1 2 // SPDX-License-Identifier: GPL-2.0-only 3 /* 4 * linux/mm/memory.c 5 * 6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 7 */ 8 9 /* 10 * demand-loading started 01.12.91 - seems it is high on the list of 11 * things wanted, and it should be easy to implement. - Linus 12 */ 13 14 /* 15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 16 * pages started 02.12.91, seems to work. - Linus. 17 * 18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 19 * would have taken more than the 6M I have free, but it worked well as 20 * far as I could see. 21 * 22 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 23 */ 24 25 /* 26 * Real VM (paging to/from disk) started 18.12.91. Much more work and 27 * thought has to go into this. Oh, well.. 28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 29 * Found it. Everything seems to work now. 30 * 20.12.91 - Ok, making the swap-device changeable like the root. 31 */ 32 33 /* 34 * 05.04.94 - Multi-page memory management added for v1.1. 35 * Idea by Alex Bligh (alex@cconcepts.co.uk) 36 * 37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 38 * (Gerhard.Wichert@pdb.siemens.de) 39 * 40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 41 */ 42 43 #include <linux/kernel_stat.h> 44 #include <linux/mm.h> 45 #include <linux/mm_inline.h> 46 #include <linux/sched/mm.h> 47 #include <linux/sched/coredump.h> 48 #include <linux/sched/numa_balancing.h> 49 #include <linux/sched/task.h> 50 #include <linux/hugetlb.h> 51 #include <linux/mman.h> 52 #include <linux/swap.h> 53 #include <linux/highmem.h> 54 #include <linux/pagemap.h> 55 #include <linux/memremap.h> 56 #include <linux/kmsan.h> 57 #include <linux/ksm.h> 58 #include <linux/rmap.h> 59 #include <linux/export.h> 60 #include <linux/delayacct.h> 61 #include <linux/init.h> 62 #include <linux/pfn_t.h> 63 #include <linux/writeback.h> 64 #include <linux/memcontrol.h> 65 #include <linux/mmu_notifier.h> 66 #include <linux/swapops.h> 67 #include <linux/elf.h> 68 #include <linux/gfp.h> 69 #include <linux/migrate.h> 70 #include <linux/string.h> 71 #include <linux/memory-tiers.h> 72 #include <linux/debugfs.h> 73 #include <linux/userfaultfd_k.h> 74 #include <linux/dax.h> 75 #include <linux/oom.h> 76 #include <linux/numa.h> 77 #include <linux/perf_event.h> 78 #include <linux/ptrace.h> 79 #include <linux/vmalloc.h> 80 #include <linux/sched/sysctl.h> 81 82 #include <trace/events/kmem.h> 83 84 #include <asm/io.h> 85 #include <asm/mmu_context.h> 86 #include <asm/pgalloc.h> 87 #include <linux/uaccess.h> 88 #include <asm/tlb.h> 89 #include <asm/tlbflush.h> 90 91 #include "pgalloc-track.h" 92 #include "internal.h" 93 #include "swap.h" 94 95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 97 #endif 98 99 #ifndef CONFIG_NUMA 100 unsigned long max_mapnr; 101 EXPORT_SYMBOL(max_mapnr); 102 103 struct page *mem_map; 104 EXPORT_SYMBOL(mem_map); 105 #endif 106 107 static vm_fault_t do_fault(struct vm_fault *vmf); 108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 109 static bool vmf_pte_changed(struct vm_fault *vmf); 110 111 /* 112 * Return true if the original pte was a uffd-wp pte marker (so the pte was 113 * wr-protected). 114 */ 115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 116 { 117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 118 return false; 119 120 return pte_marker_uffd_wp(vmf->orig_pte); 121 } 122 123 /* 124 * A number of key systems in x86 including ioremap() rely on the assumption 125 * that high_memory defines the upper bound on direct map memory, then end 126 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 127 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 128 * and ZONE_HIGHMEM. 129 */ 130 void *high_memory; 131 EXPORT_SYMBOL(high_memory); 132 133 /* 134 * Randomize the address space (stacks, mmaps, brk, etc.). 135 * 136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 137 * as ancient (libc5 based) binaries can segfault. ) 138 */ 139 int randomize_va_space __read_mostly = 140 #ifdef CONFIG_COMPAT_BRK 141 1; 142 #else 143 2; 144 #endif 145 146 #ifndef arch_wants_old_prefaulted_pte 147 static inline bool arch_wants_old_prefaulted_pte(void) 148 { 149 /* 150 * Transitioning a PTE from 'old' to 'young' can be expensive on 151 * some architectures, even if it's performed in hardware. By 152 * default, "false" means prefaulted entries will be 'young'. 153 */ 154 return false; 155 } 156 #endif 157 158 static int __init disable_randmaps(char *s) 159 { 160 randomize_va_space = 0; 161 return 1; 162 } 163 __setup("norandmaps", disable_randmaps); 164 165 unsigned long zero_pfn __read_mostly; 166 EXPORT_SYMBOL(zero_pfn); 167 168 unsigned long highest_memmap_pfn __read_mostly; 169 170 /* 171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 172 */ 173 static int __init init_zero_pfn(void) 174 { 175 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 176 return 0; 177 } 178 early_initcall(init_zero_pfn); 179 180 void mm_trace_rss_stat(struct mm_struct *mm, int member) 181 { 182 trace_rss_stat(mm, member); 183 } 184 185 /* 186 * Note: this doesn't free the actual pages themselves. That 187 * has been handled earlier when unmapping all the memory regions. 188 */ 189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 190 unsigned long addr) 191 { 192 pgtable_t token = pmd_pgtable(*pmd); 193 pmd_clear(pmd); 194 pte_free_tlb(tlb, token, addr); 195 mm_dec_nr_ptes(tlb->mm); 196 } 197 198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 199 unsigned long addr, unsigned long end, 200 unsigned long floor, unsigned long ceiling) 201 { 202 pmd_t *pmd; 203 unsigned long next; 204 unsigned long start; 205 206 start = addr; 207 pmd = pmd_offset(pud, addr); 208 do { 209 next = pmd_addr_end(addr, end); 210 if (pmd_none_or_clear_bad(pmd)) 211 continue; 212 free_pte_range(tlb, pmd, addr); 213 } while (pmd++, addr = next, addr != end); 214 215 start &= PUD_MASK; 216 if (start < floor) 217 return; 218 if (ceiling) { 219 ceiling &= PUD_MASK; 220 if (!ceiling) 221 return; 222 } 223 if (end - 1 > ceiling - 1) 224 return; 225 226 pmd = pmd_offset(pud, start); 227 pud_clear(pud); 228 pmd_free_tlb(tlb, pmd, start); 229 mm_dec_nr_pmds(tlb->mm); 230 } 231 232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 233 unsigned long addr, unsigned long end, 234 unsigned long floor, unsigned long ceiling) 235 { 236 pud_t *pud; 237 unsigned long next; 238 unsigned long start; 239 240 start = addr; 241 pud = pud_offset(p4d, addr); 242 do { 243 next = pud_addr_end(addr, end); 244 if (pud_none_or_clear_bad(pud)) 245 continue; 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 247 } while (pud++, addr = next, addr != end); 248 249 start &= P4D_MASK; 250 if (start < floor) 251 return; 252 if (ceiling) { 253 ceiling &= P4D_MASK; 254 if (!ceiling) 255 return; 256 } 257 if (end - 1 > ceiling - 1) 258 return; 259 260 pud = pud_offset(p4d, start); 261 p4d_clear(p4d); 262 pud_free_tlb(tlb, pud, start); 263 mm_dec_nr_puds(tlb->mm); 264 } 265 266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 p4d_t *p4d; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 p4d = p4d_offset(pgd, addr); 276 do { 277 next = p4d_addr_end(addr, end); 278 if (p4d_none_or_clear_bad(p4d)) 279 continue; 280 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 281 } while (p4d++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 p4d = p4d_offset(pgd, start); 295 pgd_clear(pgd); 296 p4d_free_tlb(tlb, p4d, start); 297 } 298 299 /* 300 * This function frees user-level page tables of a process. 301 */ 302 void free_pgd_range(struct mmu_gather *tlb, 303 unsigned long addr, unsigned long end, 304 unsigned long floor, unsigned long ceiling) 305 { 306 pgd_t *pgd; 307 unsigned long next; 308 309 /* 310 * The next few lines have given us lots of grief... 311 * 312 * Why are we testing PMD* at this top level? Because often 313 * there will be no work to do at all, and we'd prefer not to 314 * go all the way down to the bottom just to discover that. 315 * 316 * Why all these "- 1"s? Because 0 represents both the bottom 317 * of the address space and the top of it (using -1 for the 318 * top wouldn't help much: the masks would do the wrong thing). 319 * The rule is that addr 0 and floor 0 refer to the bottom of 320 * the address space, but end 0 and ceiling 0 refer to the top 321 * Comparisons need to use "end - 1" and "ceiling - 1" (though 322 * that end 0 case should be mythical). 323 * 324 * Wherever addr is brought up or ceiling brought down, we must 325 * be careful to reject "the opposite 0" before it confuses the 326 * subsequent tests. But what about where end is brought down 327 * by PMD_SIZE below? no, end can't go down to 0 there. 328 * 329 * Whereas we round start (addr) and ceiling down, by different 330 * masks at different levels, in order to test whether a table 331 * now has no other vmas using it, so can be freed, we don't 332 * bother to round floor or end up - the tests don't need that. 333 */ 334 335 addr &= PMD_MASK; 336 if (addr < floor) { 337 addr += PMD_SIZE; 338 if (!addr) 339 return; 340 } 341 if (ceiling) { 342 ceiling &= PMD_MASK; 343 if (!ceiling) 344 return; 345 } 346 if (end - 1 > ceiling - 1) 347 end -= PMD_SIZE; 348 if (addr > end - 1) 349 return; 350 /* 351 * We add page table cache pages with PAGE_SIZE, 352 * (see pte_free_tlb()), flush the tlb if we need 353 */ 354 tlb_change_page_size(tlb, PAGE_SIZE); 355 pgd = pgd_offset(tlb->mm, addr); 356 do { 357 next = pgd_addr_end(addr, end); 358 if (pgd_none_or_clear_bad(pgd)) 359 continue; 360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 361 } while (pgd++, addr = next, addr != end); 362 } 363 364 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 365 struct vm_area_struct *vma, unsigned long floor, 366 unsigned long ceiling, bool mm_wr_locked) 367 { 368 do { 369 unsigned long addr = vma->vm_start; 370 struct vm_area_struct *next; 371 372 /* 373 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 374 * be 0. This will underflow and is okay. 375 */ 376 next = mas_find(mas, ceiling - 1); 377 378 /* 379 * Hide vma from rmap and truncate_pagecache before freeing 380 * pgtables 381 */ 382 if (mm_wr_locked) 383 vma_start_write(vma); 384 unlink_anon_vmas(vma); 385 unlink_file_vma(vma); 386 387 if (is_vm_hugetlb_page(vma)) { 388 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 389 floor, next ? next->vm_start : ceiling); 390 } else { 391 /* 392 * Optimization: gather nearby vmas into one call down 393 */ 394 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 395 && !is_vm_hugetlb_page(next)) { 396 vma = next; 397 next = mas_find(mas, ceiling - 1); 398 if (mm_wr_locked) 399 vma_start_write(vma); 400 unlink_anon_vmas(vma); 401 unlink_file_vma(vma); 402 } 403 free_pgd_range(tlb, addr, vma->vm_end, 404 floor, next ? next->vm_start : ceiling); 405 } 406 vma = next; 407 } while (vma); 408 } 409 410 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 411 { 412 spinlock_t *ptl = pmd_lock(mm, pmd); 413 414 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 415 mm_inc_nr_ptes(mm); 416 /* 417 * Ensure all pte setup (eg. pte page lock and page clearing) are 418 * visible before the pte is made visible to other CPUs by being 419 * put into page tables. 420 * 421 * The other side of the story is the pointer chasing in the page 422 * table walking code (when walking the page table without locking; 423 * ie. most of the time). Fortunately, these data accesses consist 424 * of a chain of data-dependent loads, meaning most CPUs (alpha 425 * being the notable exception) will already guarantee loads are 426 * seen in-order. See the alpha page table accessors for the 427 * smp_rmb() barriers in page table walking code. 428 */ 429 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 430 pmd_populate(mm, pmd, *pte); 431 *pte = NULL; 432 } 433 spin_unlock(ptl); 434 } 435 436 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 437 { 438 pgtable_t new = pte_alloc_one(mm); 439 if (!new) 440 return -ENOMEM; 441 442 pmd_install(mm, pmd, &new); 443 if (new) 444 pte_free(mm, new); 445 return 0; 446 } 447 448 int __pte_alloc_kernel(pmd_t *pmd) 449 { 450 pte_t *new = pte_alloc_one_kernel(&init_mm); 451 if (!new) 452 return -ENOMEM; 453 454 spin_lock(&init_mm.page_table_lock); 455 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 456 smp_wmb(); /* See comment in pmd_install() */ 457 pmd_populate_kernel(&init_mm, pmd, new); 458 new = NULL; 459 } 460 spin_unlock(&init_mm.page_table_lock); 461 if (new) 462 pte_free_kernel(&init_mm, new); 463 return 0; 464 } 465 466 static inline void init_rss_vec(int *rss) 467 { 468 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 469 } 470 471 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 472 { 473 int i; 474 475 for (i = 0; i < NR_MM_COUNTERS; i++) 476 if (rss[i]) 477 add_mm_counter(mm, i, rss[i]); 478 } 479 480 /* 481 * This function is called to print an error when a bad pte 482 * is found. For example, we might have a PFN-mapped pte in 483 * a region that doesn't allow it. 484 * 485 * The calling function must still handle the error. 486 */ 487 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 488 pte_t pte, struct page *page) 489 { 490 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 491 p4d_t *p4d = p4d_offset(pgd, addr); 492 pud_t *pud = pud_offset(p4d, addr); 493 pmd_t *pmd = pmd_offset(pud, addr); 494 struct address_space *mapping; 495 pgoff_t index; 496 static unsigned long resume; 497 static unsigned long nr_shown; 498 static unsigned long nr_unshown; 499 500 /* 501 * Allow a burst of 60 reports, then keep quiet for that minute; 502 * or allow a steady drip of one report per second. 503 */ 504 if (nr_shown == 60) { 505 if (time_before(jiffies, resume)) { 506 nr_unshown++; 507 return; 508 } 509 if (nr_unshown) { 510 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 511 nr_unshown); 512 nr_unshown = 0; 513 } 514 nr_shown = 0; 515 } 516 if (nr_shown++ == 0) 517 resume = jiffies + 60 * HZ; 518 519 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 520 index = linear_page_index(vma, addr); 521 522 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 523 current->comm, 524 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 525 if (page) 526 dump_page(page, "bad pte"); 527 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 528 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 529 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 530 vma->vm_file, 531 vma->vm_ops ? vma->vm_ops->fault : NULL, 532 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 533 mapping ? mapping->a_ops->read_folio : NULL); 534 dump_stack(); 535 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 536 } 537 538 /* 539 * vm_normal_page -- This function gets the "struct page" associated with a pte. 540 * 541 * "Special" mappings do not wish to be associated with a "struct page" (either 542 * it doesn't exist, or it exists but they don't want to touch it). In this 543 * case, NULL is returned here. "Normal" mappings do have a struct page. 544 * 545 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 546 * pte bit, in which case this function is trivial. Secondly, an architecture 547 * may not have a spare pte bit, which requires a more complicated scheme, 548 * described below. 549 * 550 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 551 * special mapping (even if there are underlying and valid "struct pages"). 552 * COWed pages of a VM_PFNMAP are always normal. 553 * 554 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 555 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 556 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 557 * mapping will always honor the rule 558 * 559 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 560 * 561 * And for normal mappings this is false. 562 * 563 * This restricts such mappings to be a linear translation from virtual address 564 * to pfn. To get around this restriction, we allow arbitrary mappings so long 565 * as the vma is not a COW mapping; in that case, we know that all ptes are 566 * special (because none can have been COWed). 567 * 568 * 569 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 570 * 571 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 572 * page" backing, however the difference is that _all_ pages with a struct 573 * page (that is, those where pfn_valid is true) are refcounted and considered 574 * normal pages by the VM. The disadvantage is that pages are refcounted 575 * (which can be slower and simply not an option for some PFNMAP users). The 576 * advantage is that we don't have to follow the strict linearity rule of 577 * PFNMAP mappings in order to support COWable mappings. 578 * 579 */ 580 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 581 pte_t pte) 582 { 583 unsigned long pfn = pte_pfn(pte); 584 585 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 586 if (likely(!pte_special(pte))) 587 goto check_pfn; 588 if (vma->vm_ops && vma->vm_ops->find_special_page) 589 return vma->vm_ops->find_special_page(vma, addr); 590 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 591 return NULL; 592 if (is_zero_pfn(pfn)) 593 return NULL; 594 if (pte_devmap(pte)) 595 /* 596 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 597 * and will have refcounts incremented on their struct pages 598 * when they are inserted into PTEs, thus they are safe to 599 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 600 * do not have refcounts. Example of legacy ZONE_DEVICE is 601 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 602 */ 603 return NULL; 604 605 print_bad_pte(vma, addr, pte, NULL); 606 return NULL; 607 } 608 609 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 610 611 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 612 if (vma->vm_flags & VM_MIXEDMAP) { 613 if (!pfn_valid(pfn)) 614 return NULL; 615 goto out; 616 } else { 617 unsigned long off; 618 off = (addr - vma->vm_start) >> PAGE_SHIFT; 619 if (pfn == vma->vm_pgoff + off) 620 return NULL; 621 if (!is_cow_mapping(vma->vm_flags)) 622 return NULL; 623 } 624 } 625 626 if (is_zero_pfn(pfn)) 627 return NULL; 628 629 check_pfn: 630 if (unlikely(pfn > highest_memmap_pfn)) { 631 print_bad_pte(vma, addr, pte, NULL); 632 return NULL; 633 } 634 635 /* 636 * NOTE! We still have PageReserved() pages in the page tables. 637 * eg. VDSO mappings can cause them to exist. 638 */ 639 out: 640 return pfn_to_page(pfn); 641 } 642 643 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 644 pte_t pte) 645 { 646 struct page *page = vm_normal_page(vma, addr, pte); 647 648 if (page) 649 return page_folio(page); 650 return NULL; 651 } 652 653 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 654 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 655 pmd_t pmd) 656 { 657 unsigned long pfn = pmd_pfn(pmd); 658 659 /* 660 * There is no pmd_special() but there may be special pmds, e.g. 661 * in a direct-access (dax) mapping, so let's just replicate the 662 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 663 */ 664 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 665 if (vma->vm_flags & VM_MIXEDMAP) { 666 if (!pfn_valid(pfn)) 667 return NULL; 668 goto out; 669 } else { 670 unsigned long off; 671 off = (addr - vma->vm_start) >> PAGE_SHIFT; 672 if (pfn == vma->vm_pgoff + off) 673 return NULL; 674 if (!is_cow_mapping(vma->vm_flags)) 675 return NULL; 676 } 677 } 678 679 if (pmd_devmap(pmd)) 680 return NULL; 681 if (is_huge_zero_pmd(pmd)) 682 return NULL; 683 if (unlikely(pfn > highest_memmap_pfn)) 684 return NULL; 685 686 /* 687 * NOTE! We still have PageReserved() pages in the page tables. 688 * eg. VDSO mappings can cause them to exist. 689 */ 690 out: 691 return pfn_to_page(pfn); 692 } 693 694 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 695 unsigned long addr, pmd_t pmd) 696 { 697 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 698 699 if (page) 700 return page_folio(page); 701 return NULL; 702 } 703 #endif 704 705 static void restore_exclusive_pte(struct vm_area_struct *vma, 706 struct page *page, unsigned long address, 707 pte_t *ptep) 708 { 709 pte_t orig_pte; 710 pte_t pte; 711 swp_entry_t entry; 712 713 orig_pte = ptep_get(ptep); 714 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 715 if (pte_swp_soft_dirty(orig_pte)) 716 pte = pte_mksoft_dirty(pte); 717 718 entry = pte_to_swp_entry(orig_pte); 719 if (pte_swp_uffd_wp(orig_pte)) 720 pte = pte_mkuffd_wp(pte); 721 else if (is_writable_device_exclusive_entry(entry)) 722 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 723 724 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 725 726 /* 727 * No need to take a page reference as one was already 728 * created when the swap entry was made. 729 */ 730 if (PageAnon(page)) 731 page_add_anon_rmap(page, vma, address, RMAP_NONE); 732 else 733 /* 734 * Currently device exclusive access only supports anonymous 735 * memory so the entry shouldn't point to a filebacked page. 736 */ 737 WARN_ON_ONCE(1); 738 739 set_pte_at(vma->vm_mm, address, ptep, pte); 740 741 /* 742 * No need to invalidate - it was non-present before. However 743 * secondary CPUs may have mappings that need invalidating. 744 */ 745 update_mmu_cache(vma, address, ptep); 746 } 747 748 /* 749 * Tries to restore an exclusive pte if the page lock can be acquired without 750 * sleeping. 751 */ 752 static int 753 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 754 unsigned long addr) 755 { 756 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 757 struct page *page = pfn_swap_entry_to_page(entry); 758 759 if (trylock_page(page)) { 760 restore_exclusive_pte(vma, page, addr, src_pte); 761 unlock_page(page); 762 return 0; 763 } 764 765 return -EBUSY; 766 } 767 768 /* 769 * copy one vm_area from one task to the other. Assumes the page tables 770 * already present in the new task to be cleared in the whole range 771 * covered by this vma. 772 */ 773 774 static unsigned long 775 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 776 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 777 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 778 { 779 unsigned long vm_flags = dst_vma->vm_flags; 780 pte_t orig_pte = ptep_get(src_pte); 781 pte_t pte = orig_pte; 782 struct page *page; 783 swp_entry_t entry = pte_to_swp_entry(orig_pte); 784 785 if (likely(!non_swap_entry(entry))) { 786 if (swap_duplicate(entry) < 0) 787 return -EIO; 788 789 /* make sure dst_mm is on swapoff's mmlist. */ 790 if (unlikely(list_empty(&dst_mm->mmlist))) { 791 spin_lock(&mmlist_lock); 792 if (list_empty(&dst_mm->mmlist)) 793 list_add(&dst_mm->mmlist, 794 &src_mm->mmlist); 795 spin_unlock(&mmlist_lock); 796 } 797 /* Mark the swap entry as shared. */ 798 if (pte_swp_exclusive(orig_pte)) { 799 pte = pte_swp_clear_exclusive(orig_pte); 800 set_pte_at(src_mm, addr, src_pte, pte); 801 } 802 rss[MM_SWAPENTS]++; 803 } else if (is_migration_entry(entry)) { 804 page = pfn_swap_entry_to_page(entry); 805 806 rss[mm_counter(page)]++; 807 808 if (!is_readable_migration_entry(entry) && 809 is_cow_mapping(vm_flags)) { 810 /* 811 * COW mappings require pages in both parent and child 812 * to be set to read. A previously exclusive entry is 813 * now shared. 814 */ 815 entry = make_readable_migration_entry( 816 swp_offset(entry)); 817 pte = swp_entry_to_pte(entry); 818 if (pte_swp_soft_dirty(orig_pte)) 819 pte = pte_swp_mksoft_dirty(pte); 820 if (pte_swp_uffd_wp(orig_pte)) 821 pte = pte_swp_mkuffd_wp(pte); 822 set_pte_at(src_mm, addr, src_pte, pte); 823 } 824 } else if (is_device_private_entry(entry)) { 825 page = pfn_swap_entry_to_page(entry); 826 827 /* 828 * Update rss count even for unaddressable pages, as 829 * they should treated just like normal pages in this 830 * respect. 831 * 832 * We will likely want to have some new rss counters 833 * for unaddressable pages, at some point. But for now 834 * keep things as they are. 835 */ 836 get_page(page); 837 rss[mm_counter(page)]++; 838 /* Cannot fail as these pages cannot get pinned. */ 839 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 840 841 /* 842 * We do not preserve soft-dirty information, because so 843 * far, checkpoint/restore is the only feature that 844 * requires that. And checkpoint/restore does not work 845 * when a device driver is involved (you cannot easily 846 * save and restore device driver state). 847 */ 848 if (is_writable_device_private_entry(entry) && 849 is_cow_mapping(vm_flags)) { 850 entry = make_readable_device_private_entry( 851 swp_offset(entry)); 852 pte = swp_entry_to_pte(entry); 853 if (pte_swp_uffd_wp(orig_pte)) 854 pte = pte_swp_mkuffd_wp(pte); 855 set_pte_at(src_mm, addr, src_pte, pte); 856 } 857 } else if (is_device_exclusive_entry(entry)) { 858 /* 859 * Make device exclusive entries present by restoring the 860 * original entry then copying as for a present pte. Device 861 * exclusive entries currently only support private writable 862 * (ie. COW) mappings. 863 */ 864 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 865 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 866 return -EBUSY; 867 return -ENOENT; 868 } else if (is_pte_marker_entry(entry)) { 869 pte_marker marker = copy_pte_marker(entry, dst_vma); 870 871 if (marker) 872 set_pte_at(dst_mm, addr, dst_pte, 873 make_pte_marker(marker)); 874 return 0; 875 } 876 if (!userfaultfd_wp(dst_vma)) 877 pte = pte_swp_clear_uffd_wp(pte); 878 set_pte_at(dst_mm, addr, dst_pte, pte); 879 return 0; 880 } 881 882 /* 883 * Copy a present and normal page. 884 * 885 * NOTE! The usual case is that this isn't required; 886 * instead, the caller can just increase the page refcount 887 * and re-use the pte the traditional way. 888 * 889 * And if we need a pre-allocated page but don't yet have 890 * one, return a negative error to let the preallocation 891 * code know so that it can do so outside the page table 892 * lock. 893 */ 894 static inline int 895 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 896 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 897 struct folio **prealloc, struct page *page) 898 { 899 struct folio *new_folio; 900 pte_t pte; 901 902 new_folio = *prealloc; 903 if (!new_folio) 904 return -EAGAIN; 905 906 /* 907 * We have a prealloc page, all good! Take it 908 * over and copy the page & arm it. 909 */ 910 *prealloc = NULL; 911 copy_user_highpage(&new_folio->page, page, addr, src_vma); 912 __folio_mark_uptodate(new_folio); 913 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 914 folio_add_lru_vma(new_folio, dst_vma); 915 rss[MM_ANONPAGES]++; 916 917 /* All done, just insert the new page copy in the child */ 918 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 919 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 920 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 921 /* Uffd-wp needs to be delivered to dest pte as well */ 922 pte = pte_mkuffd_wp(pte); 923 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 924 return 0; 925 } 926 927 /* 928 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 929 * is required to copy this pte. 930 */ 931 static inline int 932 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 933 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 934 struct folio **prealloc) 935 { 936 struct mm_struct *src_mm = src_vma->vm_mm; 937 unsigned long vm_flags = src_vma->vm_flags; 938 pte_t pte = ptep_get(src_pte); 939 struct page *page; 940 struct folio *folio; 941 942 page = vm_normal_page(src_vma, addr, pte); 943 if (page) 944 folio = page_folio(page); 945 if (page && folio_test_anon(folio)) { 946 /* 947 * If this page may have been pinned by the parent process, 948 * copy the page immediately for the child so that we'll always 949 * guarantee the pinned page won't be randomly replaced in the 950 * future. 951 */ 952 folio_get(folio); 953 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 954 /* Page may be pinned, we have to copy. */ 955 folio_put(folio); 956 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 957 addr, rss, prealloc, page); 958 } 959 rss[MM_ANONPAGES]++; 960 } else if (page) { 961 folio_get(folio); 962 page_dup_file_rmap(page, false); 963 rss[mm_counter_file(page)]++; 964 } 965 966 /* 967 * If it's a COW mapping, write protect it both 968 * in the parent and the child 969 */ 970 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 971 ptep_set_wrprotect(src_mm, addr, src_pte); 972 pte = pte_wrprotect(pte); 973 } 974 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); 975 976 /* 977 * If it's a shared mapping, mark it clean in 978 * the child 979 */ 980 if (vm_flags & VM_SHARED) 981 pte = pte_mkclean(pte); 982 pte = pte_mkold(pte); 983 984 if (!userfaultfd_wp(dst_vma)) 985 pte = pte_clear_uffd_wp(pte); 986 987 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 988 return 0; 989 } 990 991 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, 992 struct vm_area_struct *vma, unsigned long addr) 993 { 994 struct folio *new_folio; 995 996 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 997 if (!new_folio) 998 return NULL; 999 1000 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1001 folio_put(new_folio); 1002 return NULL; 1003 } 1004 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1005 1006 return new_folio; 1007 } 1008 1009 static int 1010 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1011 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1012 unsigned long end) 1013 { 1014 struct mm_struct *dst_mm = dst_vma->vm_mm; 1015 struct mm_struct *src_mm = src_vma->vm_mm; 1016 pte_t *orig_src_pte, *orig_dst_pte; 1017 pte_t *src_pte, *dst_pte; 1018 pte_t ptent; 1019 spinlock_t *src_ptl, *dst_ptl; 1020 int progress, ret = 0; 1021 int rss[NR_MM_COUNTERS]; 1022 swp_entry_t entry = (swp_entry_t){0}; 1023 struct folio *prealloc = NULL; 1024 1025 again: 1026 progress = 0; 1027 init_rss_vec(rss); 1028 1029 /* 1030 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1031 * error handling here, assume that exclusive mmap_lock on dst and src 1032 * protects anon from unexpected THP transitions; with shmem and file 1033 * protected by mmap_lock-less collapse skipping areas with anon_vma 1034 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1035 * can remove such assumptions later, but this is good enough for now. 1036 */ 1037 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1038 if (!dst_pte) { 1039 ret = -ENOMEM; 1040 goto out; 1041 } 1042 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1043 if (!src_pte) { 1044 pte_unmap_unlock(dst_pte, dst_ptl); 1045 /* ret == 0 */ 1046 goto out; 1047 } 1048 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1049 orig_src_pte = src_pte; 1050 orig_dst_pte = dst_pte; 1051 arch_enter_lazy_mmu_mode(); 1052 1053 do { 1054 /* 1055 * We are holding two locks at this point - either of them 1056 * could generate latencies in another task on another CPU. 1057 */ 1058 if (progress >= 32) { 1059 progress = 0; 1060 if (need_resched() || 1061 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1062 break; 1063 } 1064 ptent = ptep_get(src_pte); 1065 if (pte_none(ptent)) { 1066 progress++; 1067 continue; 1068 } 1069 if (unlikely(!pte_present(ptent))) { 1070 ret = copy_nonpresent_pte(dst_mm, src_mm, 1071 dst_pte, src_pte, 1072 dst_vma, src_vma, 1073 addr, rss); 1074 if (ret == -EIO) { 1075 entry = pte_to_swp_entry(ptep_get(src_pte)); 1076 break; 1077 } else if (ret == -EBUSY) { 1078 break; 1079 } else if (!ret) { 1080 progress += 8; 1081 continue; 1082 } 1083 1084 /* 1085 * Device exclusive entry restored, continue by copying 1086 * the now present pte. 1087 */ 1088 WARN_ON_ONCE(ret != -ENOENT); 1089 } 1090 /* copy_present_pte() will clear `*prealloc' if consumed */ 1091 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1092 addr, rss, &prealloc); 1093 /* 1094 * If we need a pre-allocated page for this pte, drop the 1095 * locks, allocate, and try again. 1096 */ 1097 if (unlikely(ret == -EAGAIN)) 1098 break; 1099 if (unlikely(prealloc)) { 1100 /* 1101 * pre-alloc page cannot be reused by next time so as 1102 * to strictly follow mempolicy (e.g., alloc_page_vma() 1103 * will allocate page according to address). This 1104 * could only happen if one pinned pte changed. 1105 */ 1106 folio_put(prealloc); 1107 prealloc = NULL; 1108 } 1109 progress += 8; 1110 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1111 1112 arch_leave_lazy_mmu_mode(); 1113 pte_unmap_unlock(orig_src_pte, src_ptl); 1114 add_mm_rss_vec(dst_mm, rss); 1115 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1116 cond_resched(); 1117 1118 if (ret == -EIO) { 1119 VM_WARN_ON_ONCE(!entry.val); 1120 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1121 ret = -ENOMEM; 1122 goto out; 1123 } 1124 entry.val = 0; 1125 } else if (ret == -EBUSY) { 1126 goto out; 1127 } else if (ret == -EAGAIN) { 1128 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1129 if (!prealloc) 1130 return -ENOMEM; 1131 } else if (ret) { 1132 VM_WARN_ON_ONCE(1); 1133 } 1134 1135 /* We've captured and resolved the error. Reset, try again. */ 1136 ret = 0; 1137 1138 if (addr != end) 1139 goto again; 1140 out: 1141 if (unlikely(prealloc)) 1142 folio_put(prealloc); 1143 return ret; 1144 } 1145 1146 static inline int 1147 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1148 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1149 unsigned long end) 1150 { 1151 struct mm_struct *dst_mm = dst_vma->vm_mm; 1152 struct mm_struct *src_mm = src_vma->vm_mm; 1153 pmd_t *src_pmd, *dst_pmd; 1154 unsigned long next; 1155 1156 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1157 if (!dst_pmd) 1158 return -ENOMEM; 1159 src_pmd = pmd_offset(src_pud, addr); 1160 do { 1161 next = pmd_addr_end(addr, end); 1162 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1163 || pmd_devmap(*src_pmd)) { 1164 int err; 1165 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1166 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1167 addr, dst_vma, src_vma); 1168 if (err == -ENOMEM) 1169 return -ENOMEM; 1170 if (!err) 1171 continue; 1172 /* fall through */ 1173 } 1174 if (pmd_none_or_clear_bad(src_pmd)) 1175 continue; 1176 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1177 addr, next)) 1178 return -ENOMEM; 1179 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1180 return 0; 1181 } 1182 1183 static inline int 1184 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1185 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1186 unsigned long end) 1187 { 1188 struct mm_struct *dst_mm = dst_vma->vm_mm; 1189 struct mm_struct *src_mm = src_vma->vm_mm; 1190 pud_t *src_pud, *dst_pud; 1191 unsigned long next; 1192 1193 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1194 if (!dst_pud) 1195 return -ENOMEM; 1196 src_pud = pud_offset(src_p4d, addr); 1197 do { 1198 next = pud_addr_end(addr, end); 1199 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1200 int err; 1201 1202 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1203 err = copy_huge_pud(dst_mm, src_mm, 1204 dst_pud, src_pud, addr, src_vma); 1205 if (err == -ENOMEM) 1206 return -ENOMEM; 1207 if (!err) 1208 continue; 1209 /* fall through */ 1210 } 1211 if (pud_none_or_clear_bad(src_pud)) 1212 continue; 1213 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1214 addr, next)) 1215 return -ENOMEM; 1216 } while (dst_pud++, src_pud++, addr = next, addr != end); 1217 return 0; 1218 } 1219 1220 static inline int 1221 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1222 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1223 unsigned long end) 1224 { 1225 struct mm_struct *dst_mm = dst_vma->vm_mm; 1226 p4d_t *src_p4d, *dst_p4d; 1227 unsigned long next; 1228 1229 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1230 if (!dst_p4d) 1231 return -ENOMEM; 1232 src_p4d = p4d_offset(src_pgd, addr); 1233 do { 1234 next = p4d_addr_end(addr, end); 1235 if (p4d_none_or_clear_bad(src_p4d)) 1236 continue; 1237 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1238 addr, next)) 1239 return -ENOMEM; 1240 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1241 return 0; 1242 } 1243 1244 /* 1245 * Return true if the vma needs to copy the pgtable during this fork(). Return 1246 * false when we can speed up fork() by allowing lazy page faults later until 1247 * when the child accesses the memory range. 1248 */ 1249 static bool 1250 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1251 { 1252 /* 1253 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1254 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1255 * contains uffd-wp protection information, that's something we can't 1256 * retrieve from page cache, and skip copying will lose those info. 1257 */ 1258 if (userfaultfd_wp(dst_vma)) 1259 return true; 1260 1261 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1262 return true; 1263 1264 if (src_vma->anon_vma) 1265 return true; 1266 1267 /* 1268 * Don't copy ptes where a page fault will fill them correctly. Fork 1269 * becomes much lighter when there are big shared or private readonly 1270 * mappings. The tradeoff is that copy_page_range is more efficient 1271 * than faulting. 1272 */ 1273 return false; 1274 } 1275 1276 int 1277 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1278 { 1279 pgd_t *src_pgd, *dst_pgd; 1280 unsigned long next; 1281 unsigned long addr = src_vma->vm_start; 1282 unsigned long end = src_vma->vm_end; 1283 struct mm_struct *dst_mm = dst_vma->vm_mm; 1284 struct mm_struct *src_mm = src_vma->vm_mm; 1285 struct mmu_notifier_range range; 1286 bool is_cow; 1287 int ret; 1288 1289 if (!vma_needs_copy(dst_vma, src_vma)) 1290 return 0; 1291 1292 if (is_vm_hugetlb_page(src_vma)) 1293 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1294 1295 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1296 /* 1297 * We do not free on error cases below as remove_vma 1298 * gets called on error from higher level routine 1299 */ 1300 ret = track_pfn_copy(src_vma); 1301 if (ret) 1302 return ret; 1303 } 1304 1305 /* 1306 * We need to invalidate the secondary MMU mappings only when 1307 * there could be a permission downgrade on the ptes of the 1308 * parent mm. And a permission downgrade will only happen if 1309 * is_cow_mapping() returns true. 1310 */ 1311 is_cow = is_cow_mapping(src_vma->vm_flags); 1312 1313 if (is_cow) { 1314 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1315 0, src_mm, addr, end); 1316 mmu_notifier_invalidate_range_start(&range); 1317 /* 1318 * Disabling preemption is not needed for the write side, as 1319 * the read side doesn't spin, but goes to the mmap_lock. 1320 * 1321 * Use the raw variant of the seqcount_t write API to avoid 1322 * lockdep complaining about preemptibility. 1323 */ 1324 vma_assert_write_locked(src_vma); 1325 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1326 } 1327 1328 ret = 0; 1329 dst_pgd = pgd_offset(dst_mm, addr); 1330 src_pgd = pgd_offset(src_mm, addr); 1331 do { 1332 next = pgd_addr_end(addr, end); 1333 if (pgd_none_or_clear_bad(src_pgd)) 1334 continue; 1335 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1336 addr, next))) { 1337 untrack_pfn_clear(dst_vma); 1338 ret = -ENOMEM; 1339 break; 1340 } 1341 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1342 1343 if (is_cow) { 1344 raw_write_seqcount_end(&src_mm->write_protect_seq); 1345 mmu_notifier_invalidate_range_end(&range); 1346 } 1347 return ret; 1348 } 1349 1350 /* Whether we should zap all COWed (private) pages too */ 1351 static inline bool should_zap_cows(struct zap_details *details) 1352 { 1353 /* By default, zap all pages */ 1354 if (!details) 1355 return true; 1356 1357 /* Or, we zap COWed pages only if the caller wants to */ 1358 return details->even_cows; 1359 } 1360 1361 /* Decides whether we should zap this page with the page pointer specified */ 1362 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1363 { 1364 /* If we can make a decision without *page.. */ 1365 if (should_zap_cows(details)) 1366 return true; 1367 1368 /* E.g. the caller passes NULL for the case of a zero page */ 1369 if (!page) 1370 return true; 1371 1372 /* Otherwise we should only zap non-anon pages */ 1373 return !PageAnon(page); 1374 } 1375 1376 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1377 { 1378 if (!details) 1379 return false; 1380 1381 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1382 } 1383 1384 /* 1385 * This function makes sure that we'll replace the none pte with an uffd-wp 1386 * swap special pte marker when necessary. Must be with the pgtable lock held. 1387 */ 1388 static inline void 1389 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1390 unsigned long addr, pte_t *pte, 1391 struct zap_details *details, pte_t pteval) 1392 { 1393 /* Zap on anonymous always means dropping everything */ 1394 if (vma_is_anonymous(vma)) 1395 return; 1396 1397 if (zap_drop_file_uffd_wp(details)) 1398 return; 1399 1400 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1401 } 1402 1403 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1404 struct vm_area_struct *vma, pmd_t *pmd, 1405 unsigned long addr, unsigned long end, 1406 struct zap_details *details) 1407 { 1408 struct mm_struct *mm = tlb->mm; 1409 int force_flush = 0; 1410 int rss[NR_MM_COUNTERS]; 1411 spinlock_t *ptl; 1412 pte_t *start_pte; 1413 pte_t *pte; 1414 swp_entry_t entry; 1415 1416 tlb_change_page_size(tlb, PAGE_SIZE); 1417 init_rss_vec(rss); 1418 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1419 if (!pte) 1420 return addr; 1421 1422 flush_tlb_batched_pending(mm); 1423 arch_enter_lazy_mmu_mode(); 1424 do { 1425 pte_t ptent = ptep_get(pte); 1426 struct page *page; 1427 1428 if (pte_none(ptent)) 1429 continue; 1430 1431 if (need_resched()) 1432 break; 1433 1434 if (pte_present(ptent)) { 1435 unsigned int delay_rmap; 1436 1437 page = vm_normal_page(vma, addr, ptent); 1438 if (unlikely(!should_zap_page(details, page))) 1439 continue; 1440 ptent = ptep_get_and_clear_full(mm, addr, pte, 1441 tlb->fullmm); 1442 arch_check_zapped_pte(vma, ptent); 1443 tlb_remove_tlb_entry(tlb, pte, addr); 1444 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1445 ptent); 1446 if (unlikely(!page)) { 1447 ksm_might_unmap_zero_page(mm, ptent); 1448 continue; 1449 } 1450 1451 delay_rmap = 0; 1452 if (!PageAnon(page)) { 1453 if (pte_dirty(ptent)) { 1454 set_page_dirty(page); 1455 if (tlb_delay_rmap(tlb)) { 1456 delay_rmap = 1; 1457 force_flush = 1; 1458 } 1459 } 1460 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1461 mark_page_accessed(page); 1462 } 1463 rss[mm_counter(page)]--; 1464 if (!delay_rmap) { 1465 page_remove_rmap(page, vma, false); 1466 if (unlikely(page_mapcount(page) < 0)) 1467 print_bad_pte(vma, addr, ptent, page); 1468 } 1469 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1470 force_flush = 1; 1471 addr += PAGE_SIZE; 1472 break; 1473 } 1474 continue; 1475 } 1476 1477 entry = pte_to_swp_entry(ptent); 1478 if (is_device_private_entry(entry) || 1479 is_device_exclusive_entry(entry)) { 1480 page = pfn_swap_entry_to_page(entry); 1481 if (unlikely(!should_zap_page(details, page))) 1482 continue; 1483 /* 1484 * Both device private/exclusive mappings should only 1485 * work with anonymous page so far, so we don't need to 1486 * consider uffd-wp bit when zap. For more information, 1487 * see zap_install_uffd_wp_if_needed(). 1488 */ 1489 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1490 rss[mm_counter(page)]--; 1491 if (is_device_private_entry(entry)) 1492 page_remove_rmap(page, vma, false); 1493 put_page(page); 1494 } else if (!non_swap_entry(entry)) { 1495 /* Genuine swap entry, hence a private anon page */ 1496 if (!should_zap_cows(details)) 1497 continue; 1498 rss[MM_SWAPENTS]--; 1499 if (unlikely(!free_swap_and_cache(entry))) 1500 print_bad_pte(vma, addr, ptent, NULL); 1501 } else if (is_migration_entry(entry)) { 1502 page = pfn_swap_entry_to_page(entry); 1503 if (!should_zap_page(details, page)) 1504 continue; 1505 rss[mm_counter(page)]--; 1506 } else if (pte_marker_entry_uffd_wp(entry)) { 1507 /* 1508 * For anon: always drop the marker; for file: only 1509 * drop the marker if explicitly requested. 1510 */ 1511 if (!vma_is_anonymous(vma) && 1512 !zap_drop_file_uffd_wp(details)) 1513 continue; 1514 } else if (is_hwpoison_entry(entry) || 1515 is_poisoned_swp_entry(entry)) { 1516 if (!should_zap_cows(details)) 1517 continue; 1518 } else { 1519 /* We should have covered all the swap entry types */ 1520 WARN_ON_ONCE(1); 1521 } 1522 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1523 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1524 } while (pte++, addr += PAGE_SIZE, addr != end); 1525 1526 add_mm_rss_vec(mm, rss); 1527 arch_leave_lazy_mmu_mode(); 1528 1529 /* Do the actual TLB flush before dropping ptl */ 1530 if (force_flush) { 1531 tlb_flush_mmu_tlbonly(tlb); 1532 tlb_flush_rmaps(tlb, vma); 1533 } 1534 pte_unmap_unlock(start_pte, ptl); 1535 1536 /* 1537 * If we forced a TLB flush (either due to running out of 1538 * batch buffers or because we needed to flush dirty TLB 1539 * entries before releasing the ptl), free the batched 1540 * memory too. Come back again if we didn't do everything. 1541 */ 1542 if (force_flush) 1543 tlb_flush_mmu(tlb); 1544 1545 return addr; 1546 } 1547 1548 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1549 struct vm_area_struct *vma, pud_t *pud, 1550 unsigned long addr, unsigned long end, 1551 struct zap_details *details) 1552 { 1553 pmd_t *pmd; 1554 unsigned long next; 1555 1556 pmd = pmd_offset(pud, addr); 1557 do { 1558 next = pmd_addr_end(addr, end); 1559 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1560 if (next - addr != HPAGE_PMD_SIZE) 1561 __split_huge_pmd(vma, pmd, addr, false, NULL); 1562 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1563 addr = next; 1564 continue; 1565 } 1566 /* fall through */ 1567 } else if (details && details->single_folio && 1568 folio_test_pmd_mappable(details->single_folio) && 1569 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1570 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1571 /* 1572 * Take and drop THP pmd lock so that we cannot return 1573 * prematurely, while zap_huge_pmd() has cleared *pmd, 1574 * but not yet decremented compound_mapcount(). 1575 */ 1576 spin_unlock(ptl); 1577 } 1578 if (pmd_none(*pmd)) { 1579 addr = next; 1580 continue; 1581 } 1582 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1583 if (addr != next) 1584 pmd--; 1585 } while (pmd++, cond_resched(), addr != end); 1586 1587 return addr; 1588 } 1589 1590 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1591 struct vm_area_struct *vma, p4d_t *p4d, 1592 unsigned long addr, unsigned long end, 1593 struct zap_details *details) 1594 { 1595 pud_t *pud; 1596 unsigned long next; 1597 1598 pud = pud_offset(p4d, addr); 1599 do { 1600 next = pud_addr_end(addr, end); 1601 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1602 if (next - addr != HPAGE_PUD_SIZE) { 1603 mmap_assert_locked(tlb->mm); 1604 split_huge_pud(vma, pud, addr); 1605 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1606 goto next; 1607 /* fall through */ 1608 } 1609 if (pud_none_or_clear_bad(pud)) 1610 continue; 1611 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1612 next: 1613 cond_resched(); 1614 } while (pud++, addr = next, addr != end); 1615 1616 return addr; 1617 } 1618 1619 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1620 struct vm_area_struct *vma, pgd_t *pgd, 1621 unsigned long addr, unsigned long end, 1622 struct zap_details *details) 1623 { 1624 p4d_t *p4d; 1625 unsigned long next; 1626 1627 p4d = p4d_offset(pgd, addr); 1628 do { 1629 next = p4d_addr_end(addr, end); 1630 if (p4d_none_or_clear_bad(p4d)) 1631 continue; 1632 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1633 } while (p4d++, addr = next, addr != end); 1634 1635 return addr; 1636 } 1637 1638 void unmap_page_range(struct mmu_gather *tlb, 1639 struct vm_area_struct *vma, 1640 unsigned long addr, unsigned long end, 1641 struct zap_details *details) 1642 { 1643 pgd_t *pgd; 1644 unsigned long next; 1645 1646 BUG_ON(addr >= end); 1647 tlb_start_vma(tlb, vma); 1648 pgd = pgd_offset(vma->vm_mm, addr); 1649 do { 1650 next = pgd_addr_end(addr, end); 1651 if (pgd_none_or_clear_bad(pgd)) 1652 continue; 1653 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1654 } while (pgd++, addr = next, addr != end); 1655 tlb_end_vma(tlb, vma); 1656 } 1657 1658 1659 static void unmap_single_vma(struct mmu_gather *tlb, 1660 struct vm_area_struct *vma, unsigned long start_addr, 1661 unsigned long end_addr, 1662 struct zap_details *details, bool mm_wr_locked) 1663 { 1664 unsigned long start = max(vma->vm_start, start_addr); 1665 unsigned long end; 1666 1667 if (start >= vma->vm_end) 1668 return; 1669 end = min(vma->vm_end, end_addr); 1670 if (end <= vma->vm_start) 1671 return; 1672 1673 if (vma->vm_file) 1674 uprobe_munmap(vma, start, end); 1675 1676 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1677 untrack_pfn(vma, 0, 0, mm_wr_locked); 1678 1679 if (start != end) { 1680 if (unlikely(is_vm_hugetlb_page(vma))) { 1681 /* 1682 * It is undesirable to test vma->vm_file as it 1683 * should be non-null for valid hugetlb area. 1684 * However, vm_file will be NULL in the error 1685 * cleanup path of mmap_region. When 1686 * hugetlbfs ->mmap method fails, 1687 * mmap_region() nullifies vma->vm_file 1688 * before calling this function to clean up. 1689 * Since no pte has actually been setup, it is 1690 * safe to do nothing in this case. 1691 */ 1692 if (vma->vm_file) { 1693 zap_flags_t zap_flags = details ? 1694 details->zap_flags : 0; 1695 __unmap_hugepage_range(tlb, vma, start, end, 1696 NULL, zap_flags); 1697 } 1698 } else 1699 unmap_page_range(tlb, vma, start, end, details); 1700 } 1701 } 1702 1703 /** 1704 * unmap_vmas - unmap a range of memory covered by a list of vma's 1705 * @tlb: address of the caller's struct mmu_gather 1706 * @mas: the maple state 1707 * @vma: the starting vma 1708 * @start_addr: virtual address at which to start unmapping 1709 * @end_addr: virtual address at which to end unmapping 1710 * @tree_end: The maximum index to check 1711 * @mm_wr_locked: lock flag 1712 * 1713 * Unmap all pages in the vma list. 1714 * 1715 * Only addresses between `start' and `end' will be unmapped. 1716 * 1717 * The VMA list must be sorted in ascending virtual address order. 1718 * 1719 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1720 * range after unmap_vmas() returns. So the only responsibility here is to 1721 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1722 * drops the lock and schedules. 1723 */ 1724 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1725 struct vm_area_struct *vma, unsigned long start_addr, 1726 unsigned long end_addr, unsigned long tree_end, 1727 bool mm_wr_locked) 1728 { 1729 struct mmu_notifier_range range; 1730 struct zap_details details = { 1731 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1732 /* Careful - we need to zap private pages too! */ 1733 .even_cows = true, 1734 }; 1735 1736 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1737 start_addr, end_addr); 1738 mmu_notifier_invalidate_range_start(&range); 1739 do { 1740 unsigned long start = start_addr; 1741 unsigned long end = end_addr; 1742 hugetlb_zap_begin(vma, &start, &end); 1743 unmap_single_vma(tlb, vma, start, end, &details, 1744 mm_wr_locked); 1745 hugetlb_zap_end(vma, &details); 1746 } while ((vma = mas_find(mas, tree_end - 1)) != NULL); 1747 mmu_notifier_invalidate_range_end(&range); 1748 } 1749 1750 /** 1751 * zap_page_range_single - remove user pages in a given range 1752 * @vma: vm_area_struct holding the applicable pages 1753 * @address: starting address of pages to zap 1754 * @size: number of bytes to zap 1755 * @details: details of shared cache invalidation 1756 * 1757 * The range must fit into one VMA. 1758 */ 1759 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1760 unsigned long size, struct zap_details *details) 1761 { 1762 const unsigned long end = address + size; 1763 struct mmu_notifier_range range; 1764 struct mmu_gather tlb; 1765 1766 lru_add_drain(); 1767 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1768 address, end); 1769 hugetlb_zap_begin(vma, &range.start, &range.end); 1770 tlb_gather_mmu(&tlb, vma->vm_mm); 1771 update_hiwater_rss(vma->vm_mm); 1772 mmu_notifier_invalidate_range_start(&range); 1773 /* 1774 * unmap 'address-end' not 'range.start-range.end' as range 1775 * could have been expanded for hugetlb pmd sharing. 1776 */ 1777 unmap_single_vma(&tlb, vma, address, end, details, false); 1778 mmu_notifier_invalidate_range_end(&range); 1779 tlb_finish_mmu(&tlb); 1780 hugetlb_zap_end(vma, details); 1781 } 1782 1783 /** 1784 * zap_vma_ptes - remove ptes mapping the vma 1785 * @vma: vm_area_struct holding ptes to be zapped 1786 * @address: starting address of pages to zap 1787 * @size: number of bytes to zap 1788 * 1789 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1790 * 1791 * The entire address range must be fully contained within the vma. 1792 * 1793 */ 1794 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1795 unsigned long size) 1796 { 1797 if (!range_in_vma(vma, address, address + size) || 1798 !(vma->vm_flags & VM_PFNMAP)) 1799 return; 1800 1801 zap_page_range_single(vma, address, size, NULL); 1802 } 1803 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1804 1805 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1806 { 1807 pgd_t *pgd; 1808 p4d_t *p4d; 1809 pud_t *pud; 1810 pmd_t *pmd; 1811 1812 pgd = pgd_offset(mm, addr); 1813 p4d = p4d_alloc(mm, pgd, addr); 1814 if (!p4d) 1815 return NULL; 1816 pud = pud_alloc(mm, p4d, addr); 1817 if (!pud) 1818 return NULL; 1819 pmd = pmd_alloc(mm, pud, addr); 1820 if (!pmd) 1821 return NULL; 1822 1823 VM_BUG_ON(pmd_trans_huge(*pmd)); 1824 return pmd; 1825 } 1826 1827 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1828 spinlock_t **ptl) 1829 { 1830 pmd_t *pmd = walk_to_pmd(mm, addr); 1831 1832 if (!pmd) 1833 return NULL; 1834 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1835 } 1836 1837 static int validate_page_before_insert(struct page *page) 1838 { 1839 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1840 return -EINVAL; 1841 flush_dcache_page(page); 1842 return 0; 1843 } 1844 1845 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1846 unsigned long addr, struct page *page, pgprot_t prot) 1847 { 1848 if (!pte_none(ptep_get(pte))) 1849 return -EBUSY; 1850 /* Ok, finally just insert the thing.. */ 1851 get_page(page); 1852 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1853 page_add_file_rmap(page, vma, false); 1854 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1855 return 0; 1856 } 1857 1858 /* 1859 * This is the old fallback for page remapping. 1860 * 1861 * For historical reasons, it only allows reserved pages. Only 1862 * old drivers should use this, and they needed to mark their 1863 * pages reserved for the old functions anyway. 1864 */ 1865 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1866 struct page *page, pgprot_t prot) 1867 { 1868 int retval; 1869 pte_t *pte; 1870 spinlock_t *ptl; 1871 1872 retval = validate_page_before_insert(page); 1873 if (retval) 1874 goto out; 1875 retval = -ENOMEM; 1876 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1877 if (!pte) 1878 goto out; 1879 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1880 pte_unmap_unlock(pte, ptl); 1881 out: 1882 return retval; 1883 } 1884 1885 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1886 unsigned long addr, struct page *page, pgprot_t prot) 1887 { 1888 int err; 1889 1890 if (!page_count(page)) 1891 return -EINVAL; 1892 err = validate_page_before_insert(page); 1893 if (err) 1894 return err; 1895 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1896 } 1897 1898 /* insert_pages() amortizes the cost of spinlock operations 1899 * when inserting pages in a loop. 1900 */ 1901 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1902 struct page **pages, unsigned long *num, pgprot_t prot) 1903 { 1904 pmd_t *pmd = NULL; 1905 pte_t *start_pte, *pte; 1906 spinlock_t *pte_lock; 1907 struct mm_struct *const mm = vma->vm_mm; 1908 unsigned long curr_page_idx = 0; 1909 unsigned long remaining_pages_total = *num; 1910 unsigned long pages_to_write_in_pmd; 1911 int ret; 1912 more: 1913 ret = -EFAULT; 1914 pmd = walk_to_pmd(mm, addr); 1915 if (!pmd) 1916 goto out; 1917 1918 pages_to_write_in_pmd = min_t(unsigned long, 1919 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1920 1921 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1922 ret = -ENOMEM; 1923 if (pte_alloc(mm, pmd)) 1924 goto out; 1925 1926 while (pages_to_write_in_pmd) { 1927 int pte_idx = 0; 1928 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1929 1930 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1931 if (!start_pte) { 1932 ret = -EFAULT; 1933 goto out; 1934 } 1935 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1936 int err = insert_page_in_batch_locked(vma, pte, 1937 addr, pages[curr_page_idx], prot); 1938 if (unlikely(err)) { 1939 pte_unmap_unlock(start_pte, pte_lock); 1940 ret = err; 1941 remaining_pages_total -= pte_idx; 1942 goto out; 1943 } 1944 addr += PAGE_SIZE; 1945 ++curr_page_idx; 1946 } 1947 pte_unmap_unlock(start_pte, pte_lock); 1948 pages_to_write_in_pmd -= batch_size; 1949 remaining_pages_total -= batch_size; 1950 } 1951 if (remaining_pages_total) 1952 goto more; 1953 ret = 0; 1954 out: 1955 *num = remaining_pages_total; 1956 return ret; 1957 } 1958 1959 /** 1960 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1961 * @vma: user vma to map to 1962 * @addr: target start user address of these pages 1963 * @pages: source kernel pages 1964 * @num: in: number of pages to map. out: number of pages that were *not* 1965 * mapped. (0 means all pages were successfully mapped). 1966 * 1967 * Preferred over vm_insert_page() when inserting multiple pages. 1968 * 1969 * In case of error, we may have mapped a subset of the provided 1970 * pages. It is the caller's responsibility to account for this case. 1971 * 1972 * The same restrictions apply as in vm_insert_page(). 1973 */ 1974 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1975 struct page **pages, unsigned long *num) 1976 { 1977 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1978 1979 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1980 return -EFAULT; 1981 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1982 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1983 BUG_ON(vma->vm_flags & VM_PFNMAP); 1984 vm_flags_set(vma, VM_MIXEDMAP); 1985 } 1986 /* Defer page refcount checking till we're about to map that page. */ 1987 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1988 } 1989 EXPORT_SYMBOL(vm_insert_pages); 1990 1991 /** 1992 * vm_insert_page - insert single page into user vma 1993 * @vma: user vma to map to 1994 * @addr: target user address of this page 1995 * @page: source kernel page 1996 * 1997 * This allows drivers to insert individual pages they've allocated 1998 * into a user vma. 1999 * 2000 * The page has to be a nice clean _individual_ kernel allocation. 2001 * If you allocate a compound page, you need to have marked it as 2002 * such (__GFP_COMP), or manually just split the page up yourself 2003 * (see split_page()). 2004 * 2005 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2006 * took an arbitrary page protection parameter. This doesn't allow 2007 * that. Your vma protection will have to be set up correctly, which 2008 * means that if you want a shared writable mapping, you'd better 2009 * ask for a shared writable mapping! 2010 * 2011 * The page does not need to be reserved. 2012 * 2013 * Usually this function is called from f_op->mmap() handler 2014 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2015 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2016 * function from other places, for example from page-fault handler. 2017 * 2018 * Return: %0 on success, negative error code otherwise. 2019 */ 2020 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2021 struct page *page) 2022 { 2023 if (addr < vma->vm_start || addr >= vma->vm_end) 2024 return -EFAULT; 2025 if (!page_count(page)) 2026 return -EINVAL; 2027 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2028 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2029 BUG_ON(vma->vm_flags & VM_PFNMAP); 2030 vm_flags_set(vma, VM_MIXEDMAP); 2031 } 2032 return insert_page(vma, addr, page, vma->vm_page_prot); 2033 } 2034 EXPORT_SYMBOL(vm_insert_page); 2035 2036 /* 2037 * __vm_map_pages - maps range of kernel pages into user vma 2038 * @vma: user vma to map to 2039 * @pages: pointer to array of source kernel pages 2040 * @num: number of pages in page array 2041 * @offset: user's requested vm_pgoff 2042 * 2043 * This allows drivers to map range of kernel pages into a user vma. 2044 * 2045 * Return: 0 on success and error code otherwise. 2046 */ 2047 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2048 unsigned long num, unsigned long offset) 2049 { 2050 unsigned long count = vma_pages(vma); 2051 unsigned long uaddr = vma->vm_start; 2052 int ret, i; 2053 2054 /* Fail if the user requested offset is beyond the end of the object */ 2055 if (offset >= num) 2056 return -ENXIO; 2057 2058 /* Fail if the user requested size exceeds available object size */ 2059 if (count > num - offset) 2060 return -ENXIO; 2061 2062 for (i = 0; i < count; i++) { 2063 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2064 if (ret < 0) 2065 return ret; 2066 uaddr += PAGE_SIZE; 2067 } 2068 2069 return 0; 2070 } 2071 2072 /** 2073 * vm_map_pages - maps range of kernel pages starts with non zero offset 2074 * @vma: user vma to map to 2075 * @pages: pointer to array of source kernel pages 2076 * @num: number of pages in page array 2077 * 2078 * Maps an object consisting of @num pages, catering for the user's 2079 * requested vm_pgoff 2080 * 2081 * If we fail to insert any page into the vma, the function will return 2082 * immediately leaving any previously inserted pages present. Callers 2083 * from the mmap handler may immediately return the error as their caller 2084 * will destroy the vma, removing any successfully inserted pages. Other 2085 * callers should make their own arrangements for calling unmap_region(). 2086 * 2087 * Context: Process context. Called by mmap handlers. 2088 * Return: 0 on success and error code otherwise. 2089 */ 2090 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2091 unsigned long num) 2092 { 2093 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2094 } 2095 EXPORT_SYMBOL(vm_map_pages); 2096 2097 /** 2098 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2099 * @vma: user vma to map to 2100 * @pages: pointer to array of source kernel pages 2101 * @num: number of pages in page array 2102 * 2103 * Similar to vm_map_pages(), except that it explicitly sets the offset 2104 * to 0. This function is intended for the drivers that did not consider 2105 * vm_pgoff. 2106 * 2107 * Context: Process context. Called by mmap handlers. 2108 * Return: 0 on success and error code otherwise. 2109 */ 2110 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2111 unsigned long num) 2112 { 2113 return __vm_map_pages(vma, pages, num, 0); 2114 } 2115 EXPORT_SYMBOL(vm_map_pages_zero); 2116 2117 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2118 pfn_t pfn, pgprot_t prot, bool mkwrite) 2119 { 2120 struct mm_struct *mm = vma->vm_mm; 2121 pte_t *pte, entry; 2122 spinlock_t *ptl; 2123 2124 pte = get_locked_pte(mm, addr, &ptl); 2125 if (!pte) 2126 return VM_FAULT_OOM; 2127 entry = ptep_get(pte); 2128 if (!pte_none(entry)) { 2129 if (mkwrite) { 2130 /* 2131 * For read faults on private mappings the PFN passed 2132 * in may not match the PFN we have mapped if the 2133 * mapped PFN is a writeable COW page. In the mkwrite 2134 * case we are creating a writable PTE for a shared 2135 * mapping and we expect the PFNs to match. If they 2136 * don't match, we are likely racing with block 2137 * allocation and mapping invalidation so just skip the 2138 * update. 2139 */ 2140 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2141 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2142 goto out_unlock; 2143 } 2144 entry = pte_mkyoung(entry); 2145 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2146 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2147 update_mmu_cache(vma, addr, pte); 2148 } 2149 goto out_unlock; 2150 } 2151 2152 /* Ok, finally just insert the thing.. */ 2153 if (pfn_t_devmap(pfn)) 2154 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2155 else 2156 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2157 2158 if (mkwrite) { 2159 entry = pte_mkyoung(entry); 2160 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2161 } 2162 2163 set_pte_at(mm, addr, pte, entry); 2164 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2165 2166 out_unlock: 2167 pte_unmap_unlock(pte, ptl); 2168 return VM_FAULT_NOPAGE; 2169 } 2170 2171 /** 2172 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2173 * @vma: user vma to map to 2174 * @addr: target user address of this page 2175 * @pfn: source kernel pfn 2176 * @pgprot: pgprot flags for the inserted page 2177 * 2178 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2179 * to override pgprot on a per-page basis. 2180 * 2181 * This only makes sense for IO mappings, and it makes no sense for 2182 * COW mappings. In general, using multiple vmas is preferable; 2183 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2184 * impractical. 2185 * 2186 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2187 * caching- and encryption bits different than those of @vma->vm_page_prot, 2188 * because the caching- or encryption mode may not be known at mmap() time. 2189 * 2190 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2191 * to set caching and encryption bits for those vmas (except for COW pages). 2192 * This is ensured by core vm only modifying these page table entries using 2193 * functions that don't touch caching- or encryption bits, using pte_modify() 2194 * if needed. (See for example mprotect()). 2195 * 2196 * Also when new page-table entries are created, this is only done using the 2197 * fault() callback, and never using the value of vma->vm_page_prot, 2198 * except for page-table entries that point to anonymous pages as the result 2199 * of COW. 2200 * 2201 * Context: Process context. May allocate using %GFP_KERNEL. 2202 * Return: vm_fault_t value. 2203 */ 2204 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2205 unsigned long pfn, pgprot_t pgprot) 2206 { 2207 /* 2208 * Technically, architectures with pte_special can avoid all these 2209 * restrictions (same for remap_pfn_range). However we would like 2210 * consistency in testing and feature parity among all, so we should 2211 * try to keep these invariants in place for everybody. 2212 */ 2213 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2214 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2215 (VM_PFNMAP|VM_MIXEDMAP)); 2216 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2217 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2218 2219 if (addr < vma->vm_start || addr >= vma->vm_end) 2220 return VM_FAULT_SIGBUS; 2221 2222 if (!pfn_modify_allowed(pfn, pgprot)) 2223 return VM_FAULT_SIGBUS; 2224 2225 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2226 2227 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2228 false); 2229 } 2230 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2231 2232 /** 2233 * vmf_insert_pfn - insert single pfn into user vma 2234 * @vma: user vma to map to 2235 * @addr: target user address of this page 2236 * @pfn: source kernel pfn 2237 * 2238 * Similar to vm_insert_page, this allows drivers to insert individual pages 2239 * they've allocated into a user vma. Same comments apply. 2240 * 2241 * This function should only be called from a vm_ops->fault handler, and 2242 * in that case the handler should return the result of this function. 2243 * 2244 * vma cannot be a COW mapping. 2245 * 2246 * As this is called only for pages that do not currently exist, we 2247 * do not need to flush old virtual caches or the TLB. 2248 * 2249 * Context: Process context. May allocate using %GFP_KERNEL. 2250 * Return: vm_fault_t value. 2251 */ 2252 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2253 unsigned long pfn) 2254 { 2255 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2256 } 2257 EXPORT_SYMBOL(vmf_insert_pfn); 2258 2259 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2260 { 2261 /* these checks mirror the abort conditions in vm_normal_page */ 2262 if (vma->vm_flags & VM_MIXEDMAP) 2263 return true; 2264 if (pfn_t_devmap(pfn)) 2265 return true; 2266 if (pfn_t_special(pfn)) 2267 return true; 2268 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2269 return true; 2270 return false; 2271 } 2272 2273 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2274 unsigned long addr, pfn_t pfn, bool mkwrite) 2275 { 2276 pgprot_t pgprot = vma->vm_page_prot; 2277 int err; 2278 2279 BUG_ON(!vm_mixed_ok(vma, pfn)); 2280 2281 if (addr < vma->vm_start || addr >= vma->vm_end) 2282 return VM_FAULT_SIGBUS; 2283 2284 track_pfn_insert(vma, &pgprot, pfn); 2285 2286 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2287 return VM_FAULT_SIGBUS; 2288 2289 /* 2290 * If we don't have pte special, then we have to use the pfn_valid() 2291 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2292 * refcount the page if pfn_valid is true (hence insert_page rather 2293 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2294 * without pte special, it would there be refcounted as a normal page. 2295 */ 2296 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2297 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2298 struct page *page; 2299 2300 /* 2301 * At this point we are committed to insert_page() 2302 * regardless of whether the caller specified flags that 2303 * result in pfn_t_has_page() == false. 2304 */ 2305 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2306 err = insert_page(vma, addr, page, pgprot); 2307 } else { 2308 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2309 } 2310 2311 if (err == -ENOMEM) 2312 return VM_FAULT_OOM; 2313 if (err < 0 && err != -EBUSY) 2314 return VM_FAULT_SIGBUS; 2315 2316 return VM_FAULT_NOPAGE; 2317 } 2318 2319 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2320 pfn_t pfn) 2321 { 2322 return __vm_insert_mixed(vma, addr, pfn, false); 2323 } 2324 EXPORT_SYMBOL(vmf_insert_mixed); 2325 2326 /* 2327 * If the insertion of PTE failed because someone else already added a 2328 * different entry in the mean time, we treat that as success as we assume 2329 * the same entry was actually inserted. 2330 */ 2331 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2332 unsigned long addr, pfn_t pfn) 2333 { 2334 return __vm_insert_mixed(vma, addr, pfn, true); 2335 } 2336 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2337 2338 /* 2339 * maps a range of physical memory into the requested pages. the old 2340 * mappings are removed. any references to nonexistent pages results 2341 * in null mappings (currently treated as "copy-on-access") 2342 */ 2343 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2344 unsigned long addr, unsigned long end, 2345 unsigned long pfn, pgprot_t prot) 2346 { 2347 pte_t *pte, *mapped_pte; 2348 spinlock_t *ptl; 2349 int err = 0; 2350 2351 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2352 if (!pte) 2353 return -ENOMEM; 2354 arch_enter_lazy_mmu_mode(); 2355 do { 2356 BUG_ON(!pte_none(ptep_get(pte))); 2357 if (!pfn_modify_allowed(pfn, prot)) { 2358 err = -EACCES; 2359 break; 2360 } 2361 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2362 pfn++; 2363 } while (pte++, addr += PAGE_SIZE, addr != end); 2364 arch_leave_lazy_mmu_mode(); 2365 pte_unmap_unlock(mapped_pte, ptl); 2366 return err; 2367 } 2368 2369 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2370 unsigned long addr, unsigned long end, 2371 unsigned long pfn, pgprot_t prot) 2372 { 2373 pmd_t *pmd; 2374 unsigned long next; 2375 int err; 2376 2377 pfn -= addr >> PAGE_SHIFT; 2378 pmd = pmd_alloc(mm, pud, addr); 2379 if (!pmd) 2380 return -ENOMEM; 2381 VM_BUG_ON(pmd_trans_huge(*pmd)); 2382 do { 2383 next = pmd_addr_end(addr, end); 2384 err = remap_pte_range(mm, pmd, addr, next, 2385 pfn + (addr >> PAGE_SHIFT), prot); 2386 if (err) 2387 return err; 2388 } while (pmd++, addr = next, addr != end); 2389 return 0; 2390 } 2391 2392 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2393 unsigned long addr, unsigned long end, 2394 unsigned long pfn, pgprot_t prot) 2395 { 2396 pud_t *pud; 2397 unsigned long next; 2398 int err; 2399 2400 pfn -= addr >> PAGE_SHIFT; 2401 pud = pud_alloc(mm, p4d, addr); 2402 if (!pud) 2403 return -ENOMEM; 2404 do { 2405 next = pud_addr_end(addr, end); 2406 err = remap_pmd_range(mm, pud, addr, next, 2407 pfn + (addr >> PAGE_SHIFT), prot); 2408 if (err) 2409 return err; 2410 } while (pud++, addr = next, addr != end); 2411 return 0; 2412 } 2413 2414 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2415 unsigned long addr, unsigned long end, 2416 unsigned long pfn, pgprot_t prot) 2417 { 2418 p4d_t *p4d; 2419 unsigned long next; 2420 int err; 2421 2422 pfn -= addr >> PAGE_SHIFT; 2423 p4d = p4d_alloc(mm, pgd, addr); 2424 if (!p4d) 2425 return -ENOMEM; 2426 do { 2427 next = p4d_addr_end(addr, end); 2428 err = remap_pud_range(mm, p4d, addr, next, 2429 pfn + (addr >> PAGE_SHIFT), prot); 2430 if (err) 2431 return err; 2432 } while (p4d++, addr = next, addr != end); 2433 return 0; 2434 } 2435 2436 /* 2437 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2438 * must have pre-validated the caching bits of the pgprot_t. 2439 */ 2440 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2441 unsigned long pfn, unsigned long size, pgprot_t prot) 2442 { 2443 pgd_t *pgd; 2444 unsigned long next; 2445 unsigned long end = addr + PAGE_ALIGN(size); 2446 struct mm_struct *mm = vma->vm_mm; 2447 int err; 2448 2449 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2450 return -EINVAL; 2451 2452 /* 2453 * Physically remapped pages are special. Tell the 2454 * rest of the world about it: 2455 * VM_IO tells people not to look at these pages 2456 * (accesses can have side effects). 2457 * VM_PFNMAP tells the core MM that the base pages are just 2458 * raw PFN mappings, and do not have a "struct page" associated 2459 * with them. 2460 * VM_DONTEXPAND 2461 * Disable vma merging and expanding with mremap(). 2462 * VM_DONTDUMP 2463 * Omit vma from core dump, even when VM_IO turned off. 2464 * 2465 * There's a horrible special case to handle copy-on-write 2466 * behaviour that some programs depend on. We mark the "original" 2467 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2468 * See vm_normal_page() for details. 2469 */ 2470 if (is_cow_mapping(vma->vm_flags)) { 2471 if (addr != vma->vm_start || end != vma->vm_end) 2472 return -EINVAL; 2473 vma->vm_pgoff = pfn; 2474 } 2475 2476 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2477 2478 BUG_ON(addr >= end); 2479 pfn -= addr >> PAGE_SHIFT; 2480 pgd = pgd_offset(mm, addr); 2481 flush_cache_range(vma, addr, end); 2482 do { 2483 next = pgd_addr_end(addr, end); 2484 err = remap_p4d_range(mm, pgd, addr, next, 2485 pfn + (addr >> PAGE_SHIFT), prot); 2486 if (err) 2487 return err; 2488 } while (pgd++, addr = next, addr != end); 2489 2490 return 0; 2491 } 2492 2493 /** 2494 * remap_pfn_range - remap kernel memory to userspace 2495 * @vma: user vma to map to 2496 * @addr: target page aligned user address to start at 2497 * @pfn: page frame number of kernel physical memory address 2498 * @size: size of mapping area 2499 * @prot: page protection flags for this mapping 2500 * 2501 * Note: this is only safe if the mm semaphore is held when called. 2502 * 2503 * Return: %0 on success, negative error code otherwise. 2504 */ 2505 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2506 unsigned long pfn, unsigned long size, pgprot_t prot) 2507 { 2508 int err; 2509 2510 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2511 if (err) 2512 return -EINVAL; 2513 2514 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2515 if (err) 2516 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2517 return err; 2518 } 2519 EXPORT_SYMBOL(remap_pfn_range); 2520 2521 /** 2522 * vm_iomap_memory - remap memory to userspace 2523 * @vma: user vma to map to 2524 * @start: start of the physical memory to be mapped 2525 * @len: size of area 2526 * 2527 * This is a simplified io_remap_pfn_range() for common driver use. The 2528 * driver just needs to give us the physical memory range to be mapped, 2529 * we'll figure out the rest from the vma information. 2530 * 2531 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2532 * whatever write-combining details or similar. 2533 * 2534 * Return: %0 on success, negative error code otherwise. 2535 */ 2536 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2537 { 2538 unsigned long vm_len, pfn, pages; 2539 2540 /* Check that the physical memory area passed in looks valid */ 2541 if (start + len < start) 2542 return -EINVAL; 2543 /* 2544 * You *really* shouldn't map things that aren't page-aligned, 2545 * but we've historically allowed it because IO memory might 2546 * just have smaller alignment. 2547 */ 2548 len += start & ~PAGE_MASK; 2549 pfn = start >> PAGE_SHIFT; 2550 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2551 if (pfn + pages < pfn) 2552 return -EINVAL; 2553 2554 /* We start the mapping 'vm_pgoff' pages into the area */ 2555 if (vma->vm_pgoff > pages) 2556 return -EINVAL; 2557 pfn += vma->vm_pgoff; 2558 pages -= vma->vm_pgoff; 2559 2560 /* Can we fit all of the mapping? */ 2561 vm_len = vma->vm_end - vma->vm_start; 2562 if (vm_len >> PAGE_SHIFT > pages) 2563 return -EINVAL; 2564 2565 /* Ok, let it rip */ 2566 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2567 } 2568 EXPORT_SYMBOL(vm_iomap_memory); 2569 2570 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2571 unsigned long addr, unsigned long end, 2572 pte_fn_t fn, void *data, bool create, 2573 pgtbl_mod_mask *mask) 2574 { 2575 pte_t *pte, *mapped_pte; 2576 int err = 0; 2577 spinlock_t *ptl; 2578 2579 if (create) { 2580 mapped_pte = pte = (mm == &init_mm) ? 2581 pte_alloc_kernel_track(pmd, addr, mask) : 2582 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2583 if (!pte) 2584 return -ENOMEM; 2585 } else { 2586 mapped_pte = pte = (mm == &init_mm) ? 2587 pte_offset_kernel(pmd, addr) : 2588 pte_offset_map_lock(mm, pmd, addr, &ptl); 2589 if (!pte) 2590 return -EINVAL; 2591 } 2592 2593 arch_enter_lazy_mmu_mode(); 2594 2595 if (fn) { 2596 do { 2597 if (create || !pte_none(ptep_get(pte))) { 2598 err = fn(pte++, addr, data); 2599 if (err) 2600 break; 2601 } 2602 } while (addr += PAGE_SIZE, addr != end); 2603 } 2604 *mask |= PGTBL_PTE_MODIFIED; 2605 2606 arch_leave_lazy_mmu_mode(); 2607 2608 if (mm != &init_mm) 2609 pte_unmap_unlock(mapped_pte, ptl); 2610 return err; 2611 } 2612 2613 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2614 unsigned long addr, unsigned long end, 2615 pte_fn_t fn, void *data, bool create, 2616 pgtbl_mod_mask *mask) 2617 { 2618 pmd_t *pmd; 2619 unsigned long next; 2620 int err = 0; 2621 2622 BUG_ON(pud_huge(*pud)); 2623 2624 if (create) { 2625 pmd = pmd_alloc_track(mm, pud, addr, mask); 2626 if (!pmd) 2627 return -ENOMEM; 2628 } else { 2629 pmd = pmd_offset(pud, addr); 2630 } 2631 do { 2632 next = pmd_addr_end(addr, end); 2633 if (pmd_none(*pmd) && !create) 2634 continue; 2635 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2636 return -EINVAL; 2637 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2638 if (!create) 2639 continue; 2640 pmd_clear_bad(pmd); 2641 } 2642 err = apply_to_pte_range(mm, pmd, addr, next, 2643 fn, data, create, mask); 2644 if (err) 2645 break; 2646 } while (pmd++, addr = next, addr != end); 2647 2648 return err; 2649 } 2650 2651 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2652 unsigned long addr, unsigned long end, 2653 pte_fn_t fn, void *data, bool create, 2654 pgtbl_mod_mask *mask) 2655 { 2656 pud_t *pud; 2657 unsigned long next; 2658 int err = 0; 2659 2660 if (create) { 2661 pud = pud_alloc_track(mm, p4d, addr, mask); 2662 if (!pud) 2663 return -ENOMEM; 2664 } else { 2665 pud = pud_offset(p4d, addr); 2666 } 2667 do { 2668 next = pud_addr_end(addr, end); 2669 if (pud_none(*pud) && !create) 2670 continue; 2671 if (WARN_ON_ONCE(pud_leaf(*pud))) 2672 return -EINVAL; 2673 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2674 if (!create) 2675 continue; 2676 pud_clear_bad(pud); 2677 } 2678 err = apply_to_pmd_range(mm, pud, addr, next, 2679 fn, data, create, mask); 2680 if (err) 2681 break; 2682 } while (pud++, addr = next, addr != end); 2683 2684 return err; 2685 } 2686 2687 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2688 unsigned long addr, unsigned long end, 2689 pte_fn_t fn, void *data, bool create, 2690 pgtbl_mod_mask *mask) 2691 { 2692 p4d_t *p4d; 2693 unsigned long next; 2694 int err = 0; 2695 2696 if (create) { 2697 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2698 if (!p4d) 2699 return -ENOMEM; 2700 } else { 2701 p4d = p4d_offset(pgd, addr); 2702 } 2703 do { 2704 next = p4d_addr_end(addr, end); 2705 if (p4d_none(*p4d) && !create) 2706 continue; 2707 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2708 return -EINVAL; 2709 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2710 if (!create) 2711 continue; 2712 p4d_clear_bad(p4d); 2713 } 2714 err = apply_to_pud_range(mm, p4d, addr, next, 2715 fn, data, create, mask); 2716 if (err) 2717 break; 2718 } while (p4d++, addr = next, addr != end); 2719 2720 return err; 2721 } 2722 2723 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2724 unsigned long size, pte_fn_t fn, 2725 void *data, bool create) 2726 { 2727 pgd_t *pgd; 2728 unsigned long start = addr, next; 2729 unsigned long end = addr + size; 2730 pgtbl_mod_mask mask = 0; 2731 int err = 0; 2732 2733 if (WARN_ON(addr >= end)) 2734 return -EINVAL; 2735 2736 pgd = pgd_offset(mm, addr); 2737 do { 2738 next = pgd_addr_end(addr, end); 2739 if (pgd_none(*pgd) && !create) 2740 continue; 2741 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2742 return -EINVAL; 2743 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2744 if (!create) 2745 continue; 2746 pgd_clear_bad(pgd); 2747 } 2748 err = apply_to_p4d_range(mm, pgd, addr, next, 2749 fn, data, create, &mask); 2750 if (err) 2751 break; 2752 } while (pgd++, addr = next, addr != end); 2753 2754 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2755 arch_sync_kernel_mappings(start, start + size); 2756 2757 return err; 2758 } 2759 2760 /* 2761 * Scan a region of virtual memory, filling in page tables as necessary 2762 * and calling a provided function on each leaf page table. 2763 */ 2764 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2765 unsigned long size, pte_fn_t fn, void *data) 2766 { 2767 return __apply_to_page_range(mm, addr, size, fn, data, true); 2768 } 2769 EXPORT_SYMBOL_GPL(apply_to_page_range); 2770 2771 /* 2772 * Scan a region of virtual memory, calling a provided function on 2773 * each leaf page table where it exists. 2774 * 2775 * Unlike apply_to_page_range, this does _not_ fill in page tables 2776 * where they are absent. 2777 */ 2778 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2779 unsigned long size, pte_fn_t fn, void *data) 2780 { 2781 return __apply_to_page_range(mm, addr, size, fn, data, false); 2782 } 2783 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2784 2785 /* 2786 * handle_pte_fault chooses page fault handler according to an entry which was 2787 * read non-atomically. Before making any commitment, on those architectures 2788 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2789 * parts, do_swap_page must check under lock before unmapping the pte and 2790 * proceeding (but do_wp_page is only called after already making such a check; 2791 * and do_anonymous_page can safely check later on). 2792 */ 2793 static inline int pte_unmap_same(struct vm_fault *vmf) 2794 { 2795 int same = 1; 2796 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2797 if (sizeof(pte_t) > sizeof(unsigned long)) { 2798 spin_lock(vmf->ptl); 2799 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 2800 spin_unlock(vmf->ptl); 2801 } 2802 #endif 2803 pte_unmap(vmf->pte); 2804 vmf->pte = NULL; 2805 return same; 2806 } 2807 2808 /* 2809 * Return: 2810 * 0: copied succeeded 2811 * -EHWPOISON: copy failed due to hwpoison in source page 2812 * -EAGAIN: copied failed (some other reason) 2813 */ 2814 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2815 struct vm_fault *vmf) 2816 { 2817 int ret; 2818 void *kaddr; 2819 void __user *uaddr; 2820 struct vm_area_struct *vma = vmf->vma; 2821 struct mm_struct *mm = vma->vm_mm; 2822 unsigned long addr = vmf->address; 2823 2824 if (likely(src)) { 2825 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2826 memory_failure_queue(page_to_pfn(src), 0); 2827 return -EHWPOISON; 2828 } 2829 return 0; 2830 } 2831 2832 /* 2833 * If the source page was a PFN mapping, we don't have 2834 * a "struct page" for it. We do a best-effort copy by 2835 * just copying from the original user address. If that 2836 * fails, we just zero-fill it. Live with it. 2837 */ 2838 kaddr = kmap_atomic(dst); 2839 uaddr = (void __user *)(addr & PAGE_MASK); 2840 2841 /* 2842 * On architectures with software "accessed" bits, we would 2843 * take a double page fault, so mark it accessed here. 2844 */ 2845 vmf->pte = NULL; 2846 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2847 pte_t entry; 2848 2849 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2850 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2851 /* 2852 * Other thread has already handled the fault 2853 * and update local tlb only 2854 */ 2855 if (vmf->pte) 2856 update_mmu_tlb(vma, addr, vmf->pte); 2857 ret = -EAGAIN; 2858 goto pte_unlock; 2859 } 2860 2861 entry = pte_mkyoung(vmf->orig_pte); 2862 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2863 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 2864 } 2865 2866 /* 2867 * This really shouldn't fail, because the page is there 2868 * in the page tables. But it might just be unreadable, 2869 * in which case we just give up and fill the result with 2870 * zeroes. 2871 */ 2872 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2873 if (vmf->pte) 2874 goto warn; 2875 2876 /* Re-validate under PTL if the page is still mapped */ 2877 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2878 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2879 /* The PTE changed under us, update local tlb */ 2880 if (vmf->pte) 2881 update_mmu_tlb(vma, addr, vmf->pte); 2882 ret = -EAGAIN; 2883 goto pte_unlock; 2884 } 2885 2886 /* 2887 * The same page can be mapped back since last copy attempt. 2888 * Try to copy again under PTL. 2889 */ 2890 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2891 /* 2892 * Give a warn in case there can be some obscure 2893 * use-case 2894 */ 2895 warn: 2896 WARN_ON_ONCE(1); 2897 clear_page(kaddr); 2898 } 2899 } 2900 2901 ret = 0; 2902 2903 pte_unlock: 2904 if (vmf->pte) 2905 pte_unmap_unlock(vmf->pte, vmf->ptl); 2906 kunmap_atomic(kaddr); 2907 flush_dcache_page(dst); 2908 2909 return ret; 2910 } 2911 2912 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2913 { 2914 struct file *vm_file = vma->vm_file; 2915 2916 if (vm_file) 2917 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2918 2919 /* 2920 * Special mappings (e.g. VDSO) do not have any file so fake 2921 * a default GFP_KERNEL for them. 2922 */ 2923 return GFP_KERNEL; 2924 } 2925 2926 /* 2927 * Notify the address space that the page is about to become writable so that 2928 * it can prohibit this or wait for the page to get into an appropriate state. 2929 * 2930 * We do this without the lock held, so that it can sleep if it needs to. 2931 */ 2932 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 2933 { 2934 vm_fault_t ret; 2935 unsigned int old_flags = vmf->flags; 2936 2937 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2938 2939 if (vmf->vma->vm_file && 2940 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2941 return VM_FAULT_SIGBUS; 2942 2943 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2944 /* Restore original flags so that caller is not surprised */ 2945 vmf->flags = old_flags; 2946 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2947 return ret; 2948 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2949 folio_lock(folio); 2950 if (!folio->mapping) { 2951 folio_unlock(folio); 2952 return 0; /* retry */ 2953 } 2954 ret |= VM_FAULT_LOCKED; 2955 } else 2956 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2957 return ret; 2958 } 2959 2960 /* 2961 * Handle dirtying of a page in shared file mapping on a write fault. 2962 * 2963 * The function expects the page to be locked and unlocks it. 2964 */ 2965 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2966 { 2967 struct vm_area_struct *vma = vmf->vma; 2968 struct address_space *mapping; 2969 struct folio *folio = page_folio(vmf->page); 2970 bool dirtied; 2971 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2972 2973 dirtied = folio_mark_dirty(folio); 2974 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 2975 /* 2976 * Take a local copy of the address_space - folio.mapping may be zeroed 2977 * by truncate after folio_unlock(). The address_space itself remains 2978 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 2979 * release semantics to prevent the compiler from undoing this copying. 2980 */ 2981 mapping = folio_raw_mapping(folio); 2982 folio_unlock(folio); 2983 2984 if (!page_mkwrite) 2985 file_update_time(vma->vm_file); 2986 2987 /* 2988 * Throttle page dirtying rate down to writeback speed. 2989 * 2990 * mapping may be NULL here because some device drivers do not 2991 * set page.mapping but still dirty their pages 2992 * 2993 * Drop the mmap_lock before waiting on IO, if we can. The file 2994 * is pinning the mapping, as per above. 2995 */ 2996 if ((dirtied || page_mkwrite) && mapping) { 2997 struct file *fpin; 2998 2999 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3000 balance_dirty_pages_ratelimited(mapping); 3001 if (fpin) { 3002 fput(fpin); 3003 return VM_FAULT_COMPLETED; 3004 } 3005 } 3006 3007 return 0; 3008 } 3009 3010 /* 3011 * Handle write page faults for pages that can be reused in the current vma 3012 * 3013 * This can happen either due to the mapping being with the VM_SHARED flag, 3014 * or due to us being the last reference standing to the page. In either 3015 * case, all we need to do here is to mark the page as writable and update 3016 * any related book-keeping. 3017 */ 3018 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3019 __releases(vmf->ptl) 3020 { 3021 struct vm_area_struct *vma = vmf->vma; 3022 pte_t entry; 3023 3024 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3025 3026 if (folio) { 3027 VM_BUG_ON(folio_test_anon(folio) && 3028 !PageAnonExclusive(vmf->page)); 3029 /* 3030 * Clear the folio's cpupid information as the existing 3031 * information potentially belongs to a now completely 3032 * unrelated process. 3033 */ 3034 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3035 } 3036 3037 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3038 entry = pte_mkyoung(vmf->orig_pte); 3039 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3040 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3041 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3042 pte_unmap_unlock(vmf->pte, vmf->ptl); 3043 count_vm_event(PGREUSE); 3044 } 3045 3046 /* 3047 * We could add a bitflag somewhere, but for now, we know that all 3048 * vm_ops that have a ->map_pages have been audited and don't need 3049 * the mmap_lock to be held. 3050 */ 3051 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3052 { 3053 struct vm_area_struct *vma = vmf->vma; 3054 3055 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3056 return 0; 3057 vma_end_read(vma); 3058 return VM_FAULT_RETRY; 3059 } 3060 3061 static vm_fault_t vmf_anon_prepare(struct vm_fault *vmf) 3062 { 3063 struct vm_area_struct *vma = vmf->vma; 3064 3065 if (likely(vma->anon_vma)) 3066 return 0; 3067 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3068 vma_end_read(vma); 3069 return VM_FAULT_RETRY; 3070 } 3071 if (__anon_vma_prepare(vma)) 3072 return VM_FAULT_OOM; 3073 return 0; 3074 } 3075 3076 /* 3077 * Handle the case of a page which we actually need to copy to a new page, 3078 * either due to COW or unsharing. 3079 * 3080 * Called with mmap_lock locked and the old page referenced, but 3081 * without the ptl held. 3082 * 3083 * High level logic flow: 3084 * 3085 * - Allocate a page, copy the content of the old page to the new one. 3086 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3087 * - Take the PTL. If the pte changed, bail out and release the allocated page 3088 * - If the pte is still the way we remember it, update the page table and all 3089 * relevant references. This includes dropping the reference the page-table 3090 * held to the old page, as well as updating the rmap. 3091 * - In any case, unlock the PTL and drop the reference we took to the old page. 3092 */ 3093 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3094 { 3095 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3096 struct vm_area_struct *vma = vmf->vma; 3097 struct mm_struct *mm = vma->vm_mm; 3098 struct folio *old_folio = NULL; 3099 struct folio *new_folio = NULL; 3100 pte_t entry; 3101 int page_copied = 0; 3102 struct mmu_notifier_range range; 3103 vm_fault_t ret; 3104 3105 delayacct_wpcopy_start(); 3106 3107 if (vmf->page) 3108 old_folio = page_folio(vmf->page); 3109 ret = vmf_anon_prepare(vmf); 3110 if (unlikely(ret)) 3111 goto out; 3112 3113 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3114 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 3115 if (!new_folio) 3116 goto oom; 3117 } else { 3118 int err; 3119 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 3120 vmf->address, false); 3121 if (!new_folio) 3122 goto oom; 3123 3124 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3125 if (err) { 3126 /* 3127 * COW failed, if the fault was solved by other, 3128 * it's fine. If not, userspace would re-fault on 3129 * the same address and we will handle the fault 3130 * from the second attempt. 3131 * The -EHWPOISON case will not be retried. 3132 */ 3133 folio_put(new_folio); 3134 if (old_folio) 3135 folio_put(old_folio); 3136 3137 delayacct_wpcopy_end(); 3138 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3139 } 3140 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3141 } 3142 3143 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) 3144 goto oom_free_new; 3145 folio_throttle_swaprate(new_folio, GFP_KERNEL); 3146 3147 __folio_mark_uptodate(new_folio); 3148 3149 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3150 vmf->address & PAGE_MASK, 3151 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3152 mmu_notifier_invalidate_range_start(&range); 3153 3154 /* 3155 * Re-check the pte - we dropped the lock 3156 */ 3157 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3158 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3159 if (old_folio) { 3160 if (!folio_test_anon(old_folio)) { 3161 dec_mm_counter(mm, mm_counter_file(&old_folio->page)); 3162 inc_mm_counter(mm, MM_ANONPAGES); 3163 } 3164 } else { 3165 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3166 inc_mm_counter(mm, MM_ANONPAGES); 3167 } 3168 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3169 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3170 entry = pte_sw_mkyoung(entry); 3171 if (unlikely(unshare)) { 3172 if (pte_soft_dirty(vmf->orig_pte)) 3173 entry = pte_mksoft_dirty(entry); 3174 if (pte_uffd_wp(vmf->orig_pte)) 3175 entry = pte_mkuffd_wp(entry); 3176 } else { 3177 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3178 } 3179 3180 /* 3181 * Clear the pte entry and flush it first, before updating the 3182 * pte with the new entry, to keep TLBs on different CPUs in 3183 * sync. This code used to set the new PTE then flush TLBs, but 3184 * that left a window where the new PTE could be loaded into 3185 * some TLBs while the old PTE remains in others. 3186 */ 3187 ptep_clear_flush(vma, vmf->address, vmf->pte); 3188 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3189 folio_add_lru_vma(new_folio, vma); 3190 /* 3191 * We call the notify macro here because, when using secondary 3192 * mmu page tables (such as kvm shadow page tables), we want the 3193 * new page to be mapped directly into the secondary page table. 3194 */ 3195 BUG_ON(unshare && pte_write(entry)); 3196 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3197 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3198 if (old_folio) { 3199 /* 3200 * Only after switching the pte to the new page may 3201 * we remove the mapcount here. Otherwise another 3202 * process may come and find the rmap count decremented 3203 * before the pte is switched to the new page, and 3204 * "reuse" the old page writing into it while our pte 3205 * here still points into it and can be read by other 3206 * threads. 3207 * 3208 * The critical issue is to order this 3209 * page_remove_rmap with the ptp_clear_flush above. 3210 * Those stores are ordered by (if nothing else,) 3211 * the barrier present in the atomic_add_negative 3212 * in page_remove_rmap. 3213 * 3214 * Then the TLB flush in ptep_clear_flush ensures that 3215 * no process can access the old page before the 3216 * decremented mapcount is visible. And the old page 3217 * cannot be reused until after the decremented 3218 * mapcount is visible. So transitively, TLBs to 3219 * old page will be flushed before it can be reused. 3220 */ 3221 page_remove_rmap(vmf->page, vma, false); 3222 } 3223 3224 /* Free the old page.. */ 3225 new_folio = old_folio; 3226 page_copied = 1; 3227 pte_unmap_unlock(vmf->pte, vmf->ptl); 3228 } else if (vmf->pte) { 3229 update_mmu_tlb(vma, vmf->address, vmf->pte); 3230 pte_unmap_unlock(vmf->pte, vmf->ptl); 3231 } 3232 3233 mmu_notifier_invalidate_range_end(&range); 3234 3235 if (new_folio) 3236 folio_put(new_folio); 3237 if (old_folio) { 3238 if (page_copied) 3239 free_swap_cache(&old_folio->page); 3240 folio_put(old_folio); 3241 } 3242 3243 delayacct_wpcopy_end(); 3244 return 0; 3245 oom_free_new: 3246 folio_put(new_folio); 3247 oom: 3248 ret = VM_FAULT_OOM; 3249 out: 3250 if (old_folio) 3251 folio_put(old_folio); 3252 3253 delayacct_wpcopy_end(); 3254 return ret; 3255 } 3256 3257 /** 3258 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3259 * writeable once the page is prepared 3260 * 3261 * @vmf: structure describing the fault 3262 * @folio: the folio of vmf->page 3263 * 3264 * This function handles all that is needed to finish a write page fault in a 3265 * shared mapping due to PTE being read-only once the mapped page is prepared. 3266 * It handles locking of PTE and modifying it. 3267 * 3268 * The function expects the page to be locked or other protection against 3269 * concurrent faults / writeback (such as DAX radix tree locks). 3270 * 3271 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3272 * we acquired PTE lock. 3273 */ 3274 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3275 { 3276 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3277 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3278 &vmf->ptl); 3279 if (!vmf->pte) 3280 return VM_FAULT_NOPAGE; 3281 /* 3282 * We might have raced with another page fault while we released the 3283 * pte_offset_map_lock. 3284 */ 3285 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3286 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3287 pte_unmap_unlock(vmf->pte, vmf->ptl); 3288 return VM_FAULT_NOPAGE; 3289 } 3290 wp_page_reuse(vmf, folio); 3291 return 0; 3292 } 3293 3294 /* 3295 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3296 * mapping 3297 */ 3298 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3299 { 3300 struct vm_area_struct *vma = vmf->vma; 3301 3302 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3303 vm_fault_t ret; 3304 3305 pte_unmap_unlock(vmf->pte, vmf->ptl); 3306 ret = vmf_can_call_fault(vmf); 3307 if (ret) 3308 return ret; 3309 3310 vmf->flags |= FAULT_FLAG_MKWRITE; 3311 ret = vma->vm_ops->pfn_mkwrite(vmf); 3312 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3313 return ret; 3314 return finish_mkwrite_fault(vmf, NULL); 3315 } 3316 wp_page_reuse(vmf, NULL); 3317 return 0; 3318 } 3319 3320 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3321 __releases(vmf->ptl) 3322 { 3323 struct vm_area_struct *vma = vmf->vma; 3324 vm_fault_t ret = 0; 3325 3326 folio_get(folio); 3327 3328 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3329 vm_fault_t tmp; 3330 3331 pte_unmap_unlock(vmf->pte, vmf->ptl); 3332 tmp = vmf_can_call_fault(vmf); 3333 if (tmp) { 3334 folio_put(folio); 3335 return tmp; 3336 } 3337 3338 tmp = do_page_mkwrite(vmf, folio); 3339 if (unlikely(!tmp || (tmp & 3340 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3341 folio_put(folio); 3342 return tmp; 3343 } 3344 tmp = finish_mkwrite_fault(vmf, folio); 3345 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3346 folio_unlock(folio); 3347 folio_put(folio); 3348 return tmp; 3349 } 3350 } else { 3351 wp_page_reuse(vmf, folio); 3352 folio_lock(folio); 3353 } 3354 ret |= fault_dirty_shared_page(vmf); 3355 folio_put(folio); 3356 3357 return ret; 3358 } 3359 3360 static bool wp_can_reuse_anon_folio(struct folio *folio, 3361 struct vm_area_struct *vma) 3362 { 3363 /* 3364 * We have to verify under folio lock: these early checks are 3365 * just an optimization to avoid locking the folio and freeing 3366 * the swapcache if there is little hope that we can reuse. 3367 * 3368 * KSM doesn't necessarily raise the folio refcount. 3369 */ 3370 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3371 return false; 3372 if (!folio_test_lru(folio)) 3373 /* 3374 * We cannot easily detect+handle references from 3375 * remote LRU caches or references to LRU folios. 3376 */ 3377 lru_add_drain(); 3378 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3379 return false; 3380 if (!folio_trylock(folio)) 3381 return false; 3382 if (folio_test_swapcache(folio)) 3383 folio_free_swap(folio); 3384 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3385 folio_unlock(folio); 3386 return false; 3387 } 3388 /* 3389 * Ok, we've got the only folio reference from our mapping 3390 * and the folio is locked, it's dark out, and we're wearing 3391 * sunglasses. Hit it. 3392 */ 3393 folio_move_anon_rmap(folio, vma); 3394 folio_unlock(folio); 3395 return true; 3396 } 3397 3398 /* 3399 * This routine handles present pages, when 3400 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3401 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3402 * (FAULT_FLAG_UNSHARE) 3403 * 3404 * It is done by copying the page to a new address and decrementing the 3405 * shared-page counter for the old page. 3406 * 3407 * Note that this routine assumes that the protection checks have been 3408 * done by the caller (the low-level page fault routine in most cases). 3409 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3410 * done any necessary COW. 3411 * 3412 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3413 * though the page will change only once the write actually happens. This 3414 * avoids a few races, and potentially makes it more efficient. 3415 * 3416 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3417 * but allow concurrent faults), with pte both mapped and locked. 3418 * We return with mmap_lock still held, but pte unmapped and unlocked. 3419 */ 3420 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3421 __releases(vmf->ptl) 3422 { 3423 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3424 struct vm_area_struct *vma = vmf->vma; 3425 struct folio *folio = NULL; 3426 pte_t pte; 3427 3428 if (likely(!unshare)) { 3429 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3430 if (!userfaultfd_wp_async(vma)) { 3431 pte_unmap_unlock(vmf->pte, vmf->ptl); 3432 return handle_userfault(vmf, VM_UFFD_WP); 3433 } 3434 3435 /* 3436 * Nothing needed (cache flush, TLB invalidations, 3437 * etc.) because we're only removing the uffd-wp bit, 3438 * which is completely invisible to the user. 3439 */ 3440 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3441 3442 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3443 /* 3444 * Update this to be prepared for following up CoW 3445 * handling 3446 */ 3447 vmf->orig_pte = pte; 3448 } 3449 3450 /* 3451 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3452 * is flushed in this case before copying. 3453 */ 3454 if (unlikely(userfaultfd_wp(vmf->vma) && 3455 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3456 flush_tlb_page(vmf->vma, vmf->address); 3457 } 3458 3459 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3460 3461 if (vmf->page) 3462 folio = page_folio(vmf->page); 3463 3464 /* 3465 * Shared mapping: we are guaranteed to have VM_WRITE and 3466 * FAULT_FLAG_WRITE set at this point. 3467 */ 3468 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3469 /* 3470 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3471 * VM_PFNMAP VMA. 3472 * 3473 * We should not cow pages in a shared writeable mapping. 3474 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3475 */ 3476 if (!vmf->page) 3477 return wp_pfn_shared(vmf); 3478 return wp_page_shared(vmf, folio); 3479 } 3480 3481 /* 3482 * Private mapping: create an exclusive anonymous page copy if reuse 3483 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3484 * 3485 * If we encounter a page that is marked exclusive, we must reuse 3486 * the page without further checks. 3487 */ 3488 if (folio && folio_test_anon(folio) && 3489 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3490 if (!PageAnonExclusive(vmf->page)) 3491 SetPageAnonExclusive(vmf->page); 3492 if (unlikely(unshare)) { 3493 pte_unmap_unlock(vmf->pte, vmf->ptl); 3494 return 0; 3495 } 3496 wp_page_reuse(vmf, folio); 3497 return 0; 3498 } 3499 /* 3500 * Ok, we need to copy. Oh, well.. 3501 */ 3502 if (folio) 3503 folio_get(folio); 3504 3505 pte_unmap_unlock(vmf->pte, vmf->ptl); 3506 #ifdef CONFIG_KSM 3507 if (folio && folio_test_ksm(folio)) 3508 count_vm_event(COW_KSM); 3509 #endif 3510 return wp_page_copy(vmf); 3511 } 3512 3513 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3514 unsigned long start_addr, unsigned long end_addr, 3515 struct zap_details *details) 3516 { 3517 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3518 } 3519 3520 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3521 pgoff_t first_index, 3522 pgoff_t last_index, 3523 struct zap_details *details) 3524 { 3525 struct vm_area_struct *vma; 3526 pgoff_t vba, vea, zba, zea; 3527 3528 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3529 vba = vma->vm_pgoff; 3530 vea = vba + vma_pages(vma) - 1; 3531 zba = max(first_index, vba); 3532 zea = min(last_index, vea); 3533 3534 unmap_mapping_range_vma(vma, 3535 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3536 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3537 details); 3538 } 3539 } 3540 3541 /** 3542 * unmap_mapping_folio() - Unmap single folio from processes. 3543 * @folio: The locked folio to be unmapped. 3544 * 3545 * Unmap this folio from any userspace process which still has it mmaped. 3546 * Typically, for efficiency, the range of nearby pages has already been 3547 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3548 * truncation or invalidation holds the lock on a folio, it may find that 3549 * the page has been remapped again: and then uses unmap_mapping_folio() 3550 * to unmap it finally. 3551 */ 3552 void unmap_mapping_folio(struct folio *folio) 3553 { 3554 struct address_space *mapping = folio->mapping; 3555 struct zap_details details = { }; 3556 pgoff_t first_index; 3557 pgoff_t last_index; 3558 3559 VM_BUG_ON(!folio_test_locked(folio)); 3560 3561 first_index = folio->index; 3562 last_index = folio_next_index(folio) - 1; 3563 3564 details.even_cows = false; 3565 details.single_folio = folio; 3566 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3567 3568 i_mmap_lock_read(mapping); 3569 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3570 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3571 last_index, &details); 3572 i_mmap_unlock_read(mapping); 3573 } 3574 3575 /** 3576 * unmap_mapping_pages() - Unmap pages from processes. 3577 * @mapping: The address space containing pages to be unmapped. 3578 * @start: Index of first page to be unmapped. 3579 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3580 * @even_cows: Whether to unmap even private COWed pages. 3581 * 3582 * Unmap the pages in this address space from any userspace process which 3583 * has them mmaped. Generally, you want to remove COWed pages as well when 3584 * a file is being truncated, but not when invalidating pages from the page 3585 * cache. 3586 */ 3587 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3588 pgoff_t nr, bool even_cows) 3589 { 3590 struct zap_details details = { }; 3591 pgoff_t first_index = start; 3592 pgoff_t last_index = start + nr - 1; 3593 3594 details.even_cows = even_cows; 3595 if (last_index < first_index) 3596 last_index = ULONG_MAX; 3597 3598 i_mmap_lock_read(mapping); 3599 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3600 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3601 last_index, &details); 3602 i_mmap_unlock_read(mapping); 3603 } 3604 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3605 3606 /** 3607 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3608 * address_space corresponding to the specified byte range in the underlying 3609 * file. 3610 * 3611 * @mapping: the address space containing mmaps to be unmapped. 3612 * @holebegin: byte in first page to unmap, relative to the start of 3613 * the underlying file. This will be rounded down to a PAGE_SIZE 3614 * boundary. Note that this is different from truncate_pagecache(), which 3615 * must keep the partial page. In contrast, we must get rid of 3616 * partial pages. 3617 * @holelen: size of prospective hole in bytes. This will be rounded 3618 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3619 * end of the file. 3620 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3621 * but 0 when invalidating pagecache, don't throw away private data. 3622 */ 3623 void unmap_mapping_range(struct address_space *mapping, 3624 loff_t const holebegin, loff_t const holelen, int even_cows) 3625 { 3626 pgoff_t hba = holebegin >> PAGE_SHIFT; 3627 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3628 3629 /* Check for overflow. */ 3630 if (sizeof(holelen) > sizeof(hlen)) { 3631 long long holeend = 3632 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3633 if (holeend & ~(long long)ULONG_MAX) 3634 hlen = ULONG_MAX - hba + 1; 3635 } 3636 3637 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3638 } 3639 EXPORT_SYMBOL(unmap_mapping_range); 3640 3641 /* 3642 * Restore a potential device exclusive pte to a working pte entry 3643 */ 3644 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3645 { 3646 struct folio *folio = page_folio(vmf->page); 3647 struct vm_area_struct *vma = vmf->vma; 3648 struct mmu_notifier_range range; 3649 vm_fault_t ret; 3650 3651 /* 3652 * We need a reference to lock the folio because we don't hold 3653 * the PTL so a racing thread can remove the device-exclusive 3654 * entry and unmap it. If the folio is free the entry must 3655 * have been removed already. If it happens to have already 3656 * been re-allocated after being freed all we do is lock and 3657 * unlock it. 3658 */ 3659 if (!folio_try_get(folio)) 3660 return 0; 3661 3662 ret = folio_lock_or_retry(folio, vmf); 3663 if (ret) { 3664 folio_put(folio); 3665 return ret; 3666 } 3667 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3668 vma->vm_mm, vmf->address & PAGE_MASK, 3669 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3670 mmu_notifier_invalidate_range_start(&range); 3671 3672 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3673 &vmf->ptl); 3674 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3675 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3676 3677 if (vmf->pte) 3678 pte_unmap_unlock(vmf->pte, vmf->ptl); 3679 folio_unlock(folio); 3680 folio_put(folio); 3681 3682 mmu_notifier_invalidate_range_end(&range); 3683 return 0; 3684 } 3685 3686 static inline bool should_try_to_free_swap(struct folio *folio, 3687 struct vm_area_struct *vma, 3688 unsigned int fault_flags) 3689 { 3690 if (!folio_test_swapcache(folio)) 3691 return false; 3692 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3693 folio_test_mlocked(folio)) 3694 return true; 3695 /* 3696 * If we want to map a page that's in the swapcache writable, we 3697 * have to detect via the refcount if we're really the exclusive 3698 * user. Try freeing the swapcache to get rid of the swapcache 3699 * reference only in case it's likely that we'll be the exlusive user. 3700 */ 3701 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3702 folio_ref_count(folio) == 2; 3703 } 3704 3705 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3706 { 3707 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3708 vmf->address, &vmf->ptl); 3709 if (!vmf->pte) 3710 return 0; 3711 /* 3712 * Be careful so that we will only recover a special uffd-wp pte into a 3713 * none pte. Otherwise it means the pte could have changed, so retry. 3714 * 3715 * This should also cover the case where e.g. the pte changed 3716 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3717 * So is_pte_marker() check is not enough to safely drop the pte. 3718 */ 3719 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3720 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3721 pte_unmap_unlock(vmf->pte, vmf->ptl); 3722 return 0; 3723 } 3724 3725 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3726 { 3727 if (vma_is_anonymous(vmf->vma)) 3728 return do_anonymous_page(vmf); 3729 else 3730 return do_fault(vmf); 3731 } 3732 3733 /* 3734 * This is actually a page-missing access, but with uffd-wp special pte 3735 * installed. It means this pte was wr-protected before being unmapped. 3736 */ 3737 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3738 { 3739 /* 3740 * Just in case there're leftover special ptes even after the region 3741 * got unregistered - we can simply clear them. 3742 */ 3743 if (unlikely(!userfaultfd_wp(vmf->vma))) 3744 return pte_marker_clear(vmf); 3745 3746 return do_pte_missing(vmf); 3747 } 3748 3749 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3750 { 3751 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3752 unsigned long marker = pte_marker_get(entry); 3753 3754 /* 3755 * PTE markers should never be empty. If anything weird happened, 3756 * the best thing to do is to kill the process along with its mm. 3757 */ 3758 if (WARN_ON_ONCE(!marker)) 3759 return VM_FAULT_SIGBUS; 3760 3761 /* Higher priority than uffd-wp when data corrupted */ 3762 if (marker & PTE_MARKER_POISONED) 3763 return VM_FAULT_HWPOISON; 3764 3765 if (pte_marker_entry_uffd_wp(entry)) 3766 return pte_marker_handle_uffd_wp(vmf); 3767 3768 /* This is an unknown pte marker */ 3769 return VM_FAULT_SIGBUS; 3770 } 3771 3772 /* 3773 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3774 * but allow concurrent faults), and pte mapped but not yet locked. 3775 * We return with pte unmapped and unlocked. 3776 * 3777 * We return with the mmap_lock locked or unlocked in the same cases 3778 * as does filemap_fault(). 3779 */ 3780 vm_fault_t do_swap_page(struct vm_fault *vmf) 3781 { 3782 struct vm_area_struct *vma = vmf->vma; 3783 struct folio *swapcache, *folio = NULL; 3784 struct page *page; 3785 struct swap_info_struct *si = NULL; 3786 rmap_t rmap_flags = RMAP_NONE; 3787 bool exclusive = false; 3788 swp_entry_t entry; 3789 pte_t pte; 3790 vm_fault_t ret = 0; 3791 void *shadow = NULL; 3792 3793 if (!pte_unmap_same(vmf)) 3794 goto out; 3795 3796 entry = pte_to_swp_entry(vmf->orig_pte); 3797 if (unlikely(non_swap_entry(entry))) { 3798 if (is_migration_entry(entry)) { 3799 migration_entry_wait(vma->vm_mm, vmf->pmd, 3800 vmf->address); 3801 } else if (is_device_exclusive_entry(entry)) { 3802 vmf->page = pfn_swap_entry_to_page(entry); 3803 ret = remove_device_exclusive_entry(vmf); 3804 } else if (is_device_private_entry(entry)) { 3805 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3806 /* 3807 * migrate_to_ram is not yet ready to operate 3808 * under VMA lock. 3809 */ 3810 vma_end_read(vma); 3811 ret = VM_FAULT_RETRY; 3812 goto out; 3813 } 3814 3815 vmf->page = pfn_swap_entry_to_page(entry); 3816 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3817 vmf->address, &vmf->ptl); 3818 if (unlikely(!vmf->pte || 3819 !pte_same(ptep_get(vmf->pte), 3820 vmf->orig_pte))) 3821 goto unlock; 3822 3823 /* 3824 * Get a page reference while we know the page can't be 3825 * freed. 3826 */ 3827 get_page(vmf->page); 3828 pte_unmap_unlock(vmf->pte, vmf->ptl); 3829 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3830 put_page(vmf->page); 3831 } else if (is_hwpoison_entry(entry)) { 3832 ret = VM_FAULT_HWPOISON; 3833 } else if (is_pte_marker_entry(entry)) { 3834 ret = handle_pte_marker(vmf); 3835 } else { 3836 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3837 ret = VM_FAULT_SIGBUS; 3838 } 3839 goto out; 3840 } 3841 3842 /* Prevent swapoff from happening to us. */ 3843 si = get_swap_device(entry); 3844 if (unlikely(!si)) 3845 goto out; 3846 3847 folio = swap_cache_get_folio(entry, vma, vmf->address); 3848 if (folio) 3849 page = folio_file_page(folio, swp_offset(entry)); 3850 swapcache = folio; 3851 3852 if (!folio) { 3853 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3854 __swap_count(entry) == 1) { 3855 /* skip swapcache */ 3856 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3857 vma, vmf->address, false); 3858 page = &folio->page; 3859 if (folio) { 3860 __folio_set_locked(folio); 3861 __folio_set_swapbacked(folio); 3862 3863 if (mem_cgroup_swapin_charge_folio(folio, 3864 vma->vm_mm, GFP_KERNEL, 3865 entry)) { 3866 ret = VM_FAULT_OOM; 3867 goto out_page; 3868 } 3869 mem_cgroup_swapin_uncharge_swap(entry); 3870 3871 shadow = get_shadow_from_swap_cache(entry); 3872 if (shadow) 3873 workingset_refault(folio, shadow); 3874 3875 folio_add_lru(folio); 3876 3877 /* To provide entry to swap_readpage() */ 3878 folio->swap = entry; 3879 swap_readpage(page, true, NULL); 3880 folio->private = NULL; 3881 } 3882 } else { 3883 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3884 vmf); 3885 if (page) 3886 folio = page_folio(page); 3887 swapcache = folio; 3888 } 3889 3890 if (!folio) { 3891 /* 3892 * Back out if somebody else faulted in this pte 3893 * while we released the pte lock. 3894 */ 3895 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3896 vmf->address, &vmf->ptl); 3897 if (likely(vmf->pte && 3898 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3899 ret = VM_FAULT_OOM; 3900 goto unlock; 3901 } 3902 3903 /* Had to read the page from swap area: Major fault */ 3904 ret = VM_FAULT_MAJOR; 3905 count_vm_event(PGMAJFAULT); 3906 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3907 } else if (PageHWPoison(page)) { 3908 /* 3909 * hwpoisoned dirty swapcache pages are kept for killing 3910 * owner processes (which may be unknown at hwpoison time) 3911 */ 3912 ret = VM_FAULT_HWPOISON; 3913 goto out_release; 3914 } 3915 3916 ret |= folio_lock_or_retry(folio, vmf); 3917 if (ret & VM_FAULT_RETRY) 3918 goto out_release; 3919 3920 if (swapcache) { 3921 /* 3922 * Make sure folio_free_swap() or swapoff did not release the 3923 * swapcache from under us. The page pin, and pte_same test 3924 * below, are not enough to exclude that. Even if it is still 3925 * swapcache, we need to check that the page's swap has not 3926 * changed. 3927 */ 3928 if (unlikely(!folio_test_swapcache(folio) || 3929 page_swap_entry(page).val != entry.val)) 3930 goto out_page; 3931 3932 /* 3933 * KSM sometimes has to copy on read faults, for example, if 3934 * page->index of !PageKSM() pages would be nonlinear inside the 3935 * anon VMA -- PageKSM() is lost on actual swapout. 3936 */ 3937 page = ksm_might_need_to_copy(page, vma, vmf->address); 3938 if (unlikely(!page)) { 3939 ret = VM_FAULT_OOM; 3940 goto out_page; 3941 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) { 3942 ret = VM_FAULT_HWPOISON; 3943 goto out_page; 3944 } 3945 folio = page_folio(page); 3946 3947 /* 3948 * If we want to map a page that's in the swapcache writable, we 3949 * have to detect via the refcount if we're really the exclusive 3950 * owner. Try removing the extra reference from the local LRU 3951 * caches if required. 3952 */ 3953 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3954 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3955 lru_add_drain(); 3956 } 3957 3958 folio_throttle_swaprate(folio, GFP_KERNEL); 3959 3960 /* 3961 * Back out if somebody else already faulted in this pte. 3962 */ 3963 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3964 &vmf->ptl); 3965 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3966 goto out_nomap; 3967 3968 if (unlikely(!folio_test_uptodate(folio))) { 3969 ret = VM_FAULT_SIGBUS; 3970 goto out_nomap; 3971 } 3972 3973 /* 3974 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3975 * must never point at an anonymous page in the swapcache that is 3976 * PG_anon_exclusive. Sanity check that this holds and especially, that 3977 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3978 * check after taking the PT lock and making sure that nobody 3979 * concurrently faulted in this page and set PG_anon_exclusive. 3980 */ 3981 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3982 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3983 3984 /* 3985 * Check under PT lock (to protect against concurrent fork() sharing 3986 * the swap entry concurrently) for certainly exclusive pages. 3987 */ 3988 if (!folio_test_ksm(folio)) { 3989 exclusive = pte_swp_exclusive(vmf->orig_pte); 3990 if (folio != swapcache) { 3991 /* 3992 * We have a fresh page that is not exposed to the 3993 * swapcache -> certainly exclusive. 3994 */ 3995 exclusive = true; 3996 } else if (exclusive && folio_test_writeback(folio) && 3997 data_race(si->flags & SWP_STABLE_WRITES)) { 3998 /* 3999 * This is tricky: not all swap backends support 4000 * concurrent page modifications while under writeback. 4001 * 4002 * So if we stumble over such a page in the swapcache 4003 * we must not set the page exclusive, otherwise we can 4004 * map it writable without further checks and modify it 4005 * while still under writeback. 4006 * 4007 * For these problematic swap backends, simply drop the 4008 * exclusive marker: this is perfectly fine as we start 4009 * writeback only if we fully unmapped the page and 4010 * there are no unexpected references on the page after 4011 * unmapping succeeded. After fully unmapped, no 4012 * further GUP references (FOLL_GET and FOLL_PIN) can 4013 * appear, so dropping the exclusive marker and mapping 4014 * it only R/O is fine. 4015 */ 4016 exclusive = false; 4017 } 4018 } 4019 4020 /* 4021 * Some architectures may have to restore extra metadata to the page 4022 * when reading from swap. This metadata may be indexed by swap entry 4023 * so this must be called before swap_free(). 4024 */ 4025 arch_swap_restore(entry, folio); 4026 4027 /* 4028 * Remove the swap entry and conditionally try to free up the swapcache. 4029 * We're already holding a reference on the page but haven't mapped it 4030 * yet. 4031 */ 4032 swap_free(entry); 4033 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4034 folio_free_swap(folio); 4035 4036 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4037 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 4038 pte = mk_pte(page, vma->vm_page_prot); 4039 4040 /* 4041 * Same logic as in do_wp_page(); however, optimize for pages that are 4042 * certainly not shared either because we just allocated them without 4043 * exposing them to the swapcache or because the swap entry indicates 4044 * exclusivity. 4045 */ 4046 if (!folio_test_ksm(folio) && 4047 (exclusive || folio_ref_count(folio) == 1)) { 4048 if (vmf->flags & FAULT_FLAG_WRITE) { 4049 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 4050 vmf->flags &= ~FAULT_FLAG_WRITE; 4051 } 4052 rmap_flags |= RMAP_EXCLUSIVE; 4053 } 4054 flush_icache_page(vma, page); 4055 if (pte_swp_soft_dirty(vmf->orig_pte)) 4056 pte = pte_mksoft_dirty(pte); 4057 if (pte_swp_uffd_wp(vmf->orig_pte)) 4058 pte = pte_mkuffd_wp(pte); 4059 vmf->orig_pte = pte; 4060 4061 /* ksm created a completely new copy */ 4062 if (unlikely(folio != swapcache && swapcache)) { 4063 page_add_new_anon_rmap(page, vma, vmf->address); 4064 folio_add_lru_vma(folio, vma); 4065 } else { 4066 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 4067 } 4068 4069 VM_BUG_ON(!folio_test_anon(folio) || 4070 (pte_write(pte) && !PageAnonExclusive(page))); 4071 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4072 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 4073 4074 folio_unlock(folio); 4075 if (folio != swapcache && swapcache) { 4076 /* 4077 * Hold the lock to avoid the swap entry to be reused 4078 * until we take the PT lock for the pte_same() check 4079 * (to avoid false positives from pte_same). For 4080 * further safety release the lock after the swap_free 4081 * so that the swap count won't change under a 4082 * parallel locked swapcache. 4083 */ 4084 folio_unlock(swapcache); 4085 folio_put(swapcache); 4086 } 4087 4088 if (vmf->flags & FAULT_FLAG_WRITE) { 4089 ret |= do_wp_page(vmf); 4090 if (ret & VM_FAULT_ERROR) 4091 ret &= VM_FAULT_ERROR; 4092 goto out; 4093 } 4094 4095 /* No need to invalidate - it was non-present before */ 4096 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4097 unlock: 4098 if (vmf->pte) 4099 pte_unmap_unlock(vmf->pte, vmf->ptl); 4100 out: 4101 if (si) 4102 put_swap_device(si); 4103 return ret; 4104 out_nomap: 4105 if (vmf->pte) 4106 pte_unmap_unlock(vmf->pte, vmf->ptl); 4107 out_page: 4108 folio_unlock(folio); 4109 out_release: 4110 folio_put(folio); 4111 if (folio != swapcache && swapcache) { 4112 folio_unlock(swapcache); 4113 folio_put(swapcache); 4114 } 4115 if (si) 4116 put_swap_device(si); 4117 return ret; 4118 } 4119 4120 /* 4121 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4122 * but allow concurrent faults), and pte mapped but not yet locked. 4123 * We return with mmap_lock still held, but pte unmapped and unlocked. 4124 */ 4125 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4126 { 4127 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4128 struct vm_area_struct *vma = vmf->vma; 4129 struct folio *folio; 4130 vm_fault_t ret = 0; 4131 pte_t entry; 4132 4133 /* File mapping without ->vm_ops ? */ 4134 if (vma->vm_flags & VM_SHARED) 4135 return VM_FAULT_SIGBUS; 4136 4137 /* 4138 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4139 * be distinguished from a transient failure of pte_offset_map(). 4140 */ 4141 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4142 return VM_FAULT_OOM; 4143 4144 /* Use the zero-page for reads */ 4145 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4146 !mm_forbids_zeropage(vma->vm_mm)) { 4147 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4148 vma->vm_page_prot)); 4149 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4150 vmf->address, &vmf->ptl); 4151 if (!vmf->pte) 4152 goto unlock; 4153 if (vmf_pte_changed(vmf)) { 4154 update_mmu_tlb(vma, vmf->address, vmf->pte); 4155 goto unlock; 4156 } 4157 ret = check_stable_address_space(vma->vm_mm); 4158 if (ret) 4159 goto unlock; 4160 /* Deliver the page fault to userland, check inside PT lock */ 4161 if (userfaultfd_missing(vma)) { 4162 pte_unmap_unlock(vmf->pte, vmf->ptl); 4163 return handle_userfault(vmf, VM_UFFD_MISSING); 4164 } 4165 goto setpte; 4166 } 4167 4168 /* Allocate our own private page. */ 4169 if (unlikely(anon_vma_prepare(vma))) 4170 goto oom; 4171 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 4172 if (!folio) 4173 goto oom; 4174 4175 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 4176 goto oom_free_page; 4177 folio_throttle_swaprate(folio, GFP_KERNEL); 4178 4179 /* 4180 * The memory barrier inside __folio_mark_uptodate makes sure that 4181 * preceding stores to the page contents become visible before 4182 * the set_pte_at() write. 4183 */ 4184 __folio_mark_uptodate(folio); 4185 4186 entry = mk_pte(&folio->page, vma->vm_page_prot); 4187 entry = pte_sw_mkyoung(entry); 4188 if (vma->vm_flags & VM_WRITE) 4189 entry = pte_mkwrite(pte_mkdirty(entry), vma); 4190 4191 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4192 &vmf->ptl); 4193 if (!vmf->pte) 4194 goto release; 4195 if (vmf_pte_changed(vmf)) { 4196 update_mmu_tlb(vma, vmf->address, vmf->pte); 4197 goto release; 4198 } 4199 4200 ret = check_stable_address_space(vma->vm_mm); 4201 if (ret) 4202 goto release; 4203 4204 /* Deliver the page fault to userland, check inside PT lock */ 4205 if (userfaultfd_missing(vma)) { 4206 pte_unmap_unlock(vmf->pte, vmf->ptl); 4207 folio_put(folio); 4208 return handle_userfault(vmf, VM_UFFD_MISSING); 4209 } 4210 4211 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4212 folio_add_new_anon_rmap(folio, vma, vmf->address); 4213 folio_add_lru_vma(folio, vma); 4214 setpte: 4215 if (uffd_wp) 4216 entry = pte_mkuffd_wp(entry); 4217 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4218 4219 /* No need to invalidate - it was non-present before */ 4220 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4221 unlock: 4222 if (vmf->pte) 4223 pte_unmap_unlock(vmf->pte, vmf->ptl); 4224 return ret; 4225 release: 4226 folio_put(folio); 4227 goto unlock; 4228 oom_free_page: 4229 folio_put(folio); 4230 oom: 4231 return VM_FAULT_OOM; 4232 } 4233 4234 /* 4235 * The mmap_lock must have been held on entry, and may have been 4236 * released depending on flags and vma->vm_ops->fault() return value. 4237 * See filemap_fault() and __lock_page_retry(). 4238 */ 4239 static vm_fault_t __do_fault(struct vm_fault *vmf) 4240 { 4241 struct vm_area_struct *vma = vmf->vma; 4242 vm_fault_t ret; 4243 4244 /* 4245 * Preallocate pte before we take page_lock because this might lead to 4246 * deadlocks for memcg reclaim which waits for pages under writeback: 4247 * lock_page(A) 4248 * SetPageWriteback(A) 4249 * unlock_page(A) 4250 * lock_page(B) 4251 * lock_page(B) 4252 * pte_alloc_one 4253 * shrink_page_list 4254 * wait_on_page_writeback(A) 4255 * SetPageWriteback(B) 4256 * unlock_page(B) 4257 * # flush A, B to clear the writeback 4258 */ 4259 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4260 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4261 if (!vmf->prealloc_pte) 4262 return VM_FAULT_OOM; 4263 } 4264 4265 ret = vma->vm_ops->fault(vmf); 4266 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4267 VM_FAULT_DONE_COW))) 4268 return ret; 4269 4270 if (unlikely(PageHWPoison(vmf->page))) { 4271 struct page *page = vmf->page; 4272 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4273 if (ret & VM_FAULT_LOCKED) { 4274 if (page_mapped(page)) 4275 unmap_mapping_pages(page_mapping(page), 4276 page->index, 1, false); 4277 /* Retry if a clean page was removed from the cache. */ 4278 if (invalidate_inode_page(page)) 4279 poisonret = VM_FAULT_NOPAGE; 4280 unlock_page(page); 4281 } 4282 put_page(page); 4283 vmf->page = NULL; 4284 return poisonret; 4285 } 4286 4287 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4288 lock_page(vmf->page); 4289 else 4290 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4291 4292 return ret; 4293 } 4294 4295 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4296 static void deposit_prealloc_pte(struct vm_fault *vmf) 4297 { 4298 struct vm_area_struct *vma = vmf->vma; 4299 4300 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4301 /* 4302 * We are going to consume the prealloc table, 4303 * count that as nr_ptes. 4304 */ 4305 mm_inc_nr_ptes(vma->vm_mm); 4306 vmf->prealloc_pte = NULL; 4307 } 4308 4309 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4310 { 4311 struct vm_area_struct *vma = vmf->vma; 4312 bool write = vmf->flags & FAULT_FLAG_WRITE; 4313 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4314 pmd_t entry; 4315 vm_fault_t ret = VM_FAULT_FALLBACK; 4316 4317 if (!transhuge_vma_suitable(vma, haddr)) 4318 return ret; 4319 4320 page = compound_head(page); 4321 if (compound_order(page) != HPAGE_PMD_ORDER) 4322 return ret; 4323 4324 /* 4325 * Just backoff if any subpage of a THP is corrupted otherwise 4326 * the corrupted page may mapped by PMD silently to escape the 4327 * check. This kind of THP just can be PTE mapped. Access to 4328 * the corrupted subpage should trigger SIGBUS as expected. 4329 */ 4330 if (unlikely(PageHasHWPoisoned(page))) 4331 return ret; 4332 4333 /* 4334 * Archs like ppc64 need additional space to store information 4335 * related to pte entry. Use the preallocated table for that. 4336 */ 4337 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4338 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4339 if (!vmf->prealloc_pte) 4340 return VM_FAULT_OOM; 4341 } 4342 4343 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4344 if (unlikely(!pmd_none(*vmf->pmd))) 4345 goto out; 4346 4347 flush_icache_pages(vma, page, HPAGE_PMD_NR); 4348 4349 entry = mk_huge_pmd(page, vma->vm_page_prot); 4350 if (write) 4351 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4352 4353 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4354 page_add_file_rmap(page, vma, true); 4355 4356 /* 4357 * deposit and withdraw with pmd lock held 4358 */ 4359 if (arch_needs_pgtable_deposit()) 4360 deposit_prealloc_pte(vmf); 4361 4362 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4363 4364 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4365 4366 /* fault is handled */ 4367 ret = 0; 4368 count_vm_event(THP_FILE_MAPPED); 4369 out: 4370 spin_unlock(vmf->ptl); 4371 return ret; 4372 } 4373 #else 4374 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4375 { 4376 return VM_FAULT_FALLBACK; 4377 } 4378 #endif 4379 4380 /** 4381 * set_pte_range - Set a range of PTEs to point to pages in a folio. 4382 * @vmf: Fault decription. 4383 * @folio: The folio that contains @page. 4384 * @page: The first page to create a PTE for. 4385 * @nr: The number of PTEs to create. 4386 * @addr: The first address to create a PTE for. 4387 */ 4388 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 4389 struct page *page, unsigned int nr, unsigned long addr) 4390 { 4391 struct vm_area_struct *vma = vmf->vma; 4392 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4393 bool write = vmf->flags & FAULT_FLAG_WRITE; 4394 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE); 4395 pte_t entry; 4396 4397 flush_icache_pages(vma, page, nr); 4398 entry = mk_pte(page, vma->vm_page_prot); 4399 4400 if (prefault && arch_wants_old_prefaulted_pte()) 4401 entry = pte_mkold(entry); 4402 else 4403 entry = pte_sw_mkyoung(entry); 4404 4405 if (write) 4406 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4407 if (unlikely(uffd_wp)) 4408 entry = pte_mkuffd_wp(entry); 4409 /* copy-on-write page */ 4410 if (write && !(vma->vm_flags & VM_SHARED)) { 4411 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr); 4412 VM_BUG_ON_FOLIO(nr != 1, folio); 4413 folio_add_new_anon_rmap(folio, vma, addr); 4414 folio_add_lru_vma(folio, vma); 4415 } else { 4416 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr); 4417 folio_add_file_rmap_range(folio, page, nr, vma, false); 4418 } 4419 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 4420 4421 /* no need to invalidate: a not-present page won't be cached */ 4422 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 4423 } 4424 4425 static bool vmf_pte_changed(struct vm_fault *vmf) 4426 { 4427 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4428 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4429 4430 return !pte_none(ptep_get(vmf->pte)); 4431 } 4432 4433 /** 4434 * finish_fault - finish page fault once we have prepared the page to fault 4435 * 4436 * @vmf: structure describing the fault 4437 * 4438 * This function handles all that is needed to finish a page fault once the 4439 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4440 * given page, adds reverse page mapping, handles memcg charges and LRU 4441 * addition. 4442 * 4443 * The function expects the page to be locked and on success it consumes a 4444 * reference of a page being mapped (for the PTE which maps it). 4445 * 4446 * Return: %0 on success, %VM_FAULT_ code in case of error. 4447 */ 4448 vm_fault_t finish_fault(struct vm_fault *vmf) 4449 { 4450 struct vm_area_struct *vma = vmf->vma; 4451 struct page *page; 4452 vm_fault_t ret; 4453 4454 /* Did we COW the page? */ 4455 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4456 page = vmf->cow_page; 4457 else 4458 page = vmf->page; 4459 4460 /* 4461 * check even for read faults because we might have lost our CoWed 4462 * page 4463 */ 4464 if (!(vma->vm_flags & VM_SHARED)) { 4465 ret = check_stable_address_space(vma->vm_mm); 4466 if (ret) 4467 return ret; 4468 } 4469 4470 if (pmd_none(*vmf->pmd)) { 4471 if (PageTransCompound(page)) { 4472 ret = do_set_pmd(vmf, page); 4473 if (ret != VM_FAULT_FALLBACK) 4474 return ret; 4475 } 4476 4477 if (vmf->prealloc_pte) 4478 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4479 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4480 return VM_FAULT_OOM; 4481 } 4482 4483 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4484 vmf->address, &vmf->ptl); 4485 if (!vmf->pte) 4486 return VM_FAULT_NOPAGE; 4487 4488 /* Re-check under ptl */ 4489 if (likely(!vmf_pte_changed(vmf))) { 4490 struct folio *folio = page_folio(page); 4491 4492 set_pte_range(vmf, folio, page, 1, vmf->address); 4493 ret = 0; 4494 } else { 4495 update_mmu_tlb(vma, vmf->address, vmf->pte); 4496 ret = VM_FAULT_NOPAGE; 4497 } 4498 4499 pte_unmap_unlock(vmf->pte, vmf->ptl); 4500 return ret; 4501 } 4502 4503 static unsigned long fault_around_pages __read_mostly = 4504 65536 >> PAGE_SHIFT; 4505 4506 #ifdef CONFIG_DEBUG_FS 4507 static int fault_around_bytes_get(void *data, u64 *val) 4508 { 4509 *val = fault_around_pages << PAGE_SHIFT; 4510 return 0; 4511 } 4512 4513 /* 4514 * fault_around_bytes must be rounded down to the nearest page order as it's 4515 * what do_fault_around() expects to see. 4516 */ 4517 static int fault_around_bytes_set(void *data, u64 val) 4518 { 4519 if (val / PAGE_SIZE > PTRS_PER_PTE) 4520 return -EINVAL; 4521 4522 /* 4523 * The minimum value is 1 page, however this results in no fault-around 4524 * at all. See should_fault_around(). 4525 */ 4526 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL); 4527 4528 return 0; 4529 } 4530 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4531 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4532 4533 static int __init fault_around_debugfs(void) 4534 { 4535 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4536 &fault_around_bytes_fops); 4537 return 0; 4538 } 4539 late_initcall(fault_around_debugfs); 4540 #endif 4541 4542 /* 4543 * do_fault_around() tries to map few pages around the fault address. The hope 4544 * is that the pages will be needed soon and this will lower the number of 4545 * faults to handle. 4546 * 4547 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4548 * not ready to be mapped: not up-to-date, locked, etc. 4549 * 4550 * This function doesn't cross VMA or page table boundaries, in order to call 4551 * map_pages() and acquire a PTE lock only once. 4552 * 4553 * fault_around_pages defines how many pages we'll try to map. 4554 * do_fault_around() expects it to be set to a power of two less than or equal 4555 * to PTRS_PER_PTE. 4556 * 4557 * The virtual address of the area that we map is naturally aligned to 4558 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4559 * (and therefore to page order). This way it's easier to guarantee 4560 * that we don't cross page table boundaries. 4561 */ 4562 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4563 { 4564 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4565 pgoff_t pte_off = pte_index(vmf->address); 4566 /* The page offset of vmf->address within the VMA. */ 4567 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4568 pgoff_t from_pte, to_pte; 4569 vm_fault_t ret; 4570 4571 /* The PTE offset of the start address, clamped to the VMA. */ 4572 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4573 pte_off - min(pte_off, vma_off)); 4574 4575 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4576 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4577 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4578 4579 if (pmd_none(*vmf->pmd)) { 4580 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4581 if (!vmf->prealloc_pte) 4582 return VM_FAULT_OOM; 4583 } 4584 4585 rcu_read_lock(); 4586 ret = vmf->vma->vm_ops->map_pages(vmf, 4587 vmf->pgoff + from_pte - pte_off, 4588 vmf->pgoff + to_pte - pte_off); 4589 rcu_read_unlock(); 4590 4591 return ret; 4592 } 4593 4594 /* Return true if we should do read fault-around, false otherwise */ 4595 static inline bool should_fault_around(struct vm_fault *vmf) 4596 { 4597 /* No ->map_pages? No way to fault around... */ 4598 if (!vmf->vma->vm_ops->map_pages) 4599 return false; 4600 4601 if (uffd_disable_fault_around(vmf->vma)) 4602 return false; 4603 4604 /* A single page implies no faulting 'around' at all. */ 4605 return fault_around_pages > 1; 4606 } 4607 4608 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4609 { 4610 vm_fault_t ret = 0; 4611 struct folio *folio; 4612 4613 /* 4614 * Let's call ->map_pages() first and use ->fault() as fallback 4615 * if page by the offset is not ready to be mapped (cold cache or 4616 * something). 4617 */ 4618 if (should_fault_around(vmf)) { 4619 ret = do_fault_around(vmf); 4620 if (ret) 4621 return ret; 4622 } 4623 4624 ret = vmf_can_call_fault(vmf); 4625 if (ret) 4626 return ret; 4627 4628 ret = __do_fault(vmf); 4629 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4630 return ret; 4631 4632 ret |= finish_fault(vmf); 4633 folio = page_folio(vmf->page); 4634 folio_unlock(folio); 4635 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4636 folio_put(folio); 4637 return ret; 4638 } 4639 4640 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4641 { 4642 struct vm_area_struct *vma = vmf->vma; 4643 vm_fault_t ret; 4644 4645 ret = vmf_can_call_fault(vmf); 4646 if (!ret) 4647 ret = vmf_anon_prepare(vmf); 4648 if (ret) 4649 return ret; 4650 4651 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4652 if (!vmf->cow_page) 4653 return VM_FAULT_OOM; 4654 4655 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4656 GFP_KERNEL)) { 4657 put_page(vmf->cow_page); 4658 return VM_FAULT_OOM; 4659 } 4660 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL); 4661 4662 ret = __do_fault(vmf); 4663 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4664 goto uncharge_out; 4665 if (ret & VM_FAULT_DONE_COW) 4666 return ret; 4667 4668 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4669 __SetPageUptodate(vmf->cow_page); 4670 4671 ret |= finish_fault(vmf); 4672 unlock_page(vmf->page); 4673 put_page(vmf->page); 4674 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4675 goto uncharge_out; 4676 return ret; 4677 uncharge_out: 4678 put_page(vmf->cow_page); 4679 return ret; 4680 } 4681 4682 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4683 { 4684 struct vm_area_struct *vma = vmf->vma; 4685 vm_fault_t ret, tmp; 4686 struct folio *folio; 4687 4688 ret = vmf_can_call_fault(vmf); 4689 if (ret) 4690 return ret; 4691 4692 ret = __do_fault(vmf); 4693 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4694 return ret; 4695 4696 folio = page_folio(vmf->page); 4697 4698 /* 4699 * Check if the backing address space wants to know that the page is 4700 * about to become writable 4701 */ 4702 if (vma->vm_ops->page_mkwrite) { 4703 folio_unlock(folio); 4704 tmp = do_page_mkwrite(vmf, folio); 4705 if (unlikely(!tmp || 4706 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4707 folio_put(folio); 4708 return tmp; 4709 } 4710 } 4711 4712 ret |= finish_fault(vmf); 4713 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4714 VM_FAULT_RETRY))) { 4715 folio_unlock(folio); 4716 folio_put(folio); 4717 return ret; 4718 } 4719 4720 ret |= fault_dirty_shared_page(vmf); 4721 return ret; 4722 } 4723 4724 /* 4725 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4726 * but allow concurrent faults). 4727 * The mmap_lock may have been released depending on flags and our 4728 * return value. See filemap_fault() and __folio_lock_or_retry(). 4729 * If mmap_lock is released, vma may become invalid (for example 4730 * by other thread calling munmap()). 4731 */ 4732 static vm_fault_t do_fault(struct vm_fault *vmf) 4733 { 4734 struct vm_area_struct *vma = vmf->vma; 4735 struct mm_struct *vm_mm = vma->vm_mm; 4736 vm_fault_t ret; 4737 4738 /* 4739 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4740 */ 4741 if (!vma->vm_ops->fault) { 4742 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4743 vmf->address, &vmf->ptl); 4744 if (unlikely(!vmf->pte)) 4745 ret = VM_FAULT_SIGBUS; 4746 else { 4747 /* 4748 * Make sure this is not a temporary clearing of pte 4749 * by holding ptl and checking again. A R/M/W update 4750 * of pte involves: take ptl, clearing the pte so that 4751 * we don't have concurrent modification by hardware 4752 * followed by an update. 4753 */ 4754 if (unlikely(pte_none(ptep_get(vmf->pte)))) 4755 ret = VM_FAULT_SIGBUS; 4756 else 4757 ret = VM_FAULT_NOPAGE; 4758 4759 pte_unmap_unlock(vmf->pte, vmf->ptl); 4760 } 4761 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4762 ret = do_read_fault(vmf); 4763 else if (!(vma->vm_flags & VM_SHARED)) 4764 ret = do_cow_fault(vmf); 4765 else 4766 ret = do_shared_fault(vmf); 4767 4768 /* preallocated pagetable is unused: free it */ 4769 if (vmf->prealloc_pte) { 4770 pte_free(vm_mm, vmf->prealloc_pte); 4771 vmf->prealloc_pte = NULL; 4772 } 4773 return ret; 4774 } 4775 4776 int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma, 4777 unsigned long addr, int page_nid, int *flags) 4778 { 4779 folio_get(folio); 4780 4781 /* Record the current PID acceesing VMA */ 4782 vma_set_access_pid_bit(vma); 4783 4784 count_vm_numa_event(NUMA_HINT_FAULTS); 4785 if (page_nid == numa_node_id()) { 4786 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4787 *flags |= TNF_FAULT_LOCAL; 4788 } 4789 4790 return mpol_misplaced(folio, vma, addr); 4791 } 4792 4793 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4794 { 4795 struct vm_area_struct *vma = vmf->vma; 4796 struct folio *folio = NULL; 4797 int nid = NUMA_NO_NODE; 4798 bool writable = false; 4799 int last_cpupid; 4800 int target_nid; 4801 pte_t pte, old_pte; 4802 int flags = 0; 4803 4804 /* 4805 * The "pte" at this point cannot be used safely without 4806 * validation through pte_unmap_same(). It's of NUMA type but 4807 * the pfn may be screwed if the read is non atomic. 4808 */ 4809 spin_lock(vmf->ptl); 4810 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4811 pte_unmap_unlock(vmf->pte, vmf->ptl); 4812 goto out; 4813 } 4814 4815 /* Get the normal PTE */ 4816 old_pte = ptep_get(vmf->pte); 4817 pte = pte_modify(old_pte, vma->vm_page_prot); 4818 4819 /* 4820 * Detect now whether the PTE could be writable; this information 4821 * is only valid while holding the PT lock. 4822 */ 4823 writable = pte_write(pte); 4824 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4825 can_change_pte_writable(vma, vmf->address, pte)) 4826 writable = true; 4827 4828 folio = vm_normal_folio(vma, vmf->address, pte); 4829 if (!folio || folio_is_zone_device(folio)) 4830 goto out_map; 4831 4832 /* TODO: handle PTE-mapped THP */ 4833 if (folio_test_large(folio)) 4834 goto out_map; 4835 4836 /* 4837 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4838 * much anyway since they can be in shared cache state. This misses 4839 * the case where a mapping is writable but the process never writes 4840 * to it but pte_write gets cleared during protection updates and 4841 * pte_dirty has unpredictable behaviour between PTE scan updates, 4842 * background writeback, dirty balancing and application behaviour. 4843 */ 4844 if (!writable) 4845 flags |= TNF_NO_GROUP; 4846 4847 /* 4848 * Flag if the folio is shared between multiple address spaces. This 4849 * is later used when determining whether to group tasks together 4850 */ 4851 if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED)) 4852 flags |= TNF_SHARED; 4853 4854 nid = folio_nid(folio); 4855 /* 4856 * For memory tiering mode, cpupid of slow memory page is used 4857 * to record page access time. So use default value. 4858 */ 4859 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4860 !node_is_toptier(nid)) 4861 last_cpupid = (-1 & LAST_CPUPID_MASK); 4862 else 4863 last_cpupid = folio_last_cpupid(folio); 4864 target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags); 4865 if (target_nid == NUMA_NO_NODE) { 4866 folio_put(folio); 4867 goto out_map; 4868 } 4869 pte_unmap_unlock(vmf->pte, vmf->ptl); 4870 writable = false; 4871 4872 /* Migrate to the requested node */ 4873 if (migrate_misplaced_folio(folio, vma, target_nid)) { 4874 nid = target_nid; 4875 flags |= TNF_MIGRATED; 4876 } else { 4877 flags |= TNF_MIGRATE_FAIL; 4878 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4879 vmf->address, &vmf->ptl); 4880 if (unlikely(!vmf->pte)) 4881 goto out; 4882 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4883 pte_unmap_unlock(vmf->pte, vmf->ptl); 4884 goto out; 4885 } 4886 goto out_map; 4887 } 4888 4889 out: 4890 if (nid != NUMA_NO_NODE) 4891 task_numa_fault(last_cpupid, nid, 1, flags); 4892 return 0; 4893 out_map: 4894 /* 4895 * Make it present again, depending on how arch implements 4896 * non-accessible ptes, some can allow access by kernel mode. 4897 */ 4898 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4899 pte = pte_modify(old_pte, vma->vm_page_prot); 4900 pte = pte_mkyoung(pte); 4901 if (writable) 4902 pte = pte_mkwrite(pte, vma); 4903 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4904 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 4905 pte_unmap_unlock(vmf->pte, vmf->ptl); 4906 goto out; 4907 } 4908 4909 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4910 { 4911 struct vm_area_struct *vma = vmf->vma; 4912 if (vma_is_anonymous(vma)) 4913 return do_huge_pmd_anonymous_page(vmf); 4914 if (vma->vm_ops->huge_fault) 4915 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 4916 return VM_FAULT_FALLBACK; 4917 } 4918 4919 /* `inline' is required to avoid gcc 4.1.2 build error */ 4920 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4921 { 4922 struct vm_area_struct *vma = vmf->vma; 4923 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4924 vm_fault_t ret; 4925 4926 if (vma_is_anonymous(vma)) { 4927 if (likely(!unshare) && 4928 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 4929 if (userfaultfd_wp_async(vmf->vma)) 4930 goto split; 4931 return handle_userfault(vmf, VM_UFFD_WP); 4932 } 4933 return do_huge_pmd_wp_page(vmf); 4934 } 4935 4936 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4937 if (vma->vm_ops->huge_fault) { 4938 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 4939 if (!(ret & VM_FAULT_FALLBACK)) 4940 return ret; 4941 } 4942 } 4943 4944 split: 4945 /* COW or write-notify handled on pte level: split pmd. */ 4946 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 4947 4948 return VM_FAULT_FALLBACK; 4949 } 4950 4951 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4952 { 4953 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4954 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4955 struct vm_area_struct *vma = vmf->vma; 4956 /* No support for anonymous transparent PUD pages yet */ 4957 if (vma_is_anonymous(vma)) 4958 return VM_FAULT_FALLBACK; 4959 if (vma->vm_ops->huge_fault) 4960 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 4961 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4962 return VM_FAULT_FALLBACK; 4963 } 4964 4965 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4966 { 4967 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4968 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4969 struct vm_area_struct *vma = vmf->vma; 4970 vm_fault_t ret; 4971 4972 /* No support for anonymous transparent PUD pages yet */ 4973 if (vma_is_anonymous(vma)) 4974 goto split; 4975 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4976 if (vma->vm_ops->huge_fault) { 4977 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 4978 if (!(ret & VM_FAULT_FALLBACK)) 4979 return ret; 4980 } 4981 } 4982 split: 4983 /* COW or write-notify not handled on PUD level: split pud.*/ 4984 __split_huge_pud(vma, vmf->pud, vmf->address); 4985 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4986 return VM_FAULT_FALLBACK; 4987 } 4988 4989 /* 4990 * These routines also need to handle stuff like marking pages dirty 4991 * and/or accessed for architectures that don't do it in hardware (most 4992 * RISC architectures). The early dirtying is also good on the i386. 4993 * 4994 * There is also a hook called "update_mmu_cache()" that architectures 4995 * with external mmu caches can use to update those (ie the Sparc or 4996 * PowerPC hashed page tables that act as extended TLBs). 4997 * 4998 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4999 * concurrent faults). 5000 * 5001 * The mmap_lock may have been released depending on flags and our return value. 5002 * See filemap_fault() and __folio_lock_or_retry(). 5003 */ 5004 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5005 { 5006 pte_t entry; 5007 5008 if (unlikely(pmd_none(*vmf->pmd))) { 5009 /* 5010 * Leave __pte_alloc() until later: because vm_ops->fault may 5011 * want to allocate huge page, and if we expose page table 5012 * for an instant, it will be difficult to retract from 5013 * concurrent faults and from rmap lookups. 5014 */ 5015 vmf->pte = NULL; 5016 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5017 } else { 5018 /* 5019 * A regular pmd is established and it can't morph into a huge 5020 * pmd by anon khugepaged, since that takes mmap_lock in write 5021 * mode; but shmem or file collapse to THP could still morph 5022 * it into a huge pmd: just retry later if so. 5023 */ 5024 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 5025 vmf->address, &vmf->ptl); 5026 if (unlikely(!vmf->pte)) 5027 return 0; 5028 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5029 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 5030 5031 if (pte_none(vmf->orig_pte)) { 5032 pte_unmap(vmf->pte); 5033 vmf->pte = NULL; 5034 } 5035 } 5036 5037 if (!vmf->pte) 5038 return do_pte_missing(vmf); 5039 5040 if (!pte_present(vmf->orig_pte)) 5041 return do_swap_page(vmf); 5042 5043 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5044 return do_numa_page(vmf); 5045 5046 spin_lock(vmf->ptl); 5047 entry = vmf->orig_pte; 5048 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5049 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5050 goto unlock; 5051 } 5052 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5053 if (!pte_write(entry)) 5054 return do_wp_page(vmf); 5055 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5056 entry = pte_mkdirty(entry); 5057 } 5058 entry = pte_mkyoung(entry); 5059 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5060 vmf->flags & FAULT_FLAG_WRITE)) { 5061 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 5062 vmf->pte, 1); 5063 } else { 5064 /* Skip spurious TLB flush for retried page fault */ 5065 if (vmf->flags & FAULT_FLAG_TRIED) 5066 goto unlock; 5067 /* 5068 * This is needed only for protection faults but the arch code 5069 * is not yet telling us if this is a protection fault or not. 5070 * This still avoids useless tlb flushes for .text page faults 5071 * with threads. 5072 */ 5073 if (vmf->flags & FAULT_FLAG_WRITE) 5074 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5075 vmf->pte); 5076 } 5077 unlock: 5078 pte_unmap_unlock(vmf->pte, vmf->ptl); 5079 return 0; 5080 } 5081 5082 /* 5083 * On entry, we hold either the VMA lock or the mmap_lock 5084 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5085 * the result, the mmap_lock is not held on exit. See filemap_fault() 5086 * and __folio_lock_or_retry(). 5087 */ 5088 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5089 unsigned long address, unsigned int flags) 5090 { 5091 struct vm_fault vmf = { 5092 .vma = vma, 5093 .address = address & PAGE_MASK, 5094 .real_address = address, 5095 .flags = flags, 5096 .pgoff = linear_page_index(vma, address), 5097 .gfp_mask = __get_fault_gfp_mask(vma), 5098 }; 5099 struct mm_struct *mm = vma->vm_mm; 5100 unsigned long vm_flags = vma->vm_flags; 5101 pgd_t *pgd; 5102 p4d_t *p4d; 5103 vm_fault_t ret; 5104 5105 pgd = pgd_offset(mm, address); 5106 p4d = p4d_alloc(mm, pgd, address); 5107 if (!p4d) 5108 return VM_FAULT_OOM; 5109 5110 vmf.pud = pud_alloc(mm, p4d, address); 5111 if (!vmf.pud) 5112 return VM_FAULT_OOM; 5113 retry_pud: 5114 if (pud_none(*vmf.pud) && 5115 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5116 ret = create_huge_pud(&vmf); 5117 if (!(ret & VM_FAULT_FALLBACK)) 5118 return ret; 5119 } else { 5120 pud_t orig_pud = *vmf.pud; 5121 5122 barrier(); 5123 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5124 5125 /* 5126 * TODO once we support anonymous PUDs: NUMA case and 5127 * FAULT_FLAG_UNSHARE handling. 5128 */ 5129 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5130 ret = wp_huge_pud(&vmf, orig_pud); 5131 if (!(ret & VM_FAULT_FALLBACK)) 5132 return ret; 5133 } else { 5134 huge_pud_set_accessed(&vmf, orig_pud); 5135 return 0; 5136 } 5137 } 5138 } 5139 5140 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5141 if (!vmf.pmd) 5142 return VM_FAULT_OOM; 5143 5144 /* Huge pud page fault raced with pmd_alloc? */ 5145 if (pud_trans_unstable(vmf.pud)) 5146 goto retry_pud; 5147 5148 if (pmd_none(*vmf.pmd) && 5149 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5150 ret = create_huge_pmd(&vmf); 5151 if (!(ret & VM_FAULT_FALLBACK)) 5152 return ret; 5153 } else { 5154 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5155 5156 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5157 VM_BUG_ON(thp_migration_supported() && 5158 !is_pmd_migration_entry(vmf.orig_pmd)); 5159 if (is_pmd_migration_entry(vmf.orig_pmd)) 5160 pmd_migration_entry_wait(mm, vmf.pmd); 5161 return 0; 5162 } 5163 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5164 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5165 return do_huge_pmd_numa_page(&vmf); 5166 5167 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5168 !pmd_write(vmf.orig_pmd)) { 5169 ret = wp_huge_pmd(&vmf); 5170 if (!(ret & VM_FAULT_FALLBACK)) 5171 return ret; 5172 } else { 5173 huge_pmd_set_accessed(&vmf); 5174 return 0; 5175 } 5176 } 5177 } 5178 5179 return handle_pte_fault(&vmf); 5180 } 5181 5182 /** 5183 * mm_account_fault - Do page fault accounting 5184 * @mm: mm from which memcg should be extracted. It can be NULL. 5185 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5186 * of perf event counters, but we'll still do the per-task accounting to 5187 * the task who triggered this page fault. 5188 * @address: the faulted address. 5189 * @flags: the fault flags. 5190 * @ret: the fault retcode. 5191 * 5192 * This will take care of most of the page fault accounting. Meanwhile, it 5193 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5194 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5195 * still be in per-arch page fault handlers at the entry of page fault. 5196 */ 5197 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5198 unsigned long address, unsigned int flags, 5199 vm_fault_t ret) 5200 { 5201 bool major; 5202 5203 /* Incomplete faults will be accounted upon completion. */ 5204 if (ret & VM_FAULT_RETRY) 5205 return; 5206 5207 /* 5208 * To preserve the behavior of older kernels, PGFAULT counters record 5209 * both successful and failed faults, as opposed to perf counters, 5210 * which ignore failed cases. 5211 */ 5212 count_vm_event(PGFAULT); 5213 count_memcg_event_mm(mm, PGFAULT); 5214 5215 /* 5216 * Do not account for unsuccessful faults (e.g. when the address wasn't 5217 * valid). That includes arch_vma_access_permitted() failing before 5218 * reaching here. So this is not a "this many hardware page faults" 5219 * counter. We should use the hw profiling for that. 5220 */ 5221 if (ret & VM_FAULT_ERROR) 5222 return; 5223 5224 /* 5225 * We define the fault as a major fault when the final successful fault 5226 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5227 * handle it immediately previously). 5228 */ 5229 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5230 5231 if (major) 5232 current->maj_flt++; 5233 else 5234 current->min_flt++; 5235 5236 /* 5237 * If the fault is done for GUP, regs will be NULL. We only do the 5238 * accounting for the per thread fault counters who triggered the 5239 * fault, and we skip the perf event updates. 5240 */ 5241 if (!regs) 5242 return; 5243 5244 if (major) 5245 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5246 else 5247 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5248 } 5249 5250 #ifdef CONFIG_LRU_GEN 5251 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5252 { 5253 /* the LRU algorithm only applies to accesses with recency */ 5254 current->in_lru_fault = vma_has_recency(vma); 5255 } 5256 5257 static void lru_gen_exit_fault(void) 5258 { 5259 current->in_lru_fault = false; 5260 } 5261 #else 5262 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5263 { 5264 } 5265 5266 static void lru_gen_exit_fault(void) 5267 { 5268 } 5269 #endif /* CONFIG_LRU_GEN */ 5270 5271 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5272 unsigned int *flags) 5273 { 5274 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5275 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5276 return VM_FAULT_SIGSEGV; 5277 /* 5278 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5279 * just treat it like an ordinary read-fault otherwise. 5280 */ 5281 if (!is_cow_mapping(vma->vm_flags)) 5282 *flags &= ~FAULT_FLAG_UNSHARE; 5283 } else if (*flags & FAULT_FLAG_WRITE) { 5284 /* Write faults on read-only mappings are impossible ... */ 5285 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5286 return VM_FAULT_SIGSEGV; 5287 /* ... and FOLL_FORCE only applies to COW mappings. */ 5288 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5289 !is_cow_mapping(vma->vm_flags))) 5290 return VM_FAULT_SIGSEGV; 5291 } 5292 #ifdef CONFIG_PER_VMA_LOCK 5293 /* 5294 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 5295 * the assumption that lock is dropped on VM_FAULT_RETRY. 5296 */ 5297 if (WARN_ON_ONCE((*flags & 5298 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 5299 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 5300 return VM_FAULT_SIGSEGV; 5301 #endif 5302 5303 return 0; 5304 } 5305 5306 /* 5307 * By the time we get here, we already hold the mm semaphore 5308 * 5309 * The mmap_lock may have been released depending on flags and our 5310 * return value. See filemap_fault() and __folio_lock_or_retry(). 5311 */ 5312 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5313 unsigned int flags, struct pt_regs *regs) 5314 { 5315 /* If the fault handler drops the mmap_lock, vma may be freed */ 5316 struct mm_struct *mm = vma->vm_mm; 5317 vm_fault_t ret; 5318 5319 __set_current_state(TASK_RUNNING); 5320 5321 ret = sanitize_fault_flags(vma, &flags); 5322 if (ret) 5323 goto out; 5324 5325 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5326 flags & FAULT_FLAG_INSTRUCTION, 5327 flags & FAULT_FLAG_REMOTE)) { 5328 ret = VM_FAULT_SIGSEGV; 5329 goto out; 5330 } 5331 5332 /* 5333 * Enable the memcg OOM handling for faults triggered in user 5334 * space. Kernel faults are handled more gracefully. 5335 */ 5336 if (flags & FAULT_FLAG_USER) 5337 mem_cgroup_enter_user_fault(); 5338 5339 lru_gen_enter_fault(vma); 5340 5341 if (unlikely(is_vm_hugetlb_page(vma))) 5342 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5343 else 5344 ret = __handle_mm_fault(vma, address, flags); 5345 5346 lru_gen_exit_fault(); 5347 5348 if (flags & FAULT_FLAG_USER) { 5349 mem_cgroup_exit_user_fault(); 5350 /* 5351 * The task may have entered a memcg OOM situation but 5352 * if the allocation error was handled gracefully (no 5353 * VM_FAULT_OOM), there is no need to kill anything. 5354 * Just clean up the OOM state peacefully. 5355 */ 5356 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5357 mem_cgroup_oom_synchronize(false); 5358 } 5359 out: 5360 mm_account_fault(mm, regs, address, flags, ret); 5361 5362 return ret; 5363 } 5364 EXPORT_SYMBOL_GPL(handle_mm_fault); 5365 5366 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 5367 #include <linux/extable.h> 5368 5369 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5370 { 5371 if (likely(mmap_read_trylock(mm))) 5372 return true; 5373 5374 if (regs && !user_mode(regs)) { 5375 unsigned long ip = instruction_pointer(regs); 5376 if (!search_exception_tables(ip)) 5377 return false; 5378 } 5379 5380 return !mmap_read_lock_killable(mm); 5381 } 5382 5383 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 5384 { 5385 /* 5386 * We don't have this operation yet. 5387 * 5388 * It should be easy enough to do: it's basically a 5389 * atomic_long_try_cmpxchg_acquire() 5390 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 5391 * it also needs the proper lockdep magic etc. 5392 */ 5393 return false; 5394 } 5395 5396 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5397 { 5398 mmap_read_unlock(mm); 5399 if (regs && !user_mode(regs)) { 5400 unsigned long ip = instruction_pointer(regs); 5401 if (!search_exception_tables(ip)) 5402 return false; 5403 } 5404 return !mmap_write_lock_killable(mm); 5405 } 5406 5407 /* 5408 * Helper for page fault handling. 5409 * 5410 * This is kind of equivalend to "mmap_read_lock()" followed 5411 * by "find_extend_vma()", except it's a lot more careful about 5412 * the locking (and will drop the lock on failure). 5413 * 5414 * For example, if we have a kernel bug that causes a page 5415 * fault, we don't want to just use mmap_read_lock() to get 5416 * the mm lock, because that would deadlock if the bug were 5417 * to happen while we're holding the mm lock for writing. 5418 * 5419 * So this checks the exception tables on kernel faults in 5420 * order to only do this all for instructions that are actually 5421 * expected to fault. 5422 * 5423 * We can also actually take the mm lock for writing if we 5424 * need to extend the vma, which helps the VM layer a lot. 5425 */ 5426 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 5427 unsigned long addr, struct pt_regs *regs) 5428 { 5429 struct vm_area_struct *vma; 5430 5431 if (!get_mmap_lock_carefully(mm, regs)) 5432 return NULL; 5433 5434 vma = find_vma(mm, addr); 5435 if (likely(vma && (vma->vm_start <= addr))) 5436 return vma; 5437 5438 /* 5439 * Well, dang. We might still be successful, but only 5440 * if we can extend a vma to do so. 5441 */ 5442 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 5443 mmap_read_unlock(mm); 5444 return NULL; 5445 } 5446 5447 /* 5448 * We can try to upgrade the mmap lock atomically, 5449 * in which case we can continue to use the vma 5450 * we already looked up. 5451 * 5452 * Otherwise we'll have to drop the mmap lock and 5453 * re-take it, and also look up the vma again, 5454 * re-checking it. 5455 */ 5456 if (!mmap_upgrade_trylock(mm)) { 5457 if (!upgrade_mmap_lock_carefully(mm, regs)) 5458 return NULL; 5459 5460 vma = find_vma(mm, addr); 5461 if (!vma) 5462 goto fail; 5463 if (vma->vm_start <= addr) 5464 goto success; 5465 if (!(vma->vm_flags & VM_GROWSDOWN)) 5466 goto fail; 5467 } 5468 5469 if (expand_stack_locked(vma, addr)) 5470 goto fail; 5471 5472 success: 5473 mmap_write_downgrade(mm); 5474 return vma; 5475 5476 fail: 5477 mmap_write_unlock(mm); 5478 return NULL; 5479 } 5480 #endif 5481 5482 #ifdef CONFIG_PER_VMA_LOCK 5483 /* 5484 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5485 * stable and not isolated. If the VMA is not found or is being modified the 5486 * function returns NULL. 5487 */ 5488 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5489 unsigned long address) 5490 { 5491 MA_STATE(mas, &mm->mm_mt, address, address); 5492 struct vm_area_struct *vma; 5493 5494 rcu_read_lock(); 5495 retry: 5496 vma = mas_walk(&mas); 5497 if (!vma) 5498 goto inval; 5499 5500 if (!vma_start_read(vma)) 5501 goto inval; 5502 5503 /* 5504 * find_mergeable_anon_vma uses adjacent vmas which are not locked. 5505 * This check must happen after vma_start_read(); otherwise, a 5506 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA 5507 * from its anon_vma. 5508 */ 5509 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) 5510 goto inval_end_read; 5511 5512 /* Check since vm_start/vm_end might change before we lock the VMA */ 5513 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 5514 goto inval_end_read; 5515 5516 /* Check if the VMA got isolated after we found it */ 5517 if (vma->detached) { 5518 vma_end_read(vma); 5519 count_vm_vma_lock_event(VMA_LOCK_MISS); 5520 /* The area was replaced with another one */ 5521 goto retry; 5522 } 5523 5524 rcu_read_unlock(); 5525 return vma; 5526 5527 inval_end_read: 5528 vma_end_read(vma); 5529 inval: 5530 rcu_read_unlock(); 5531 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5532 return NULL; 5533 } 5534 #endif /* CONFIG_PER_VMA_LOCK */ 5535 5536 #ifndef __PAGETABLE_P4D_FOLDED 5537 /* 5538 * Allocate p4d page table. 5539 * We've already handled the fast-path in-line. 5540 */ 5541 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5542 { 5543 p4d_t *new = p4d_alloc_one(mm, address); 5544 if (!new) 5545 return -ENOMEM; 5546 5547 spin_lock(&mm->page_table_lock); 5548 if (pgd_present(*pgd)) { /* Another has populated it */ 5549 p4d_free(mm, new); 5550 } else { 5551 smp_wmb(); /* See comment in pmd_install() */ 5552 pgd_populate(mm, pgd, new); 5553 } 5554 spin_unlock(&mm->page_table_lock); 5555 return 0; 5556 } 5557 #endif /* __PAGETABLE_P4D_FOLDED */ 5558 5559 #ifndef __PAGETABLE_PUD_FOLDED 5560 /* 5561 * Allocate page upper directory. 5562 * We've already handled the fast-path in-line. 5563 */ 5564 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5565 { 5566 pud_t *new = pud_alloc_one(mm, address); 5567 if (!new) 5568 return -ENOMEM; 5569 5570 spin_lock(&mm->page_table_lock); 5571 if (!p4d_present(*p4d)) { 5572 mm_inc_nr_puds(mm); 5573 smp_wmb(); /* See comment in pmd_install() */ 5574 p4d_populate(mm, p4d, new); 5575 } else /* Another has populated it */ 5576 pud_free(mm, new); 5577 spin_unlock(&mm->page_table_lock); 5578 return 0; 5579 } 5580 #endif /* __PAGETABLE_PUD_FOLDED */ 5581 5582 #ifndef __PAGETABLE_PMD_FOLDED 5583 /* 5584 * Allocate page middle directory. 5585 * We've already handled the fast-path in-line. 5586 */ 5587 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5588 { 5589 spinlock_t *ptl; 5590 pmd_t *new = pmd_alloc_one(mm, address); 5591 if (!new) 5592 return -ENOMEM; 5593 5594 ptl = pud_lock(mm, pud); 5595 if (!pud_present(*pud)) { 5596 mm_inc_nr_pmds(mm); 5597 smp_wmb(); /* See comment in pmd_install() */ 5598 pud_populate(mm, pud, new); 5599 } else { /* Another has populated it */ 5600 pmd_free(mm, new); 5601 } 5602 spin_unlock(ptl); 5603 return 0; 5604 } 5605 #endif /* __PAGETABLE_PMD_FOLDED */ 5606 5607 /** 5608 * follow_pte - look up PTE at a user virtual address 5609 * @mm: the mm_struct of the target address space 5610 * @address: user virtual address 5611 * @ptepp: location to store found PTE 5612 * @ptlp: location to store the lock for the PTE 5613 * 5614 * On a successful return, the pointer to the PTE is stored in @ptepp; 5615 * the corresponding lock is taken and its location is stored in @ptlp. 5616 * The contents of the PTE are only stable until @ptlp is released; 5617 * any further use, if any, must be protected against invalidation 5618 * with MMU notifiers. 5619 * 5620 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5621 * should be taken for read. 5622 * 5623 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5624 * it is not a good general-purpose API. 5625 * 5626 * Return: zero on success, -ve otherwise. 5627 */ 5628 int follow_pte(struct mm_struct *mm, unsigned long address, 5629 pte_t **ptepp, spinlock_t **ptlp) 5630 { 5631 pgd_t *pgd; 5632 p4d_t *p4d; 5633 pud_t *pud; 5634 pmd_t *pmd; 5635 pte_t *ptep; 5636 5637 pgd = pgd_offset(mm, address); 5638 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5639 goto out; 5640 5641 p4d = p4d_offset(pgd, address); 5642 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5643 goto out; 5644 5645 pud = pud_offset(p4d, address); 5646 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5647 goto out; 5648 5649 pmd = pmd_offset(pud, address); 5650 VM_BUG_ON(pmd_trans_huge(*pmd)); 5651 5652 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5653 if (!ptep) 5654 goto out; 5655 if (!pte_present(ptep_get(ptep))) 5656 goto unlock; 5657 *ptepp = ptep; 5658 return 0; 5659 unlock: 5660 pte_unmap_unlock(ptep, *ptlp); 5661 out: 5662 return -EINVAL; 5663 } 5664 EXPORT_SYMBOL_GPL(follow_pte); 5665 5666 /** 5667 * follow_pfn - look up PFN at a user virtual address 5668 * @vma: memory mapping 5669 * @address: user virtual address 5670 * @pfn: location to store found PFN 5671 * 5672 * Only IO mappings and raw PFN mappings are allowed. 5673 * 5674 * This function does not allow the caller to read the permissions 5675 * of the PTE. Do not use it. 5676 * 5677 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5678 */ 5679 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5680 unsigned long *pfn) 5681 { 5682 int ret = -EINVAL; 5683 spinlock_t *ptl; 5684 pte_t *ptep; 5685 5686 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5687 return ret; 5688 5689 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5690 if (ret) 5691 return ret; 5692 *pfn = pte_pfn(ptep_get(ptep)); 5693 pte_unmap_unlock(ptep, ptl); 5694 return 0; 5695 } 5696 EXPORT_SYMBOL(follow_pfn); 5697 5698 #ifdef CONFIG_HAVE_IOREMAP_PROT 5699 int follow_phys(struct vm_area_struct *vma, 5700 unsigned long address, unsigned int flags, 5701 unsigned long *prot, resource_size_t *phys) 5702 { 5703 int ret = -EINVAL; 5704 pte_t *ptep, pte; 5705 spinlock_t *ptl; 5706 5707 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5708 goto out; 5709 5710 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5711 goto out; 5712 pte = ptep_get(ptep); 5713 5714 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5715 goto unlock; 5716 5717 *prot = pgprot_val(pte_pgprot(pte)); 5718 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5719 5720 ret = 0; 5721 unlock: 5722 pte_unmap_unlock(ptep, ptl); 5723 out: 5724 return ret; 5725 } 5726 5727 /** 5728 * generic_access_phys - generic implementation for iomem mmap access 5729 * @vma: the vma to access 5730 * @addr: userspace address, not relative offset within @vma 5731 * @buf: buffer to read/write 5732 * @len: length of transfer 5733 * @write: set to FOLL_WRITE when writing, otherwise reading 5734 * 5735 * This is a generic implementation for &vm_operations_struct.access for an 5736 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5737 * not page based. 5738 */ 5739 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5740 void *buf, int len, int write) 5741 { 5742 resource_size_t phys_addr; 5743 unsigned long prot = 0; 5744 void __iomem *maddr; 5745 pte_t *ptep, pte; 5746 spinlock_t *ptl; 5747 int offset = offset_in_page(addr); 5748 int ret = -EINVAL; 5749 5750 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5751 return -EINVAL; 5752 5753 retry: 5754 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5755 return -EINVAL; 5756 pte = ptep_get(ptep); 5757 pte_unmap_unlock(ptep, ptl); 5758 5759 prot = pgprot_val(pte_pgprot(pte)); 5760 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5761 5762 if ((write & FOLL_WRITE) && !pte_write(pte)) 5763 return -EINVAL; 5764 5765 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5766 if (!maddr) 5767 return -ENOMEM; 5768 5769 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5770 goto out_unmap; 5771 5772 if (!pte_same(pte, ptep_get(ptep))) { 5773 pte_unmap_unlock(ptep, ptl); 5774 iounmap(maddr); 5775 5776 goto retry; 5777 } 5778 5779 if (write) 5780 memcpy_toio(maddr + offset, buf, len); 5781 else 5782 memcpy_fromio(buf, maddr + offset, len); 5783 ret = len; 5784 pte_unmap_unlock(ptep, ptl); 5785 out_unmap: 5786 iounmap(maddr); 5787 5788 return ret; 5789 } 5790 EXPORT_SYMBOL_GPL(generic_access_phys); 5791 #endif 5792 5793 /* 5794 * Access another process' address space as given in mm. 5795 */ 5796 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 5797 void *buf, int len, unsigned int gup_flags) 5798 { 5799 void *old_buf = buf; 5800 int write = gup_flags & FOLL_WRITE; 5801 5802 if (mmap_read_lock_killable(mm)) 5803 return 0; 5804 5805 /* Untag the address before looking up the VMA */ 5806 addr = untagged_addr_remote(mm, addr); 5807 5808 /* Avoid triggering the temporary warning in __get_user_pages */ 5809 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 5810 return 0; 5811 5812 /* ignore errors, just check how much was successfully transferred */ 5813 while (len) { 5814 int bytes, offset; 5815 void *maddr; 5816 struct vm_area_struct *vma = NULL; 5817 struct page *page = get_user_page_vma_remote(mm, addr, 5818 gup_flags, &vma); 5819 5820 if (IS_ERR(page)) { 5821 /* We might need to expand the stack to access it */ 5822 vma = vma_lookup(mm, addr); 5823 if (!vma) { 5824 vma = expand_stack(mm, addr); 5825 5826 /* mmap_lock was dropped on failure */ 5827 if (!vma) 5828 return buf - old_buf; 5829 5830 /* Try again if stack expansion worked */ 5831 continue; 5832 } 5833 5834 /* 5835 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5836 * we can access using slightly different code. 5837 */ 5838 bytes = 0; 5839 #ifdef CONFIG_HAVE_IOREMAP_PROT 5840 if (vma->vm_ops && vma->vm_ops->access) 5841 bytes = vma->vm_ops->access(vma, addr, buf, 5842 len, write); 5843 #endif 5844 if (bytes <= 0) 5845 break; 5846 } else { 5847 bytes = len; 5848 offset = addr & (PAGE_SIZE-1); 5849 if (bytes > PAGE_SIZE-offset) 5850 bytes = PAGE_SIZE-offset; 5851 5852 maddr = kmap(page); 5853 if (write) { 5854 copy_to_user_page(vma, page, addr, 5855 maddr + offset, buf, bytes); 5856 set_page_dirty_lock(page); 5857 } else { 5858 copy_from_user_page(vma, page, addr, 5859 buf, maddr + offset, bytes); 5860 } 5861 kunmap(page); 5862 put_page(page); 5863 } 5864 len -= bytes; 5865 buf += bytes; 5866 addr += bytes; 5867 } 5868 mmap_read_unlock(mm); 5869 5870 return buf - old_buf; 5871 } 5872 5873 /** 5874 * access_remote_vm - access another process' address space 5875 * @mm: the mm_struct of the target address space 5876 * @addr: start address to access 5877 * @buf: source or destination buffer 5878 * @len: number of bytes to transfer 5879 * @gup_flags: flags modifying lookup behaviour 5880 * 5881 * The caller must hold a reference on @mm. 5882 * 5883 * Return: number of bytes copied from source to destination. 5884 */ 5885 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5886 void *buf, int len, unsigned int gup_flags) 5887 { 5888 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5889 } 5890 5891 /* 5892 * Access another process' address space. 5893 * Source/target buffer must be kernel space, 5894 * Do not walk the page table directly, use get_user_pages 5895 */ 5896 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5897 void *buf, int len, unsigned int gup_flags) 5898 { 5899 struct mm_struct *mm; 5900 int ret; 5901 5902 mm = get_task_mm(tsk); 5903 if (!mm) 5904 return 0; 5905 5906 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5907 5908 mmput(mm); 5909 5910 return ret; 5911 } 5912 EXPORT_SYMBOL_GPL(access_process_vm); 5913 5914 /* 5915 * Print the name of a VMA. 5916 */ 5917 void print_vma_addr(char *prefix, unsigned long ip) 5918 { 5919 struct mm_struct *mm = current->mm; 5920 struct vm_area_struct *vma; 5921 5922 /* 5923 * we might be running from an atomic context so we cannot sleep 5924 */ 5925 if (!mmap_read_trylock(mm)) 5926 return; 5927 5928 vma = find_vma(mm, ip); 5929 if (vma && vma->vm_file) { 5930 struct file *f = vma->vm_file; 5931 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5932 if (buf) { 5933 char *p; 5934 5935 p = file_path(f, buf, PAGE_SIZE); 5936 if (IS_ERR(p)) 5937 p = "?"; 5938 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5939 vma->vm_start, 5940 vma->vm_end - vma->vm_start); 5941 free_page((unsigned long)buf); 5942 } 5943 } 5944 mmap_read_unlock(mm); 5945 } 5946 5947 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5948 void __might_fault(const char *file, int line) 5949 { 5950 if (pagefault_disabled()) 5951 return; 5952 __might_sleep(file, line); 5953 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5954 if (current->mm) 5955 might_lock_read(¤t->mm->mmap_lock); 5956 #endif 5957 } 5958 EXPORT_SYMBOL(__might_fault); 5959 #endif 5960 5961 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5962 /* 5963 * Process all subpages of the specified huge page with the specified 5964 * operation. The target subpage will be processed last to keep its 5965 * cache lines hot. 5966 */ 5967 static inline int process_huge_page( 5968 unsigned long addr_hint, unsigned int pages_per_huge_page, 5969 int (*process_subpage)(unsigned long addr, int idx, void *arg), 5970 void *arg) 5971 { 5972 int i, n, base, l, ret; 5973 unsigned long addr = addr_hint & 5974 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5975 5976 /* Process target subpage last to keep its cache lines hot */ 5977 might_sleep(); 5978 n = (addr_hint - addr) / PAGE_SIZE; 5979 if (2 * n <= pages_per_huge_page) { 5980 /* If target subpage in first half of huge page */ 5981 base = 0; 5982 l = n; 5983 /* Process subpages at the end of huge page */ 5984 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5985 cond_resched(); 5986 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5987 if (ret) 5988 return ret; 5989 } 5990 } else { 5991 /* If target subpage in second half of huge page */ 5992 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5993 l = pages_per_huge_page - n; 5994 /* Process subpages at the begin of huge page */ 5995 for (i = 0; i < base; i++) { 5996 cond_resched(); 5997 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5998 if (ret) 5999 return ret; 6000 } 6001 } 6002 /* 6003 * Process remaining subpages in left-right-left-right pattern 6004 * towards the target subpage 6005 */ 6006 for (i = 0; i < l; i++) { 6007 int left_idx = base + i; 6008 int right_idx = base + 2 * l - 1 - i; 6009 6010 cond_resched(); 6011 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 6012 if (ret) 6013 return ret; 6014 cond_resched(); 6015 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 6016 if (ret) 6017 return ret; 6018 } 6019 return 0; 6020 } 6021 6022 static void clear_gigantic_page(struct page *page, 6023 unsigned long addr, 6024 unsigned int pages_per_huge_page) 6025 { 6026 int i; 6027 struct page *p; 6028 6029 might_sleep(); 6030 for (i = 0; i < pages_per_huge_page; i++) { 6031 p = nth_page(page, i); 6032 cond_resched(); 6033 clear_user_highpage(p, addr + i * PAGE_SIZE); 6034 } 6035 } 6036 6037 static int clear_subpage(unsigned long addr, int idx, void *arg) 6038 { 6039 struct page *page = arg; 6040 6041 clear_user_highpage(page + idx, addr); 6042 return 0; 6043 } 6044 6045 void clear_huge_page(struct page *page, 6046 unsigned long addr_hint, unsigned int pages_per_huge_page) 6047 { 6048 unsigned long addr = addr_hint & 6049 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6050 6051 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 6052 clear_gigantic_page(page, addr, pages_per_huge_page); 6053 return; 6054 } 6055 6056 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 6057 } 6058 6059 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6060 unsigned long addr, 6061 struct vm_area_struct *vma, 6062 unsigned int pages_per_huge_page) 6063 { 6064 int i; 6065 struct page *dst_page; 6066 struct page *src_page; 6067 6068 for (i = 0; i < pages_per_huge_page; i++) { 6069 dst_page = folio_page(dst, i); 6070 src_page = folio_page(src, i); 6071 6072 cond_resched(); 6073 if (copy_mc_user_highpage(dst_page, src_page, 6074 addr + i*PAGE_SIZE, vma)) { 6075 memory_failure_queue(page_to_pfn(src_page), 0); 6076 return -EHWPOISON; 6077 } 6078 } 6079 return 0; 6080 } 6081 6082 struct copy_subpage_arg { 6083 struct page *dst; 6084 struct page *src; 6085 struct vm_area_struct *vma; 6086 }; 6087 6088 static int copy_subpage(unsigned long addr, int idx, void *arg) 6089 { 6090 struct copy_subpage_arg *copy_arg = arg; 6091 6092 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 6093 addr, copy_arg->vma)) { 6094 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0); 6095 return -EHWPOISON; 6096 } 6097 return 0; 6098 } 6099 6100 int copy_user_large_folio(struct folio *dst, struct folio *src, 6101 unsigned long addr_hint, struct vm_area_struct *vma) 6102 { 6103 unsigned int pages_per_huge_page = folio_nr_pages(dst); 6104 unsigned long addr = addr_hint & 6105 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6106 struct copy_subpage_arg arg = { 6107 .dst = &dst->page, 6108 .src = &src->page, 6109 .vma = vma, 6110 }; 6111 6112 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 6113 return copy_user_gigantic_page(dst, src, addr, vma, 6114 pages_per_huge_page); 6115 6116 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 6117 } 6118 6119 long copy_folio_from_user(struct folio *dst_folio, 6120 const void __user *usr_src, 6121 bool allow_pagefault) 6122 { 6123 void *kaddr; 6124 unsigned long i, rc = 0; 6125 unsigned int nr_pages = folio_nr_pages(dst_folio); 6126 unsigned long ret_val = nr_pages * PAGE_SIZE; 6127 struct page *subpage; 6128 6129 for (i = 0; i < nr_pages; i++) { 6130 subpage = folio_page(dst_folio, i); 6131 kaddr = kmap_local_page(subpage); 6132 if (!allow_pagefault) 6133 pagefault_disable(); 6134 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6135 if (!allow_pagefault) 6136 pagefault_enable(); 6137 kunmap_local(kaddr); 6138 6139 ret_val -= (PAGE_SIZE - rc); 6140 if (rc) 6141 break; 6142 6143 flush_dcache_page(subpage); 6144 6145 cond_resched(); 6146 } 6147 return ret_val; 6148 } 6149 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6150 6151 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6152 6153 static struct kmem_cache *page_ptl_cachep; 6154 6155 void __init ptlock_cache_init(void) 6156 { 6157 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6158 SLAB_PANIC, NULL); 6159 } 6160 6161 bool ptlock_alloc(struct ptdesc *ptdesc) 6162 { 6163 spinlock_t *ptl; 6164 6165 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6166 if (!ptl) 6167 return false; 6168 ptdesc->ptl = ptl; 6169 return true; 6170 } 6171 6172 void ptlock_free(struct ptdesc *ptdesc) 6173 { 6174 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 6175 } 6176 #endif 6177