1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/memory-tiers.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 #include <linux/perf_event.h> 75 #include <linux/ptrace.h> 76 #include <linux/vmalloc.h> 77 #include <linux/sched/sysctl.h> 78 79 #include <trace/events/kmem.h> 80 81 #include <asm/io.h> 82 #include <asm/mmu_context.h> 83 #include <asm/pgalloc.h> 84 #include <linux/uaccess.h> 85 #include <asm/tlb.h> 86 #include <asm/tlbflush.h> 87 88 #include "pgalloc-track.h" 89 #include "internal.h" 90 #include "swap.h" 91 92 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 93 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 94 #endif 95 96 static vm_fault_t do_fault(struct vm_fault *vmf); 97 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 98 static bool vmf_pte_changed(struct vm_fault *vmf); 99 100 /* 101 * Return true if the original pte was a uffd-wp pte marker (so the pte was 102 * wr-protected). 103 */ 104 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 105 { 106 if (!userfaultfd_wp(vmf->vma)) 107 return false; 108 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 109 return false; 110 111 return pte_marker_uffd_wp(vmf->orig_pte); 112 } 113 114 /* 115 * Randomize the address space (stacks, mmaps, brk, etc.). 116 * 117 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 118 * as ancient (libc5 based) binaries can segfault. ) 119 */ 120 int randomize_va_space __read_mostly = 121 #ifdef CONFIG_COMPAT_BRK 122 1; 123 #else 124 2; 125 #endif 126 127 static const struct ctl_table mmu_sysctl_table[] = { 128 { 129 .procname = "randomize_va_space", 130 .data = &randomize_va_space, 131 .maxlen = sizeof(int), 132 .mode = 0644, 133 .proc_handler = proc_dointvec, 134 }, 135 }; 136 137 static int __init init_mm_sysctl(void) 138 { 139 register_sysctl_init("kernel", mmu_sysctl_table); 140 return 0; 141 } 142 143 subsys_initcall(init_mm_sysctl); 144 145 #ifndef arch_wants_old_prefaulted_pte 146 static inline bool arch_wants_old_prefaulted_pte(void) 147 { 148 /* 149 * Transitioning a PTE from 'old' to 'young' can be expensive on 150 * some architectures, even if it's performed in hardware. By 151 * default, "false" means prefaulted entries will be 'young'. 152 */ 153 return false; 154 } 155 #endif 156 157 static int __init disable_randmaps(char *s) 158 { 159 randomize_va_space = 0; 160 return 1; 161 } 162 __setup("norandmaps", disable_randmaps); 163 164 unsigned long zero_pfn __read_mostly; 165 EXPORT_SYMBOL(zero_pfn); 166 167 unsigned long highest_memmap_pfn __read_mostly; 168 169 /* 170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 171 */ 172 static int __init init_zero_pfn(void) 173 { 174 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 175 return 0; 176 } 177 early_initcall(init_zero_pfn); 178 179 void mm_trace_rss_stat(struct mm_struct *mm, int member) 180 { 181 trace_rss_stat(mm, member); 182 } 183 184 /* 185 * Note: this doesn't free the actual pages themselves. That 186 * has been handled earlier when unmapping all the memory regions. 187 */ 188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 189 unsigned long addr) 190 { 191 pgtable_t token = pmd_pgtable(*pmd); 192 pmd_clear(pmd); 193 pte_free_tlb(tlb, token, addr); 194 mm_dec_nr_ptes(tlb->mm); 195 } 196 197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 198 unsigned long addr, unsigned long end, 199 unsigned long floor, unsigned long ceiling) 200 { 201 pmd_t *pmd; 202 unsigned long next; 203 unsigned long start; 204 205 start = addr; 206 pmd = pmd_offset(pud, addr); 207 do { 208 next = pmd_addr_end(addr, end); 209 if (pmd_none_or_clear_bad(pmd)) 210 continue; 211 free_pte_range(tlb, pmd, addr); 212 } while (pmd++, addr = next, addr != end); 213 214 start &= PUD_MASK; 215 if (start < floor) 216 return; 217 if (ceiling) { 218 ceiling &= PUD_MASK; 219 if (!ceiling) 220 return; 221 } 222 if (end - 1 > ceiling - 1) 223 return; 224 225 pmd = pmd_offset(pud, start); 226 pud_clear(pud); 227 pmd_free_tlb(tlb, pmd, start); 228 mm_dec_nr_pmds(tlb->mm); 229 } 230 231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 232 unsigned long addr, unsigned long end, 233 unsigned long floor, unsigned long ceiling) 234 { 235 pud_t *pud; 236 unsigned long next; 237 unsigned long start; 238 239 start = addr; 240 pud = pud_offset(p4d, addr); 241 do { 242 next = pud_addr_end(addr, end); 243 if (pud_none_or_clear_bad(pud)) 244 continue; 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 246 } while (pud++, addr = next, addr != end); 247 248 start &= P4D_MASK; 249 if (start < floor) 250 return; 251 if (ceiling) { 252 ceiling &= P4D_MASK; 253 if (!ceiling) 254 return; 255 } 256 if (end - 1 > ceiling - 1) 257 return; 258 259 pud = pud_offset(p4d, start); 260 p4d_clear(p4d); 261 pud_free_tlb(tlb, pud, start); 262 mm_dec_nr_puds(tlb->mm); 263 } 264 265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 266 unsigned long addr, unsigned long end, 267 unsigned long floor, unsigned long ceiling) 268 { 269 p4d_t *p4d; 270 unsigned long next; 271 unsigned long start; 272 273 start = addr; 274 p4d = p4d_offset(pgd, addr); 275 do { 276 next = p4d_addr_end(addr, end); 277 if (p4d_none_or_clear_bad(p4d)) 278 continue; 279 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 280 } while (p4d++, addr = next, addr != end); 281 282 start &= PGDIR_MASK; 283 if (start < floor) 284 return; 285 if (ceiling) { 286 ceiling &= PGDIR_MASK; 287 if (!ceiling) 288 return; 289 } 290 if (end - 1 > ceiling - 1) 291 return; 292 293 p4d = p4d_offset(pgd, start); 294 pgd_clear(pgd); 295 p4d_free_tlb(tlb, p4d, start); 296 } 297 298 /** 299 * free_pgd_range - Unmap and free page tables in the range 300 * @tlb: the mmu_gather containing pending TLB flush info 301 * @addr: virtual address start 302 * @end: virtual address end 303 * @floor: lowest address boundary 304 * @ceiling: highest address boundary 305 * 306 * This function tears down all user-level page tables in the 307 * specified virtual address range [@addr..@end). It is part of 308 * the memory unmap flow. 309 */ 310 void free_pgd_range(struct mmu_gather *tlb, 311 unsigned long addr, unsigned long end, 312 unsigned long floor, unsigned long ceiling) 313 { 314 pgd_t *pgd; 315 unsigned long next; 316 317 /* 318 * The next few lines have given us lots of grief... 319 * 320 * Why are we testing PMD* at this top level? Because often 321 * there will be no work to do at all, and we'd prefer not to 322 * go all the way down to the bottom just to discover that. 323 * 324 * Why all these "- 1"s? Because 0 represents both the bottom 325 * of the address space and the top of it (using -1 for the 326 * top wouldn't help much: the masks would do the wrong thing). 327 * The rule is that addr 0 and floor 0 refer to the bottom of 328 * the address space, but end 0 and ceiling 0 refer to the top 329 * Comparisons need to use "end - 1" and "ceiling - 1" (though 330 * that end 0 case should be mythical). 331 * 332 * Wherever addr is brought up or ceiling brought down, we must 333 * be careful to reject "the opposite 0" before it confuses the 334 * subsequent tests. But what about where end is brought down 335 * by PMD_SIZE below? no, end can't go down to 0 there. 336 * 337 * Whereas we round start (addr) and ceiling down, by different 338 * masks at different levels, in order to test whether a table 339 * now has no other vmas using it, so can be freed, we don't 340 * bother to round floor or end up - the tests don't need that. 341 */ 342 343 addr &= PMD_MASK; 344 if (addr < floor) { 345 addr += PMD_SIZE; 346 if (!addr) 347 return; 348 } 349 if (ceiling) { 350 ceiling &= PMD_MASK; 351 if (!ceiling) 352 return; 353 } 354 if (end - 1 > ceiling - 1) 355 end -= PMD_SIZE; 356 if (addr > end - 1) 357 return; 358 /* 359 * We add page table cache pages with PAGE_SIZE, 360 * (see pte_free_tlb()), flush the tlb if we need 361 */ 362 tlb_change_page_size(tlb, PAGE_SIZE); 363 pgd = pgd_offset(tlb->mm, addr); 364 do { 365 next = pgd_addr_end(addr, end); 366 if (pgd_none_or_clear_bad(pgd)) 367 continue; 368 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 369 } while (pgd++, addr = next, addr != end); 370 } 371 372 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 373 struct vm_area_struct *vma, unsigned long floor, 374 unsigned long ceiling, bool mm_wr_locked) 375 { 376 struct unlink_vma_file_batch vb; 377 378 tlb_free_vmas(tlb); 379 380 do { 381 unsigned long addr = vma->vm_start; 382 struct vm_area_struct *next; 383 384 /* 385 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 386 * be 0. This will underflow and is okay. 387 */ 388 next = mas_find(mas, ceiling - 1); 389 if (unlikely(xa_is_zero(next))) 390 next = NULL; 391 392 /* 393 * Hide vma from rmap and truncate_pagecache before freeing 394 * pgtables 395 */ 396 if (mm_wr_locked) 397 vma_start_write(vma); 398 unlink_anon_vmas(vma); 399 400 unlink_file_vma_batch_init(&vb); 401 unlink_file_vma_batch_add(&vb, vma); 402 403 /* 404 * Optimization: gather nearby vmas into one call down 405 */ 406 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) { 407 vma = next; 408 next = mas_find(mas, ceiling - 1); 409 if (unlikely(xa_is_zero(next))) 410 next = NULL; 411 if (mm_wr_locked) 412 vma_start_write(vma); 413 unlink_anon_vmas(vma); 414 unlink_file_vma_batch_add(&vb, vma); 415 } 416 unlink_file_vma_batch_final(&vb); 417 418 free_pgd_range(tlb, addr, vma->vm_end, 419 floor, next ? next->vm_start : ceiling); 420 vma = next; 421 } while (vma); 422 } 423 424 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 425 { 426 spinlock_t *ptl = pmd_lock(mm, pmd); 427 428 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 429 mm_inc_nr_ptes(mm); 430 /* 431 * Ensure all pte setup (eg. pte page lock and page clearing) are 432 * visible before the pte is made visible to other CPUs by being 433 * put into page tables. 434 * 435 * The other side of the story is the pointer chasing in the page 436 * table walking code (when walking the page table without locking; 437 * ie. most of the time). Fortunately, these data accesses consist 438 * of a chain of data-dependent loads, meaning most CPUs (alpha 439 * being the notable exception) will already guarantee loads are 440 * seen in-order. See the alpha page table accessors for the 441 * smp_rmb() barriers in page table walking code. 442 */ 443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 444 pmd_populate(mm, pmd, *pte); 445 *pte = NULL; 446 } 447 spin_unlock(ptl); 448 } 449 450 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 451 { 452 pgtable_t new = pte_alloc_one(mm); 453 if (!new) 454 return -ENOMEM; 455 456 pmd_install(mm, pmd, &new); 457 if (new) 458 pte_free(mm, new); 459 return 0; 460 } 461 462 int __pte_alloc_kernel(pmd_t *pmd) 463 { 464 pte_t *new = pte_alloc_one_kernel(&init_mm); 465 if (!new) 466 return -ENOMEM; 467 468 spin_lock(&init_mm.page_table_lock); 469 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 470 smp_wmb(); /* See comment in pmd_install() */ 471 pmd_populate_kernel(&init_mm, pmd, new); 472 new = NULL; 473 } 474 spin_unlock(&init_mm.page_table_lock); 475 if (new) 476 pte_free_kernel(&init_mm, new); 477 return 0; 478 } 479 480 static inline void init_rss_vec(int *rss) 481 { 482 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 483 } 484 485 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 486 { 487 int i; 488 489 for (i = 0; i < NR_MM_COUNTERS; i++) 490 if (rss[i]) 491 add_mm_counter(mm, i, rss[i]); 492 } 493 494 /* 495 * This function is called to print an error when a bad pte 496 * is found. For example, we might have a PFN-mapped pte in 497 * a region that doesn't allow it. 498 * 499 * The calling function must still handle the error. 500 */ 501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 502 pte_t pte, struct page *page) 503 { 504 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 505 p4d_t *p4d = p4d_offset(pgd, addr); 506 pud_t *pud = pud_offset(p4d, addr); 507 pmd_t *pmd = pmd_offset(pud, addr); 508 struct address_space *mapping; 509 pgoff_t index; 510 static unsigned long resume; 511 static unsigned long nr_shown; 512 static unsigned long nr_unshown; 513 514 /* 515 * Allow a burst of 60 reports, then keep quiet for that minute; 516 * or allow a steady drip of one report per second. 517 */ 518 if (nr_shown == 60) { 519 if (time_before(jiffies, resume)) { 520 nr_unshown++; 521 return; 522 } 523 if (nr_unshown) { 524 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 525 nr_unshown); 526 nr_unshown = 0; 527 } 528 nr_shown = 0; 529 } 530 if (nr_shown++ == 0) 531 resume = jiffies + 60 * HZ; 532 533 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 534 index = linear_page_index(vma, addr); 535 536 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 537 current->comm, 538 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 539 if (page) 540 dump_page(page, "bad pte"); 541 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 542 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 543 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n", 544 vma->vm_file, 545 vma->vm_ops ? vma->vm_ops->fault : NULL, 546 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 547 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL, 548 mapping ? mapping->a_ops->read_folio : NULL); 549 dump_stack(); 550 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 551 } 552 553 /* 554 * vm_normal_page -- This function gets the "struct page" associated with a pte. 555 * 556 * "Special" mappings do not wish to be associated with a "struct page" (either 557 * it doesn't exist, or it exists but they don't want to touch it). In this 558 * case, NULL is returned here. "Normal" mappings do have a struct page. 559 * 560 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 561 * pte bit, in which case this function is trivial. Secondly, an architecture 562 * may not have a spare pte bit, which requires a more complicated scheme, 563 * described below. 564 * 565 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 566 * special mapping (even if there are underlying and valid "struct pages"). 567 * COWed pages of a VM_PFNMAP are always normal. 568 * 569 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 570 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 571 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 572 * mapping will always honor the rule 573 * 574 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 575 * 576 * And for normal mappings this is false. 577 * 578 * This restricts such mappings to be a linear translation from virtual address 579 * to pfn. To get around this restriction, we allow arbitrary mappings so long 580 * as the vma is not a COW mapping; in that case, we know that all ptes are 581 * special (because none can have been COWed). 582 * 583 * 584 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 585 * 586 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 587 * page" backing, however the difference is that _all_ pages with a struct 588 * page (that is, those where pfn_valid is true) are refcounted and considered 589 * normal pages by the VM. The only exception are zeropages, which are 590 * *never* refcounted. 591 * 592 * The disadvantage is that pages are refcounted (which can be slower and 593 * simply not an option for some PFNMAP users). The advantage is that we 594 * don't have to follow the strict linearity rule of PFNMAP mappings in 595 * order to support COWable mappings. 596 * 597 */ 598 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 599 pte_t pte) 600 { 601 unsigned long pfn = pte_pfn(pte); 602 603 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 604 if (likely(!pte_special(pte))) 605 goto check_pfn; 606 if (vma->vm_ops && vma->vm_ops->find_special_page) 607 return vma->vm_ops->find_special_page(vma, addr); 608 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 609 return NULL; 610 if (is_zero_pfn(pfn)) 611 return NULL; 612 613 print_bad_pte(vma, addr, pte, NULL); 614 return NULL; 615 } 616 617 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 618 619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 620 if (vma->vm_flags & VM_MIXEDMAP) { 621 if (!pfn_valid(pfn)) 622 return NULL; 623 if (is_zero_pfn(pfn)) 624 return NULL; 625 goto out; 626 } else { 627 unsigned long off; 628 off = (addr - vma->vm_start) >> PAGE_SHIFT; 629 if (pfn == vma->vm_pgoff + off) 630 return NULL; 631 if (!is_cow_mapping(vma->vm_flags)) 632 return NULL; 633 } 634 } 635 636 if (is_zero_pfn(pfn)) 637 return NULL; 638 639 check_pfn: 640 if (unlikely(pfn > highest_memmap_pfn)) { 641 print_bad_pte(vma, addr, pte, NULL); 642 return NULL; 643 } 644 645 /* 646 * NOTE! We still have PageReserved() pages in the page tables. 647 * eg. VDSO mappings can cause them to exist. 648 */ 649 out: 650 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 651 return pfn_to_page(pfn); 652 } 653 654 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 655 pte_t pte) 656 { 657 struct page *page = vm_normal_page(vma, addr, pte); 658 659 if (page) 660 return page_folio(page); 661 return NULL; 662 } 663 664 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 665 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 666 pmd_t pmd) 667 { 668 unsigned long pfn = pmd_pfn(pmd); 669 670 /* Currently it's only used for huge pfnmaps */ 671 if (unlikely(pmd_special(pmd))) 672 return NULL; 673 674 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 675 if (vma->vm_flags & VM_MIXEDMAP) { 676 if (!pfn_valid(pfn)) 677 return NULL; 678 goto out; 679 } else { 680 unsigned long off; 681 off = (addr - vma->vm_start) >> PAGE_SHIFT; 682 if (pfn == vma->vm_pgoff + off) 683 return NULL; 684 if (!is_cow_mapping(vma->vm_flags)) 685 return NULL; 686 } 687 } 688 689 if (is_huge_zero_pfn(pfn)) 690 return NULL; 691 if (unlikely(pfn > highest_memmap_pfn)) 692 return NULL; 693 694 /* 695 * NOTE! We still have PageReserved() pages in the page tables. 696 * eg. VDSO mappings can cause them to exist. 697 */ 698 out: 699 return pfn_to_page(pfn); 700 } 701 702 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 703 unsigned long addr, pmd_t pmd) 704 { 705 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 706 707 if (page) 708 return page_folio(page); 709 return NULL; 710 } 711 #endif 712 713 /** 714 * restore_exclusive_pte - Restore a device-exclusive entry 715 * @vma: VMA covering @address 716 * @folio: the mapped folio 717 * @page: the mapped folio page 718 * @address: the virtual address 719 * @ptep: pte pointer into the locked page table mapping the folio page 720 * @orig_pte: pte value at @ptep 721 * 722 * Restore a device-exclusive non-swap entry to an ordinary present pte. 723 * 724 * The folio and the page table must be locked, and MMU notifiers must have 725 * been called to invalidate any (exclusive) device mappings. 726 * 727 * Locking the folio makes sure that anybody who just converted the pte to 728 * a device-exclusive entry can map it into the device to make forward 729 * progress without others converting it back until the folio was unlocked. 730 * 731 * If the folio lock ever becomes an issue, we can stop relying on the folio 732 * lock; it might make some scenarios with heavy thrashing less likely to 733 * make forward progress, but these scenarios might not be valid use cases. 734 * 735 * Note that the folio lock does not protect against all cases of concurrent 736 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers 737 * must use MMU notifiers to sync against any concurrent changes. 738 */ 739 static void restore_exclusive_pte(struct vm_area_struct *vma, 740 struct folio *folio, struct page *page, unsigned long address, 741 pte_t *ptep, pte_t orig_pte) 742 { 743 pte_t pte; 744 745 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 746 747 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 748 if (pte_swp_soft_dirty(orig_pte)) 749 pte = pte_mksoft_dirty(pte); 750 751 if (pte_swp_uffd_wp(orig_pte)) 752 pte = pte_mkuffd_wp(pte); 753 754 if ((vma->vm_flags & VM_WRITE) && 755 can_change_pte_writable(vma, address, pte)) { 756 if (folio_test_dirty(folio)) 757 pte = pte_mkdirty(pte); 758 pte = pte_mkwrite(pte, vma); 759 } 760 set_pte_at(vma->vm_mm, address, ptep, pte); 761 762 /* 763 * No need to invalidate - it was non-present before. However 764 * secondary CPUs may have mappings that need invalidating. 765 */ 766 update_mmu_cache(vma, address, ptep); 767 } 768 769 /* 770 * Tries to restore an exclusive pte if the page lock can be acquired without 771 * sleeping. 772 */ 773 static int try_restore_exclusive_pte(struct vm_area_struct *vma, 774 unsigned long addr, pte_t *ptep, pte_t orig_pte) 775 { 776 struct page *page = pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte)); 777 struct folio *folio = page_folio(page); 778 779 if (folio_trylock(folio)) { 780 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte); 781 folio_unlock(folio); 782 return 0; 783 } 784 785 return -EBUSY; 786 } 787 788 /* 789 * copy one vm_area from one task to the other. Assumes the page tables 790 * already present in the new task to be cleared in the whole range 791 * covered by this vma. 792 */ 793 794 static unsigned long 795 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 796 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 797 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 798 { 799 vm_flags_t vm_flags = dst_vma->vm_flags; 800 pte_t orig_pte = ptep_get(src_pte); 801 pte_t pte = orig_pte; 802 struct folio *folio; 803 struct page *page; 804 swp_entry_t entry = pte_to_swp_entry(orig_pte); 805 806 if (likely(!non_swap_entry(entry))) { 807 if (swap_duplicate(entry) < 0) 808 return -EIO; 809 810 /* make sure dst_mm is on swapoff's mmlist. */ 811 if (unlikely(list_empty(&dst_mm->mmlist))) { 812 spin_lock(&mmlist_lock); 813 if (list_empty(&dst_mm->mmlist)) 814 list_add(&dst_mm->mmlist, 815 &src_mm->mmlist); 816 spin_unlock(&mmlist_lock); 817 } 818 /* Mark the swap entry as shared. */ 819 if (pte_swp_exclusive(orig_pte)) { 820 pte = pte_swp_clear_exclusive(orig_pte); 821 set_pte_at(src_mm, addr, src_pte, pte); 822 } 823 rss[MM_SWAPENTS]++; 824 } else if (is_migration_entry(entry)) { 825 folio = pfn_swap_entry_folio(entry); 826 827 rss[mm_counter(folio)]++; 828 829 if (!is_readable_migration_entry(entry) && 830 is_cow_mapping(vm_flags)) { 831 /* 832 * COW mappings require pages in both parent and child 833 * to be set to read. A previously exclusive entry is 834 * now shared. 835 */ 836 entry = make_readable_migration_entry( 837 swp_offset(entry)); 838 pte = swp_entry_to_pte(entry); 839 if (pte_swp_soft_dirty(orig_pte)) 840 pte = pte_swp_mksoft_dirty(pte); 841 if (pte_swp_uffd_wp(orig_pte)) 842 pte = pte_swp_mkuffd_wp(pte); 843 set_pte_at(src_mm, addr, src_pte, pte); 844 } 845 } else if (is_device_private_entry(entry)) { 846 page = pfn_swap_entry_to_page(entry); 847 folio = page_folio(page); 848 849 /* 850 * Update rss count even for unaddressable pages, as 851 * they should treated just like normal pages in this 852 * respect. 853 * 854 * We will likely want to have some new rss counters 855 * for unaddressable pages, at some point. But for now 856 * keep things as they are. 857 */ 858 folio_get(folio); 859 rss[mm_counter(folio)]++; 860 /* Cannot fail as these pages cannot get pinned. */ 861 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma); 862 863 /* 864 * We do not preserve soft-dirty information, because so 865 * far, checkpoint/restore is the only feature that 866 * requires that. And checkpoint/restore does not work 867 * when a device driver is involved (you cannot easily 868 * save and restore device driver state). 869 */ 870 if (is_writable_device_private_entry(entry) && 871 is_cow_mapping(vm_flags)) { 872 entry = make_readable_device_private_entry( 873 swp_offset(entry)); 874 pte = swp_entry_to_pte(entry); 875 if (pte_swp_uffd_wp(orig_pte)) 876 pte = pte_swp_mkuffd_wp(pte); 877 set_pte_at(src_mm, addr, src_pte, pte); 878 } 879 } else if (is_device_exclusive_entry(entry)) { 880 /* 881 * Make device exclusive entries present by restoring the 882 * original entry then copying as for a present pte. Device 883 * exclusive entries currently only support private writable 884 * (ie. COW) mappings. 885 */ 886 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 887 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte)) 888 return -EBUSY; 889 return -ENOENT; 890 } else if (is_pte_marker_entry(entry)) { 891 pte_marker marker = copy_pte_marker(entry, dst_vma); 892 893 if (marker) 894 set_pte_at(dst_mm, addr, dst_pte, 895 make_pte_marker(marker)); 896 return 0; 897 } 898 if (!userfaultfd_wp(dst_vma)) 899 pte = pte_swp_clear_uffd_wp(pte); 900 set_pte_at(dst_mm, addr, dst_pte, pte); 901 return 0; 902 } 903 904 /* 905 * Copy a present and normal page. 906 * 907 * NOTE! The usual case is that this isn't required; 908 * instead, the caller can just increase the page refcount 909 * and re-use the pte the traditional way. 910 * 911 * And if we need a pre-allocated page but don't yet have 912 * one, return a negative error to let the preallocation 913 * code know so that it can do so outside the page table 914 * lock. 915 */ 916 static inline int 917 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 918 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 919 struct folio **prealloc, struct page *page) 920 { 921 struct folio *new_folio; 922 pte_t pte; 923 924 new_folio = *prealloc; 925 if (!new_folio) 926 return -EAGAIN; 927 928 /* 929 * We have a prealloc page, all good! Take it 930 * over and copy the page & arm it. 931 */ 932 933 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 934 return -EHWPOISON; 935 936 *prealloc = NULL; 937 __folio_mark_uptodate(new_folio); 938 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 939 folio_add_lru_vma(new_folio, dst_vma); 940 rss[MM_ANONPAGES]++; 941 942 /* All done, just insert the new page copy in the child */ 943 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot); 944 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 945 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 946 /* Uffd-wp needs to be delivered to dest pte as well */ 947 pte = pte_mkuffd_wp(pte); 948 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 949 return 0; 950 } 951 952 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 953 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 954 pte_t pte, unsigned long addr, int nr) 955 { 956 struct mm_struct *src_mm = src_vma->vm_mm; 957 958 /* If it's a COW mapping, write protect it both processes. */ 959 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 960 wrprotect_ptes(src_mm, addr, src_pte, nr); 961 pte = pte_wrprotect(pte); 962 } 963 964 /* If it's a shared mapping, mark it clean in the child. */ 965 if (src_vma->vm_flags & VM_SHARED) 966 pte = pte_mkclean(pte); 967 pte = pte_mkold(pte); 968 969 if (!userfaultfd_wp(dst_vma)) 970 pte = pte_clear_uffd_wp(pte); 971 972 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 973 } 974 975 /* 976 * Copy one present PTE, trying to batch-process subsequent PTEs that map 977 * consecutive pages of the same folio by copying them as well. 978 * 979 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 980 * Otherwise, returns the number of copied PTEs (at least 1). 981 */ 982 static inline int 983 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 984 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 985 int max_nr, int *rss, struct folio **prealloc) 986 { 987 fpb_t flags = FPB_MERGE_WRITE; 988 struct page *page; 989 struct folio *folio; 990 int err, nr; 991 992 page = vm_normal_page(src_vma, addr, pte); 993 if (unlikely(!page)) 994 goto copy_pte; 995 996 folio = page_folio(page); 997 998 /* 999 * If we likely have to copy, just don't bother with batching. Make 1000 * sure that the common "small folio" case is as fast as possible 1001 * by keeping the batching logic separate. 1002 */ 1003 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1004 if (!(src_vma->vm_flags & VM_SHARED)) 1005 flags |= FPB_RESPECT_DIRTY; 1006 if (vma_soft_dirty_enabled(src_vma)) 1007 flags |= FPB_RESPECT_SOFT_DIRTY; 1008 1009 nr = folio_pte_batch_flags(folio, src_vma, src_pte, &pte, max_nr, flags); 1010 folio_ref_add(folio, nr); 1011 if (folio_test_anon(folio)) { 1012 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1013 nr, dst_vma, src_vma))) { 1014 folio_ref_sub(folio, nr); 1015 return -EAGAIN; 1016 } 1017 rss[MM_ANONPAGES] += nr; 1018 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1019 } else { 1020 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma); 1021 rss[mm_counter_file(folio)] += nr; 1022 } 1023 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1024 addr, nr); 1025 return nr; 1026 } 1027 1028 folio_get(folio); 1029 if (folio_test_anon(folio)) { 1030 /* 1031 * If this page may have been pinned by the parent process, 1032 * copy the page immediately for the child so that we'll always 1033 * guarantee the pinned page won't be randomly replaced in the 1034 * future. 1035 */ 1036 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) { 1037 /* Page may be pinned, we have to copy. */ 1038 folio_put(folio); 1039 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1040 addr, rss, prealloc, page); 1041 return err ? err : 1; 1042 } 1043 rss[MM_ANONPAGES]++; 1044 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1045 } else { 1046 folio_dup_file_rmap_pte(folio, page, dst_vma); 1047 rss[mm_counter_file(folio)]++; 1048 } 1049 1050 copy_pte: 1051 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1052 return 1; 1053 } 1054 1055 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1056 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1057 { 1058 struct folio *new_folio; 1059 1060 if (need_zero) 1061 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1062 else 1063 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1064 1065 if (!new_folio) 1066 return NULL; 1067 1068 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1069 folio_put(new_folio); 1070 return NULL; 1071 } 1072 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1073 1074 return new_folio; 1075 } 1076 1077 static int 1078 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1079 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1080 unsigned long end) 1081 { 1082 struct mm_struct *dst_mm = dst_vma->vm_mm; 1083 struct mm_struct *src_mm = src_vma->vm_mm; 1084 pte_t *orig_src_pte, *orig_dst_pte; 1085 pte_t *src_pte, *dst_pte; 1086 pmd_t dummy_pmdval; 1087 pte_t ptent; 1088 spinlock_t *src_ptl, *dst_ptl; 1089 int progress, max_nr, ret = 0; 1090 int rss[NR_MM_COUNTERS]; 1091 swp_entry_t entry = (swp_entry_t){0}; 1092 struct folio *prealloc = NULL; 1093 int nr; 1094 1095 again: 1096 progress = 0; 1097 init_rss_vec(rss); 1098 1099 /* 1100 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1101 * error handling here, assume that exclusive mmap_lock on dst and src 1102 * protects anon from unexpected THP transitions; with shmem and file 1103 * protected by mmap_lock-less collapse skipping areas with anon_vma 1104 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1105 * can remove such assumptions later, but this is good enough for now. 1106 */ 1107 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1108 if (!dst_pte) { 1109 ret = -ENOMEM; 1110 goto out; 1111 } 1112 1113 /* 1114 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1115 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1116 * the PTE page is stable, and there is no need to get pmdval and do 1117 * pmd_same() check. 1118 */ 1119 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1120 &src_ptl); 1121 if (!src_pte) { 1122 pte_unmap_unlock(dst_pte, dst_ptl); 1123 /* ret == 0 */ 1124 goto out; 1125 } 1126 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1127 orig_src_pte = src_pte; 1128 orig_dst_pte = dst_pte; 1129 arch_enter_lazy_mmu_mode(); 1130 1131 do { 1132 nr = 1; 1133 1134 /* 1135 * We are holding two locks at this point - either of them 1136 * could generate latencies in another task on another CPU. 1137 */ 1138 if (progress >= 32) { 1139 progress = 0; 1140 if (need_resched() || 1141 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1142 break; 1143 } 1144 ptent = ptep_get(src_pte); 1145 if (pte_none(ptent)) { 1146 progress++; 1147 continue; 1148 } 1149 if (unlikely(!pte_present(ptent))) { 1150 ret = copy_nonpresent_pte(dst_mm, src_mm, 1151 dst_pte, src_pte, 1152 dst_vma, src_vma, 1153 addr, rss); 1154 if (ret == -EIO) { 1155 entry = pte_to_swp_entry(ptep_get(src_pte)); 1156 break; 1157 } else if (ret == -EBUSY) { 1158 break; 1159 } else if (!ret) { 1160 progress += 8; 1161 continue; 1162 } 1163 ptent = ptep_get(src_pte); 1164 VM_WARN_ON_ONCE(!pte_present(ptent)); 1165 1166 /* 1167 * Device exclusive entry restored, continue by copying 1168 * the now present pte. 1169 */ 1170 WARN_ON_ONCE(ret != -ENOENT); 1171 } 1172 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1173 max_nr = (end - addr) / PAGE_SIZE; 1174 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1175 ptent, addr, max_nr, rss, &prealloc); 1176 /* 1177 * If we need a pre-allocated page for this pte, drop the 1178 * locks, allocate, and try again. 1179 * If copy failed due to hwpoison in source page, break out. 1180 */ 1181 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1182 break; 1183 if (unlikely(prealloc)) { 1184 /* 1185 * pre-alloc page cannot be reused by next time so as 1186 * to strictly follow mempolicy (e.g., alloc_page_vma() 1187 * will allocate page according to address). This 1188 * could only happen if one pinned pte changed. 1189 */ 1190 folio_put(prealloc); 1191 prealloc = NULL; 1192 } 1193 nr = ret; 1194 progress += 8 * nr; 1195 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1196 addr != end); 1197 1198 arch_leave_lazy_mmu_mode(); 1199 pte_unmap_unlock(orig_src_pte, src_ptl); 1200 add_mm_rss_vec(dst_mm, rss); 1201 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1202 cond_resched(); 1203 1204 if (ret == -EIO) { 1205 VM_WARN_ON_ONCE(!entry.val); 1206 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1207 ret = -ENOMEM; 1208 goto out; 1209 } 1210 entry.val = 0; 1211 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1212 goto out; 1213 } else if (ret == -EAGAIN) { 1214 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1215 if (!prealloc) 1216 return -ENOMEM; 1217 } else if (ret < 0) { 1218 VM_WARN_ON_ONCE(1); 1219 } 1220 1221 /* We've captured and resolved the error. Reset, try again. */ 1222 ret = 0; 1223 1224 if (addr != end) 1225 goto again; 1226 out: 1227 if (unlikely(prealloc)) 1228 folio_put(prealloc); 1229 return ret; 1230 } 1231 1232 static inline int 1233 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1234 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1235 unsigned long end) 1236 { 1237 struct mm_struct *dst_mm = dst_vma->vm_mm; 1238 struct mm_struct *src_mm = src_vma->vm_mm; 1239 pmd_t *src_pmd, *dst_pmd; 1240 unsigned long next; 1241 1242 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1243 if (!dst_pmd) 1244 return -ENOMEM; 1245 src_pmd = pmd_offset(src_pud, addr); 1246 do { 1247 next = pmd_addr_end(addr, end); 1248 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)) { 1249 int err; 1250 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1251 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1252 addr, dst_vma, src_vma); 1253 if (err == -ENOMEM) 1254 return -ENOMEM; 1255 if (!err) 1256 continue; 1257 /* fall through */ 1258 } 1259 if (pmd_none_or_clear_bad(src_pmd)) 1260 continue; 1261 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1262 addr, next)) 1263 return -ENOMEM; 1264 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1265 return 0; 1266 } 1267 1268 static inline int 1269 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1270 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1271 unsigned long end) 1272 { 1273 struct mm_struct *dst_mm = dst_vma->vm_mm; 1274 struct mm_struct *src_mm = src_vma->vm_mm; 1275 pud_t *src_pud, *dst_pud; 1276 unsigned long next; 1277 1278 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1279 if (!dst_pud) 1280 return -ENOMEM; 1281 src_pud = pud_offset(src_p4d, addr); 1282 do { 1283 next = pud_addr_end(addr, end); 1284 if (pud_trans_huge(*src_pud)) { 1285 int err; 1286 1287 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1288 err = copy_huge_pud(dst_mm, src_mm, 1289 dst_pud, src_pud, addr, src_vma); 1290 if (err == -ENOMEM) 1291 return -ENOMEM; 1292 if (!err) 1293 continue; 1294 /* fall through */ 1295 } 1296 if (pud_none_or_clear_bad(src_pud)) 1297 continue; 1298 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1299 addr, next)) 1300 return -ENOMEM; 1301 } while (dst_pud++, src_pud++, addr = next, addr != end); 1302 return 0; 1303 } 1304 1305 static inline int 1306 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1307 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1308 unsigned long end) 1309 { 1310 struct mm_struct *dst_mm = dst_vma->vm_mm; 1311 p4d_t *src_p4d, *dst_p4d; 1312 unsigned long next; 1313 1314 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1315 if (!dst_p4d) 1316 return -ENOMEM; 1317 src_p4d = p4d_offset(src_pgd, addr); 1318 do { 1319 next = p4d_addr_end(addr, end); 1320 if (p4d_none_or_clear_bad(src_p4d)) 1321 continue; 1322 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1323 addr, next)) 1324 return -ENOMEM; 1325 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1326 return 0; 1327 } 1328 1329 /* 1330 * Return true if the vma needs to copy the pgtable during this fork(). Return 1331 * false when we can speed up fork() by allowing lazy page faults later until 1332 * when the child accesses the memory range. 1333 */ 1334 static bool 1335 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1336 { 1337 /* 1338 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1339 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1340 * contains uffd-wp protection information, that's something we can't 1341 * retrieve from page cache, and skip copying will lose those info. 1342 */ 1343 if (userfaultfd_wp(dst_vma)) 1344 return true; 1345 1346 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1347 return true; 1348 1349 if (src_vma->anon_vma) 1350 return true; 1351 1352 /* 1353 * Don't copy ptes where a page fault will fill them correctly. Fork 1354 * becomes much lighter when there are big shared or private readonly 1355 * mappings. The tradeoff is that copy_page_range is more efficient 1356 * than faulting. 1357 */ 1358 return false; 1359 } 1360 1361 int 1362 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1363 { 1364 pgd_t *src_pgd, *dst_pgd; 1365 unsigned long addr = src_vma->vm_start; 1366 unsigned long end = src_vma->vm_end; 1367 struct mm_struct *dst_mm = dst_vma->vm_mm; 1368 struct mm_struct *src_mm = src_vma->vm_mm; 1369 struct mmu_notifier_range range; 1370 unsigned long next; 1371 bool is_cow; 1372 int ret; 1373 1374 if (!vma_needs_copy(dst_vma, src_vma)) 1375 return 0; 1376 1377 if (is_vm_hugetlb_page(src_vma)) 1378 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1379 1380 /* 1381 * We need to invalidate the secondary MMU mappings only when 1382 * there could be a permission downgrade on the ptes of the 1383 * parent mm. And a permission downgrade will only happen if 1384 * is_cow_mapping() returns true. 1385 */ 1386 is_cow = is_cow_mapping(src_vma->vm_flags); 1387 1388 if (is_cow) { 1389 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1390 0, src_mm, addr, end); 1391 mmu_notifier_invalidate_range_start(&range); 1392 /* 1393 * Disabling preemption is not needed for the write side, as 1394 * the read side doesn't spin, but goes to the mmap_lock. 1395 * 1396 * Use the raw variant of the seqcount_t write API to avoid 1397 * lockdep complaining about preemptibility. 1398 */ 1399 vma_assert_write_locked(src_vma); 1400 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1401 } 1402 1403 ret = 0; 1404 dst_pgd = pgd_offset(dst_mm, addr); 1405 src_pgd = pgd_offset(src_mm, addr); 1406 do { 1407 next = pgd_addr_end(addr, end); 1408 if (pgd_none_or_clear_bad(src_pgd)) 1409 continue; 1410 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1411 addr, next))) { 1412 ret = -ENOMEM; 1413 break; 1414 } 1415 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1416 1417 if (is_cow) { 1418 raw_write_seqcount_end(&src_mm->write_protect_seq); 1419 mmu_notifier_invalidate_range_end(&range); 1420 } 1421 return ret; 1422 } 1423 1424 /* Whether we should zap all COWed (private) pages too */ 1425 static inline bool should_zap_cows(struct zap_details *details) 1426 { 1427 /* By default, zap all pages */ 1428 if (!details || details->reclaim_pt) 1429 return true; 1430 1431 /* Or, we zap COWed pages only if the caller wants to */ 1432 return details->even_cows; 1433 } 1434 1435 /* Decides whether we should zap this folio with the folio pointer specified */ 1436 static inline bool should_zap_folio(struct zap_details *details, 1437 struct folio *folio) 1438 { 1439 /* If we can make a decision without *folio.. */ 1440 if (should_zap_cows(details)) 1441 return true; 1442 1443 /* Otherwise we should only zap non-anon folios */ 1444 return !folio_test_anon(folio); 1445 } 1446 1447 static inline bool zap_drop_markers(struct zap_details *details) 1448 { 1449 if (!details) 1450 return false; 1451 1452 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1453 } 1454 1455 /* 1456 * This function makes sure that we'll replace the none pte with an uffd-wp 1457 * swap special pte marker when necessary. Must be with the pgtable lock held. 1458 * 1459 * Returns true if uffd-wp ptes was installed, false otherwise. 1460 */ 1461 static inline bool 1462 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1463 unsigned long addr, pte_t *pte, int nr, 1464 struct zap_details *details, pte_t pteval) 1465 { 1466 bool was_installed = false; 1467 1468 #ifdef CONFIG_PTE_MARKER_UFFD_WP 1469 /* Zap on anonymous always means dropping everything */ 1470 if (vma_is_anonymous(vma)) 1471 return false; 1472 1473 if (zap_drop_markers(details)) 1474 return false; 1475 1476 for (;;) { 1477 /* the PFN in the PTE is irrelevant. */ 1478 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1479 was_installed = true; 1480 if (--nr == 0) 1481 break; 1482 pte++; 1483 addr += PAGE_SIZE; 1484 } 1485 #endif 1486 return was_installed; 1487 } 1488 1489 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1490 struct vm_area_struct *vma, struct folio *folio, 1491 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1492 unsigned long addr, struct zap_details *details, int *rss, 1493 bool *force_flush, bool *force_break, bool *any_skipped) 1494 { 1495 struct mm_struct *mm = tlb->mm; 1496 bool delay_rmap = false; 1497 1498 if (!folio_test_anon(folio)) { 1499 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1500 if (pte_dirty(ptent)) { 1501 folio_mark_dirty(folio); 1502 if (tlb_delay_rmap(tlb)) { 1503 delay_rmap = true; 1504 *force_flush = true; 1505 } 1506 } 1507 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1508 folio_mark_accessed(folio); 1509 rss[mm_counter(folio)] -= nr; 1510 } else { 1511 /* We don't need up-to-date accessed/dirty bits. */ 1512 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1513 rss[MM_ANONPAGES] -= nr; 1514 } 1515 /* Checking a single PTE in a batch is sufficient. */ 1516 arch_check_zapped_pte(vma, ptent); 1517 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1518 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1519 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1520 nr, details, ptent); 1521 1522 if (!delay_rmap) { 1523 folio_remove_rmap_ptes(folio, page, nr, vma); 1524 1525 if (unlikely(folio_mapcount(folio) < 0)) 1526 print_bad_pte(vma, addr, ptent, page); 1527 } 1528 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1529 *force_flush = true; 1530 *force_break = true; 1531 } 1532 } 1533 1534 /* 1535 * Zap or skip at least one present PTE, trying to batch-process subsequent 1536 * PTEs that map consecutive pages of the same folio. 1537 * 1538 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1539 */ 1540 static inline int zap_present_ptes(struct mmu_gather *tlb, 1541 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1542 unsigned int max_nr, unsigned long addr, 1543 struct zap_details *details, int *rss, bool *force_flush, 1544 bool *force_break, bool *any_skipped) 1545 { 1546 struct mm_struct *mm = tlb->mm; 1547 struct folio *folio; 1548 struct page *page; 1549 int nr; 1550 1551 page = vm_normal_page(vma, addr, ptent); 1552 if (!page) { 1553 /* We don't need up-to-date accessed/dirty bits. */ 1554 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1555 arch_check_zapped_pte(vma, ptent); 1556 tlb_remove_tlb_entry(tlb, pte, addr); 1557 if (userfaultfd_pte_wp(vma, ptent)) 1558 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1559 pte, 1, details, ptent); 1560 ksm_might_unmap_zero_page(mm, ptent); 1561 return 1; 1562 } 1563 1564 folio = page_folio(page); 1565 if (unlikely(!should_zap_folio(details, folio))) { 1566 *any_skipped = true; 1567 return 1; 1568 } 1569 1570 /* 1571 * Make sure that the common "small folio" case is as fast as possible 1572 * by keeping the batching logic separate. 1573 */ 1574 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1575 nr = folio_pte_batch(folio, pte, ptent, max_nr); 1576 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1577 addr, details, rss, force_flush, 1578 force_break, any_skipped); 1579 return nr; 1580 } 1581 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1582 details, rss, force_flush, force_break, any_skipped); 1583 return 1; 1584 } 1585 1586 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1587 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1588 unsigned int max_nr, unsigned long addr, 1589 struct zap_details *details, int *rss, bool *any_skipped) 1590 { 1591 swp_entry_t entry; 1592 int nr = 1; 1593 1594 *any_skipped = true; 1595 entry = pte_to_swp_entry(ptent); 1596 if (is_device_private_entry(entry) || 1597 is_device_exclusive_entry(entry)) { 1598 struct page *page = pfn_swap_entry_to_page(entry); 1599 struct folio *folio = page_folio(page); 1600 1601 if (unlikely(!should_zap_folio(details, folio))) 1602 return 1; 1603 /* 1604 * Both device private/exclusive mappings should only 1605 * work with anonymous page so far, so we don't need to 1606 * consider uffd-wp bit when zap. For more information, 1607 * see zap_install_uffd_wp_if_needed(). 1608 */ 1609 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1610 rss[mm_counter(folio)]--; 1611 folio_remove_rmap_pte(folio, page, vma); 1612 folio_put(folio); 1613 } else if (!non_swap_entry(entry)) { 1614 /* Genuine swap entries, hence a private anon pages */ 1615 if (!should_zap_cows(details)) 1616 return 1; 1617 1618 nr = swap_pte_batch(pte, max_nr, ptent); 1619 rss[MM_SWAPENTS] -= nr; 1620 free_swap_and_cache_nr(entry, nr); 1621 } else if (is_migration_entry(entry)) { 1622 struct folio *folio = pfn_swap_entry_folio(entry); 1623 1624 if (!should_zap_folio(details, folio)) 1625 return 1; 1626 rss[mm_counter(folio)]--; 1627 } else if (pte_marker_entry_uffd_wp(entry)) { 1628 /* 1629 * For anon: always drop the marker; for file: only 1630 * drop the marker if explicitly requested. 1631 */ 1632 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1633 return 1; 1634 } else if (is_guard_swp_entry(entry)) { 1635 /* 1636 * Ordinary zapping should not remove guard PTE 1637 * markers. Only do so if we should remove PTE markers 1638 * in general. 1639 */ 1640 if (!zap_drop_markers(details)) 1641 return 1; 1642 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { 1643 if (!should_zap_cows(details)) 1644 return 1; 1645 } else { 1646 /* We should have covered all the swap entry types */ 1647 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1648 WARN_ON_ONCE(1); 1649 } 1650 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1651 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1652 1653 return nr; 1654 } 1655 1656 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1657 struct vm_area_struct *vma, pte_t *pte, 1658 unsigned long addr, unsigned long end, 1659 struct zap_details *details, int *rss, 1660 bool *force_flush, bool *force_break, 1661 bool *any_skipped) 1662 { 1663 pte_t ptent = ptep_get(pte); 1664 int max_nr = (end - addr) / PAGE_SIZE; 1665 int nr = 0; 1666 1667 /* Skip all consecutive none ptes */ 1668 if (pte_none(ptent)) { 1669 for (nr = 1; nr < max_nr; nr++) { 1670 ptent = ptep_get(pte + nr); 1671 if (!pte_none(ptent)) 1672 break; 1673 } 1674 max_nr -= nr; 1675 if (!max_nr) 1676 return nr; 1677 pte += nr; 1678 addr += nr * PAGE_SIZE; 1679 } 1680 1681 if (pte_present(ptent)) 1682 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1683 details, rss, force_flush, force_break, 1684 any_skipped); 1685 else 1686 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1687 details, rss, any_skipped); 1688 1689 return nr; 1690 } 1691 1692 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1693 struct vm_area_struct *vma, pmd_t *pmd, 1694 unsigned long addr, unsigned long end, 1695 struct zap_details *details) 1696 { 1697 bool force_flush = false, force_break = false; 1698 struct mm_struct *mm = tlb->mm; 1699 int rss[NR_MM_COUNTERS]; 1700 spinlock_t *ptl; 1701 pte_t *start_pte; 1702 pte_t *pte; 1703 pmd_t pmdval; 1704 unsigned long start = addr; 1705 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1706 bool direct_reclaim = true; 1707 int nr; 1708 1709 retry: 1710 tlb_change_page_size(tlb, PAGE_SIZE); 1711 init_rss_vec(rss); 1712 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1713 if (!pte) 1714 return addr; 1715 1716 flush_tlb_batched_pending(mm); 1717 arch_enter_lazy_mmu_mode(); 1718 do { 1719 bool any_skipped = false; 1720 1721 if (need_resched()) { 1722 direct_reclaim = false; 1723 break; 1724 } 1725 1726 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1727 &force_flush, &force_break, &any_skipped); 1728 if (any_skipped) 1729 can_reclaim_pt = false; 1730 if (unlikely(force_break)) { 1731 addr += nr * PAGE_SIZE; 1732 direct_reclaim = false; 1733 break; 1734 } 1735 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1736 1737 /* 1738 * Fast path: try to hold the pmd lock and unmap the PTE page. 1739 * 1740 * If the pte lock was released midway (retry case), or if the attempt 1741 * to hold the pmd lock failed, then we need to recheck all pte entries 1742 * to ensure they are still none, thereby preventing the pte entries 1743 * from being repopulated by another thread. 1744 */ 1745 if (can_reclaim_pt && direct_reclaim && addr == end) 1746 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1747 1748 add_mm_rss_vec(mm, rss); 1749 arch_leave_lazy_mmu_mode(); 1750 1751 /* Do the actual TLB flush before dropping ptl */ 1752 if (force_flush) { 1753 tlb_flush_mmu_tlbonly(tlb); 1754 tlb_flush_rmaps(tlb, vma); 1755 } 1756 pte_unmap_unlock(start_pte, ptl); 1757 1758 /* 1759 * If we forced a TLB flush (either due to running out of 1760 * batch buffers or because we needed to flush dirty TLB 1761 * entries before releasing the ptl), free the batched 1762 * memory too. Come back again if we didn't do everything. 1763 */ 1764 if (force_flush) 1765 tlb_flush_mmu(tlb); 1766 1767 if (addr != end) { 1768 cond_resched(); 1769 force_flush = false; 1770 force_break = false; 1771 goto retry; 1772 } 1773 1774 if (can_reclaim_pt) { 1775 if (direct_reclaim) 1776 free_pte(mm, start, tlb, pmdval); 1777 else 1778 try_to_free_pte(mm, pmd, start, tlb); 1779 } 1780 1781 return addr; 1782 } 1783 1784 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1785 struct vm_area_struct *vma, pud_t *pud, 1786 unsigned long addr, unsigned long end, 1787 struct zap_details *details) 1788 { 1789 pmd_t *pmd; 1790 unsigned long next; 1791 1792 pmd = pmd_offset(pud, addr); 1793 do { 1794 next = pmd_addr_end(addr, end); 1795 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd)) { 1796 if (next - addr != HPAGE_PMD_SIZE) 1797 __split_huge_pmd(vma, pmd, addr, false); 1798 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1799 addr = next; 1800 continue; 1801 } 1802 /* fall through */ 1803 } else if (details && details->single_folio && 1804 folio_test_pmd_mappable(details->single_folio) && 1805 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1806 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1807 /* 1808 * Take and drop THP pmd lock so that we cannot return 1809 * prematurely, while zap_huge_pmd() has cleared *pmd, 1810 * but not yet decremented compound_mapcount(). 1811 */ 1812 spin_unlock(ptl); 1813 } 1814 if (pmd_none(*pmd)) { 1815 addr = next; 1816 continue; 1817 } 1818 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1819 if (addr != next) 1820 pmd--; 1821 } while (pmd++, cond_resched(), addr != end); 1822 1823 return addr; 1824 } 1825 1826 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1827 struct vm_area_struct *vma, p4d_t *p4d, 1828 unsigned long addr, unsigned long end, 1829 struct zap_details *details) 1830 { 1831 pud_t *pud; 1832 unsigned long next; 1833 1834 pud = pud_offset(p4d, addr); 1835 do { 1836 next = pud_addr_end(addr, end); 1837 if (pud_trans_huge(*pud)) { 1838 if (next - addr != HPAGE_PUD_SIZE) { 1839 mmap_assert_locked(tlb->mm); 1840 split_huge_pud(vma, pud, addr); 1841 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1842 goto next; 1843 /* fall through */ 1844 } 1845 if (pud_none_or_clear_bad(pud)) 1846 continue; 1847 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1848 next: 1849 cond_resched(); 1850 } while (pud++, addr = next, addr != end); 1851 1852 return addr; 1853 } 1854 1855 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1856 struct vm_area_struct *vma, pgd_t *pgd, 1857 unsigned long addr, unsigned long end, 1858 struct zap_details *details) 1859 { 1860 p4d_t *p4d; 1861 unsigned long next; 1862 1863 p4d = p4d_offset(pgd, addr); 1864 do { 1865 next = p4d_addr_end(addr, end); 1866 if (p4d_none_or_clear_bad(p4d)) 1867 continue; 1868 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1869 } while (p4d++, addr = next, addr != end); 1870 1871 return addr; 1872 } 1873 1874 void unmap_page_range(struct mmu_gather *tlb, 1875 struct vm_area_struct *vma, 1876 unsigned long addr, unsigned long end, 1877 struct zap_details *details) 1878 { 1879 pgd_t *pgd; 1880 unsigned long next; 1881 1882 BUG_ON(addr >= end); 1883 tlb_start_vma(tlb, vma); 1884 pgd = pgd_offset(vma->vm_mm, addr); 1885 do { 1886 next = pgd_addr_end(addr, end); 1887 if (pgd_none_or_clear_bad(pgd)) 1888 continue; 1889 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1890 } while (pgd++, addr = next, addr != end); 1891 tlb_end_vma(tlb, vma); 1892 } 1893 1894 1895 static void unmap_single_vma(struct mmu_gather *tlb, 1896 struct vm_area_struct *vma, unsigned long start_addr, 1897 unsigned long end_addr, 1898 struct zap_details *details, bool mm_wr_locked) 1899 { 1900 unsigned long start = max(vma->vm_start, start_addr); 1901 unsigned long end; 1902 1903 if (start >= vma->vm_end) 1904 return; 1905 end = min(vma->vm_end, end_addr); 1906 if (end <= vma->vm_start) 1907 return; 1908 1909 if (vma->vm_file) 1910 uprobe_munmap(vma, start, end); 1911 1912 if (start != end) { 1913 if (unlikely(is_vm_hugetlb_page(vma))) { 1914 /* 1915 * It is undesirable to test vma->vm_file as it 1916 * should be non-null for valid hugetlb area. 1917 * However, vm_file will be NULL in the error 1918 * cleanup path of mmap_region. When 1919 * hugetlbfs ->mmap method fails, 1920 * mmap_region() nullifies vma->vm_file 1921 * before calling this function to clean up. 1922 * Since no pte has actually been setup, it is 1923 * safe to do nothing in this case. 1924 */ 1925 if (vma->vm_file) { 1926 zap_flags_t zap_flags = details ? 1927 details->zap_flags : 0; 1928 __unmap_hugepage_range(tlb, vma, start, end, 1929 NULL, zap_flags); 1930 } 1931 } else 1932 unmap_page_range(tlb, vma, start, end, details); 1933 } 1934 } 1935 1936 /** 1937 * unmap_vmas - unmap a range of memory covered by a list of vma's 1938 * @tlb: address of the caller's struct mmu_gather 1939 * @mas: the maple state 1940 * @vma: the starting vma 1941 * @start_addr: virtual address at which to start unmapping 1942 * @end_addr: virtual address at which to end unmapping 1943 * @tree_end: The maximum index to check 1944 * @mm_wr_locked: lock flag 1945 * 1946 * Unmap all pages in the vma list. 1947 * 1948 * Only addresses between `start' and `end' will be unmapped. 1949 * 1950 * The VMA list must be sorted in ascending virtual address order. 1951 * 1952 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1953 * range after unmap_vmas() returns. So the only responsibility here is to 1954 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1955 * drops the lock and schedules. 1956 */ 1957 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1958 struct vm_area_struct *vma, unsigned long start_addr, 1959 unsigned long end_addr, unsigned long tree_end, 1960 bool mm_wr_locked) 1961 { 1962 struct mmu_notifier_range range; 1963 struct zap_details details = { 1964 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1965 /* Careful - we need to zap private pages too! */ 1966 .even_cows = true, 1967 }; 1968 1969 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1970 start_addr, end_addr); 1971 mmu_notifier_invalidate_range_start(&range); 1972 do { 1973 unsigned long start = start_addr; 1974 unsigned long end = end_addr; 1975 hugetlb_zap_begin(vma, &start, &end); 1976 unmap_single_vma(tlb, vma, start, end, &details, 1977 mm_wr_locked); 1978 hugetlb_zap_end(vma, &details); 1979 vma = mas_find(mas, tree_end - 1); 1980 } while (vma && likely(!xa_is_zero(vma))); 1981 mmu_notifier_invalidate_range_end(&range); 1982 } 1983 1984 /** 1985 * zap_page_range_single_batched - remove user pages in a given range 1986 * @tlb: pointer to the caller's struct mmu_gather 1987 * @vma: vm_area_struct holding the applicable pages 1988 * @address: starting address of pages to remove 1989 * @size: number of bytes to remove 1990 * @details: details of shared cache invalidation 1991 * 1992 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for 1993 * hugetlb, @tlb is flushed and re-initialized by this function. 1994 */ 1995 void zap_page_range_single_batched(struct mmu_gather *tlb, 1996 struct vm_area_struct *vma, unsigned long address, 1997 unsigned long size, struct zap_details *details) 1998 { 1999 const unsigned long end = address + size; 2000 struct mmu_notifier_range range; 2001 2002 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm); 2003 2004 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2005 address, end); 2006 hugetlb_zap_begin(vma, &range.start, &range.end); 2007 update_hiwater_rss(vma->vm_mm); 2008 mmu_notifier_invalidate_range_start(&range); 2009 /* 2010 * unmap 'address-end' not 'range.start-range.end' as range 2011 * could have been expanded for hugetlb pmd sharing. 2012 */ 2013 unmap_single_vma(tlb, vma, address, end, details, false); 2014 mmu_notifier_invalidate_range_end(&range); 2015 if (is_vm_hugetlb_page(vma)) { 2016 /* 2017 * flush tlb and free resources before hugetlb_zap_end(), to 2018 * avoid concurrent page faults' allocation failure. 2019 */ 2020 tlb_finish_mmu(tlb); 2021 hugetlb_zap_end(vma, details); 2022 tlb_gather_mmu(tlb, vma->vm_mm); 2023 } 2024 } 2025 2026 /** 2027 * zap_page_range_single - remove user pages in a given range 2028 * @vma: vm_area_struct holding the applicable pages 2029 * @address: starting address of pages to zap 2030 * @size: number of bytes to zap 2031 * @details: details of shared cache invalidation 2032 * 2033 * The range must fit into one VMA. 2034 */ 2035 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2036 unsigned long size, struct zap_details *details) 2037 { 2038 struct mmu_gather tlb; 2039 2040 tlb_gather_mmu(&tlb, vma->vm_mm); 2041 zap_page_range_single_batched(&tlb, vma, address, size, details); 2042 tlb_finish_mmu(&tlb); 2043 } 2044 2045 /** 2046 * zap_vma_ptes - remove ptes mapping the vma 2047 * @vma: vm_area_struct holding ptes to be zapped 2048 * @address: starting address of pages to zap 2049 * @size: number of bytes to zap 2050 * 2051 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2052 * 2053 * The entire address range must be fully contained within the vma. 2054 * 2055 */ 2056 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2057 unsigned long size) 2058 { 2059 if (!range_in_vma(vma, address, address + size) || 2060 !(vma->vm_flags & VM_PFNMAP)) 2061 return; 2062 2063 zap_page_range_single(vma, address, size, NULL); 2064 } 2065 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2066 2067 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2068 { 2069 pgd_t *pgd; 2070 p4d_t *p4d; 2071 pud_t *pud; 2072 pmd_t *pmd; 2073 2074 pgd = pgd_offset(mm, addr); 2075 p4d = p4d_alloc(mm, pgd, addr); 2076 if (!p4d) 2077 return NULL; 2078 pud = pud_alloc(mm, p4d, addr); 2079 if (!pud) 2080 return NULL; 2081 pmd = pmd_alloc(mm, pud, addr); 2082 if (!pmd) 2083 return NULL; 2084 2085 VM_BUG_ON(pmd_trans_huge(*pmd)); 2086 return pmd; 2087 } 2088 2089 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2090 spinlock_t **ptl) 2091 { 2092 pmd_t *pmd = walk_to_pmd(mm, addr); 2093 2094 if (!pmd) 2095 return NULL; 2096 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2097 } 2098 2099 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2100 { 2101 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2102 /* 2103 * Whoever wants to forbid the zeropage after some zeropages 2104 * might already have been mapped has to scan the page tables and 2105 * bail out on any zeropages. Zeropages in COW mappings can 2106 * be unshared using FAULT_FLAG_UNSHARE faults. 2107 */ 2108 if (mm_forbids_zeropage(vma->vm_mm)) 2109 return false; 2110 /* zeropages in COW mappings are common and unproblematic. */ 2111 if (is_cow_mapping(vma->vm_flags)) 2112 return true; 2113 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2114 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2115 return true; 2116 /* 2117 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2118 * find the shared zeropage and longterm-pin it, which would 2119 * be problematic as soon as the zeropage gets replaced by a different 2120 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2121 * now differ to what GUP looked up. FSDAX is incompatible to 2122 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2123 * check_vma_flags). 2124 */ 2125 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2126 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2127 } 2128 2129 static int validate_page_before_insert(struct vm_area_struct *vma, 2130 struct page *page) 2131 { 2132 struct folio *folio = page_folio(page); 2133 2134 if (!folio_ref_count(folio)) 2135 return -EINVAL; 2136 if (unlikely(is_zero_folio(folio))) { 2137 if (!vm_mixed_zeropage_allowed(vma)) 2138 return -EINVAL; 2139 return 0; 2140 } 2141 if (folio_test_anon(folio) || folio_test_slab(folio) || 2142 page_has_type(page)) 2143 return -EINVAL; 2144 flush_dcache_folio(folio); 2145 return 0; 2146 } 2147 2148 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2149 unsigned long addr, struct page *page, 2150 pgprot_t prot, bool mkwrite) 2151 { 2152 struct folio *folio = page_folio(page); 2153 pte_t pteval = ptep_get(pte); 2154 2155 if (!pte_none(pteval)) { 2156 if (!mkwrite) 2157 return -EBUSY; 2158 2159 /* see insert_pfn(). */ 2160 if (pte_pfn(pteval) != page_to_pfn(page)) { 2161 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval))); 2162 return -EFAULT; 2163 } 2164 pteval = maybe_mkwrite(pteval, vma); 2165 pteval = pte_mkyoung(pteval); 2166 if (ptep_set_access_flags(vma, addr, pte, pteval, 1)) 2167 update_mmu_cache(vma, addr, pte); 2168 return 0; 2169 } 2170 2171 /* Ok, finally just insert the thing.. */ 2172 pteval = mk_pte(page, prot); 2173 if (unlikely(is_zero_folio(folio))) { 2174 pteval = pte_mkspecial(pteval); 2175 } else { 2176 folio_get(folio); 2177 pteval = mk_pte(page, prot); 2178 if (mkwrite) { 2179 pteval = pte_mkyoung(pteval); 2180 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma); 2181 } 2182 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2183 folio_add_file_rmap_pte(folio, page, vma); 2184 } 2185 set_pte_at(vma->vm_mm, addr, pte, pteval); 2186 return 0; 2187 } 2188 2189 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2190 struct page *page, pgprot_t prot, bool mkwrite) 2191 { 2192 int retval; 2193 pte_t *pte; 2194 spinlock_t *ptl; 2195 2196 retval = validate_page_before_insert(vma, page); 2197 if (retval) 2198 goto out; 2199 retval = -ENOMEM; 2200 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2201 if (!pte) 2202 goto out; 2203 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot, 2204 mkwrite); 2205 pte_unmap_unlock(pte, ptl); 2206 out: 2207 return retval; 2208 } 2209 2210 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2211 unsigned long addr, struct page *page, pgprot_t prot) 2212 { 2213 int err; 2214 2215 err = validate_page_before_insert(vma, page); 2216 if (err) 2217 return err; 2218 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false); 2219 } 2220 2221 /* insert_pages() amortizes the cost of spinlock operations 2222 * when inserting pages in a loop. 2223 */ 2224 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2225 struct page **pages, unsigned long *num, pgprot_t prot) 2226 { 2227 pmd_t *pmd = NULL; 2228 pte_t *start_pte, *pte; 2229 spinlock_t *pte_lock; 2230 struct mm_struct *const mm = vma->vm_mm; 2231 unsigned long curr_page_idx = 0; 2232 unsigned long remaining_pages_total = *num; 2233 unsigned long pages_to_write_in_pmd; 2234 int ret; 2235 more: 2236 ret = -EFAULT; 2237 pmd = walk_to_pmd(mm, addr); 2238 if (!pmd) 2239 goto out; 2240 2241 pages_to_write_in_pmd = min_t(unsigned long, 2242 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2243 2244 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2245 ret = -ENOMEM; 2246 if (pte_alloc(mm, pmd)) 2247 goto out; 2248 2249 while (pages_to_write_in_pmd) { 2250 int pte_idx = 0; 2251 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2252 2253 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2254 if (!start_pte) { 2255 ret = -EFAULT; 2256 goto out; 2257 } 2258 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2259 int err = insert_page_in_batch_locked(vma, pte, 2260 addr, pages[curr_page_idx], prot); 2261 if (unlikely(err)) { 2262 pte_unmap_unlock(start_pte, pte_lock); 2263 ret = err; 2264 remaining_pages_total -= pte_idx; 2265 goto out; 2266 } 2267 addr += PAGE_SIZE; 2268 ++curr_page_idx; 2269 } 2270 pte_unmap_unlock(start_pte, pte_lock); 2271 pages_to_write_in_pmd -= batch_size; 2272 remaining_pages_total -= batch_size; 2273 } 2274 if (remaining_pages_total) 2275 goto more; 2276 ret = 0; 2277 out: 2278 *num = remaining_pages_total; 2279 return ret; 2280 } 2281 2282 /** 2283 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2284 * @vma: user vma to map to 2285 * @addr: target start user address of these pages 2286 * @pages: source kernel pages 2287 * @num: in: number of pages to map. out: number of pages that were *not* 2288 * mapped. (0 means all pages were successfully mapped). 2289 * 2290 * Preferred over vm_insert_page() when inserting multiple pages. 2291 * 2292 * In case of error, we may have mapped a subset of the provided 2293 * pages. It is the caller's responsibility to account for this case. 2294 * 2295 * The same restrictions apply as in vm_insert_page(). 2296 */ 2297 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2298 struct page **pages, unsigned long *num) 2299 { 2300 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2301 2302 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2303 return -EFAULT; 2304 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2305 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2306 BUG_ON(vma->vm_flags & VM_PFNMAP); 2307 vm_flags_set(vma, VM_MIXEDMAP); 2308 } 2309 /* Defer page refcount checking till we're about to map that page. */ 2310 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2311 } 2312 EXPORT_SYMBOL(vm_insert_pages); 2313 2314 /** 2315 * vm_insert_page - insert single page into user vma 2316 * @vma: user vma to map to 2317 * @addr: target user address of this page 2318 * @page: source kernel page 2319 * 2320 * This allows drivers to insert individual pages they've allocated 2321 * into a user vma. The zeropage is supported in some VMAs, 2322 * see vm_mixed_zeropage_allowed(). 2323 * 2324 * The page has to be a nice clean _individual_ kernel allocation. 2325 * If you allocate a compound page, you need to have marked it as 2326 * such (__GFP_COMP), or manually just split the page up yourself 2327 * (see split_page()). 2328 * 2329 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2330 * took an arbitrary page protection parameter. This doesn't allow 2331 * that. Your vma protection will have to be set up correctly, which 2332 * means that if you want a shared writable mapping, you'd better 2333 * ask for a shared writable mapping! 2334 * 2335 * The page does not need to be reserved. 2336 * 2337 * Usually this function is called from f_op->mmap() handler 2338 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2339 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2340 * function from other places, for example from page-fault handler. 2341 * 2342 * Return: %0 on success, negative error code otherwise. 2343 */ 2344 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2345 struct page *page) 2346 { 2347 if (addr < vma->vm_start || addr >= vma->vm_end) 2348 return -EFAULT; 2349 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2350 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2351 BUG_ON(vma->vm_flags & VM_PFNMAP); 2352 vm_flags_set(vma, VM_MIXEDMAP); 2353 } 2354 return insert_page(vma, addr, page, vma->vm_page_prot, false); 2355 } 2356 EXPORT_SYMBOL(vm_insert_page); 2357 2358 /* 2359 * __vm_map_pages - maps range of kernel pages into user vma 2360 * @vma: user vma to map to 2361 * @pages: pointer to array of source kernel pages 2362 * @num: number of pages in page array 2363 * @offset: user's requested vm_pgoff 2364 * 2365 * This allows drivers to map range of kernel pages into a user vma. 2366 * The zeropage is supported in some VMAs, see 2367 * vm_mixed_zeropage_allowed(). 2368 * 2369 * Return: 0 on success and error code otherwise. 2370 */ 2371 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2372 unsigned long num, unsigned long offset) 2373 { 2374 unsigned long count = vma_pages(vma); 2375 unsigned long uaddr = vma->vm_start; 2376 int ret, i; 2377 2378 /* Fail if the user requested offset is beyond the end of the object */ 2379 if (offset >= num) 2380 return -ENXIO; 2381 2382 /* Fail if the user requested size exceeds available object size */ 2383 if (count > num - offset) 2384 return -ENXIO; 2385 2386 for (i = 0; i < count; i++) { 2387 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2388 if (ret < 0) 2389 return ret; 2390 uaddr += PAGE_SIZE; 2391 } 2392 2393 return 0; 2394 } 2395 2396 /** 2397 * vm_map_pages - maps range of kernel pages starts with non zero offset 2398 * @vma: user vma to map to 2399 * @pages: pointer to array of source kernel pages 2400 * @num: number of pages in page array 2401 * 2402 * Maps an object consisting of @num pages, catering for the user's 2403 * requested vm_pgoff 2404 * 2405 * If we fail to insert any page into the vma, the function will return 2406 * immediately leaving any previously inserted pages present. Callers 2407 * from the mmap handler may immediately return the error as their caller 2408 * will destroy the vma, removing any successfully inserted pages. Other 2409 * callers should make their own arrangements for calling unmap_region(). 2410 * 2411 * Context: Process context. Called by mmap handlers. 2412 * Return: 0 on success and error code otherwise. 2413 */ 2414 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2415 unsigned long num) 2416 { 2417 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2418 } 2419 EXPORT_SYMBOL(vm_map_pages); 2420 2421 /** 2422 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2423 * @vma: user vma to map to 2424 * @pages: pointer to array of source kernel pages 2425 * @num: number of pages in page array 2426 * 2427 * Similar to vm_map_pages(), except that it explicitly sets the offset 2428 * to 0. This function is intended for the drivers that did not consider 2429 * vm_pgoff. 2430 * 2431 * Context: Process context. Called by mmap handlers. 2432 * Return: 0 on success and error code otherwise. 2433 */ 2434 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2435 unsigned long num) 2436 { 2437 return __vm_map_pages(vma, pages, num, 0); 2438 } 2439 EXPORT_SYMBOL(vm_map_pages_zero); 2440 2441 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2442 unsigned long pfn, pgprot_t prot, bool mkwrite) 2443 { 2444 struct mm_struct *mm = vma->vm_mm; 2445 pte_t *pte, entry; 2446 spinlock_t *ptl; 2447 2448 pte = get_locked_pte(mm, addr, &ptl); 2449 if (!pte) 2450 return VM_FAULT_OOM; 2451 entry = ptep_get(pte); 2452 if (!pte_none(entry)) { 2453 if (mkwrite) { 2454 /* 2455 * For read faults on private mappings the PFN passed 2456 * in may not match the PFN we have mapped if the 2457 * mapped PFN is a writeable COW page. In the mkwrite 2458 * case we are creating a writable PTE for a shared 2459 * mapping and we expect the PFNs to match. If they 2460 * don't match, we are likely racing with block 2461 * allocation and mapping invalidation so just skip the 2462 * update. 2463 */ 2464 if (pte_pfn(entry) != pfn) { 2465 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2466 goto out_unlock; 2467 } 2468 entry = pte_mkyoung(entry); 2469 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2470 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2471 update_mmu_cache(vma, addr, pte); 2472 } 2473 goto out_unlock; 2474 } 2475 2476 /* Ok, finally just insert the thing.. */ 2477 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2478 2479 if (mkwrite) { 2480 entry = pte_mkyoung(entry); 2481 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2482 } 2483 2484 set_pte_at(mm, addr, pte, entry); 2485 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2486 2487 out_unlock: 2488 pte_unmap_unlock(pte, ptl); 2489 return VM_FAULT_NOPAGE; 2490 } 2491 2492 /** 2493 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2494 * @vma: user vma to map to 2495 * @addr: target user address of this page 2496 * @pfn: source kernel pfn 2497 * @pgprot: pgprot flags for the inserted page 2498 * 2499 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2500 * to override pgprot on a per-page basis. 2501 * 2502 * This only makes sense for IO mappings, and it makes no sense for 2503 * COW mappings. In general, using multiple vmas is preferable; 2504 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2505 * impractical. 2506 * 2507 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2508 * caching- and encryption bits different than those of @vma->vm_page_prot, 2509 * because the caching- or encryption mode may not be known at mmap() time. 2510 * 2511 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2512 * to set caching and encryption bits for those vmas (except for COW pages). 2513 * This is ensured by core vm only modifying these page table entries using 2514 * functions that don't touch caching- or encryption bits, using pte_modify() 2515 * if needed. (See for example mprotect()). 2516 * 2517 * Also when new page-table entries are created, this is only done using the 2518 * fault() callback, and never using the value of vma->vm_page_prot, 2519 * except for page-table entries that point to anonymous pages as the result 2520 * of COW. 2521 * 2522 * Context: Process context. May allocate using %GFP_KERNEL. 2523 * Return: vm_fault_t value. 2524 */ 2525 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2526 unsigned long pfn, pgprot_t pgprot) 2527 { 2528 /* 2529 * Technically, architectures with pte_special can avoid all these 2530 * restrictions (same for remap_pfn_range). However we would like 2531 * consistency in testing and feature parity among all, so we should 2532 * try to keep these invariants in place for everybody. 2533 */ 2534 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2535 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2536 (VM_PFNMAP|VM_MIXEDMAP)); 2537 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2538 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2539 2540 if (addr < vma->vm_start || addr >= vma->vm_end) 2541 return VM_FAULT_SIGBUS; 2542 2543 if (!pfn_modify_allowed(pfn, pgprot)) 2544 return VM_FAULT_SIGBUS; 2545 2546 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2547 2548 return insert_pfn(vma, addr, pfn, pgprot, false); 2549 } 2550 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2551 2552 /** 2553 * vmf_insert_pfn - insert single pfn into user vma 2554 * @vma: user vma to map to 2555 * @addr: target user address of this page 2556 * @pfn: source kernel pfn 2557 * 2558 * Similar to vm_insert_page, this allows drivers to insert individual pages 2559 * they've allocated into a user vma. Same comments apply. 2560 * 2561 * This function should only be called from a vm_ops->fault handler, and 2562 * in that case the handler should return the result of this function. 2563 * 2564 * vma cannot be a COW mapping. 2565 * 2566 * As this is called only for pages that do not currently exist, we 2567 * do not need to flush old virtual caches or the TLB. 2568 * 2569 * Context: Process context. May allocate using %GFP_KERNEL. 2570 * Return: vm_fault_t value. 2571 */ 2572 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2573 unsigned long pfn) 2574 { 2575 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2576 } 2577 EXPORT_SYMBOL(vmf_insert_pfn); 2578 2579 static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn, 2580 bool mkwrite) 2581 { 2582 if (unlikely(is_zero_pfn(pfn)) && 2583 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2584 return false; 2585 /* these checks mirror the abort conditions in vm_normal_page */ 2586 if (vma->vm_flags & VM_MIXEDMAP) 2587 return true; 2588 if (is_zero_pfn(pfn)) 2589 return true; 2590 return false; 2591 } 2592 2593 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2594 unsigned long addr, unsigned long pfn, bool mkwrite) 2595 { 2596 pgprot_t pgprot = vma->vm_page_prot; 2597 int err; 2598 2599 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2600 return VM_FAULT_SIGBUS; 2601 2602 if (addr < vma->vm_start || addr >= vma->vm_end) 2603 return VM_FAULT_SIGBUS; 2604 2605 pfnmap_setup_cachemode_pfn(pfn, &pgprot); 2606 2607 if (!pfn_modify_allowed(pfn, pgprot)) 2608 return VM_FAULT_SIGBUS; 2609 2610 /* 2611 * If we don't have pte special, then we have to use the pfn_valid() 2612 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2613 * refcount the page if pfn_valid is true (hence insert_page rather 2614 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2615 * without pte special, it would there be refcounted as a normal page. 2616 */ 2617 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) { 2618 struct page *page; 2619 2620 /* 2621 * At this point we are committed to insert_page() 2622 * regardless of whether the caller specified flags that 2623 * result in pfn_t_has_page() == false. 2624 */ 2625 page = pfn_to_page(pfn); 2626 err = insert_page(vma, addr, page, pgprot, mkwrite); 2627 } else { 2628 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2629 } 2630 2631 if (err == -ENOMEM) 2632 return VM_FAULT_OOM; 2633 if (err < 0 && err != -EBUSY) 2634 return VM_FAULT_SIGBUS; 2635 2636 return VM_FAULT_NOPAGE; 2637 } 2638 2639 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 2640 bool write) 2641 { 2642 pgprot_t pgprot = vmf->vma->vm_page_prot; 2643 unsigned long addr = vmf->address; 2644 int err; 2645 2646 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end) 2647 return VM_FAULT_SIGBUS; 2648 2649 err = insert_page(vmf->vma, addr, page, pgprot, write); 2650 if (err == -ENOMEM) 2651 return VM_FAULT_OOM; 2652 if (err < 0 && err != -EBUSY) 2653 return VM_FAULT_SIGBUS; 2654 2655 return VM_FAULT_NOPAGE; 2656 } 2657 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite); 2658 2659 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2660 unsigned long pfn) 2661 { 2662 return __vm_insert_mixed(vma, addr, pfn, false); 2663 } 2664 EXPORT_SYMBOL(vmf_insert_mixed); 2665 2666 /* 2667 * If the insertion of PTE failed because someone else already added a 2668 * different entry in the mean time, we treat that as success as we assume 2669 * the same entry was actually inserted. 2670 */ 2671 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2672 unsigned long addr, unsigned long pfn) 2673 { 2674 return __vm_insert_mixed(vma, addr, pfn, true); 2675 } 2676 2677 /* 2678 * maps a range of physical memory into the requested pages. the old 2679 * mappings are removed. any references to nonexistent pages results 2680 * in null mappings (currently treated as "copy-on-access") 2681 */ 2682 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2683 unsigned long addr, unsigned long end, 2684 unsigned long pfn, pgprot_t prot) 2685 { 2686 pte_t *pte, *mapped_pte; 2687 spinlock_t *ptl; 2688 int err = 0; 2689 2690 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2691 if (!pte) 2692 return -ENOMEM; 2693 arch_enter_lazy_mmu_mode(); 2694 do { 2695 BUG_ON(!pte_none(ptep_get(pte))); 2696 if (!pfn_modify_allowed(pfn, prot)) { 2697 err = -EACCES; 2698 break; 2699 } 2700 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2701 pfn++; 2702 } while (pte++, addr += PAGE_SIZE, addr != end); 2703 arch_leave_lazy_mmu_mode(); 2704 pte_unmap_unlock(mapped_pte, ptl); 2705 return err; 2706 } 2707 2708 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2709 unsigned long addr, unsigned long end, 2710 unsigned long pfn, pgprot_t prot) 2711 { 2712 pmd_t *pmd; 2713 unsigned long next; 2714 int err; 2715 2716 pfn -= addr >> PAGE_SHIFT; 2717 pmd = pmd_alloc(mm, pud, addr); 2718 if (!pmd) 2719 return -ENOMEM; 2720 VM_BUG_ON(pmd_trans_huge(*pmd)); 2721 do { 2722 next = pmd_addr_end(addr, end); 2723 err = remap_pte_range(mm, pmd, addr, next, 2724 pfn + (addr >> PAGE_SHIFT), prot); 2725 if (err) 2726 return err; 2727 } while (pmd++, addr = next, addr != end); 2728 return 0; 2729 } 2730 2731 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2732 unsigned long addr, unsigned long end, 2733 unsigned long pfn, pgprot_t prot) 2734 { 2735 pud_t *pud; 2736 unsigned long next; 2737 int err; 2738 2739 pfn -= addr >> PAGE_SHIFT; 2740 pud = pud_alloc(mm, p4d, addr); 2741 if (!pud) 2742 return -ENOMEM; 2743 do { 2744 next = pud_addr_end(addr, end); 2745 err = remap_pmd_range(mm, pud, addr, next, 2746 pfn + (addr >> PAGE_SHIFT), prot); 2747 if (err) 2748 return err; 2749 } while (pud++, addr = next, addr != end); 2750 return 0; 2751 } 2752 2753 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2754 unsigned long addr, unsigned long end, 2755 unsigned long pfn, pgprot_t prot) 2756 { 2757 p4d_t *p4d; 2758 unsigned long next; 2759 int err; 2760 2761 pfn -= addr >> PAGE_SHIFT; 2762 p4d = p4d_alloc(mm, pgd, addr); 2763 if (!p4d) 2764 return -ENOMEM; 2765 do { 2766 next = p4d_addr_end(addr, end); 2767 err = remap_pud_range(mm, p4d, addr, next, 2768 pfn + (addr >> PAGE_SHIFT), prot); 2769 if (err) 2770 return err; 2771 } while (p4d++, addr = next, addr != end); 2772 return 0; 2773 } 2774 2775 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2776 unsigned long pfn, unsigned long size, pgprot_t prot) 2777 { 2778 pgd_t *pgd; 2779 unsigned long next; 2780 unsigned long end = addr + PAGE_ALIGN(size); 2781 struct mm_struct *mm = vma->vm_mm; 2782 int err; 2783 2784 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2785 return -EINVAL; 2786 2787 /* 2788 * Physically remapped pages are special. Tell the 2789 * rest of the world about it: 2790 * VM_IO tells people not to look at these pages 2791 * (accesses can have side effects). 2792 * VM_PFNMAP tells the core MM that the base pages are just 2793 * raw PFN mappings, and do not have a "struct page" associated 2794 * with them. 2795 * VM_DONTEXPAND 2796 * Disable vma merging and expanding with mremap(). 2797 * VM_DONTDUMP 2798 * Omit vma from core dump, even when VM_IO turned off. 2799 * 2800 * There's a horrible special case to handle copy-on-write 2801 * behaviour that some programs depend on. We mark the "original" 2802 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2803 * See vm_normal_page() for details. 2804 */ 2805 if (is_cow_mapping(vma->vm_flags)) { 2806 if (addr != vma->vm_start || end != vma->vm_end) 2807 return -EINVAL; 2808 vma->vm_pgoff = pfn; 2809 } 2810 2811 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2812 2813 BUG_ON(addr >= end); 2814 pfn -= addr >> PAGE_SHIFT; 2815 pgd = pgd_offset(mm, addr); 2816 flush_cache_range(vma, addr, end); 2817 do { 2818 next = pgd_addr_end(addr, end); 2819 err = remap_p4d_range(mm, pgd, addr, next, 2820 pfn + (addr >> PAGE_SHIFT), prot); 2821 if (err) 2822 return err; 2823 } while (pgd++, addr = next, addr != end); 2824 2825 return 0; 2826 } 2827 2828 /* 2829 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2830 * must have pre-validated the caching bits of the pgprot_t. 2831 */ 2832 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2833 unsigned long pfn, unsigned long size, pgprot_t prot) 2834 { 2835 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2836 2837 if (!error) 2838 return 0; 2839 2840 /* 2841 * A partial pfn range mapping is dangerous: it does not 2842 * maintain page reference counts, and callers may free 2843 * pages due to the error. So zap it early. 2844 */ 2845 zap_page_range_single(vma, addr, size, NULL); 2846 return error; 2847 } 2848 2849 #ifdef __HAVE_PFNMAP_TRACKING 2850 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn, 2851 unsigned long size, pgprot_t *prot) 2852 { 2853 struct pfnmap_track_ctx *ctx; 2854 2855 if (pfnmap_track(pfn, size, prot)) 2856 return ERR_PTR(-EINVAL); 2857 2858 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 2859 if (unlikely(!ctx)) { 2860 pfnmap_untrack(pfn, size); 2861 return ERR_PTR(-ENOMEM); 2862 } 2863 2864 ctx->pfn = pfn; 2865 ctx->size = size; 2866 kref_init(&ctx->kref); 2867 return ctx; 2868 } 2869 2870 void pfnmap_track_ctx_release(struct kref *ref) 2871 { 2872 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref); 2873 2874 pfnmap_untrack(ctx->pfn, ctx->size); 2875 kfree(ctx); 2876 } 2877 #endif /* __HAVE_PFNMAP_TRACKING */ 2878 2879 /** 2880 * remap_pfn_range - remap kernel memory to userspace 2881 * @vma: user vma to map to 2882 * @addr: target page aligned user address to start at 2883 * @pfn: page frame number of kernel physical memory address 2884 * @size: size of mapping area 2885 * @prot: page protection flags for this mapping 2886 * 2887 * Note: this is only safe if the mm semaphore is held when called. 2888 * 2889 * Return: %0 on success, negative error code otherwise. 2890 */ 2891 #ifdef __HAVE_PFNMAP_TRACKING 2892 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2893 unsigned long pfn, unsigned long size, pgprot_t prot) 2894 { 2895 struct pfnmap_track_ctx *ctx = NULL; 2896 int err; 2897 2898 size = PAGE_ALIGN(size); 2899 2900 /* 2901 * If we cover the full VMA, we'll perform actual tracking, and 2902 * remember to untrack when the last reference to our tracking 2903 * context from a VMA goes away. We'll keep tracking the whole pfn 2904 * range even during VMA splits and partial unmapping. 2905 * 2906 * If we only cover parts of the VMA, we'll only setup the cachemode 2907 * in the pgprot for the pfn range. 2908 */ 2909 if (addr == vma->vm_start && addr + size == vma->vm_end) { 2910 if (vma->pfnmap_track_ctx) 2911 return -EINVAL; 2912 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot); 2913 if (IS_ERR(ctx)) 2914 return PTR_ERR(ctx); 2915 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) { 2916 return -EINVAL; 2917 } 2918 2919 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2920 if (ctx) { 2921 if (err) 2922 kref_put(&ctx->kref, pfnmap_track_ctx_release); 2923 else 2924 vma->pfnmap_track_ctx = ctx; 2925 } 2926 return err; 2927 } 2928 2929 #else 2930 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2931 unsigned long pfn, unsigned long size, pgprot_t prot) 2932 { 2933 return remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2934 } 2935 #endif 2936 EXPORT_SYMBOL(remap_pfn_range); 2937 2938 /** 2939 * vm_iomap_memory - remap memory to userspace 2940 * @vma: user vma to map to 2941 * @start: start of the physical memory to be mapped 2942 * @len: size of area 2943 * 2944 * This is a simplified io_remap_pfn_range() for common driver use. The 2945 * driver just needs to give us the physical memory range to be mapped, 2946 * we'll figure out the rest from the vma information. 2947 * 2948 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2949 * whatever write-combining details or similar. 2950 * 2951 * Return: %0 on success, negative error code otherwise. 2952 */ 2953 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2954 { 2955 unsigned long vm_len, pfn, pages; 2956 2957 /* Check that the physical memory area passed in looks valid */ 2958 if (start + len < start) 2959 return -EINVAL; 2960 /* 2961 * You *really* shouldn't map things that aren't page-aligned, 2962 * but we've historically allowed it because IO memory might 2963 * just have smaller alignment. 2964 */ 2965 len += start & ~PAGE_MASK; 2966 pfn = start >> PAGE_SHIFT; 2967 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2968 if (pfn + pages < pfn) 2969 return -EINVAL; 2970 2971 /* We start the mapping 'vm_pgoff' pages into the area */ 2972 if (vma->vm_pgoff > pages) 2973 return -EINVAL; 2974 pfn += vma->vm_pgoff; 2975 pages -= vma->vm_pgoff; 2976 2977 /* Can we fit all of the mapping? */ 2978 vm_len = vma->vm_end - vma->vm_start; 2979 if (vm_len >> PAGE_SHIFT > pages) 2980 return -EINVAL; 2981 2982 /* Ok, let it rip */ 2983 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2984 } 2985 EXPORT_SYMBOL(vm_iomap_memory); 2986 2987 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2988 unsigned long addr, unsigned long end, 2989 pte_fn_t fn, void *data, bool create, 2990 pgtbl_mod_mask *mask) 2991 { 2992 pte_t *pte, *mapped_pte; 2993 int err = 0; 2994 spinlock_t *ptl; 2995 2996 if (create) { 2997 mapped_pte = pte = (mm == &init_mm) ? 2998 pte_alloc_kernel_track(pmd, addr, mask) : 2999 pte_alloc_map_lock(mm, pmd, addr, &ptl); 3000 if (!pte) 3001 return -ENOMEM; 3002 } else { 3003 mapped_pte = pte = (mm == &init_mm) ? 3004 pte_offset_kernel(pmd, addr) : 3005 pte_offset_map_lock(mm, pmd, addr, &ptl); 3006 if (!pte) 3007 return -EINVAL; 3008 } 3009 3010 arch_enter_lazy_mmu_mode(); 3011 3012 if (fn) { 3013 do { 3014 if (create || !pte_none(ptep_get(pte))) { 3015 err = fn(pte, addr, data); 3016 if (err) 3017 break; 3018 } 3019 } while (pte++, addr += PAGE_SIZE, addr != end); 3020 } 3021 *mask |= PGTBL_PTE_MODIFIED; 3022 3023 arch_leave_lazy_mmu_mode(); 3024 3025 if (mm != &init_mm) 3026 pte_unmap_unlock(mapped_pte, ptl); 3027 return err; 3028 } 3029 3030 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 3031 unsigned long addr, unsigned long end, 3032 pte_fn_t fn, void *data, bool create, 3033 pgtbl_mod_mask *mask) 3034 { 3035 pmd_t *pmd; 3036 unsigned long next; 3037 int err = 0; 3038 3039 BUG_ON(pud_leaf(*pud)); 3040 3041 if (create) { 3042 pmd = pmd_alloc_track(mm, pud, addr, mask); 3043 if (!pmd) 3044 return -ENOMEM; 3045 } else { 3046 pmd = pmd_offset(pud, addr); 3047 } 3048 do { 3049 next = pmd_addr_end(addr, end); 3050 if (pmd_none(*pmd) && !create) 3051 continue; 3052 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 3053 return -EINVAL; 3054 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 3055 if (!create) 3056 continue; 3057 pmd_clear_bad(pmd); 3058 } 3059 err = apply_to_pte_range(mm, pmd, addr, next, 3060 fn, data, create, mask); 3061 if (err) 3062 break; 3063 } while (pmd++, addr = next, addr != end); 3064 3065 return err; 3066 } 3067 3068 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 3069 unsigned long addr, unsigned long end, 3070 pte_fn_t fn, void *data, bool create, 3071 pgtbl_mod_mask *mask) 3072 { 3073 pud_t *pud; 3074 unsigned long next; 3075 int err = 0; 3076 3077 if (create) { 3078 pud = pud_alloc_track(mm, p4d, addr, mask); 3079 if (!pud) 3080 return -ENOMEM; 3081 } else { 3082 pud = pud_offset(p4d, addr); 3083 } 3084 do { 3085 next = pud_addr_end(addr, end); 3086 if (pud_none(*pud) && !create) 3087 continue; 3088 if (WARN_ON_ONCE(pud_leaf(*pud))) 3089 return -EINVAL; 3090 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 3091 if (!create) 3092 continue; 3093 pud_clear_bad(pud); 3094 } 3095 err = apply_to_pmd_range(mm, pud, addr, next, 3096 fn, data, create, mask); 3097 if (err) 3098 break; 3099 } while (pud++, addr = next, addr != end); 3100 3101 return err; 3102 } 3103 3104 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 3105 unsigned long addr, unsigned long end, 3106 pte_fn_t fn, void *data, bool create, 3107 pgtbl_mod_mask *mask) 3108 { 3109 p4d_t *p4d; 3110 unsigned long next; 3111 int err = 0; 3112 3113 if (create) { 3114 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3115 if (!p4d) 3116 return -ENOMEM; 3117 } else { 3118 p4d = p4d_offset(pgd, addr); 3119 } 3120 do { 3121 next = p4d_addr_end(addr, end); 3122 if (p4d_none(*p4d) && !create) 3123 continue; 3124 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3125 return -EINVAL; 3126 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3127 if (!create) 3128 continue; 3129 p4d_clear_bad(p4d); 3130 } 3131 err = apply_to_pud_range(mm, p4d, addr, next, 3132 fn, data, create, mask); 3133 if (err) 3134 break; 3135 } while (p4d++, addr = next, addr != end); 3136 3137 return err; 3138 } 3139 3140 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3141 unsigned long size, pte_fn_t fn, 3142 void *data, bool create) 3143 { 3144 pgd_t *pgd; 3145 unsigned long start = addr, next; 3146 unsigned long end = addr + size; 3147 pgtbl_mod_mask mask = 0; 3148 int err = 0; 3149 3150 if (WARN_ON(addr >= end)) 3151 return -EINVAL; 3152 3153 pgd = pgd_offset(mm, addr); 3154 do { 3155 next = pgd_addr_end(addr, end); 3156 if (pgd_none(*pgd) && !create) 3157 continue; 3158 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3159 err = -EINVAL; 3160 break; 3161 } 3162 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3163 if (!create) 3164 continue; 3165 pgd_clear_bad(pgd); 3166 } 3167 err = apply_to_p4d_range(mm, pgd, addr, next, 3168 fn, data, create, &mask); 3169 if (err) 3170 break; 3171 } while (pgd++, addr = next, addr != end); 3172 3173 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3174 arch_sync_kernel_mappings(start, start + size); 3175 3176 return err; 3177 } 3178 3179 /* 3180 * Scan a region of virtual memory, filling in page tables as necessary 3181 * and calling a provided function on each leaf page table. 3182 */ 3183 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3184 unsigned long size, pte_fn_t fn, void *data) 3185 { 3186 return __apply_to_page_range(mm, addr, size, fn, data, true); 3187 } 3188 EXPORT_SYMBOL_GPL(apply_to_page_range); 3189 3190 /* 3191 * Scan a region of virtual memory, calling a provided function on 3192 * each leaf page table where it exists. 3193 * 3194 * Unlike apply_to_page_range, this does _not_ fill in page tables 3195 * where they are absent. 3196 */ 3197 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3198 unsigned long size, pte_fn_t fn, void *data) 3199 { 3200 return __apply_to_page_range(mm, addr, size, fn, data, false); 3201 } 3202 3203 /* 3204 * handle_pte_fault chooses page fault handler according to an entry which was 3205 * read non-atomically. Before making any commitment, on those architectures 3206 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3207 * parts, do_swap_page must check under lock before unmapping the pte and 3208 * proceeding (but do_wp_page is only called after already making such a check; 3209 * and do_anonymous_page can safely check later on). 3210 */ 3211 static inline int pte_unmap_same(struct vm_fault *vmf) 3212 { 3213 int same = 1; 3214 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3215 if (sizeof(pte_t) > sizeof(unsigned long)) { 3216 spin_lock(vmf->ptl); 3217 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3218 spin_unlock(vmf->ptl); 3219 } 3220 #endif 3221 pte_unmap(vmf->pte); 3222 vmf->pte = NULL; 3223 return same; 3224 } 3225 3226 /* 3227 * Return: 3228 * 0: copied succeeded 3229 * -EHWPOISON: copy failed due to hwpoison in source page 3230 * -EAGAIN: copied failed (some other reason) 3231 */ 3232 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3233 struct vm_fault *vmf) 3234 { 3235 int ret; 3236 void *kaddr; 3237 void __user *uaddr; 3238 struct vm_area_struct *vma = vmf->vma; 3239 struct mm_struct *mm = vma->vm_mm; 3240 unsigned long addr = vmf->address; 3241 3242 if (likely(src)) { 3243 if (copy_mc_user_highpage(dst, src, addr, vma)) 3244 return -EHWPOISON; 3245 return 0; 3246 } 3247 3248 /* 3249 * If the source page was a PFN mapping, we don't have 3250 * a "struct page" for it. We do a best-effort copy by 3251 * just copying from the original user address. If that 3252 * fails, we just zero-fill it. Live with it. 3253 */ 3254 kaddr = kmap_local_page(dst); 3255 pagefault_disable(); 3256 uaddr = (void __user *)(addr & PAGE_MASK); 3257 3258 /* 3259 * On architectures with software "accessed" bits, we would 3260 * take a double page fault, so mark it accessed here. 3261 */ 3262 vmf->pte = NULL; 3263 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3264 pte_t entry; 3265 3266 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3267 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3268 /* 3269 * Other thread has already handled the fault 3270 * and update local tlb only 3271 */ 3272 if (vmf->pte) 3273 update_mmu_tlb(vma, addr, vmf->pte); 3274 ret = -EAGAIN; 3275 goto pte_unlock; 3276 } 3277 3278 entry = pte_mkyoung(vmf->orig_pte); 3279 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3280 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3281 } 3282 3283 /* 3284 * This really shouldn't fail, because the page is there 3285 * in the page tables. But it might just be unreadable, 3286 * in which case we just give up and fill the result with 3287 * zeroes. 3288 */ 3289 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3290 if (vmf->pte) 3291 goto warn; 3292 3293 /* Re-validate under PTL if the page is still mapped */ 3294 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3295 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3296 /* The PTE changed under us, update local tlb */ 3297 if (vmf->pte) 3298 update_mmu_tlb(vma, addr, vmf->pte); 3299 ret = -EAGAIN; 3300 goto pte_unlock; 3301 } 3302 3303 /* 3304 * The same page can be mapped back since last copy attempt. 3305 * Try to copy again under PTL. 3306 */ 3307 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3308 /* 3309 * Give a warn in case there can be some obscure 3310 * use-case 3311 */ 3312 warn: 3313 WARN_ON_ONCE(1); 3314 clear_page(kaddr); 3315 } 3316 } 3317 3318 ret = 0; 3319 3320 pte_unlock: 3321 if (vmf->pte) 3322 pte_unmap_unlock(vmf->pte, vmf->ptl); 3323 pagefault_enable(); 3324 kunmap_local(kaddr); 3325 flush_dcache_page(dst); 3326 3327 return ret; 3328 } 3329 3330 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3331 { 3332 struct file *vm_file = vma->vm_file; 3333 3334 if (vm_file) 3335 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3336 3337 /* 3338 * Special mappings (e.g. VDSO) do not have any file so fake 3339 * a default GFP_KERNEL for them. 3340 */ 3341 return GFP_KERNEL; 3342 } 3343 3344 /* 3345 * Notify the address space that the page is about to become writable so that 3346 * it can prohibit this or wait for the page to get into an appropriate state. 3347 * 3348 * We do this without the lock held, so that it can sleep if it needs to. 3349 */ 3350 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3351 { 3352 vm_fault_t ret; 3353 unsigned int old_flags = vmf->flags; 3354 3355 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3356 3357 if (vmf->vma->vm_file && 3358 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3359 return VM_FAULT_SIGBUS; 3360 3361 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3362 /* Restore original flags so that caller is not surprised */ 3363 vmf->flags = old_flags; 3364 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3365 return ret; 3366 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3367 folio_lock(folio); 3368 if (!folio->mapping) { 3369 folio_unlock(folio); 3370 return 0; /* retry */ 3371 } 3372 ret |= VM_FAULT_LOCKED; 3373 } else 3374 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3375 return ret; 3376 } 3377 3378 /* 3379 * Handle dirtying of a page in shared file mapping on a write fault. 3380 * 3381 * The function expects the page to be locked and unlocks it. 3382 */ 3383 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3384 { 3385 struct vm_area_struct *vma = vmf->vma; 3386 struct address_space *mapping; 3387 struct folio *folio = page_folio(vmf->page); 3388 bool dirtied; 3389 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3390 3391 dirtied = folio_mark_dirty(folio); 3392 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3393 /* 3394 * Take a local copy of the address_space - folio.mapping may be zeroed 3395 * by truncate after folio_unlock(). The address_space itself remains 3396 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3397 * release semantics to prevent the compiler from undoing this copying. 3398 */ 3399 mapping = folio_raw_mapping(folio); 3400 folio_unlock(folio); 3401 3402 if (!page_mkwrite) 3403 file_update_time(vma->vm_file); 3404 3405 /* 3406 * Throttle page dirtying rate down to writeback speed. 3407 * 3408 * mapping may be NULL here because some device drivers do not 3409 * set page.mapping but still dirty their pages 3410 * 3411 * Drop the mmap_lock before waiting on IO, if we can. The file 3412 * is pinning the mapping, as per above. 3413 */ 3414 if ((dirtied || page_mkwrite) && mapping) { 3415 struct file *fpin; 3416 3417 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3418 balance_dirty_pages_ratelimited(mapping); 3419 if (fpin) { 3420 fput(fpin); 3421 return VM_FAULT_COMPLETED; 3422 } 3423 } 3424 3425 return 0; 3426 } 3427 3428 /* 3429 * Handle write page faults for pages that can be reused in the current vma 3430 * 3431 * This can happen either due to the mapping being with the VM_SHARED flag, 3432 * or due to us being the last reference standing to the page. In either 3433 * case, all we need to do here is to mark the page as writable and update 3434 * any related book-keeping. 3435 */ 3436 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3437 __releases(vmf->ptl) 3438 { 3439 struct vm_area_struct *vma = vmf->vma; 3440 pte_t entry; 3441 3442 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3443 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3444 3445 if (folio) { 3446 VM_BUG_ON(folio_test_anon(folio) && 3447 !PageAnonExclusive(vmf->page)); 3448 /* 3449 * Clear the folio's cpupid information as the existing 3450 * information potentially belongs to a now completely 3451 * unrelated process. 3452 */ 3453 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3454 } 3455 3456 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3457 entry = pte_mkyoung(vmf->orig_pte); 3458 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3459 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3460 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3461 pte_unmap_unlock(vmf->pte, vmf->ptl); 3462 count_vm_event(PGREUSE); 3463 } 3464 3465 /* 3466 * We could add a bitflag somewhere, but for now, we know that all 3467 * vm_ops that have a ->map_pages have been audited and don't need 3468 * the mmap_lock to be held. 3469 */ 3470 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3471 { 3472 struct vm_area_struct *vma = vmf->vma; 3473 3474 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3475 return 0; 3476 vma_end_read(vma); 3477 return VM_FAULT_RETRY; 3478 } 3479 3480 /** 3481 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3482 * @vmf: The vm_fault descriptor passed from the fault handler. 3483 * 3484 * When preparing to insert an anonymous page into a VMA from a 3485 * fault handler, call this function rather than anon_vma_prepare(). 3486 * If this vma does not already have an associated anon_vma and we are 3487 * only protected by the per-VMA lock, the caller must retry with the 3488 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3489 * determine if this VMA can share its anon_vma, and that's not safe to 3490 * do with only the per-VMA lock held for this VMA. 3491 * 3492 * Return: 0 if fault handling can proceed. Any other value should be 3493 * returned to the caller. 3494 */ 3495 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3496 { 3497 struct vm_area_struct *vma = vmf->vma; 3498 vm_fault_t ret = 0; 3499 3500 if (likely(vma->anon_vma)) 3501 return 0; 3502 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3503 if (!mmap_read_trylock(vma->vm_mm)) 3504 return VM_FAULT_RETRY; 3505 } 3506 if (__anon_vma_prepare(vma)) 3507 ret = VM_FAULT_OOM; 3508 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3509 mmap_read_unlock(vma->vm_mm); 3510 return ret; 3511 } 3512 3513 /* 3514 * Handle the case of a page which we actually need to copy to a new page, 3515 * either due to COW or unsharing. 3516 * 3517 * Called with mmap_lock locked and the old page referenced, but 3518 * without the ptl held. 3519 * 3520 * High level logic flow: 3521 * 3522 * - Allocate a page, copy the content of the old page to the new one. 3523 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3524 * - Take the PTL. If the pte changed, bail out and release the allocated page 3525 * - If the pte is still the way we remember it, update the page table and all 3526 * relevant references. This includes dropping the reference the page-table 3527 * held to the old page, as well as updating the rmap. 3528 * - In any case, unlock the PTL and drop the reference we took to the old page. 3529 */ 3530 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3531 { 3532 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3533 struct vm_area_struct *vma = vmf->vma; 3534 struct mm_struct *mm = vma->vm_mm; 3535 struct folio *old_folio = NULL; 3536 struct folio *new_folio = NULL; 3537 pte_t entry; 3538 int page_copied = 0; 3539 struct mmu_notifier_range range; 3540 vm_fault_t ret; 3541 bool pfn_is_zero; 3542 3543 delayacct_wpcopy_start(); 3544 3545 if (vmf->page) 3546 old_folio = page_folio(vmf->page); 3547 ret = vmf_anon_prepare(vmf); 3548 if (unlikely(ret)) 3549 goto out; 3550 3551 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3552 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3553 if (!new_folio) 3554 goto oom; 3555 3556 if (!pfn_is_zero) { 3557 int err; 3558 3559 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3560 if (err) { 3561 /* 3562 * COW failed, if the fault was solved by other, 3563 * it's fine. If not, userspace would re-fault on 3564 * the same address and we will handle the fault 3565 * from the second attempt. 3566 * The -EHWPOISON case will not be retried. 3567 */ 3568 folio_put(new_folio); 3569 if (old_folio) 3570 folio_put(old_folio); 3571 3572 delayacct_wpcopy_end(); 3573 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3574 } 3575 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3576 } 3577 3578 __folio_mark_uptodate(new_folio); 3579 3580 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3581 vmf->address & PAGE_MASK, 3582 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3583 mmu_notifier_invalidate_range_start(&range); 3584 3585 /* 3586 * Re-check the pte - we dropped the lock 3587 */ 3588 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3589 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3590 if (old_folio) { 3591 if (!folio_test_anon(old_folio)) { 3592 dec_mm_counter(mm, mm_counter_file(old_folio)); 3593 inc_mm_counter(mm, MM_ANONPAGES); 3594 } 3595 } else { 3596 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3597 inc_mm_counter(mm, MM_ANONPAGES); 3598 } 3599 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3600 entry = folio_mk_pte(new_folio, vma->vm_page_prot); 3601 entry = pte_sw_mkyoung(entry); 3602 if (unlikely(unshare)) { 3603 if (pte_soft_dirty(vmf->orig_pte)) 3604 entry = pte_mksoft_dirty(entry); 3605 if (pte_uffd_wp(vmf->orig_pte)) 3606 entry = pte_mkuffd_wp(entry); 3607 } else { 3608 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3609 } 3610 3611 /* 3612 * Clear the pte entry and flush it first, before updating the 3613 * pte with the new entry, to keep TLBs on different CPUs in 3614 * sync. This code used to set the new PTE then flush TLBs, but 3615 * that left a window where the new PTE could be loaded into 3616 * some TLBs while the old PTE remains in others. 3617 */ 3618 ptep_clear_flush(vma, vmf->address, vmf->pte); 3619 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3620 folio_add_lru_vma(new_folio, vma); 3621 BUG_ON(unshare && pte_write(entry)); 3622 set_pte_at(mm, vmf->address, vmf->pte, entry); 3623 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3624 if (old_folio) { 3625 /* 3626 * Only after switching the pte to the new page may 3627 * we remove the mapcount here. Otherwise another 3628 * process may come and find the rmap count decremented 3629 * before the pte is switched to the new page, and 3630 * "reuse" the old page writing into it while our pte 3631 * here still points into it and can be read by other 3632 * threads. 3633 * 3634 * The critical issue is to order this 3635 * folio_remove_rmap_pte() with the ptp_clear_flush 3636 * above. Those stores are ordered by (if nothing else,) 3637 * the barrier present in the atomic_add_negative 3638 * in folio_remove_rmap_pte(); 3639 * 3640 * Then the TLB flush in ptep_clear_flush ensures that 3641 * no process can access the old page before the 3642 * decremented mapcount is visible. And the old page 3643 * cannot be reused until after the decremented 3644 * mapcount is visible. So transitively, TLBs to 3645 * old page will be flushed before it can be reused. 3646 */ 3647 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3648 } 3649 3650 /* Free the old page.. */ 3651 new_folio = old_folio; 3652 page_copied = 1; 3653 pte_unmap_unlock(vmf->pte, vmf->ptl); 3654 } else if (vmf->pte) { 3655 update_mmu_tlb(vma, vmf->address, vmf->pte); 3656 pte_unmap_unlock(vmf->pte, vmf->ptl); 3657 } 3658 3659 mmu_notifier_invalidate_range_end(&range); 3660 3661 if (new_folio) 3662 folio_put(new_folio); 3663 if (old_folio) { 3664 if (page_copied) 3665 free_swap_cache(old_folio); 3666 folio_put(old_folio); 3667 } 3668 3669 delayacct_wpcopy_end(); 3670 return 0; 3671 oom: 3672 ret = VM_FAULT_OOM; 3673 out: 3674 if (old_folio) 3675 folio_put(old_folio); 3676 3677 delayacct_wpcopy_end(); 3678 return ret; 3679 } 3680 3681 /** 3682 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3683 * writeable once the page is prepared 3684 * 3685 * @vmf: structure describing the fault 3686 * @folio: the folio of vmf->page 3687 * 3688 * This function handles all that is needed to finish a write page fault in a 3689 * shared mapping due to PTE being read-only once the mapped page is prepared. 3690 * It handles locking of PTE and modifying it. 3691 * 3692 * The function expects the page to be locked or other protection against 3693 * concurrent faults / writeback (such as DAX radix tree locks). 3694 * 3695 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3696 * we acquired PTE lock. 3697 */ 3698 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3699 { 3700 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3701 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3702 &vmf->ptl); 3703 if (!vmf->pte) 3704 return VM_FAULT_NOPAGE; 3705 /* 3706 * We might have raced with another page fault while we released the 3707 * pte_offset_map_lock. 3708 */ 3709 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3710 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3711 pte_unmap_unlock(vmf->pte, vmf->ptl); 3712 return VM_FAULT_NOPAGE; 3713 } 3714 wp_page_reuse(vmf, folio); 3715 return 0; 3716 } 3717 3718 /* 3719 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3720 * mapping 3721 */ 3722 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3723 { 3724 struct vm_area_struct *vma = vmf->vma; 3725 3726 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3727 vm_fault_t ret; 3728 3729 pte_unmap_unlock(vmf->pte, vmf->ptl); 3730 ret = vmf_can_call_fault(vmf); 3731 if (ret) 3732 return ret; 3733 3734 vmf->flags |= FAULT_FLAG_MKWRITE; 3735 ret = vma->vm_ops->pfn_mkwrite(vmf); 3736 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3737 return ret; 3738 return finish_mkwrite_fault(vmf, NULL); 3739 } 3740 wp_page_reuse(vmf, NULL); 3741 return 0; 3742 } 3743 3744 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3745 __releases(vmf->ptl) 3746 { 3747 struct vm_area_struct *vma = vmf->vma; 3748 vm_fault_t ret = 0; 3749 3750 folio_get(folio); 3751 3752 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3753 vm_fault_t tmp; 3754 3755 pte_unmap_unlock(vmf->pte, vmf->ptl); 3756 tmp = vmf_can_call_fault(vmf); 3757 if (tmp) { 3758 folio_put(folio); 3759 return tmp; 3760 } 3761 3762 tmp = do_page_mkwrite(vmf, folio); 3763 if (unlikely(!tmp || (tmp & 3764 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3765 folio_put(folio); 3766 return tmp; 3767 } 3768 tmp = finish_mkwrite_fault(vmf, folio); 3769 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3770 folio_unlock(folio); 3771 folio_put(folio); 3772 return tmp; 3773 } 3774 } else { 3775 wp_page_reuse(vmf, folio); 3776 folio_lock(folio); 3777 } 3778 ret |= fault_dirty_shared_page(vmf); 3779 folio_put(folio); 3780 3781 return ret; 3782 } 3783 3784 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3785 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3786 struct vm_area_struct *vma) 3787 { 3788 bool exclusive = false; 3789 3790 /* Let's just free up a large folio if only a single page is mapped. */ 3791 if (folio_large_mapcount(folio) <= 1) 3792 return false; 3793 3794 /* 3795 * The assumption for anonymous folios is that each page can only get 3796 * mapped once into each MM. The only exception are KSM folios, which 3797 * are always small. 3798 * 3799 * Each taken mapcount must be paired with exactly one taken reference, 3800 * whereby the refcount must be incremented before the mapcount when 3801 * mapping a page, and the refcount must be decremented after the 3802 * mapcount when unmapping a page. 3803 * 3804 * If all folio references are from mappings, and all mappings are in 3805 * the page tables of this MM, then this folio is exclusive to this MM. 3806 */ 3807 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3808 return false; 3809 3810 VM_WARN_ON_ONCE(folio_test_ksm(folio)); 3811 3812 if (unlikely(folio_test_swapcache(folio))) { 3813 /* 3814 * Note: freeing up the swapcache will fail if some PTEs are 3815 * still swap entries. 3816 */ 3817 if (!folio_trylock(folio)) 3818 return false; 3819 folio_free_swap(folio); 3820 folio_unlock(folio); 3821 } 3822 3823 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3824 return false; 3825 3826 /* Stabilize the mapcount vs. refcount and recheck. */ 3827 folio_lock_large_mapcount(folio); 3828 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio); 3829 3830 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids)) 3831 goto unlock; 3832 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3833 goto unlock; 3834 3835 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio); 3836 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio); 3837 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id && 3838 folio_mm_id(folio, 1) != vma->vm_mm->mm_id); 3839 3840 /* 3841 * Do we need the folio lock? Likely not. If there would have been 3842 * references from page migration/swapout, we would have detected 3843 * an additional folio reference and never ended up here. 3844 */ 3845 exclusive = true; 3846 unlock: 3847 folio_unlock_large_mapcount(folio); 3848 return exclusive; 3849 } 3850 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 3851 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3852 struct vm_area_struct *vma) 3853 { 3854 BUILD_BUG(); 3855 } 3856 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3857 3858 static bool wp_can_reuse_anon_folio(struct folio *folio, 3859 struct vm_area_struct *vma) 3860 { 3861 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio)) 3862 return __wp_can_reuse_large_anon_folio(folio, vma); 3863 3864 /* 3865 * We have to verify under folio lock: these early checks are 3866 * just an optimization to avoid locking the folio and freeing 3867 * the swapcache if there is little hope that we can reuse. 3868 * 3869 * KSM doesn't necessarily raise the folio refcount. 3870 */ 3871 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3872 return false; 3873 if (!folio_test_lru(folio)) 3874 /* 3875 * We cannot easily detect+handle references from 3876 * remote LRU caches or references to LRU folios. 3877 */ 3878 lru_add_drain(); 3879 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3880 return false; 3881 if (!folio_trylock(folio)) 3882 return false; 3883 if (folio_test_swapcache(folio)) 3884 folio_free_swap(folio); 3885 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3886 folio_unlock(folio); 3887 return false; 3888 } 3889 /* 3890 * Ok, we've got the only folio reference from our mapping 3891 * and the folio is locked, it's dark out, and we're wearing 3892 * sunglasses. Hit it. 3893 */ 3894 folio_move_anon_rmap(folio, vma); 3895 folio_unlock(folio); 3896 return true; 3897 } 3898 3899 /* 3900 * This routine handles present pages, when 3901 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3902 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3903 * (FAULT_FLAG_UNSHARE) 3904 * 3905 * It is done by copying the page to a new address and decrementing the 3906 * shared-page counter for the old page. 3907 * 3908 * Note that this routine assumes that the protection checks have been 3909 * done by the caller (the low-level page fault routine in most cases). 3910 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3911 * done any necessary COW. 3912 * 3913 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3914 * though the page will change only once the write actually happens. This 3915 * avoids a few races, and potentially makes it more efficient. 3916 * 3917 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3918 * but allow concurrent faults), with pte both mapped and locked. 3919 * We return with mmap_lock still held, but pte unmapped and unlocked. 3920 */ 3921 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3922 __releases(vmf->ptl) 3923 { 3924 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3925 struct vm_area_struct *vma = vmf->vma; 3926 struct folio *folio = NULL; 3927 pte_t pte; 3928 3929 if (likely(!unshare)) { 3930 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3931 if (!userfaultfd_wp_async(vma)) { 3932 pte_unmap_unlock(vmf->pte, vmf->ptl); 3933 return handle_userfault(vmf, VM_UFFD_WP); 3934 } 3935 3936 /* 3937 * Nothing needed (cache flush, TLB invalidations, 3938 * etc.) because we're only removing the uffd-wp bit, 3939 * which is completely invisible to the user. 3940 */ 3941 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3942 3943 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3944 /* 3945 * Update this to be prepared for following up CoW 3946 * handling 3947 */ 3948 vmf->orig_pte = pte; 3949 } 3950 3951 /* 3952 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3953 * is flushed in this case before copying. 3954 */ 3955 if (unlikely(userfaultfd_wp(vmf->vma) && 3956 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3957 flush_tlb_page(vmf->vma, vmf->address); 3958 } 3959 3960 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3961 3962 if (vmf->page) 3963 folio = page_folio(vmf->page); 3964 3965 /* 3966 * Shared mapping: we are guaranteed to have VM_WRITE and 3967 * FAULT_FLAG_WRITE set at this point. 3968 */ 3969 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3970 /* 3971 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3972 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called. 3973 * 3974 * We should not cow pages in a shared writeable mapping. 3975 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3976 */ 3977 if (!vmf->page || is_fsdax_page(vmf->page)) { 3978 vmf->page = NULL; 3979 return wp_pfn_shared(vmf); 3980 } 3981 return wp_page_shared(vmf, folio); 3982 } 3983 3984 /* 3985 * Private mapping: create an exclusive anonymous page copy if reuse 3986 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3987 * 3988 * If we encounter a page that is marked exclusive, we must reuse 3989 * the page without further checks. 3990 */ 3991 if (folio && folio_test_anon(folio) && 3992 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3993 if (!PageAnonExclusive(vmf->page)) 3994 SetPageAnonExclusive(vmf->page); 3995 if (unlikely(unshare)) { 3996 pte_unmap_unlock(vmf->pte, vmf->ptl); 3997 return 0; 3998 } 3999 wp_page_reuse(vmf, folio); 4000 return 0; 4001 } 4002 /* 4003 * Ok, we need to copy. Oh, well.. 4004 */ 4005 if (folio) 4006 folio_get(folio); 4007 4008 pte_unmap_unlock(vmf->pte, vmf->ptl); 4009 #ifdef CONFIG_KSM 4010 if (folio && folio_test_ksm(folio)) 4011 count_vm_event(COW_KSM); 4012 #endif 4013 return wp_page_copy(vmf); 4014 } 4015 4016 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 4017 unsigned long start_addr, unsigned long end_addr, 4018 struct zap_details *details) 4019 { 4020 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 4021 } 4022 4023 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 4024 pgoff_t first_index, 4025 pgoff_t last_index, 4026 struct zap_details *details) 4027 { 4028 struct vm_area_struct *vma; 4029 pgoff_t vba, vea, zba, zea; 4030 4031 vma_interval_tree_foreach(vma, root, first_index, last_index) { 4032 vba = vma->vm_pgoff; 4033 vea = vba + vma_pages(vma) - 1; 4034 zba = max(first_index, vba); 4035 zea = min(last_index, vea); 4036 4037 unmap_mapping_range_vma(vma, 4038 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 4039 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 4040 details); 4041 } 4042 } 4043 4044 /** 4045 * unmap_mapping_folio() - Unmap single folio from processes. 4046 * @folio: The locked folio to be unmapped. 4047 * 4048 * Unmap this folio from any userspace process which still has it mmaped. 4049 * Typically, for efficiency, the range of nearby pages has already been 4050 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 4051 * truncation or invalidation holds the lock on a folio, it may find that 4052 * the page has been remapped again: and then uses unmap_mapping_folio() 4053 * to unmap it finally. 4054 */ 4055 void unmap_mapping_folio(struct folio *folio) 4056 { 4057 struct address_space *mapping = folio->mapping; 4058 struct zap_details details = { }; 4059 pgoff_t first_index; 4060 pgoff_t last_index; 4061 4062 VM_BUG_ON(!folio_test_locked(folio)); 4063 4064 first_index = folio->index; 4065 last_index = folio_next_index(folio) - 1; 4066 4067 details.even_cows = false; 4068 details.single_folio = folio; 4069 details.zap_flags = ZAP_FLAG_DROP_MARKER; 4070 4071 i_mmap_lock_read(mapping); 4072 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4073 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4074 last_index, &details); 4075 i_mmap_unlock_read(mapping); 4076 } 4077 4078 /** 4079 * unmap_mapping_pages() - Unmap pages from processes. 4080 * @mapping: The address space containing pages to be unmapped. 4081 * @start: Index of first page to be unmapped. 4082 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 4083 * @even_cows: Whether to unmap even private COWed pages. 4084 * 4085 * Unmap the pages in this address space from any userspace process which 4086 * has them mmaped. Generally, you want to remove COWed pages as well when 4087 * a file is being truncated, but not when invalidating pages from the page 4088 * cache. 4089 */ 4090 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 4091 pgoff_t nr, bool even_cows) 4092 { 4093 struct zap_details details = { }; 4094 pgoff_t first_index = start; 4095 pgoff_t last_index = start + nr - 1; 4096 4097 details.even_cows = even_cows; 4098 if (last_index < first_index) 4099 last_index = ULONG_MAX; 4100 4101 i_mmap_lock_read(mapping); 4102 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4103 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4104 last_index, &details); 4105 i_mmap_unlock_read(mapping); 4106 } 4107 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 4108 4109 /** 4110 * unmap_mapping_range - unmap the portion of all mmaps in the specified 4111 * address_space corresponding to the specified byte range in the underlying 4112 * file. 4113 * 4114 * @mapping: the address space containing mmaps to be unmapped. 4115 * @holebegin: byte in first page to unmap, relative to the start of 4116 * the underlying file. This will be rounded down to a PAGE_SIZE 4117 * boundary. Note that this is different from truncate_pagecache(), which 4118 * must keep the partial page. In contrast, we must get rid of 4119 * partial pages. 4120 * @holelen: size of prospective hole in bytes. This will be rounded 4121 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 4122 * end of the file. 4123 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 4124 * but 0 when invalidating pagecache, don't throw away private data. 4125 */ 4126 void unmap_mapping_range(struct address_space *mapping, 4127 loff_t const holebegin, loff_t const holelen, int even_cows) 4128 { 4129 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 4130 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 4131 4132 /* Check for overflow. */ 4133 if (sizeof(holelen) > sizeof(hlen)) { 4134 long long holeend = 4135 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 4136 if (holeend & ~(long long)ULONG_MAX) 4137 hlen = ULONG_MAX - hba + 1; 4138 } 4139 4140 unmap_mapping_pages(mapping, hba, hlen, even_cows); 4141 } 4142 EXPORT_SYMBOL(unmap_mapping_range); 4143 4144 /* 4145 * Restore a potential device exclusive pte to a working pte entry 4146 */ 4147 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 4148 { 4149 struct folio *folio = page_folio(vmf->page); 4150 struct vm_area_struct *vma = vmf->vma; 4151 struct mmu_notifier_range range; 4152 vm_fault_t ret; 4153 4154 /* 4155 * We need a reference to lock the folio because we don't hold 4156 * the PTL so a racing thread can remove the device-exclusive 4157 * entry and unmap it. If the folio is free the entry must 4158 * have been removed already. If it happens to have already 4159 * been re-allocated after being freed all we do is lock and 4160 * unlock it. 4161 */ 4162 if (!folio_try_get(folio)) 4163 return 0; 4164 4165 ret = folio_lock_or_retry(folio, vmf); 4166 if (ret) { 4167 folio_put(folio); 4168 return ret; 4169 } 4170 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0, 4171 vma->vm_mm, vmf->address & PAGE_MASK, 4172 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 4173 mmu_notifier_invalidate_range_start(&range); 4174 4175 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4176 &vmf->ptl); 4177 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4178 restore_exclusive_pte(vma, folio, vmf->page, vmf->address, 4179 vmf->pte, vmf->orig_pte); 4180 4181 if (vmf->pte) 4182 pte_unmap_unlock(vmf->pte, vmf->ptl); 4183 folio_unlock(folio); 4184 folio_put(folio); 4185 4186 mmu_notifier_invalidate_range_end(&range); 4187 return 0; 4188 } 4189 4190 static inline bool should_try_to_free_swap(struct folio *folio, 4191 struct vm_area_struct *vma, 4192 unsigned int fault_flags) 4193 { 4194 if (!folio_test_swapcache(folio)) 4195 return false; 4196 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4197 folio_test_mlocked(folio)) 4198 return true; 4199 /* 4200 * If we want to map a page that's in the swapcache writable, we 4201 * have to detect via the refcount if we're really the exclusive 4202 * user. Try freeing the swapcache to get rid of the swapcache 4203 * reference only in case it's likely that we'll be the exlusive user. 4204 */ 4205 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4206 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4207 } 4208 4209 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4210 { 4211 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4212 vmf->address, &vmf->ptl); 4213 if (!vmf->pte) 4214 return 0; 4215 /* 4216 * Be careful so that we will only recover a special uffd-wp pte into a 4217 * none pte. Otherwise it means the pte could have changed, so retry. 4218 * 4219 * This should also cover the case where e.g. the pte changed 4220 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4221 * So is_pte_marker() check is not enough to safely drop the pte. 4222 */ 4223 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4224 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4225 pte_unmap_unlock(vmf->pte, vmf->ptl); 4226 return 0; 4227 } 4228 4229 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4230 { 4231 if (vma_is_anonymous(vmf->vma)) 4232 return do_anonymous_page(vmf); 4233 else 4234 return do_fault(vmf); 4235 } 4236 4237 /* 4238 * This is actually a page-missing access, but with uffd-wp special pte 4239 * installed. It means this pte was wr-protected before being unmapped. 4240 */ 4241 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4242 { 4243 /* 4244 * Just in case there're leftover special ptes even after the region 4245 * got unregistered - we can simply clear them. 4246 */ 4247 if (unlikely(!userfaultfd_wp(vmf->vma))) 4248 return pte_marker_clear(vmf); 4249 4250 return do_pte_missing(vmf); 4251 } 4252 4253 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4254 { 4255 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4256 unsigned long marker = pte_marker_get(entry); 4257 4258 /* 4259 * PTE markers should never be empty. If anything weird happened, 4260 * the best thing to do is to kill the process along with its mm. 4261 */ 4262 if (WARN_ON_ONCE(!marker)) 4263 return VM_FAULT_SIGBUS; 4264 4265 /* Higher priority than uffd-wp when data corrupted */ 4266 if (marker & PTE_MARKER_POISONED) 4267 return VM_FAULT_HWPOISON; 4268 4269 /* Hitting a guard page is always a fatal condition. */ 4270 if (marker & PTE_MARKER_GUARD) 4271 return VM_FAULT_SIGSEGV; 4272 4273 if (pte_marker_entry_uffd_wp(entry)) 4274 return pte_marker_handle_uffd_wp(vmf); 4275 4276 /* This is an unknown pte marker */ 4277 return VM_FAULT_SIGBUS; 4278 } 4279 4280 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4281 { 4282 struct vm_area_struct *vma = vmf->vma; 4283 struct folio *folio; 4284 swp_entry_t entry; 4285 4286 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4287 if (!folio) 4288 return NULL; 4289 4290 entry = pte_to_swp_entry(vmf->orig_pte); 4291 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4292 GFP_KERNEL, entry)) { 4293 folio_put(folio); 4294 return NULL; 4295 } 4296 4297 return folio; 4298 } 4299 4300 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4301 /* 4302 * Check if the PTEs within a range are contiguous swap entries 4303 * and have consistent swapcache, zeromap. 4304 */ 4305 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4306 { 4307 unsigned long addr; 4308 swp_entry_t entry; 4309 int idx; 4310 pte_t pte; 4311 4312 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4313 idx = (vmf->address - addr) / PAGE_SIZE; 4314 pte = ptep_get(ptep); 4315 4316 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4317 return false; 4318 entry = pte_to_swp_entry(pte); 4319 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4320 return false; 4321 4322 /* 4323 * swap_read_folio() can't handle the case a large folio is hybridly 4324 * from different backends. And they are likely corner cases. Similar 4325 * things might be added once zswap support large folios. 4326 */ 4327 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4328 return false; 4329 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4330 return false; 4331 4332 return true; 4333 } 4334 4335 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4336 unsigned long addr, 4337 unsigned long orders) 4338 { 4339 int order, nr; 4340 4341 order = highest_order(orders); 4342 4343 /* 4344 * To swap in a THP with nr pages, we require that its first swap_offset 4345 * is aligned with that number, as it was when the THP was swapped out. 4346 * This helps filter out most invalid entries. 4347 */ 4348 while (orders) { 4349 nr = 1 << order; 4350 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4351 break; 4352 order = next_order(&orders, order); 4353 } 4354 4355 return orders; 4356 } 4357 4358 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4359 { 4360 struct vm_area_struct *vma = vmf->vma; 4361 unsigned long orders; 4362 struct folio *folio; 4363 unsigned long addr; 4364 swp_entry_t entry; 4365 spinlock_t *ptl; 4366 pte_t *pte; 4367 gfp_t gfp; 4368 int order; 4369 4370 /* 4371 * If uffd is active for the vma we need per-page fault fidelity to 4372 * maintain the uffd semantics. 4373 */ 4374 if (unlikely(userfaultfd_armed(vma))) 4375 goto fallback; 4376 4377 /* 4378 * A large swapped out folio could be partially or fully in zswap. We 4379 * lack handling for such cases, so fallback to swapping in order-0 4380 * folio. 4381 */ 4382 if (!zswap_never_enabled()) 4383 goto fallback; 4384 4385 entry = pte_to_swp_entry(vmf->orig_pte); 4386 /* 4387 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4388 * and suitable for swapping THP. 4389 */ 4390 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4391 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4392 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4393 orders = thp_swap_suitable_orders(swp_offset(entry), 4394 vmf->address, orders); 4395 4396 if (!orders) 4397 goto fallback; 4398 4399 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4400 vmf->address & PMD_MASK, &ptl); 4401 if (unlikely(!pte)) 4402 goto fallback; 4403 4404 /* 4405 * For do_swap_page, find the highest order where the aligned range is 4406 * completely swap entries with contiguous swap offsets. 4407 */ 4408 order = highest_order(orders); 4409 while (orders) { 4410 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4411 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4412 break; 4413 order = next_order(&orders, order); 4414 } 4415 4416 pte_unmap_unlock(pte, ptl); 4417 4418 /* Try allocating the highest of the remaining orders. */ 4419 gfp = vma_thp_gfp_mask(vma); 4420 while (orders) { 4421 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4422 folio = vma_alloc_folio(gfp, order, vma, addr); 4423 if (folio) { 4424 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4425 gfp, entry)) 4426 return folio; 4427 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4428 folio_put(folio); 4429 } 4430 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4431 order = next_order(&orders, order); 4432 } 4433 4434 fallback: 4435 return __alloc_swap_folio(vmf); 4436 } 4437 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4438 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4439 { 4440 return __alloc_swap_folio(vmf); 4441 } 4442 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4443 4444 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4445 4446 /* 4447 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4448 * but allow concurrent faults), and pte mapped but not yet locked. 4449 * We return with pte unmapped and unlocked. 4450 * 4451 * We return with the mmap_lock locked or unlocked in the same cases 4452 * as does filemap_fault(). 4453 */ 4454 vm_fault_t do_swap_page(struct vm_fault *vmf) 4455 { 4456 struct vm_area_struct *vma = vmf->vma; 4457 struct folio *swapcache, *folio = NULL; 4458 DECLARE_WAITQUEUE(wait, current); 4459 struct page *page; 4460 struct swap_info_struct *si = NULL; 4461 rmap_t rmap_flags = RMAP_NONE; 4462 bool need_clear_cache = false; 4463 bool exclusive = false; 4464 swp_entry_t entry; 4465 pte_t pte; 4466 vm_fault_t ret = 0; 4467 void *shadow = NULL; 4468 int nr_pages; 4469 unsigned long page_idx; 4470 unsigned long address; 4471 pte_t *ptep; 4472 4473 if (!pte_unmap_same(vmf)) 4474 goto out; 4475 4476 entry = pte_to_swp_entry(vmf->orig_pte); 4477 if (unlikely(non_swap_entry(entry))) { 4478 if (is_migration_entry(entry)) { 4479 migration_entry_wait(vma->vm_mm, vmf->pmd, 4480 vmf->address); 4481 } else if (is_device_exclusive_entry(entry)) { 4482 vmf->page = pfn_swap_entry_to_page(entry); 4483 ret = remove_device_exclusive_entry(vmf); 4484 } else if (is_device_private_entry(entry)) { 4485 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4486 /* 4487 * migrate_to_ram is not yet ready to operate 4488 * under VMA lock. 4489 */ 4490 vma_end_read(vma); 4491 ret = VM_FAULT_RETRY; 4492 goto out; 4493 } 4494 4495 vmf->page = pfn_swap_entry_to_page(entry); 4496 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4497 vmf->address, &vmf->ptl); 4498 if (unlikely(!vmf->pte || 4499 !pte_same(ptep_get(vmf->pte), 4500 vmf->orig_pte))) 4501 goto unlock; 4502 4503 /* 4504 * Get a page reference while we know the page can't be 4505 * freed. 4506 */ 4507 if (trylock_page(vmf->page)) { 4508 struct dev_pagemap *pgmap; 4509 4510 get_page(vmf->page); 4511 pte_unmap_unlock(vmf->pte, vmf->ptl); 4512 pgmap = page_pgmap(vmf->page); 4513 ret = pgmap->ops->migrate_to_ram(vmf); 4514 unlock_page(vmf->page); 4515 put_page(vmf->page); 4516 } else { 4517 pte_unmap_unlock(vmf->pte, vmf->ptl); 4518 } 4519 } else if (is_hwpoison_entry(entry)) { 4520 ret = VM_FAULT_HWPOISON; 4521 } else if (is_pte_marker_entry(entry)) { 4522 ret = handle_pte_marker(vmf); 4523 } else { 4524 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4525 ret = VM_FAULT_SIGBUS; 4526 } 4527 goto out; 4528 } 4529 4530 /* Prevent swapoff from happening to us. */ 4531 si = get_swap_device(entry); 4532 if (unlikely(!si)) 4533 goto out; 4534 4535 folio = swap_cache_get_folio(entry, vma, vmf->address); 4536 if (folio) 4537 page = folio_file_page(folio, swp_offset(entry)); 4538 swapcache = folio; 4539 4540 if (!folio) { 4541 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4542 __swap_count(entry) == 1) { 4543 /* skip swapcache */ 4544 folio = alloc_swap_folio(vmf); 4545 if (folio) { 4546 __folio_set_locked(folio); 4547 __folio_set_swapbacked(folio); 4548 4549 nr_pages = folio_nr_pages(folio); 4550 if (folio_test_large(folio)) 4551 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4552 /* 4553 * Prevent parallel swapin from proceeding with 4554 * the cache flag. Otherwise, another thread 4555 * may finish swapin first, free the entry, and 4556 * swapout reusing the same entry. It's 4557 * undetectable as pte_same() returns true due 4558 * to entry reuse. 4559 */ 4560 if (swapcache_prepare(entry, nr_pages)) { 4561 /* 4562 * Relax a bit to prevent rapid 4563 * repeated page faults. 4564 */ 4565 add_wait_queue(&swapcache_wq, &wait); 4566 schedule_timeout_uninterruptible(1); 4567 remove_wait_queue(&swapcache_wq, &wait); 4568 goto out_page; 4569 } 4570 need_clear_cache = true; 4571 4572 memcg1_swapin(entry, nr_pages); 4573 4574 shadow = get_shadow_from_swap_cache(entry); 4575 if (shadow) 4576 workingset_refault(folio, shadow); 4577 4578 folio_add_lru(folio); 4579 4580 /* To provide entry to swap_read_folio() */ 4581 folio->swap = entry; 4582 swap_read_folio(folio, NULL); 4583 folio->private = NULL; 4584 } 4585 } else { 4586 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4587 vmf); 4588 swapcache = folio; 4589 } 4590 4591 if (!folio) { 4592 /* 4593 * Back out if somebody else faulted in this pte 4594 * while we released the pte lock. 4595 */ 4596 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4597 vmf->address, &vmf->ptl); 4598 if (likely(vmf->pte && 4599 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4600 ret = VM_FAULT_OOM; 4601 goto unlock; 4602 } 4603 4604 /* Had to read the page from swap area: Major fault */ 4605 ret = VM_FAULT_MAJOR; 4606 count_vm_event(PGMAJFAULT); 4607 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4608 page = folio_file_page(folio, swp_offset(entry)); 4609 } else if (PageHWPoison(page)) { 4610 /* 4611 * hwpoisoned dirty swapcache pages are kept for killing 4612 * owner processes (which may be unknown at hwpoison time) 4613 */ 4614 ret = VM_FAULT_HWPOISON; 4615 goto out_release; 4616 } 4617 4618 ret |= folio_lock_or_retry(folio, vmf); 4619 if (ret & VM_FAULT_RETRY) 4620 goto out_release; 4621 4622 if (swapcache) { 4623 /* 4624 * Make sure folio_free_swap() or swapoff did not release the 4625 * swapcache from under us. The page pin, and pte_same test 4626 * below, are not enough to exclude that. Even if it is still 4627 * swapcache, we need to check that the page's swap has not 4628 * changed. 4629 */ 4630 if (unlikely(!folio_test_swapcache(folio) || 4631 page_swap_entry(page).val != entry.val)) 4632 goto out_page; 4633 4634 /* 4635 * KSM sometimes has to copy on read faults, for example, if 4636 * folio->index of non-ksm folios would be nonlinear inside the 4637 * anon VMA -- the ksm flag is lost on actual swapout. 4638 */ 4639 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4640 if (unlikely(!folio)) { 4641 ret = VM_FAULT_OOM; 4642 folio = swapcache; 4643 goto out_page; 4644 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4645 ret = VM_FAULT_HWPOISON; 4646 folio = swapcache; 4647 goto out_page; 4648 } 4649 if (folio != swapcache) 4650 page = folio_page(folio, 0); 4651 4652 /* 4653 * If we want to map a page that's in the swapcache writable, we 4654 * have to detect via the refcount if we're really the exclusive 4655 * owner. Try removing the extra reference from the local LRU 4656 * caches if required. 4657 */ 4658 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4659 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4660 lru_add_drain(); 4661 } 4662 4663 folio_throttle_swaprate(folio, GFP_KERNEL); 4664 4665 /* 4666 * Back out if somebody else already faulted in this pte. 4667 */ 4668 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4669 &vmf->ptl); 4670 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4671 goto out_nomap; 4672 4673 if (unlikely(!folio_test_uptodate(folio))) { 4674 ret = VM_FAULT_SIGBUS; 4675 goto out_nomap; 4676 } 4677 4678 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4679 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4680 unsigned long nr = folio_nr_pages(folio); 4681 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4682 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4683 pte_t *folio_ptep = vmf->pte - idx; 4684 pte_t folio_pte = ptep_get(folio_ptep); 4685 4686 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4687 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4688 goto out_nomap; 4689 4690 page_idx = idx; 4691 address = folio_start; 4692 ptep = folio_ptep; 4693 goto check_folio; 4694 } 4695 4696 nr_pages = 1; 4697 page_idx = 0; 4698 address = vmf->address; 4699 ptep = vmf->pte; 4700 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4701 int nr = folio_nr_pages(folio); 4702 unsigned long idx = folio_page_idx(folio, page); 4703 unsigned long folio_start = address - idx * PAGE_SIZE; 4704 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4705 pte_t *folio_ptep; 4706 pte_t folio_pte; 4707 4708 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4709 goto check_folio; 4710 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4711 goto check_folio; 4712 4713 folio_ptep = vmf->pte - idx; 4714 folio_pte = ptep_get(folio_ptep); 4715 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4716 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4717 goto check_folio; 4718 4719 page_idx = idx; 4720 address = folio_start; 4721 ptep = folio_ptep; 4722 nr_pages = nr; 4723 entry = folio->swap; 4724 page = &folio->page; 4725 } 4726 4727 check_folio: 4728 /* 4729 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4730 * must never point at an anonymous page in the swapcache that is 4731 * PG_anon_exclusive. Sanity check that this holds and especially, that 4732 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4733 * check after taking the PT lock and making sure that nobody 4734 * concurrently faulted in this page and set PG_anon_exclusive. 4735 */ 4736 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4737 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4738 4739 /* 4740 * Check under PT lock (to protect against concurrent fork() sharing 4741 * the swap entry concurrently) for certainly exclusive pages. 4742 */ 4743 if (!folio_test_ksm(folio)) { 4744 exclusive = pte_swp_exclusive(vmf->orig_pte); 4745 if (folio != swapcache) { 4746 /* 4747 * We have a fresh page that is not exposed to the 4748 * swapcache -> certainly exclusive. 4749 */ 4750 exclusive = true; 4751 } else if (exclusive && folio_test_writeback(folio) && 4752 data_race(si->flags & SWP_STABLE_WRITES)) { 4753 /* 4754 * This is tricky: not all swap backends support 4755 * concurrent page modifications while under writeback. 4756 * 4757 * So if we stumble over such a page in the swapcache 4758 * we must not set the page exclusive, otherwise we can 4759 * map it writable without further checks and modify it 4760 * while still under writeback. 4761 * 4762 * For these problematic swap backends, simply drop the 4763 * exclusive marker: this is perfectly fine as we start 4764 * writeback only if we fully unmapped the page and 4765 * there are no unexpected references on the page after 4766 * unmapping succeeded. After fully unmapped, no 4767 * further GUP references (FOLL_GET and FOLL_PIN) can 4768 * appear, so dropping the exclusive marker and mapping 4769 * it only R/O is fine. 4770 */ 4771 exclusive = false; 4772 } 4773 } 4774 4775 /* 4776 * Some architectures may have to restore extra metadata to the page 4777 * when reading from swap. This metadata may be indexed by swap entry 4778 * so this must be called before swap_free(). 4779 */ 4780 arch_swap_restore(folio_swap(entry, folio), folio); 4781 4782 /* 4783 * Remove the swap entry and conditionally try to free up the swapcache. 4784 * We're already holding a reference on the page but haven't mapped it 4785 * yet. 4786 */ 4787 swap_free_nr(entry, nr_pages); 4788 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4789 folio_free_swap(folio); 4790 4791 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4792 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4793 pte = mk_pte(page, vma->vm_page_prot); 4794 if (pte_swp_soft_dirty(vmf->orig_pte)) 4795 pte = pte_mksoft_dirty(pte); 4796 if (pte_swp_uffd_wp(vmf->orig_pte)) 4797 pte = pte_mkuffd_wp(pte); 4798 4799 /* 4800 * Same logic as in do_wp_page(); however, optimize for pages that are 4801 * certainly not shared either because we just allocated them without 4802 * exposing them to the swapcache or because the swap entry indicates 4803 * exclusivity. 4804 */ 4805 if (!folio_test_ksm(folio) && 4806 (exclusive || folio_ref_count(folio) == 1)) { 4807 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4808 !pte_needs_soft_dirty_wp(vma, pte)) { 4809 pte = pte_mkwrite(pte, vma); 4810 if (vmf->flags & FAULT_FLAG_WRITE) { 4811 pte = pte_mkdirty(pte); 4812 vmf->flags &= ~FAULT_FLAG_WRITE; 4813 } 4814 } 4815 rmap_flags |= RMAP_EXCLUSIVE; 4816 } 4817 folio_ref_add(folio, nr_pages - 1); 4818 flush_icache_pages(vma, page, nr_pages); 4819 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4820 4821 /* ksm created a completely new copy */ 4822 if (unlikely(folio != swapcache && swapcache)) { 4823 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4824 folio_add_lru_vma(folio, vma); 4825 } else if (!folio_test_anon(folio)) { 4826 /* 4827 * We currently only expect small !anon folios which are either 4828 * fully exclusive or fully shared, or new allocated large 4829 * folios which are fully exclusive. If we ever get large 4830 * folios within swapcache here, we have to be careful. 4831 */ 4832 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4833 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4834 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4835 } else { 4836 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4837 rmap_flags); 4838 } 4839 4840 VM_BUG_ON(!folio_test_anon(folio) || 4841 (pte_write(pte) && !PageAnonExclusive(page))); 4842 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4843 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4844 pte, pte, nr_pages); 4845 4846 folio_unlock(folio); 4847 if (folio != swapcache && swapcache) { 4848 /* 4849 * Hold the lock to avoid the swap entry to be reused 4850 * until we take the PT lock for the pte_same() check 4851 * (to avoid false positives from pte_same). For 4852 * further safety release the lock after the swap_free 4853 * so that the swap count won't change under a 4854 * parallel locked swapcache. 4855 */ 4856 folio_unlock(swapcache); 4857 folio_put(swapcache); 4858 } 4859 4860 if (vmf->flags & FAULT_FLAG_WRITE) { 4861 ret |= do_wp_page(vmf); 4862 if (ret & VM_FAULT_ERROR) 4863 ret &= VM_FAULT_ERROR; 4864 goto out; 4865 } 4866 4867 /* No need to invalidate - it was non-present before */ 4868 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4869 unlock: 4870 if (vmf->pte) 4871 pte_unmap_unlock(vmf->pte, vmf->ptl); 4872 out: 4873 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4874 if (need_clear_cache) { 4875 swapcache_clear(si, entry, nr_pages); 4876 if (waitqueue_active(&swapcache_wq)) 4877 wake_up(&swapcache_wq); 4878 } 4879 if (si) 4880 put_swap_device(si); 4881 return ret; 4882 out_nomap: 4883 if (vmf->pte) 4884 pte_unmap_unlock(vmf->pte, vmf->ptl); 4885 out_page: 4886 folio_unlock(folio); 4887 out_release: 4888 folio_put(folio); 4889 if (folio != swapcache && swapcache) { 4890 folio_unlock(swapcache); 4891 folio_put(swapcache); 4892 } 4893 if (need_clear_cache) { 4894 swapcache_clear(si, entry, nr_pages); 4895 if (waitqueue_active(&swapcache_wq)) 4896 wake_up(&swapcache_wq); 4897 } 4898 if (si) 4899 put_swap_device(si); 4900 return ret; 4901 } 4902 4903 static bool pte_range_none(pte_t *pte, int nr_pages) 4904 { 4905 int i; 4906 4907 for (i = 0; i < nr_pages; i++) { 4908 if (!pte_none(ptep_get_lockless(pte + i))) 4909 return false; 4910 } 4911 4912 return true; 4913 } 4914 4915 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4916 { 4917 struct vm_area_struct *vma = vmf->vma; 4918 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4919 unsigned long orders; 4920 struct folio *folio; 4921 unsigned long addr; 4922 pte_t *pte; 4923 gfp_t gfp; 4924 int order; 4925 4926 /* 4927 * If uffd is active for the vma we need per-page fault fidelity to 4928 * maintain the uffd semantics. 4929 */ 4930 if (unlikely(userfaultfd_armed(vma))) 4931 goto fallback; 4932 4933 /* 4934 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4935 * for this vma. Then filter out the orders that can't be allocated over 4936 * the faulting address and still be fully contained in the vma. 4937 */ 4938 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4939 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4940 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4941 4942 if (!orders) 4943 goto fallback; 4944 4945 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4946 if (!pte) 4947 return ERR_PTR(-EAGAIN); 4948 4949 /* 4950 * Find the highest order where the aligned range is completely 4951 * pte_none(). Note that all remaining orders will be completely 4952 * pte_none(). 4953 */ 4954 order = highest_order(orders); 4955 while (orders) { 4956 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4957 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4958 break; 4959 order = next_order(&orders, order); 4960 } 4961 4962 pte_unmap(pte); 4963 4964 if (!orders) 4965 goto fallback; 4966 4967 /* Try allocating the highest of the remaining orders. */ 4968 gfp = vma_thp_gfp_mask(vma); 4969 while (orders) { 4970 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4971 folio = vma_alloc_folio(gfp, order, vma, addr); 4972 if (folio) { 4973 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4974 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 4975 folio_put(folio); 4976 goto next; 4977 } 4978 folio_throttle_swaprate(folio, gfp); 4979 /* 4980 * When a folio is not zeroed during allocation 4981 * (__GFP_ZERO not used) or user folios require special 4982 * handling, folio_zero_user() is used to make sure 4983 * that the page corresponding to the faulting address 4984 * will be hot in the cache after zeroing. 4985 */ 4986 if (user_alloc_needs_zeroing()) 4987 folio_zero_user(folio, vmf->address); 4988 return folio; 4989 } 4990 next: 4991 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 4992 order = next_order(&orders, order); 4993 } 4994 4995 fallback: 4996 #endif 4997 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4998 } 4999 5000 /* 5001 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5002 * but allow concurrent faults), and pte mapped but not yet locked. 5003 * We return with mmap_lock still held, but pte unmapped and unlocked. 5004 */ 5005 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 5006 { 5007 struct vm_area_struct *vma = vmf->vma; 5008 unsigned long addr = vmf->address; 5009 struct folio *folio; 5010 vm_fault_t ret = 0; 5011 int nr_pages = 1; 5012 pte_t entry; 5013 5014 /* File mapping without ->vm_ops ? */ 5015 if (vma->vm_flags & VM_SHARED) 5016 return VM_FAULT_SIGBUS; 5017 5018 /* 5019 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 5020 * be distinguished from a transient failure of pte_offset_map(). 5021 */ 5022 if (pte_alloc(vma->vm_mm, vmf->pmd)) 5023 return VM_FAULT_OOM; 5024 5025 /* Use the zero-page for reads */ 5026 if (!(vmf->flags & FAULT_FLAG_WRITE) && 5027 !mm_forbids_zeropage(vma->vm_mm)) { 5028 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 5029 vma->vm_page_prot)); 5030 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5031 vmf->address, &vmf->ptl); 5032 if (!vmf->pte) 5033 goto unlock; 5034 if (vmf_pte_changed(vmf)) { 5035 update_mmu_tlb(vma, vmf->address, vmf->pte); 5036 goto unlock; 5037 } 5038 ret = check_stable_address_space(vma->vm_mm); 5039 if (ret) 5040 goto unlock; 5041 /* Deliver the page fault to userland, check inside PT lock */ 5042 if (userfaultfd_missing(vma)) { 5043 pte_unmap_unlock(vmf->pte, vmf->ptl); 5044 return handle_userfault(vmf, VM_UFFD_MISSING); 5045 } 5046 goto setpte; 5047 } 5048 5049 /* Allocate our own private page. */ 5050 ret = vmf_anon_prepare(vmf); 5051 if (ret) 5052 return ret; 5053 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 5054 folio = alloc_anon_folio(vmf); 5055 if (IS_ERR(folio)) 5056 return 0; 5057 if (!folio) 5058 goto oom; 5059 5060 nr_pages = folio_nr_pages(folio); 5061 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 5062 5063 /* 5064 * The memory barrier inside __folio_mark_uptodate makes sure that 5065 * preceding stores to the page contents become visible before 5066 * the set_pte_at() write. 5067 */ 5068 __folio_mark_uptodate(folio); 5069 5070 entry = folio_mk_pte(folio, vma->vm_page_prot); 5071 entry = pte_sw_mkyoung(entry); 5072 if (vma->vm_flags & VM_WRITE) 5073 entry = pte_mkwrite(pte_mkdirty(entry), vma); 5074 5075 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 5076 if (!vmf->pte) 5077 goto release; 5078 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 5079 update_mmu_tlb(vma, addr, vmf->pte); 5080 goto release; 5081 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5082 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5083 goto release; 5084 } 5085 5086 ret = check_stable_address_space(vma->vm_mm); 5087 if (ret) 5088 goto release; 5089 5090 /* Deliver the page fault to userland, check inside PT lock */ 5091 if (userfaultfd_missing(vma)) { 5092 pte_unmap_unlock(vmf->pte, vmf->ptl); 5093 folio_put(folio); 5094 return handle_userfault(vmf, VM_UFFD_MISSING); 5095 } 5096 5097 folio_ref_add(folio, nr_pages - 1); 5098 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 5099 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 5100 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5101 folio_add_lru_vma(folio, vma); 5102 setpte: 5103 if (vmf_orig_pte_uffd_wp(vmf)) 5104 entry = pte_mkuffd_wp(entry); 5105 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 5106 5107 /* No need to invalidate - it was non-present before */ 5108 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 5109 unlock: 5110 if (vmf->pte) 5111 pte_unmap_unlock(vmf->pte, vmf->ptl); 5112 return ret; 5113 release: 5114 folio_put(folio); 5115 goto unlock; 5116 oom: 5117 return VM_FAULT_OOM; 5118 } 5119 5120 /* 5121 * The mmap_lock must have been held on entry, and may have been 5122 * released depending on flags and vma->vm_ops->fault() return value. 5123 * See filemap_fault() and __lock_page_retry(). 5124 */ 5125 static vm_fault_t __do_fault(struct vm_fault *vmf) 5126 { 5127 struct vm_area_struct *vma = vmf->vma; 5128 struct folio *folio; 5129 vm_fault_t ret; 5130 5131 /* 5132 * Preallocate pte before we take page_lock because this might lead to 5133 * deadlocks for memcg reclaim which waits for pages under writeback: 5134 * lock_page(A) 5135 * SetPageWriteback(A) 5136 * unlock_page(A) 5137 * lock_page(B) 5138 * lock_page(B) 5139 * pte_alloc_one 5140 * shrink_folio_list 5141 * wait_on_page_writeback(A) 5142 * SetPageWriteback(B) 5143 * unlock_page(B) 5144 * # flush A, B to clear the writeback 5145 */ 5146 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 5147 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5148 if (!vmf->prealloc_pte) 5149 return VM_FAULT_OOM; 5150 } 5151 5152 ret = vma->vm_ops->fault(vmf); 5153 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 5154 VM_FAULT_DONE_COW))) 5155 return ret; 5156 5157 folio = page_folio(vmf->page); 5158 if (unlikely(PageHWPoison(vmf->page))) { 5159 vm_fault_t poisonret = VM_FAULT_HWPOISON; 5160 if (ret & VM_FAULT_LOCKED) { 5161 if (page_mapped(vmf->page)) 5162 unmap_mapping_folio(folio); 5163 /* Retry if a clean folio was removed from the cache. */ 5164 if (mapping_evict_folio(folio->mapping, folio)) 5165 poisonret = VM_FAULT_NOPAGE; 5166 folio_unlock(folio); 5167 } 5168 folio_put(folio); 5169 vmf->page = NULL; 5170 return poisonret; 5171 } 5172 5173 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5174 folio_lock(folio); 5175 else 5176 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5177 5178 return ret; 5179 } 5180 5181 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5182 static void deposit_prealloc_pte(struct vm_fault *vmf) 5183 { 5184 struct vm_area_struct *vma = vmf->vma; 5185 5186 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5187 /* 5188 * We are going to consume the prealloc table, 5189 * count that as nr_ptes. 5190 */ 5191 mm_inc_nr_ptes(vma->vm_mm); 5192 vmf->prealloc_pte = NULL; 5193 } 5194 5195 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5196 { 5197 struct vm_area_struct *vma = vmf->vma; 5198 bool write = vmf->flags & FAULT_FLAG_WRITE; 5199 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5200 pmd_t entry; 5201 vm_fault_t ret = VM_FAULT_FALLBACK; 5202 5203 /* 5204 * It is too late to allocate a small folio, we already have a large 5205 * folio in the pagecache: especially s390 KVM cannot tolerate any 5206 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5207 * PMD mappings if THPs are disabled. 5208 */ 5209 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) 5210 return ret; 5211 5212 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5213 return ret; 5214 5215 if (folio_order(folio) != HPAGE_PMD_ORDER) 5216 return ret; 5217 page = &folio->page; 5218 5219 /* 5220 * Just backoff if any subpage of a THP is corrupted otherwise 5221 * the corrupted page may mapped by PMD silently to escape the 5222 * check. This kind of THP just can be PTE mapped. Access to 5223 * the corrupted subpage should trigger SIGBUS as expected. 5224 */ 5225 if (unlikely(folio_test_has_hwpoisoned(folio))) 5226 return ret; 5227 5228 /* 5229 * Archs like ppc64 need additional space to store information 5230 * related to pte entry. Use the preallocated table for that. 5231 */ 5232 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5233 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5234 if (!vmf->prealloc_pte) 5235 return VM_FAULT_OOM; 5236 } 5237 5238 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5239 if (unlikely(!pmd_none(*vmf->pmd))) 5240 goto out; 5241 5242 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5243 5244 entry = folio_mk_pmd(folio, vma->vm_page_prot); 5245 if (write) 5246 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5247 5248 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5249 folio_add_file_rmap_pmd(folio, page, vma); 5250 5251 /* 5252 * deposit and withdraw with pmd lock held 5253 */ 5254 if (arch_needs_pgtable_deposit()) 5255 deposit_prealloc_pte(vmf); 5256 5257 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5258 5259 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5260 5261 /* fault is handled */ 5262 ret = 0; 5263 count_vm_event(THP_FILE_MAPPED); 5264 out: 5265 spin_unlock(vmf->ptl); 5266 return ret; 5267 } 5268 #else 5269 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page) 5270 { 5271 return VM_FAULT_FALLBACK; 5272 } 5273 #endif 5274 5275 /** 5276 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5277 * @vmf: Fault decription. 5278 * @folio: The folio that contains @page. 5279 * @page: The first page to create a PTE for. 5280 * @nr: The number of PTEs to create. 5281 * @addr: The first address to create a PTE for. 5282 */ 5283 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5284 struct page *page, unsigned int nr, unsigned long addr) 5285 { 5286 struct vm_area_struct *vma = vmf->vma; 5287 bool write = vmf->flags & FAULT_FLAG_WRITE; 5288 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5289 pte_t entry; 5290 5291 flush_icache_pages(vma, page, nr); 5292 entry = mk_pte(page, vma->vm_page_prot); 5293 5294 if (prefault && arch_wants_old_prefaulted_pte()) 5295 entry = pte_mkold(entry); 5296 else 5297 entry = pte_sw_mkyoung(entry); 5298 5299 if (write) 5300 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5301 else if (pte_write(entry) && folio_test_dirty(folio)) 5302 entry = pte_mkdirty(entry); 5303 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5304 entry = pte_mkuffd_wp(entry); 5305 /* copy-on-write page */ 5306 if (write && !(vma->vm_flags & VM_SHARED)) { 5307 VM_BUG_ON_FOLIO(nr != 1, folio); 5308 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5309 folio_add_lru_vma(folio, vma); 5310 } else { 5311 folio_add_file_rmap_ptes(folio, page, nr, vma); 5312 } 5313 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5314 5315 /* no need to invalidate: a not-present page won't be cached */ 5316 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5317 } 5318 5319 static bool vmf_pte_changed(struct vm_fault *vmf) 5320 { 5321 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5322 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5323 5324 return !pte_none(ptep_get(vmf->pte)); 5325 } 5326 5327 /** 5328 * finish_fault - finish page fault once we have prepared the page to fault 5329 * 5330 * @vmf: structure describing the fault 5331 * 5332 * This function handles all that is needed to finish a page fault once the 5333 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5334 * given page, adds reverse page mapping, handles memcg charges and LRU 5335 * addition. 5336 * 5337 * The function expects the page to be locked and on success it consumes a 5338 * reference of a page being mapped (for the PTE which maps it). 5339 * 5340 * Return: %0 on success, %VM_FAULT_ code in case of error. 5341 */ 5342 vm_fault_t finish_fault(struct vm_fault *vmf) 5343 { 5344 struct vm_area_struct *vma = vmf->vma; 5345 struct page *page; 5346 struct folio *folio; 5347 vm_fault_t ret; 5348 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5349 !(vma->vm_flags & VM_SHARED); 5350 int type, nr_pages; 5351 unsigned long addr; 5352 bool needs_fallback = false; 5353 5354 fallback: 5355 addr = vmf->address; 5356 5357 /* Did we COW the page? */ 5358 if (is_cow) 5359 page = vmf->cow_page; 5360 else 5361 page = vmf->page; 5362 5363 folio = page_folio(page); 5364 /* 5365 * check even for read faults because we might have lost our CoWed 5366 * page 5367 */ 5368 if (!(vma->vm_flags & VM_SHARED)) { 5369 ret = check_stable_address_space(vma->vm_mm); 5370 if (ret) 5371 return ret; 5372 } 5373 5374 if (pmd_none(*vmf->pmd)) { 5375 if (folio_test_pmd_mappable(folio)) { 5376 ret = do_set_pmd(vmf, folio, page); 5377 if (ret != VM_FAULT_FALLBACK) 5378 return ret; 5379 } 5380 5381 if (vmf->prealloc_pte) 5382 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5383 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5384 return VM_FAULT_OOM; 5385 } 5386 5387 nr_pages = folio_nr_pages(folio); 5388 5389 /* 5390 * Using per-page fault to maintain the uffd semantics, and same 5391 * approach also applies to non shmem/tmpfs faults to avoid 5392 * inflating the RSS of the process. 5393 */ 5394 if (!vma_is_shmem(vma) || unlikely(userfaultfd_armed(vma)) || 5395 unlikely(needs_fallback)) { 5396 nr_pages = 1; 5397 } else if (nr_pages > 1) { 5398 pgoff_t idx = folio_page_idx(folio, page); 5399 /* The page offset of vmf->address within the VMA. */ 5400 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5401 /* The index of the entry in the pagetable for fault page. */ 5402 pgoff_t pte_off = pte_index(vmf->address); 5403 5404 /* 5405 * Fallback to per-page fault in case the folio size in page 5406 * cache beyond the VMA limits and PMD pagetable limits. 5407 */ 5408 if (unlikely(vma_off < idx || 5409 vma_off + (nr_pages - idx) > vma_pages(vma) || 5410 pte_off < idx || 5411 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5412 nr_pages = 1; 5413 } else { 5414 /* Now we can set mappings for the whole large folio. */ 5415 addr = vmf->address - idx * PAGE_SIZE; 5416 page = &folio->page; 5417 } 5418 } 5419 5420 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5421 addr, &vmf->ptl); 5422 if (!vmf->pte) 5423 return VM_FAULT_NOPAGE; 5424 5425 /* Re-check under ptl */ 5426 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5427 update_mmu_tlb(vma, addr, vmf->pte); 5428 ret = VM_FAULT_NOPAGE; 5429 goto unlock; 5430 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5431 needs_fallback = true; 5432 pte_unmap_unlock(vmf->pte, vmf->ptl); 5433 goto fallback; 5434 } 5435 5436 folio_ref_add(folio, nr_pages - 1); 5437 set_pte_range(vmf, folio, page, nr_pages, addr); 5438 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5439 add_mm_counter(vma->vm_mm, type, nr_pages); 5440 ret = 0; 5441 5442 unlock: 5443 pte_unmap_unlock(vmf->pte, vmf->ptl); 5444 return ret; 5445 } 5446 5447 static unsigned long fault_around_pages __read_mostly = 5448 65536 >> PAGE_SHIFT; 5449 5450 #ifdef CONFIG_DEBUG_FS 5451 static int fault_around_bytes_get(void *data, u64 *val) 5452 { 5453 *val = fault_around_pages << PAGE_SHIFT; 5454 return 0; 5455 } 5456 5457 /* 5458 * fault_around_bytes must be rounded down to the nearest page order as it's 5459 * what do_fault_around() expects to see. 5460 */ 5461 static int fault_around_bytes_set(void *data, u64 val) 5462 { 5463 if (val / PAGE_SIZE > PTRS_PER_PTE) 5464 return -EINVAL; 5465 5466 /* 5467 * The minimum value is 1 page, however this results in no fault-around 5468 * at all. See should_fault_around(). 5469 */ 5470 val = max(val, PAGE_SIZE); 5471 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5472 5473 return 0; 5474 } 5475 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5476 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5477 5478 static int __init fault_around_debugfs(void) 5479 { 5480 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5481 &fault_around_bytes_fops); 5482 return 0; 5483 } 5484 late_initcall(fault_around_debugfs); 5485 #endif 5486 5487 /* 5488 * do_fault_around() tries to map few pages around the fault address. The hope 5489 * is that the pages will be needed soon and this will lower the number of 5490 * faults to handle. 5491 * 5492 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5493 * not ready to be mapped: not up-to-date, locked, etc. 5494 * 5495 * This function doesn't cross VMA or page table boundaries, in order to call 5496 * map_pages() and acquire a PTE lock only once. 5497 * 5498 * fault_around_pages defines how many pages we'll try to map. 5499 * do_fault_around() expects it to be set to a power of two less than or equal 5500 * to PTRS_PER_PTE. 5501 * 5502 * The virtual address of the area that we map is naturally aligned to 5503 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5504 * (and therefore to page order). This way it's easier to guarantee 5505 * that we don't cross page table boundaries. 5506 */ 5507 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5508 { 5509 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5510 pgoff_t pte_off = pte_index(vmf->address); 5511 /* The page offset of vmf->address within the VMA. */ 5512 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5513 pgoff_t from_pte, to_pte; 5514 vm_fault_t ret; 5515 5516 /* The PTE offset of the start address, clamped to the VMA. */ 5517 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5518 pte_off - min(pte_off, vma_off)); 5519 5520 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5521 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5522 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5523 5524 if (pmd_none(*vmf->pmd)) { 5525 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5526 if (!vmf->prealloc_pte) 5527 return VM_FAULT_OOM; 5528 } 5529 5530 rcu_read_lock(); 5531 ret = vmf->vma->vm_ops->map_pages(vmf, 5532 vmf->pgoff + from_pte - pte_off, 5533 vmf->pgoff + to_pte - pte_off); 5534 rcu_read_unlock(); 5535 5536 return ret; 5537 } 5538 5539 /* Return true if we should do read fault-around, false otherwise */ 5540 static inline bool should_fault_around(struct vm_fault *vmf) 5541 { 5542 /* No ->map_pages? No way to fault around... */ 5543 if (!vmf->vma->vm_ops->map_pages) 5544 return false; 5545 5546 if (uffd_disable_fault_around(vmf->vma)) 5547 return false; 5548 5549 /* A single page implies no faulting 'around' at all. */ 5550 return fault_around_pages > 1; 5551 } 5552 5553 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5554 { 5555 vm_fault_t ret = 0; 5556 struct folio *folio; 5557 5558 /* 5559 * Let's call ->map_pages() first and use ->fault() as fallback 5560 * if page by the offset is not ready to be mapped (cold cache or 5561 * something). 5562 */ 5563 if (should_fault_around(vmf)) { 5564 ret = do_fault_around(vmf); 5565 if (ret) 5566 return ret; 5567 } 5568 5569 ret = vmf_can_call_fault(vmf); 5570 if (ret) 5571 return ret; 5572 5573 ret = __do_fault(vmf); 5574 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5575 return ret; 5576 5577 ret |= finish_fault(vmf); 5578 folio = page_folio(vmf->page); 5579 folio_unlock(folio); 5580 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5581 folio_put(folio); 5582 return ret; 5583 } 5584 5585 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5586 { 5587 struct vm_area_struct *vma = vmf->vma; 5588 struct folio *folio; 5589 vm_fault_t ret; 5590 5591 ret = vmf_can_call_fault(vmf); 5592 if (!ret) 5593 ret = vmf_anon_prepare(vmf); 5594 if (ret) 5595 return ret; 5596 5597 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5598 if (!folio) 5599 return VM_FAULT_OOM; 5600 5601 vmf->cow_page = &folio->page; 5602 5603 ret = __do_fault(vmf); 5604 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5605 goto uncharge_out; 5606 if (ret & VM_FAULT_DONE_COW) 5607 return ret; 5608 5609 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5610 ret = VM_FAULT_HWPOISON; 5611 goto unlock; 5612 } 5613 __folio_mark_uptodate(folio); 5614 5615 ret |= finish_fault(vmf); 5616 unlock: 5617 unlock_page(vmf->page); 5618 put_page(vmf->page); 5619 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5620 goto uncharge_out; 5621 return ret; 5622 uncharge_out: 5623 folio_put(folio); 5624 return ret; 5625 } 5626 5627 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5628 { 5629 struct vm_area_struct *vma = vmf->vma; 5630 vm_fault_t ret, tmp; 5631 struct folio *folio; 5632 5633 ret = vmf_can_call_fault(vmf); 5634 if (ret) 5635 return ret; 5636 5637 ret = __do_fault(vmf); 5638 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5639 return ret; 5640 5641 folio = page_folio(vmf->page); 5642 5643 /* 5644 * Check if the backing address space wants to know that the page is 5645 * about to become writable 5646 */ 5647 if (vma->vm_ops->page_mkwrite) { 5648 folio_unlock(folio); 5649 tmp = do_page_mkwrite(vmf, folio); 5650 if (unlikely(!tmp || 5651 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5652 folio_put(folio); 5653 return tmp; 5654 } 5655 } 5656 5657 ret |= finish_fault(vmf); 5658 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5659 VM_FAULT_RETRY))) { 5660 folio_unlock(folio); 5661 folio_put(folio); 5662 return ret; 5663 } 5664 5665 ret |= fault_dirty_shared_page(vmf); 5666 return ret; 5667 } 5668 5669 /* 5670 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5671 * but allow concurrent faults). 5672 * The mmap_lock may have been released depending on flags and our 5673 * return value. See filemap_fault() and __folio_lock_or_retry(). 5674 * If mmap_lock is released, vma may become invalid (for example 5675 * by other thread calling munmap()). 5676 */ 5677 static vm_fault_t do_fault(struct vm_fault *vmf) 5678 { 5679 struct vm_area_struct *vma = vmf->vma; 5680 struct mm_struct *vm_mm = vma->vm_mm; 5681 vm_fault_t ret; 5682 5683 /* 5684 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5685 */ 5686 if (!vma->vm_ops->fault) { 5687 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5688 vmf->address, &vmf->ptl); 5689 if (unlikely(!vmf->pte)) 5690 ret = VM_FAULT_SIGBUS; 5691 else { 5692 /* 5693 * Make sure this is not a temporary clearing of pte 5694 * by holding ptl and checking again. A R/M/W update 5695 * of pte involves: take ptl, clearing the pte so that 5696 * we don't have concurrent modification by hardware 5697 * followed by an update. 5698 */ 5699 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5700 ret = VM_FAULT_SIGBUS; 5701 else 5702 ret = VM_FAULT_NOPAGE; 5703 5704 pte_unmap_unlock(vmf->pte, vmf->ptl); 5705 } 5706 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5707 ret = do_read_fault(vmf); 5708 else if (!(vma->vm_flags & VM_SHARED)) 5709 ret = do_cow_fault(vmf); 5710 else 5711 ret = do_shared_fault(vmf); 5712 5713 /* preallocated pagetable is unused: free it */ 5714 if (vmf->prealloc_pte) { 5715 pte_free(vm_mm, vmf->prealloc_pte); 5716 vmf->prealloc_pte = NULL; 5717 } 5718 return ret; 5719 } 5720 5721 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5722 unsigned long addr, int *flags, 5723 bool writable, int *last_cpupid) 5724 { 5725 struct vm_area_struct *vma = vmf->vma; 5726 5727 /* 5728 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5729 * much anyway since they can be in shared cache state. This misses 5730 * the case where a mapping is writable but the process never writes 5731 * to it but pte_write gets cleared during protection updates and 5732 * pte_dirty has unpredictable behaviour between PTE scan updates, 5733 * background writeback, dirty balancing and application behaviour. 5734 */ 5735 if (!writable) 5736 *flags |= TNF_NO_GROUP; 5737 5738 /* 5739 * Flag if the folio is shared between multiple address spaces. This 5740 * is later used when determining whether to group tasks together 5741 */ 5742 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5743 *flags |= TNF_SHARED; 5744 /* 5745 * For memory tiering mode, cpupid of slow memory page is used 5746 * to record page access time. So use default value. 5747 */ 5748 if (folio_use_access_time(folio)) 5749 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5750 else 5751 *last_cpupid = folio_last_cpupid(folio); 5752 5753 /* Record the current PID acceesing VMA */ 5754 vma_set_access_pid_bit(vma); 5755 5756 count_vm_numa_event(NUMA_HINT_FAULTS); 5757 #ifdef CONFIG_NUMA_BALANCING 5758 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5759 #endif 5760 if (folio_nid(folio) == numa_node_id()) { 5761 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5762 *flags |= TNF_FAULT_LOCAL; 5763 } 5764 5765 return mpol_misplaced(folio, vmf, addr); 5766 } 5767 5768 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5769 unsigned long fault_addr, pte_t *fault_pte, 5770 bool writable) 5771 { 5772 pte_t pte, old_pte; 5773 5774 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5775 pte = pte_modify(old_pte, vma->vm_page_prot); 5776 pte = pte_mkyoung(pte); 5777 if (writable) 5778 pte = pte_mkwrite(pte, vma); 5779 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5780 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5781 } 5782 5783 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5784 struct folio *folio, pte_t fault_pte, 5785 bool ignore_writable, bool pte_write_upgrade) 5786 { 5787 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5788 unsigned long start, end, addr = vmf->address; 5789 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5790 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5791 pte_t *start_ptep; 5792 5793 /* Stay within the VMA and within the page table. */ 5794 start = max3(addr_start, pt_start, vma->vm_start); 5795 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5796 vma->vm_end); 5797 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5798 5799 /* Restore all PTEs' mapping of the large folio */ 5800 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5801 pte_t ptent = ptep_get(start_ptep); 5802 bool writable = false; 5803 5804 if (!pte_present(ptent) || !pte_protnone(ptent)) 5805 continue; 5806 5807 if (pfn_folio(pte_pfn(ptent)) != folio) 5808 continue; 5809 5810 if (!ignore_writable) { 5811 ptent = pte_modify(ptent, vma->vm_page_prot); 5812 writable = pte_write(ptent); 5813 if (!writable && pte_write_upgrade && 5814 can_change_pte_writable(vma, addr, ptent)) 5815 writable = true; 5816 } 5817 5818 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5819 } 5820 } 5821 5822 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5823 { 5824 struct vm_area_struct *vma = vmf->vma; 5825 struct folio *folio = NULL; 5826 int nid = NUMA_NO_NODE; 5827 bool writable = false, ignore_writable = false; 5828 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5829 int last_cpupid; 5830 int target_nid; 5831 pte_t pte, old_pte; 5832 int flags = 0, nr_pages; 5833 5834 /* 5835 * The pte cannot be used safely until we verify, while holding the page 5836 * table lock, that its contents have not changed during fault handling. 5837 */ 5838 spin_lock(vmf->ptl); 5839 /* Read the live PTE from the page tables: */ 5840 old_pte = ptep_get(vmf->pte); 5841 5842 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5843 pte_unmap_unlock(vmf->pte, vmf->ptl); 5844 return 0; 5845 } 5846 5847 pte = pte_modify(old_pte, vma->vm_page_prot); 5848 5849 /* 5850 * Detect now whether the PTE could be writable; this information 5851 * is only valid while holding the PT lock. 5852 */ 5853 writable = pte_write(pte); 5854 if (!writable && pte_write_upgrade && 5855 can_change_pte_writable(vma, vmf->address, pte)) 5856 writable = true; 5857 5858 folio = vm_normal_folio(vma, vmf->address, pte); 5859 if (!folio || folio_is_zone_device(folio)) 5860 goto out_map; 5861 5862 nid = folio_nid(folio); 5863 nr_pages = folio_nr_pages(folio); 5864 5865 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5866 writable, &last_cpupid); 5867 if (target_nid == NUMA_NO_NODE) 5868 goto out_map; 5869 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5870 flags |= TNF_MIGRATE_FAIL; 5871 goto out_map; 5872 } 5873 /* The folio is isolated and isolation code holds a folio reference. */ 5874 pte_unmap_unlock(vmf->pte, vmf->ptl); 5875 writable = false; 5876 ignore_writable = true; 5877 5878 /* Migrate to the requested node */ 5879 if (!migrate_misplaced_folio(folio, target_nid)) { 5880 nid = target_nid; 5881 flags |= TNF_MIGRATED; 5882 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5883 return 0; 5884 } 5885 5886 flags |= TNF_MIGRATE_FAIL; 5887 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5888 vmf->address, &vmf->ptl); 5889 if (unlikely(!vmf->pte)) 5890 return 0; 5891 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5892 pte_unmap_unlock(vmf->pte, vmf->ptl); 5893 return 0; 5894 } 5895 out_map: 5896 /* 5897 * Make it present again, depending on how arch implements 5898 * non-accessible ptes, some can allow access by kernel mode. 5899 */ 5900 if (folio && folio_test_large(folio)) 5901 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5902 pte_write_upgrade); 5903 else 5904 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5905 writable); 5906 pte_unmap_unlock(vmf->pte, vmf->ptl); 5907 5908 if (nid != NUMA_NO_NODE) 5909 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5910 return 0; 5911 } 5912 5913 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5914 { 5915 struct vm_area_struct *vma = vmf->vma; 5916 if (vma_is_anonymous(vma)) 5917 return do_huge_pmd_anonymous_page(vmf); 5918 if (vma->vm_ops->huge_fault) 5919 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5920 return VM_FAULT_FALLBACK; 5921 } 5922 5923 /* `inline' is required to avoid gcc 4.1.2 build error */ 5924 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5925 { 5926 struct vm_area_struct *vma = vmf->vma; 5927 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5928 vm_fault_t ret; 5929 5930 if (vma_is_anonymous(vma)) { 5931 if (likely(!unshare) && 5932 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5933 if (userfaultfd_wp_async(vmf->vma)) 5934 goto split; 5935 return handle_userfault(vmf, VM_UFFD_WP); 5936 } 5937 return do_huge_pmd_wp_page(vmf); 5938 } 5939 5940 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5941 if (vma->vm_ops->huge_fault) { 5942 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5943 if (!(ret & VM_FAULT_FALLBACK)) 5944 return ret; 5945 } 5946 } 5947 5948 split: 5949 /* COW or write-notify handled on pte level: split pmd. */ 5950 __split_huge_pmd(vma, vmf->pmd, vmf->address, false); 5951 5952 return VM_FAULT_FALLBACK; 5953 } 5954 5955 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5956 { 5957 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5958 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5959 struct vm_area_struct *vma = vmf->vma; 5960 /* No support for anonymous transparent PUD pages yet */ 5961 if (vma_is_anonymous(vma)) 5962 return VM_FAULT_FALLBACK; 5963 if (vma->vm_ops->huge_fault) 5964 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5965 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5966 return VM_FAULT_FALLBACK; 5967 } 5968 5969 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5970 { 5971 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5972 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5973 struct vm_area_struct *vma = vmf->vma; 5974 vm_fault_t ret; 5975 5976 /* No support for anonymous transparent PUD pages yet */ 5977 if (vma_is_anonymous(vma)) 5978 goto split; 5979 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5980 if (vma->vm_ops->huge_fault) { 5981 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5982 if (!(ret & VM_FAULT_FALLBACK)) 5983 return ret; 5984 } 5985 } 5986 split: 5987 /* COW or write-notify not handled on PUD level: split pud.*/ 5988 __split_huge_pud(vma, vmf->pud, vmf->address); 5989 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5990 return VM_FAULT_FALLBACK; 5991 } 5992 5993 /* 5994 * These routines also need to handle stuff like marking pages dirty 5995 * and/or accessed for architectures that don't do it in hardware (most 5996 * RISC architectures). The early dirtying is also good on the i386. 5997 * 5998 * There is also a hook called "update_mmu_cache()" that architectures 5999 * with external mmu caches can use to update those (ie the Sparc or 6000 * PowerPC hashed page tables that act as extended TLBs). 6001 * 6002 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 6003 * concurrent faults). 6004 * 6005 * The mmap_lock may have been released depending on flags and our return value. 6006 * See filemap_fault() and __folio_lock_or_retry(). 6007 */ 6008 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 6009 { 6010 pte_t entry; 6011 6012 if (unlikely(pmd_none(*vmf->pmd))) { 6013 /* 6014 * Leave __pte_alloc() until later: because vm_ops->fault may 6015 * want to allocate huge page, and if we expose page table 6016 * for an instant, it will be difficult to retract from 6017 * concurrent faults and from rmap lookups. 6018 */ 6019 vmf->pte = NULL; 6020 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 6021 } else { 6022 pmd_t dummy_pmdval; 6023 6024 /* 6025 * A regular pmd is established and it can't morph into a huge 6026 * pmd by anon khugepaged, since that takes mmap_lock in write 6027 * mode; but shmem or file collapse to THP could still morph 6028 * it into a huge pmd: just retry later if so. 6029 * 6030 * Use the maywrite version to indicate that vmf->pte may be 6031 * modified, but since we will use pte_same() to detect the 6032 * change of the !pte_none() entry, there is no need to recheck 6033 * the pmdval. Here we chooes to pass a dummy variable instead 6034 * of NULL, which helps new user think about why this place is 6035 * special. 6036 */ 6037 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 6038 vmf->address, &dummy_pmdval, 6039 &vmf->ptl); 6040 if (unlikely(!vmf->pte)) 6041 return 0; 6042 vmf->orig_pte = ptep_get_lockless(vmf->pte); 6043 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 6044 6045 if (pte_none(vmf->orig_pte)) { 6046 pte_unmap(vmf->pte); 6047 vmf->pte = NULL; 6048 } 6049 } 6050 6051 if (!vmf->pte) 6052 return do_pte_missing(vmf); 6053 6054 if (!pte_present(vmf->orig_pte)) 6055 return do_swap_page(vmf); 6056 6057 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 6058 return do_numa_page(vmf); 6059 6060 spin_lock(vmf->ptl); 6061 entry = vmf->orig_pte; 6062 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 6063 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 6064 goto unlock; 6065 } 6066 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6067 if (!pte_write(entry)) 6068 return do_wp_page(vmf); 6069 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 6070 entry = pte_mkdirty(entry); 6071 } 6072 entry = pte_mkyoung(entry); 6073 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 6074 vmf->flags & FAULT_FLAG_WRITE)) { 6075 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 6076 vmf->pte, 1); 6077 } else { 6078 /* Skip spurious TLB flush for retried page fault */ 6079 if (vmf->flags & FAULT_FLAG_TRIED) 6080 goto unlock; 6081 /* 6082 * This is needed only for protection faults but the arch code 6083 * is not yet telling us if this is a protection fault or not. 6084 * This still avoids useless tlb flushes for .text page faults 6085 * with threads. 6086 */ 6087 if (vmf->flags & FAULT_FLAG_WRITE) 6088 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 6089 vmf->pte); 6090 } 6091 unlock: 6092 pte_unmap_unlock(vmf->pte, vmf->ptl); 6093 return 0; 6094 } 6095 6096 /* 6097 * On entry, we hold either the VMA lock or the mmap_lock 6098 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 6099 * the result, the mmap_lock is not held on exit. See filemap_fault() 6100 * and __folio_lock_or_retry(). 6101 */ 6102 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 6103 unsigned long address, unsigned int flags) 6104 { 6105 struct vm_fault vmf = { 6106 .vma = vma, 6107 .address = address & PAGE_MASK, 6108 .real_address = address, 6109 .flags = flags, 6110 .pgoff = linear_page_index(vma, address), 6111 .gfp_mask = __get_fault_gfp_mask(vma), 6112 }; 6113 struct mm_struct *mm = vma->vm_mm; 6114 vm_flags_t vm_flags = vma->vm_flags; 6115 pgd_t *pgd; 6116 p4d_t *p4d; 6117 vm_fault_t ret; 6118 6119 pgd = pgd_offset(mm, address); 6120 p4d = p4d_alloc(mm, pgd, address); 6121 if (!p4d) 6122 return VM_FAULT_OOM; 6123 6124 vmf.pud = pud_alloc(mm, p4d, address); 6125 if (!vmf.pud) 6126 return VM_FAULT_OOM; 6127 retry_pud: 6128 if (pud_none(*vmf.pud) && 6129 thp_vma_allowable_order(vma, vm_flags, 6130 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 6131 ret = create_huge_pud(&vmf); 6132 if (!(ret & VM_FAULT_FALLBACK)) 6133 return ret; 6134 } else { 6135 pud_t orig_pud = *vmf.pud; 6136 6137 barrier(); 6138 if (pud_trans_huge(orig_pud)) { 6139 6140 /* 6141 * TODO once we support anonymous PUDs: NUMA case and 6142 * FAULT_FLAG_UNSHARE handling. 6143 */ 6144 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 6145 ret = wp_huge_pud(&vmf, orig_pud); 6146 if (!(ret & VM_FAULT_FALLBACK)) 6147 return ret; 6148 } else { 6149 huge_pud_set_accessed(&vmf, orig_pud); 6150 return 0; 6151 } 6152 } 6153 } 6154 6155 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 6156 if (!vmf.pmd) 6157 return VM_FAULT_OOM; 6158 6159 /* Huge pud page fault raced with pmd_alloc? */ 6160 if (pud_trans_unstable(vmf.pud)) 6161 goto retry_pud; 6162 6163 if (pmd_none(*vmf.pmd) && 6164 thp_vma_allowable_order(vma, vm_flags, 6165 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 6166 ret = create_huge_pmd(&vmf); 6167 if (!(ret & VM_FAULT_FALLBACK)) 6168 return ret; 6169 } else { 6170 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6171 6172 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 6173 VM_BUG_ON(thp_migration_supported() && 6174 !is_pmd_migration_entry(vmf.orig_pmd)); 6175 if (is_pmd_migration_entry(vmf.orig_pmd)) 6176 pmd_migration_entry_wait(mm, vmf.pmd); 6177 return 0; 6178 } 6179 if (pmd_trans_huge(vmf.orig_pmd)) { 6180 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6181 return do_huge_pmd_numa_page(&vmf); 6182 6183 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6184 !pmd_write(vmf.orig_pmd)) { 6185 ret = wp_huge_pmd(&vmf); 6186 if (!(ret & VM_FAULT_FALLBACK)) 6187 return ret; 6188 } else { 6189 huge_pmd_set_accessed(&vmf); 6190 return 0; 6191 } 6192 } 6193 } 6194 6195 return handle_pte_fault(&vmf); 6196 } 6197 6198 /** 6199 * mm_account_fault - Do page fault accounting 6200 * @mm: mm from which memcg should be extracted. It can be NULL. 6201 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6202 * of perf event counters, but we'll still do the per-task accounting to 6203 * the task who triggered this page fault. 6204 * @address: the faulted address. 6205 * @flags: the fault flags. 6206 * @ret: the fault retcode. 6207 * 6208 * This will take care of most of the page fault accounting. Meanwhile, it 6209 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6210 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6211 * still be in per-arch page fault handlers at the entry of page fault. 6212 */ 6213 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6214 unsigned long address, unsigned int flags, 6215 vm_fault_t ret) 6216 { 6217 bool major; 6218 6219 /* Incomplete faults will be accounted upon completion. */ 6220 if (ret & VM_FAULT_RETRY) 6221 return; 6222 6223 /* 6224 * To preserve the behavior of older kernels, PGFAULT counters record 6225 * both successful and failed faults, as opposed to perf counters, 6226 * which ignore failed cases. 6227 */ 6228 count_vm_event(PGFAULT); 6229 count_memcg_event_mm(mm, PGFAULT); 6230 6231 /* 6232 * Do not account for unsuccessful faults (e.g. when the address wasn't 6233 * valid). That includes arch_vma_access_permitted() failing before 6234 * reaching here. So this is not a "this many hardware page faults" 6235 * counter. We should use the hw profiling for that. 6236 */ 6237 if (ret & VM_FAULT_ERROR) 6238 return; 6239 6240 /* 6241 * We define the fault as a major fault when the final successful fault 6242 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6243 * handle it immediately previously). 6244 */ 6245 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6246 6247 if (major) 6248 current->maj_flt++; 6249 else 6250 current->min_flt++; 6251 6252 /* 6253 * If the fault is done for GUP, regs will be NULL. We only do the 6254 * accounting for the per thread fault counters who triggered the 6255 * fault, and we skip the perf event updates. 6256 */ 6257 if (!regs) 6258 return; 6259 6260 if (major) 6261 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6262 else 6263 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6264 } 6265 6266 #ifdef CONFIG_LRU_GEN 6267 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6268 { 6269 /* the LRU algorithm only applies to accesses with recency */ 6270 current->in_lru_fault = vma_has_recency(vma); 6271 } 6272 6273 static void lru_gen_exit_fault(void) 6274 { 6275 current->in_lru_fault = false; 6276 } 6277 #else 6278 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6279 { 6280 } 6281 6282 static void lru_gen_exit_fault(void) 6283 { 6284 } 6285 #endif /* CONFIG_LRU_GEN */ 6286 6287 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6288 unsigned int *flags) 6289 { 6290 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6291 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6292 return VM_FAULT_SIGSEGV; 6293 /* 6294 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6295 * just treat it like an ordinary read-fault otherwise. 6296 */ 6297 if (!is_cow_mapping(vma->vm_flags)) 6298 *flags &= ~FAULT_FLAG_UNSHARE; 6299 } else if (*flags & FAULT_FLAG_WRITE) { 6300 /* Write faults on read-only mappings are impossible ... */ 6301 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6302 return VM_FAULT_SIGSEGV; 6303 /* ... and FOLL_FORCE only applies to COW mappings. */ 6304 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6305 !is_cow_mapping(vma->vm_flags))) 6306 return VM_FAULT_SIGSEGV; 6307 } 6308 #ifdef CONFIG_PER_VMA_LOCK 6309 /* 6310 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6311 * the assumption that lock is dropped on VM_FAULT_RETRY. 6312 */ 6313 if (WARN_ON_ONCE((*flags & 6314 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6315 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6316 return VM_FAULT_SIGSEGV; 6317 #endif 6318 6319 return 0; 6320 } 6321 6322 /* 6323 * By the time we get here, we already hold either the VMA lock or the 6324 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6325 * 6326 * The mmap_lock may have been released depending on flags and our 6327 * return value. See filemap_fault() and __folio_lock_or_retry(). 6328 */ 6329 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6330 unsigned int flags, struct pt_regs *regs) 6331 { 6332 /* If the fault handler drops the mmap_lock, vma may be freed */ 6333 struct mm_struct *mm = vma->vm_mm; 6334 vm_fault_t ret; 6335 bool is_droppable; 6336 6337 __set_current_state(TASK_RUNNING); 6338 6339 ret = sanitize_fault_flags(vma, &flags); 6340 if (ret) 6341 goto out; 6342 6343 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6344 flags & FAULT_FLAG_INSTRUCTION, 6345 flags & FAULT_FLAG_REMOTE)) { 6346 ret = VM_FAULT_SIGSEGV; 6347 goto out; 6348 } 6349 6350 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6351 6352 /* 6353 * Enable the memcg OOM handling for faults triggered in user 6354 * space. Kernel faults are handled more gracefully. 6355 */ 6356 if (flags & FAULT_FLAG_USER) 6357 mem_cgroup_enter_user_fault(); 6358 6359 lru_gen_enter_fault(vma); 6360 6361 if (unlikely(is_vm_hugetlb_page(vma))) 6362 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6363 else 6364 ret = __handle_mm_fault(vma, address, flags); 6365 6366 /* 6367 * Warning: It is no longer safe to dereference vma-> after this point, 6368 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6369 * vma might be destroyed from underneath us. 6370 */ 6371 6372 lru_gen_exit_fault(); 6373 6374 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6375 if (is_droppable) 6376 ret &= ~VM_FAULT_OOM; 6377 6378 if (flags & FAULT_FLAG_USER) { 6379 mem_cgroup_exit_user_fault(); 6380 /* 6381 * The task may have entered a memcg OOM situation but 6382 * if the allocation error was handled gracefully (no 6383 * VM_FAULT_OOM), there is no need to kill anything. 6384 * Just clean up the OOM state peacefully. 6385 */ 6386 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6387 mem_cgroup_oom_synchronize(false); 6388 } 6389 out: 6390 mm_account_fault(mm, regs, address, flags, ret); 6391 6392 return ret; 6393 } 6394 EXPORT_SYMBOL_GPL(handle_mm_fault); 6395 6396 #ifndef __PAGETABLE_P4D_FOLDED 6397 /* 6398 * Allocate p4d page table. 6399 * We've already handled the fast-path in-line. 6400 */ 6401 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6402 { 6403 p4d_t *new = p4d_alloc_one(mm, address); 6404 if (!new) 6405 return -ENOMEM; 6406 6407 spin_lock(&mm->page_table_lock); 6408 if (pgd_present(*pgd)) { /* Another has populated it */ 6409 p4d_free(mm, new); 6410 } else { 6411 smp_wmb(); /* See comment in pmd_install() */ 6412 pgd_populate(mm, pgd, new); 6413 } 6414 spin_unlock(&mm->page_table_lock); 6415 return 0; 6416 } 6417 #endif /* __PAGETABLE_P4D_FOLDED */ 6418 6419 #ifndef __PAGETABLE_PUD_FOLDED 6420 /* 6421 * Allocate page upper directory. 6422 * We've already handled the fast-path in-line. 6423 */ 6424 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6425 { 6426 pud_t *new = pud_alloc_one(mm, address); 6427 if (!new) 6428 return -ENOMEM; 6429 6430 spin_lock(&mm->page_table_lock); 6431 if (!p4d_present(*p4d)) { 6432 mm_inc_nr_puds(mm); 6433 smp_wmb(); /* See comment in pmd_install() */ 6434 p4d_populate(mm, p4d, new); 6435 } else /* Another has populated it */ 6436 pud_free(mm, new); 6437 spin_unlock(&mm->page_table_lock); 6438 return 0; 6439 } 6440 #endif /* __PAGETABLE_PUD_FOLDED */ 6441 6442 #ifndef __PAGETABLE_PMD_FOLDED 6443 /* 6444 * Allocate page middle directory. 6445 * We've already handled the fast-path in-line. 6446 */ 6447 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6448 { 6449 spinlock_t *ptl; 6450 pmd_t *new = pmd_alloc_one(mm, address); 6451 if (!new) 6452 return -ENOMEM; 6453 6454 ptl = pud_lock(mm, pud); 6455 if (!pud_present(*pud)) { 6456 mm_inc_nr_pmds(mm); 6457 smp_wmb(); /* See comment in pmd_install() */ 6458 pud_populate(mm, pud, new); 6459 } else { /* Another has populated it */ 6460 pmd_free(mm, new); 6461 } 6462 spin_unlock(ptl); 6463 return 0; 6464 } 6465 #endif /* __PAGETABLE_PMD_FOLDED */ 6466 6467 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6468 spinlock_t *lock, pte_t *ptep, 6469 pgprot_t pgprot, unsigned long pfn_base, 6470 unsigned long addr_mask, bool writable, 6471 bool special) 6472 { 6473 args->lock = lock; 6474 args->ptep = ptep; 6475 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6476 args->addr_mask = addr_mask; 6477 args->pgprot = pgprot; 6478 args->writable = writable; 6479 args->special = special; 6480 } 6481 6482 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6483 { 6484 #ifdef CONFIG_LOCKDEP 6485 struct file *file = vma->vm_file; 6486 struct address_space *mapping = file ? file->f_mapping : NULL; 6487 6488 if (mapping) 6489 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6490 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6491 else 6492 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6493 #endif 6494 } 6495 6496 /** 6497 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6498 * @args: Pointer to struct @follow_pfnmap_args 6499 * 6500 * The caller needs to setup args->vma and args->address to point to the 6501 * virtual address as the target of such lookup. On a successful return, 6502 * the results will be put into other output fields. 6503 * 6504 * After the caller finished using the fields, the caller must invoke 6505 * another follow_pfnmap_end() to proper releases the locks and resources 6506 * of such look up request. 6507 * 6508 * During the start() and end() calls, the results in @args will be valid 6509 * as proper locks will be held. After the end() is called, all the fields 6510 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6511 * use of such information after end() may require proper synchronizations 6512 * by the caller with page table updates, otherwise it can create a 6513 * security bug. 6514 * 6515 * If the PTE maps a refcounted page, callers are responsible to protect 6516 * against invalidation with MMU notifiers; otherwise access to the PFN at 6517 * a later point in time can trigger use-after-free. 6518 * 6519 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6520 * should be taken for read, and the mmap semaphore cannot be released 6521 * before the end() is invoked. 6522 * 6523 * This function must not be used to modify PTE content. 6524 * 6525 * Return: zero on success, negative otherwise. 6526 */ 6527 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6528 { 6529 struct vm_area_struct *vma = args->vma; 6530 unsigned long address = args->address; 6531 struct mm_struct *mm = vma->vm_mm; 6532 spinlock_t *lock; 6533 pgd_t *pgdp; 6534 p4d_t *p4dp, p4d; 6535 pud_t *pudp, pud; 6536 pmd_t *pmdp, pmd; 6537 pte_t *ptep, pte; 6538 6539 pfnmap_lockdep_assert(vma); 6540 6541 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6542 goto out; 6543 6544 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6545 goto out; 6546 retry: 6547 pgdp = pgd_offset(mm, address); 6548 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6549 goto out; 6550 6551 p4dp = p4d_offset(pgdp, address); 6552 p4d = READ_ONCE(*p4dp); 6553 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6554 goto out; 6555 6556 pudp = pud_offset(p4dp, address); 6557 pud = READ_ONCE(*pudp); 6558 if (pud_none(pud)) 6559 goto out; 6560 if (pud_leaf(pud)) { 6561 lock = pud_lock(mm, pudp); 6562 if (!unlikely(pud_leaf(pud))) { 6563 spin_unlock(lock); 6564 goto retry; 6565 } 6566 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6567 pud_pfn(pud), PUD_MASK, pud_write(pud), 6568 pud_special(pud)); 6569 return 0; 6570 } 6571 6572 pmdp = pmd_offset(pudp, address); 6573 pmd = pmdp_get_lockless(pmdp); 6574 if (pmd_leaf(pmd)) { 6575 lock = pmd_lock(mm, pmdp); 6576 if (!unlikely(pmd_leaf(pmd))) { 6577 spin_unlock(lock); 6578 goto retry; 6579 } 6580 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6581 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6582 pmd_special(pmd)); 6583 return 0; 6584 } 6585 6586 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6587 if (!ptep) 6588 goto out; 6589 pte = ptep_get(ptep); 6590 if (!pte_present(pte)) 6591 goto unlock; 6592 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6593 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6594 pte_special(pte)); 6595 return 0; 6596 unlock: 6597 pte_unmap_unlock(ptep, lock); 6598 out: 6599 return -EINVAL; 6600 } 6601 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6602 6603 /** 6604 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6605 * @args: Pointer to struct @follow_pfnmap_args 6606 * 6607 * Must be used in pair of follow_pfnmap_start(). See the start() function 6608 * above for more information. 6609 */ 6610 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6611 { 6612 if (args->lock) 6613 spin_unlock(args->lock); 6614 if (args->ptep) 6615 pte_unmap(args->ptep); 6616 } 6617 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6618 6619 #ifdef CONFIG_HAVE_IOREMAP_PROT 6620 /** 6621 * generic_access_phys - generic implementation for iomem mmap access 6622 * @vma: the vma to access 6623 * @addr: userspace address, not relative offset within @vma 6624 * @buf: buffer to read/write 6625 * @len: length of transfer 6626 * @write: set to FOLL_WRITE when writing, otherwise reading 6627 * 6628 * This is a generic implementation for &vm_operations_struct.access for an 6629 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6630 * not page based. 6631 */ 6632 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6633 void *buf, int len, int write) 6634 { 6635 resource_size_t phys_addr; 6636 pgprot_t prot = __pgprot(0); 6637 void __iomem *maddr; 6638 int offset = offset_in_page(addr); 6639 int ret = -EINVAL; 6640 bool writable; 6641 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6642 6643 retry: 6644 if (follow_pfnmap_start(&args)) 6645 return -EINVAL; 6646 prot = args.pgprot; 6647 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6648 writable = args.writable; 6649 follow_pfnmap_end(&args); 6650 6651 if ((write & FOLL_WRITE) && !writable) 6652 return -EINVAL; 6653 6654 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6655 if (!maddr) 6656 return -ENOMEM; 6657 6658 if (follow_pfnmap_start(&args)) 6659 goto out_unmap; 6660 6661 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || 6662 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6663 (writable != args.writable)) { 6664 follow_pfnmap_end(&args); 6665 iounmap(maddr); 6666 goto retry; 6667 } 6668 6669 if (write) 6670 memcpy_toio(maddr + offset, buf, len); 6671 else 6672 memcpy_fromio(buf, maddr + offset, len); 6673 ret = len; 6674 follow_pfnmap_end(&args); 6675 out_unmap: 6676 iounmap(maddr); 6677 6678 return ret; 6679 } 6680 EXPORT_SYMBOL_GPL(generic_access_phys); 6681 #endif 6682 6683 /* 6684 * Access another process' address space as given in mm. 6685 */ 6686 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6687 void *buf, int len, unsigned int gup_flags) 6688 { 6689 void *old_buf = buf; 6690 int write = gup_flags & FOLL_WRITE; 6691 6692 if (mmap_read_lock_killable(mm)) 6693 return 0; 6694 6695 /* Untag the address before looking up the VMA */ 6696 addr = untagged_addr_remote(mm, addr); 6697 6698 /* Avoid triggering the temporary warning in __get_user_pages */ 6699 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6700 return 0; 6701 6702 /* ignore errors, just check how much was successfully transferred */ 6703 while (len) { 6704 int bytes, offset; 6705 void *maddr; 6706 struct folio *folio; 6707 struct vm_area_struct *vma = NULL; 6708 struct page *page = get_user_page_vma_remote(mm, addr, 6709 gup_flags, &vma); 6710 6711 if (IS_ERR(page)) { 6712 /* We might need to expand the stack to access it */ 6713 vma = vma_lookup(mm, addr); 6714 if (!vma) { 6715 vma = expand_stack(mm, addr); 6716 6717 /* mmap_lock was dropped on failure */ 6718 if (!vma) 6719 return buf - old_buf; 6720 6721 /* Try again if stack expansion worked */ 6722 continue; 6723 } 6724 6725 /* 6726 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6727 * we can access using slightly different code. 6728 */ 6729 bytes = 0; 6730 #ifdef CONFIG_HAVE_IOREMAP_PROT 6731 if (vma->vm_ops && vma->vm_ops->access) 6732 bytes = vma->vm_ops->access(vma, addr, buf, 6733 len, write); 6734 #endif 6735 if (bytes <= 0) 6736 break; 6737 } else { 6738 folio = page_folio(page); 6739 bytes = len; 6740 offset = addr & (PAGE_SIZE-1); 6741 if (bytes > PAGE_SIZE-offset) 6742 bytes = PAGE_SIZE-offset; 6743 6744 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 6745 if (write) { 6746 copy_to_user_page(vma, page, addr, 6747 maddr + offset, buf, bytes); 6748 folio_mark_dirty_lock(folio); 6749 } else { 6750 copy_from_user_page(vma, page, addr, 6751 buf, maddr + offset, bytes); 6752 } 6753 folio_release_kmap(folio, maddr); 6754 } 6755 len -= bytes; 6756 buf += bytes; 6757 addr += bytes; 6758 } 6759 mmap_read_unlock(mm); 6760 6761 return buf - old_buf; 6762 } 6763 6764 /** 6765 * access_remote_vm - access another process' address space 6766 * @mm: the mm_struct of the target address space 6767 * @addr: start address to access 6768 * @buf: source or destination buffer 6769 * @len: number of bytes to transfer 6770 * @gup_flags: flags modifying lookup behaviour 6771 * 6772 * The caller must hold a reference on @mm. 6773 * 6774 * Return: number of bytes copied from source to destination. 6775 */ 6776 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6777 void *buf, int len, unsigned int gup_flags) 6778 { 6779 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6780 } 6781 6782 /* 6783 * Access another process' address space. 6784 * Source/target buffer must be kernel space, 6785 * Do not walk the page table directly, use get_user_pages 6786 */ 6787 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6788 void *buf, int len, unsigned int gup_flags) 6789 { 6790 struct mm_struct *mm; 6791 int ret; 6792 6793 mm = get_task_mm(tsk); 6794 if (!mm) 6795 return 0; 6796 6797 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 6798 6799 mmput(mm); 6800 6801 return ret; 6802 } 6803 EXPORT_SYMBOL_GPL(access_process_vm); 6804 6805 #ifdef CONFIG_BPF_SYSCALL 6806 /* 6807 * Copy a string from another process's address space as given in mm. 6808 * If there is any error return -EFAULT. 6809 */ 6810 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 6811 void *buf, int len, unsigned int gup_flags) 6812 { 6813 void *old_buf = buf; 6814 int err = 0; 6815 6816 *(char *)buf = '\0'; 6817 6818 if (mmap_read_lock_killable(mm)) 6819 return -EFAULT; 6820 6821 addr = untagged_addr_remote(mm, addr); 6822 6823 /* Avoid triggering the temporary warning in __get_user_pages */ 6824 if (!vma_lookup(mm, addr)) { 6825 err = -EFAULT; 6826 goto out; 6827 } 6828 6829 while (len) { 6830 int bytes, offset, retval; 6831 void *maddr; 6832 struct folio *folio; 6833 struct page *page; 6834 struct vm_area_struct *vma = NULL; 6835 6836 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); 6837 if (IS_ERR(page)) { 6838 /* 6839 * Treat as a total failure for now until we decide how 6840 * to handle the CONFIG_HAVE_IOREMAP_PROT case and 6841 * stack expansion. 6842 */ 6843 *(char *)buf = '\0'; 6844 err = -EFAULT; 6845 goto out; 6846 } 6847 6848 folio = page_folio(page); 6849 bytes = len; 6850 offset = addr & (PAGE_SIZE - 1); 6851 if (bytes > PAGE_SIZE - offset) 6852 bytes = PAGE_SIZE - offset; 6853 6854 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE); 6855 retval = strscpy(buf, maddr + offset, bytes); 6856 if (retval >= 0) { 6857 /* Found the end of the string */ 6858 buf += retval; 6859 folio_release_kmap(folio, maddr); 6860 break; 6861 } 6862 6863 buf += bytes - 1; 6864 /* 6865 * Because strscpy always NUL terminates we need to 6866 * copy the last byte in the page if we are going to 6867 * load more pages 6868 */ 6869 if (bytes != len) { 6870 addr += bytes - 1; 6871 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); 6872 buf += 1; 6873 addr += 1; 6874 } 6875 len -= bytes; 6876 6877 folio_release_kmap(folio, maddr); 6878 } 6879 6880 out: 6881 mmap_read_unlock(mm); 6882 if (err) 6883 return err; 6884 return buf - old_buf; 6885 } 6886 6887 /** 6888 * copy_remote_vm_str - copy a string from another process's address space. 6889 * @tsk: the task of the target address space 6890 * @addr: start address to read from 6891 * @buf: destination buffer 6892 * @len: number of bytes to copy 6893 * @gup_flags: flags modifying lookup behaviour 6894 * 6895 * The caller must hold a reference on @mm. 6896 * 6897 * Return: number of bytes copied from @addr (source) to @buf (destination); 6898 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 6899 * buffer. On any error, return -EFAULT. 6900 */ 6901 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 6902 void *buf, int len, unsigned int gup_flags) 6903 { 6904 struct mm_struct *mm; 6905 int ret; 6906 6907 if (unlikely(len == 0)) 6908 return 0; 6909 6910 mm = get_task_mm(tsk); 6911 if (!mm) { 6912 *(char *)buf = '\0'; 6913 return -EFAULT; 6914 } 6915 6916 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); 6917 6918 mmput(mm); 6919 6920 return ret; 6921 } 6922 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 6923 #endif /* CONFIG_BPF_SYSCALL */ 6924 6925 /* 6926 * Print the name of a VMA. 6927 */ 6928 void print_vma_addr(char *prefix, unsigned long ip) 6929 { 6930 struct mm_struct *mm = current->mm; 6931 struct vm_area_struct *vma; 6932 6933 /* 6934 * we might be running from an atomic context so we cannot sleep 6935 */ 6936 if (!mmap_read_trylock(mm)) 6937 return; 6938 6939 vma = vma_lookup(mm, ip); 6940 if (vma && vma->vm_file) { 6941 struct file *f = vma->vm_file; 6942 ip -= vma->vm_start; 6943 ip += vma->vm_pgoff << PAGE_SHIFT; 6944 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 6945 vma->vm_start, 6946 vma->vm_end - vma->vm_start); 6947 } 6948 mmap_read_unlock(mm); 6949 } 6950 6951 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 6952 void __might_fault(const char *file, int line) 6953 { 6954 if (pagefault_disabled()) 6955 return; 6956 __might_sleep(file, line); 6957 if (current->mm) 6958 might_lock_read(¤t->mm->mmap_lock); 6959 } 6960 EXPORT_SYMBOL(__might_fault); 6961 #endif 6962 6963 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 6964 /* 6965 * Process all subpages of the specified huge page with the specified 6966 * operation. The target subpage will be processed last to keep its 6967 * cache lines hot. 6968 */ 6969 static inline int process_huge_page( 6970 unsigned long addr_hint, unsigned int nr_pages, 6971 int (*process_subpage)(unsigned long addr, int idx, void *arg), 6972 void *arg) 6973 { 6974 int i, n, base, l, ret; 6975 unsigned long addr = addr_hint & 6976 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 6977 6978 /* Process target subpage last to keep its cache lines hot */ 6979 might_sleep(); 6980 n = (addr_hint - addr) / PAGE_SIZE; 6981 if (2 * n <= nr_pages) { 6982 /* If target subpage in first half of huge page */ 6983 base = 0; 6984 l = n; 6985 /* Process subpages at the end of huge page */ 6986 for (i = nr_pages - 1; i >= 2 * n; i--) { 6987 cond_resched(); 6988 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 6989 if (ret) 6990 return ret; 6991 } 6992 } else { 6993 /* If target subpage in second half of huge page */ 6994 base = nr_pages - 2 * (nr_pages - n); 6995 l = nr_pages - n; 6996 /* Process subpages at the begin of huge page */ 6997 for (i = 0; i < base; i++) { 6998 cond_resched(); 6999 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7000 if (ret) 7001 return ret; 7002 } 7003 } 7004 /* 7005 * Process remaining subpages in left-right-left-right pattern 7006 * towards the target subpage 7007 */ 7008 for (i = 0; i < l; i++) { 7009 int left_idx = base + i; 7010 int right_idx = base + 2 * l - 1 - i; 7011 7012 cond_resched(); 7013 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 7014 if (ret) 7015 return ret; 7016 cond_resched(); 7017 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 7018 if (ret) 7019 return ret; 7020 } 7021 return 0; 7022 } 7023 7024 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 7025 unsigned int nr_pages) 7026 { 7027 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7028 int i; 7029 7030 might_sleep(); 7031 for (i = 0; i < nr_pages; i++) { 7032 cond_resched(); 7033 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 7034 } 7035 } 7036 7037 static int clear_subpage(unsigned long addr, int idx, void *arg) 7038 { 7039 struct folio *folio = arg; 7040 7041 clear_user_highpage(folio_page(folio, idx), addr); 7042 return 0; 7043 } 7044 7045 /** 7046 * folio_zero_user - Zero a folio which will be mapped to userspace. 7047 * @folio: The folio to zero. 7048 * @addr_hint: The address will be accessed or the base address if uncelar. 7049 */ 7050 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7051 { 7052 unsigned int nr_pages = folio_nr_pages(folio); 7053 7054 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7055 clear_gigantic_page(folio, addr_hint, nr_pages); 7056 else 7057 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 7058 } 7059 7060 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7061 unsigned long addr_hint, 7062 struct vm_area_struct *vma, 7063 unsigned int nr_pages) 7064 { 7065 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7066 struct page *dst_page; 7067 struct page *src_page; 7068 int i; 7069 7070 for (i = 0; i < nr_pages; i++) { 7071 dst_page = folio_page(dst, i); 7072 src_page = folio_page(src, i); 7073 7074 cond_resched(); 7075 if (copy_mc_user_highpage(dst_page, src_page, 7076 addr + i*PAGE_SIZE, vma)) 7077 return -EHWPOISON; 7078 } 7079 return 0; 7080 } 7081 7082 struct copy_subpage_arg { 7083 struct folio *dst; 7084 struct folio *src; 7085 struct vm_area_struct *vma; 7086 }; 7087 7088 static int copy_subpage(unsigned long addr, int idx, void *arg) 7089 { 7090 struct copy_subpage_arg *copy_arg = arg; 7091 struct page *dst = folio_page(copy_arg->dst, idx); 7092 struct page *src = folio_page(copy_arg->src, idx); 7093 7094 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7095 return -EHWPOISON; 7096 return 0; 7097 } 7098 7099 int copy_user_large_folio(struct folio *dst, struct folio *src, 7100 unsigned long addr_hint, struct vm_area_struct *vma) 7101 { 7102 unsigned int nr_pages = folio_nr_pages(dst); 7103 struct copy_subpage_arg arg = { 7104 .dst = dst, 7105 .src = src, 7106 .vma = vma, 7107 }; 7108 7109 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7110 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7111 7112 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7113 } 7114 7115 long copy_folio_from_user(struct folio *dst_folio, 7116 const void __user *usr_src, 7117 bool allow_pagefault) 7118 { 7119 void *kaddr; 7120 unsigned long i, rc = 0; 7121 unsigned int nr_pages = folio_nr_pages(dst_folio); 7122 unsigned long ret_val = nr_pages * PAGE_SIZE; 7123 struct page *subpage; 7124 7125 for (i = 0; i < nr_pages; i++) { 7126 subpage = folio_page(dst_folio, i); 7127 kaddr = kmap_local_page(subpage); 7128 if (!allow_pagefault) 7129 pagefault_disable(); 7130 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7131 if (!allow_pagefault) 7132 pagefault_enable(); 7133 kunmap_local(kaddr); 7134 7135 ret_val -= (PAGE_SIZE - rc); 7136 if (rc) 7137 break; 7138 7139 flush_dcache_page(subpage); 7140 7141 cond_resched(); 7142 } 7143 return ret_val; 7144 } 7145 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7146 7147 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7148 7149 static struct kmem_cache *page_ptl_cachep; 7150 7151 void __init ptlock_cache_init(void) 7152 { 7153 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7154 SLAB_PANIC, NULL); 7155 } 7156 7157 bool ptlock_alloc(struct ptdesc *ptdesc) 7158 { 7159 spinlock_t *ptl; 7160 7161 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7162 if (!ptl) 7163 return false; 7164 ptdesc->ptl = ptl; 7165 return true; 7166 } 7167 7168 void ptlock_free(struct ptdesc *ptdesc) 7169 { 7170 if (ptdesc->ptl) 7171 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7172 } 7173 #endif 7174 7175 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7176 { 7177 if (is_vm_hugetlb_page(vma)) 7178 hugetlb_vma_lock_read(vma); 7179 } 7180 7181 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7182 { 7183 if (is_vm_hugetlb_page(vma)) 7184 hugetlb_vma_unlock_read(vma); 7185 } 7186