output fields. 6538 * 6539 * After the caller finished using the fields, the caller must invoke 6540 * another follow_pfnmap_end() to proper releases the locks and resources 6541 * of such look up request. 6542 * 6543 * During the start() and end() calls, the results in @args will be valid 6544 * as proper locks will be held. After the end() is called, all the fields 6545 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6546 * use of such information after end() may require proper synchronizations 6547 * by the caller with page table updates, otherwise it can create a 6548 * security bug. 6549 * 6550 * If the PTE maps a refcounted page, callers are responsible to protect 6551 * against invalidation with MMU notifiers; otherwise access to the PFN at 6552 * a later point in time can trigger use-after-free. 6553 * 6554 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6555 * should be taken for read, and the mmap semaphore cannot be released 6556 * before the end() is invoked. 6557 * 6558 * This function must not be used to modify PTE content. 6559 * 6560 * Return: zero on success, negative otherwise. 6561 */ 6562 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6563 { 6564 struct vm_area_struct *vma = args->vma; 6565 unsigned long address = args->address; 6566 struct mm_struct *mm = vma->vm_mm; 6567 spinlock_t *lock; 6568 pgd_t *pgdp; 6569 p4d_t *p4dp, p4d; 6570 pud_t *pudp, pud; 6571 pmd_t *pmdp, pmd; 6572 pte_t *ptep, pte; 6573 6574 pfnmap_lockdep_assert(vma); 6575 6576 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6577 goto out; 6578 6579 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6580 goto out; 6581 retry: 6582 pgdp = pgd_offset(mm, address); 6583 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6584 goto out; 6585 6586 p4dp = p4d_offset(pgdp, address); 6587 p4d = READ_ONCE(*p4dp); 6588 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6589 goto out; 6590 6591 pudp = pud_offset(p4dp, address); 6592 pud = READ_ONCE(*pudp); 6593 if (pud_none(pud)) 6594 goto out; 6595 if (pud_leaf(pud)) { 6596 lock = pud_lock(mm, pudp); 6597 if (!unlikely(pud_leaf(pud))) { 6598 spin_unlock(lock); 6599 goto retry; 6600 } 6601 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6602 pud_pfn(pud), PUD_MASK, pud_write(pud), 6603 pud_special(pud)); 6604 return 0; 6605 } 6606 6607 pmdp = pmd_offset(pudp, address); 6608 pmd = pmdp_get_lockless(pmdp); 6609 if (pmd_leaf(pmd)) { 6610 lock = pmd_lock(mm, pmdp); 6611 if (!unlikely(pmd_leaf(pmd))) { 6612 spin_unlock(lock); 6613 goto retry; 6614 } 6615 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6616 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6617 pmd_special(pmd)); 6618 return 0; 6619 } 6620 6621 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6622 if (!ptep) 6623 goto out; 6624 pte = ptep_get(ptep); 6625 if (!pte_present(pte)) 6626 goto unlock; 6627 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6628 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6629 pte_special(pte)); 6630 return 0; 6631 unlock: 6632 pte_unmap_unlock(ptep, lock); 6633 out: 6634 return -EINVAL; 6635 } 6636 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6637 6638 /** 6639 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6640 * @args: Pointer to struct @follow_pfnmap_args 6641 * 6642 * Must be used in pair of follow_pfnmap_start(). See the start() function 6643 * above for more information. 6644 */ 6645 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6646 { 6647 if (args->lock) 6648 spin_unlock(args->lock); 6649 if (args->ptep) 6650 pte_unmap(args->ptep); 6651 } 6652 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6653 6654 #ifdef CONFIG_HAVE_IOREMAP_PROT 6655 /** 6656 * generic_access_phys - generic implementation for iomem mmap access 6657 * @vma: the vma to access 6658 * @addr: userspace address, not relative offset within @vma 6659 * @buf: buffer to read/write 6660 * @len: length of transfer 6661 * @write: set to FOLL_WRITE when writing, otherwise reading 6662 * 6663 * This is a generic implementation for &vm_operations_struct.access for an 6664 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6665 * not page based. 6666 */ 6667 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6668 void *buf, int len, int write) 6669 { 6670 resource_size_t phys_addr; 6671 pgprot_t prot = __pgprot(0); 6672 void __iomem *maddr; 6673 int offset = offset_in_page(addr); 6674 int ret = -EINVAL; 6675 bool writable; 6676 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6677 6678 retry: 6679 if (follow_pfnmap_start(&args)) 6680 return -EINVAL; 6681 prot = args.pgprot; 6682 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6683 writable = args.writable; 6684 follow_pfnmap_end(&args); 6685 6686 if ((write & FOLL_WRITE) && !writable) 6687 return -EINVAL; 6688 6689 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6690 if (!maddr) 6691 return -ENOMEM; 6692 6693 if (follow_pfnmap_start(&args)) 6694 goto out_unmap; 6695 6696 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || 6697 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6698 (writable != args.writable)) { 6699 follow_pfnmap_end(&args); 6700 iounmap(maddr); 6701 goto retry; 6702 } 6703 6704 if (write) 6705 memcpy_toio(maddr + offset, buf, len); 6706 else 6707 memcpy_fromio(buf, maddr + offset, len); 6708 ret = len; 6709 follow_pfnmap_end(&args); 6710 out_unmap: 6711 iounmap(maddr); 6712 6713 return ret; 6714 } 6715 EXPORT_SYMBOL_GPL(generic_access_phys); 6716 #endif 6717 6718 /* 6719 * Access another process' address space as given in mm. 6720 */ 6721 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6722 void *buf, int len, unsigned int gup_flags) 6723 { 6724 void *old_buf = buf; 6725 int write = gup_flags & FOLL_WRITE; 6726 6727 if (mmap_read_lock_killable(mm)) 6728 return 0; 6729 6730 /* Untag the address before looking up the VMA */ 6731 addr = untagged_addr_remote(mm, addr); 6732 6733 /* Avoid triggering the temporary warning in __get_user_pages */ 6734 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6735 return 0; 6736 6737 /* ignore errors, just check how much was successfully transferred */ 6738 while (len) { 6739 int bytes, offset; 6740 void *maddr; 6741 struct vm_area_struct *vma = NULL; 6742 struct page *page = get_user_page_vma_remote(mm, addr, 6743 gup_flags, &vma); 6744 6745 if (IS_ERR(page)) { 6746 /* We might need to expand the stack to access it */ 6747 vma = vma_lookup(mm, addr); 6748 if (!vma) { 6749 vma = expand_stack(mm, addr); 6750 6751 /* mmap_lock was dropped on failure */ 6752 if (!vma) 6753 return buf - old_buf; 6754 6755 /* Try again if stack expansion worked */ 6756 continue; 6757 } 6758 6759 /* 6760 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6761 * we can access using slightly different code. 6762 */ 6763 bytes = 0; 6764 #ifdef CONFIG_HAVE_IOREMAP_PROT 6765 if (vma->vm_ops && vma->vm_ops->access) 6766 bytes = vma->vm_ops->access(vma, addr, buf, 6767 len, write); 6768 #endif 6769 if (bytes <= 0) 6770 break; 6771 } else { 6772 bytes = len; 6773 offset = addr & (PAGE_SIZE-1); 6774 if (bytes > PAGE_SIZE-offset) 6775 bytes = PAGE_SIZE-offset; 6776 6777 maddr = kmap_local_page(page); 6778 if (write) { 6779 copy_to_user_page(vma, page, addr, 6780 maddr + offset, buf, bytes); 6781 set_page_dirty_lock(page); 6782 } else { 6783 copy_from_user_page(vma, page, addr, 6784 buf, maddr + offset, bytes); 6785 } 6786 unmap_and_put_page(page, maddr); 6787 } 6788 len -= bytes; 6789 buf += bytes; 6790 addr += bytes; 6791 } 6792 mmap_read_unlock(mm); 6793 6794 return buf - old_buf; 6795 } 6796 6797 /** 6798 * access_remote_vm - access another process' address space 6799 * @mm: the mm_struct of the target address space 6800 * @addr: start address to access 6801 * @buf: source or destination buffer 6802 * @len: number of bytes to transfer 6803 * @gup_flags: flags modifying lookup behaviour 6804 * 6805 * The caller must hold a reference on @mm. 6806 * 6807 * Return: number of bytes copied from source to destination. 6808 */ 6809 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6810 void *buf, int len, unsigned int gup_flags) 6811 { 6812 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6813 } 6814 6815 /* 6816 * Access another process' address space. 6817 * Source/target buffer must be kernel space, 6818 * Do not walk the page table directly, use get_user_pages 6819 */ 6820 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6821 void *buf, int len, unsigned int gup_flags) 6822 { 6823 struct mm_struct *mm; 6824 int ret; 6825 6826 mm = get_task_mm(tsk); 6827 if (!mm) 6828 return 0; 6829 6830 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6831 6832 mmput(mm); 6833 6834 return ret; 6835 } 6836 EXPORT_SYMBOL_GPL(access_process_vm); 6837 6838 #ifdef CONFIG_BPF_SYSCALL 6839 /* 6840 * Copy a string from another process's address space as given in mm. 6841 * If there is any error return -EFAULT. 6842 */ 6843 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 6844 void *buf, int len, unsigned int gup_flags) 6845 { 6846 void *old_buf = buf; 6847 int err = 0; 6848 6849 *(char *)buf = '\0'; 6850 6851 if (mmap_read_lock_killable(mm)) 6852 return -EFAULT; 6853 6854 addr = untagged_addr_remote(mm, addr); 6855 6856 /* Avoid triggering the temporary warning in __get_user_pages */ 6857 if (!vma_lookup(mm, addr)) { 6858 err = -EFAULT; 6859 goto out; 6860 } 6861 6862 while (len) { 6863 int bytes, offset, retval; 6864 void *maddr; 6865 struct page *page; 6866 struct vm_area_struct *vma = NULL; 6867 6868 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); 6869 if (IS_ERR(page)) { 6870 /* 6871 * Treat as a total failure for now until we decide how 6872 * to handle the CONFIG_HAVE_IOREMAP_PROT case and 6873 * stack expansion. 6874 */ 6875 *(char *)buf = '\0'; 6876 err = -EFAULT; 6877 goto out; 6878 } 6879 6880 bytes = len; 6881 offset = addr & (PAGE_SIZE - 1); 6882 if (bytes > PAGE_SIZE - offset) 6883 bytes = PAGE_SIZE - offset; 6884 6885 maddr = kmap_local_page(page); 6886 retval = strscpy(buf, maddr + offset, bytes); 6887 if (retval >= 0) { 6888 /* Found the end of the string */ 6889 buf += retval; 6890 unmap_and_put_page(page, maddr); 6891 break; 6892 } 6893 6894 buf += bytes - 1; 6895 /* 6896 * Because strscpy always NUL terminates we need to 6897 * copy the last byte in the page if we are going to 6898 * load more pages 6899 */ 6900 if (bytes != len) { 6901 addr += bytes - 1; 6902 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); 6903 buf += 1; 6904 addr += 1; 6905 } 6906 len -= bytes; 6907 6908 unmap_and_put_page(page, maddr); 6909 } 6910 6911 out: 6912 mmap_read_unlock(mm); 6913 if (err) 6914 return err; 6915 return buf - old_buf; 6916 } 6917 6918 /** 6919 * copy_remote_vm_str - copy a string from another process's address space. 6920 * @tsk: the task of the target address space 6921 * @addr: start address to read from 6922 * @buf: destination buffer 6923 * @len: number of bytes to copy 6924 * @gup_flags: flags modifying lookup behaviour 6925 * 6926 * The caller must hold a reference on @mm. 6927 * 6928 * Return: number of bytes copied from @addr (source) to @buf (destination); 6929 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 6930 * buffer. On any error, return -EFAULT. 6931 */ 6932 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 6933 void *buf, int len, unsigned int gup_flags) 6934 { 6935 struct mm_struct *mm; 6936 int ret; 6937 6938 if (unlikely(len == 0)) 6939 return 0; 6940 6941 mm = get_task_mm(tsk); 6942 if (!mm) { 6943 *(char *)buf = '\0'; 6944 return -EFAULT; 6945 } 6946 6947 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); 6948 6949 mmput(mm); 6950 6951 return ret; 6952 } 6953 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 6954 #endif /* CONFIG_BPF_SYSCALL */ 6955 6956 /* 6957 * Print the name of a VMA. 6958 */ 6959 void print_vma_addr(char *prefix, unsigned long ip) 6960 { 6961 struct mm_struct *mm = current->mm; 6962 struct vm_area_struct *vma; 6963 6964 /* 6965 * we might be running from an atomic context so we cannot sleep 6966 */ 6967 if (!mmap_read_trylock(mm)) 6968 return; 6969 6970 vma = vma_lookup(mm, ip); 6971 if (vma && vma->vm_file) { 6972 struct file *f = vma->vm_file; 6973 ip -= vma->vm_start; 6974 ip += vma->vm_pgoff << PAGE_SHIFT; 6975 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 6976 vma->vm_start, 6977 vma->vm_end - vma->vm_start); 6978 } 6979 mmap_read_unlock(mm); 6980 } 6981 6982 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6983 void __might_fault(const char *file, int line) 6984 { 6985 if (pagefault_disabled()) 6986 return; 6987 __might_sleep(file, line); 6988 if (current->mm) 6989 might_lock_read(¤t->mm->mmap_lock); 6990 } 6991 EXPORT_SYMBOL(__might_fault); 6992 #endif 6993 6994 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6995 /* 6996 * Process all subpages of the specified huge page with the specified 6997 * operation. The target subpage will be processed last to keep its 6998 * cache lines hot. 6999 */ 7000 static inline int process_huge_page( 7001 unsigned long addr_hint, unsigned int nr_pages, 7002 int (*process_subpage)(unsigned long addr, int idx, void *arg), 7003 void *arg) 7004 { 7005 int i, n, base, l, ret; 7006 unsigned long addr = addr_hint & 7007 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 7008 7009 /* Process target subpage last to keep its cache lines hot */ 7010 might_sleep(); 7011 n = (addr_hint - addr) / PAGE_SIZE; 7012 if (2 * n <= nr_pages) { 7013 /* If target subpage in first half of huge page */ 7014 base = 0; 7015 l = n; 7016 /* Process subpages at the end of huge page */ 7017 for (i = nr_pages - 1; i >= 2 * n; i--) { 7018 cond_resched(); 7019 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7020 if (ret) 7021 return ret; 7022 } 7023 } else { 7024 /* If target subpage in second half of huge page */ 7025 base = nr_pages - 2 * (nr_pages - n); 7026 l = nr_pages - n; 7027 /* Process subpages at the begin of huge page */ 7028 for (i = 0; i < base; i++) { 7029 cond_resched(); 7030 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7031 if (ret) 7032 return ret; 7033 } 7034 } 7035 /* 7036 * Process remaining subpages in left-right-left-right pattern 7037 * towards the target subpage 7038 */ 7039 for (i = 0; i < l; i++) { 7040 int left_idx = base + i; 7041 int right_idx = base + 2 * l - 1 - i; 7042 7043 cond_resched(); 7044 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 7045 if (ret) 7046 return ret; 7047 cond_resched(); 7048 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 7049 if (ret) 7050 return ret; 7051 } 7052 return 0; 7053 } 7054 7055 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 7056 unsigned int nr_pages) 7057 { 7058 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7059 int i; 7060 7061 might_sleep(); 7062 for (i = 0; i < nr_pages; i++) { 7063 cond_resched(); 7064 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 7065 } 7066 } 7067 7068 static int clear_subpage(unsigned long addr, int idx, void *arg) 7069 { 7070 struct folio *folio = arg; 7071 7072 clear_user_highpage(folio_page(folio, idx), addr); 7073 return 0; 7074 } 7075 7076 /** 7077 * folio_zero_user - Zero a folio which will be mapped to userspace. 7078 * @folio: The folio to zero. 7079 * @addr_hint: The address will be accessed or the base address if uncelar. 7080 */ 7081 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7082 { 7083 unsigned int nr_pages = folio_nr_pages(folio); 7084 7085 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7086 clear_gigantic_page(folio, addr_hint, nr_pages); 7087 else 7088 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 7089 } 7090 7091 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7092 unsigned long addr_hint, 7093 struct vm_area_struct *vma, 7094 unsigned int nr_pages) 7095 { 7096 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7097 struct page *dst_page; 7098 struct page *src_page; 7099 int i; 7100 7101 for (i = 0; i < nr_pages; i++) { 7102 dst_page = folio_page(dst, i); 7103 src_page = folio_page(src, i); 7104 7105 cond_resched(); 7106 if (copy_mc_user_highpage(dst_page, src_page, 7107 addr + i*PAGE_SIZE, vma)) 7108 return -EHWPOISON; 7109 } 7110 return 0; 7111 } 7112 7113 struct copy_subpage_arg { 7114 struct folio *dst; 7115 struct folio *src; 7116 struct vm_area_struct *vma; 7117 }; 7118 7119 static int copy_subpage(unsigned long addr, int idx, void *arg) 7120 { 7121 struct copy_subpage_arg *copy_arg = arg; 7122 struct page *dst = folio_page(copy_arg->dst, idx); 7123 struct page *src = folio_page(copy_arg->src, idx); 7124 7125 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7126 return -EHWPOISON; 7127 return 0; 7128 } 7129 7130 int copy_user_large_folio(struct folio *dst, struct folio *src, 7131 unsigned long addr_hint, struct vm_area_struct *vma) 7132 { 7133 unsigned int nr_pages = folio_nr_pages(dst); 7134 struct copy_subpage_arg arg = { 7135 .dst = dst, 7136 .src = src, 7137 .vma = vma, 7138 }; 7139 7140 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7141 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7142 7143 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7144 } 7145 7146 long copy_folio_from_user(struct folio *dst_folio, 7147 const void __user *usr_src, 7148 bool allow_pagefault) 7149 { 7150 void *kaddr; 7151 unsigned long i, rc = 0; 7152 unsigned int nr_pages = folio_nr_pages(dst_folio); 7153 unsigned long ret_val = nr_pages * PAGE_SIZE; 7154 struct page *subpage; 7155 7156 for (i = 0; i < nr_pages; i++) { 7157 subpage = folio_page(dst_folio, i); 7158 kaddr = kmap_local_page(subpage); 7159 if (!allow_pagefault) 7160 pagefault_disable(); 7161 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7162 if (!allow_pagefault) 7163 pagefault_enable(); 7164 kunmap_local(kaddr); 7165 7166 ret_val -= (PAGE_SIZE - rc); 7167 if (rc) 7168 break; 7169 7170 flush_dcache_page(subpage); 7171 7172 cond_resched(); 7173 } 7174 return ret_val; 7175 } 7176 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7177 7178 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7179 7180 static struct kmem_cache *page_ptl_cachep; 7181 7182 void __init ptlock_cache_init(void) 7183 { 7184 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7185 SLAB_PANIC, NULL); 7186 } 7187 7188 bool ptlock_alloc(struct ptdesc *ptdesc) 7189 { 7190 spinlock_t *ptl; 7191 7192 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7193 if (!ptl) 7194 return false; 7195 ptdesc->ptl = ptl; 7196 return true; 7197 } 7198 7199 void ptlock_free(struct ptdesc *ptdesc) 7200 { 7201 if (ptdesc->ptl) 7202 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7203 } 7204 #endif 7205 7206 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7207 { 7208 if (is_vm_hugetlb_page(vma)) 7209 hugetlb_vma_lock_read(vma); 7210 } 7211 7212 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7213 { 7214 if (is_vm_hugetlb_page(vma)) 7215 hugetlb_vma_unlock_read(vma); 7216 } 7217