1 2 // SPDX-License-Identifier: GPL-2.0-only 3 /* 4 * linux/mm/memory.c 5 * 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 */ 8 9 /* 10 * demand-loading started 01.12.91 - seems it is high on the list of 11 * things wanted, and it should be easy to implement. - Linus 12 */ 13 14 /* 15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 16 * pages started 02.12.91, seems to work. - Linus. 17 * 18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 19 * would have taken more than the 6M I have free, but it worked well as 20 * far as I could see. 21 * 22 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 23 */ 24 25 /* 26 * Real VM (paging to/from disk) started 18.12.91. Much more work and 27 * thought has to go into this. Oh, well.. 28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 29 * Found it. Everything seems to work now. 30 * 20.12.91 - Ok, making the swap-device changeable like the root. 31 */ 32 33 /* 34 * 05.04.94 - Multi-page memory management added for v1.1. 35 * Idea by Alex Bligh (alex@cconcepts.co.uk) 36 * 37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 38 * (Gerhard.Wichert@pdb.siemens.de) 39 * 40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 41 */ 42 43 #include <linux/kernel_stat.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/sched/mm.h> 47 #include <linux/sched/coredump.h> 48 #include <linux/sched/numa_balancing.h> 49 #include <linux/sched/task.h> 50 #include <linux/hugetlb.h> 51 #include <linux/mman.h> 52 #include <linux/swap.h> 53 #include <linux/highmem.h> 54 #include <linux/pagemap.h> 55 #include <linux/memremap.h> 56 #include <linux/kmsan.h> 57 #include <linux/ksm.h> 58 #include <linux/rmap.h> 59 #include <linux/export.h> 60 #include <linux/delayacct.h> 61 #include <linux/init.h> 62 #include <linux/pfn_t.h> 63 #include <linux/writeback.h> 64 #include <linux/memcontrol.h> 65 #include <linux/mmu_notifier.h> 66 #include <linux/swapops.h> 67 #include <linux/elf.h> 68 #include <linux/gfp.h> 69 #include <linux/migrate.h> 70 #include <linux/string.h> 71 #include <linux/memory-tiers.h> 72 #include <linux/debugfs.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/dax.h> 75 #include <linux/oom.h> 76 #include <linux/numa.h> 77 #include <linux/perf_event.h> 78 #include <linux/ptrace.h> 79 #include <linux/vmalloc.h> 80 #include <linux/sched/sysctl.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/pgalloc.h> 87 #include <linux/uaccess.h> 88 #include <asm/tlb.h> 89 #include <asm/tlbflush.h> 90 91 #include "pgalloc-track.h" 92 #include "internal.h" 93 #include "swap.h" 94 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 97 #endif 98 99 #ifndef CONFIG_NUMA 100 unsigned long max_mapnr; 101 EXPORT_SYMBOL(max_mapnr); 102 103 struct page *mem_map; 104 EXPORT_SYMBOL(mem_map); 105 #endif 106 107 static vm_fault_t do_fault(struct vm_fault *vmf); 108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 109 static bool vmf_pte_changed(struct vm_fault *vmf); 110 111 /* 112 * Return true if the original pte was a uffd-wp pte marker (so the pte was 113 * wr-protected). 114 */ 115 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 116 { 117 if (!userfaultfd_wp(vmf->vma)) 118 return false; 119 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 120 return false; 121 122 return pte_marker_uffd_wp(vmf->orig_pte); 123 } 124 125 /* 126 * A number of key systems in x86 including ioremap() rely on the assumption 127 * that high_memory defines the upper bound on direct map memory, then end 128 * of ZONE_NORMAL. 129 */ 130 void *high_memory; 131 EXPORT_SYMBOL(high_memory); 132 133 /* 134 * Randomize the address space (stacks, mmaps, brk, etc.). 135 * 136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 137 * as ancient (libc5 based) binaries can segfault. ) 138 */ 139 int randomize_va_space __read_mostly = 140 #ifdef CONFIG_COMPAT_BRK 141 1; 142 #else 143 2; 144 #endif 145 146 #ifndef arch_wants_old_prefaulted_pte 147 static inline bool arch_wants_old_prefaulted_pte(void) 148 { 149 /* 150 * Transitioning a PTE from 'old' to 'young' can be expensive on 151 * some architectures, even if it's performed in hardware. By 152 * default, "false" means prefaulted entries will be 'young'. 153 */ 154 return false; 155 } 156 #endif 157 158 static int __init disable_randmaps(char *s) 159 { 160 randomize_va_space = 0; 161 return 1; 162 } 163 __setup("norandmaps", disable_randmaps); 164 165 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 167 168 unsigned long highest_memmap_pfn __read_mostly; 169 170 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 173 static int __init init_zero_pfn(void) 174 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177 } 178 early_initcall(init_zero_pfn); 179 180 void mm_trace_rss_stat(struct mm_struct *mm, int member) 181 { 182 trace_rss_stat(mm, member); 183 } 184 185 /* 186 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all the memory regions. 188 */ 189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 191 { 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196 } 197 198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long addr, unsigned long end, 200 unsigned long floor, unsigned long ceiling) 201 { 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd)) 211 continue; 212 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != end); 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230 } 231 232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235 { 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud)) 245 continue; 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != end); 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264 } 265 266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d)) 279 continue; 280 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297 } 298 299 /* 300 * This function frees user-level page tables of a process. 301 */ 302 void free_pgd_range(struct mmu_gather *tlb, 303 unsigned long addr, unsigned long end, 304 unsigned long floor, unsigned long ceiling) 305 { 306 pgd_t *pgd; 307 unsigned long next; 308 309 /* 310 * The next few lines have given us lots of grief... 311 * 312 * Why are we testing PMD* at this top level? Because often 313 * there will be no work to do at all, and we'd prefer not to 314 * go all the way down to the bottom just to discover that. 315 * 316 * Why all these "- 1"s? Because 0 represents both the bottom 317 * of the address space and the top of it (using -1 for the 318 * top wouldn't help much: the masks would do the wrong thing). 319 * The rule is that addr 0 and floor 0 refer to the bottom of 320 * the address space, but end 0 and ceiling 0 refer to the top 321 * Comparisons need to use "end - 1" and "ceiling - 1" (though 322 * that end 0 case should be mythical). 323 * 324 * Wherever addr is brought up or ceiling brought down, we must 325 * be careful to reject "the opposite 0" before it confuses the 326 * subsequent tests. But what about where end is brought down 327 * by PMD_SIZE below? no, end can't go down to 0 there. 328 * 329 * Whereas we round start (addr) and ceiling down, by different 330 * masks at different levels, in order to test whether a table 331 * now has no other vmas using it, so can be freed, we don't 332 * bother to round floor or end up - the tests don't need that. 333 */ 334 335 addr &= PMD_MASK; 336 if (addr < floor) { 337 addr += PMD_SIZE; 338 if (!addr) 339 return; 340 } 341 if (ceiling) { 342 ceiling &= PMD_MASK; 343 if (!ceiling) 344 return; 345 } 346 if (end - 1 > ceiling - 1) 347 end -= PMD_SIZE; 348 if (addr > end - 1) 349 return; 350 /* 351 * We add page table cache pages with PAGE_SIZE, 352 * (see pte_free_tlb()), flush the tlb if we need 353 */ 354 tlb_change_page_size(tlb, PAGE_SIZE); 355 pgd = pgd_offset(tlb->mm, addr); 356 do { 357 next = pgd_addr_end(addr, end); 358 if (pgd_none_or_clear_bad(pgd)) 359 continue; 360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 361 } while (pgd++, addr = next, addr != end); 362 } 363 364 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 365 struct vm_area_struct *vma, unsigned long floor, 366 unsigned long ceiling, bool mm_wr_locked) 367 { 368 do { 369 unsigned long addr = vma->vm_start; 370 struct vm_area_struct *next; 371 372 /* 373 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 374 * be 0. This will underflow and is okay. 375 */ 376 next = mas_find(mas, ceiling - 1); 377 if (unlikely(xa_is_zero(next))) 378 next = NULL; 379 380 /* 381 * Hide vma from rmap and truncate_pagecache before freeing 382 * pgtables 383 */ 384 if (mm_wr_locked) 385 vma_start_write(vma); 386 unlink_anon_vmas(vma); 387 unlink_file_vma(vma); 388 389 if (is_vm_hugetlb_page(vma)) { 390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 391 floor, next ? next->vm_start : ceiling); 392 } else { 393 /* 394 * Optimization: gather nearby vmas into one call down 395 */ 396 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 397 && !is_vm_hugetlb_page(next)) { 398 vma = next; 399 next = mas_find(mas, ceiling - 1); 400 if (unlikely(xa_is_zero(next))) 401 next = NULL; 402 if (mm_wr_locked) 403 vma_start_write(vma); 404 unlink_anon_vmas(vma); 405 unlink_file_vma(vma); 406 } 407 free_pgd_range(tlb, addr, vma->vm_end, 408 floor, next ? next->vm_start : ceiling); 409 } 410 vma = next; 411 } while (vma); 412 } 413 414 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 415 { 416 spinlock_t *ptl = pmd_lock(mm, pmd); 417 418 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 419 mm_inc_nr_ptes(mm); 420 /* 421 * Ensure all pte setup (eg. pte page lock and page clearing) are 422 * visible before the pte is made visible to other CPUs by being 423 * put into page tables. 424 * 425 * The other side of the story is the pointer chasing in the page 426 * table walking code (when walking the page table without locking; 427 * ie. most of the time). Fortunately, these data accesses consist 428 * of a chain of data-dependent loads, meaning most CPUs (alpha 429 * being the notable exception) will already guarantee loads are 430 * seen in-order. See the alpha page table accessors for the 431 * smp_rmb() barriers in page table walking code. 432 */ 433 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 434 pmd_populate(mm, pmd, *pte); 435 *pte = NULL; 436 } 437 spin_unlock(ptl); 438 } 439 440 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 441 { 442 pgtable_t new = pte_alloc_one(mm); 443 if (!new) 444 return -ENOMEM; 445 446 pmd_install(mm, pmd, &new); 447 if (new) 448 pte_free(mm, new); 449 return 0; 450 } 451 452 int __pte_alloc_kernel(pmd_t *pmd) 453 { 454 pte_t *new = pte_alloc_one_kernel(&init_mm); 455 if (!new) 456 return -ENOMEM; 457 458 spin_lock(&init_mm.page_table_lock); 459 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 460 smp_wmb(); /* See comment in pmd_install() */ 461 pmd_populate_kernel(&init_mm, pmd, new); 462 new = NULL; 463 } 464 spin_unlock(&init_mm.page_table_lock); 465 if (new) 466 pte_free_kernel(&init_mm, new); 467 return 0; 468 } 469 470 static inline void init_rss_vec(int *rss) 471 { 472 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 473 } 474 475 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 476 { 477 int i; 478 479 for (i = 0; i < NR_MM_COUNTERS; i++) 480 if (rss[i]) 481 add_mm_counter(mm, i, rss[i]); 482 } 483 484 /* 485 * This function is called to print an error when a bad pte 486 * is found. For example, we might have a PFN-mapped pte in 487 * a region that doesn't allow it. 488 * 489 * The calling function must still handle the error. 490 */ 491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 492 pte_t pte, struct page *page) 493 { 494 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 495 p4d_t *p4d = p4d_offset(pgd, addr); 496 pud_t *pud = pud_offset(p4d, addr); 497 pmd_t *pmd = pmd_offset(pud, addr); 498 struct address_space *mapping; 499 pgoff_t index; 500 static unsigned long resume; 501 static unsigned long nr_shown; 502 static unsigned long nr_unshown; 503 504 /* 505 * Allow a burst of 60 reports, then keep quiet for that minute; 506 * or allow a steady drip of one report per second. 507 */ 508 if (nr_shown == 60) { 509 if (time_before(jiffies, resume)) { 510 nr_unshown++; 511 return; 512 } 513 if (nr_unshown) { 514 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 515 nr_unshown); 516 nr_unshown = 0; 517 } 518 nr_shown = 0; 519 } 520 if (nr_shown++ == 0) 521 resume = jiffies + 60 * HZ; 522 523 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 524 index = linear_page_index(vma, addr); 525 526 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 527 current->comm, 528 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 529 if (page) 530 dump_page(page, "bad pte"); 531 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 532 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 533 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 534 vma->vm_file, 535 vma->vm_ops ? vma->vm_ops->fault : NULL, 536 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 537 mapping ? mapping->a_ops->read_folio : NULL); 538 dump_stack(); 539 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 540 } 541 542 /* 543 * vm_normal_page -- This function gets the "struct page" associated with a pte. 544 * 545 * "Special" mappings do not wish to be associated with a "struct page" (either 546 * it doesn't exist, or it exists but they don't want to touch it). In this 547 * case, NULL is returned here. "Normal" mappings do have a struct page. 548 * 549 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 550 * pte bit, in which case this function is trivial. Secondly, an architecture 551 * may not have a spare pte bit, which requires a more complicated scheme, 552 * described below. 553 * 554 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 555 * special mapping (even if there are underlying and valid "struct pages"). 556 * COWed pages of a VM_PFNMAP are always normal. 557 * 558 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 559 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 560 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 561 * mapping will always honor the rule 562 * 563 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 564 * 565 * And for normal mappings this is false. 566 * 567 * This restricts such mappings to be a linear translation from virtual address 568 * to pfn. To get around this restriction, we allow arbitrary mappings so long 569 * as the vma is not a COW mapping; in that case, we know that all ptes are 570 * special (because none can have been COWed). 571 * 572 * 573 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 574 * 575 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 576 * page" backing, however the difference is that _all_ pages with a struct 577 * page (that is, those where pfn_valid is true) are refcounted and considered 578 * normal pages by the VM. The disadvantage is that pages are refcounted 579 * (which can be slower and simply not an option for some PFNMAP users). The 580 * advantage is that we don't have to follow the strict linearity rule of 581 * PFNMAP mappings in order to support COWable mappings. 582 * 583 */ 584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 585 pte_t pte) 586 { 587 unsigned long pfn = pte_pfn(pte); 588 589 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 590 if (likely(!pte_special(pte))) 591 goto check_pfn; 592 if (vma->vm_ops && vma->vm_ops->find_special_page) 593 return vma->vm_ops->find_special_page(vma, addr); 594 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 595 return NULL; 596 if (is_zero_pfn(pfn)) 597 return NULL; 598 if (pte_devmap(pte)) 599 /* 600 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 601 * and will have refcounts incremented on their struct pages 602 * when they are inserted into PTEs, thus they are safe to 603 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 604 * do not have refcounts. Example of legacy ZONE_DEVICE is 605 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 606 */ 607 return NULL; 608 609 print_bad_pte(vma, addr, pte, NULL); 610 return NULL; 611 } 612 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 614 615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 616 if (vma->vm_flags & VM_MIXEDMAP) { 617 if (!pfn_valid(pfn)) 618 return NULL; 619 goto out; 620 } else { 621 unsigned long off; 622 off = (addr - vma->vm_start) >> PAGE_SHIFT; 623 if (pfn == vma->vm_pgoff + off) 624 return NULL; 625 if (!is_cow_mapping(vma->vm_flags)) 626 return NULL; 627 } 628 } 629 630 if (is_zero_pfn(pfn)) 631 return NULL; 632 633 check_pfn: 634 if (unlikely(pfn > highest_memmap_pfn)) { 635 print_bad_pte(vma, addr, pte, NULL); 636 return NULL; 637 } 638 639 /* 640 * NOTE! We still have PageReserved() pages in the page tables. 641 * eg. VDSO mappings can cause them to exist. 642 */ 643 out: 644 return pfn_to_page(pfn); 645 } 646 647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 648 pte_t pte) 649 { 650 struct page *page = vm_normal_page(vma, addr, pte); 651 652 if (page) 653 return page_folio(page); 654 return NULL; 655 } 656 657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 659 pmd_t pmd) 660 { 661 unsigned long pfn = pmd_pfn(pmd); 662 663 /* 664 * There is no pmd_special() but there may be special pmds, e.g. 665 * in a direct-access (dax) mapping, so let's just replicate the 666 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 667 */ 668 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 669 if (vma->vm_flags & VM_MIXEDMAP) { 670 if (!pfn_valid(pfn)) 671 return NULL; 672 goto out; 673 } else { 674 unsigned long off; 675 off = (addr - vma->vm_start) >> PAGE_SHIFT; 676 if (pfn == vma->vm_pgoff + off) 677 return NULL; 678 if (!is_cow_mapping(vma->vm_flags)) 679 return NULL; 680 } 681 } 682 683 if (pmd_devmap(pmd)) 684 return NULL; 685 if (is_huge_zero_pmd(pmd)) 686 return NULL; 687 if (unlikely(pfn > highest_memmap_pfn)) 688 return NULL; 689 690 /* 691 * NOTE! We still have PageReserved() pages in the page tables. 692 * eg. VDSO mappings can cause them to exist. 693 */ 694 out: 695 return pfn_to_page(pfn); 696 } 697 698 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 699 unsigned long addr, pmd_t pmd) 700 { 701 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 702 703 if (page) 704 return page_folio(page); 705 return NULL; 706 } 707 #endif 708 709 static void restore_exclusive_pte(struct vm_area_struct *vma, 710 struct page *page, unsigned long address, 711 pte_t *ptep) 712 { 713 struct folio *folio = page_folio(page); 714 pte_t orig_pte; 715 pte_t pte; 716 swp_entry_t entry; 717 718 orig_pte = ptep_get(ptep); 719 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 720 if (pte_swp_soft_dirty(orig_pte)) 721 pte = pte_mksoft_dirty(pte); 722 723 entry = pte_to_swp_entry(orig_pte); 724 if (pte_swp_uffd_wp(orig_pte)) 725 pte = pte_mkuffd_wp(pte); 726 else if (is_writable_device_exclusive_entry(entry)) 727 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 728 729 VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) && 730 PageAnonExclusive(page)), folio); 731 732 /* 733 * No need to take a page reference as one was already 734 * created when the swap entry was made. 735 */ 736 if (folio_test_anon(folio)) 737 folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE); 738 else 739 /* 740 * Currently device exclusive access only supports anonymous 741 * memory so the entry shouldn't point to a filebacked page. 742 */ 743 WARN_ON_ONCE(1); 744 745 set_pte_at(vma->vm_mm, address, ptep, pte); 746 747 /* 748 * No need to invalidate - it was non-present before. However 749 * secondary CPUs may have mappings that need invalidating. 750 */ 751 update_mmu_cache(vma, address, ptep); 752 } 753 754 /* 755 * Tries to restore an exclusive pte if the page lock can be acquired without 756 * sleeping. 757 */ 758 static int 759 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 760 unsigned long addr) 761 { 762 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 763 struct page *page = pfn_swap_entry_to_page(entry); 764 765 if (trylock_page(page)) { 766 restore_exclusive_pte(vma, page, addr, src_pte); 767 unlock_page(page); 768 return 0; 769 } 770 771 return -EBUSY; 772 } 773 774 /* 775 * copy one vm_area from one task to the other. Assumes the page tables 776 * already present in the new task to be cleared in the whole range 777 * covered by this vma. 778 */ 779 780 static unsigned long 781 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 782 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 783 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 784 { 785 unsigned long vm_flags = dst_vma->vm_flags; 786 pte_t orig_pte = ptep_get(src_pte); 787 pte_t pte = orig_pte; 788 struct folio *folio; 789 struct page *page; 790 swp_entry_t entry = pte_to_swp_entry(orig_pte); 791 792 if (likely(!non_swap_entry(entry))) { 793 if (swap_duplicate(entry) < 0) 794 return -EIO; 795 796 /* make sure dst_mm is on swapoff's mmlist. */ 797 if (unlikely(list_empty(&dst_mm->mmlist))) { 798 spin_lock(&mmlist_lock); 799 if (list_empty(&dst_mm->mmlist)) 800 list_add(&dst_mm->mmlist, 801 &src_mm->mmlist); 802 spin_unlock(&mmlist_lock); 803 } 804 /* Mark the swap entry as shared. */ 805 if (pte_swp_exclusive(orig_pte)) { 806 pte = pte_swp_clear_exclusive(orig_pte); 807 set_pte_at(src_mm, addr, src_pte, pte); 808 } 809 rss[MM_SWAPENTS]++; 810 } else if (is_migration_entry(entry)) { 811 folio = pfn_swap_entry_folio(entry); 812 813 rss[mm_counter(folio)]++; 814 815 if (!is_readable_migration_entry(entry) && 816 is_cow_mapping(vm_flags)) { 817 /* 818 * COW mappings require pages in both parent and child 819 * to be set to read. A previously exclusive entry is 820 * now shared. 821 */ 822 entry = make_readable_migration_entry( 823 swp_offset(entry)); 824 pte = swp_entry_to_pte(entry); 825 if (pte_swp_soft_dirty(orig_pte)) 826 pte = pte_swp_mksoft_dirty(pte); 827 if (pte_swp_uffd_wp(orig_pte)) 828 pte = pte_swp_mkuffd_wp(pte); 829 set_pte_at(src_mm, addr, src_pte, pte); 830 } 831 } else if (is_device_private_entry(entry)) { 832 page = pfn_swap_entry_to_page(entry); 833 folio = page_folio(page); 834 835 /* 836 * Update rss count even for unaddressable pages, as 837 * they should treated just like normal pages in this 838 * respect. 839 * 840 * We will likely want to have some new rss counters 841 * for unaddressable pages, at some point. But for now 842 * keep things as they are. 843 */ 844 folio_get(folio); 845 rss[mm_counter(folio)]++; 846 /* Cannot fail as these pages cannot get pinned. */ 847 folio_try_dup_anon_rmap_pte(folio, page, src_vma); 848 849 /* 850 * We do not preserve soft-dirty information, because so 851 * far, checkpoint/restore is the only feature that 852 * requires that. And checkpoint/restore does not work 853 * when a device driver is involved (you cannot easily 854 * save and restore device driver state). 855 */ 856 if (is_writable_device_private_entry(entry) && 857 is_cow_mapping(vm_flags)) { 858 entry = make_readable_device_private_entry( 859 swp_offset(entry)); 860 pte = swp_entry_to_pte(entry); 861 if (pte_swp_uffd_wp(orig_pte)) 862 pte = pte_swp_mkuffd_wp(pte); 863 set_pte_at(src_mm, addr, src_pte, pte); 864 } 865 } else if (is_device_exclusive_entry(entry)) { 866 /* 867 * Make device exclusive entries present by restoring the 868 * original entry then copying as for a present pte. Device 869 * exclusive entries currently only support private writable 870 * (ie. COW) mappings. 871 */ 872 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 873 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 874 return -EBUSY; 875 return -ENOENT; 876 } else if (is_pte_marker_entry(entry)) { 877 pte_marker marker = copy_pte_marker(entry, dst_vma); 878 879 if (marker) 880 set_pte_at(dst_mm, addr, dst_pte, 881 make_pte_marker(marker)); 882 return 0; 883 } 884 if (!userfaultfd_wp(dst_vma)) 885 pte = pte_swp_clear_uffd_wp(pte); 886 set_pte_at(dst_mm, addr, dst_pte, pte); 887 return 0; 888 } 889 890 /* 891 * Copy a present and normal page. 892 * 893 * NOTE! The usual case is that this isn't required; 894 * instead, the caller can just increase the page refcount 895 * and re-use the pte the traditional way. 896 * 897 * And if we need a pre-allocated page but don't yet have 898 * one, return a negative error to let the preallocation 899 * code know so that it can do so outside the page table 900 * lock. 901 */ 902 static inline int 903 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 904 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 905 struct folio **prealloc, struct page *page) 906 { 907 struct folio *new_folio; 908 pte_t pte; 909 910 new_folio = *prealloc; 911 if (!new_folio) 912 return -EAGAIN; 913 914 /* 915 * We have a prealloc page, all good! Take it 916 * over and copy the page & arm it. 917 */ 918 *prealloc = NULL; 919 copy_user_highpage(&new_folio->page, page, addr, src_vma); 920 __folio_mark_uptodate(new_folio); 921 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 922 folio_add_lru_vma(new_folio, dst_vma); 923 rss[MM_ANONPAGES]++; 924 925 /* All done, just insert the new page copy in the child */ 926 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 927 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 928 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 929 /* Uffd-wp needs to be delivered to dest pte as well */ 930 pte = pte_mkuffd_wp(pte); 931 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 932 return 0; 933 } 934 935 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 936 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 937 pte_t pte, unsigned long addr, int nr) 938 { 939 struct mm_struct *src_mm = src_vma->vm_mm; 940 941 /* If it's a COW mapping, write protect it both processes. */ 942 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 943 wrprotect_ptes(src_mm, addr, src_pte, nr); 944 pte = pte_wrprotect(pte); 945 } 946 947 /* If it's a shared mapping, mark it clean in the child. */ 948 if (src_vma->vm_flags & VM_SHARED) 949 pte = pte_mkclean(pte); 950 pte = pte_mkold(pte); 951 952 if (!userfaultfd_wp(dst_vma)) 953 pte = pte_clear_uffd_wp(pte); 954 955 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 956 } 957 958 /* 959 * Copy one present PTE, trying to batch-process subsequent PTEs that map 960 * consecutive pages of the same folio by copying them as well. 961 * 962 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 963 * Otherwise, returns the number of copied PTEs (at least 1). 964 */ 965 static inline int 966 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 967 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 968 int max_nr, int *rss, struct folio **prealloc) 969 { 970 struct page *page; 971 struct folio *folio; 972 bool any_writable; 973 fpb_t flags = 0; 974 int err, nr; 975 976 page = vm_normal_page(src_vma, addr, pte); 977 if (unlikely(!page)) 978 goto copy_pte; 979 980 folio = page_folio(page); 981 982 /* 983 * If we likely have to copy, just don't bother with batching. Make 984 * sure that the common "small folio" case is as fast as possible 985 * by keeping the batching logic separate. 986 */ 987 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 988 if (src_vma->vm_flags & VM_SHARED) 989 flags |= FPB_IGNORE_DIRTY; 990 if (!vma_soft_dirty_enabled(src_vma)) 991 flags |= FPB_IGNORE_SOFT_DIRTY; 992 993 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 994 &any_writable, NULL, NULL); 995 folio_ref_add(folio, nr); 996 if (folio_test_anon(folio)) { 997 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 998 nr, src_vma))) { 999 folio_ref_sub(folio, nr); 1000 return -EAGAIN; 1001 } 1002 rss[MM_ANONPAGES] += nr; 1003 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1004 } else { 1005 folio_dup_file_rmap_ptes(folio, page, nr); 1006 rss[mm_counter_file(folio)] += nr; 1007 } 1008 if (any_writable) 1009 pte = pte_mkwrite(pte, src_vma); 1010 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1011 addr, nr); 1012 return nr; 1013 } 1014 1015 folio_get(folio); 1016 if (folio_test_anon(folio)) { 1017 /* 1018 * If this page may have been pinned by the parent process, 1019 * copy the page immediately for the child so that we'll always 1020 * guarantee the pinned page won't be randomly replaced in the 1021 * future. 1022 */ 1023 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) { 1024 /* Page may be pinned, we have to copy. */ 1025 folio_put(folio); 1026 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1027 addr, rss, prealloc, page); 1028 return err ? err : 1; 1029 } 1030 rss[MM_ANONPAGES]++; 1031 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1032 } else { 1033 folio_dup_file_rmap_pte(folio, page); 1034 rss[mm_counter_file(folio)]++; 1035 } 1036 1037 copy_pte: 1038 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1039 return 1; 1040 } 1041 1042 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1043 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1044 { 1045 struct folio *new_folio; 1046 1047 if (need_zero) 1048 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1049 else 1050 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 1051 addr, false); 1052 1053 if (!new_folio) 1054 return NULL; 1055 1056 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1057 folio_put(new_folio); 1058 return NULL; 1059 } 1060 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1061 1062 return new_folio; 1063 } 1064 1065 static int 1066 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1067 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1068 unsigned long end) 1069 { 1070 struct mm_struct *dst_mm = dst_vma->vm_mm; 1071 struct mm_struct *src_mm = src_vma->vm_mm; 1072 pte_t *orig_src_pte, *orig_dst_pte; 1073 pte_t *src_pte, *dst_pte; 1074 pte_t ptent; 1075 spinlock_t *src_ptl, *dst_ptl; 1076 int progress, max_nr, ret = 0; 1077 int rss[NR_MM_COUNTERS]; 1078 swp_entry_t entry = (swp_entry_t){0}; 1079 struct folio *prealloc = NULL; 1080 int nr; 1081 1082 again: 1083 progress = 0; 1084 init_rss_vec(rss); 1085 1086 /* 1087 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1088 * error handling here, assume that exclusive mmap_lock on dst and src 1089 * protects anon from unexpected THP transitions; with shmem and file 1090 * protected by mmap_lock-less collapse skipping areas with anon_vma 1091 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1092 * can remove such assumptions later, but this is good enough for now. 1093 */ 1094 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1095 if (!dst_pte) { 1096 ret = -ENOMEM; 1097 goto out; 1098 } 1099 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1100 if (!src_pte) { 1101 pte_unmap_unlock(dst_pte, dst_ptl); 1102 /* ret == 0 */ 1103 goto out; 1104 } 1105 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1106 orig_src_pte = src_pte; 1107 orig_dst_pte = dst_pte; 1108 arch_enter_lazy_mmu_mode(); 1109 1110 do { 1111 nr = 1; 1112 1113 /* 1114 * We are holding two locks at this point - either of them 1115 * could generate latencies in another task on another CPU. 1116 */ 1117 if (progress >= 32) { 1118 progress = 0; 1119 if (need_resched() || 1120 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1121 break; 1122 } 1123 ptent = ptep_get(src_pte); 1124 if (pte_none(ptent)) { 1125 progress++; 1126 continue; 1127 } 1128 if (unlikely(!pte_present(ptent))) { 1129 ret = copy_nonpresent_pte(dst_mm, src_mm, 1130 dst_pte, src_pte, 1131 dst_vma, src_vma, 1132 addr, rss); 1133 if (ret == -EIO) { 1134 entry = pte_to_swp_entry(ptep_get(src_pte)); 1135 break; 1136 } else if (ret == -EBUSY) { 1137 break; 1138 } else if (!ret) { 1139 progress += 8; 1140 continue; 1141 } 1142 ptent = ptep_get(src_pte); 1143 VM_WARN_ON_ONCE(!pte_present(ptent)); 1144 1145 /* 1146 * Device exclusive entry restored, continue by copying 1147 * the now present pte. 1148 */ 1149 WARN_ON_ONCE(ret != -ENOENT); 1150 } 1151 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1152 max_nr = (end - addr) / PAGE_SIZE; 1153 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1154 ptent, addr, max_nr, rss, &prealloc); 1155 /* 1156 * If we need a pre-allocated page for this pte, drop the 1157 * locks, allocate, and try again. 1158 */ 1159 if (unlikely(ret == -EAGAIN)) 1160 break; 1161 if (unlikely(prealloc)) { 1162 /* 1163 * pre-alloc page cannot be reused by next time so as 1164 * to strictly follow mempolicy (e.g., alloc_page_vma() 1165 * will allocate page according to address). This 1166 * could only happen if one pinned pte changed. 1167 */ 1168 folio_put(prealloc); 1169 prealloc = NULL; 1170 } 1171 nr = ret; 1172 progress += 8 * nr; 1173 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1174 addr != end); 1175 1176 arch_leave_lazy_mmu_mode(); 1177 pte_unmap_unlock(orig_src_pte, src_ptl); 1178 add_mm_rss_vec(dst_mm, rss); 1179 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1180 cond_resched(); 1181 1182 if (ret == -EIO) { 1183 VM_WARN_ON_ONCE(!entry.val); 1184 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1185 ret = -ENOMEM; 1186 goto out; 1187 } 1188 entry.val = 0; 1189 } else if (ret == -EBUSY) { 1190 goto out; 1191 } else if (ret == -EAGAIN) { 1192 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1193 if (!prealloc) 1194 return -ENOMEM; 1195 } else if (ret < 0) { 1196 VM_WARN_ON_ONCE(1); 1197 } 1198 1199 /* We've captured and resolved the error. Reset, try again. */ 1200 ret = 0; 1201 1202 if (addr != end) 1203 goto again; 1204 out: 1205 if (unlikely(prealloc)) 1206 folio_put(prealloc); 1207 return ret; 1208 } 1209 1210 static inline int 1211 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1212 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1213 unsigned long end) 1214 { 1215 struct mm_struct *dst_mm = dst_vma->vm_mm; 1216 struct mm_struct *src_mm = src_vma->vm_mm; 1217 pmd_t *src_pmd, *dst_pmd; 1218 unsigned long next; 1219 1220 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1221 if (!dst_pmd) 1222 return -ENOMEM; 1223 src_pmd = pmd_offset(src_pud, addr); 1224 do { 1225 next = pmd_addr_end(addr, end); 1226 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1227 || pmd_devmap(*src_pmd)) { 1228 int err; 1229 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1230 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1231 addr, dst_vma, src_vma); 1232 if (err == -ENOMEM) 1233 return -ENOMEM; 1234 if (!err) 1235 continue; 1236 /* fall through */ 1237 } 1238 if (pmd_none_or_clear_bad(src_pmd)) 1239 continue; 1240 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1241 addr, next)) 1242 return -ENOMEM; 1243 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1244 return 0; 1245 } 1246 1247 static inline int 1248 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1249 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1250 unsigned long end) 1251 { 1252 struct mm_struct *dst_mm = dst_vma->vm_mm; 1253 struct mm_struct *src_mm = src_vma->vm_mm; 1254 pud_t *src_pud, *dst_pud; 1255 unsigned long next; 1256 1257 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1258 if (!dst_pud) 1259 return -ENOMEM; 1260 src_pud = pud_offset(src_p4d, addr); 1261 do { 1262 next = pud_addr_end(addr, end); 1263 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1264 int err; 1265 1266 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1267 err = copy_huge_pud(dst_mm, src_mm, 1268 dst_pud, src_pud, addr, src_vma); 1269 if (err == -ENOMEM) 1270 return -ENOMEM; 1271 if (!err) 1272 continue; 1273 /* fall through */ 1274 } 1275 if (pud_none_or_clear_bad(src_pud)) 1276 continue; 1277 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1278 addr, next)) 1279 return -ENOMEM; 1280 } while (dst_pud++, src_pud++, addr = next, addr != end); 1281 return 0; 1282 } 1283 1284 static inline int 1285 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1286 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1287 unsigned long end) 1288 { 1289 struct mm_struct *dst_mm = dst_vma->vm_mm; 1290 p4d_t *src_p4d, *dst_p4d; 1291 unsigned long next; 1292 1293 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1294 if (!dst_p4d) 1295 return -ENOMEM; 1296 src_p4d = p4d_offset(src_pgd, addr); 1297 do { 1298 next = p4d_addr_end(addr, end); 1299 if (p4d_none_or_clear_bad(src_p4d)) 1300 continue; 1301 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1302 addr, next)) 1303 return -ENOMEM; 1304 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1305 return 0; 1306 } 1307 1308 /* 1309 * Return true if the vma needs to copy the pgtable during this fork(). Return 1310 * false when we can speed up fork() by allowing lazy page faults later until 1311 * when the child accesses the memory range. 1312 */ 1313 static bool 1314 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1315 { 1316 /* 1317 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1318 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1319 * contains uffd-wp protection information, that's something we can't 1320 * retrieve from page cache, and skip copying will lose those info. 1321 */ 1322 if (userfaultfd_wp(dst_vma)) 1323 return true; 1324 1325 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1326 return true; 1327 1328 if (src_vma->anon_vma) 1329 return true; 1330 1331 /* 1332 * Don't copy ptes where a page fault will fill them correctly. Fork 1333 * becomes much lighter when there are big shared or private readonly 1334 * mappings. The tradeoff is that copy_page_range is more efficient 1335 * than faulting. 1336 */ 1337 return false; 1338 } 1339 1340 int 1341 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1342 { 1343 pgd_t *src_pgd, *dst_pgd; 1344 unsigned long next; 1345 unsigned long addr = src_vma->vm_start; 1346 unsigned long end = src_vma->vm_end; 1347 struct mm_struct *dst_mm = dst_vma->vm_mm; 1348 struct mm_struct *src_mm = src_vma->vm_mm; 1349 struct mmu_notifier_range range; 1350 bool is_cow; 1351 int ret; 1352 1353 if (!vma_needs_copy(dst_vma, src_vma)) 1354 return 0; 1355 1356 if (is_vm_hugetlb_page(src_vma)) 1357 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1358 1359 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1360 /* 1361 * We do not free on error cases below as remove_vma 1362 * gets called on error from higher level routine 1363 */ 1364 ret = track_pfn_copy(src_vma); 1365 if (ret) 1366 return ret; 1367 } 1368 1369 /* 1370 * We need to invalidate the secondary MMU mappings only when 1371 * there could be a permission downgrade on the ptes of the 1372 * parent mm. And a permission downgrade will only happen if 1373 * is_cow_mapping() returns true. 1374 */ 1375 is_cow = is_cow_mapping(src_vma->vm_flags); 1376 1377 if (is_cow) { 1378 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1379 0, src_mm, addr, end); 1380 mmu_notifier_invalidate_range_start(&range); 1381 /* 1382 * Disabling preemption is not needed for the write side, as 1383 * the read side doesn't spin, but goes to the mmap_lock. 1384 * 1385 * Use the raw variant of the seqcount_t write API to avoid 1386 * lockdep complaining about preemptibility. 1387 */ 1388 vma_assert_write_locked(src_vma); 1389 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1390 } 1391 1392 ret = 0; 1393 dst_pgd = pgd_offset(dst_mm, addr); 1394 src_pgd = pgd_offset(src_mm, addr); 1395 do { 1396 next = pgd_addr_end(addr, end); 1397 if (pgd_none_or_clear_bad(src_pgd)) 1398 continue; 1399 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1400 addr, next))) { 1401 untrack_pfn_clear(dst_vma); 1402 ret = -ENOMEM; 1403 break; 1404 } 1405 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1406 1407 if (is_cow) { 1408 raw_write_seqcount_end(&src_mm->write_protect_seq); 1409 mmu_notifier_invalidate_range_end(&range); 1410 } 1411 return ret; 1412 } 1413 1414 /* Whether we should zap all COWed (private) pages too */ 1415 static inline bool should_zap_cows(struct zap_details *details) 1416 { 1417 /* By default, zap all pages */ 1418 if (!details) 1419 return true; 1420 1421 /* Or, we zap COWed pages only if the caller wants to */ 1422 return details->even_cows; 1423 } 1424 1425 /* Decides whether we should zap this folio with the folio pointer specified */ 1426 static inline bool should_zap_folio(struct zap_details *details, 1427 struct folio *folio) 1428 { 1429 /* If we can make a decision without *folio.. */ 1430 if (should_zap_cows(details)) 1431 return true; 1432 1433 /* Otherwise we should only zap non-anon folios */ 1434 return !folio_test_anon(folio); 1435 } 1436 1437 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1438 { 1439 if (!details) 1440 return false; 1441 1442 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1443 } 1444 1445 /* 1446 * This function makes sure that we'll replace the none pte with an uffd-wp 1447 * swap special pte marker when necessary. Must be with the pgtable lock held. 1448 */ 1449 static inline void 1450 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1451 unsigned long addr, pte_t *pte, int nr, 1452 struct zap_details *details, pte_t pteval) 1453 { 1454 /* Zap on anonymous always means dropping everything */ 1455 if (vma_is_anonymous(vma)) 1456 return; 1457 1458 if (zap_drop_file_uffd_wp(details)) 1459 return; 1460 1461 for (;;) { 1462 /* the PFN in the PTE is irrelevant. */ 1463 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1464 if (--nr == 0) 1465 break; 1466 pte++; 1467 addr += PAGE_SIZE; 1468 } 1469 } 1470 1471 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1472 struct vm_area_struct *vma, struct folio *folio, 1473 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1474 unsigned long addr, struct zap_details *details, int *rss, 1475 bool *force_flush, bool *force_break) 1476 { 1477 struct mm_struct *mm = tlb->mm; 1478 bool delay_rmap = false; 1479 1480 if (!folio_test_anon(folio)) { 1481 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1482 if (pte_dirty(ptent)) { 1483 folio_mark_dirty(folio); 1484 if (tlb_delay_rmap(tlb)) { 1485 delay_rmap = true; 1486 *force_flush = true; 1487 } 1488 } 1489 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1490 folio_mark_accessed(folio); 1491 rss[mm_counter(folio)] -= nr; 1492 } else { 1493 /* We don't need up-to-date accessed/dirty bits. */ 1494 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1495 rss[MM_ANONPAGES] -= nr; 1496 } 1497 /* Checking a single PTE in a batch is sufficient. */ 1498 arch_check_zapped_pte(vma, ptent); 1499 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1500 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1501 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, 1502 ptent); 1503 1504 if (!delay_rmap) { 1505 folio_remove_rmap_ptes(folio, page, nr, vma); 1506 1507 if (unlikely(folio_mapcount(folio) < 0)) 1508 print_bad_pte(vma, addr, ptent, page); 1509 } 1510 1511 if (want_init_mlocked_on_free() && folio_test_mlocked(folio) && 1512 !delay_rmap && folio_test_anon(folio)) { 1513 kernel_init_pages(page, folio_nr_pages(folio)); 1514 } 1515 1516 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1517 *force_flush = true; 1518 *force_break = true; 1519 } 1520 } 1521 1522 /* 1523 * Zap or skip at least one present PTE, trying to batch-process subsequent 1524 * PTEs that map consecutive pages of the same folio. 1525 * 1526 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1527 */ 1528 static inline int zap_present_ptes(struct mmu_gather *tlb, 1529 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1530 unsigned int max_nr, unsigned long addr, 1531 struct zap_details *details, int *rss, bool *force_flush, 1532 bool *force_break) 1533 { 1534 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1535 struct mm_struct *mm = tlb->mm; 1536 struct folio *folio; 1537 struct page *page; 1538 int nr; 1539 1540 page = vm_normal_page(vma, addr, ptent); 1541 if (!page) { 1542 /* We don't need up-to-date accessed/dirty bits. */ 1543 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1544 arch_check_zapped_pte(vma, ptent); 1545 tlb_remove_tlb_entry(tlb, pte, addr); 1546 if (userfaultfd_pte_wp(vma, ptent)) 1547 zap_install_uffd_wp_if_needed(vma, addr, pte, 1, 1548 details, ptent); 1549 ksm_might_unmap_zero_page(mm, ptent); 1550 return 1; 1551 } 1552 1553 folio = page_folio(page); 1554 if (unlikely(!should_zap_folio(details, folio))) 1555 return 1; 1556 1557 /* 1558 * Make sure that the common "small folio" case is as fast as possible 1559 * by keeping the batching logic separate. 1560 */ 1561 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1562 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1563 NULL, NULL, NULL); 1564 1565 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1566 addr, details, rss, force_flush, 1567 force_break); 1568 return nr; 1569 } 1570 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1571 details, rss, force_flush, force_break); 1572 return 1; 1573 } 1574 1575 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1576 struct vm_area_struct *vma, pmd_t *pmd, 1577 unsigned long addr, unsigned long end, 1578 struct zap_details *details) 1579 { 1580 bool force_flush = false, force_break = false; 1581 struct mm_struct *mm = tlb->mm; 1582 int rss[NR_MM_COUNTERS]; 1583 spinlock_t *ptl; 1584 pte_t *start_pte; 1585 pte_t *pte; 1586 swp_entry_t entry; 1587 int nr; 1588 1589 tlb_change_page_size(tlb, PAGE_SIZE); 1590 init_rss_vec(rss); 1591 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1592 if (!pte) 1593 return addr; 1594 1595 flush_tlb_batched_pending(mm); 1596 arch_enter_lazy_mmu_mode(); 1597 do { 1598 pte_t ptent = ptep_get(pte); 1599 struct folio *folio; 1600 struct page *page; 1601 int max_nr; 1602 1603 nr = 1; 1604 if (pte_none(ptent)) 1605 continue; 1606 1607 if (need_resched()) 1608 break; 1609 1610 if (pte_present(ptent)) { 1611 max_nr = (end - addr) / PAGE_SIZE; 1612 nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr, 1613 addr, details, rss, &force_flush, 1614 &force_break); 1615 if (unlikely(force_break)) { 1616 addr += nr * PAGE_SIZE; 1617 break; 1618 } 1619 continue; 1620 } 1621 1622 entry = pte_to_swp_entry(ptent); 1623 if (is_device_private_entry(entry) || 1624 is_device_exclusive_entry(entry)) { 1625 page = pfn_swap_entry_to_page(entry); 1626 folio = page_folio(page); 1627 if (unlikely(!should_zap_folio(details, folio))) 1628 continue; 1629 /* 1630 * Both device private/exclusive mappings should only 1631 * work with anonymous page so far, so we don't need to 1632 * consider uffd-wp bit when zap. For more information, 1633 * see zap_install_uffd_wp_if_needed(). 1634 */ 1635 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1636 rss[mm_counter(folio)]--; 1637 if (is_device_private_entry(entry)) 1638 folio_remove_rmap_pte(folio, page, vma); 1639 folio_put(folio); 1640 } else if (!non_swap_entry(entry)) { 1641 max_nr = (end - addr) / PAGE_SIZE; 1642 nr = swap_pte_batch(pte, max_nr, ptent); 1643 /* Genuine swap entries, hence a private anon pages */ 1644 if (!should_zap_cows(details)) 1645 continue; 1646 rss[MM_SWAPENTS] -= nr; 1647 free_swap_and_cache_nr(entry, nr); 1648 } else if (is_migration_entry(entry)) { 1649 folio = pfn_swap_entry_folio(entry); 1650 if (!should_zap_folio(details, folio)) 1651 continue; 1652 rss[mm_counter(folio)]--; 1653 } else if (pte_marker_entry_uffd_wp(entry)) { 1654 /* 1655 * For anon: always drop the marker; for file: only 1656 * drop the marker if explicitly requested. 1657 */ 1658 if (!vma_is_anonymous(vma) && 1659 !zap_drop_file_uffd_wp(details)) 1660 continue; 1661 } else if (is_hwpoison_entry(entry) || 1662 is_poisoned_swp_entry(entry)) { 1663 if (!should_zap_cows(details)) 1664 continue; 1665 } else { 1666 /* We should have covered all the swap entry types */ 1667 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1668 WARN_ON_ONCE(1); 1669 } 1670 clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1671 zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1672 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1673 1674 add_mm_rss_vec(mm, rss); 1675 arch_leave_lazy_mmu_mode(); 1676 1677 /* Do the actual TLB flush before dropping ptl */ 1678 if (force_flush) { 1679 tlb_flush_mmu_tlbonly(tlb); 1680 tlb_flush_rmaps(tlb, vma); 1681 } 1682 pte_unmap_unlock(start_pte, ptl); 1683 1684 /* 1685 * If we forced a TLB flush (either due to running out of 1686 * batch buffers or because we needed to flush dirty TLB 1687 * entries before releasing the ptl), free the batched 1688 * memory too. Come back again if we didn't do everything. 1689 */ 1690 if (force_flush) 1691 tlb_flush_mmu(tlb); 1692 1693 return addr; 1694 } 1695 1696 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1697 struct vm_area_struct *vma, pud_t *pud, 1698 unsigned long addr, unsigned long end, 1699 struct zap_details *details) 1700 { 1701 pmd_t *pmd; 1702 unsigned long next; 1703 1704 pmd = pmd_offset(pud, addr); 1705 do { 1706 next = pmd_addr_end(addr, end); 1707 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1708 if (next - addr != HPAGE_PMD_SIZE) 1709 __split_huge_pmd(vma, pmd, addr, false, NULL); 1710 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1711 addr = next; 1712 continue; 1713 } 1714 /* fall through */ 1715 } else if (details && details->single_folio && 1716 folio_test_pmd_mappable(details->single_folio) && 1717 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1718 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1719 /* 1720 * Take and drop THP pmd lock so that we cannot return 1721 * prematurely, while zap_huge_pmd() has cleared *pmd, 1722 * but not yet decremented compound_mapcount(). 1723 */ 1724 spin_unlock(ptl); 1725 } 1726 if (pmd_none(*pmd)) { 1727 addr = next; 1728 continue; 1729 } 1730 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1731 if (addr != next) 1732 pmd--; 1733 } while (pmd++, cond_resched(), addr != end); 1734 1735 return addr; 1736 } 1737 1738 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1739 struct vm_area_struct *vma, p4d_t *p4d, 1740 unsigned long addr, unsigned long end, 1741 struct zap_details *details) 1742 { 1743 pud_t *pud; 1744 unsigned long next; 1745 1746 pud = pud_offset(p4d, addr); 1747 do { 1748 next = pud_addr_end(addr, end); 1749 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1750 if (next - addr != HPAGE_PUD_SIZE) { 1751 mmap_assert_locked(tlb->mm); 1752 split_huge_pud(vma, pud, addr); 1753 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1754 goto next; 1755 /* fall through */ 1756 } 1757 if (pud_none_or_clear_bad(pud)) 1758 continue; 1759 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1760 next: 1761 cond_resched(); 1762 } while (pud++, addr = next, addr != end); 1763 1764 return addr; 1765 } 1766 1767 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1768 struct vm_area_struct *vma, pgd_t *pgd, 1769 unsigned long addr, unsigned long end, 1770 struct zap_details *details) 1771 { 1772 p4d_t *p4d; 1773 unsigned long next; 1774 1775 p4d = p4d_offset(pgd, addr); 1776 do { 1777 next = p4d_addr_end(addr, end); 1778 if (p4d_none_or_clear_bad(p4d)) 1779 continue; 1780 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1781 } while (p4d++, addr = next, addr != end); 1782 1783 return addr; 1784 } 1785 1786 void unmap_page_range(struct mmu_gather *tlb, 1787 struct vm_area_struct *vma, 1788 unsigned long addr, unsigned long end, 1789 struct zap_details *details) 1790 { 1791 pgd_t *pgd; 1792 unsigned long next; 1793 1794 BUG_ON(addr >= end); 1795 tlb_start_vma(tlb, vma); 1796 pgd = pgd_offset(vma->vm_mm, addr); 1797 do { 1798 next = pgd_addr_end(addr, end); 1799 if (pgd_none_or_clear_bad(pgd)) 1800 continue; 1801 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1802 } while (pgd++, addr = next, addr != end); 1803 tlb_end_vma(tlb, vma); 1804 } 1805 1806 1807 static void unmap_single_vma(struct mmu_gather *tlb, 1808 struct vm_area_struct *vma, unsigned long start_addr, 1809 unsigned long end_addr, 1810 struct zap_details *details, bool mm_wr_locked) 1811 { 1812 unsigned long start = max(vma->vm_start, start_addr); 1813 unsigned long end; 1814 1815 if (start >= vma->vm_end) 1816 return; 1817 end = min(vma->vm_end, end_addr); 1818 if (end <= vma->vm_start) 1819 return; 1820 1821 if (vma->vm_file) 1822 uprobe_munmap(vma, start, end); 1823 1824 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1825 untrack_pfn(vma, 0, 0, mm_wr_locked); 1826 1827 if (start != end) { 1828 if (unlikely(is_vm_hugetlb_page(vma))) { 1829 /* 1830 * It is undesirable to test vma->vm_file as it 1831 * should be non-null for valid hugetlb area. 1832 * However, vm_file will be NULL in the error 1833 * cleanup path of mmap_region. When 1834 * hugetlbfs ->mmap method fails, 1835 * mmap_region() nullifies vma->vm_file 1836 * before calling this function to clean up. 1837 * Since no pte has actually been setup, it is 1838 * safe to do nothing in this case. 1839 */ 1840 if (vma->vm_file) { 1841 zap_flags_t zap_flags = details ? 1842 details->zap_flags : 0; 1843 __unmap_hugepage_range(tlb, vma, start, end, 1844 NULL, zap_flags); 1845 } 1846 } else 1847 unmap_page_range(tlb, vma, start, end, details); 1848 } 1849 } 1850 1851 /** 1852 * unmap_vmas - unmap a range of memory covered by a list of vma's 1853 * @tlb: address of the caller's struct mmu_gather 1854 * @mas: the maple state 1855 * @vma: the starting vma 1856 * @start_addr: virtual address at which to start unmapping 1857 * @end_addr: virtual address at which to end unmapping 1858 * @tree_end: The maximum index to check 1859 * @mm_wr_locked: lock flag 1860 * 1861 * Unmap all pages in the vma list. 1862 * 1863 * Only addresses between `start' and `end' will be unmapped. 1864 * 1865 * The VMA list must be sorted in ascending virtual address order. 1866 * 1867 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1868 * range after unmap_vmas() returns. So the only responsibility here is to 1869 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1870 * drops the lock and schedules. 1871 */ 1872 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1873 struct vm_area_struct *vma, unsigned long start_addr, 1874 unsigned long end_addr, unsigned long tree_end, 1875 bool mm_wr_locked) 1876 { 1877 struct mmu_notifier_range range; 1878 struct zap_details details = { 1879 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1880 /* Careful - we need to zap private pages too! */ 1881 .even_cows = true, 1882 }; 1883 1884 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1885 start_addr, end_addr); 1886 mmu_notifier_invalidate_range_start(&range); 1887 do { 1888 unsigned long start = start_addr; 1889 unsigned long end = end_addr; 1890 hugetlb_zap_begin(vma, &start, &end); 1891 unmap_single_vma(tlb, vma, start, end, &details, 1892 mm_wr_locked); 1893 hugetlb_zap_end(vma, &details); 1894 vma = mas_find(mas, tree_end - 1); 1895 } while (vma && likely(!xa_is_zero(vma))); 1896 mmu_notifier_invalidate_range_end(&range); 1897 } 1898 1899 /** 1900 * zap_page_range_single - remove user pages in a given range 1901 * @vma: vm_area_struct holding the applicable pages 1902 * @address: starting address of pages to zap 1903 * @size: number of bytes to zap 1904 * @details: details of shared cache invalidation 1905 * 1906 * The range must fit into one VMA. 1907 */ 1908 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1909 unsigned long size, struct zap_details *details) 1910 { 1911 const unsigned long end = address + size; 1912 struct mmu_notifier_range range; 1913 struct mmu_gather tlb; 1914 1915 lru_add_drain(); 1916 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1917 address, end); 1918 hugetlb_zap_begin(vma, &range.start, &range.end); 1919 tlb_gather_mmu(&tlb, vma->vm_mm); 1920 update_hiwater_rss(vma->vm_mm); 1921 mmu_notifier_invalidate_range_start(&range); 1922 /* 1923 * unmap 'address-end' not 'range.start-range.end' as range 1924 * could have been expanded for hugetlb pmd sharing. 1925 */ 1926 unmap_single_vma(&tlb, vma, address, end, details, false); 1927 mmu_notifier_invalidate_range_end(&range); 1928 tlb_finish_mmu(&tlb); 1929 hugetlb_zap_end(vma, details); 1930 } 1931 1932 /** 1933 * zap_vma_ptes - remove ptes mapping the vma 1934 * @vma: vm_area_struct holding ptes to be zapped 1935 * @address: starting address of pages to zap 1936 * @size: number of bytes to zap 1937 * 1938 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1939 * 1940 * The entire address range must be fully contained within the vma. 1941 * 1942 */ 1943 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1944 unsigned long size) 1945 { 1946 if (!range_in_vma(vma, address, address + size) || 1947 !(vma->vm_flags & VM_PFNMAP)) 1948 return; 1949 1950 zap_page_range_single(vma, address, size, NULL); 1951 } 1952 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1953 1954 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1955 { 1956 pgd_t *pgd; 1957 p4d_t *p4d; 1958 pud_t *pud; 1959 pmd_t *pmd; 1960 1961 pgd = pgd_offset(mm, addr); 1962 p4d = p4d_alloc(mm, pgd, addr); 1963 if (!p4d) 1964 return NULL; 1965 pud = pud_alloc(mm, p4d, addr); 1966 if (!pud) 1967 return NULL; 1968 pmd = pmd_alloc(mm, pud, addr); 1969 if (!pmd) 1970 return NULL; 1971 1972 VM_BUG_ON(pmd_trans_huge(*pmd)); 1973 return pmd; 1974 } 1975 1976 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1977 spinlock_t **ptl) 1978 { 1979 pmd_t *pmd = walk_to_pmd(mm, addr); 1980 1981 if (!pmd) 1982 return NULL; 1983 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1984 } 1985 1986 static int validate_page_before_insert(struct page *page) 1987 { 1988 struct folio *folio = page_folio(page); 1989 1990 if (folio_test_anon(folio) || folio_test_slab(folio) || 1991 page_has_type(page)) 1992 return -EINVAL; 1993 flush_dcache_folio(folio); 1994 return 0; 1995 } 1996 1997 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1998 unsigned long addr, struct page *page, pgprot_t prot) 1999 { 2000 struct folio *folio = page_folio(page); 2001 2002 if (!pte_none(ptep_get(pte))) 2003 return -EBUSY; 2004 /* Ok, finally just insert the thing.. */ 2005 folio_get(folio); 2006 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2007 folio_add_file_rmap_pte(folio, page, vma); 2008 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 2009 return 0; 2010 } 2011 2012 /* 2013 * This is the old fallback for page remapping. 2014 * 2015 * For historical reasons, it only allows reserved pages. Only 2016 * old drivers should use this, and they needed to mark their 2017 * pages reserved for the old functions anyway. 2018 */ 2019 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2020 struct page *page, pgprot_t prot) 2021 { 2022 int retval; 2023 pte_t *pte; 2024 spinlock_t *ptl; 2025 2026 retval = validate_page_before_insert(page); 2027 if (retval) 2028 goto out; 2029 retval = -ENOMEM; 2030 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2031 if (!pte) 2032 goto out; 2033 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 2034 pte_unmap_unlock(pte, ptl); 2035 out: 2036 return retval; 2037 } 2038 2039 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2040 unsigned long addr, struct page *page, pgprot_t prot) 2041 { 2042 int err; 2043 2044 if (!page_count(page)) 2045 return -EINVAL; 2046 err = validate_page_before_insert(page); 2047 if (err) 2048 return err; 2049 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 2050 } 2051 2052 /* insert_pages() amortizes the cost of spinlock operations 2053 * when inserting pages in a loop. 2054 */ 2055 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2056 struct page **pages, unsigned long *num, pgprot_t prot) 2057 { 2058 pmd_t *pmd = NULL; 2059 pte_t *start_pte, *pte; 2060 spinlock_t *pte_lock; 2061 struct mm_struct *const mm = vma->vm_mm; 2062 unsigned long curr_page_idx = 0; 2063 unsigned long remaining_pages_total = *num; 2064 unsigned long pages_to_write_in_pmd; 2065 int ret; 2066 more: 2067 ret = -EFAULT; 2068 pmd = walk_to_pmd(mm, addr); 2069 if (!pmd) 2070 goto out; 2071 2072 pages_to_write_in_pmd = min_t(unsigned long, 2073 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2074 2075 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2076 ret = -ENOMEM; 2077 if (pte_alloc(mm, pmd)) 2078 goto out; 2079 2080 while (pages_to_write_in_pmd) { 2081 int pte_idx = 0; 2082 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2083 2084 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2085 if (!start_pte) { 2086 ret = -EFAULT; 2087 goto out; 2088 } 2089 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2090 int err = insert_page_in_batch_locked(vma, pte, 2091 addr, pages[curr_page_idx], prot); 2092 if (unlikely(err)) { 2093 pte_unmap_unlock(start_pte, pte_lock); 2094 ret = err; 2095 remaining_pages_total -= pte_idx; 2096 goto out; 2097 } 2098 addr += PAGE_SIZE; 2099 ++curr_page_idx; 2100 } 2101 pte_unmap_unlock(start_pte, pte_lock); 2102 pages_to_write_in_pmd -= batch_size; 2103 remaining_pages_total -= batch_size; 2104 } 2105 if (remaining_pages_total) 2106 goto more; 2107 ret = 0; 2108 out: 2109 *num = remaining_pages_total; 2110 return ret; 2111 } 2112 2113 /** 2114 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2115 * @vma: user vma to map to 2116 * @addr: target start user address of these pages 2117 * @pages: source kernel pages 2118 * @num: in: number of pages to map. out: number of pages that were *not* 2119 * mapped. (0 means all pages were successfully mapped). 2120 * 2121 * Preferred over vm_insert_page() when inserting multiple pages. 2122 * 2123 * In case of error, we may have mapped a subset of the provided 2124 * pages. It is the caller's responsibility to account for this case. 2125 * 2126 * The same restrictions apply as in vm_insert_page(). 2127 */ 2128 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2129 struct page **pages, unsigned long *num) 2130 { 2131 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2132 2133 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2134 return -EFAULT; 2135 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2136 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2137 BUG_ON(vma->vm_flags & VM_PFNMAP); 2138 vm_flags_set(vma, VM_MIXEDMAP); 2139 } 2140 /* Defer page refcount checking till we're about to map that page. */ 2141 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2142 } 2143 EXPORT_SYMBOL(vm_insert_pages); 2144 2145 /** 2146 * vm_insert_page - insert single page into user vma 2147 * @vma: user vma to map to 2148 * @addr: target user address of this page 2149 * @page: source kernel page 2150 * 2151 * This allows drivers to insert individual pages they've allocated 2152 * into a user vma. 2153 * 2154 * The page has to be a nice clean _individual_ kernel allocation. 2155 * If you allocate a compound page, you need to have marked it as 2156 * such (__GFP_COMP), or manually just split the page up yourself 2157 * (see split_page()). 2158 * 2159 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2160 * took an arbitrary page protection parameter. This doesn't allow 2161 * that. Your vma protection will have to be set up correctly, which 2162 * means that if you want a shared writable mapping, you'd better 2163 * ask for a shared writable mapping! 2164 * 2165 * The page does not need to be reserved. 2166 * 2167 * Usually this function is called from f_op->mmap() handler 2168 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2169 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2170 * function from other places, for example from page-fault handler. 2171 * 2172 * Return: %0 on success, negative error code otherwise. 2173 */ 2174 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2175 struct page *page) 2176 { 2177 if (addr < vma->vm_start || addr >= vma->vm_end) 2178 return -EFAULT; 2179 if (!page_count(page)) 2180 return -EINVAL; 2181 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2182 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2183 BUG_ON(vma->vm_flags & VM_PFNMAP); 2184 vm_flags_set(vma, VM_MIXEDMAP); 2185 } 2186 return insert_page(vma, addr, page, vma->vm_page_prot); 2187 } 2188 EXPORT_SYMBOL(vm_insert_page); 2189 2190 /* 2191 * __vm_map_pages - maps range of kernel pages into user vma 2192 * @vma: user vma to map to 2193 * @pages: pointer to array of source kernel pages 2194 * @num: number of pages in page array 2195 * @offset: user's requested vm_pgoff 2196 * 2197 * This allows drivers to map range of kernel pages into a user vma. 2198 * 2199 * Return: 0 on success and error code otherwise. 2200 */ 2201 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2202 unsigned long num, unsigned long offset) 2203 { 2204 unsigned long count = vma_pages(vma); 2205 unsigned long uaddr = vma->vm_start; 2206 int ret, i; 2207 2208 /* Fail if the user requested offset is beyond the end of the object */ 2209 if (offset >= num) 2210 return -ENXIO; 2211 2212 /* Fail if the user requested size exceeds available object size */ 2213 if (count > num - offset) 2214 return -ENXIO; 2215 2216 for (i = 0; i < count; i++) { 2217 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2218 if (ret < 0) 2219 return ret; 2220 uaddr += PAGE_SIZE; 2221 } 2222 2223 return 0; 2224 } 2225 2226 /** 2227 * vm_map_pages - maps range of kernel pages starts with non zero offset 2228 * @vma: user vma to map to 2229 * @pages: pointer to array of source kernel pages 2230 * @num: number of pages in page array 2231 * 2232 * Maps an object consisting of @num pages, catering for the user's 2233 * requested vm_pgoff 2234 * 2235 * If we fail to insert any page into the vma, the function will return 2236 * immediately leaving any previously inserted pages present. Callers 2237 * from the mmap handler may immediately return the error as their caller 2238 * will destroy the vma, removing any successfully inserted pages. Other 2239 * callers should make their own arrangements for calling unmap_region(). 2240 * 2241 * Context: Process context. Called by mmap handlers. 2242 * Return: 0 on success and error code otherwise. 2243 */ 2244 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2245 unsigned long num) 2246 { 2247 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2248 } 2249 EXPORT_SYMBOL(vm_map_pages); 2250 2251 /** 2252 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2253 * @vma: user vma to map to 2254 * @pages: pointer to array of source kernel pages 2255 * @num: number of pages in page array 2256 * 2257 * Similar to vm_map_pages(), except that it explicitly sets the offset 2258 * to 0. This function is intended for the drivers that did not consider 2259 * vm_pgoff. 2260 * 2261 * Context: Process context. Called by mmap handlers. 2262 * Return: 0 on success and error code otherwise. 2263 */ 2264 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2265 unsigned long num) 2266 { 2267 return __vm_map_pages(vma, pages, num, 0); 2268 } 2269 EXPORT_SYMBOL(vm_map_pages_zero); 2270 2271 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2272 pfn_t pfn, pgprot_t prot, bool mkwrite) 2273 { 2274 struct mm_struct *mm = vma->vm_mm; 2275 pte_t *pte, entry; 2276 spinlock_t *ptl; 2277 2278 pte = get_locked_pte(mm, addr, &ptl); 2279 if (!pte) 2280 return VM_FAULT_OOM; 2281 entry = ptep_get(pte); 2282 if (!pte_none(entry)) { 2283 if (mkwrite) { 2284 /* 2285 * For read faults on private mappings the PFN passed 2286 * in may not match the PFN we have mapped if the 2287 * mapped PFN is a writeable COW page. In the mkwrite 2288 * case we are creating a writable PTE for a shared 2289 * mapping and we expect the PFNs to match. If they 2290 * don't match, we are likely racing with block 2291 * allocation and mapping invalidation so just skip the 2292 * update. 2293 */ 2294 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2295 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2296 goto out_unlock; 2297 } 2298 entry = pte_mkyoung(entry); 2299 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2300 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2301 update_mmu_cache(vma, addr, pte); 2302 } 2303 goto out_unlock; 2304 } 2305 2306 /* Ok, finally just insert the thing.. */ 2307 if (pfn_t_devmap(pfn)) 2308 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2309 else 2310 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2311 2312 if (mkwrite) { 2313 entry = pte_mkyoung(entry); 2314 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2315 } 2316 2317 set_pte_at(mm, addr, pte, entry); 2318 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2319 2320 out_unlock: 2321 pte_unmap_unlock(pte, ptl); 2322 return VM_FAULT_NOPAGE; 2323 } 2324 2325 /** 2326 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2327 * @vma: user vma to map to 2328 * @addr: target user address of this page 2329 * @pfn: source kernel pfn 2330 * @pgprot: pgprot flags for the inserted page 2331 * 2332 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2333 * to override pgprot on a per-page basis. 2334 * 2335 * This only makes sense for IO mappings, and it makes no sense for 2336 * COW mappings. In general, using multiple vmas is preferable; 2337 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2338 * impractical. 2339 * 2340 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2341 * caching- and encryption bits different than those of @vma->vm_page_prot, 2342 * because the caching- or encryption mode may not be known at mmap() time. 2343 * 2344 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2345 * to set caching and encryption bits for those vmas (except for COW pages). 2346 * This is ensured by core vm only modifying these page table entries using 2347 * functions that don't touch caching- or encryption bits, using pte_modify() 2348 * if needed. (See for example mprotect()). 2349 * 2350 * Also when new page-table entries are created, this is only done using the 2351 * fault() callback, and never using the value of vma->vm_page_prot, 2352 * except for page-table entries that point to anonymous pages as the result 2353 * of COW. 2354 * 2355 * Context: Process context. May allocate using %GFP_KERNEL. 2356 * Return: vm_fault_t value. 2357 */ 2358 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2359 unsigned long pfn, pgprot_t pgprot) 2360 { 2361 /* 2362 * Technically, architectures with pte_special can avoid all these 2363 * restrictions (same for remap_pfn_range). However we would like 2364 * consistency in testing and feature parity among all, so we should 2365 * try to keep these invariants in place for everybody. 2366 */ 2367 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2368 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2369 (VM_PFNMAP|VM_MIXEDMAP)); 2370 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2371 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2372 2373 if (addr < vma->vm_start || addr >= vma->vm_end) 2374 return VM_FAULT_SIGBUS; 2375 2376 if (!pfn_modify_allowed(pfn, pgprot)) 2377 return VM_FAULT_SIGBUS; 2378 2379 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2380 2381 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2382 false); 2383 } 2384 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2385 2386 /** 2387 * vmf_insert_pfn - insert single pfn into user vma 2388 * @vma: user vma to map to 2389 * @addr: target user address of this page 2390 * @pfn: source kernel pfn 2391 * 2392 * Similar to vm_insert_page, this allows drivers to insert individual pages 2393 * they've allocated into a user vma. Same comments apply. 2394 * 2395 * This function should only be called from a vm_ops->fault handler, and 2396 * in that case the handler should return the result of this function. 2397 * 2398 * vma cannot be a COW mapping. 2399 * 2400 * As this is called only for pages that do not currently exist, we 2401 * do not need to flush old virtual caches or the TLB. 2402 * 2403 * Context: Process context. May allocate using %GFP_KERNEL. 2404 * Return: vm_fault_t value. 2405 */ 2406 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2407 unsigned long pfn) 2408 { 2409 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2410 } 2411 EXPORT_SYMBOL(vmf_insert_pfn); 2412 2413 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2414 { 2415 /* these checks mirror the abort conditions in vm_normal_page */ 2416 if (vma->vm_flags & VM_MIXEDMAP) 2417 return true; 2418 if (pfn_t_devmap(pfn)) 2419 return true; 2420 if (pfn_t_special(pfn)) 2421 return true; 2422 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2423 return true; 2424 return false; 2425 } 2426 2427 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2428 unsigned long addr, pfn_t pfn, bool mkwrite) 2429 { 2430 pgprot_t pgprot = vma->vm_page_prot; 2431 int err; 2432 2433 BUG_ON(!vm_mixed_ok(vma, pfn)); 2434 2435 if (addr < vma->vm_start || addr >= vma->vm_end) 2436 return VM_FAULT_SIGBUS; 2437 2438 track_pfn_insert(vma, &pgprot, pfn); 2439 2440 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2441 return VM_FAULT_SIGBUS; 2442 2443 /* 2444 * If we don't have pte special, then we have to use the pfn_valid() 2445 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2446 * refcount the page if pfn_valid is true (hence insert_page rather 2447 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2448 * without pte special, it would there be refcounted as a normal page. 2449 */ 2450 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2451 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2452 struct page *page; 2453 2454 /* 2455 * At this point we are committed to insert_page() 2456 * regardless of whether the caller specified flags that 2457 * result in pfn_t_has_page() == false. 2458 */ 2459 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2460 err = insert_page(vma, addr, page, pgprot); 2461 } else { 2462 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2463 } 2464 2465 if (err == -ENOMEM) 2466 return VM_FAULT_OOM; 2467 if (err < 0 && err != -EBUSY) 2468 return VM_FAULT_SIGBUS; 2469 2470 return VM_FAULT_NOPAGE; 2471 } 2472 2473 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2474 pfn_t pfn) 2475 { 2476 return __vm_insert_mixed(vma, addr, pfn, false); 2477 } 2478 EXPORT_SYMBOL(vmf_insert_mixed); 2479 2480 /* 2481 * If the insertion of PTE failed because someone else already added a 2482 * different entry in the mean time, we treat that as success as we assume 2483 * the same entry was actually inserted. 2484 */ 2485 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2486 unsigned long addr, pfn_t pfn) 2487 { 2488 return __vm_insert_mixed(vma, addr, pfn, true); 2489 } 2490 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2491 2492 /* 2493 * maps a range of physical memory into the requested pages. the old 2494 * mappings are removed. any references to nonexistent pages results 2495 * in null mappings (currently treated as "copy-on-access") 2496 */ 2497 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2498 unsigned long addr, unsigned long end, 2499 unsigned long pfn, pgprot_t prot) 2500 { 2501 pte_t *pte, *mapped_pte; 2502 spinlock_t *ptl; 2503 int err = 0; 2504 2505 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2506 if (!pte) 2507 return -ENOMEM; 2508 arch_enter_lazy_mmu_mode(); 2509 do { 2510 BUG_ON(!pte_none(ptep_get(pte))); 2511 if (!pfn_modify_allowed(pfn, prot)) { 2512 err = -EACCES; 2513 break; 2514 } 2515 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2516 pfn++; 2517 } while (pte++, addr += PAGE_SIZE, addr != end); 2518 arch_leave_lazy_mmu_mode(); 2519 pte_unmap_unlock(mapped_pte, ptl); 2520 return err; 2521 } 2522 2523 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2524 unsigned long addr, unsigned long end, 2525 unsigned long pfn, pgprot_t prot) 2526 { 2527 pmd_t *pmd; 2528 unsigned long next; 2529 int err; 2530 2531 pfn -= addr >> PAGE_SHIFT; 2532 pmd = pmd_alloc(mm, pud, addr); 2533 if (!pmd) 2534 return -ENOMEM; 2535 VM_BUG_ON(pmd_trans_huge(*pmd)); 2536 do { 2537 next = pmd_addr_end(addr, end); 2538 err = remap_pte_range(mm, pmd, addr, next, 2539 pfn + (addr >> PAGE_SHIFT), prot); 2540 if (err) 2541 return err; 2542 } while (pmd++, addr = next, addr != end); 2543 return 0; 2544 } 2545 2546 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2547 unsigned long addr, unsigned long end, 2548 unsigned long pfn, pgprot_t prot) 2549 { 2550 pud_t *pud; 2551 unsigned long next; 2552 int err; 2553 2554 pfn -= addr >> PAGE_SHIFT; 2555 pud = pud_alloc(mm, p4d, addr); 2556 if (!pud) 2557 return -ENOMEM; 2558 do { 2559 next = pud_addr_end(addr, end); 2560 err = remap_pmd_range(mm, pud, addr, next, 2561 pfn + (addr >> PAGE_SHIFT), prot); 2562 if (err) 2563 return err; 2564 } while (pud++, addr = next, addr != end); 2565 return 0; 2566 } 2567 2568 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2569 unsigned long addr, unsigned long end, 2570 unsigned long pfn, pgprot_t prot) 2571 { 2572 p4d_t *p4d; 2573 unsigned long next; 2574 int err; 2575 2576 pfn -= addr >> PAGE_SHIFT; 2577 p4d = p4d_alloc(mm, pgd, addr); 2578 if (!p4d) 2579 return -ENOMEM; 2580 do { 2581 next = p4d_addr_end(addr, end); 2582 err = remap_pud_range(mm, p4d, addr, next, 2583 pfn + (addr >> PAGE_SHIFT), prot); 2584 if (err) 2585 return err; 2586 } while (p4d++, addr = next, addr != end); 2587 return 0; 2588 } 2589 2590 /* 2591 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2592 * must have pre-validated the caching bits of the pgprot_t. 2593 */ 2594 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2595 unsigned long pfn, unsigned long size, pgprot_t prot) 2596 { 2597 pgd_t *pgd; 2598 unsigned long next; 2599 unsigned long end = addr + PAGE_ALIGN(size); 2600 struct mm_struct *mm = vma->vm_mm; 2601 int err; 2602 2603 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2604 return -EINVAL; 2605 2606 /* 2607 * Physically remapped pages are special. Tell the 2608 * rest of the world about it: 2609 * VM_IO tells people not to look at these pages 2610 * (accesses can have side effects). 2611 * VM_PFNMAP tells the core MM that the base pages are just 2612 * raw PFN mappings, and do not have a "struct page" associated 2613 * with them. 2614 * VM_DONTEXPAND 2615 * Disable vma merging and expanding with mremap(). 2616 * VM_DONTDUMP 2617 * Omit vma from core dump, even when VM_IO turned off. 2618 * 2619 * There's a horrible special case to handle copy-on-write 2620 * behaviour that some programs depend on. We mark the "original" 2621 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2622 * See vm_normal_page() for details. 2623 */ 2624 if (is_cow_mapping(vma->vm_flags)) { 2625 if (addr != vma->vm_start || end != vma->vm_end) 2626 return -EINVAL; 2627 vma->vm_pgoff = pfn; 2628 } 2629 2630 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2631 2632 BUG_ON(addr >= end); 2633 pfn -= addr >> PAGE_SHIFT; 2634 pgd = pgd_offset(mm, addr); 2635 flush_cache_range(vma, addr, end); 2636 do { 2637 next = pgd_addr_end(addr, end); 2638 err = remap_p4d_range(mm, pgd, addr, next, 2639 pfn + (addr >> PAGE_SHIFT), prot); 2640 if (err) 2641 return err; 2642 } while (pgd++, addr = next, addr != end); 2643 2644 return 0; 2645 } 2646 2647 /** 2648 * remap_pfn_range - remap kernel memory to userspace 2649 * @vma: user vma to map to 2650 * @addr: target page aligned user address to start at 2651 * @pfn: page frame number of kernel physical memory address 2652 * @size: size of mapping area 2653 * @prot: page protection flags for this mapping 2654 * 2655 * Note: this is only safe if the mm semaphore is held when called. 2656 * 2657 * Return: %0 on success, negative error code otherwise. 2658 */ 2659 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2660 unsigned long pfn, unsigned long size, pgprot_t prot) 2661 { 2662 int err; 2663 2664 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2665 if (err) 2666 return -EINVAL; 2667 2668 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2669 if (err) 2670 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2671 return err; 2672 } 2673 EXPORT_SYMBOL(remap_pfn_range); 2674 2675 /** 2676 * vm_iomap_memory - remap memory to userspace 2677 * @vma: user vma to map to 2678 * @start: start of the physical memory to be mapped 2679 * @len: size of area 2680 * 2681 * This is a simplified io_remap_pfn_range() for common driver use. The 2682 * driver just needs to give us the physical memory range to be mapped, 2683 * we'll figure out the rest from the vma information. 2684 * 2685 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2686 * whatever write-combining details or similar. 2687 * 2688 * Return: %0 on success, negative error code otherwise. 2689 */ 2690 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2691 { 2692 unsigned long vm_len, pfn, pages; 2693 2694 /* Check that the physical memory area passed in looks valid */ 2695 if (start + len < start) 2696 return -EINVAL; 2697 /* 2698 * You *really* shouldn't map things that aren't page-aligned, 2699 * but we've historically allowed it because IO memory might 2700 * just have smaller alignment. 2701 */ 2702 len += start & ~PAGE_MASK; 2703 pfn = start >> PAGE_SHIFT; 2704 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2705 if (pfn + pages < pfn) 2706 return -EINVAL; 2707 2708 /* We start the mapping 'vm_pgoff' pages into the area */ 2709 if (vma->vm_pgoff > pages) 2710 return -EINVAL; 2711 pfn += vma->vm_pgoff; 2712 pages -= vma->vm_pgoff; 2713 2714 /* Can we fit all of the mapping? */ 2715 vm_len = vma->vm_end - vma->vm_start; 2716 if (vm_len >> PAGE_SHIFT > pages) 2717 return -EINVAL; 2718 2719 /* Ok, let it rip */ 2720 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2721 } 2722 EXPORT_SYMBOL(vm_iomap_memory); 2723 2724 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2725 unsigned long addr, unsigned long end, 2726 pte_fn_t fn, void *data, bool create, 2727 pgtbl_mod_mask *mask) 2728 { 2729 pte_t *pte, *mapped_pte; 2730 int err = 0; 2731 spinlock_t *ptl; 2732 2733 if (create) { 2734 mapped_pte = pte = (mm == &init_mm) ? 2735 pte_alloc_kernel_track(pmd, addr, mask) : 2736 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2737 if (!pte) 2738 return -ENOMEM; 2739 } else { 2740 mapped_pte = pte = (mm == &init_mm) ? 2741 pte_offset_kernel(pmd, addr) : 2742 pte_offset_map_lock(mm, pmd, addr, &ptl); 2743 if (!pte) 2744 return -EINVAL; 2745 } 2746 2747 arch_enter_lazy_mmu_mode(); 2748 2749 if (fn) { 2750 do { 2751 if (create || !pte_none(ptep_get(pte))) { 2752 err = fn(pte++, addr, data); 2753 if (err) 2754 break; 2755 } 2756 } while (addr += PAGE_SIZE, addr != end); 2757 } 2758 *mask |= PGTBL_PTE_MODIFIED; 2759 2760 arch_leave_lazy_mmu_mode(); 2761 2762 if (mm != &init_mm) 2763 pte_unmap_unlock(mapped_pte, ptl); 2764 return err; 2765 } 2766 2767 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2768 unsigned long addr, unsigned long end, 2769 pte_fn_t fn, void *data, bool create, 2770 pgtbl_mod_mask *mask) 2771 { 2772 pmd_t *pmd; 2773 unsigned long next; 2774 int err = 0; 2775 2776 BUG_ON(pud_leaf(*pud)); 2777 2778 if (create) { 2779 pmd = pmd_alloc_track(mm, pud, addr, mask); 2780 if (!pmd) 2781 return -ENOMEM; 2782 } else { 2783 pmd = pmd_offset(pud, addr); 2784 } 2785 do { 2786 next = pmd_addr_end(addr, end); 2787 if (pmd_none(*pmd) && !create) 2788 continue; 2789 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2790 return -EINVAL; 2791 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2792 if (!create) 2793 continue; 2794 pmd_clear_bad(pmd); 2795 } 2796 err = apply_to_pte_range(mm, pmd, addr, next, 2797 fn, data, create, mask); 2798 if (err) 2799 break; 2800 } while (pmd++, addr = next, addr != end); 2801 2802 return err; 2803 } 2804 2805 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2806 unsigned long addr, unsigned long end, 2807 pte_fn_t fn, void *data, bool create, 2808 pgtbl_mod_mask *mask) 2809 { 2810 pud_t *pud; 2811 unsigned long next; 2812 int err = 0; 2813 2814 if (create) { 2815 pud = pud_alloc_track(mm, p4d, addr, mask); 2816 if (!pud) 2817 return -ENOMEM; 2818 } else { 2819 pud = pud_offset(p4d, addr); 2820 } 2821 do { 2822 next = pud_addr_end(addr, end); 2823 if (pud_none(*pud) && !create) 2824 continue; 2825 if (WARN_ON_ONCE(pud_leaf(*pud))) 2826 return -EINVAL; 2827 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2828 if (!create) 2829 continue; 2830 pud_clear_bad(pud); 2831 } 2832 err = apply_to_pmd_range(mm, pud, addr, next, 2833 fn, data, create, mask); 2834 if (err) 2835 break; 2836 } while (pud++, addr = next, addr != end); 2837 2838 return err; 2839 } 2840 2841 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2842 unsigned long addr, unsigned long end, 2843 pte_fn_t fn, void *data, bool create, 2844 pgtbl_mod_mask *mask) 2845 { 2846 p4d_t *p4d; 2847 unsigned long next; 2848 int err = 0; 2849 2850 if (create) { 2851 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2852 if (!p4d) 2853 return -ENOMEM; 2854 } else { 2855 p4d = p4d_offset(pgd, addr); 2856 } 2857 do { 2858 next = p4d_addr_end(addr, end); 2859 if (p4d_none(*p4d) && !create) 2860 continue; 2861 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2862 return -EINVAL; 2863 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2864 if (!create) 2865 continue; 2866 p4d_clear_bad(p4d); 2867 } 2868 err = apply_to_pud_range(mm, p4d, addr, next, 2869 fn, data, create, mask); 2870 if (err) 2871 break; 2872 } while (p4d++, addr = next, addr != end); 2873 2874 return err; 2875 } 2876 2877 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2878 unsigned long size, pte_fn_t fn, 2879 void *data, bool create) 2880 { 2881 pgd_t *pgd; 2882 unsigned long start = addr, next; 2883 unsigned long end = addr + size; 2884 pgtbl_mod_mask mask = 0; 2885 int err = 0; 2886 2887 if (WARN_ON(addr >= end)) 2888 return -EINVAL; 2889 2890 pgd = pgd_offset(mm, addr); 2891 do { 2892 next = pgd_addr_end(addr, end); 2893 if (pgd_none(*pgd) && !create) 2894 continue; 2895 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2896 return -EINVAL; 2897 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2898 if (!create) 2899 continue; 2900 pgd_clear_bad(pgd); 2901 } 2902 err = apply_to_p4d_range(mm, pgd, addr, next, 2903 fn, data, create, &mask); 2904 if (err) 2905 break; 2906 } while (pgd++, addr = next, addr != end); 2907 2908 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2909 arch_sync_kernel_mappings(start, start + size); 2910 2911 return err; 2912 } 2913 2914 /* 2915 * Scan a region of virtual memory, filling in page tables as necessary 2916 * and calling a provided function on each leaf page table. 2917 */ 2918 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2919 unsigned long size, pte_fn_t fn, void *data) 2920 { 2921 return __apply_to_page_range(mm, addr, size, fn, data, true); 2922 } 2923 EXPORT_SYMBOL_GPL(apply_to_page_range); 2924 2925 /* 2926 * Scan a region of virtual memory, calling a provided function on 2927 * each leaf page table where it exists. 2928 * 2929 * Unlike apply_to_page_range, this does _not_ fill in page tables 2930 * where they are absent. 2931 */ 2932 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2933 unsigned long size, pte_fn_t fn, void *data) 2934 { 2935 return __apply_to_page_range(mm, addr, size, fn, data, false); 2936 } 2937 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2938 2939 /* 2940 * handle_pte_fault chooses page fault handler according to an entry which was 2941 * read non-atomically. Before making any commitment, on those architectures 2942 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2943 * parts, do_swap_page must check under lock before unmapping the pte and 2944 * proceeding (but do_wp_page is only called after already making such a check; 2945 * and do_anonymous_page can safely check later on). 2946 */ 2947 static inline int pte_unmap_same(struct vm_fault *vmf) 2948 { 2949 int same = 1; 2950 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2951 if (sizeof(pte_t) > sizeof(unsigned long)) { 2952 spin_lock(vmf->ptl); 2953 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 2954 spin_unlock(vmf->ptl); 2955 } 2956 #endif 2957 pte_unmap(vmf->pte); 2958 vmf->pte = NULL; 2959 return same; 2960 } 2961 2962 /* 2963 * Return: 2964 * 0: copied succeeded 2965 * -EHWPOISON: copy failed due to hwpoison in source page 2966 * -EAGAIN: copied failed (some other reason) 2967 */ 2968 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2969 struct vm_fault *vmf) 2970 { 2971 int ret; 2972 void *kaddr; 2973 void __user *uaddr; 2974 struct vm_area_struct *vma = vmf->vma; 2975 struct mm_struct *mm = vma->vm_mm; 2976 unsigned long addr = vmf->address; 2977 2978 if (likely(src)) { 2979 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2980 memory_failure_queue(page_to_pfn(src), 0); 2981 return -EHWPOISON; 2982 } 2983 return 0; 2984 } 2985 2986 /* 2987 * If the source page was a PFN mapping, we don't have 2988 * a "struct page" for it. We do a best-effort copy by 2989 * just copying from the original user address. If that 2990 * fails, we just zero-fill it. Live with it. 2991 */ 2992 kaddr = kmap_local_page(dst); 2993 pagefault_disable(); 2994 uaddr = (void __user *)(addr & PAGE_MASK); 2995 2996 /* 2997 * On architectures with software "accessed" bits, we would 2998 * take a double page fault, so mark it accessed here. 2999 */ 3000 vmf->pte = NULL; 3001 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3002 pte_t entry; 3003 3004 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3005 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3006 /* 3007 * Other thread has already handled the fault 3008 * and update local tlb only 3009 */ 3010 if (vmf->pte) 3011 update_mmu_tlb(vma, addr, vmf->pte); 3012 ret = -EAGAIN; 3013 goto pte_unlock; 3014 } 3015 3016 entry = pte_mkyoung(vmf->orig_pte); 3017 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3018 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3019 } 3020 3021 /* 3022 * This really shouldn't fail, because the page is there 3023 * in the page tables. But it might just be unreadable, 3024 * in which case we just give up and fill the result with 3025 * zeroes. 3026 */ 3027 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3028 if (vmf->pte) 3029 goto warn; 3030 3031 /* Re-validate under PTL if the page is still mapped */ 3032 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3033 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3034 /* The PTE changed under us, update local tlb */ 3035 if (vmf->pte) 3036 update_mmu_tlb(vma, addr, vmf->pte); 3037 ret = -EAGAIN; 3038 goto pte_unlock; 3039 } 3040 3041 /* 3042 * The same page can be mapped back since last copy attempt. 3043 * Try to copy again under PTL. 3044 */ 3045 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3046 /* 3047 * Give a warn in case there can be some obscure 3048 * use-case 3049 */ 3050 warn: 3051 WARN_ON_ONCE(1); 3052 clear_page(kaddr); 3053 } 3054 } 3055 3056 ret = 0; 3057 3058 pte_unlock: 3059 if (vmf->pte) 3060 pte_unmap_unlock(vmf->pte, vmf->ptl); 3061 pagefault_enable(); 3062 kunmap_local(kaddr); 3063 flush_dcache_page(dst); 3064 3065 return ret; 3066 } 3067 3068 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3069 { 3070 struct file *vm_file = vma->vm_file; 3071 3072 if (vm_file) 3073 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3074 3075 /* 3076 * Special mappings (e.g. VDSO) do not have any file so fake 3077 * a default GFP_KERNEL for them. 3078 */ 3079 return GFP_KERNEL; 3080 } 3081 3082 /* 3083 * Notify the address space that the page is about to become writable so that 3084 * it can prohibit this or wait for the page to get into an appropriate state. 3085 * 3086 * We do this without the lock held, so that it can sleep if it needs to. 3087 */ 3088 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3089 { 3090 vm_fault_t ret; 3091 unsigned int old_flags = vmf->flags; 3092 3093 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3094 3095 if (vmf->vma->vm_file && 3096 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3097 return VM_FAULT_SIGBUS; 3098 3099 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3100 /* Restore original flags so that caller is not surprised */ 3101 vmf->flags = old_flags; 3102 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3103 return ret; 3104 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3105 folio_lock(folio); 3106 if (!folio->mapping) { 3107 folio_unlock(folio); 3108 return 0; /* retry */ 3109 } 3110 ret |= VM_FAULT_LOCKED; 3111 } else 3112 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3113 return ret; 3114 } 3115 3116 /* 3117 * Handle dirtying of a page in shared file mapping on a write fault. 3118 * 3119 * The function expects the page to be locked and unlocks it. 3120 */ 3121 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3122 { 3123 struct vm_area_struct *vma = vmf->vma; 3124 struct address_space *mapping; 3125 struct folio *folio = page_folio(vmf->page); 3126 bool dirtied; 3127 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3128 3129 dirtied = folio_mark_dirty(folio); 3130 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3131 /* 3132 * Take a local copy of the address_space - folio.mapping may be zeroed 3133 * by truncate after folio_unlock(). The address_space itself remains 3134 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3135 * release semantics to prevent the compiler from undoing this copying. 3136 */ 3137 mapping = folio_raw_mapping(folio); 3138 folio_unlock(folio); 3139 3140 if (!page_mkwrite) 3141 file_update_time(vma->vm_file); 3142 3143 /* 3144 * Throttle page dirtying rate down to writeback speed. 3145 * 3146 * mapping may be NULL here because some device drivers do not 3147 * set page.mapping but still dirty their pages 3148 * 3149 * Drop the mmap_lock before waiting on IO, if we can. The file 3150 * is pinning the mapping, as per above. 3151 */ 3152 if ((dirtied || page_mkwrite) && mapping) { 3153 struct file *fpin; 3154 3155 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3156 balance_dirty_pages_ratelimited(mapping); 3157 if (fpin) { 3158 fput(fpin); 3159 return VM_FAULT_COMPLETED; 3160 } 3161 } 3162 3163 return 0; 3164 } 3165 3166 /* 3167 * Handle write page faults for pages that can be reused in the current vma 3168 * 3169 * This can happen either due to the mapping being with the VM_SHARED flag, 3170 * or due to us being the last reference standing to the page. In either 3171 * case, all we need to do here is to mark the page as writable and update 3172 * any related book-keeping. 3173 */ 3174 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3175 __releases(vmf->ptl) 3176 { 3177 struct vm_area_struct *vma = vmf->vma; 3178 pte_t entry; 3179 3180 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3181 3182 if (folio) { 3183 VM_BUG_ON(folio_test_anon(folio) && 3184 !PageAnonExclusive(vmf->page)); 3185 /* 3186 * Clear the folio's cpupid information as the existing 3187 * information potentially belongs to a now completely 3188 * unrelated process. 3189 */ 3190 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3191 } 3192 3193 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3194 entry = pte_mkyoung(vmf->orig_pte); 3195 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3196 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3197 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3198 pte_unmap_unlock(vmf->pte, vmf->ptl); 3199 count_vm_event(PGREUSE); 3200 } 3201 3202 /* 3203 * We could add a bitflag somewhere, but for now, we know that all 3204 * vm_ops that have a ->map_pages have been audited and don't need 3205 * the mmap_lock to be held. 3206 */ 3207 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3208 { 3209 struct vm_area_struct *vma = vmf->vma; 3210 3211 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3212 return 0; 3213 vma_end_read(vma); 3214 return VM_FAULT_RETRY; 3215 } 3216 3217 /** 3218 * vmf_anon_prepare - Prepare to handle an anonymous fault. 3219 * @vmf: The vm_fault descriptor passed from the fault handler. 3220 * 3221 * When preparing to insert an anonymous page into a VMA from a 3222 * fault handler, call this function rather than anon_vma_prepare(). 3223 * If this vma does not already have an associated anon_vma and we are 3224 * only protected by the per-VMA lock, the caller must retry with the 3225 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3226 * determine if this VMA can share its anon_vma, and that's not safe to 3227 * do with only the per-VMA lock held for this VMA. 3228 * 3229 * Return: 0 if fault handling can proceed. Any other value should be 3230 * returned to the caller. 3231 */ 3232 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf) 3233 { 3234 struct vm_area_struct *vma = vmf->vma; 3235 vm_fault_t ret = 0; 3236 3237 if (likely(vma->anon_vma)) 3238 return 0; 3239 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3240 if (!mmap_read_trylock(vma->vm_mm)) { 3241 vma_end_read(vma); 3242 return VM_FAULT_RETRY; 3243 } 3244 } 3245 if (__anon_vma_prepare(vma)) 3246 ret = VM_FAULT_OOM; 3247 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3248 mmap_read_unlock(vma->vm_mm); 3249 return ret; 3250 } 3251 3252 /* 3253 * Handle the case of a page which we actually need to copy to a new page, 3254 * either due to COW or unsharing. 3255 * 3256 * Called with mmap_lock locked and the old page referenced, but 3257 * without the ptl held. 3258 * 3259 * High level logic flow: 3260 * 3261 * - Allocate a page, copy the content of the old page to the new one. 3262 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3263 * - Take the PTL. If the pte changed, bail out and release the allocated page 3264 * - If the pte is still the way we remember it, update the page table and all 3265 * relevant references. This includes dropping the reference the page-table 3266 * held to the old page, as well as updating the rmap. 3267 * - In any case, unlock the PTL and drop the reference we took to the old page. 3268 */ 3269 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3270 { 3271 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3272 struct vm_area_struct *vma = vmf->vma; 3273 struct mm_struct *mm = vma->vm_mm; 3274 struct folio *old_folio = NULL; 3275 struct folio *new_folio = NULL; 3276 pte_t entry; 3277 int page_copied = 0; 3278 struct mmu_notifier_range range; 3279 vm_fault_t ret; 3280 bool pfn_is_zero; 3281 3282 delayacct_wpcopy_start(); 3283 3284 if (vmf->page) 3285 old_folio = page_folio(vmf->page); 3286 ret = vmf_anon_prepare(vmf); 3287 if (unlikely(ret)) 3288 goto out; 3289 3290 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3291 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3292 if (!new_folio) 3293 goto oom; 3294 3295 if (!pfn_is_zero) { 3296 int err; 3297 3298 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3299 if (err) { 3300 /* 3301 * COW failed, if the fault was solved by other, 3302 * it's fine. If not, userspace would re-fault on 3303 * the same address and we will handle the fault 3304 * from the second attempt. 3305 * The -EHWPOISON case will not be retried. 3306 */ 3307 folio_put(new_folio); 3308 if (old_folio) 3309 folio_put(old_folio); 3310 3311 delayacct_wpcopy_end(); 3312 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3313 } 3314 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3315 } 3316 3317 __folio_mark_uptodate(new_folio); 3318 3319 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3320 vmf->address & PAGE_MASK, 3321 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3322 mmu_notifier_invalidate_range_start(&range); 3323 3324 /* 3325 * Re-check the pte - we dropped the lock 3326 */ 3327 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3328 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3329 if (old_folio) { 3330 if (!folio_test_anon(old_folio)) { 3331 dec_mm_counter(mm, mm_counter_file(old_folio)); 3332 inc_mm_counter(mm, MM_ANONPAGES); 3333 } 3334 } else { 3335 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3336 inc_mm_counter(mm, MM_ANONPAGES); 3337 } 3338 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3339 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3340 entry = pte_sw_mkyoung(entry); 3341 if (unlikely(unshare)) { 3342 if (pte_soft_dirty(vmf->orig_pte)) 3343 entry = pte_mksoft_dirty(entry); 3344 if (pte_uffd_wp(vmf->orig_pte)) 3345 entry = pte_mkuffd_wp(entry); 3346 } else { 3347 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3348 } 3349 3350 /* 3351 * Clear the pte entry and flush it first, before updating the 3352 * pte with the new entry, to keep TLBs on different CPUs in 3353 * sync. This code used to set the new PTE then flush TLBs, but 3354 * that left a window where the new PTE could be loaded into 3355 * some TLBs while the old PTE remains in others. 3356 */ 3357 ptep_clear_flush(vma, vmf->address, vmf->pte); 3358 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3359 folio_add_lru_vma(new_folio, vma); 3360 BUG_ON(unshare && pte_write(entry)); 3361 set_pte_at(mm, vmf->address, vmf->pte, entry); 3362 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3363 if (old_folio) { 3364 /* 3365 * Only after switching the pte to the new page may 3366 * we remove the mapcount here. Otherwise another 3367 * process may come and find the rmap count decremented 3368 * before the pte is switched to the new page, and 3369 * "reuse" the old page writing into it while our pte 3370 * here still points into it and can be read by other 3371 * threads. 3372 * 3373 * The critical issue is to order this 3374 * folio_remove_rmap_pte() with the ptp_clear_flush 3375 * above. Those stores are ordered by (if nothing else,) 3376 * the barrier present in the atomic_add_negative 3377 * in folio_remove_rmap_pte(); 3378 * 3379 * Then the TLB flush in ptep_clear_flush ensures that 3380 * no process can access the old page before the 3381 * decremented mapcount is visible. And the old page 3382 * cannot be reused until after the decremented 3383 * mapcount is visible. So transitively, TLBs to 3384 * old page will be flushed before it can be reused. 3385 */ 3386 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3387 } 3388 3389 /* Free the old page.. */ 3390 new_folio = old_folio; 3391 page_copied = 1; 3392 pte_unmap_unlock(vmf->pte, vmf->ptl); 3393 } else if (vmf->pte) { 3394 update_mmu_tlb(vma, vmf->address, vmf->pte); 3395 pte_unmap_unlock(vmf->pte, vmf->ptl); 3396 } 3397 3398 mmu_notifier_invalidate_range_end(&range); 3399 3400 if (new_folio) 3401 folio_put(new_folio); 3402 if (old_folio) { 3403 if (page_copied) 3404 free_swap_cache(old_folio); 3405 folio_put(old_folio); 3406 } 3407 3408 delayacct_wpcopy_end(); 3409 return 0; 3410 oom: 3411 ret = VM_FAULT_OOM; 3412 out: 3413 if (old_folio) 3414 folio_put(old_folio); 3415 3416 delayacct_wpcopy_end(); 3417 return ret; 3418 } 3419 3420 /** 3421 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3422 * writeable once the page is prepared 3423 * 3424 * @vmf: structure describing the fault 3425 * @folio: the folio of vmf->page 3426 * 3427 * This function handles all that is needed to finish a write page fault in a 3428 * shared mapping due to PTE being read-only once the mapped page is prepared. 3429 * It handles locking of PTE and modifying it. 3430 * 3431 * The function expects the page to be locked or other protection against 3432 * concurrent faults / writeback (such as DAX radix tree locks). 3433 * 3434 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3435 * we acquired PTE lock. 3436 */ 3437 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3438 { 3439 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3440 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3441 &vmf->ptl); 3442 if (!vmf->pte) 3443 return VM_FAULT_NOPAGE; 3444 /* 3445 * We might have raced with another page fault while we released the 3446 * pte_offset_map_lock. 3447 */ 3448 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3449 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3450 pte_unmap_unlock(vmf->pte, vmf->ptl); 3451 return VM_FAULT_NOPAGE; 3452 } 3453 wp_page_reuse(vmf, folio); 3454 return 0; 3455 } 3456 3457 /* 3458 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3459 * mapping 3460 */ 3461 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3462 { 3463 struct vm_area_struct *vma = vmf->vma; 3464 3465 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3466 vm_fault_t ret; 3467 3468 pte_unmap_unlock(vmf->pte, vmf->ptl); 3469 ret = vmf_can_call_fault(vmf); 3470 if (ret) 3471 return ret; 3472 3473 vmf->flags |= FAULT_FLAG_MKWRITE; 3474 ret = vma->vm_ops->pfn_mkwrite(vmf); 3475 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3476 return ret; 3477 return finish_mkwrite_fault(vmf, NULL); 3478 } 3479 wp_page_reuse(vmf, NULL); 3480 return 0; 3481 } 3482 3483 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3484 __releases(vmf->ptl) 3485 { 3486 struct vm_area_struct *vma = vmf->vma; 3487 vm_fault_t ret = 0; 3488 3489 folio_get(folio); 3490 3491 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3492 vm_fault_t tmp; 3493 3494 pte_unmap_unlock(vmf->pte, vmf->ptl); 3495 tmp = vmf_can_call_fault(vmf); 3496 if (tmp) { 3497 folio_put(folio); 3498 return tmp; 3499 } 3500 3501 tmp = do_page_mkwrite(vmf, folio); 3502 if (unlikely(!tmp || (tmp & 3503 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3504 folio_put(folio); 3505 return tmp; 3506 } 3507 tmp = finish_mkwrite_fault(vmf, folio); 3508 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3509 folio_unlock(folio); 3510 folio_put(folio); 3511 return tmp; 3512 } 3513 } else { 3514 wp_page_reuse(vmf, folio); 3515 folio_lock(folio); 3516 } 3517 ret |= fault_dirty_shared_page(vmf); 3518 folio_put(folio); 3519 3520 return ret; 3521 } 3522 3523 static bool wp_can_reuse_anon_folio(struct folio *folio, 3524 struct vm_area_struct *vma) 3525 { 3526 /* 3527 * We could currently only reuse a subpage of a large folio if no 3528 * other subpages of the large folios are still mapped. However, 3529 * let's just consistently not reuse subpages even if we could 3530 * reuse in that scenario, and give back a large folio a bit 3531 * sooner. 3532 */ 3533 if (folio_test_large(folio)) 3534 return false; 3535 3536 /* 3537 * We have to verify under folio lock: these early checks are 3538 * just an optimization to avoid locking the folio and freeing 3539 * the swapcache if there is little hope that we can reuse. 3540 * 3541 * KSM doesn't necessarily raise the folio refcount. 3542 */ 3543 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3544 return false; 3545 if (!folio_test_lru(folio)) 3546 /* 3547 * We cannot easily detect+handle references from 3548 * remote LRU caches or references to LRU folios. 3549 */ 3550 lru_add_drain(); 3551 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3552 return false; 3553 if (!folio_trylock(folio)) 3554 return false; 3555 if (folio_test_swapcache(folio)) 3556 folio_free_swap(folio); 3557 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3558 folio_unlock(folio); 3559 return false; 3560 } 3561 /* 3562 * Ok, we've got the only folio reference from our mapping 3563 * and the folio is locked, it's dark out, and we're wearing 3564 * sunglasses. Hit it. 3565 */ 3566 folio_move_anon_rmap(folio, vma); 3567 folio_unlock(folio); 3568 return true; 3569 } 3570 3571 /* 3572 * This routine handles present pages, when 3573 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3574 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3575 * (FAULT_FLAG_UNSHARE) 3576 * 3577 * It is done by copying the page to a new address and decrementing the 3578 * shared-page counter for the old page. 3579 * 3580 * Note that this routine assumes that the protection checks have been 3581 * done by the caller (the low-level page fault routine in most cases). 3582 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3583 * done any necessary COW. 3584 * 3585 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3586 * though the page will change only once the write actually happens. This 3587 * avoids a few races, and potentially makes it more efficient. 3588 * 3589 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3590 * but allow concurrent faults), with pte both mapped and locked. 3591 * We return with mmap_lock still held, but pte unmapped and unlocked. 3592 */ 3593 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3594 __releases(vmf->ptl) 3595 { 3596 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3597 struct vm_area_struct *vma = vmf->vma; 3598 struct folio *folio = NULL; 3599 pte_t pte; 3600 3601 if (likely(!unshare)) { 3602 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3603 if (!userfaultfd_wp_async(vma)) { 3604 pte_unmap_unlock(vmf->pte, vmf->ptl); 3605 return handle_userfault(vmf, VM_UFFD_WP); 3606 } 3607 3608 /* 3609 * Nothing needed (cache flush, TLB invalidations, 3610 * etc.) because we're only removing the uffd-wp bit, 3611 * which is completely invisible to the user. 3612 */ 3613 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3614 3615 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3616 /* 3617 * Update this to be prepared for following up CoW 3618 * handling 3619 */ 3620 vmf->orig_pte = pte; 3621 } 3622 3623 /* 3624 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3625 * is flushed in this case before copying. 3626 */ 3627 if (unlikely(userfaultfd_wp(vmf->vma) && 3628 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3629 flush_tlb_page(vmf->vma, vmf->address); 3630 } 3631 3632 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3633 3634 if (vmf->page) 3635 folio = page_folio(vmf->page); 3636 3637 /* 3638 * Shared mapping: we are guaranteed to have VM_WRITE and 3639 * FAULT_FLAG_WRITE set at this point. 3640 */ 3641 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3642 /* 3643 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3644 * VM_PFNMAP VMA. 3645 * 3646 * We should not cow pages in a shared writeable mapping. 3647 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3648 */ 3649 if (!vmf->page) 3650 return wp_pfn_shared(vmf); 3651 return wp_page_shared(vmf, folio); 3652 } 3653 3654 /* 3655 * Private mapping: create an exclusive anonymous page copy if reuse 3656 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3657 * 3658 * If we encounter a page that is marked exclusive, we must reuse 3659 * the page without further checks. 3660 */ 3661 if (folio && folio_test_anon(folio) && 3662 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3663 if (!PageAnonExclusive(vmf->page)) 3664 SetPageAnonExclusive(vmf->page); 3665 if (unlikely(unshare)) { 3666 pte_unmap_unlock(vmf->pte, vmf->ptl); 3667 return 0; 3668 } 3669 wp_page_reuse(vmf, folio); 3670 return 0; 3671 } 3672 /* 3673 * Ok, we need to copy. Oh, well.. 3674 */ 3675 if (folio) 3676 folio_get(folio); 3677 3678 pte_unmap_unlock(vmf->pte, vmf->ptl); 3679 #ifdef CONFIG_KSM 3680 if (folio && folio_test_ksm(folio)) 3681 count_vm_event(COW_KSM); 3682 #endif 3683 return wp_page_copy(vmf); 3684 } 3685 3686 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3687 unsigned long start_addr, unsigned long end_addr, 3688 struct zap_details *details) 3689 { 3690 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3691 } 3692 3693 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3694 pgoff_t first_index, 3695 pgoff_t last_index, 3696 struct zap_details *details) 3697 { 3698 struct vm_area_struct *vma; 3699 pgoff_t vba, vea, zba, zea; 3700 3701 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3702 vba = vma->vm_pgoff; 3703 vea = vba + vma_pages(vma) - 1; 3704 zba = max(first_index, vba); 3705 zea = min(last_index, vea); 3706 3707 unmap_mapping_range_vma(vma, 3708 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3709 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3710 details); 3711 } 3712 } 3713 3714 /** 3715 * unmap_mapping_folio() - Unmap single folio from processes. 3716 * @folio: The locked folio to be unmapped. 3717 * 3718 * Unmap this folio from any userspace process which still has it mmaped. 3719 * Typically, for efficiency, the range of nearby pages has already been 3720 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3721 * truncation or invalidation holds the lock on a folio, it may find that 3722 * the page has been remapped again: and then uses unmap_mapping_folio() 3723 * to unmap it finally. 3724 */ 3725 void unmap_mapping_folio(struct folio *folio) 3726 { 3727 struct address_space *mapping = folio->mapping; 3728 struct zap_details details = { }; 3729 pgoff_t first_index; 3730 pgoff_t last_index; 3731 3732 VM_BUG_ON(!folio_test_locked(folio)); 3733 3734 first_index = folio->index; 3735 last_index = folio_next_index(folio) - 1; 3736 3737 details.even_cows = false; 3738 details.single_folio = folio; 3739 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3740 3741 i_mmap_lock_read(mapping); 3742 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3743 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3744 last_index, &details); 3745 i_mmap_unlock_read(mapping); 3746 } 3747 3748 /** 3749 * unmap_mapping_pages() - Unmap pages from processes. 3750 * @mapping: The address space containing pages to be unmapped. 3751 * @start: Index of first page to be unmapped. 3752 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3753 * @even_cows: Whether to unmap even private COWed pages. 3754 * 3755 * Unmap the pages in this address space from any userspace process which 3756 * has them mmaped. Generally, you want to remove COWed pages as well when 3757 * a file is being truncated, but not when invalidating pages from the page 3758 * cache. 3759 */ 3760 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3761 pgoff_t nr, bool even_cows) 3762 { 3763 struct zap_details details = { }; 3764 pgoff_t first_index = start; 3765 pgoff_t last_index = start + nr - 1; 3766 3767 details.even_cows = even_cows; 3768 if (last_index < first_index) 3769 last_index = ULONG_MAX; 3770 3771 i_mmap_lock_read(mapping); 3772 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3773 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3774 last_index, &details); 3775 i_mmap_unlock_read(mapping); 3776 } 3777 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3778 3779 /** 3780 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3781 * address_space corresponding to the specified byte range in the underlying 3782 * file. 3783 * 3784 * @mapping: the address space containing mmaps to be unmapped. 3785 * @holebegin: byte in first page to unmap, relative to the start of 3786 * the underlying file. This will be rounded down to a PAGE_SIZE 3787 * boundary. Note that this is different from truncate_pagecache(), which 3788 * must keep the partial page. In contrast, we must get rid of 3789 * partial pages. 3790 * @holelen: size of prospective hole in bytes. This will be rounded 3791 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3792 * end of the file. 3793 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3794 * but 0 when invalidating pagecache, don't throw away private data. 3795 */ 3796 void unmap_mapping_range(struct address_space *mapping, 3797 loff_t const holebegin, loff_t const holelen, int even_cows) 3798 { 3799 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 3800 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 3801 3802 /* Check for overflow. */ 3803 if (sizeof(holelen) > sizeof(hlen)) { 3804 long long holeend = 3805 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3806 if (holeend & ~(long long)ULONG_MAX) 3807 hlen = ULONG_MAX - hba + 1; 3808 } 3809 3810 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3811 } 3812 EXPORT_SYMBOL(unmap_mapping_range); 3813 3814 /* 3815 * Restore a potential device exclusive pte to a working pte entry 3816 */ 3817 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3818 { 3819 struct folio *folio = page_folio(vmf->page); 3820 struct vm_area_struct *vma = vmf->vma; 3821 struct mmu_notifier_range range; 3822 vm_fault_t ret; 3823 3824 /* 3825 * We need a reference to lock the folio because we don't hold 3826 * the PTL so a racing thread can remove the device-exclusive 3827 * entry and unmap it. If the folio is free the entry must 3828 * have been removed already. If it happens to have already 3829 * been re-allocated after being freed all we do is lock and 3830 * unlock it. 3831 */ 3832 if (!folio_try_get(folio)) 3833 return 0; 3834 3835 ret = folio_lock_or_retry(folio, vmf); 3836 if (ret) { 3837 folio_put(folio); 3838 return ret; 3839 } 3840 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3841 vma->vm_mm, vmf->address & PAGE_MASK, 3842 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3843 mmu_notifier_invalidate_range_start(&range); 3844 3845 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3846 &vmf->ptl); 3847 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3848 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3849 3850 if (vmf->pte) 3851 pte_unmap_unlock(vmf->pte, vmf->ptl); 3852 folio_unlock(folio); 3853 folio_put(folio); 3854 3855 mmu_notifier_invalidate_range_end(&range); 3856 return 0; 3857 } 3858 3859 static inline bool should_try_to_free_swap(struct folio *folio, 3860 struct vm_area_struct *vma, 3861 unsigned int fault_flags) 3862 { 3863 if (!folio_test_swapcache(folio)) 3864 return false; 3865 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3866 folio_test_mlocked(folio)) 3867 return true; 3868 /* 3869 * If we want to map a page that's in the swapcache writable, we 3870 * have to detect via the refcount if we're really the exclusive 3871 * user. Try freeing the swapcache to get rid of the swapcache 3872 * reference only in case it's likely that we'll be the exlusive user. 3873 */ 3874 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3875 folio_ref_count(folio) == 2; 3876 } 3877 3878 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3879 { 3880 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3881 vmf->address, &vmf->ptl); 3882 if (!vmf->pte) 3883 return 0; 3884 /* 3885 * Be careful so that we will only recover a special uffd-wp pte into a 3886 * none pte. Otherwise it means the pte could have changed, so retry. 3887 * 3888 * This should also cover the case where e.g. the pte changed 3889 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3890 * So is_pte_marker() check is not enough to safely drop the pte. 3891 */ 3892 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3893 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3894 pte_unmap_unlock(vmf->pte, vmf->ptl); 3895 return 0; 3896 } 3897 3898 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3899 { 3900 if (vma_is_anonymous(vmf->vma)) 3901 return do_anonymous_page(vmf); 3902 else 3903 return do_fault(vmf); 3904 } 3905 3906 /* 3907 * This is actually a page-missing access, but with uffd-wp special pte 3908 * installed. It means this pte was wr-protected before being unmapped. 3909 */ 3910 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3911 { 3912 /* 3913 * Just in case there're leftover special ptes even after the region 3914 * got unregistered - we can simply clear them. 3915 */ 3916 if (unlikely(!userfaultfd_wp(vmf->vma))) 3917 return pte_marker_clear(vmf); 3918 3919 return do_pte_missing(vmf); 3920 } 3921 3922 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3923 { 3924 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3925 unsigned long marker = pte_marker_get(entry); 3926 3927 /* 3928 * PTE markers should never be empty. If anything weird happened, 3929 * the best thing to do is to kill the process along with its mm. 3930 */ 3931 if (WARN_ON_ONCE(!marker)) 3932 return VM_FAULT_SIGBUS; 3933 3934 /* Higher priority than uffd-wp when data corrupted */ 3935 if (marker & PTE_MARKER_POISONED) 3936 return VM_FAULT_HWPOISON; 3937 3938 if (pte_marker_entry_uffd_wp(entry)) 3939 return pte_marker_handle_uffd_wp(vmf); 3940 3941 /* This is an unknown pte marker */ 3942 return VM_FAULT_SIGBUS; 3943 } 3944 3945 /* 3946 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3947 * but allow concurrent faults), and pte mapped but not yet locked. 3948 * We return with pte unmapped and unlocked. 3949 * 3950 * We return with the mmap_lock locked or unlocked in the same cases 3951 * as does filemap_fault(). 3952 */ 3953 vm_fault_t do_swap_page(struct vm_fault *vmf) 3954 { 3955 struct vm_area_struct *vma = vmf->vma; 3956 struct folio *swapcache, *folio = NULL; 3957 struct page *page; 3958 struct swap_info_struct *si = NULL; 3959 rmap_t rmap_flags = RMAP_NONE; 3960 bool need_clear_cache = false; 3961 bool exclusive = false; 3962 swp_entry_t entry; 3963 pte_t pte; 3964 vm_fault_t ret = 0; 3965 void *shadow = NULL; 3966 3967 if (!pte_unmap_same(vmf)) 3968 goto out; 3969 3970 entry = pte_to_swp_entry(vmf->orig_pte); 3971 if (unlikely(non_swap_entry(entry))) { 3972 if (is_migration_entry(entry)) { 3973 migration_entry_wait(vma->vm_mm, vmf->pmd, 3974 vmf->address); 3975 } else if (is_device_exclusive_entry(entry)) { 3976 vmf->page = pfn_swap_entry_to_page(entry); 3977 ret = remove_device_exclusive_entry(vmf); 3978 } else if (is_device_private_entry(entry)) { 3979 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3980 /* 3981 * migrate_to_ram is not yet ready to operate 3982 * under VMA lock. 3983 */ 3984 vma_end_read(vma); 3985 ret = VM_FAULT_RETRY; 3986 goto out; 3987 } 3988 3989 vmf->page = pfn_swap_entry_to_page(entry); 3990 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3991 vmf->address, &vmf->ptl); 3992 if (unlikely(!vmf->pte || 3993 !pte_same(ptep_get(vmf->pte), 3994 vmf->orig_pte))) 3995 goto unlock; 3996 3997 /* 3998 * Get a page reference while we know the page can't be 3999 * freed. 4000 */ 4001 get_page(vmf->page); 4002 pte_unmap_unlock(vmf->pte, vmf->ptl); 4003 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 4004 put_page(vmf->page); 4005 } else if (is_hwpoison_entry(entry)) { 4006 ret = VM_FAULT_HWPOISON; 4007 } else if (is_pte_marker_entry(entry)) { 4008 ret = handle_pte_marker(vmf); 4009 } else { 4010 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4011 ret = VM_FAULT_SIGBUS; 4012 } 4013 goto out; 4014 } 4015 4016 /* Prevent swapoff from happening to us. */ 4017 si = get_swap_device(entry); 4018 if (unlikely(!si)) 4019 goto out; 4020 4021 folio = swap_cache_get_folio(entry, vma, vmf->address); 4022 if (folio) 4023 page = folio_file_page(folio, swp_offset(entry)); 4024 swapcache = folio; 4025 4026 if (!folio) { 4027 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4028 __swap_count(entry) == 1) { 4029 /* 4030 * Prevent parallel swapin from proceeding with 4031 * the cache flag. Otherwise, another thread may 4032 * finish swapin first, free the entry, and swapout 4033 * reusing the same entry. It's undetectable as 4034 * pte_same() returns true due to entry reuse. 4035 */ 4036 if (swapcache_prepare(entry)) { 4037 /* Relax a bit to prevent rapid repeated page faults */ 4038 schedule_timeout_uninterruptible(1); 4039 goto out; 4040 } 4041 need_clear_cache = true; 4042 4043 /* skip swapcache */ 4044 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 4045 vma, vmf->address, false); 4046 page = &folio->page; 4047 if (folio) { 4048 __folio_set_locked(folio); 4049 __folio_set_swapbacked(folio); 4050 4051 if (mem_cgroup_swapin_charge_folio(folio, 4052 vma->vm_mm, GFP_KERNEL, 4053 entry)) { 4054 ret = VM_FAULT_OOM; 4055 goto out_page; 4056 } 4057 mem_cgroup_swapin_uncharge_swap(entry); 4058 4059 shadow = get_shadow_from_swap_cache(entry); 4060 if (shadow) 4061 workingset_refault(folio, shadow); 4062 4063 folio_add_lru(folio); 4064 4065 /* To provide entry to swap_read_folio() */ 4066 folio->swap = entry; 4067 swap_read_folio(folio, true, NULL); 4068 folio->private = NULL; 4069 } 4070 } else { 4071 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4072 vmf); 4073 if (page) 4074 folio = page_folio(page); 4075 swapcache = folio; 4076 } 4077 4078 if (!folio) { 4079 /* 4080 * Back out if somebody else faulted in this pte 4081 * while we released the pte lock. 4082 */ 4083 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4084 vmf->address, &vmf->ptl); 4085 if (likely(vmf->pte && 4086 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4087 ret = VM_FAULT_OOM; 4088 goto unlock; 4089 } 4090 4091 /* Had to read the page from swap area: Major fault */ 4092 ret = VM_FAULT_MAJOR; 4093 count_vm_event(PGMAJFAULT); 4094 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4095 } else if (PageHWPoison(page)) { 4096 /* 4097 * hwpoisoned dirty swapcache pages are kept for killing 4098 * owner processes (which may be unknown at hwpoison time) 4099 */ 4100 ret = VM_FAULT_HWPOISON; 4101 goto out_release; 4102 } 4103 4104 ret |= folio_lock_or_retry(folio, vmf); 4105 if (ret & VM_FAULT_RETRY) 4106 goto out_release; 4107 4108 if (swapcache) { 4109 /* 4110 * Make sure folio_free_swap() or swapoff did not release the 4111 * swapcache from under us. The page pin, and pte_same test 4112 * below, are not enough to exclude that. Even if it is still 4113 * swapcache, we need to check that the page's swap has not 4114 * changed. 4115 */ 4116 if (unlikely(!folio_test_swapcache(folio) || 4117 page_swap_entry(page).val != entry.val)) 4118 goto out_page; 4119 4120 /* 4121 * KSM sometimes has to copy on read faults, for example, if 4122 * page->index of !PageKSM() pages would be nonlinear inside the 4123 * anon VMA -- PageKSM() is lost on actual swapout. 4124 */ 4125 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4126 if (unlikely(!folio)) { 4127 ret = VM_FAULT_OOM; 4128 folio = swapcache; 4129 goto out_page; 4130 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4131 ret = VM_FAULT_HWPOISON; 4132 folio = swapcache; 4133 goto out_page; 4134 } 4135 if (folio != swapcache) 4136 page = folio_page(folio, 0); 4137 4138 /* 4139 * If we want to map a page that's in the swapcache writable, we 4140 * have to detect via the refcount if we're really the exclusive 4141 * owner. Try removing the extra reference from the local LRU 4142 * caches if required. 4143 */ 4144 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4145 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4146 lru_add_drain(); 4147 } 4148 4149 folio_throttle_swaprate(folio, GFP_KERNEL); 4150 4151 /* 4152 * Back out if somebody else already faulted in this pte. 4153 */ 4154 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4155 &vmf->ptl); 4156 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4157 goto out_nomap; 4158 4159 if (unlikely(!folio_test_uptodate(folio))) { 4160 ret = VM_FAULT_SIGBUS; 4161 goto out_nomap; 4162 } 4163 4164 /* 4165 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4166 * must never point at an anonymous page in the swapcache that is 4167 * PG_anon_exclusive. Sanity check that this holds and especially, that 4168 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4169 * check after taking the PT lock and making sure that nobody 4170 * concurrently faulted in this page and set PG_anon_exclusive. 4171 */ 4172 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4173 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4174 4175 /* 4176 * Check under PT lock (to protect against concurrent fork() sharing 4177 * the swap entry concurrently) for certainly exclusive pages. 4178 */ 4179 if (!folio_test_ksm(folio)) { 4180 exclusive = pte_swp_exclusive(vmf->orig_pte); 4181 if (folio != swapcache) { 4182 /* 4183 * We have a fresh page that is not exposed to the 4184 * swapcache -> certainly exclusive. 4185 */ 4186 exclusive = true; 4187 } else if (exclusive && folio_test_writeback(folio) && 4188 data_race(si->flags & SWP_STABLE_WRITES)) { 4189 /* 4190 * This is tricky: not all swap backends support 4191 * concurrent page modifications while under writeback. 4192 * 4193 * So if we stumble over such a page in the swapcache 4194 * we must not set the page exclusive, otherwise we can 4195 * map it writable without further checks and modify it 4196 * while still under writeback. 4197 * 4198 * For these problematic swap backends, simply drop the 4199 * exclusive marker: this is perfectly fine as we start 4200 * writeback only if we fully unmapped the page and 4201 * there are no unexpected references on the page after 4202 * unmapping succeeded. After fully unmapped, no 4203 * further GUP references (FOLL_GET and FOLL_PIN) can 4204 * appear, so dropping the exclusive marker and mapping 4205 * it only R/O is fine. 4206 */ 4207 exclusive = false; 4208 } 4209 } 4210 4211 /* 4212 * Some architectures may have to restore extra metadata to the page 4213 * when reading from swap. This metadata may be indexed by swap entry 4214 * so this must be called before swap_free(). 4215 */ 4216 arch_swap_restore(folio_swap(entry, folio), folio); 4217 4218 /* 4219 * Remove the swap entry and conditionally try to free up the swapcache. 4220 * We're already holding a reference on the page but haven't mapped it 4221 * yet. 4222 */ 4223 swap_free(entry); 4224 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4225 folio_free_swap(folio); 4226 4227 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4228 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 4229 pte = mk_pte(page, vma->vm_page_prot); 4230 4231 /* 4232 * Same logic as in do_wp_page(); however, optimize for pages that are 4233 * certainly not shared either because we just allocated them without 4234 * exposing them to the swapcache or because the swap entry indicates 4235 * exclusivity. 4236 */ 4237 if (!folio_test_ksm(folio) && 4238 (exclusive || folio_ref_count(folio) == 1)) { 4239 if (vmf->flags & FAULT_FLAG_WRITE) { 4240 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 4241 vmf->flags &= ~FAULT_FLAG_WRITE; 4242 } 4243 rmap_flags |= RMAP_EXCLUSIVE; 4244 } 4245 flush_icache_page(vma, page); 4246 if (pte_swp_soft_dirty(vmf->orig_pte)) 4247 pte = pte_mksoft_dirty(pte); 4248 if (pte_swp_uffd_wp(vmf->orig_pte)) 4249 pte = pte_mkuffd_wp(pte); 4250 vmf->orig_pte = pte; 4251 4252 /* ksm created a completely new copy */ 4253 if (unlikely(folio != swapcache && swapcache)) { 4254 folio_add_new_anon_rmap(folio, vma, vmf->address); 4255 folio_add_lru_vma(folio, vma); 4256 } else { 4257 folio_add_anon_rmap_pte(folio, page, vma, vmf->address, 4258 rmap_flags); 4259 } 4260 4261 VM_BUG_ON(!folio_test_anon(folio) || 4262 (pte_write(pte) && !PageAnonExclusive(page))); 4263 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4264 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 4265 4266 folio_unlock(folio); 4267 if (folio != swapcache && swapcache) { 4268 /* 4269 * Hold the lock to avoid the swap entry to be reused 4270 * until we take the PT lock for the pte_same() check 4271 * (to avoid false positives from pte_same). For 4272 * further safety release the lock after the swap_free 4273 * so that the swap count won't change under a 4274 * parallel locked swapcache. 4275 */ 4276 folio_unlock(swapcache); 4277 folio_put(swapcache); 4278 } 4279 4280 if (vmf->flags & FAULT_FLAG_WRITE) { 4281 ret |= do_wp_page(vmf); 4282 if (ret & VM_FAULT_ERROR) 4283 ret &= VM_FAULT_ERROR; 4284 goto out; 4285 } 4286 4287 /* No need to invalidate - it was non-present before */ 4288 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4289 unlock: 4290 if (vmf->pte) 4291 pte_unmap_unlock(vmf->pte, vmf->ptl); 4292 out: 4293 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4294 if (need_clear_cache) 4295 swapcache_clear(si, entry); 4296 if (si) 4297 put_swap_device(si); 4298 return ret; 4299 out_nomap: 4300 if (vmf->pte) 4301 pte_unmap_unlock(vmf->pte, vmf->ptl); 4302 out_page: 4303 folio_unlock(folio); 4304 out_release: 4305 folio_put(folio); 4306 if (folio != swapcache && swapcache) { 4307 folio_unlock(swapcache); 4308 folio_put(swapcache); 4309 } 4310 if (need_clear_cache) 4311 swapcache_clear(si, entry); 4312 if (si) 4313 put_swap_device(si); 4314 return ret; 4315 } 4316 4317 static bool pte_range_none(pte_t *pte, int nr_pages) 4318 { 4319 int i; 4320 4321 for (i = 0; i < nr_pages; i++) { 4322 if (!pte_none(ptep_get_lockless(pte + i))) 4323 return false; 4324 } 4325 4326 return true; 4327 } 4328 4329 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4330 { 4331 struct vm_area_struct *vma = vmf->vma; 4332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4333 unsigned long orders; 4334 struct folio *folio; 4335 unsigned long addr; 4336 pte_t *pte; 4337 gfp_t gfp; 4338 int order; 4339 4340 /* 4341 * If uffd is active for the vma we need per-page fault fidelity to 4342 * maintain the uffd semantics. 4343 */ 4344 if (unlikely(userfaultfd_armed(vma))) 4345 goto fallback; 4346 4347 /* 4348 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4349 * for this vma. Then filter out the orders that can't be allocated over 4350 * the faulting address and still be fully contained in the vma. 4351 */ 4352 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4353 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4354 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4355 4356 if (!orders) 4357 goto fallback; 4358 4359 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4360 if (!pte) 4361 return ERR_PTR(-EAGAIN); 4362 4363 /* 4364 * Find the highest order where the aligned range is completely 4365 * pte_none(). Note that all remaining orders will be completely 4366 * pte_none(). 4367 */ 4368 order = highest_order(orders); 4369 while (orders) { 4370 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4371 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4372 break; 4373 order = next_order(&orders, order); 4374 } 4375 4376 pte_unmap(pte); 4377 4378 if (!orders) 4379 goto fallback; 4380 4381 /* Try allocating the highest of the remaining orders. */ 4382 gfp = vma_thp_gfp_mask(vma); 4383 while (orders) { 4384 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4385 folio = vma_alloc_folio(gfp, order, vma, addr, true); 4386 if (folio) { 4387 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4388 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 4389 folio_put(folio); 4390 goto next; 4391 } 4392 folio_throttle_swaprate(folio, gfp); 4393 clear_huge_page(&folio->page, vmf->address, 1 << order); 4394 return folio; 4395 } 4396 next: 4397 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 4398 order = next_order(&orders, order); 4399 } 4400 4401 fallback: 4402 #endif 4403 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4404 } 4405 4406 /* 4407 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4408 * but allow concurrent faults), and pte mapped but not yet locked. 4409 * We return with mmap_lock still held, but pte unmapped and unlocked. 4410 */ 4411 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4412 { 4413 struct vm_area_struct *vma = vmf->vma; 4414 unsigned long addr = vmf->address; 4415 struct folio *folio; 4416 vm_fault_t ret = 0; 4417 int nr_pages = 1; 4418 pte_t entry; 4419 int i; 4420 4421 /* File mapping without ->vm_ops ? */ 4422 if (vma->vm_flags & VM_SHARED) 4423 return VM_FAULT_SIGBUS; 4424 4425 /* 4426 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4427 * be distinguished from a transient failure of pte_offset_map(). 4428 */ 4429 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4430 return VM_FAULT_OOM; 4431 4432 /* Use the zero-page for reads */ 4433 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4434 !mm_forbids_zeropage(vma->vm_mm)) { 4435 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4436 vma->vm_page_prot)); 4437 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4438 vmf->address, &vmf->ptl); 4439 if (!vmf->pte) 4440 goto unlock; 4441 if (vmf_pte_changed(vmf)) { 4442 update_mmu_tlb(vma, vmf->address, vmf->pte); 4443 goto unlock; 4444 } 4445 ret = check_stable_address_space(vma->vm_mm); 4446 if (ret) 4447 goto unlock; 4448 /* Deliver the page fault to userland, check inside PT lock */ 4449 if (userfaultfd_missing(vma)) { 4450 pte_unmap_unlock(vmf->pte, vmf->ptl); 4451 return handle_userfault(vmf, VM_UFFD_MISSING); 4452 } 4453 goto setpte; 4454 } 4455 4456 /* Allocate our own private page. */ 4457 ret = vmf_anon_prepare(vmf); 4458 if (ret) 4459 return ret; 4460 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 4461 folio = alloc_anon_folio(vmf); 4462 if (IS_ERR(folio)) 4463 return 0; 4464 if (!folio) 4465 goto oom; 4466 4467 nr_pages = folio_nr_pages(folio); 4468 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4469 4470 /* 4471 * The memory barrier inside __folio_mark_uptodate makes sure that 4472 * preceding stores to the page contents become visible before 4473 * the set_pte_at() write. 4474 */ 4475 __folio_mark_uptodate(folio); 4476 4477 entry = mk_pte(&folio->page, vma->vm_page_prot); 4478 entry = pte_sw_mkyoung(entry); 4479 if (vma->vm_flags & VM_WRITE) 4480 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4481 4482 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 4483 if (!vmf->pte) 4484 goto release; 4485 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 4486 update_mmu_tlb(vma, addr, vmf->pte); 4487 goto release; 4488 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 4489 for (i = 0; i < nr_pages; i++) 4490 update_mmu_tlb(vma, addr + PAGE_SIZE * i, vmf->pte + i); 4491 goto release; 4492 } 4493 4494 ret = check_stable_address_space(vma->vm_mm); 4495 if (ret) 4496 goto release; 4497 4498 /* Deliver the page fault to userland, check inside PT lock */ 4499 if (userfaultfd_missing(vma)) { 4500 pte_unmap_unlock(vmf->pte, vmf->ptl); 4501 folio_put(folio); 4502 return handle_userfault(vmf, VM_UFFD_MISSING); 4503 } 4504 4505 folio_ref_add(folio, nr_pages - 1); 4506 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4507 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4508 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 4509 #endif 4510 folio_add_new_anon_rmap(folio, vma, addr); 4511 folio_add_lru_vma(folio, vma); 4512 setpte: 4513 if (vmf_orig_pte_uffd_wp(vmf)) 4514 entry = pte_mkuffd_wp(entry); 4515 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 4516 4517 /* No need to invalidate - it was non-present before */ 4518 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 4519 unlock: 4520 if (vmf->pte) 4521 pte_unmap_unlock(vmf->pte, vmf->ptl); 4522 return ret; 4523 release: 4524 folio_put(folio); 4525 goto unlock; 4526 oom: 4527 return VM_FAULT_OOM; 4528 } 4529 4530 /* 4531 * The mmap_lock must have been held on entry, and may have been 4532 * released depending on flags and vma->vm_ops->fault() return value. 4533 * See filemap_fault() and __lock_page_retry(). 4534 */ 4535 static vm_fault_t __do_fault(struct vm_fault *vmf) 4536 { 4537 struct vm_area_struct *vma = vmf->vma; 4538 struct folio *folio; 4539 vm_fault_t ret; 4540 4541 /* 4542 * Preallocate pte before we take page_lock because this might lead to 4543 * deadlocks for memcg reclaim which waits for pages under writeback: 4544 * lock_page(A) 4545 * SetPageWriteback(A) 4546 * unlock_page(A) 4547 * lock_page(B) 4548 * lock_page(B) 4549 * pte_alloc_one 4550 * shrink_page_list 4551 * wait_on_page_writeback(A) 4552 * SetPageWriteback(B) 4553 * unlock_page(B) 4554 * # flush A, B to clear the writeback 4555 */ 4556 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4557 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4558 if (!vmf->prealloc_pte) 4559 return VM_FAULT_OOM; 4560 } 4561 4562 ret = vma->vm_ops->fault(vmf); 4563 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4564 VM_FAULT_DONE_COW))) 4565 return ret; 4566 4567 folio = page_folio(vmf->page); 4568 if (unlikely(PageHWPoison(vmf->page))) { 4569 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4570 if (ret & VM_FAULT_LOCKED) { 4571 if (page_mapped(vmf->page)) 4572 unmap_mapping_folio(folio); 4573 /* Retry if a clean folio was removed from the cache. */ 4574 if (mapping_evict_folio(folio->mapping, folio)) 4575 poisonret = VM_FAULT_NOPAGE; 4576 folio_unlock(folio); 4577 } 4578 folio_put(folio); 4579 vmf->page = NULL; 4580 return poisonret; 4581 } 4582 4583 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4584 folio_lock(folio); 4585 else 4586 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 4587 4588 return ret; 4589 } 4590 4591 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4592 static void deposit_prealloc_pte(struct vm_fault *vmf) 4593 { 4594 struct vm_area_struct *vma = vmf->vma; 4595 4596 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4597 /* 4598 * We are going to consume the prealloc table, 4599 * count that as nr_ptes. 4600 */ 4601 mm_inc_nr_ptes(vma->vm_mm); 4602 vmf->prealloc_pte = NULL; 4603 } 4604 4605 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4606 { 4607 struct folio *folio = page_folio(page); 4608 struct vm_area_struct *vma = vmf->vma; 4609 bool write = vmf->flags & FAULT_FLAG_WRITE; 4610 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4611 pmd_t entry; 4612 vm_fault_t ret = VM_FAULT_FALLBACK; 4613 4614 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 4615 return ret; 4616 4617 if (page != &folio->page || folio_order(folio) != HPAGE_PMD_ORDER) 4618 return ret; 4619 4620 /* 4621 * Just backoff if any subpage of a THP is corrupted otherwise 4622 * the corrupted page may mapped by PMD silently to escape the 4623 * check. This kind of THP just can be PTE mapped. Access to 4624 * the corrupted subpage should trigger SIGBUS as expected. 4625 */ 4626 if (unlikely(folio_test_has_hwpoisoned(folio))) 4627 return ret; 4628 4629 /* 4630 * Archs like ppc64 need additional space to store information 4631 * related to pte entry. Use the preallocated table for that. 4632 */ 4633 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4634 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4635 if (!vmf->prealloc_pte) 4636 return VM_FAULT_OOM; 4637 } 4638 4639 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4640 if (unlikely(!pmd_none(*vmf->pmd))) 4641 goto out; 4642 4643 flush_icache_pages(vma, page, HPAGE_PMD_NR); 4644 4645 entry = mk_huge_pmd(page, vma->vm_page_prot); 4646 if (write) 4647 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4648 4649 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 4650 folio_add_file_rmap_pmd(folio, page, vma); 4651 4652 /* 4653 * deposit and withdraw with pmd lock held 4654 */ 4655 if (arch_needs_pgtable_deposit()) 4656 deposit_prealloc_pte(vmf); 4657 4658 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4659 4660 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4661 4662 /* fault is handled */ 4663 ret = 0; 4664 count_vm_event(THP_FILE_MAPPED); 4665 out: 4666 spin_unlock(vmf->ptl); 4667 return ret; 4668 } 4669 #else 4670 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4671 { 4672 return VM_FAULT_FALLBACK; 4673 } 4674 #endif 4675 4676 /** 4677 * set_pte_range - Set a range of PTEs to point to pages in a folio. 4678 * @vmf: Fault decription. 4679 * @folio: The folio that contains @page. 4680 * @page: The first page to create a PTE for. 4681 * @nr: The number of PTEs to create. 4682 * @addr: The first address to create a PTE for. 4683 */ 4684 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 4685 struct page *page, unsigned int nr, unsigned long addr) 4686 { 4687 struct vm_area_struct *vma = vmf->vma; 4688 bool write = vmf->flags & FAULT_FLAG_WRITE; 4689 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE); 4690 pte_t entry; 4691 4692 flush_icache_pages(vma, page, nr); 4693 entry = mk_pte(page, vma->vm_page_prot); 4694 4695 if (prefault && arch_wants_old_prefaulted_pte()) 4696 entry = pte_mkold(entry); 4697 else 4698 entry = pte_sw_mkyoung(entry); 4699 4700 if (write) 4701 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4702 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 4703 entry = pte_mkuffd_wp(entry); 4704 /* copy-on-write page */ 4705 if (write && !(vma->vm_flags & VM_SHARED)) { 4706 VM_BUG_ON_FOLIO(nr != 1, folio); 4707 folio_add_new_anon_rmap(folio, vma, addr); 4708 folio_add_lru_vma(folio, vma); 4709 } else { 4710 folio_add_file_rmap_ptes(folio, page, nr, vma); 4711 } 4712 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 4713 4714 /* no need to invalidate: a not-present page won't be cached */ 4715 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 4716 } 4717 4718 static bool vmf_pte_changed(struct vm_fault *vmf) 4719 { 4720 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4721 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4722 4723 return !pte_none(ptep_get(vmf->pte)); 4724 } 4725 4726 /** 4727 * finish_fault - finish page fault once we have prepared the page to fault 4728 * 4729 * @vmf: structure describing the fault 4730 * 4731 * This function handles all that is needed to finish a page fault once the 4732 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4733 * given page, adds reverse page mapping, handles memcg charges and LRU 4734 * addition. 4735 * 4736 * The function expects the page to be locked and on success it consumes a 4737 * reference of a page being mapped (for the PTE which maps it). 4738 * 4739 * Return: %0 on success, %VM_FAULT_ code in case of error. 4740 */ 4741 vm_fault_t finish_fault(struct vm_fault *vmf) 4742 { 4743 struct vm_area_struct *vma = vmf->vma; 4744 struct page *page; 4745 vm_fault_t ret; 4746 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 4747 !(vma->vm_flags & VM_SHARED); 4748 4749 /* Did we COW the page? */ 4750 if (is_cow) 4751 page = vmf->cow_page; 4752 else 4753 page = vmf->page; 4754 4755 /* 4756 * check even for read faults because we might have lost our CoWed 4757 * page 4758 */ 4759 if (!(vma->vm_flags & VM_SHARED)) { 4760 ret = check_stable_address_space(vma->vm_mm); 4761 if (ret) 4762 return ret; 4763 } 4764 4765 if (pmd_none(*vmf->pmd)) { 4766 if (PageTransCompound(page)) { 4767 ret = do_set_pmd(vmf, page); 4768 if (ret != VM_FAULT_FALLBACK) 4769 return ret; 4770 } 4771 4772 if (vmf->prealloc_pte) 4773 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4774 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4775 return VM_FAULT_OOM; 4776 } 4777 4778 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4779 vmf->address, &vmf->ptl); 4780 if (!vmf->pte) 4781 return VM_FAULT_NOPAGE; 4782 4783 /* Re-check under ptl */ 4784 if (likely(!vmf_pte_changed(vmf))) { 4785 struct folio *folio = page_folio(page); 4786 int type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 4787 4788 set_pte_range(vmf, folio, page, 1, vmf->address); 4789 add_mm_counter(vma->vm_mm, type, 1); 4790 ret = 0; 4791 } else { 4792 update_mmu_tlb(vma, vmf->address, vmf->pte); 4793 ret = VM_FAULT_NOPAGE; 4794 } 4795 4796 pte_unmap_unlock(vmf->pte, vmf->ptl); 4797 return ret; 4798 } 4799 4800 static unsigned long fault_around_pages __read_mostly = 4801 65536 >> PAGE_SHIFT; 4802 4803 #ifdef CONFIG_DEBUG_FS 4804 static int fault_around_bytes_get(void *data, u64 *val) 4805 { 4806 *val = fault_around_pages << PAGE_SHIFT; 4807 return 0; 4808 } 4809 4810 /* 4811 * fault_around_bytes must be rounded down to the nearest page order as it's 4812 * what do_fault_around() expects to see. 4813 */ 4814 static int fault_around_bytes_set(void *data, u64 val) 4815 { 4816 if (val / PAGE_SIZE > PTRS_PER_PTE) 4817 return -EINVAL; 4818 4819 /* 4820 * The minimum value is 1 page, however this results in no fault-around 4821 * at all. See should_fault_around(). 4822 */ 4823 val = max(val, PAGE_SIZE); 4824 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 4825 4826 return 0; 4827 } 4828 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4829 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4830 4831 static int __init fault_around_debugfs(void) 4832 { 4833 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4834 &fault_around_bytes_fops); 4835 return 0; 4836 } 4837 late_initcall(fault_around_debugfs); 4838 #endif 4839 4840 /* 4841 * do_fault_around() tries to map few pages around the fault address. The hope 4842 * is that the pages will be needed soon and this will lower the number of 4843 * faults to handle. 4844 * 4845 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4846 * not ready to be mapped: not up-to-date, locked, etc. 4847 * 4848 * This function doesn't cross VMA or page table boundaries, in order to call 4849 * map_pages() and acquire a PTE lock only once. 4850 * 4851 * fault_around_pages defines how many pages we'll try to map. 4852 * do_fault_around() expects it to be set to a power of two less than or equal 4853 * to PTRS_PER_PTE. 4854 * 4855 * The virtual address of the area that we map is naturally aligned to 4856 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4857 * (and therefore to page order). This way it's easier to guarantee 4858 * that we don't cross page table boundaries. 4859 */ 4860 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4861 { 4862 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4863 pgoff_t pte_off = pte_index(vmf->address); 4864 /* The page offset of vmf->address within the VMA. */ 4865 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4866 pgoff_t from_pte, to_pte; 4867 vm_fault_t ret; 4868 4869 /* The PTE offset of the start address, clamped to the VMA. */ 4870 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4871 pte_off - min(pte_off, vma_off)); 4872 4873 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4874 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4875 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4876 4877 if (pmd_none(*vmf->pmd)) { 4878 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4879 if (!vmf->prealloc_pte) 4880 return VM_FAULT_OOM; 4881 } 4882 4883 rcu_read_lock(); 4884 ret = vmf->vma->vm_ops->map_pages(vmf, 4885 vmf->pgoff + from_pte - pte_off, 4886 vmf->pgoff + to_pte - pte_off); 4887 rcu_read_unlock(); 4888 4889 return ret; 4890 } 4891 4892 /* Return true if we should do read fault-around, false otherwise */ 4893 static inline bool should_fault_around(struct vm_fault *vmf) 4894 { 4895 /* No ->map_pages? No way to fault around... */ 4896 if (!vmf->vma->vm_ops->map_pages) 4897 return false; 4898 4899 if (uffd_disable_fault_around(vmf->vma)) 4900 return false; 4901 4902 /* A single page implies no faulting 'around' at all. */ 4903 return fault_around_pages > 1; 4904 } 4905 4906 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4907 { 4908 vm_fault_t ret = 0; 4909 struct folio *folio; 4910 4911 /* 4912 * Let's call ->map_pages() first and use ->fault() as fallback 4913 * if page by the offset is not ready to be mapped (cold cache or 4914 * something). 4915 */ 4916 if (should_fault_around(vmf)) { 4917 ret = do_fault_around(vmf); 4918 if (ret) 4919 return ret; 4920 } 4921 4922 ret = vmf_can_call_fault(vmf); 4923 if (ret) 4924 return ret; 4925 4926 ret = __do_fault(vmf); 4927 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4928 return ret; 4929 4930 ret |= finish_fault(vmf); 4931 folio = page_folio(vmf->page); 4932 folio_unlock(folio); 4933 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4934 folio_put(folio); 4935 return ret; 4936 } 4937 4938 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4939 { 4940 struct vm_area_struct *vma = vmf->vma; 4941 struct folio *folio; 4942 vm_fault_t ret; 4943 4944 ret = vmf_can_call_fault(vmf); 4945 if (!ret) 4946 ret = vmf_anon_prepare(vmf); 4947 if (ret) 4948 return ret; 4949 4950 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 4951 if (!folio) 4952 return VM_FAULT_OOM; 4953 4954 vmf->cow_page = &folio->page; 4955 4956 ret = __do_fault(vmf); 4957 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4958 goto uncharge_out; 4959 if (ret & VM_FAULT_DONE_COW) 4960 return ret; 4961 4962 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4963 __folio_mark_uptodate(folio); 4964 4965 ret |= finish_fault(vmf); 4966 unlock_page(vmf->page); 4967 put_page(vmf->page); 4968 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4969 goto uncharge_out; 4970 return ret; 4971 uncharge_out: 4972 folio_put(folio); 4973 return ret; 4974 } 4975 4976 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4977 { 4978 struct vm_area_struct *vma = vmf->vma; 4979 vm_fault_t ret, tmp; 4980 struct folio *folio; 4981 4982 ret = vmf_can_call_fault(vmf); 4983 if (ret) 4984 return ret; 4985 4986 ret = __do_fault(vmf); 4987 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4988 return ret; 4989 4990 folio = page_folio(vmf->page); 4991 4992 /* 4993 * Check if the backing address space wants to know that the page is 4994 * about to become writable 4995 */ 4996 if (vma->vm_ops->page_mkwrite) { 4997 folio_unlock(folio); 4998 tmp = do_page_mkwrite(vmf, folio); 4999 if (unlikely(!tmp || 5000 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5001 folio_put(folio); 5002 return tmp; 5003 } 5004 } 5005 5006 ret |= finish_fault(vmf); 5007 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5008 VM_FAULT_RETRY))) { 5009 folio_unlock(folio); 5010 folio_put(folio); 5011 return ret; 5012 } 5013 5014 ret |= fault_dirty_shared_page(vmf); 5015 return ret; 5016 } 5017 5018 /* 5019 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5020 * but allow concurrent faults). 5021 * The mmap_lock may have been released depending on flags and our 5022 * return value. See filemap_fault() and __folio_lock_or_retry(). 5023 * If mmap_lock is released, vma may become invalid (for example 5024 * by other thread calling munmap()). 5025 */ 5026 static vm_fault_t do_fault(struct vm_fault *vmf) 5027 { 5028 struct vm_area_struct *vma = vmf->vma; 5029 struct mm_struct *vm_mm = vma->vm_mm; 5030 vm_fault_t ret; 5031 5032 /* 5033 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5034 */ 5035 if (!vma->vm_ops->fault) { 5036 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5037 vmf->address, &vmf->ptl); 5038 if (unlikely(!vmf->pte)) 5039 ret = VM_FAULT_SIGBUS; 5040 else { 5041 /* 5042 * Make sure this is not a temporary clearing of pte 5043 * by holding ptl and checking again. A R/M/W update 5044 * of pte involves: take ptl, clearing the pte so that 5045 * we don't have concurrent modification by hardware 5046 * followed by an update. 5047 */ 5048 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5049 ret = VM_FAULT_SIGBUS; 5050 else 5051 ret = VM_FAULT_NOPAGE; 5052 5053 pte_unmap_unlock(vmf->pte, vmf->ptl); 5054 } 5055 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5056 ret = do_read_fault(vmf); 5057 else if (!(vma->vm_flags & VM_SHARED)) 5058 ret = do_cow_fault(vmf); 5059 else 5060 ret = do_shared_fault(vmf); 5061 5062 /* preallocated pagetable is unused: free it */ 5063 if (vmf->prealloc_pte) { 5064 pte_free(vm_mm, vmf->prealloc_pte); 5065 vmf->prealloc_pte = NULL; 5066 } 5067 return ret; 5068 } 5069 5070 int numa_migrate_prep(struct folio *folio, struct vm_fault *vmf, 5071 unsigned long addr, int page_nid, int *flags) 5072 { 5073 struct vm_area_struct *vma = vmf->vma; 5074 5075 folio_get(folio); 5076 5077 /* Record the current PID acceesing VMA */ 5078 vma_set_access_pid_bit(vma); 5079 5080 count_vm_numa_event(NUMA_HINT_FAULTS); 5081 if (page_nid == numa_node_id()) { 5082 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5083 *flags |= TNF_FAULT_LOCAL; 5084 } 5085 5086 return mpol_misplaced(folio, vmf, addr); 5087 } 5088 5089 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5090 unsigned long fault_addr, pte_t *fault_pte, 5091 bool writable) 5092 { 5093 pte_t pte, old_pte; 5094 5095 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5096 pte = pte_modify(old_pte, vma->vm_page_prot); 5097 pte = pte_mkyoung(pte); 5098 if (writable) 5099 pte = pte_mkwrite(pte, vma); 5100 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5101 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5102 } 5103 5104 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5105 struct folio *folio, pte_t fault_pte, 5106 bool ignore_writable, bool pte_write_upgrade) 5107 { 5108 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5109 unsigned long start = max(vmf->address - nr * PAGE_SIZE, vma->vm_start); 5110 unsigned long end = min(vmf->address + (folio_nr_pages(folio) - nr) * PAGE_SIZE, vma->vm_end); 5111 pte_t *start_ptep = vmf->pte - (vmf->address - start) / PAGE_SIZE; 5112 unsigned long addr; 5113 5114 /* Restore all PTEs' mapping of the large folio */ 5115 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5116 pte_t ptent = ptep_get(start_ptep); 5117 bool writable = false; 5118 5119 if (!pte_present(ptent) || !pte_protnone(ptent)) 5120 continue; 5121 5122 if (pfn_folio(pte_pfn(ptent)) != folio) 5123 continue; 5124 5125 if (!ignore_writable) { 5126 ptent = pte_modify(ptent, vma->vm_page_prot); 5127 writable = pte_write(ptent); 5128 if (!writable && pte_write_upgrade && 5129 can_change_pte_writable(vma, addr, ptent)) 5130 writable = true; 5131 } 5132 5133 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5134 } 5135 } 5136 5137 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5138 { 5139 struct vm_area_struct *vma = vmf->vma; 5140 struct folio *folio = NULL; 5141 int nid = NUMA_NO_NODE; 5142 bool writable = false, ignore_writable = false; 5143 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5144 int last_cpupid; 5145 int target_nid; 5146 pte_t pte, old_pte; 5147 int flags = 0, nr_pages; 5148 5149 /* 5150 * The pte cannot be used safely until we verify, while holding the page 5151 * table lock, that its contents have not changed during fault handling. 5152 */ 5153 spin_lock(vmf->ptl); 5154 /* Read the live PTE from the page tables: */ 5155 old_pte = ptep_get(vmf->pte); 5156 5157 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5158 pte_unmap_unlock(vmf->pte, vmf->ptl); 5159 goto out; 5160 } 5161 5162 pte = pte_modify(old_pte, vma->vm_page_prot); 5163 5164 /* 5165 * Detect now whether the PTE could be writable; this information 5166 * is only valid while holding the PT lock. 5167 */ 5168 writable = pte_write(pte); 5169 if (!writable && pte_write_upgrade && 5170 can_change_pte_writable(vma, vmf->address, pte)) 5171 writable = true; 5172 5173 folio = vm_normal_folio(vma, vmf->address, pte); 5174 if (!folio || folio_is_zone_device(folio)) 5175 goto out_map; 5176 5177 /* 5178 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5179 * much anyway since they can be in shared cache state. This misses 5180 * the case where a mapping is writable but the process never writes 5181 * to it but pte_write gets cleared during protection updates and 5182 * pte_dirty has unpredictable behaviour between PTE scan updates, 5183 * background writeback, dirty balancing and application behaviour. 5184 */ 5185 if (!writable) 5186 flags |= TNF_NO_GROUP; 5187 5188 /* 5189 * Flag if the folio is shared between multiple address spaces. This 5190 * is later used when determining whether to group tasks together 5191 */ 5192 if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5193 flags |= TNF_SHARED; 5194 5195 nid = folio_nid(folio); 5196 nr_pages = folio_nr_pages(folio); 5197 /* 5198 * For memory tiering mode, cpupid of slow memory page is used 5199 * to record page access time. So use default value. 5200 */ 5201 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 5202 !node_is_toptier(nid)) 5203 last_cpupid = (-1 & LAST_CPUPID_MASK); 5204 else 5205 last_cpupid = folio_last_cpupid(folio); 5206 target_nid = numa_migrate_prep(folio, vmf, vmf->address, nid, &flags); 5207 if (target_nid == NUMA_NO_NODE) { 5208 folio_put(folio); 5209 goto out_map; 5210 } 5211 pte_unmap_unlock(vmf->pte, vmf->ptl); 5212 writable = false; 5213 ignore_writable = true; 5214 5215 /* Migrate to the requested node */ 5216 if (migrate_misplaced_folio(folio, vma, target_nid)) { 5217 nid = target_nid; 5218 flags |= TNF_MIGRATED; 5219 } else { 5220 flags |= TNF_MIGRATE_FAIL; 5221 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5222 vmf->address, &vmf->ptl); 5223 if (unlikely(!vmf->pte)) 5224 goto out; 5225 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5226 pte_unmap_unlock(vmf->pte, vmf->ptl); 5227 goto out; 5228 } 5229 goto out_map; 5230 } 5231 5232 out: 5233 if (nid != NUMA_NO_NODE) 5234 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5235 return 0; 5236 out_map: 5237 /* 5238 * Make it present again, depending on how arch implements 5239 * non-accessible ptes, some can allow access by kernel mode. 5240 */ 5241 if (folio && folio_test_large(folio)) 5242 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5243 pte_write_upgrade); 5244 else 5245 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5246 writable); 5247 pte_unmap_unlock(vmf->pte, vmf->ptl); 5248 goto out; 5249 } 5250 5251 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5252 { 5253 struct vm_area_struct *vma = vmf->vma; 5254 if (vma_is_anonymous(vma)) 5255 return do_huge_pmd_anonymous_page(vmf); 5256 if (vma->vm_ops->huge_fault) 5257 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5258 return VM_FAULT_FALLBACK; 5259 } 5260 5261 /* `inline' is required to avoid gcc 4.1.2 build error */ 5262 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5263 { 5264 struct vm_area_struct *vma = vmf->vma; 5265 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5266 vm_fault_t ret; 5267 5268 if (vma_is_anonymous(vma)) { 5269 if (likely(!unshare) && 5270 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5271 if (userfaultfd_wp_async(vmf->vma)) 5272 goto split; 5273 return handle_userfault(vmf, VM_UFFD_WP); 5274 } 5275 return do_huge_pmd_wp_page(vmf); 5276 } 5277 5278 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5279 if (vma->vm_ops->huge_fault) { 5280 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5281 if (!(ret & VM_FAULT_FALLBACK)) 5282 return ret; 5283 } 5284 } 5285 5286 split: 5287 /* COW or write-notify handled on pte level: split pmd. */ 5288 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5289 5290 return VM_FAULT_FALLBACK; 5291 } 5292 5293 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5294 { 5295 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5296 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5297 struct vm_area_struct *vma = vmf->vma; 5298 /* No support for anonymous transparent PUD pages yet */ 5299 if (vma_is_anonymous(vma)) 5300 return VM_FAULT_FALLBACK; 5301 if (vma->vm_ops->huge_fault) 5302 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5303 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5304 return VM_FAULT_FALLBACK; 5305 } 5306 5307 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5308 { 5309 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5310 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5311 struct vm_area_struct *vma = vmf->vma; 5312 vm_fault_t ret; 5313 5314 /* No support for anonymous transparent PUD pages yet */ 5315 if (vma_is_anonymous(vma)) 5316 goto split; 5317 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5318 if (vma->vm_ops->huge_fault) { 5319 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5320 if (!(ret & VM_FAULT_FALLBACK)) 5321 return ret; 5322 } 5323 } 5324 split: 5325 /* COW or write-notify not handled on PUD level: split pud.*/ 5326 __split_huge_pud(vma, vmf->pud, vmf->address); 5327 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5328 return VM_FAULT_FALLBACK; 5329 } 5330 5331 /* 5332 * These routines also need to handle stuff like marking pages dirty 5333 * and/or accessed for architectures that don't do it in hardware (most 5334 * RISC architectures). The early dirtying is also good on the i386. 5335 * 5336 * There is also a hook called "update_mmu_cache()" that architectures 5337 * with external mmu caches can use to update those (ie the Sparc or 5338 * PowerPC hashed page tables that act as extended TLBs). 5339 * 5340 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5341 * concurrent faults). 5342 * 5343 * The mmap_lock may have been released depending on flags and our return value. 5344 * See filemap_fault() and __folio_lock_or_retry(). 5345 */ 5346 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5347 { 5348 pte_t entry; 5349 5350 if (unlikely(pmd_none(*vmf->pmd))) { 5351 /* 5352 * Leave __pte_alloc() until later: because vm_ops->fault may 5353 * want to allocate huge page, and if we expose page table 5354 * for an instant, it will be difficult to retract from 5355 * concurrent faults and from rmap lookups. 5356 */ 5357 vmf->pte = NULL; 5358 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5359 } else { 5360 /* 5361 * A regular pmd is established and it can't morph into a huge 5362 * pmd by anon khugepaged, since that takes mmap_lock in write 5363 * mode; but shmem or file collapse to THP could still morph 5364 * it into a huge pmd: just retry later if so. 5365 */ 5366 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 5367 vmf->address, &vmf->ptl); 5368 if (unlikely(!vmf->pte)) 5369 return 0; 5370 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5371 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5372 5373 if (pte_none(vmf->orig_pte)) { 5374 pte_unmap(vmf->pte); 5375 vmf->pte = NULL; 5376 } 5377 } 5378 5379 if (!vmf->pte) 5380 return do_pte_missing(vmf); 5381 5382 if (!pte_present(vmf->orig_pte)) 5383 return do_swap_page(vmf); 5384 5385 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5386 return do_numa_page(vmf); 5387 5388 spin_lock(vmf->ptl); 5389 entry = vmf->orig_pte; 5390 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5391 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5392 goto unlock; 5393 } 5394 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5395 if (!pte_write(entry)) 5396 return do_wp_page(vmf); 5397 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5398 entry = pte_mkdirty(entry); 5399 } 5400 entry = pte_mkyoung(entry); 5401 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5402 vmf->flags & FAULT_FLAG_WRITE)) { 5403 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5404 vmf->pte, 1); 5405 } else { 5406 /* Skip spurious TLB flush for retried page fault */ 5407 if (vmf->flags & FAULT_FLAG_TRIED) 5408 goto unlock; 5409 /* 5410 * This is needed only for protection faults but the arch code 5411 * is not yet telling us if this is a protection fault or not. 5412 * This still avoids useless tlb flushes for .text page faults 5413 * with threads. 5414 */ 5415 if (vmf->flags & FAULT_FLAG_WRITE) 5416 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5417 vmf->pte); 5418 } 5419 unlock: 5420 pte_unmap_unlock(vmf->pte, vmf->ptl); 5421 return 0; 5422 } 5423 5424 /* 5425 * On entry, we hold either the VMA lock or the mmap_lock 5426 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5427 * the result, the mmap_lock is not held on exit. See filemap_fault() 5428 * and __folio_lock_or_retry(). 5429 */ 5430 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5431 unsigned long address, unsigned int flags) 5432 { 5433 struct vm_fault vmf = { 5434 .vma = vma, 5435 .address = address & PAGE_MASK, 5436 .real_address = address, 5437 .flags = flags, 5438 .pgoff = linear_page_index(vma, address), 5439 .gfp_mask = __get_fault_gfp_mask(vma), 5440 }; 5441 struct mm_struct *mm = vma->vm_mm; 5442 unsigned long vm_flags = vma->vm_flags; 5443 pgd_t *pgd; 5444 p4d_t *p4d; 5445 vm_fault_t ret; 5446 5447 pgd = pgd_offset(mm, address); 5448 p4d = p4d_alloc(mm, pgd, address); 5449 if (!p4d) 5450 return VM_FAULT_OOM; 5451 5452 vmf.pud = pud_alloc(mm, p4d, address); 5453 if (!vmf.pud) 5454 return VM_FAULT_OOM; 5455 retry_pud: 5456 if (pud_none(*vmf.pud) && 5457 thp_vma_allowable_order(vma, vm_flags, 5458 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 5459 ret = create_huge_pud(&vmf); 5460 if (!(ret & VM_FAULT_FALLBACK)) 5461 return ret; 5462 } else { 5463 pud_t orig_pud = *vmf.pud; 5464 5465 barrier(); 5466 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5467 5468 /* 5469 * TODO once we support anonymous PUDs: NUMA case and 5470 * FAULT_FLAG_UNSHARE handling. 5471 */ 5472 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5473 ret = wp_huge_pud(&vmf, orig_pud); 5474 if (!(ret & VM_FAULT_FALLBACK)) 5475 return ret; 5476 } else { 5477 huge_pud_set_accessed(&vmf, orig_pud); 5478 return 0; 5479 } 5480 } 5481 } 5482 5483 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5484 if (!vmf.pmd) 5485 return VM_FAULT_OOM; 5486 5487 /* Huge pud page fault raced with pmd_alloc? */ 5488 if (pud_trans_unstable(vmf.pud)) 5489 goto retry_pud; 5490 5491 if (pmd_none(*vmf.pmd) && 5492 thp_vma_allowable_order(vma, vm_flags, 5493 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 5494 ret = create_huge_pmd(&vmf); 5495 if (!(ret & VM_FAULT_FALLBACK)) 5496 return ret; 5497 } else { 5498 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5499 5500 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5501 VM_BUG_ON(thp_migration_supported() && 5502 !is_pmd_migration_entry(vmf.orig_pmd)); 5503 if (is_pmd_migration_entry(vmf.orig_pmd)) 5504 pmd_migration_entry_wait(mm, vmf.pmd); 5505 return 0; 5506 } 5507 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5508 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5509 return do_huge_pmd_numa_page(&vmf); 5510 5511 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5512 !pmd_write(vmf.orig_pmd)) { 5513 ret = wp_huge_pmd(&vmf); 5514 if (!(ret & VM_FAULT_FALLBACK)) 5515 return ret; 5516 } else { 5517 huge_pmd_set_accessed(&vmf); 5518 return 0; 5519 } 5520 } 5521 } 5522 5523 return handle_pte_fault(&vmf); 5524 } 5525 5526 /** 5527 * mm_account_fault - Do page fault accounting 5528 * @mm: mm from which memcg should be extracted. It can be NULL. 5529 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5530 * of perf event counters, but we'll still do the per-task accounting to 5531 * the task who triggered this page fault. 5532 * @address: the faulted address. 5533 * @flags: the fault flags. 5534 * @ret: the fault retcode. 5535 * 5536 * This will take care of most of the page fault accounting. Meanwhile, it 5537 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5538 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5539 * still be in per-arch page fault handlers at the entry of page fault. 5540 */ 5541 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5542 unsigned long address, unsigned int flags, 5543 vm_fault_t ret) 5544 { 5545 bool major; 5546 5547 /* Incomplete faults will be accounted upon completion. */ 5548 if (ret & VM_FAULT_RETRY) 5549 return; 5550 5551 /* 5552 * To preserve the behavior of older kernels, PGFAULT counters record 5553 * both successful and failed faults, as opposed to perf counters, 5554 * which ignore failed cases. 5555 */ 5556 count_vm_event(PGFAULT); 5557 count_memcg_event_mm(mm, PGFAULT); 5558 5559 /* 5560 * Do not account for unsuccessful faults (e.g. when the address wasn't 5561 * valid). That includes arch_vma_access_permitted() failing before 5562 * reaching here. So this is not a "this many hardware page faults" 5563 * counter. We should use the hw profiling for that. 5564 */ 5565 if (ret & VM_FAULT_ERROR) 5566 return; 5567 5568 /* 5569 * We define the fault as a major fault when the final successful fault 5570 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5571 * handle it immediately previously). 5572 */ 5573 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5574 5575 if (major) 5576 current->maj_flt++; 5577 else 5578 current->min_flt++; 5579 5580 /* 5581 * If the fault is done for GUP, regs will be NULL. We only do the 5582 * accounting for the per thread fault counters who triggered the 5583 * fault, and we skip the perf event updates. 5584 */ 5585 if (!regs) 5586 return; 5587 5588 if (major) 5589 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5590 else 5591 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5592 } 5593 5594 #ifdef CONFIG_LRU_GEN 5595 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5596 { 5597 /* the LRU algorithm only applies to accesses with recency */ 5598 current->in_lru_fault = vma_has_recency(vma); 5599 } 5600 5601 static void lru_gen_exit_fault(void) 5602 { 5603 current->in_lru_fault = false; 5604 } 5605 #else 5606 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5607 { 5608 } 5609 5610 static void lru_gen_exit_fault(void) 5611 { 5612 } 5613 #endif /* CONFIG_LRU_GEN */ 5614 5615 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5616 unsigned int *flags) 5617 { 5618 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5619 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5620 return VM_FAULT_SIGSEGV; 5621 /* 5622 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5623 * just treat it like an ordinary read-fault otherwise. 5624 */ 5625 if (!is_cow_mapping(vma->vm_flags)) 5626 *flags &= ~FAULT_FLAG_UNSHARE; 5627 } else if (*flags & FAULT_FLAG_WRITE) { 5628 /* Write faults on read-only mappings are impossible ... */ 5629 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5630 return VM_FAULT_SIGSEGV; 5631 /* ... and FOLL_FORCE only applies to COW mappings. */ 5632 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5633 !is_cow_mapping(vma->vm_flags))) 5634 return VM_FAULT_SIGSEGV; 5635 } 5636 #ifdef CONFIG_PER_VMA_LOCK 5637 /* 5638 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 5639 * the assumption that lock is dropped on VM_FAULT_RETRY. 5640 */ 5641 if (WARN_ON_ONCE((*flags & 5642 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 5643 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 5644 return VM_FAULT_SIGSEGV; 5645 #endif 5646 5647 return 0; 5648 } 5649 5650 /* 5651 * By the time we get here, we already hold the mm semaphore 5652 * 5653 * The mmap_lock may have been released depending on flags and our 5654 * return value. See filemap_fault() and __folio_lock_or_retry(). 5655 */ 5656 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5657 unsigned int flags, struct pt_regs *regs) 5658 { 5659 /* If the fault handler drops the mmap_lock, vma may be freed */ 5660 struct mm_struct *mm = vma->vm_mm; 5661 vm_fault_t ret; 5662 5663 __set_current_state(TASK_RUNNING); 5664 5665 ret = sanitize_fault_flags(vma, &flags); 5666 if (ret) 5667 goto out; 5668 5669 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5670 flags & FAULT_FLAG_INSTRUCTION, 5671 flags & FAULT_FLAG_REMOTE)) { 5672 ret = VM_FAULT_SIGSEGV; 5673 goto out; 5674 } 5675 5676 /* 5677 * Enable the memcg OOM handling for faults triggered in user 5678 * space. Kernel faults are handled more gracefully. 5679 */ 5680 if (flags & FAULT_FLAG_USER) 5681 mem_cgroup_enter_user_fault(); 5682 5683 lru_gen_enter_fault(vma); 5684 5685 if (unlikely(is_vm_hugetlb_page(vma))) 5686 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5687 else 5688 ret = __handle_mm_fault(vma, address, flags); 5689 5690 lru_gen_exit_fault(); 5691 5692 if (flags & FAULT_FLAG_USER) { 5693 mem_cgroup_exit_user_fault(); 5694 /* 5695 * The task may have entered a memcg OOM situation but 5696 * if the allocation error was handled gracefully (no 5697 * VM_FAULT_OOM), there is no need to kill anything. 5698 * Just clean up the OOM state peacefully. 5699 */ 5700 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5701 mem_cgroup_oom_synchronize(false); 5702 } 5703 out: 5704 mm_account_fault(mm, regs, address, flags, ret); 5705 5706 return ret; 5707 } 5708 EXPORT_SYMBOL_GPL(handle_mm_fault); 5709 5710 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 5711 #include <linux/extable.h> 5712 5713 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5714 { 5715 if (likely(mmap_read_trylock(mm))) 5716 return true; 5717 5718 if (regs && !user_mode(regs)) { 5719 unsigned long ip = exception_ip(regs); 5720 if (!search_exception_tables(ip)) 5721 return false; 5722 } 5723 5724 return !mmap_read_lock_killable(mm); 5725 } 5726 5727 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 5728 { 5729 /* 5730 * We don't have this operation yet. 5731 * 5732 * It should be easy enough to do: it's basically a 5733 * atomic_long_try_cmpxchg_acquire() 5734 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 5735 * it also needs the proper lockdep magic etc. 5736 */ 5737 return false; 5738 } 5739 5740 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5741 { 5742 mmap_read_unlock(mm); 5743 if (regs && !user_mode(regs)) { 5744 unsigned long ip = exception_ip(regs); 5745 if (!search_exception_tables(ip)) 5746 return false; 5747 } 5748 return !mmap_write_lock_killable(mm); 5749 } 5750 5751 /* 5752 * Helper for page fault handling. 5753 * 5754 * This is kind of equivalend to "mmap_read_lock()" followed 5755 * by "find_extend_vma()", except it's a lot more careful about 5756 * the locking (and will drop the lock on failure). 5757 * 5758 * For example, if we have a kernel bug that causes a page 5759 * fault, we don't want to just use mmap_read_lock() to get 5760 * the mm lock, because that would deadlock if the bug were 5761 * to happen while we're holding the mm lock for writing. 5762 * 5763 * So this checks the exception tables on kernel faults in 5764 * order to only do this all for instructions that are actually 5765 * expected to fault. 5766 * 5767 * We can also actually take the mm lock for writing if we 5768 * need to extend the vma, which helps the VM layer a lot. 5769 */ 5770 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 5771 unsigned long addr, struct pt_regs *regs) 5772 { 5773 struct vm_area_struct *vma; 5774 5775 if (!get_mmap_lock_carefully(mm, regs)) 5776 return NULL; 5777 5778 vma = find_vma(mm, addr); 5779 if (likely(vma && (vma->vm_start <= addr))) 5780 return vma; 5781 5782 /* 5783 * Well, dang. We might still be successful, but only 5784 * if we can extend a vma to do so. 5785 */ 5786 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 5787 mmap_read_unlock(mm); 5788 return NULL; 5789 } 5790 5791 /* 5792 * We can try to upgrade the mmap lock atomically, 5793 * in which case we can continue to use the vma 5794 * we already looked up. 5795 * 5796 * Otherwise we'll have to drop the mmap lock and 5797 * re-take it, and also look up the vma again, 5798 * re-checking it. 5799 */ 5800 if (!mmap_upgrade_trylock(mm)) { 5801 if (!upgrade_mmap_lock_carefully(mm, regs)) 5802 return NULL; 5803 5804 vma = find_vma(mm, addr); 5805 if (!vma) 5806 goto fail; 5807 if (vma->vm_start <= addr) 5808 goto success; 5809 if (!(vma->vm_flags & VM_GROWSDOWN)) 5810 goto fail; 5811 } 5812 5813 if (expand_stack_locked(vma, addr)) 5814 goto fail; 5815 5816 success: 5817 mmap_write_downgrade(mm); 5818 return vma; 5819 5820 fail: 5821 mmap_write_unlock(mm); 5822 return NULL; 5823 } 5824 #endif 5825 5826 #ifdef CONFIG_PER_VMA_LOCK 5827 /* 5828 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5829 * stable and not isolated. If the VMA is not found or is being modified the 5830 * function returns NULL. 5831 */ 5832 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5833 unsigned long address) 5834 { 5835 MA_STATE(mas, &mm->mm_mt, address, address); 5836 struct vm_area_struct *vma; 5837 5838 rcu_read_lock(); 5839 retry: 5840 vma = mas_walk(&mas); 5841 if (!vma) 5842 goto inval; 5843 5844 if (!vma_start_read(vma)) 5845 goto inval; 5846 5847 /* Check since vm_start/vm_end might change before we lock the VMA */ 5848 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 5849 goto inval_end_read; 5850 5851 /* Check if the VMA got isolated after we found it */ 5852 if (vma->detached) { 5853 vma_end_read(vma); 5854 count_vm_vma_lock_event(VMA_LOCK_MISS); 5855 /* The area was replaced with another one */ 5856 goto retry; 5857 } 5858 5859 rcu_read_unlock(); 5860 return vma; 5861 5862 inval_end_read: 5863 vma_end_read(vma); 5864 inval: 5865 rcu_read_unlock(); 5866 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5867 return NULL; 5868 } 5869 #endif /* CONFIG_PER_VMA_LOCK */ 5870 5871 #ifndef __PAGETABLE_P4D_FOLDED 5872 /* 5873 * Allocate p4d page table. 5874 * We've already handled the fast-path in-line. 5875 */ 5876 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5877 { 5878 p4d_t *new = p4d_alloc_one(mm, address); 5879 if (!new) 5880 return -ENOMEM; 5881 5882 spin_lock(&mm->page_table_lock); 5883 if (pgd_present(*pgd)) { /* Another has populated it */ 5884 p4d_free(mm, new); 5885 } else { 5886 smp_wmb(); /* See comment in pmd_install() */ 5887 pgd_populate(mm, pgd, new); 5888 } 5889 spin_unlock(&mm->page_table_lock); 5890 return 0; 5891 } 5892 #endif /* __PAGETABLE_P4D_FOLDED */ 5893 5894 #ifndef __PAGETABLE_PUD_FOLDED 5895 /* 5896 * Allocate page upper directory. 5897 * We've already handled the fast-path in-line. 5898 */ 5899 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5900 { 5901 pud_t *new = pud_alloc_one(mm, address); 5902 if (!new) 5903 return -ENOMEM; 5904 5905 spin_lock(&mm->page_table_lock); 5906 if (!p4d_present(*p4d)) { 5907 mm_inc_nr_puds(mm); 5908 smp_wmb(); /* See comment in pmd_install() */ 5909 p4d_populate(mm, p4d, new); 5910 } else /* Another has populated it */ 5911 pud_free(mm, new); 5912 spin_unlock(&mm->page_table_lock); 5913 return 0; 5914 } 5915 #endif /* __PAGETABLE_PUD_FOLDED */ 5916 5917 #ifndef __PAGETABLE_PMD_FOLDED 5918 /* 5919 * Allocate page middle directory. 5920 * We've already handled the fast-path in-line. 5921 */ 5922 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5923 { 5924 spinlock_t *ptl; 5925 pmd_t *new = pmd_alloc_one(mm, address); 5926 if (!new) 5927 return -ENOMEM; 5928 5929 ptl = pud_lock(mm, pud); 5930 if (!pud_present(*pud)) { 5931 mm_inc_nr_pmds(mm); 5932 smp_wmb(); /* See comment in pmd_install() */ 5933 pud_populate(mm, pud, new); 5934 } else { /* Another has populated it */ 5935 pmd_free(mm, new); 5936 } 5937 spin_unlock(ptl); 5938 return 0; 5939 } 5940 #endif /* __PAGETABLE_PMD_FOLDED */ 5941 5942 /** 5943 * follow_pte - look up PTE at a user virtual address 5944 * @vma: the memory mapping 5945 * @address: user virtual address 5946 * @ptepp: location to store found PTE 5947 * @ptlp: location to store the lock for the PTE 5948 * 5949 * On a successful return, the pointer to the PTE is stored in @ptepp; 5950 * the corresponding lock is taken and its location is stored in @ptlp. 5951 * 5952 * The contents of the PTE are only stable until @ptlp is released using 5953 * pte_unmap_unlock(). This function will fail if the PTE is non-present. 5954 * Present PTEs may include PTEs that map refcounted pages, such as 5955 * anonymous folios in COW mappings. 5956 * 5957 * Callers must be careful when relying on PTE content after 5958 * pte_unmap_unlock(). Especially if the PTE maps a refcounted page, 5959 * callers must protect against invalidation with MMU notifiers; otherwise 5960 * access to the PFN at a later point in time can trigger use-after-free. 5961 * 5962 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5963 * should be taken for read. 5964 * 5965 * This function must not be used to modify PTE content. 5966 * 5967 * Return: zero on success, -ve otherwise. 5968 */ 5969 int follow_pte(struct vm_area_struct *vma, unsigned long address, 5970 pte_t **ptepp, spinlock_t **ptlp) 5971 { 5972 struct mm_struct *mm = vma->vm_mm; 5973 pgd_t *pgd; 5974 p4d_t *p4d; 5975 pud_t *pud; 5976 pmd_t *pmd; 5977 pte_t *ptep; 5978 5979 mmap_assert_locked(mm); 5980 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 5981 goto out; 5982 5983 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5984 goto out; 5985 5986 pgd = pgd_offset(mm, address); 5987 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5988 goto out; 5989 5990 p4d = p4d_offset(pgd, address); 5991 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5992 goto out; 5993 5994 pud = pud_offset(p4d, address); 5995 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5996 goto out; 5997 5998 pmd = pmd_offset(pud, address); 5999 VM_BUG_ON(pmd_trans_huge(*pmd)); 6000 6001 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 6002 if (!ptep) 6003 goto out; 6004 if (!pte_present(ptep_get(ptep))) 6005 goto unlock; 6006 *ptepp = ptep; 6007 return 0; 6008 unlock: 6009 pte_unmap_unlock(ptep, *ptlp); 6010 out: 6011 return -EINVAL; 6012 } 6013 EXPORT_SYMBOL_GPL(follow_pte); 6014 6015 #ifdef CONFIG_HAVE_IOREMAP_PROT 6016 /** 6017 * generic_access_phys - generic implementation for iomem mmap access 6018 * @vma: the vma to access 6019 * @addr: userspace address, not relative offset within @vma 6020 * @buf: buffer to read/write 6021 * @len: length of transfer 6022 * @write: set to FOLL_WRITE when writing, otherwise reading 6023 * 6024 * This is a generic implementation for &vm_operations_struct.access for an 6025 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6026 * not page based. 6027 */ 6028 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6029 void *buf, int len, int write) 6030 { 6031 resource_size_t phys_addr; 6032 unsigned long prot = 0; 6033 void __iomem *maddr; 6034 pte_t *ptep, pte; 6035 spinlock_t *ptl; 6036 int offset = offset_in_page(addr); 6037 int ret = -EINVAL; 6038 6039 retry: 6040 if (follow_pte(vma, addr, &ptep, &ptl)) 6041 return -EINVAL; 6042 pte = ptep_get(ptep); 6043 pte_unmap_unlock(ptep, ptl); 6044 6045 prot = pgprot_val(pte_pgprot(pte)); 6046 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 6047 6048 if ((write & FOLL_WRITE) && !pte_write(pte)) 6049 return -EINVAL; 6050 6051 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6052 if (!maddr) 6053 return -ENOMEM; 6054 6055 if (follow_pte(vma, addr, &ptep, &ptl)) 6056 goto out_unmap; 6057 6058 if (!pte_same(pte, ptep_get(ptep))) { 6059 pte_unmap_unlock(ptep, ptl); 6060 iounmap(maddr); 6061 6062 goto retry; 6063 } 6064 6065 if (write) 6066 memcpy_toio(maddr + offset, buf, len); 6067 else 6068 memcpy_fromio(buf, maddr + offset, len); 6069 ret = len; 6070 pte_unmap_unlock(ptep, ptl); 6071 out_unmap: 6072 iounmap(maddr); 6073 6074 return ret; 6075 } 6076 EXPORT_SYMBOL_GPL(generic_access_phys); 6077 #endif 6078 6079 /* 6080 * Access another process' address space as given in mm. 6081 */ 6082 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6083 void *buf, int len, unsigned int gup_flags) 6084 { 6085 void *old_buf = buf; 6086 int write = gup_flags & FOLL_WRITE; 6087 6088 if (mmap_read_lock_killable(mm)) 6089 return 0; 6090 6091 /* Untag the address before looking up the VMA */ 6092 addr = untagged_addr_remote(mm, addr); 6093 6094 /* Avoid triggering the temporary warning in __get_user_pages */ 6095 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6096 return 0; 6097 6098 /* ignore errors, just check how much was successfully transferred */ 6099 while (len) { 6100 int bytes, offset; 6101 void *maddr; 6102 struct vm_area_struct *vma = NULL; 6103 struct page *page = get_user_page_vma_remote(mm, addr, 6104 gup_flags, &vma); 6105 6106 if (IS_ERR(page)) { 6107 /* We might need to expand the stack to access it */ 6108 vma = vma_lookup(mm, addr); 6109 if (!vma) { 6110 vma = expand_stack(mm, addr); 6111 6112 /* mmap_lock was dropped on failure */ 6113 if (!vma) 6114 return buf - old_buf; 6115 6116 /* Try again if stack expansion worked */ 6117 continue; 6118 } 6119 6120 /* 6121 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6122 * we can access using slightly different code. 6123 */ 6124 bytes = 0; 6125 #ifdef CONFIG_HAVE_IOREMAP_PROT 6126 if (vma->vm_ops && vma->vm_ops->access) 6127 bytes = vma->vm_ops->access(vma, addr, buf, 6128 len, write); 6129 #endif 6130 if (bytes <= 0) 6131 break; 6132 } else { 6133 bytes = len; 6134 offset = addr & (PAGE_SIZE-1); 6135 if (bytes > PAGE_SIZE-offset) 6136 bytes = PAGE_SIZE-offset; 6137 6138 maddr = kmap_local_page(page); 6139 if (write) { 6140 copy_to_user_page(vma, page, addr, 6141 maddr + offset, buf, bytes); 6142 set_page_dirty_lock(page); 6143 } else { 6144 copy_from_user_page(vma, page, addr, 6145 buf, maddr + offset, bytes); 6146 } 6147 unmap_and_put_page(page, maddr); 6148 } 6149 len -= bytes; 6150 buf += bytes; 6151 addr += bytes; 6152 } 6153 mmap_read_unlock(mm); 6154 6155 return buf - old_buf; 6156 } 6157 6158 /** 6159 * access_remote_vm - access another process' address space 6160 * @mm: the mm_struct of the target address space 6161 * @addr: start address to access 6162 * @buf: source or destination buffer 6163 * @len: number of bytes to transfer 6164 * @gup_flags: flags modifying lookup behaviour 6165 * 6166 * The caller must hold a reference on @mm. 6167 * 6168 * Return: number of bytes copied from source to destination. 6169 */ 6170 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6171 void *buf, int len, unsigned int gup_flags) 6172 { 6173 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6174 } 6175 6176 /* 6177 * Access another process' address space. 6178 * Source/target buffer must be kernel space, 6179 * Do not walk the page table directly, use get_user_pages 6180 */ 6181 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6182 void *buf, int len, unsigned int gup_flags) 6183 { 6184 struct mm_struct *mm; 6185 int ret; 6186 6187 mm = get_task_mm(tsk); 6188 if (!mm) 6189 return 0; 6190 6191 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6192 6193 mmput(mm); 6194 6195 return ret; 6196 } 6197 EXPORT_SYMBOL_GPL(access_process_vm); 6198 6199 /* 6200 * Print the name of a VMA. 6201 */ 6202 void print_vma_addr(char *prefix, unsigned long ip) 6203 { 6204 struct mm_struct *mm = current->mm; 6205 struct vm_area_struct *vma; 6206 6207 /* 6208 * we might be running from an atomic context so we cannot sleep 6209 */ 6210 if (!mmap_read_trylock(mm)) 6211 return; 6212 6213 vma = vma_lookup(mm, ip); 6214 if (vma && vma->vm_file) { 6215 struct file *f = vma->vm_file; 6216 ip -= vma->vm_start; 6217 ip += vma->vm_pgoff << PAGE_SHIFT; 6218 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 6219 vma->vm_start, 6220 vma->vm_end - vma->vm_start); 6221 } 6222 mmap_read_unlock(mm); 6223 } 6224 6225 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6226 void __might_fault(const char *file, int line) 6227 { 6228 if (pagefault_disabled()) 6229 return; 6230 __might_sleep(file, line); 6231 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6232 if (current->mm) 6233 might_lock_read(¤t->mm->mmap_lock); 6234 #endif 6235 } 6236 EXPORT_SYMBOL(__might_fault); 6237 #endif 6238 6239 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6240 /* 6241 * Process all subpages of the specified huge page with the specified 6242 * operation. The target subpage will be processed last to keep its 6243 * cache lines hot. 6244 */ 6245 static inline int process_huge_page( 6246 unsigned long addr_hint, unsigned int pages_per_huge_page, 6247 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6248 void *arg) 6249 { 6250 int i, n, base, l, ret; 6251 unsigned long addr = addr_hint & 6252 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6253 6254 /* Process target subpage last to keep its cache lines hot */ 6255 might_sleep(); 6256 n = (addr_hint - addr) / PAGE_SIZE; 6257 if (2 * n <= pages_per_huge_page) { 6258 /* If target subpage in first half of huge page */ 6259 base = 0; 6260 l = n; 6261 /* Process subpages at the end of huge page */ 6262 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 6263 cond_resched(); 6264 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6265 if (ret) 6266 return ret; 6267 } 6268 } else { 6269 /* If target subpage in second half of huge page */ 6270 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 6271 l = pages_per_huge_page - n; 6272 /* Process subpages at the begin of huge page */ 6273 for (i = 0; i < base; i++) { 6274 cond_resched(); 6275 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6276 if (ret) 6277 return ret; 6278 } 6279 } 6280 /* 6281 * Process remaining subpages in left-right-left-right pattern 6282 * towards the target subpage 6283 */ 6284 for (i = 0; i < l; i++) { 6285 int left_idx = base + i; 6286 int right_idx = base + 2 * l - 1 - i; 6287 6288 cond_resched(); 6289 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6290 if (ret) 6291 return ret; 6292 cond_resched(); 6293 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6294 if (ret) 6295 return ret; 6296 } 6297 return 0; 6298 } 6299 6300 static void clear_gigantic_page(struct page *page, 6301 unsigned long addr, 6302 unsigned int pages_per_huge_page) 6303 { 6304 int i; 6305 struct page *p; 6306 6307 might_sleep(); 6308 for (i = 0; i < pages_per_huge_page; i++) { 6309 p = nth_page(page, i); 6310 cond_resched(); 6311 clear_user_highpage(p, addr + i * PAGE_SIZE); 6312 } 6313 } 6314 6315 static int clear_subpage(unsigned long addr, int idx, void *arg) 6316 { 6317 struct page *page = arg; 6318 6319 clear_user_highpage(nth_page(page, idx), addr); 6320 return 0; 6321 } 6322 6323 void clear_huge_page(struct page *page, 6324 unsigned long addr_hint, unsigned int pages_per_huge_page) 6325 { 6326 unsigned long addr = addr_hint & 6327 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6328 6329 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 6330 clear_gigantic_page(page, addr, pages_per_huge_page); 6331 return; 6332 } 6333 6334 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 6335 } 6336 6337 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6338 unsigned long addr, 6339 struct vm_area_struct *vma, 6340 unsigned int pages_per_huge_page) 6341 { 6342 int i; 6343 struct page *dst_page; 6344 struct page *src_page; 6345 6346 for (i = 0; i < pages_per_huge_page; i++) { 6347 dst_page = folio_page(dst, i); 6348 src_page = folio_page(src, i); 6349 6350 cond_resched(); 6351 if (copy_mc_user_highpage(dst_page, src_page, 6352 addr + i*PAGE_SIZE, vma)) { 6353 memory_failure_queue(page_to_pfn(src_page), 0); 6354 return -EHWPOISON; 6355 } 6356 } 6357 return 0; 6358 } 6359 6360 struct copy_subpage_arg { 6361 struct page *dst; 6362 struct page *src; 6363 struct vm_area_struct *vma; 6364 }; 6365 6366 static int copy_subpage(unsigned long addr, int idx, void *arg) 6367 { 6368 struct copy_subpage_arg *copy_arg = arg; 6369 struct page *dst = nth_page(copy_arg->dst, idx); 6370 struct page *src = nth_page(copy_arg->src, idx); 6371 6372 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) { 6373 memory_failure_queue(page_to_pfn(src), 0); 6374 return -EHWPOISON; 6375 } 6376 return 0; 6377 } 6378 6379 int copy_user_large_folio(struct folio *dst, struct folio *src, 6380 unsigned long addr_hint, struct vm_area_struct *vma) 6381 { 6382 unsigned int pages_per_huge_page = folio_nr_pages(dst); 6383 unsigned long addr = addr_hint & 6384 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6385 struct copy_subpage_arg arg = { 6386 .dst = &dst->page, 6387 .src = &src->page, 6388 .vma = vma, 6389 }; 6390 6391 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 6392 return copy_user_gigantic_page(dst, src, addr, vma, 6393 pages_per_huge_page); 6394 6395 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 6396 } 6397 6398 long copy_folio_from_user(struct folio *dst_folio, 6399 const void __user *usr_src, 6400 bool allow_pagefault) 6401 { 6402 void *kaddr; 6403 unsigned long i, rc = 0; 6404 unsigned int nr_pages = folio_nr_pages(dst_folio); 6405 unsigned long ret_val = nr_pages * PAGE_SIZE; 6406 struct page *subpage; 6407 6408 for (i = 0; i < nr_pages; i++) { 6409 subpage = folio_page(dst_folio, i); 6410 kaddr = kmap_local_page(subpage); 6411 if (!allow_pagefault) 6412 pagefault_disable(); 6413 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6414 if (!allow_pagefault) 6415 pagefault_enable(); 6416 kunmap_local(kaddr); 6417 6418 ret_val -= (PAGE_SIZE - rc); 6419 if (rc) 6420 break; 6421 6422 flush_dcache_page(subpage); 6423 6424 cond_resched(); 6425 } 6426 return ret_val; 6427 } 6428 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6429 6430 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6431 6432 static struct kmem_cache *page_ptl_cachep; 6433 6434 void __init ptlock_cache_init(void) 6435 { 6436 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6437 SLAB_PANIC, NULL); 6438 } 6439 6440 bool ptlock_alloc(struct ptdesc *ptdesc) 6441 { 6442 spinlock_t *ptl; 6443 6444 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6445 if (!ptl) 6446 return false; 6447 ptdesc->ptl = ptl; 6448 return true; 6449 } 6450 6451 void ptlock_free(struct ptdesc *ptdesc) 6452 { 6453 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 6454 } 6455 #endif 6456 6457 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 6458 { 6459 if (is_vm_hugetlb_page(vma)) 6460 hugetlb_vma_lock_read(vma); 6461 } 6462 6463 void vma_pgtable_walk_end(struct vm_area_struct *vma) 6464 { 6465 if (is_vm_hugetlb_page(vma)) 6466 hugetlb_vma_unlock_read(vma); 6467 } 6468