xref: /linux/mm/memory.c (revision 1623bc27a85a93e82194c8d077eccc464efa67db)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
79 
80 #include <trace/events/kmem.h>
81 
82 #include <asm/io.h>
83 #include <asm/mmu_context.h>
84 #include <asm/pgalloc.h>
85 #include <linux/uaccess.h>
86 #include <asm/tlb.h>
87 #include <asm/tlbflush.h>
88 
89 #include "pgalloc-track.h"
90 #include "internal.h"
91 #include "swap.h"
92 
93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95 #endif
96 
97 #ifndef CONFIG_NUMA
98 unsigned long max_mapnr;
99 EXPORT_SYMBOL(max_mapnr);
100 
101 struct page *mem_map;
102 EXPORT_SYMBOL(mem_map);
103 #endif
104 
105 static vm_fault_t do_fault(struct vm_fault *vmf);
106 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
107 static bool vmf_pte_changed(struct vm_fault *vmf);
108 
109 /*
110  * Return true if the original pte was a uffd-wp pte marker (so the pte was
111  * wr-protected).
112  */
113 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
114 {
115 	if (!userfaultfd_wp(vmf->vma))
116 		return false;
117 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 		return false;
119 
120 	return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122 
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.
127  */
128 void *high_memory;
129 EXPORT_SYMBOL(high_memory);
130 
131 /*
132  * Randomize the address space (stacks, mmaps, brk, etc.).
133  *
134  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
135  *   as ancient (libc5 based) binaries can segfault. )
136  */
137 int randomize_va_space __read_mostly =
138 #ifdef CONFIG_COMPAT_BRK
139 					1;
140 #else
141 					2;
142 #endif
143 
144 #ifndef arch_wants_old_prefaulted_pte
145 static inline bool arch_wants_old_prefaulted_pte(void)
146 {
147 	/*
148 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
149 	 * some architectures, even if it's performed in hardware. By
150 	 * default, "false" means prefaulted entries will be 'young'.
151 	 */
152 	return false;
153 }
154 #endif
155 
156 static int __init disable_randmaps(char *s)
157 {
158 	randomize_va_space = 0;
159 	return 1;
160 }
161 __setup("norandmaps", disable_randmaps);
162 
163 unsigned long zero_pfn __read_mostly;
164 EXPORT_SYMBOL(zero_pfn);
165 
166 unsigned long highest_memmap_pfn __read_mostly;
167 
168 /*
169  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
170  */
171 static int __init init_zero_pfn(void)
172 {
173 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
174 	return 0;
175 }
176 early_initcall(init_zero_pfn);
177 
178 void mm_trace_rss_stat(struct mm_struct *mm, int member)
179 {
180 	trace_rss_stat(mm, member);
181 }
182 
183 /*
184  * Note: this doesn't free the actual pages themselves. That
185  * has been handled earlier when unmapping all the memory regions.
186  */
187 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
188 			   unsigned long addr)
189 {
190 	pgtable_t token = pmd_pgtable(*pmd);
191 	pmd_clear(pmd);
192 	pte_free_tlb(tlb, token, addr);
193 	mm_dec_nr_ptes(tlb->mm);
194 }
195 
196 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
197 				unsigned long addr, unsigned long end,
198 				unsigned long floor, unsigned long ceiling)
199 {
200 	pmd_t *pmd;
201 	unsigned long next;
202 	unsigned long start;
203 
204 	start = addr;
205 	pmd = pmd_offset(pud, addr);
206 	do {
207 		next = pmd_addr_end(addr, end);
208 		if (pmd_none_or_clear_bad(pmd))
209 			continue;
210 		free_pte_range(tlb, pmd, addr);
211 	} while (pmd++, addr = next, addr != end);
212 
213 	start &= PUD_MASK;
214 	if (start < floor)
215 		return;
216 	if (ceiling) {
217 		ceiling &= PUD_MASK;
218 		if (!ceiling)
219 			return;
220 	}
221 	if (end - 1 > ceiling - 1)
222 		return;
223 
224 	pmd = pmd_offset(pud, start);
225 	pud_clear(pud);
226 	pmd_free_tlb(tlb, pmd, start);
227 	mm_dec_nr_pmds(tlb->mm);
228 }
229 
230 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
231 				unsigned long addr, unsigned long end,
232 				unsigned long floor, unsigned long ceiling)
233 {
234 	pud_t *pud;
235 	unsigned long next;
236 	unsigned long start;
237 
238 	start = addr;
239 	pud = pud_offset(p4d, addr);
240 	do {
241 		next = pud_addr_end(addr, end);
242 		if (pud_none_or_clear_bad(pud))
243 			continue;
244 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
245 	} while (pud++, addr = next, addr != end);
246 
247 	start &= P4D_MASK;
248 	if (start < floor)
249 		return;
250 	if (ceiling) {
251 		ceiling &= P4D_MASK;
252 		if (!ceiling)
253 			return;
254 	}
255 	if (end - 1 > ceiling - 1)
256 		return;
257 
258 	pud = pud_offset(p4d, start);
259 	p4d_clear(p4d);
260 	pud_free_tlb(tlb, pud, start);
261 	mm_dec_nr_puds(tlb->mm);
262 }
263 
264 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
265 				unsigned long addr, unsigned long end,
266 				unsigned long floor, unsigned long ceiling)
267 {
268 	p4d_t *p4d;
269 	unsigned long next;
270 	unsigned long start;
271 
272 	start = addr;
273 	p4d = p4d_offset(pgd, addr);
274 	do {
275 		next = p4d_addr_end(addr, end);
276 		if (p4d_none_or_clear_bad(p4d))
277 			continue;
278 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
279 	} while (p4d++, addr = next, addr != end);
280 
281 	start &= PGDIR_MASK;
282 	if (start < floor)
283 		return;
284 	if (ceiling) {
285 		ceiling &= PGDIR_MASK;
286 		if (!ceiling)
287 			return;
288 	}
289 	if (end - 1 > ceiling - 1)
290 		return;
291 
292 	p4d = p4d_offset(pgd, start);
293 	pgd_clear(pgd);
294 	p4d_free_tlb(tlb, p4d, start);
295 }
296 
297 /*
298  * This function frees user-level page tables of a process.
299  */
300 void free_pgd_range(struct mmu_gather *tlb,
301 			unsigned long addr, unsigned long end,
302 			unsigned long floor, unsigned long ceiling)
303 {
304 	pgd_t *pgd;
305 	unsigned long next;
306 
307 	/*
308 	 * The next few lines have given us lots of grief...
309 	 *
310 	 * Why are we testing PMD* at this top level?  Because often
311 	 * there will be no work to do at all, and we'd prefer not to
312 	 * go all the way down to the bottom just to discover that.
313 	 *
314 	 * Why all these "- 1"s?  Because 0 represents both the bottom
315 	 * of the address space and the top of it (using -1 for the
316 	 * top wouldn't help much: the masks would do the wrong thing).
317 	 * The rule is that addr 0 and floor 0 refer to the bottom of
318 	 * the address space, but end 0 and ceiling 0 refer to the top
319 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
320 	 * that end 0 case should be mythical).
321 	 *
322 	 * Wherever addr is brought up or ceiling brought down, we must
323 	 * be careful to reject "the opposite 0" before it confuses the
324 	 * subsequent tests.  But what about where end is brought down
325 	 * by PMD_SIZE below? no, end can't go down to 0 there.
326 	 *
327 	 * Whereas we round start (addr) and ceiling down, by different
328 	 * masks at different levels, in order to test whether a table
329 	 * now has no other vmas using it, so can be freed, we don't
330 	 * bother to round floor or end up - the tests don't need that.
331 	 */
332 
333 	addr &= PMD_MASK;
334 	if (addr < floor) {
335 		addr += PMD_SIZE;
336 		if (!addr)
337 			return;
338 	}
339 	if (ceiling) {
340 		ceiling &= PMD_MASK;
341 		if (!ceiling)
342 			return;
343 	}
344 	if (end - 1 > ceiling - 1)
345 		end -= PMD_SIZE;
346 	if (addr > end - 1)
347 		return;
348 	/*
349 	 * We add page table cache pages with PAGE_SIZE,
350 	 * (see pte_free_tlb()), flush the tlb if we need
351 	 */
352 	tlb_change_page_size(tlb, PAGE_SIZE);
353 	pgd = pgd_offset(tlb->mm, addr);
354 	do {
355 		next = pgd_addr_end(addr, end);
356 		if (pgd_none_or_clear_bad(pgd))
357 			continue;
358 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
359 	} while (pgd++, addr = next, addr != end);
360 }
361 
362 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
363 		   struct vm_area_struct *vma, unsigned long floor,
364 		   unsigned long ceiling, bool mm_wr_locked)
365 {
366 	struct unlink_vma_file_batch vb;
367 
368 	do {
369 		unsigned long addr = vma->vm_start;
370 		struct vm_area_struct *next;
371 
372 		/*
373 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 		 * be 0.  This will underflow and is okay.
375 		 */
376 		next = mas_find(mas, ceiling - 1);
377 		if (unlikely(xa_is_zero(next)))
378 			next = NULL;
379 
380 		/*
381 		 * Hide vma from rmap and truncate_pagecache before freeing
382 		 * pgtables
383 		 */
384 		if (mm_wr_locked)
385 			vma_start_write(vma);
386 		unlink_anon_vmas(vma);
387 
388 		if (is_vm_hugetlb_page(vma)) {
389 			unlink_file_vma(vma);
390 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 				floor, next ? next->vm_start : ceiling);
392 		} else {
393 			unlink_file_vma_batch_init(&vb);
394 			unlink_file_vma_batch_add(&vb, vma);
395 
396 			/*
397 			 * Optimization: gather nearby vmas into one call down
398 			 */
399 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
400 			       && !is_vm_hugetlb_page(next)) {
401 				vma = next;
402 				next = mas_find(mas, ceiling - 1);
403 				if (unlikely(xa_is_zero(next)))
404 					next = NULL;
405 				if (mm_wr_locked)
406 					vma_start_write(vma);
407 				unlink_anon_vmas(vma);
408 				unlink_file_vma_batch_add(&vb, vma);
409 			}
410 			unlink_file_vma_batch_final(&vb);
411 			free_pgd_range(tlb, addr, vma->vm_end,
412 				floor, next ? next->vm_start : ceiling);
413 		}
414 		vma = next;
415 	} while (vma);
416 }
417 
418 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
419 {
420 	spinlock_t *ptl = pmd_lock(mm, pmd);
421 
422 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
423 		mm_inc_nr_ptes(mm);
424 		/*
425 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
426 		 * visible before the pte is made visible to other CPUs by being
427 		 * put into page tables.
428 		 *
429 		 * The other side of the story is the pointer chasing in the page
430 		 * table walking code (when walking the page table without locking;
431 		 * ie. most of the time). Fortunately, these data accesses consist
432 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
433 		 * being the notable exception) will already guarantee loads are
434 		 * seen in-order. See the alpha page table accessors for the
435 		 * smp_rmb() barriers in page table walking code.
436 		 */
437 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438 		pmd_populate(mm, pmd, *pte);
439 		*pte = NULL;
440 	}
441 	spin_unlock(ptl);
442 }
443 
444 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
445 {
446 	pgtable_t new = pte_alloc_one(mm);
447 	if (!new)
448 		return -ENOMEM;
449 
450 	pmd_install(mm, pmd, &new);
451 	if (new)
452 		pte_free(mm, new);
453 	return 0;
454 }
455 
456 int __pte_alloc_kernel(pmd_t *pmd)
457 {
458 	pte_t *new = pte_alloc_one_kernel(&init_mm);
459 	if (!new)
460 		return -ENOMEM;
461 
462 	spin_lock(&init_mm.page_table_lock);
463 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
464 		smp_wmb(); /* See comment in pmd_install() */
465 		pmd_populate_kernel(&init_mm, pmd, new);
466 		new = NULL;
467 	}
468 	spin_unlock(&init_mm.page_table_lock);
469 	if (new)
470 		pte_free_kernel(&init_mm, new);
471 	return 0;
472 }
473 
474 static inline void init_rss_vec(int *rss)
475 {
476 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
477 }
478 
479 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
480 {
481 	int i;
482 
483 	for (i = 0; i < NR_MM_COUNTERS; i++)
484 		if (rss[i])
485 			add_mm_counter(mm, i, rss[i]);
486 }
487 
488 /*
489  * This function is called to print an error when a bad pte
490  * is found. For example, we might have a PFN-mapped pte in
491  * a region that doesn't allow it.
492  *
493  * The calling function must still handle the error.
494  */
495 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
496 			  pte_t pte, struct page *page)
497 {
498 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
499 	p4d_t *p4d = p4d_offset(pgd, addr);
500 	pud_t *pud = pud_offset(p4d, addr);
501 	pmd_t *pmd = pmd_offset(pud, addr);
502 	struct address_space *mapping;
503 	pgoff_t index;
504 	static unsigned long resume;
505 	static unsigned long nr_shown;
506 	static unsigned long nr_unshown;
507 
508 	/*
509 	 * Allow a burst of 60 reports, then keep quiet for that minute;
510 	 * or allow a steady drip of one report per second.
511 	 */
512 	if (nr_shown == 60) {
513 		if (time_before(jiffies, resume)) {
514 			nr_unshown++;
515 			return;
516 		}
517 		if (nr_unshown) {
518 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
519 				 nr_unshown);
520 			nr_unshown = 0;
521 		}
522 		nr_shown = 0;
523 	}
524 	if (nr_shown++ == 0)
525 		resume = jiffies + 60 * HZ;
526 
527 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
528 	index = linear_page_index(vma, addr);
529 
530 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
531 		 current->comm,
532 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
533 	if (page)
534 		dump_page(page, "bad pte");
535 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
536 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
537 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
538 		 vma->vm_file,
539 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
540 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
541 		 mapping ? mapping->a_ops->read_folio : NULL);
542 	dump_stack();
543 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
544 }
545 
546 /*
547  * vm_normal_page -- This function gets the "struct page" associated with a pte.
548  *
549  * "Special" mappings do not wish to be associated with a "struct page" (either
550  * it doesn't exist, or it exists but they don't want to touch it). In this
551  * case, NULL is returned here. "Normal" mappings do have a struct page.
552  *
553  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
554  * pte bit, in which case this function is trivial. Secondly, an architecture
555  * may not have a spare pte bit, which requires a more complicated scheme,
556  * described below.
557  *
558  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
559  * special mapping (even if there are underlying and valid "struct pages").
560  * COWed pages of a VM_PFNMAP are always normal.
561  *
562  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
563  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
564  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
565  * mapping will always honor the rule
566  *
567  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
568  *
569  * And for normal mappings this is false.
570  *
571  * This restricts such mappings to be a linear translation from virtual address
572  * to pfn. To get around this restriction, we allow arbitrary mappings so long
573  * as the vma is not a COW mapping; in that case, we know that all ptes are
574  * special (because none can have been COWed).
575  *
576  *
577  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
578  *
579  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
580  * page" backing, however the difference is that _all_ pages with a struct
581  * page (that is, those where pfn_valid is true) are refcounted and considered
582  * normal pages by the VM. The only exception are zeropages, which are
583  * *never* refcounted.
584  *
585  * The disadvantage is that pages are refcounted (which can be slower and
586  * simply not an option for some PFNMAP users). The advantage is that we
587  * don't have to follow the strict linearity rule of PFNMAP mappings in
588  * order to support COWable mappings.
589  *
590  */
591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
592 			    pte_t pte)
593 {
594 	unsigned long pfn = pte_pfn(pte);
595 
596 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
597 		if (likely(!pte_special(pte)))
598 			goto check_pfn;
599 		if (vma->vm_ops && vma->vm_ops->find_special_page)
600 			return vma->vm_ops->find_special_page(vma, addr);
601 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
602 			return NULL;
603 		if (is_zero_pfn(pfn))
604 			return NULL;
605 		if (pte_devmap(pte))
606 		/*
607 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
608 		 * and will have refcounts incremented on their struct pages
609 		 * when they are inserted into PTEs, thus they are safe to
610 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
611 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
612 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
613 		 */
614 			return NULL;
615 
616 		print_bad_pte(vma, addr, pte, NULL);
617 		return NULL;
618 	}
619 
620 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
621 
622 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
623 		if (vma->vm_flags & VM_MIXEDMAP) {
624 			if (!pfn_valid(pfn))
625 				return NULL;
626 			if (is_zero_pfn(pfn))
627 				return NULL;
628 			goto out;
629 		} else {
630 			unsigned long off;
631 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
632 			if (pfn == vma->vm_pgoff + off)
633 				return NULL;
634 			if (!is_cow_mapping(vma->vm_flags))
635 				return NULL;
636 		}
637 	}
638 
639 	if (is_zero_pfn(pfn))
640 		return NULL;
641 
642 check_pfn:
643 	if (unlikely(pfn > highest_memmap_pfn)) {
644 		print_bad_pte(vma, addr, pte, NULL);
645 		return NULL;
646 	}
647 
648 	/*
649 	 * NOTE! We still have PageReserved() pages in the page tables.
650 	 * eg. VDSO mappings can cause them to exist.
651 	 */
652 out:
653 	VM_WARN_ON_ONCE(is_zero_pfn(pfn));
654 	return pfn_to_page(pfn);
655 }
656 
657 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
658 			    pte_t pte)
659 {
660 	struct page *page = vm_normal_page(vma, addr, pte);
661 
662 	if (page)
663 		return page_folio(page);
664 	return NULL;
665 }
666 
667 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
668 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
669 				pmd_t pmd)
670 {
671 	unsigned long pfn = pmd_pfn(pmd);
672 
673 	/* Currently it's only used for huge pfnmaps */
674 	if (unlikely(pmd_special(pmd)))
675 		return NULL;
676 
677 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
678 		if (vma->vm_flags & VM_MIXEDMAP) {
679 			if (!pfn_valid(pfn))
680 				return NULL;
681 			goto out;
682 		} else {
683 			unsigned long off;
684 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
685 			if (pfn == vma->vm_pgoff + off)
686 				return NULL;
687 			if (!is_cow_mapping(vma->vm_flags))
688 				return NULL;
689 		}
690 	}
691 
692 	if (pmd_devmap(pmd))
693 		return NULL;
694 	if (is_huge_zero_pmd(pmd))
695 		return NULL;
696 	if (unlikely(pfn > highest_memmap_pfn))
697 		return NULL;
698 
699 	/*
700 	 * NOTE! We still have PageReserved() pages in the page tables.
701 	 * eg. VDSO mappings can cause them to exist.
702 	 */
703 out:
704 	return pfn_to_page(pfn);
705 }
706 
707 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
708 				  unsigned long addr, pmd_t pmd)
709 {
710 	struct page *page = vm_normal_page_pmd(vma, addr, pmd);
711 
712 	if (page)
713 		return page_folio(page);
714 	return NULL;
715 }
716 #endif
717 
718 static void restore_exclusive_pte(struct vm_area_struct *vma,
719 				  struct page *page, unsigned long address,
720 				  pte_t *ptep)
721 {
722 	struct folio *folio = page_folio(page);
723 	pte_t orig_pte;
724 	pte_t pte;
725 	swp_entry_t entry;
726 
727 	orig_pte = ptep_get(ptep);
728 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
729 	if (pte_swp_soft_dirty(orig_pte))
730 		pte = pte_mksoft_dirty(pte);
731 
732 	entry = pte_to_swp_entry(orig_pte);
733 	if (pte_swp_uffd_wp(orig_pte))
734 		pte = pte_mkuffd_wp(pte);
735 	else if (is_writable_device_exclusive_entry(entry))
736 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
737 
738 	VM_BUG_ON_FOLIO(pte_write(pte) && (!folio_test_anon(folio) &&
739 					   PageAnonExclusive(page)), folio);
740 
741 	/*
742 	 * No need to take a page reference as one was already
743 	 * created when the swap entry was made.
744 	 */
745 	if (folio_test_anon(folio))
746 		folio_add_anon_rmap_pte(folio, page, vma, address, RMAP_NONE);
747 	else
748 		/*
749 		 * Currently device exclusive access only supports anonymous
750 		 * memory so the entry shouldn't point to a filebacked page.
751 		 */
752 		WARN_ON_ONCE(1);
753 
754 	set_pte_at(vma->vm_mm, address, ptep, pte);
755 
756 	/*
757 	 * No need to invalidate - it was non-present before. However
758 	 * secondary CPUs may have mappings that need invalidating.
759 	 */
760 	update_mmu_cache(vma, address, ptep);
761 }
762 
763 /*
764  * Tries to restore an exclusive pte if the page lock can be acquired without
765  * sleeping.
766  */
767 static int
768 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
769 			unsigned long addr)
770 {
771 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
772 	struct page *page = pfn_swap_entry_to_page(entry);
773 
774 	if (trylock_page(page)) {
775 		restore_exclusive_pte(vma, page, addr, src_pte);
776 		unlock_page(page);
777 		return 0;
778 	}
779 
780 	return -EBUSY;
781 }
782 
783 /*
784  * copy one vm_area from one task to the other. Assumes the page tables
785  * already present in the new task to be cleared in the whole range
786  * covered by this vma.
787  */
788 
789 static unsigned long
790 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
791 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
792 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
793 {
794 	unsigned long vm_flags = dst_vma->vm_flags;
795 	pte_t orig_pte = ptep_get(src_pte);
796 	pte_t pte = orig_pte;
797 	struct folio *folio;
798 	struct page *page;
799 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
800 
801 	if (likely(!non_swap_entry(entry))) {
802 		if (swap_duplicate(entry) < 0)
803 			return -EIO;
804 
805 		/* make sure dst_mm is on swapoff's mmlist. */
806 		if (unlikely(list_empty(&dst_mm->mmlist))) {
807 			spin_lock(&mmlist_lock);
808 			if (list_empty(&dst_mm->mmlist))
809 				list_add(&dst_mm->mmlist,
810 						&src_mm->mmlist);
811 			spin_unlock(&mmlist_lock);
812 		}
813 		/* Mark the swap entry as shared. */
814 		if (pte_swp_exclusive(orig_pte)) {
815 			pte = pte_swp_clear_exclusive(orig_pte);
816 			set_pte_at(src_mm, addr, src_pte, pte);
817 		}
818 		rss[MM_SWAPENTS]++;
819 	} else if (is_migration_entry(entry)) {
820 		folio = pfn_swap_entry_folio(entry);
821 
822 		rss[mm_counter(folio)]++;
823 
824 		if (!is_readable_migration_entry(entry) &&
825 				is_cow_mapping(vm_flags)) {
826 			/*
827 			 * COW mappings require pages in both parent and child
828 			 * to be set to read. A previously exclusive entry is
829 			 * now shared.
830 			 */
831 			entry = make_readable_migration_entry(
832 							swp_offset(entry));
833 			pte = swp_entry_to_pte(entry);
834 			if (pte_swp_soft_dirty(orig_pte))
835 				pte = pte_swp_mksoft_dirty(pte);
836 			if (pte_swp_uffd_wp(orig_pte))
837 				pte = pte_swp_mkuffd_wp(pte);
838 			set_pte_at(src_mm, addr, src_pte, pte);
839 		}
840 	} else if (is_device_private_entry(entry)) {
841 		page = pfn_swap_entry_to_page(entry);
842 		folio = page_folio(page);
843 
844 		/*
845 		 * Update rss count even for unaddressable pages, as
846 		 * they should treated just like normal pages in this
847 		 * respect.
848 		 *
849 		 * We will likely want to have some new rss counters
850 		 * for unaddressable pages, at some point. But for now
851 		 * keep things as they are.
852 		 */
853 		folio_get(folio);
854 		rss[mm_counter(folio)]++;
855 		/* Cannot fail as these pages cannot get pinned. */
856 		folio_try_dup_anon_rmap_pte(folio, page, src_vma);
857 
858 		/*
859 		 * We do not preserve soft-dirty information, because so
860 		 * far, checkpoint/restore is the only feature that
861 		 * requires that. And checkpoint/restore does not work
862 		 * when a device driver is involved (you cannot easily
863 		 * save and restore device driver state).
864 		 */
865 		if (is_writable_device_private_entry(entry) &&
866 		    is_cow_mapping(vm_flags)) {
867 			entry = make_readable_device_private_entry(
868 							swp_offset(entry));
869 			pte = swp_entry_to_pte(entry);
870 			if (pte_swp_uffd_wp(orig_pte))
871 				pte = pte_swp_mkuffd_wp(pte);
872 			set_pte_at(src_mm, addr, src_pte, pte);
873 		}
874 	} else if (is_device_exclusive_entry(entry)) {
875 		/*
876 		 * Make device exclusive entries present by restoring the
877 		 * original entry then copying as for a present pte. Device
878 		 * exclusive entries currently only support private writable
879 		 * (ie. COW) mappings.
880 		 */
881 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
882 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
883 			return -EBUSY;
884 		return -ENOENT;
885 	} else if (is_pte_marker_entry(entry)) {
886 		pte_marker marker = copy_pte_marker(entry, dst_vma);
887 
888 		if (marker)
889 			set_pte_at(dst_mm, addr, dst_pte,
890 				   make_pte_marker(marker));
891 		return 0;
892 	}
893 	if (!userfaultfd_wp(dst_vma))
894 		pte = pte_swp_clear_uffd_wp(pte);
895 	set_pte_at(dst_mm, addr, dst_pte, pte);
896 	return 0;
897 }
898 
899 /*
900  * Copy a present and normal page.
901  *
902  * NOTE! The usual case is that this isn't required;
903  * instead, the caller can just increase the page refcount
904  * and re-use the pte the traditional way.
905  *
906  * And if we need a pre-allocated page but don't yet have
907  * one, return a negative error to let the preallocation
908  * code know so that it can do so outside the page table
909  * lock.
910  */
911 static inline int
912 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
913 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
914 		  struct folio **prealloc, struct page *page)
915 {
916 	struct folio *new_folio;
917 	pte_t pte;
918 
919 	new_folio = *prealloc;
920 	if (!new_folio)
921 		return -EAGAIN;
922 
923 	/*
924 	 * We have a prealloc page, all good!  Take it
925 	 * over and copy the page & arm it.
926 	 */
927 
928 	if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
929 		return -EHWPOISON;
930 
931 	*prealloc = NULL;
932 	__folio_mark_uptodate(new_folio);
933 	folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
934 	folio_add_lru_vma(new_folio, dst_vma);
935 	rss[MM_ANONPAGES]++;
936 
937 	/* All done, just insert the new page copy in the child */
938 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
939 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
940 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
941 		/* Uffd-wp needs to be delivered to dest pte as well */
942 		pte = pte_mkuffd_wp(pte);
943 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
944 	return 0;
945 }
946 
947 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
948 		struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
949 		pte_t pte, unsigned long addr, int nr)
950 {
951 	struct mm_struct *src_mm = src_vma->vm_mm;
952 
953 	/* If it's a COW mapping, write protect it both processes. */
954 	if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
955 		wrprotect_ptes(src_mm, addr, src_pte, nr);
956 		pte = pte_wrprotect(pte);
957 	}
958 
959 	/* If it's a shared mapping, mark it clean in the child. */
960 	if (src_vma->vm_flags & VM_SHARED)
961 		pte = pte_mkclean(pte);
962 	pte = pte_mkold(pte);
963 
964 	if (!userfaultfd_wp(dst_vma))
965 		pte = pte_clear_uffd_wp(pte);
966 
967 	set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
968 }
969 
970 /*
971  * Copy one present PTE, trying to batch-process subsequent PTEs that map
972  * consecutive pages of the same folio by copying them as well.
973  *
974  * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
975  * Otherwise, returns the number of copied PTEs (at least 1).
976  */
977 static inline int
978 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
979 		 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
980 		 int max_nr, int *rss, struct folio **prealloc)
981 {
982 	struct page *page;
983 	struct folio *folio;
984 	bool any_writable;
985 	fpb_t flags = 0;
986 	int err, nr;
987 
988 	page = vm_normal_page(src_vma, addr, pte);
989 	if (unlikely(!page))
990 		goto copy_pte;
991 
992 	folio = page_folio(page);
993 
994 	/*
995 	 * If we likely have to copy, just don't bother with batching. Make
996 	 * sure that the common "small folio" case is as fast as possible
997 	 * by keeping the batching logic separate.
998 	 */
999 	if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1000 		if (src_vma->vm_flags & VM_SHARED)
1001 			flags |= FPB_IGNORE_DIRTY;
1002 		if (!vma_soft_dirty_enabled(src_vma))
1003 			flags |= FPB_IGNORE_SOFT_DIRTY;
1004 
1005 		nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags,
1006 				     &any_writable, NULL, NULL);
1007 		folio_ref_add(folio, nr);
1008 		if (folio_test_anon(folio)) {
1009 			if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1010 								  nr, src_vma))) {
1011 				folio_ref_sub(folio, nr);
1012 				return -EAGAIN;
1013 			}
1014 			rss[MM_ANONPAGES] += nr;
1015 			VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1016 		} else {
1017 			folio_dup_file_rmap_ptes(folio, page, nr);
1018 			rss[mm_counter_file(folio)] += nr;
1019 		}
1020 		if (any_writable)
1021 			pte = pte_mkwrite(pte, src_vma);
1022 		__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1023 				    addr, nr);
1024 		return nr;
1025 	}
1026 
1027 	folio_get(folio);
1028 	if (folio_test_anon(folio)) {
1029 		/*
1030 		 * If this page may have been pinned by the parent process,
1031 		 * copy the page immediately for the child so that we'll always
1032 		 * guarantee the pinned page won't be randomly replaced in the
1033 		 * future.
1034 		 */
1035 		if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, src_vma))) {
1036 			/* Page may be pinned, we have to copy. */
1037 			folio_put(folio);
1038 			err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1039 						addr, rss, prealloc, page);
1040 			return err ? err : 1;
1041 		}
1042 		rss[MM_ANONPAGES]++;
1043 		VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1044 	} else {
1045 		folio_dup_file_rmap_pte(folio, page);
1046 		rss[mm_counter_file(folio)]++;
1047 	}
1048 
1049 copy_pte:
1050 	__copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1051 	return 1;
1052 }
1053 
1054 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1055 		struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1056 {
1057 	struct folio *new_folio;
1058 
1059 	if (need_zero)
1060 		new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1061 	else
1062 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1063 
1064 	if (!new_folio)
1065 		return NULL;
1066 
1067 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1068 		folio_put(new_folio);
1069 		return NULL;
1070 	}
1071 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
1072 
1073 	return new_folio;
1074 }
1075 
1076 static int
1077 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1078 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1079 	       unsigned long end)
1080 {
1081 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1082 	struct mm_struct *src_mm = src_vma->vm_mm;
1083 	pte_t *orig_src_pte, *orig_dst_pte;
1084 	pte_t *src_pte, *dst_pte;
1085 	pmd_t dummy_pmdval;
1086 	pte_t ptent;
1087 	spinlock_t *src_ptl, *dst_ptl;
1088 	int progress, max_nr, ret = 0;
1089 	int rss[NR_MM_COUNTERS];
1090 	swp_entry_t entry = (swp_entry_t){0};
1091 	struct folio *prealloc = NULL;
1092 	int nr;
1093 
1094 again:
1095 	progress = 0;
1096 	init_rss_vec(rss);
1097 
1098 	/*
1099 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1100 	 * error handling here, assume that exclusive mmap_lock on dst and src
1101 	 * protects anon from unexpected THP transitions; with shmem and file
1102 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1103 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1104 	 * can remove such assumptions later, but this is good enough for now.
1105 	 */
1106 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1107 	if (!dst_pte) {
1108 		ret = -ENOMEM;
1109 		goto out;
1110 	}
1111 
1112 	/*
1113 	 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1114 	 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1115 	 * the PTE page is stable, and there is no need to get pmdval and do
1116 	 * pmd_same() check.
1117 	 */
1118 	src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1119 					   &src_ptl);
1120 	if (!src_pte) {
1121 		pte_unmap_unlock(dst_pte, dst_ptl);
1122 		/* ret == 0 */
1123 		goto out;
1124 	}
1125 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1126 	orig_src_pte = src_pte;
1127 	orig_dst_pte = dst_pte;
1128 	arch_enter_lazy_mmu_mode();
1129 
1130 	do {
1131 		nr = 1;
1132 
1133 		/*
1134 		 * We are holding two locks at this point - either of them
1135 		 * could generate latencies in another task on another CPU.
1136 		 */
1137 		if (progress >= 32) {
1138 			progress = 0;
1139 			if (need_resched() ||
1140 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1141 				break;
1142 		}
1143 		ptent = ptep_get(src_pte);
1144 		if (pte_none(ptent)) {
1145 			progress++;
1146 			continue;
1147 		}
1148 		if (unlikely(!pte_present(ptent))) {
1149 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1150 						  dst_pte, src_pte,
1151 						  dst_vma, src_vma,
1152 						  addr, rss);
1153 			if (ret == -EIO) {
1154 				entry = pte_to_swp_entry(ptep_get(src_pte));
1155 				break;
1156 			} else if (ret == -EBUSY) {
1157 				break;
1158 			} else if (!ret) {
1159 				progress += 8;
1160 				continue;
1161 			}
1162 			ptent = ptep_get(src_pte);
1163 			VM_WARN_ON_ONCE(!pte_present(ptent));
1164 
1165 			/*
1166 			 * Device exclusive entry restored, continue by copying
1167 			 * the now present pte.
1168 			 */
1169 			WARN_ON_ONCE(ret != -ENOENT);
1170 		}
1171 		/* copy_present_ptes() will clear `*prealloc' if consumed */
1172 		max_nr = (end - addr) / PAGE_SIZE;
1173 		ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1174 					ptent, addr, max_nr, rss, &prealloc);
1175 		/*
1176 		 * If we need a pre-allocated page for this pte, drop the
1177 		 * locks, allocate, and try again.
1178 		 * If copy failed due to hwpoison in source page, break out.
1179 		 */
1180 		if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1181 			break;
1182 		if (unlikely(prealloc)) {
1183 			/*
1184 			 * pre-alloc page cannot be reused by next time so as
1185 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1186 			 * will allocate page according to address).  This
1187 			 * could only happen if one pinned pte changed.
1188 			 */
1189 			folio_put(prealloc);
1190 			prealloc = NULL;
1191 		}
1192 		nr = ret;
1193 		progress += 8 * nr;
1194 	} while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1195 		 addr != end);
1196 
1197 	arch_leave_lazy_mmu_mode();
1198 	pte_unmap_unlock(orig_src_pte, src_ptl);
1199 	add_mm_rss_vec(dst_mm, rss);
1200 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1201 	cond_resched();
1202 
1203 	if (ret == -EIO) {
1204 		VM_WARN_ON_ONCE(!entry.val);
1205 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1206 			ret = -ENOMEM;
1207 			goto out;
1208 		}
1209 		entry.val = 0;
1210 	} else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1211 		goto out;
1212 	} else if (ret ==  -EAGAIN) {
1213 		prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1214 		if (!prealloc)
1215 			return -ENOMEM;
1216 	} else if (ret < 0) {
1217 		VM_WARN_ON_ONCE(1);
1218 	}
1219 
1220 	/* We've captured and resolved the error. Reset, try again. */
1221 	ret = 0;
1222 
1223 	if (addr != end)
1224 		goto again;
1225 out:
1226 	if (unlikely(prealloc))
1227 		folio_put(prealloc);
1228 	return ret;
1229 }
1230 
1231 static inline int
1232 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1233 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1234 	       unsigned long end)
1235 {
1236 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1237 	struct mm_struct *src_mm = src_vma->vm_mm;
1238 	pmd_t *src_pmd, *dst_pmd;
1239 	unsigned long next;
1240 
1241 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1242 	if (!dst_pmd)
1243 		return -ENOMEM;
1244 	src_pmd = pmd_offset(src_pud, addr);
1245 	do {
1246 		next = pmd_addr_end(addr, end);
1247 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1248 			|| pmd_devmap(*src_pmd)) {
1249 			int err;
1250 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1251 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1252 					    addr, dst_vma, src_vma);
1253 			if (err == -ENOMEM)
1254 				return -ENOMEM;
1255 			if (!err)
1256 				continue;
1257 			/* fall through */
1258 		}
1259 		if (pmd_none_or_clear_bad(src_pmd))
1260 			continue;
1261 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1262 				   addr, next))
1263 			return -ENOMEM;
1264 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1265 	return 0;
1266 }
1267 
1268 static inline int
1269 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1270 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1271 	       unsigned long end)
1272 {
1273 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1274 	struct mm_struct *src_mm = src_vma->vm_mm;
1275 	pud_t *src_pud, *dst_pud;
1276 	unsigned long next;
1277 
1278 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1279 	if (!dst_pud)
1280 		return -ENOMEM;
1281 	src_pud = pud_offset(src_p4d, addr);
1282 	do {
1283 		next = pud_addr_end(addr, end);
1284 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1285 			int err;
1286 
1287 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1288 			err = copy_huge_pud(dst_mm, src_mm,
1289 					    dst_pud, src_pud, addr, src_vma);
1290 			if (err == -ENOMEM)
1291 				return -ENOMEM;
1292 			if (!err)
1293 				continue;
1294 			/* fall through */
1295 		}
1296 		if (pud_none_or_clear_bad(src_pud))
1297 			continue;
1298 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1299 				   addr, next))
1300 			return -ENOMEM;
1301 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1302 	return 0;
1303 }
1304 
1305 static inline int
1306 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1307 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1308 	       unsigned long end)
1309 {
1310 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1311 	p4d_t *src_p4d, *dst_p4d;
1312 	unsigned long next;
1313 
1314 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1315 	if (!dst_p4d)
1316 		return -ENOMEM;
1317 	src_p4d = p4d_offset(src_pgd, addr);
1318 	do {
1319 		next = p4d_addr_end(addr, end);
1320 		if (p4d_none_or_clear_bad(src_p4d))
1321 			continue;
1322 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1323 				   addr, next))
1324 			return -ENOMEM;
1325 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1326 	return 0;
1327 }
1328 
1329 /*
1330  * Return true if the vma needs to copy the pgtable during this fork().  Return
1331  * false when we can speed up fork() by allowing lazy page faults later until
1332  * when the child accesses the memory range.
1333  */
1334 static bool
1335 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1336 {
1337 	/*
1338 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1339 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1340 	 * contains uffd-wp protection information, that's something we can't
1341 	 * retrieve from page cache, and skip copying will lose those info.
1342 	 */
1343 	if (userfaultfd_wp(dst_vma))
1344 		return true;
1345 
1346 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1347 		return true;
1348 
1349 	if (src_vma->anon_vma)
1350 		return true;
1351 
1352 	/*
1353 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1354 	 * becomes much lighter when there are big shared or private readonly
1355 	 * mappings. The tradeoff is that copy_page_range is more efficient
1356 	 * than faulting.
1357 	 */
1358 	return false;
1359 }
1360 
1361 int
1362 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1363 {
1364 	pgd_t *src_pgd, *dst_pgd;
1365 	unsigned long next;
1366 	unsigned long addr = src_vma->vm_start;
1367 	unsigned long end = src_vma->vm_end;
1368 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1369 	struct mm_struct *src_mm = src_vma->vm_mm;
1370 	struct mmu_notifier_range range;
1371 	bool is_cow;
1372 	int ret;
1373 
1374 	if (!vma_needs_copy(dst_vma, src_vma))
1375 		return 0;
1376 
1377 	if (is_vm_hugetlb_page(src_vma))
1378 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1379 
1380 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1381 		/*
1382 		 * We do not free on error cases below as remove_vma
1383 		 * gets called on error from higher level routine
1384 		 */
1385 		ret = track_pfn_copy(src_vma);
1386 		if (ret)
1387 			return ret;
1388 	}
1389 
1390 	/*
1391 	 * We need to invalidate the secondary MMU mappings only when
1392 	 * there could be a permission downgrade on the ptes of the
1393 	 * parent mm. And a permission downgrade will only happen if
1394 	 * is_cow_mapping() returns true.
1395 	 */
1396 	is_cow = is_cow_mapping(src_vma->vm_flags);
1397 
1398 	if (is_cow) {
1399 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1400 					0, src_mm, addr, end);
1401 		mmu_notifier_invalidate_range_start(&range);
1402 		/*
1403 		 * Disabling preemption is not needed for the write side, as
1404 		 * the read side doesn't spin, but goes to the mmap_lock.
1405 		 *
1406 		 * Use the raw variant of the seqcount_t write API to avoid
1407 		 * lockdep complaining about preemptibility.
1408 		 */
1409 		vma_assert_write_locked(src_vma);
1410 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1411 	}
1412 
1413 	ret = 0;
1414 	dst_pgd = pgd_offset(dst_mm, addr);
1415 	src_pgd = pgd_offset(src_mm, addr);
1416 	do {
1417 		next = pgd_addr_end(addr, end);
1418 		if (pgd_none_or_clear_bad(src_pgd))
1419 			continue;
1420 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1421 					    addr, next))) {
1422 			untrack_pfn_clear(dst_vma);
1423 			ret = -ENOMEM;
1424 			break;
1425 		}
1426 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1427 
1428 	if (is_cow) {
1429 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1430 		mmu_notifier_invalidate_range_end(&range);
1431 	}
1432 	return ret;
1433 }
1434 
1435 /* Whether we should zap all COWed (private) pages too */
1436 static inline bool should_zap_cows(struct zap_details *details)
1437 {
1438 	/* By default, zap all pages */
1439 	if (!details)
1440 		return true;
1441 
1442 	/* Or, we zap COWed pages only if the caller wants to */
1443 	return details->even_cows;
1444 }
1445 
1446 /* Decides whether we should zap this folio with the folio pointer specified */
1447 static inline bool should_zap_folio(struct zap_details *details,
1448 				    struct folio *folio)
1449 {
1450 	/* If we can make a decision without *folio.. */
1451 	if (should_zap_cows(details))
1452 		return true;
1453 
1454 	/* Otherwise we should only zap non-anon folios */
1455 	return !folio_test_anon(folio);
1456 }
1457 
1458 static inline bool zap_drop_markers(struct zap_details *details)
1459 {
1460 	if (!details)
1461 		return false;
1462 
1463 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1464 }
1465 
1466 /*
1467  * This function makes sure that we'll replace the none pte with an uffd-wp
1468  * swap special pte marker when necessary. Must be with the pgtable lock held.
1469  */
1470 static inline void
1471 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1472 			      unsigned long addr, pte_t *pte, int nr,
1473 			      struct zap_details *details, pte_t pteval)
1474 {
1475 	/* Zap on anonymous always means dropping everything */
1476 	if (vma_is_anonymous(vma))
1477 		return;
1478 
1479 	if (zap_drop_markers(details))
1480 		return;
1481 
1482 	for (;;) {
1483 		/* the PFN in the PTE is irrelevant. */
1484 		pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1485 		if (--nr == 0)
1486 			break;
1487 		pte++;
1488 		addr += PAGE_SIZE;
1489 	}
1490 }
1491 
1492 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1493 		struct vm_area_struct *vma, struct folio *folio,
1494 		struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1495 		unsigned long addr, struct zap_details *details, int *rss,
1496 		bool *force_flush, bool *force_break)
1497 {
1498 	struct mm_struct *mm = tlb->mm;
1499 	bool delay_rmap = false;
1500 
1501 	if (!folio_test_anon(folio)) {
1502 		ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1503 		if (pte_dirty(ptent)) {
1504 			folio_mark_dirty(folio);
1505 			if (tlb_delay_rmap(tlb)) {
1506 				delay_rmap = true;
1507 				*force_flush = true;
1508 			}
1509 		}
1510 		if (pte_young(ptent) && likely(vma_has_recency(vma)))
1511 			folio_mark_accessed(folio);
1512 		rss[mm_counter(folio)] -= nr;
1513 	} else {
1514 		/* We don't need up-to-date accessed/dirty bits. */
1515 		clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1516 		rss[MM_ANONPAGES] -= nr;
1517 	}
1518 	/* Checking a single PTE in a batch is sufficient. */
1519 	arch_check_zapped_pte(vma, ptent);
1520 	tlb_remove_tlb_entries(tlb, pte, nr, addr);
1521 	if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1522 		zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details,
1523 					      ptent);
1524 
1525 	if (!delay_rmap) {
1526 		folio_remove_rmap_ptes(folio, page, nr, vma);
1527 
1528 		if (unlikely(folio_mapcount(folio) < 0))
1529 			print_bad_pte(vma, addr, ptent, page);
1530 	}
1531 	if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1532 		*force_flush = true;
1533 		*force_break = true;
1534 	}
1535 }
1536 
1537 /*
1538  * Zap or skip at least one present PTE, trying to batch-process subsequent
1539  * PTEs that map consecutive pages of the same folio.
1540  *
1541  * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1542  */
1543 static inline int zap_present_ptes(struct mmu_gather *tlb,
1544 		struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1545 		unsigned int max_nr, unsigned long addr,
1546 		struct zap_details *details, int *rss, bool *force_flush,
1547 		bool *force_break)
1548 {
1549 	const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY;
1550 	struct mm_struct *mm = tlb->mm;
1551 	struct folio *folio;
1552 	struct page *page;
1553 	int nr;
1554 
1555 	page = vm_normal_page(vma, addr, ptent);
1556 	if (!page) {
1557 		/* We don't need up-to-date accessed/dirty bits. */
1558 		ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1559 		arch_check_zapped_pte(vma, ptent);
1560 		tlb_remove_tlb_entry(tlb, pte, addr);
1561 		if (userfaultfd_pte_wp(vma, ptent))
1562 			zap_install_uffd_wp_if_needed(vma, addr, pte, 1,
1563 						      details, ptent);
1564 		ksm_might_unmap_zero_page(mm, ptent);
1565 		return 1;
1566 	}
1567 
1568 	folio = page_folio(page);
1569 	if (unlikely(!should_zap_folio(details, folio)))
1570 		return 1;
1571 
1572 	/*
1573 	 * Make sure that the common "small folio" case is as fast as possible
1574 	 * by keeping the batching logic separate.
1575 	 */
1576 	if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1577 		nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags,
1578 				     NULL, NULL, NULL);
1579 
1580 		zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1581 				       addr, details, rss, force_flush,
1582 				       force_break);
1583 		return nr;
1584 	}
1585 	zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1586 			       details, rss, force_flush, force_break);
1587 	return 1;
1588 }
1589 
1590 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1591 				struct vm_area_struct *vma, pmd_t *pmd,
1592 				unsigned long addr, unsigned long end,
1593 				struct zap_details *details)
1594 {
1595 	bool force_flush = false, force_break = false;
1596 	struct mm_struct *mm = tlb->mm;
1597 	int rss[NR_MM_COUNTERS];
1598 	spinlock_t *ptl;
1599 	pte_t *start_pte;
1600 	pte_t *pte;
1601 	swp_entry_t entry;
1602 	int nr;
1603 
1604 	tlb_change_page_size(tlb, PAGE_SIZE);
1605 	init_rss_vec(rss);
1606 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1607 	if (!pte)
1608 		return addr;
1609 
1610 	flush_tlb_batched_pending(mm);
1611 	arch_enter_lazy_mmu_mode();
1612 	do {
1613 		pte_t ptent = ptep_get(pte);
1614 		struct folio *folio;
1615 		struct page *page;
1616 		int max_nr;
1617 
1618 		nr = 1;
1619 		if (pte_none(ptent))
1620 			continue;
1621 
1622 		if (need_resched())
1623 			break;
1624 
1625 		if (pte_present(ptent)) {
1626 			max_nr = (end - addr) / PAGE_SIZE;
1627 			nr = zap_present_ptes(tlb, vma, pte, ptent, max_nr,
1628 					      addr, details, rss, &force_flush,
1629 					      &force_break);
1630 			if (unlikely(force_break)) {
1631 				addr += nr * PAGE_SIZE;
1632 				break;
1633 			}
1634 			continue;
1635 		}
1636 
1637 		entry = pte_to_swp_entry(ptent);
1638 		if (is_device_private_entry(entry) ||
1639 		    is_device_exclusive_entry(entry)) {
1640 			page = pfn_swap_entry_to_page(entry);
1641 			folio = page_folio(page);
1642 			if (unlikely(!should_zap_folio(details, folio)))
1643 				continue;
1644 			/*
1645 			 * Both device private/exclusive mappings should only
1646 			 * work with anonymous page so far, so we don't need to
1647 			 * consider uffd-wp bit when zap. For more information,
1648 			 * see zap_install_uffd_wp_if_needed().
1649 			 */
1650 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1651 			rss[mm_counter(folio)]--;
1652 			if (is_device_private_entry(entry))
1653 				folio_remove_rmap_pte(folio, page, vma);
1654 			folio_put(folio);
1655 		} else if (!non_swap_entry(entry)) {
1656 			max_nr = (end - addr) / PAGE_SIZE;
1657 			nr = swap_pte_batch(pte, max_nr, ptent);
1658 			/* Genuine swap entries, hence a private anon pages */
1659 			if (!should_zap_cows(details))
1660 				continue;
1661 			rss[MM_SWAPENTS] -= nr;
1662 			free_swap_and_cache_nr(entry, nr);
1663 		} else if (is_migration_entry(entry)) {
1664 			folio = pfn_swap_entry_folio(entry);
1665 			if (!should_zap_folio(details, folio))
1666 				continue;
1667 			rss[mm_counter(folio)]--;
1668 		} else if (pte_marker_entry_uffd_wp(entry)) {
1669 			/*
1670 			 * For anon: always drop the marker; for file: only
1671 			 * drop the marker if explicitly requested.
1672 			 */
1673 			if (!vma_is_anonymous(vma) &&
1674 			    !zap_drop_markers(details))
1675 				continue;
1676 		} else if (is_guard_swp_entry(entry)) {
1677 			/*
1678 			 * Ordinary zapping should not remove guard PTE
1679 			 * markers. Only do so if we should remove PTE markers
1680 			 * in general.
1681 			 */
1682 			if (!zap_drop_markers(details))
1683 				continue;
1684 		} else if (is_hwpoison_entry(entry) ||
1685 			   is_poisoned_swp_entry(entry)) {
1686 			if (!should_zap_cows(details))
1687 				continue;
1688 		} else {
1689 			/* We should have covered all the swap entry types */
1690 			pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1691 			WARN_ON_ONCE(1);
1692 		}
1693 		clear_not_present_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1694 		zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1695 	} while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1696 
1697 	add_mm_rss_vec(mm, rss);
1698 	arch_leave_lazy_mmu_mode();
1699 
1700 	/* Do the actual TLB flush before dropping ptl */
1701 	if (force_flush) {
1702 		tlb_flush_mmu_tlbonly(tlb);
1703 		tlb_flush_rmaps(tlb, vma);
1704 	}
1705 	pte_unmap_unlock(start_pte, ptl);
1706 
1707 	/*
1708 	 * If we forced a TLB flush (either due to running out of
1709 	 * batch buffers or because we needed to flush dirty TLB
1710 	 * entries before releasing the ptl), free the batched
1711 	 * memory too. Come back again if we didn't do everything.
1712 	 */
1713 	if (force_flush)
1714 		tlb_flush_mmu(tlb);
1715 
1716 	return addr;
1717 }
1718 
1719 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1720 				struct vm_area_struct *vma, pud_t *pud,
1721 				unsigned long addr, unsigned long end,
1722 				struct zap_details *details)
1723 {
1724 	pmd_t *pmd;
1725 	unsigned long next;
1726 
1727 	pmd = pmd_offset(pud, addr);
1728 	do {
1729 		next = pmd_addr_end(addr, end);
1730 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1731 			if (next - addr != HPAGE_PMD_SIZE)
1732 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1733 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1734 				addr = next;
1735 				continue;
1736 			}
1737 			/* fall through */
1738 		} else if (details && details->single_folio &&
1739 			   folio_test_pmd_mappable(details->single_folio) &&
1740 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1741 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1742 			/*
1743 			 * Take and drop THP pmd lock so that we cannot return
1744 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1745 			 * but not yet decremented compound_mapcount().
1746 			 */
1747 			spin_unlock(ptl);
1748 		}
1749 		if (pmd_none(*pmd)) {
1750 			addr = next;
1751 			continue;
1752 		}
1753 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1754 		if (addr != next)
1755 			pmd--;
1756 	} while (pmd++, cond_resched(), addr != end);
1757 
1758 	return addr;
1759 }
1760 
1761 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1762 				struct vm_area_struct *vma, p4d_t *p4d,
1763 				unsigned long addr, unsigned long end,
1764 				struct zap_details *details)
1765 {
1766 	pud_t *pud;
1767 	unsigned long next;
1768 
1769 	pud = pud_offset(p4d, addr);
1770 	do {
1771 		next = pud_addr_end(addr, end);
1772 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1773 			if (next - addr != HPAGE_PUD_SIZE) {
1774 				mmap_assert_locked(tlb->mm);
1775 				split_huge_pud(vma, pud, addr);
1776 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1777 				goto next;
1778 			/* fall through */
1779 		}
1780 		if (pud_none_or_clear_bad(pud))
1781 			continue;
1782 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1783 next:
1784 		cond_resched();
1785 	} while (pud++, addr = next, addr != end);
1786 
1787 	return addr;
1788 }
1789 
1790 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1791 				struct vm_area_struct *vma, pgd_t *pgd,
1792 				unsigned long addr, unsigned long end,
1793 				struct zap_details *details)
1794 {
1795 	p4d_t *p4d;
1796 	unsigned long next;
1797 
1798 	p4d = p4d_offset(pgd, addr);
1799 	do {
1800 		next = p4d_addr_end(addr, end);
1801 		if (p4d_none_or_clear_bad(p4d))
1802 			continue;
1803 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1804 	} while (p4d++, addr = next, addr != end);
1805 
1806 	return addr;
1807 }
1808 
1809 void unmap_page_range(struct mmu_gather *tlb,
1810 			     struct vm_area_struct *vma,
1811 			     unsigned long addr, unsigned long end,
1812 			     struct zap_details *details)
1813 {
1814 	pgd_t *pgd;
1815 	unsigned long next;
1816 
1817 	BUG_ON(addr >= end);
1818 	tlb_start_vma(tlb, vma);
1819 	pgd = pgd_offset(vma->vm_mm, addr);
1820 	do {
1821 		next = pgd_addr_end(addr, end);
1822 		if (pgd_none_or_clear_bad(pgd))
1823 			continue;
1824 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1825 	} while (pgd++, addr = next, addr != end);
1826 	tlb_end_vma(tlb, vma);
1827 }
1828 
1829 
1830 static void unmap_single_vma(struct mmu_gather *tlb,
1831 		struct vm_area_struct *vma, unsigned long start_addr,
1832 		unsigned long end_addr,
1833 		struct zap_details *details, bool mm_wr_locked)
1834 {
1835 	unsigned long start = max(vma->vm_start, start_addr);
1836 	unsigned long end;
1837 
1838 	if (start >= vma->vm_end)
1839 		return;
1840 	end = min(vma->vm_end, end_addr);
1841 	if (end <= vma->vm_start)
1842 		return;
1843 
1844 	if (vma->vm_file)
1845 		uprobe_munmap(vma, start, end);
1846 
1847 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1848 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1849 
1850 	if (start != end) {
1851 		if (unlikely(is_vm_hugetlb_page(vma))) {
1852 			/*
1853 			 * It is undesirable to test vma->vm_file as it
1854 			 * should be non-null for valid hugetlb area.
1855 			 * However, vm_file will be NULL in the error
1856 			 * cleanup path of mmap_region. When
1857 			 * hugetlbfs ->mmap method fails,
1858 			 * mmap_region() nullifies vma->vm_file
1859 			 * before calling this function to clean up.
1860 			 * Since no pte has actually been setup, it is
1861 			 * safe to do nothing in this case.
1862 			 */
1863 			if (vma->vm_file) {
1864 				zap_flags_t zap_flags = details ?
1865 				    details->zap_flags : 0;
1866 				__unmap_hugepage_range(tlb, vma, start, end,
1867 							     NULL, zap_flags);
1868 			}
1869 		} else
1870 			unmap_page_range(tlb, vma, start, end, details);
1871 	}
1872 }
1873 
1874 /**
1875  * unmap_vmas - unmap a range of memory covered by a list of vma's
1876  * @tlb: address of the caller's struct mmu_gather
1877  * @mas: the maple state
1878  * @vma: the starting vma
1879  * @start_addr: virtual address at which to start unmapping
1880  * @end_addr: virtual address at which to end unmapping
1881  * @tree_end: The maximum index to check
1882  * @mm_wr_locked: lock flag
1883  *
1884  * Unmap all pages in the vma list.
1885  *
1886  * Only addresses between `start' and `end' will be unmapped.
1887  *
1888  * The VMA list must be sorted in ascending virtual address order.
1889  *
1890  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1891  * range after unmap_vmas() returns.  So the only responsibility here is to
1892  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1893  * drops the lock and schedules.
1894  */
1895 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1896 		struct vm_area_struct *vma, unsigned long start_addr,
1897 		unsigned long end_addr, unsigned long tree_end,
1898 		bool mm_wr_locked)
1899 {
1900 	struct mmu_notifier_range range;
1901 	struct zap_details details = {
1902 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1903 		/* Careful - we need to zap private pages too! */
1904 		.even_cows = true,
1905 	};
1906 
1907 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1908 				start_addr, end_addr);
1909 	mmu_notifier_invalidate_range_start(&range);
1910 	do {
1911 		unsigned long start = start_addr;
1912 		unsigned long end = end_addr;
1913 		hugetlb_zap_begin(vma, &start, &end);
1914 		unmap_single_vma(tlb, vma, start, end, &details,
1915 				 mm_wr_locked);
1916 		hugetlb_zap_end(vma, &details);
1917 		vma = mas_find(mas, tree_end - 1);
1918 	} while (vma && likely(!xa_is_zero(vma)));
1919 	mmu_notifier_invalidate_range_end(&range);
1920 }
1921 
1922 /**
1923  * zap_page_range_single - remove user pages in a given range
1924  * @vma: vm_area_struct holding the applicable pages
1925  * @address: starting address of pages to zap
1926  * @size: number of bytes to zap
1927  * @details: details of shared cache invalidation
1928  *
1929  * The range must fit into one VMA.
1930  */
1931 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1932 		unsigned long size, struct zap_details *details)
1933 {
1934 	const unsigned long end = address + size;
1935 	struct mmu_notifier_range range;
1936 	struct mmu_gather tlb;
1937 
1938 	lru_add_drain();
1939 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1940 				address, end);
1941 	hugetlb_zap_begin(vma, &range.start, &range.end);
1942 	tlb_gather_mmu(&tlb, vma->vm_mm);
1943 	update_hiwater_rss(vma->vm_mm);
1944 	mmu_notifier_invalidate_range_start(&range);
1945 	/*
1946 	 * unmap 'address-end' not 'range.start-range.end' as range
1947 	 * could have been expanded for hugetlb pmd sharing.
1948 	 */
1949 	unmap_single_vma(&tlb, vma, address, end, details, false);
1950 	mmu_notifier_invalidate_range_end(&range);
1951 	tlb_finish_mmu(&tlb);
1952 	hugetlb_zap_end(vma, details);
1953 }
1954 
1955 /**
1956  * zap_vma_ptes - remove ptes mapping the vma
1957  * @vma: vm_area_struct holding ptes to be zapped
1958  * @address: starting address of pages to zap
1959  * @size: number of bytes to zap
1960  *
1961  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1962  *
1963  * The entire address range must be fully contained within the vma.
1964  *
1965  */
1966 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1967 		unsigned long size)
1968 {
1969 	if (!range_in_vma(vma, address, address + size) ||
1970 	    		!(vma->vm_flags & VM_PFNMAP))
1971 		return;
1972 
1973 	zap_page_range_single(vma, address, size, NULL);
1974 }
1975 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1976 
1977 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1978 {
1979 	pgd_t *pgd;
1980 	p4d_t *p4d;
1981 	pud_t *pud;
1982 	pmd_t *pmd;
1983 
1984 	pgd = pgd_offset(mm, addr);
1985 	p4d = p4d_alloc(mm, pgd, addr);
1986 	if (!p4d)
1987 		return NULL;
1988 	pud = pud_alloc(mm, p4d, addr);
1989 	if (!pud)
1990 		return NULL;
1991 	pmd = pmd_alloc(mm, pud, addr);
1992 	if (!pmd)
1993 		return NULL;
1994 
1995 	VM_BUG_ON(pmd_trans_huge(*pmd));
1996 	return pmd;
1997 }
1998 
1999 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2000 			spinlock_t **ptl)
2001 {
2002 	pmd_t *pmd = walk_to_pmd(mm, addr);
2003 
2004 	if (!pmd)
2005 		return NULL;
2006 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
2007 }
2008 
2009 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2010 {
2011 	VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2012 	/*
2013 	 * Whoever wants to forbid the zeropage after some zeropages
2014 	 * might already have been mapped has to scan the page tables and
2015 	 * bail out on any zeropages. Zeropages in COW mappings can
2016 	 * be unshared using FAULT_FLAG_UNSHARE faults.
2017 	 */
2018 	if (mm_forbids_zeropage(vma->vm_mm))
2019 		return false;
2020 	/* zeropages in COW mappings are common and unproblematic. */
2021 	if (is_cow_mapping(vma->vm_flags))
2022 		return true;
2023 	/* Mappings that do not allow for writable PTEs are unproblematic. */
2024 	if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2025 		return true;
2026 	/*
2027 	 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2028 	 * find the shared zeropage and longterm-pin it, which would
2029 	 * be problematic as soon as the zeropage gets replaced by a different
2030 	 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2031 	 * now differ to what GUP looked up. FSDAX is incompatible to
2032 	 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2033 	 * check_vma_flags).
2034 	 */
2035 	return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2036 	       (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2037 }
2038 
2039 static int validate_page_before_insert(struct vm_area_struct *vma,
2040 				       struct page *page)
2041 {
2042 	struct folio *folio = page_folio(page);
2043 
2044 	if (!folio_ref_count(folio))
2045 		return -EINVAL;
2046 	if (unlikely(is_zero_folio(folio))) {
2047 		if (!vm_mixed_zeropage_allowed(vma))
2048 			return -EINVAL;
2049 		return 0;
2050 	}
2051 	if (folio_test_anon(folio) || folio_test_slab(folio) ||
2052 	    page_has_type(page))
2053 		return -EINVAL;
2054 	flush_dcache_folio(folio);
2055 	return 0;
2056 }
2057 
2058 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2059 			unsigned long addr, struct page *page, pgprot_t prot)
2060 {
2061 	struct folio *folio = page_folio(page);
2062 	pte_t pteval;
2063 
2064 	if (!pte_none(ptep_get(pte)))
2065 		return -EBUSY;
2066 	/* Ok, finally just insert the thing.. */
2067 	pteval = mk_pte(page, prot);
2068 	if (unlikely(is_zero_folio(folio))) {
2069 		pteval = pte_mkspecial(pteval);
2070 	} else {
2071 		folio_get(folio);
2072 		inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2073 		folio_add_file_rmap_pte(folio, page, vma);
2074 	}
2075 	set_pte_at(vma->vm_mm, addr, pte, pteval);
2076 	return 0;
2077 }
2078 
2079 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2080 			struct page *page, pgprot_t prot)
2081 {
2082 	int retval;
2083 	pte_t *pte;
2084 	spinlock_t *ptl;
2085 
2086 	retval = validate_page_before_insert(vma, page);
2087 	if (retval)
2088 		goto out;
2089 	retval = -ENOMEM;
2090 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2091 	if (!pte)
2092 		goto out;
2093 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
2094 	pte_unmap_unlock(pte, ptl);
2095 out:
2096 	return retval;
2097 }
2098 
2099 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2100 			unsigned long addr, struct page *page, pgprot_t prot)
2101 {
2102 	int err;
2103 
2104 	err = validate_page_before_insert(vma, page);
2105 	if (err)
2106 		return err;
2107 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
2108 }
2109 
2110 /* insert_pages() amortizes the cost of spinlock operations
2111  * when inserting pages in a loop.
2112  */
2113 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2114 			struct page **pages, unsigned long *num, pgprot_t prot)
2115 {
2116 	pmd_t *pmd = NULL;
2117 	pte_t *start_pte, *pte;
2118 	spinlock_t *pte_lock;
2119 	struct mm_struct *const mm = vma->vm_mm;
2120 	unsigned long curr_page_idx = 0;
2121 	unsigned long remaining_pages_total = *num;
2122 	unsigned long pages_to_write_in_pmd;
2123 	int ret;
2124 more:
2125 	ret = -EFAULT;
2126 	pmd = walk_to_pmd(mm, addr);
2127 	if (!pmd)
2128 		goto out;
2129 
2130 	pages_to_write_in_pmd = min_t(unsigned long,
2131 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2132 
2133 	/* Allocate the PTE if necessary; takes PMD lock once only. */
2134 	ret = -ENOMEM;
2135 	if (pte_alloc(mm, pmd))
2136 		goto out;
2137 
2138 	while (pages_to_write_in_pmd) {
2139 		int pte_idx = 0;
2140 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2141 
2142 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2143 		if (!start_pte) {
2144 			ret = -EFAULT;
2145 			goto out;
2146 		}
2147 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2148 			int err = insert_page_in_batch_locked(vma, pte,
2149 				addr, pages[curr_page_idx], prot);
2150 			if (unlikely(err)) {
2151 				pte_unmap_unlock(start_pte, pte_lock);
2152 				ret = err;
2153 				remaining_pages_total -= pte_idx;
2154 				goto out;
2155 			}
2156 			addr += PAGE_SIZE;
2157 			++curr_page_idx;
2158 		}
2159 		pte_unmap_unlock(start_pte, pte_lock);
2160 		pages_to_write_in_pmd -= batch_size;
2161 		remaining_pages_total -= batch_size;
2162 	}
2163 	if (remaining_pages_total)
2164 		goto more;
2165 	ret = 0;
2166 out:
2167 	*num = remaining_pages_total;
2168 	return ret;
2169 }
2170 
2171 /**
2172  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2173  * @vma: user vma to map to
2174  * @addr: target start user address of these pages
2175  * @pages: source kernel pages
2176  * @num: in: number of pages to map. out: number of pages that were *not*
2177  * mapped. (0 means all pages were successfully mapped).
2178  *
2179  * Preferred over vm_insert_page() when inserting multiple pages.
2180  *
2181  * In case of error, we may have mapped a subset of the provided
2182  * pages. It is the caller's responsibility to account for this case.
2183  *
2184  * The same restrictions apply as in vm_insert_page().
2185  */
2186 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2187 			struct page **pages, unsigned long *num)
2188 {
2189 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2190 
2191 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
2192 		return -EFAULT;
2193 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2194 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2195 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2196 		vm_flags_set(vma, VM_MIXEDMAP);
2197 	}
2198 	/* Defer page refcount checking till we're about to map that page. */
2199 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2200 }
2201 EXPORT_SYMBOL(vm_insert_pages);
2202 
2203 /**
2204  * vm_insert_page - insert single page into user vma
2205  * @vma: user vma to map to
2206  * @addr: target user address of this page
2207  * @page: source kernel page
2208  *
2209  * This allows drivers to insert individual pages they've allocated
2210  * into a user vma. The zeropage is supported in some VMAs,
2211  * see vm_mixed_zeropage_allowed().
2212  *
2213  * The page has to be a nice clean _individual_ kernel allocation.
2214  * If you allocate a compound page, you need to have marked it as
2215  * such (__GFP_COMP), or manually just split the page up yourself
2216  * (see split_page()).
2217  *
2218  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2219  * took an arbitrary page protection parameter. This doesn't allow
2220  * that. Your vma protection will have to be set up correctly, which
2221  * means that if you want a shared writable mapping, you'd better
2222  * ask for a shared writable mapping!
2223  *
2224  * The page does not need to be reserved.
2225  *
2226  * Usually this function is called from f_op->mmap() handler
2227  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2228  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2229  * function from other places, for example from page-fault handler.
2230  *
2231  * Return: %0 on success, negative error code otherwise.
2232  */
2233 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2234 			struct page *page)
2235 {
2236 	if (addr < vma->vm_start || addr >= vma->vm_end)
2237 		return -EFAULT;
2238 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2239 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2240 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2241 		vm_flags_set(vma, VM_MIXEDMAP);
2242 	}
2243 	return insert_page(vma, addr, page, vma->vm_page_prot);
2244 }
2245 EXPORT_SYMBOL(vm_insert_page);
2246 
2247 /*
2248  * __vm_map_pages - maps range of kernel pages into user vma
2249  * @vma: user vma to map to
2250  * @pages: pointer to array of source kernel pages
2251  * @num: number of pages in page array
2252  * @offset: user's requested vm_pgoff
2253  *
2254  * This allows drivers to map range of kernel pages into a user vma.
2255  * The zeropage is supported in some VMAs, see
2256  * vm_mixed_zeropage_allowed().
2257  *
2258  * Return: 0 on success and error code otherwise.
2259  */
2260 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2261 				unsigned long num, unsigned long offset)
2262 {
2263 	unsigned long count = vma_pages(vma);
2264 	unsigned long uaddr = vma->vm_start;
2265 	int ret, i;
2266 
2267 	/* Fail if the user requested offset is beyond the end of the object */
2268 	if (offset >= num)
2269 		return -ENXIO;
2270 
2271 	/* Fail if the user requested size exceeds available object size */
2272 	if (count > num - offset)
2273 		return -ENXIO;
2274 
2275 	for (i = 0; i < count; i++) {
2276 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2277 		if (ret < 0)
2278 			return ret;
2279 		uaddr += PAGE_SIZE;
2280 	}
2281 
2282 	return 0;
2283 }
2284 
2285 /**
2286  * vm_map_pages - maps range of kernel pages starts with non zero offset
2287  * @vma: user vma to map to
2288  * @pages: pointer to array of source kernel pages
2289  * @num: number of pages in page array
2290  *
2291  * Maps an object consisting of @num pages, catering for the user's
2292  * requested vm_pgoff
2293  *
2294  * If we fail to insert any page into the vma, the function will return
2295  * immediately leaving any previously inserted pages present.  Callers
2296  * from the mmap handler may immediately return the error as their caller
2297  * will destroy the vma, removing any successfully inserted pages. Other
2298  * callers should make their own arrangements for calling unmap_region().
2299  *
2300  * Context: Process context. Called by mmap handlers.
2301  * Return: 0 on success and error code otherwise.
2302  */
2303 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2304 				unsigned long num)
2305 {
2306 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2307 }
2308 EXPORT_SYMBOL(vm_map_pages);
2309 
2310 /**
2311  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2312  * @vma: user vma to map to
2313  * @pages: pointer to array of source kernel pages
2314  * @num: number of pages in page array
2315  *
2316  * Similar to vm_map_pages(), except that it explicitly sets the offset
2317  * to 0. This function is intended for the drivers that did not consider
2318  * vm_pgoff.
2319  *
2320  * Context: Process context. Called by mmap handlers.
2321  * Return: 0 on success and error code otherwise.
2322  */
2323 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2324 				unsigned long num)
2325 {
2326 	return __vm_map_pages(vma, pages, num, 0);
2327 }
2328 EXPORT_SYMBOL(vm_map_pages_zero);
2329 
2330 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2331 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2332 {
2333 	struct mm_struct *mm = vma->vm_mm;
2334 	pte_t *pte, entry;
2335 	spinlock_t *ptl;
2336 
2337 	pte = get_locked_pte(mm, addr, &ptl);
2338 	if (!pte)
2339 		return VM_FAULT_OOM;
2340 	entry = ptep_get(pte);
2341 	if (!pte_none(entry)) {
2342 		if (mkwrite) {
2343 			/*
2344 			 * For read faults on private mappings the PFN passed
2345 			 * in may not match the PFN we have mapped if the
2346 			 * mapped PFN is a writeable COW page.  In the mkwrite
2347 			 * case we are creating a writable PTE for a shared
2348 			 * mapping and we expect the PFNs to match. If they
2349 			 * don't match, we are likely racing with block
2350 			 * allocation and mapping invalidation so just skip the
2351 			 * update.
2352 			 */
2353 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2354 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2355 				goto out_unlock;
2356 			}
2357 			entry = pte_mkyoung(entry);
2358 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2359 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2360 				update_mmu_cache(vma, addr, pte);
2361 		}
2362 		goto out_unlock;
2363 	}
2364 
2365 	/* Ok, finally just insert the thing.. */
2366 	if (pfn_t_devmap(pfn))
2367 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2368 	else
2369 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2370 
2371 	if (mkwrite) {
2372 		entry = pte_mkyoung(entry);
2373 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2374 	}
2375 
2376 	set_pte_at(mm, addr, pte, entry);
2377 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2378 
2379 out_unlock:
2380 	pte_unmap_unlock(pte, ptl);
2381 	return VM_FAULT_NOPAGE;
2382 }
2383 
2384 /**
2385  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2386  * @vma: user vma to map to
2387  * @addr: target user address of this page
2388  * @pfn: source kernel pfn
2389  * @pgprot: pgprot flags for the inserted page
2390  *
2391  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2392  * to override pgprot on a per-page basis.
2393  *
2394  * This only makes sense for IO mappings, and it makes no sense for
2395  * COW mappings.  In general, using multiple vmas is preferable;
2396  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2397  * impractical.
2398  *
2399  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2400  * caching- and encryption bits different than those of @vma->vm_page_prot,
2401  * because the caching- or encryption mode may not be known at mmap() time.
2402  *
2403  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2404  * to set caching and encryption bits for those vmas (except for COW pages).
2405  * This is ensured by core vm only modifying these page table entries using
2406  * functions that don't touch caching- or encryption bits, using pte_modify()
2407  * if needed. (See for example mprotect()).
2408  *
2409  * Also when new page-table entries are created, this is only done using the
2410  * fault() callback, and never using the value of vma->vm_page_prot,
2411  * except for page-table entries that point to anonymous pages as the result
2412  * of COW.
2413  *
2414  * Context: Process context.  May allocate using %GFP_KERNEL.
2415  * Return: vm_fault_t value.
2416  */
2417 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2418 			unsigned long pfn, pgprot_t pgprot)
2419 {
2420 	/*
2421 	 * Technically, architectures with pte_special can avoid all these
2422 	 * restrictions (same for remap_pfn_range).  However we would like
2423 	 * consistency in testing and feature parity among all, so we should
2424 	 * try to keep these invariants in place for everybody.
2425 	 */
2426 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2427 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2428 						(VM_PFNMAP|VM_MIXEDMAP));
2429 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2430 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2431 
2432 	if (addr < vma->vm_start || addr >= vma->vm_end)
2433 		return VM_FAULT_SIGBUS;
2434 
2435 	if (!pfn_modify_allowed(pfn, pgprot))
2436 		return VM_FAULT_SIGBUS;
2437 
2438 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2439 
2440 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2441 			false);
2442 }
2443 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2444 
2445 /**
2446  * vmf_insert_pfn - insert single pfn into user vma
2447  * @vma: user vma to map to
2448  * @addr: target user address of this page
2449  * @pfn: source kernel pfn
2450  *
2451  * Similar to vm_insert_page, this allows drivers to insert individual pages
2452  * they've allocated into a user vma. Same comments apply.
2453  *
2454  * This function should only be called from a vm_ops->fault handler, and
2455  * in that case the handler should return the result of this function.
2456  *
2457  * vma cannot be a COW mapping.
2458  *
2459  * As this is called only for pages that do not currently exist, we
2460  * do not need to flush old virtual caches or the TLB.
2461  *
2462  * Context: Process context.  May allocate using %GFP_KERNEL.
2463  * Return: vm_fault_t value.
2464  */
2465 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2466 			unsigned long pfn)
2467 {
2468 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2469 }
2470 EXPORT_SYMBOL(vmf_insert_pfn);
2471 
2472 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite)
2473 {
2474 	if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) &&
2475 	    (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2476 		return false;
2477 	/* these checks mirror the abort conditions in vm_normal_page */
2478 	if (vma->vm_flags & VM_MIXEDMAP)
2479 		return true;
2480 	if (pfn_t_devmap(pfn))
2481 		return true;
2482 	if (pfn_t_special(pfn))
2483 		return true;
2484 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2485 		return true;
2486 	return false;
2487 }
2488 
2489 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2490 		unsigned long addr, pfn_t pfn, bool mkwrite)
2491 {
2492 	pgprot_t pgprot = vma->vm_page_prot;
2493 	int err;
2494 
2495 	if (!vm_mixed_ok(vma, pfn, mkwrite))
2496 		return VM_FAULT_SIGBUS;
2497 
2498 	if (addr < vma->vm_start || addr >= vma->vm_end)
2499 		return VM_FAULT_SIGBUS;
2500 
2501 	track_pfn_insert(vma, &pgprot, pfn);
2502 
2503 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2504 		return VM_FAULT_SIGBUS;
2505 
2506 	/*
2507 	 * If we don't have pte special, then we have to use the pfn_valid()
2508 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2509 	 * refcount the page if pfn_valid is true (hence insert_page rather
2510 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2511 	 * without pte special, it would there be refcounted as a normal page.
2512 	 */
2513 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2514 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2515 		struct page *page;
2516 
2517 		/*
2518 		 * At this point we are committed to insert_page()
2519 		 * regardless of whether the caller specified flags that
2520 		 * result in pfn_t_has_page() == false.
2521 		 */
2522 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2523 		err = insert_page(vma, addr, page, pgprot);
2524 	} else {
2525 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2526 	}
2527 
2528 	if (err == -ENOMEM)
2529 		return VM_FAULT_OOM;
2530 	if (err < 0 && err != -EBUSY)
2531 		return VM_FAULT_SIGBUS;
2532 
2533 	return VM_FAULT_NOPAGE;
2534 }
2535 
2536 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2537 		pfn_t pfn)
2538 {
2539 	return __vm_insert_mixed(vma, addr, pfn, false);
2540 }
2541 EXPORT_SYMBOL(vmf_insert_mixed);
2542 
2543 /*
2544  *  If the insertion of PTE failed because someone else already added a
2545  *  different entry in the mean time, we treat that as success as we assume
2546  *  the same entry was actually inserted.
2547  */
2548 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2549 		unsigned long addr, pfn_t pfn)
2550 {
2551 	return __vm_insert_mixed(vma, addr, pfn, true);
2552 }
2553 
2554 /*
2555  * maps a range of physical memory into the requested pages. the old
2556  * mappings are removed. any references to nonexistent pages results
2557  * in null mappings (currently treated as "copy-on-access")
2558  */
2559 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2560 			unsigned long addr, unsigned long end,
2561 			unsigned long pfn, pgprot_t prot)
2562 {
2563 	pte_t *pte, *mapped_pte;
2564 	spinlock_t *ptl;
2565 	int err = 0;
2566 
2567 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2568 	if (!pte)
2569 		return -ENOMEM;
2570 	arch_enter_lazy_mmu_mode();
2571 	do {
2572 		BUG_ON(!pte_none(ptep_get(pte)));
2573 		if (!pfn_modify_allowed(pfn, prot)) {
2574 			err = -EACCES;
2575 			break;
2576 		}
2577 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2578 		pfn++;
2579 	} while (pte++, addr += PAGE_SIZE, addr != end);
2580 	arch_leave_lazy_mmu_mode();
2581 	pte_unmap_unlock(mapped_pte, ptl);
2582 	return err;
2583 }
2584 
2585 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2586 			unsigned long addr, unsigned long end,
2587 			unsigned long pfn, pgprot_t prot)
2588 {
2589 	pmd_t *pmd;
2590 	unsigned long next;
2591 	int err;
2592 
2593 	pfn -= addr >> PAGE_SHIFT;
2594 	pmd = pmd_alloc(mm, pud, addr);
2595 	if (!pmd)
2596 		return -ENOMEM;
2597 	VM_BUG_ON(pmd_trans_huge(*pmd));
2598 	do {
2599 		next = pmd_addr_end(addr, end);
2600 		err = remap_pte_range(mm, pmd, addr, next,
2601 				pfn + (addr >> PAGE_SHIFT), prot);
2602 		if (err)
2603 			return err;
2604 	} while (pmd++, addr = next, addr != end);
2605 	return 0;
2606 }
2607 
2608 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2609 			unsigned long addr, unsigned long end,
2610 			unsigned long pfn, pgprot_t prot)
2611 {
2612 	pud_t *pud;
2613 	unsigned long next;
2614 	int err;
2615 
2616 	pfn -= addr >> PAGE_SHIFT;
2617 	pud = pud_alloc(mm, p4d, addr);
2618 	if (!pud)
2619 		return -ENOMEM;
2620 	do {
2621 		next = pud_addr_end(addr, end);
2622 		err = remap_pmd_range(mm, pud, addr, next,
2623 				pfn + (addr >> PAGE_SHIFT), prot);
2624 		if (err)
2625 			return err;
2626 	} while (pud++, addr = next, addr != end);
2627 	return 0;
2628 }
2629 
2630 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2631 			unsigned long addr, unsigned long end,
2632 			unsigned long pfn, pgprot_t prot)
2633 {
2634 	p4d_t *p4d;
2635 	unsigned long next;
2636 	int err;
2637 
2638 	pfn -= addr >> PAGE_SHIFT;
2639 	p4d = p4d_alloc(mm, pgd, addr);
2640 	if (!p4d)
2641 		return -ENOMEM;
2642 	do {
2643 		next = p4d_addr_end(addr, end);
2644 		err = remap_pud_range(mm, p4d, addr, next,
2645 				pfn + (addr >> PAGE_SHIFT), prot);
2646 		if (err)
2647 			return err;
2648 	} while (p4d++, addr = next, addr != end);
2649 	return 0;
2650 }
2651 
2652 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2653 		unsigned long pfn, unsigned long size, pgprot_t prot)
2654 {
2655 	pgd_t *pgd;
2656 	unsigned long next;
2657 	unsigned long end = addr + PAGE_ALIGN(size);
2658 	struct mm_struct *mm = vma->vm_mm;
2659 	int err;
2660 
2661 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2662 		return -EINVAL;
2663 
2664 	/*
2665 	 * Physically remapped pages are special. Tell the
2666 	 * rest of the world about it:
2667 	 *   VM_IO tells people not to look at these pages
2668 	 *	(accesses can have side effects).
2669 	 *   VM_PFNMAP tells the core MM that the base pages are just
2670 	 *	raw PFN mappings, and do not have a "struct page" associated
2671 	 *	with them.
2672 	 *   VM_DONTEXPAND
2673 	 *      Disable vma merging and expanding with mremap().
2674 	 *   VM_DONTDUMP
2675 	 *      Omit vma from core dump, even when VM_IO turned off.
2676 	 *
2677 	 * There's a horrible special case to handle copy-on-write
2678 	 * behaviour that some programs depend on. We mark the "original"
2679 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2680 	 * See vm_normal_page() for details.
2681 	 */
2682 	if (is_cow_mapping(vma->vm_flags)) {
2683 		if (addr != vma->vm_start || end != vma->vm_end)
2684 			return -EINVAL;
2685 		vma->vm_pgoff = pfn;
2686 	}
2687 
2688 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2689 
2690 	BUG_ON(addr >= end);
2691 	pfn -= addr >> PAGE_SHIFT;
2692 	pgd = pgd_offset(mm, addr);
2693 	flush_cache_range(vma, addr, end);
2694 	do {
2695 		next = pgd_addr_end(addr, end);
2696 		err = remap_p4d_range(mm, pgd, addr, next,
2697 				pfn + (addr >> PAGE_SHIFT), prot);
2698 		if (err)
2699 			return err;
2700 	} while (pgd++, addr = next, addr != end);
2701 
2702 	return 0;
2703 }
2704 
2705 /*
2706  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2707  * must have pre-validated the caching bits of the pgprot_t.
2708  */
2709 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2710 		unsigned long pfn, unsigned long size, pgprot_t prot)
2711 {
2712 	int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
2713 
2714 	if (!error)
2715 		return 0;
2716 
2717 	/*
2718 	 * A partial pfn range mapping is dangerous: it does not
2719 	 * maintain page reference counts, and callers may free
2720 	 * pages due to the error. So zap it early.
2721 	 */
2722 	zap_page_range_single(vma, addr, size, NULL);
2723 	return error;
2724 }
2725 
2726 /**
2727  * remap_pfn_range - remap kernel memory to userspace
2728  * @vma: user vma to map to
2729  * @addr: target page aligned user address to start at
2730  * @pfn: page frame number of kernel physical memory address
2731  * @size: size of mapping area
2732  * @prot: page protection flags for this mapping
2733  *
2734  * Note: this is only safe if the mm semaphore is held when called.
2735  *
2736  * Return: %0 on success, negative error code otherwise.
2737  */
2738 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2739 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2740 {
2741 	int err;
2742 
2743 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2744 	if (err)
2745 		return -EINVAL;
2746 
2747 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2748 	if (err)
2749 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2750 	return err;
2751 }
2752 EXPORT_SYMBOL(remap_pfn_range);
2753 
2754 /**
2755  * vm_iomap_memory - remap memory to userspace
2756  * @vma: user vma to map to
2757  * @start: start of the physical memory to be mapped
2758  * @len: size of area
2759  *
2760  * This is a simplified io_remap_pfn_range() for common driver use. The
2761  * driver just needs to give us the physical memory range to be mapped,
2762  * we'll figure out the rest from the vma information.
2763  *
2764  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2765  * whatever write-combining details or similar.
2766  *
2767  * Return: %0 on success, negative error code otherwise.
2768  */
2769 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2770 {
2771 	unsigned long vm_len, pfn, pages;
2772 
2773 	/* Check that the physical memory area passed in looks valid */
2774 	if (start + len < start)
2775 		return -EINVAL;
2776 	/*
2777 	 * You *really* shouldn't map things that aren't page-aligned,
2778 	 * but we've historically allowed it because IO memory might
2779 	 * just have smaller alignment.
2780 	 */
2781 	len += start & ~PAGE_MASK;
2782 	pfn = start >> PAGE_SHIFT;
2783 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2784 	if (pfn + pages < pfn)
2785 		return -EINVAL;
2786 
2787 	/* We start the mapping 'vm_pgoff' pages into the area */
2788 	if (vma->vm_pgoff > pages)
2789 		return -EINVAL;
2790 	pfn += vma->vm_pgoff;
2791 	pages -= vma->vm_pgoff;
2792 
2793 	/* Can we fit all of the mapping? */
2794 	vm_len = vma->vm_end - vma->vm_start;
2795 	if (vm_len >> PAGE_SHIFT > pages)
2796 		return -EINVAL;
2797 
2798 	/* Ok, let it rip */
2799 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2800 }
2801 EXPORT_SYMBOL(vm_iomap_memory);
2802 
2803 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2804 				     unsigned long addr, unsigned long end,
2805 				     pte_fn_t fn, void *data, bool create,
2806 				     pgtbl_mod_mask *mask)
2807 {
2808 	pte_t *pte, *mapped_pte;
2809 	int err = 0;
2810 	spinlock_t *ptl;
2811 
2812 	if (create) {
2813 		mapped_pte = pte = (mm == &init_mm) ?
2814 			pte_alloc_kernel_track(pmd, addr, mask) :
2815 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2816 		if (!pte)
2817 			return -ENOMEM;
2818 	} else {
2819 		mapped_pte = pte = (mm == &init_mm) ?
2820 			pte_offset_kernel(pmd, addr) :
2821 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2822 		if (!pte)
2823 			return -EINVAL;
2824 	}
2825 
2826 	arch_enter_lazy_mmu_mode();
2827 
2828 	if (fn) {
2829 		do {
2830 			if (create || !pte_none(ptep_get(pte))) {
2831 				err = fn(pte++, addr, data);
2832 				if (err)
2833 					break;
2834 			}
2835 		} while (addr += PAGE_SIZE, addr != end);
2836 	}
2837 	*mask |= PGTBL_PTE_MODIFIED;
2838 
2839 	arch_leave_lazy_mmu_mode();
2840 
2841 	if (mm != &init_mm)
2842 		pte_unmap_unlock(mapped_pte, ptl);
2843 	return err;
2844 }
2845 
2846 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2847 				     unsigned long addr, unsigned long end,
2848 				     pte_fn_t fn, void *data, bool create,
2849 				     pgtbl_mod_mask *mask)
2850 {
2851 	pmd_t *pmd;
2852 	unsigned long next;
2853 	int err = 0;
2854 
2855 	BUG_ON(pud_leaf(*pud));
2856 
2857 	if (create) {
2858 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2859 		if (!pmd)
2860 			return -ENOMEM;
2861 	} else {
2862 		pmd = pmd_offset(pud, addr);
2863 	}
2864 	do {
2865 		next = pmd_addr_end(addr, end);
2866 		if (pmd_none(*pmd) && !create)
2867 			continue;
2868 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2869 			return -EINVAL;
2870 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2871 			if (!create)
2872 				continue;
2873 			pmd_clear_bad(pmd);
2874 		}
2875 		err = apply_to_pte_range(mm, pmd, addr, next,
2876 					 fn, data, create, mask);
2877 		if (err)
2878 			break;
2879 	} while (pmd++, addr = next, addr != end);
2880 
2881 	return err;
2882 }
2883 
2884 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2885 				     unsigned long addr, unsigned long end,
2886 				     pte_fn_t fn, void *data, bool create,
2887 				     pgtbl_mod_mask *mask)
2888 {
2889 	pud_t *pud;
2890 	unsigned long next;
2891 	int err = 0;
2892 
2893 	if (create) {
2894 		pud = pud_alloc_track(mm, p4d, addr, mask);
2895 		if (!pud)
2896 			return -ENOMEM;
2897 	} else {
2898 		pud = pud_offset(p4d, addr);
2899 	}
2900 	do {
2901 		next = pud_addr_end(addr, end);
2902 		if (pud_none(*pud) && !create)
2903 			continue;
2904 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2905 			return -EINVAL;
2906 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2907 			if (!create)
2908 				continue;
2909 			pud_clear_bad(pud);
2910 		}
2911 		err = apply_to_pmd_range(mm, pud, addr, next,
2912 					 fn, data, create, mask);
2913 		if (err)
2914 			break;
2915 	} while (pud++, addr = next, addr != end);
2916 
2917 	return err;
2918 }
2919 
2920 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2921 				     unsigned long addr, unsigned long end,
2922 				     pte_fn_t fn, void *data, bool create,
2923 				     pgtbl_mod_mask *mask)
2924 {
2925 	p4d_t *p4d;
2926 	unsigned long next;
2927 	int err = 0;
2928 
2929 	if (create) {
2930 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2931 		if (!p4d)
2932 			return -ENOMEM;
2933 	} else {
2934 		p4d = p4d_offset(pgd, addr);
2935 	}
2936 	do {
2937 		next = p4d_addr_end(addr, end);
2938 		if (p4d_none(*p4d) && !create)
2939 			continue;
2940 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2941 			return -EINVAL;
2942 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2943 			if (!create)
2944 				continue;
2945 			p4d_clear_bad(p4d);
2946 		}
2947 		err = apply_to_pud_range(mm, p4d, addr, next,
2948 					 fn, data, create, mask);
2949 		if (err)
2950 			break;
2951 	} while (p4d++, addr = next, addr != end);
2952 
2953 	return err;
2954 }
2955 
2956 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2957 				 unsigned long size, pte_fn_t fn,
2958 				 void *data, bool create)
2959 {
2960 	pgd_t *pgd;
2961 	unsigned long start = addr, next;
2962 	unsigned long end = addr + size;
2963 	pgtbl_mod_mask mask = 0;
2964 	int err = 0;
2965 
2966 	if (WARN_ON(addr >= end))
2967 		return -EINVAL;
2968 
2969 	pgd = pgd_offset(mm, addr);
2970 	do {
2971 		next = pgd_addr_end(addr, end);
2972 		if (pgd_none(*pgd) && !create)
2973 			continue;
2974 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2975 			return -EINVAL;
2976 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2977 			if (!create)
2978 				continue;
2979 			pgd_clear_bad(pgd);
2980 		}
2981 		err = apply_to_p4d_range(mm, pgd, addr, next,
2982 					 fn, data, create, &mask);
2983 		if (err)
2984 			break;
2985 	} while (pgd++, addr = next, addr != end);
2986 
2987 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2988 		arch_sync_kernel_mappings(start, start + size);
2989 
2990 	return err;
2991 }
2992 
2993 /*
2994  * Scan a region of virtual memory, filling in page tables as necessary
2995  * and calling a provided function on each leaf page table.
2996  */
2997 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2998 			unsigned long size, pte_fn_t fn, void *data)
2999 {
3000 	return __apply_to_page_range(mm, addr, size, fn, data, true);
3001 }
3002 EXPORT_SYMBOL_GPL(apply_to_page_range);
3003 
3004 /*
3005  * Scan a region of virtual memory, calling a provided function on
3006  * each leaf page table where it exists.
3007  *
3008  * Unlike apply_to_page_range, this does _not_ fill in page tables
3009  * where they are absent.
3010  */
3011 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3012 				 unsigned long size, pte_fn_t fn, void *data)
3013 {
3014 	return __apply_to_page_range(mm, addr, size, fn, data, false);
3015 }
3016 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
3017 
3018 /*
3019  * handle_pte_fault chooses page fault handler according to an entry which was
3020  * read non-atomically.  Before making any commitment, on those architectures
3021  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3022  * parts, do_swap_page must check under lock before unmapping the pte and
3023  * proceeding (but do_wp_page is only called after already making such a check;
3024  * and do_anonymous_page can safely check later on).
3025  */
3026 static inline int pte_unmap_same(struct vm_fault *vmf)
3027 {
3028 	int same = 1;
3029 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3030 	if (sizeof(pte_t) > sizeof(unsigned long)) {
3031 		spin_lock(vmf->ptl);
3032 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3033 		spin_unlock(vmf->ptl);
3034 	}
3035 #endif
3036 	pte_unmap(vmf->pte);
3037 	vmf->pte = NULL;
3038 	return same;
3039 }
3040 
3041 /*
3042  * Return:
3043  *	0:		copied succeeded
3044  *	-EHWPOISON:	copy failed due to hwpoison in source page
3045  *	-EAGAIN:	copied failed (some other reason)
3046  */
3047 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3048 				      struct vm_fault *vmf)
3049 {
3050 	int ret;
3051 	void *kaddr;
3052 	void __user *uaddr;
3053 	struct vm_area_struct *vma = vmf->vma;
3054 	struct mm_struct *mm = vma->vm_mm;
3055 	unsigned long addr = vmf->address;
3056 
3057 	if (likely(src)) {
3058 		if (copy_mc_user_highpage(dst, src, addr, vma))
3059 			return -EHWPOISON;
3060 		return 0;
3061 	}
3062 
3063 	/*
3064 	 * If the source page was a PFN mapping, we don't have
3065 	 * a "struct page" for it. We do a best-effort copy by
3066 	 * just copying from the original user address. If that
3067 	 * fails, we just zero-fill it. Live with it.
3068 	 */
3069 	kaddr = kmap_local_page(dst);
3070 	pagefault_disable();
3071 	uaddr = (void __user *)(addr & PAGE_MASK);
3072 
3073 	/*
3074 	 * On architectures with software "accessed" bits, we would
3075 	 * take a double page fault, so mark it accessed here.
3076 	 */
3077 	vmf->pte = NULL;
3078 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3079 		pte_t entry;
3080 
3081 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3082 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3083 			/*
3084 			 * Other thread has already handled the fault
3085 			 * and update local tlb only
3086 			 */
3087 			if (vmf->pte)
3088 				update_mmu_tlb(vma, addr, vmf->pte);
3089 			ret = -EAGAIN;
3090 			goto pte_unlock;
3091 		}
3092 
3093 		entry = pte_mkyoung(vmf->orig_pte);
3094 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3095 			update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3096 	}
3097 
3098 	/*
3099 	 * This really shouldn't fail, because the page is there
3100 	 * in the page tables. But it might just be unreadable,
3101 	 * in which case we just give up and fill the result with
3102 	 * zeroes.
3103 	 */
3104 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3105 		if (vmf->pte)
3106 			goto warn;
3107 
3108 		/* Re-validate under PTL if the page is still mapped */
3109 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3110 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3111 			/* The PTE changed under us, update local tlb */
3112 			if (vmf->pte)
3113 				update_mmu_tlb(vma, addr, vmf->pte);
3114 			ret = -EAGAIN;
3115 			goto pte_unlock;
3116 		}
3117 
3118 		/*
3119 		 * The same page can be mapped back since last copy attempt.
3120 		 * Try to copy again under PTL.
3121 		 */
3122 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3123 			/*
3124 			 * Give a warn in case there can be some obscure
3125 			 * use-case
3126 			 */
3127 warn:
3128 			WARN_ON_ONCE(1);
3129 			clear_page(kaddr);
3130 		}
3131 	}
3132 
3133 	ret = 0;
3134 
3135 pte_unlock:
3136 	if (vmf->pte)
3137 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3138 	pagefault_enable();
3139 	kunmap_local(kaddr);
3140 	flush_dcache_page(dst);
3141 
3142 	return ret;
3143 }
3144 
3145 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3146 {
3147 	struct file *vm_file = vma->vm_file;
3148 
3149 	if (vm_file)
3150 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3151 
3152 	/*
3153 	 * Special mappings (e.g. VDSO) do not have any file so fake
3154 	 * a default GFP_KERNEL for them.
3155 	 */
3156 	return GFP_KERNEL;
3157 }
3158 
3159 /*
3160  * Notify the address space that the page is about to become writable so that
3161  * it can prohibit this or wait for the page to get into an appropriate state.
3162  *
3163  * We do this without the lock held, so that it can sleep if it needs to.
3164  */
3165 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3166 {
3167 	vm_fault_t ret;
3168 	unsigned int old_flags = vmf->flags;
3169 
3170 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3171 
3172 	if (vmf->vma->vm_file &&
3173 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3174 		return VM_FAULT_SIGBUS;
3175 
3176 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3177 	/* Restore original flags so that caller is not surprised */
3178 	vmf->flags = old_flags;
3179 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3180 		return ret;
3181 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3182 		folio_lock(folio);
3183 		if (!folio->mapping) {
3184 			folio_unlock(folio);
3185 			return 0; /* retry */
3186 		}
3187 		ret |= VM_FAULT_LOCKED;
3188 	} else
3189 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3190 	return ret;
3191 }
3192 
3193 /*
3194  * Handle dirtying of a page in shared file mapping on a write fault.
3195  *
3196  * The function expects the page to be locked and unlocks it.
3197  */
3198 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3199 {
3200 	struct vm_area_struct *vma = vmf->vma;
3201 	struct address_space *mapping;
3202 	struct folio *folio = page_folio(vmf->page);
3203 	bool dirtied;
3204 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3205 
3206 	dirtied = folio_mark_dirty(folio);
3207 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3208 	/*
3209 	 * Take a local copy of the address_space - folio.mapping may be zeroed
3210 	 * by truncate after folio_unlock().   The address_space itself remains
3211 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
3212 	 * release semantics to prevent the compiler from undoing this copying.
3213 	 */
3214 	mapping = folio_raw_mapping(folio);
3215 	folio_unlock(folio);
3216 
3217 	if (!page_mkwrite)
3218 		file_update_time(vma->vm_file);
3219 
3220 	/*
3221 	 * Throttle page dirtying rate down to writeback speed.
3222 	 *
3223 	 * mapping may be NULL here because some device drivers do not
3224 	 * set page.mapping but still dirty their pages
3225 	 *
3226 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3227 	 * is pinning the mapping, as per above.
3228 	 */
3229 	if ((dirtied || page_mkwrite) && mapping) {
3230 		struct file *fpin;
3231 
3232 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3233 		balance_dirty_pages_ratelimited(mapping);
3234 		if (fpin) {
3235 			fput(fpin);
3236 			return VM_FAULT_COMPLETED;
3237 		}
3238 	}
3239 
3240 	return 0;
3241 }
3242 
3243 /*
3244  * Handle write page faults for pages that can be reused in the current vma
3245  *
3246  * This can happen either due to the mapping being with the VM_SHARED flag,
3247  * or due to us being the last reference standing to the page. In either
3248  * case, all we need to do here is to mark the page as writable and update
3249  * any related book-keeping.
3250  */
3251 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3252 	__releases(vmf->ptl)
3253 {
3254 	struct vm_area_struct *vma = vmf->vma;
3255 	pte_t entry;
3256 
3257 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3258 	VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3259 
3260 	if (folio) {
3261 		VM_BUG_ON(folio_test_anon(folio) &&
3262 			  !PageAnonExclusive(vmf->page));
3263 		/*
3264 		 * Clear the folio's cpupid information as the existing
3265 		 * information potentially belongs to a now completely
3266 		 * unrelated process.
3267 		 */
3268 		folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3269 	}
3270 
3271 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3272 	entry = pte_mkyoung(vmf->orig_pte);
3273 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3274 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3275 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3276 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3277 	count_vm_event(PGREUSE);
3278 }
3279 
3280 /*
3281  * We could add a bitflag somewhere, but for now, we know that all
3282  * vm_ops that have a ->map_pages have been audited and don't need
3283  * the mmap_lock to be held.
3284  */
3285 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3286 {
3287 	struct vm_area_struct *vma = vmf->vma;
3288 
3289 	if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3290 		return 0;
3291 	vma_end_read(vma);
3292 	return VM_FAULT_RETRY;
3293 }
3294 
3295 /**
3296  * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3297  * @vmf: The vm_fault descriptor passed from the fault handler.
3298  *
3299  * When preparing to insert an anonymous page into a VMA from a
3300  * fault handler, call this function rather than anon_vma_prepare().
3301  * If this vma does not already have an associated anon_vma and we are
3302  * only protected by the per-VMA lock, the caller must retry with the
3303  * mmap_lock held.  __anon_vma_prepare() will look at adjacent VMAs to
3304  * determine if this VMA can share its anon_vma, and that's not safe to
3305  * do with only the per-VMA lock held for this VMA.
3306  *
3307  * Return: 0 if fault handling can proceed.  Any other value should be
3308  * returned to the caller.
3309  */
3310 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3311 {
3312 	struct vm_area_struct *vma = vmf->vma;
3313 	vm_fault_t ret = 0;
3314 
3315 	if (likely(vma->anon_vma))
3316 		return 0;
3317 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3318 		if (!mmap_read_trylock(vma->vm_mm))
3319 			return VM_FAULT_RETRY;
3320 	}
3321 	if (__anon_vma_prepare(vma))
3322 		ret = VM_FAULT_OOM;
3323 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3324 		mmap_read_unlock(vma->vm_mm);
3325 	return ret;
3326 }
3327 
3328 /*
3329  * Handle the case of a page which we actually need to copy to a new page,
3330  * either due to COW or unsharing.
3331  *
3332  * Called with mmap_lock locked and the old page referenced, but
3333  * without the ptl held.
3334  *
3335  * High level logic flow:
3336  *
3337  * - Allocate a page, copy the content of the old page to the new one.
3338  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3339  * - Take the PTL. If the pte changed, bail out and release the allocated page
3340  * - If the pte is still the way we remember it, update the page table and all
3341  *   relevant references. This includes dropping the reference the page-table
3342  *   held to the old page, as well as updating the rmap.
3343  * - In any case, unlock the PTL and drop the reference we took to the old page.
3344  */
3345 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3346 {
3347 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3348 	struct vm_area_struct *vma = vmf->vma;
3349 	struct mm_struct *mm = vma->vm_mm;
3350 	struct folio *old_folio = NULL;
3351 	struct folio *new_folio = NULL;
3352 	pte_t entry;
3353 	int page_copied = 0;
3354 	struct mmu_notifier_range range;
3355 	vm_fault_t ret;
3356 	bool pfn_is_zero;
3357 
3358 	delayacct_wpcopy_start();
3359 
3360 	if (vmf->page)
3361 		old_folio = page_folio(vmf->page);
3362 	ret = vmf_anon_prepare(vmf);
3363 	if (unlikely(ret))
3364 		goto out;
3365 
3366 	pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3367 	new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3368 	if (!new_folio)
3369 		goto oom;
3370 
3371 	if (!pfn_is_zero) {
3372 		int err;
3373 
3374 		err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3375 		if (err) {
3376 			/*
3377 			 * COW failed, if the fault was solved by other,
3378 			 * it's fine. If not, userspace would re-fault on
3379 			 * the same address and we will handle the fault
3380 			 * from the second attempt.
3381 			 * The -EHWPOISON case will not be retried.
3382 			 */
3383 			folio_put(new_folio);
3384 			if (old_folio)
3385 				folio_put(old_folio);
3386 
3387 			delayacct_wpcopy_end();
3388 			return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3389 		}
3390 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3391 	}
3392 
3393 	__folio_mark_uptodate(new_folio);
3394 
3395 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3396 				vmf->address & PAGE_MASK,
3397 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3398 	mmu_notifier_invalidate_range_start(&range);
3399 
3400 	/*
3401 	 * Re-check the pte - we dropped the lock
3402 	 */
3403 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3404 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3405 		if (old_folio) {
3406 			if (!folio_test_anon(old_folio)) {
3407 				dec_mm_counter(mm, mm_counter_file(old_folio));
3408 				inc_mm_counter(mm, MM_ANONPAGES);
3409 			}
3410 		} else {
3411 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3412 			inc_mm_counter(mm, MM_ANONPAGES);
3413 		}
3414 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3415 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3416 		entry = pte_sw_mkyoung(entry);
3417 		if (unlikely(unshare)) {
3418 			if (pte_soft_dirty(vmf->orig_pte))
3419 				entry = pte_mksoft_dirty(entry);
3420 			if (pte_uffd_wp(vmf->orig_pte))
3421 				entry = pte_mkuffd_wp(entry);
3422 		} else {
3423 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3424 		}
3425 
3426 		/*
3427 		 * Clear the pte entry and flush it first, before updating the
3428 		 * pte with the new entry, to keep TLBs on different CPUs in
3429 		 * sync. This code used to set the new PTE then flush TLBs, but
3430 		 * that left a window where the new PTE could be loaded into
3431 		 * some TLBs while the old PTE remains in others.
3432 		 */
3433 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3434 		folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3435 		folio_add_lru_vma(new_folio, vma);
3436 		BUG_ON(unshare && pte_write(entry));
3437 		set_pte_at(mm, vmf->address, vmf->pte, entry);
3438 		update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3439 		if (old_folio) {
3440 			/*
3441 			 * Only after switching the pte to the new page may
3442 			 * we remove the mapcount here. Otherwise another
3443 			 * process may come and find the rmap count decremented
3444 			 * before the pte is switched to the new page, and
3445 			 * "reuse" the old page writing into it while our pte
3446 			 * here still points into it and can be read by other
3447 			 * threads.
3448 			 *
3449 			 * The critical issue is to order this
3450 			 * folio_remove_rmap_pte() with the ptp_clear_flush
3451 			 * above. Those stores are ordered by (if nothing else,)
3452 			 * the barrier present in the atomic_add_negative
3453 			 * in folio_remove_rmap_pte();
3454 			 *
3455 			 * Then the TLB flush in ptep_clear_flush ensures that
3456 			 * no process can access the old page before the
3457 			 * decremented mapcount is visible. And the old page
3458 			 * cannot be reused until after the decremented
3459 			 * mapcount is visible. So transitively, TLBs to
3460 			 * old page will be flushed before it can be reused.
3461 			 */
3462 			folio_remove_rmap_pte(old_folio, vmf->page, vma);
3463 		}
3464 
3465 		/* Free the old page.. */
3466 		new_folio = old_folio;
3467 		page_copied = 1;
3468 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3469 	} else if (vmf->pte) {
3470 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3471 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3472 	}
3473 
3474 	mmu_notifier_invalidate_range_end(&range);
3475 
3476 	if (new_folio)
3477 		folio_put(new_folio);
3478 	if (old_folio) {
3479 		if (page_copied)
3480 			free_swap_cache(old_folio);
3481 		folio_put(old_folio);
3482 	}
3483 
3484 	delayacct_wpcopy_end();
3485 	return 0;
3486 oom:
3487 	ret = VM_FAULT_OOM;
3488 out:
3489 	if (old_folio)
3490 		folio_put(old_folio);
3491 
3492 	delayacct_wpcopy_end();
3493 	return ret;
3494 }
3495 
3496 /**
3497  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3498  *			  writeable once the page is prepared
3499  *
3500  * @vmf: structure describing the fault
3501  * @folio: the folio of vmf->page
3502  *
3503  * This function handles all that is needed to finish a write page fault in a
3504  * shared mapping due to PTE being read-only once the mapped page is prepared.
3505  * It handles locking of PTE and modifying it.
3506  *
3507  * The function expects the page to be locked or other protection against
3508  * concurrent faults / writeback (such as DAX radix tree locks).
3509  *
3510  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3511  * we acquired PTE lock.
3512  */
3513 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3514 {
3515 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3516 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3517 				       &vmf->ptl);
3518 	if (!vmf->pte)
3519 		return VM_FAULT_NOPAGE;
3520 	/*
3521 	 * We might have raced with another page fault while we released the
3522 	 * pte_offset_map_lock.
3523 	 */
3524 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3525 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3526 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3527 		return VM_FAULT_NOPAGE;
3528 	}
3529 	wp_page_reuse(vmf, folio);
3530 	return 0;
3531 }
3532 
3533 /*
3534  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3535  * mapping
3536  */
3537 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3538 {
3539 	struct vm_area_struct *vma = vmf->vma;
3540 
3541 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3542 		vm_fault_t ret;
3543 
3544 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3545 		ret = vmf_can_call_fault(vmf);
3546 		if (ret)
3547 			return ret;
3548 
3549 		vmf->flags |= FAULT_FLAG_MKWRITE;
3550 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3551 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3552 			return ret;
3553 		return finish_mkwrite_fault(vmf, NULL);
3554 	}
3555 	wp_page_reuse(vmf, NULL);
3556 	return 0;
3557 }
3558 
3559 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3560 	__releases(vmf->ptl)
3561 {
3562 	struct vm_area_struct *vma = vmf->vma;
3563 	vm_fault_t ret = 0;
3564 
3565 	folio_get(folio);
3566 
3567 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3568 		vm_fault_t tmp;
3569 
3570 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3571 		tmp = vmf_can_call_fault(vmf);
3572 		if (tmp) {
3573 			folio_put(folio);
3574 			return tmp;
3575 		}
3576 
3577 		tmp = do_page_mkwrite(vmf, folio);
3578 		if (unlikely(!tmp || (tmp &
3579 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3580 			folio_put(folio);
3581 			return tmp;
3582 		}
3583 		tmp = finish_mkwrite_fault(vmf, folio);
3584 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3585 			folio_unlock(folio);
3586 			folio_put(folio);
3587 			return tmp;
3588 		}
3589 	} else {
3590 		wp_page_reuse(vmf, folio);
3591 		folio_lock(folio);
3592 	}
3593 	ret |= fault_dirty_shared_page(vmf);
3594 	folio_put(folio);
3595 
3596 	return ret;
3597 }
3598 
3599 static bool wp_can_reuse_anon_folio(struct folio *folio,
3600 				    struct vm_area_struct *vma)
3601 {
3602 	/*
3603 	 * We could currently only reuse a subpage of a large folio if no
3604 	 * other subpages of the large folios are still mapped. However,
3605 	 * let's just consistently not reuse subpages even if we could
3606 	 * reuse in that scenario, and give back a large folio a bit
3607 	 * sooner.
3608 	 */
3609 	if (folio_test_large(folio))
3610 		return false;
3611 
3612 	/*
3613 	 * We have to verify under folio lock: these early checks are
3614 	 * just an optimization to avoid locking the folio and freeing
3615 	 * the swapcache if there is little hope that we can reuse.
3616 	 *
3617 	 * KSM doesn't necessarily raise the folio refcount.
3618 	 */
3619 	if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3620 		return false;
3621 	if (!folio_test_lru(folio))
3622 		/*
3623 		 * We cannot easily detect+handle references from
3624 		 * remote LRU caches or references to LRU folios.
3625 		 */
3626 		lru_add_drain();
3627 	if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3628 		return false;
3629 	if (!folio_trylock(folio))
3630 		return false;
3631 	if (folio_test_swapcache(folio))
3632 		folio_free_swap(folio);
3633 	if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3634 		folio_unlock(folio);
3635 		return false;
3636 	}
3637 	/*
3638 	 * Ok, we've got the only folio reference from our mapping
3639 	 * and the folio is locked, it's dark out, and we're wearing
3640 	 * sunglasses. Hit it.
3641 	 */
3642 	folio_move_anon_rmap(folio, vma);
3643 	folio_unlock(folio);
3644 	return true;
3645 }
3646 
3647 /*
3648  * This routine handles present pages, when
3649  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3650  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3651  *   (FAULT_FLAG_UNSHARE)
3652  *
3653  * It is done by copying the page to a new address and decrementing the
3654  * shared-page counter for the old page.
3655  *
3656  * Note that this routine assumes that the protection checks have been
3657  * done by the caller (the low-level page fault routine in most cases).
3658  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3659  * done any necessary COW.
3660  *
3661  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3662  * though the page will change only once the write actually happens. This
3663  * avoids a few races, and potentially makes it more efficient.
3664  *
3665  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3666  * but allow concurrent faults), with pte both mapped and locked.
3667  * We return with mmap_lock still held, but pte unmapped and unlocked.
3668  */
3669 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3670 	__releases(vmf->ptl)
3671 {
3672 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3673 	struct vm_area_struct *vma = vmf->vma;
3674 	struct folio *folio = NULL;
3675 	pte_t pte;
3676 
3677 	if (likely(!unshare)) {
3678 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3679 			if (!userfaultfd_wp_async(vma)) {
3680 				pte_unmap_unlock(vmf->pte, vmf->ptl);
3681 				return handle_userfault(vmf, VM_UFFD_WP);
3682 			}
3683 
3684 			/*
3685 			 * Nothing needed (cache flush, TLB invalidations,
3686 			 * etc.) because we're only removing the uffd-wp bit,
3687 			 * which is completely invisible to the user.
3688 			 */
3689 			pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3690 
3691 			set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3692 			/*
3693 			 * Update this to be prepared for following up CoW
3694 			 * handling
3695 			 */
3696 			vmf->orig_pte = pte;
3697 		}
3698 
3699 		/*
3700 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3701 		 * is flushed in this case before copying.
3702 		 */
3703 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3704 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3705 			flush_tlb_page(vmf->vma, vmf->address);
3706 	}
3707 
3708 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3709 
3710 	if (vmf->page)
3711 		folio = page_folio(vmf->page);
3712 
3713 	/*
3714 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3715 	 * FAULT_FLAG_WRITE set at this point.
3716 	 */
3717 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3718 		/*
3719 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3720 		 * VM_PFNMAP VMA.
3721 		 *
3722 		 * We should not cow pages in a shared writeable mapping.
3723 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3724 		 */
3725 		if (!vmf->page)
3726 			return wp_pfn_shared(vmf);
3727 		return wp_page_shared(vmf, folio);
3728 	}
3729 
3730 	/*
3731 	 * Private mapping: create an exclusive anonymous page copy if reuse
3732 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3733 	 *
3734 	 * If we encounter a page that is marked exclusive, we must reuse
3735 	 * the page without further checks.
3736 	 */
3737 	if (folio && folio_test_anon(folio) &&
3738 	    (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3739 		if (!PageAnonExclusive(vmf->page))
3740 			SetPageAnonExclusive(vmf->page);
3741 		if (unlikely(unshare)) {
3742 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3743 			return 0;
3744 		}
3745 		wp_page_reuse(vmf, folio);
3746 		return 0;
3747 	}
3748 	/*
3749 	 * Ok, we need to copy. Oh, well..
3750 	 */
3751 	if (folio)
3752 		folio_get(folio);
3753 
3754 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3755 #ifdef CONFIG_KSM
3756 	if (folio && folio_test_ksm(folio))
3757 		count_vm_event(COW_KSM);
3758 #endif
3759 	return wp_page_copy(vmf);
3760 }
3761 
3762 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3763 		unsigned long start_addr, unsigned long end_addr,
3764 		struct zap_details *details)
3765 {
3766 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3767 }
3768 
3769 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3770 					    pgoff_t first_index,
3771 					    pgoff_t last_index,
3772 					    struct zap_details *details)
3773 {
3774 	struct vm_area_struct *vma;
3775 	pgoff_t vba, vea, zba, zea;
3776 
3777 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3778 		vba = vma->vm_pgoff;
3779 		vea = vba + vma_pages(vma) - 1;
3780 		zba = max(first_index, vba);
3781 		zea = min(last_index, vea);
3782 
3783 		unmap_mapping_range_vma(vma,
3784 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3785 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3786 				details);
3787 	}
3788 }
3789 
3790 /**
3791  * unmap_mapping_folio() - Unmap single folio from processes.
3792  * @folio: The locked folio to be unmapped.
3793  *
3794  * Unmap this folio from any userspace process which still has it mmaped.
3795  * Typically, for efficiency, the range of nearby pages has already been
3796  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3797  * truncation or invalidation holds the lock on a folio, it may find that
3798  * the page has been remapped again: and then uses unmap_mapping_folio()
3799  * to unmap it finally.
3800  */
3801 void unmap_mapping_folio(struct folio *folio)
3802 {
3803 	struct address_space *mapping = folio->mapping;
3804 	struct zap_details details = { };
3805 	pgoff_t	first_index;
3806 	pgoff_t	last_index;
3807 
3808 	VM_BUG_ON(!folio_test_locked(folio));
3809 
3810 	first_index = folio->index;
3811 	last_index = folio_next_index(folio) - 1;
3812 
3813 	details.even_cows = false;
3814 	details.single_folio = folio;
3815 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3816 
3817 	i_mmap_lock_read(mapping);
3818 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3819 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3820 					 last_index, &details);
3821 	i_mmap_unlock_read(mapping);
3822 }
3823 
3824 /**
3825  * unmap_mapping_pages() - Unmap pages from processes.
3826  * @mapping: The address space containing pages to be unmapped.
3827  * @start: Index of first page to be unmapped.
3828  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3829  * @even_cows: Whether to unmap even private COWed pages.
3830  *
3831  * Unmap the pages in this address space from any userspace process which
3832  * has them mmaped.  Generally, you want to remove COWed pages as well when
3833  * a file is being truncated, but not when invalidating pages from the page
3834  * cache.
3835  */
3836 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3837 		pgoff_t nr, bool even_cows)
3838 {
3839 	struct zap_details details = { };
3840 	pgoff_t	first_index = start;
3841 	pgoff_t	last_index = start + nr - 1;
3842 
3843 	details.even_cows = even_cows;
3844 	if (last_index < first_index)
3845 		last_index = ULONG_MAX;
3846 
3847 	i_mmap_lock_read(mapping);
3848 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3849 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3850 					 last_index, &details);
3851 	i_mmap_unlock_read(mapping);
3852 }
3853 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3854 
3855 /**
3856  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3857  * address_space corresponding to the specified byte range in the underlying
3858  * file.
3859  *
3860  * @mapping: the address space containing mmaps to be unmapped.
3861  * @holebegin: byte in first page to unmap, relative to the start of
3862  * the underlying file.  This will be rounded down to a PAGE_SIZE
3863  * boundary.  Note that this is different from truncate_pagecache(), which
3864  * must keep the partial page.  In contrast, we must get rid of
3865  * partial pages.
3866  * @holelen: size of prospective hole in bytes.  This will be rounded
3867  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3868  * end of the file.
3869  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3870  * but 0 when invalidating pagecache, don't throw away private data.
3871  */
3872 void unmap_mapping_range(struct address_space *mapping,
3873 		loff_t const holebegin, loff_t const holelen, int even_cows)
3874 {
3875 	pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
3876 	pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
3877 
3878 	/* Check for overflow. */
3879 	if (sizeof(holelen) > sizeof(hlen)) {
3880 		long long holeend =
3881 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3882 		if (holeend & ~(long long)ULONG_MAX)
3883 			hlen = ULONG_MAX - hba + 1;
3884 	}
3885 
3886 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3887 }
3888 EXPORT_SYMBOL(unmap_mapping_range);
3889 
3890 /*
3891  * Restore a potential device exclusive pte to a working pte entry
3892  */
3893 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3894 {
3895 	struct folio *folio = page_folio(vmf->page);
3896 	struct vm_area_struct *vma = vmf->vma;
3897 	struct mmu_notifier_range range;
3898 	vm_fault_t ret;
3899 
3900 	/*
3901 	 * We need a reference to lock the folio because we don't hold
3902 	 * the PTL so a racing thread can remove the device-exclusive
3903 	 * entry and unmap it. If the folio is free the entry must
3904 	 * have been removed already. If it happens to have already
3905 	 * been re-allocated after being freed all we do is lock and
3906 	 * unlock it.
3907 	 */
3908 	if (!folio_try_get(folio))
3909 		return 0;
3910 
3911 	ret = folio_lock_or_retry(folio, vmf);
3912 	if (ret) {
3913 		folio_put(folio);
3914 		return ret;
3915 	}
3916 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3917 				vma->vm_mm, vmf->address & PAGE_MASK,
3918 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3919 	mmu_notifier_invalidate_range_start(&range);
3920 
3921 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3922 				&vmf->ptl);
3923 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3924 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3925 
3926 	if (vmf->pte)
3927 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3928 	folio_unlock(folio);
3929 	folio_put(folio);
3930 
3931 	mmu_notifier_invalidate_range_end(&range);
3932 	return 0;
3933 }
3934 
3935 static inline bool should_try_to_free_swap(struct folio *folio,
3936 					   struct vm_area_struct *vma,
3937 					   unsigned int fault_flags)
3938 {
3939 	if (!folio_test_swapcache(folio))
3940 		return false;
3941 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3942 	    folio_test_mlocked(folio))
3943 		return true;
3944 	/*
3945 	 * If we want to map a page that's in the swapcache writable, we
3946 	 * have to detect via the refcount if we're really the exclusive
3947 	 * user. Try freeing the swapcache to get rid of the swapcache
3948 	 * reference only in case it's likely that we'll be the exlusive user.
3949 	 */
3950 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3951 		folio_ref_count(folio) == (1 + folio_nr_pages(folio));
3952 }
3953 
3954 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3955 {
3956 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3957 				       vmf->address, &vmf->ptl);
3958 	if (!vmf->pte)
3959 		return 0;
3960 	/*
3961 	 * Be careful so that we will only recover a special uffd-wp pte into a
3962 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3963 	 *
3964 	 * This should also cover the case where e.g. the pte changed
3965 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3966 	 * So is_pte_marker() check is not enough to safely drop the pte.
3967 	 */
3968 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3969 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3970 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3971 	return 0;
3972 }
3973 
3974 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3975 {
3976 	if (vma_is_anonymous(vmf->vma))
3977 		return do_anonymous_page(vmf);
3978 	else
3979 		return do_fault(vmf);
3980 }
3981 
3982 /*
3983  * This is actually a page-missing access, but with uffd-wp special pte
3984  * installed.  It means this pte was wr-protected before being unmapped.
3985  */
3986 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3987 {
3988 	/*
3989 	 * Just in case there're leftover special ptes even after the region
3990 	 * got unregistered - we can simply clear them.
3991 	 */
3992 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3993 		return pte_marker_clear(vmf);
3994 
3995 	return do_pte_missing(vmf);
3996 }
3997 
3998 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3999 {
4000 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
4001 	unsigned long marker = pte_marker_get(entry);
4002 
4003 	/*
4004 	 * PTE markers should never be empty.  If anything weird happened,
4005 	 * the best thing to do is to kill the process along with its mm.
4006 	 */
4007 	if (WARN_ON_ONCE(!marker))
4008 		return VM_FAULT_SIGBUS;
4009 
4010 	/* Higher priority than uffd-wp when data corrupted */
4011 	if (marker & PTE_MARKER_POISONED)
4012 		return VM_FAULT_HWPOISON;
4013 
4014 	/* Hitting a guard page is always a fatal condition. */
4015 	if (marker & PTE_MARKER_GUARD)
4016 		return VM_FAULT_SIGSEGV;
4017 
4018 	if (pte_marker_entry_uffd_wp(entry))
4019 		return pte_marker_handle_uffd_wp(vmf);
4020 
4021 	/* This is an unknown pte marker */
4022 	return VM_FAULT_SIGBUS;
4023 }
4024 
4025 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4026 {
4027 	struct vm_area_struct *vma = vmf->vma;
4028 	struct folio *folio;
4029 	swp_entry_t entry;
4030 
4031 	folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4032 	if (!folio)
4033 		return NULL;
4034 
4035 	entry = pte_to_swp_entry(vmf->orig_pte);
4036 	if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4037 					   GFP_KERNEL, entry)) {
4038 		folio_put(folio);
4039 		return NULL;
4040 	}
4041 
4042 	return folio;
4043 }
4044 
4045 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4046 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr)
4047 {
4048 	struct swap_info_struct *si = swp_swap_info(entry);
4049 	pgoff_t offset = swp_offset(entry);
4050 	int i;
4051 
4052 	/*
4053 	 * While allocating a large folio and doing swap_read_folio, which is
4054 	 * the case the being faulted pte doesn't have swapcache. We need to
4055 	 * ensure all PTEs have no cache as well, otherwise, we might go to
4056 	 * swap devices while the content is in swapcache.
4057 	 */
4058 	for (i = 0; i < max_nr; i++) {
4059 		if ((si->swap_map[offset + i] & SWAP_HAS_CACHE))
4060 			return i;
4061 	}
4062 
4063 	return i;
4064 }
4065 
4066 /*
4067  * Check if the PTEs within a range are contiguous swap entries
4068  * and have consistent swapcache, zeromap.
4069  */
4070 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4071 {
4072 	unsigned long addr;
4073 	swp_entry_t entry;
4074 	int idx;
4075 	pte_t pte;
4076 
4077 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4078 	idx = (vmf->address - addr) / PAGE_SIZE;
4079 	pte = ptep_get(ptep);
4080 
4081 	if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4082 		return false;
4083 	entry = pte_to_swp_entry(pte);
4084 	if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4085 		return false;
4086 
4087 	/*
4088 	 * swap_read_folio() can't handle the case a large folio is hybridly
4089 	 * from different backends. And they are likely corner cases. Similar
4090 	 * things might be added once zswap support large folios.
4091 	 */
4092 	if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4093 		return false;
4094 	if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4095 		return false;
4096 
4097 	return true;
4098 }
4099 
4100 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4101 						     unsigned long addr,
4102 						     unsigned long orders)
4103 {
4104 	int order, nr;
4105 
4106 	order = highest_order(orders);
4107 
4108 	/*
4109 	 * To swap in a THP with nr pages, we require that its first swap_offset
4110 	 * is aligned with that number, as it was when the THP was swapped out.
4111 	 * This helps filter out most invalid entries.
4112 	 */
4113 	while (orders) {
4114 		nr = 1 << order;
4115 		if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4116 			break;
4117 		order = next_order(&orders, order);
4118 	}
4119 
4120 	return orders;
4121 }
4122 
4123 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4124 {
4125 	struct vm_area_struct *vma = vmf->vma;
4126 	unsigned long orders;
4127 	struct folio *folio;
4128 	unsigned long addr;
4129 	swp_entry_t entry;
4130 	spinlock_t *ptl;
4131 	pte_t *pte;
4132 	gfp_t gfp;
4133 	int order;
4134 
4135 	/*
4136 	 * If uffd is active for the vma we need per-page fault fidelity to
4137 	 * maintain the uffd semantics.
4138 	 */
4139 	if (unlikely(userfaultfd_armed(vma)))
4140 		goto fallback;
4141 
4142 	/*
4143 	 * A large swapped out folio could be partially or fully in zswap. We
4144 	 * lack handling for such cases, so fallback to swapping in order-0
4145 	 * folio.
4146 	 */
4147 	if (!zswap_never_enabled())
4148 		goto fallback;
4149 
4150 	entry = pte_to_swp_entry(vmf->orig_pte);
4151 	/*
4152 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4153 	 * and suitable for swapping THP.
4154 	 */
4155 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4156 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4157 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4158 	orders = thp_swap_suitable_orders(swp_offset(entry),
4159 					  vmf->address, orders);
4160 
4161 	if (!orders)
4162 		goto fallback;
4163 
4164 	pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4165 				  vmf->address & PMD_MASK, &ptl);
4166 	if (unlikely(!pte))
4167 		goto fallback;
4168 
4169 	/*
4170 	 * For do_swap_page, find the highest order where the aligned range is
4171 	 * completely swap entries with contiguous swap offsets.
4172 	 */
4173 	order = highest_order(orders);
4174 	while (orders) {
4175 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4176 		if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4177 			break;
4178 		order = next_order(&orders, order);
4179 	}
4180 
4181 	pte_unmap_unlock(pte, ptl);
4182 
4183 	/* Try allocating the highest of the remaining orders. */
4184 	gfp = vma_thp_gfp_mask(vma);
4185 	while (orders) {
4186 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4187 		folio = vma_alloc_folio(gfp, order, vma, addr);
4188 		if (folio) {
4189 			if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4190 							    gfp, entry))
4191 				return folio;
4192 			folio_put(folio);
4193 		}
4194 		order = next_order(&orders, order);
4195 	}
4196 
4197 fallback:
4198 	return __alloc_swap_folio(vmf);
4199 }
4200 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
4201 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4202 {
4203 	return __alloc_swap_folio(vmf);
4204 }
4205 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4206 
4207 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq);
4208 
4209 /*
4210  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4211  * but allow concurrent faults), and pte mapped but not yet locked.
4212  * We return with pte unmapped and unlocked.
4213  *
4214  * We return with the mmap_lock locked or unlocked in the same cases
4215  * as does filemap_fault().
4216  */
4217 vm_fault_t do_swap_page(struct vm_fault *vmf)
4218 {
4219 	struct vm_area_struct *vma = vmf->vma;
4220 	struct folio *swapcache, *folio = NULL;
4221 	DECLARE_WAITQUEUE(wait, current);
4222 	struct page *page;
4223 	struct swap_info_struct *si = NULL;
4224 	rmap_t rmap_flags = RMAP_NONE;
4225 	bool need_clear_cache = false;
4226 	bool exclusive = false;
4227 	swp_entry_t entry;
4228 	pte_t pte;
4229 	vm_fault_t ret = 0;
4230 	void *shadow = NULL;
4231 	int nr_pages;
4232 	unsigned long page_idx;
4233 	unsigned long address;
4234 	pte_t *ptep;
4235 
4236 	if (!pte_unmap_same(vmf))
4237 		goto out;
4238 
4239 	entry = pte_to_swp_entry(vmf->orig_pte);
4240 	if (unlikely(non_swap_entry(entry))) {
4241 		if (is_migration_entry(entry)) {
4242 			migration_entry_wait(vma->vm_mm, vmf->pmd,
4243 					     vmf->address);
4244 		} else if (is_device_exclusive_entry(entry)) {
4245 			vmf->page = pfn_swap_entry_to_page(entry);
4246 			ret = remove_device_exclusive_entry(vmf);
4247 		} else if (is_device_private_entry(entry)) {
4248 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4249 				/*
4250 				 * migrate_to_ram is not yet ready to operate
4251 				 * under VMA lock.
4252 				 */
4253 				vma_end_read(vma);
4254 				ret = VM_FAULT_RETRY;
4255 				goto out;
4256 			}
4257 
4258 			vmf->page = pfn_swap_entry_to_page(entry);
4259 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4260 					vmf->address, &vmf->ptl);
4261 			if (unlikely(!vmf->pte ||
4262 				     !pte_same(ptep_get(vmf->pte),
4263 							vmf->orig_pte)))
4264 				goto unlock;
4265 
4266 			/*
4267 			 * Get a page reference while we know the page can't be
4268 			 * freed.
4269 			 */
4270 			get_page(vmf->page);
4271 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4272 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
4273 			put_page(vmf->page);
4274 		} else if (is_hwpoison_entry(entry)) {
4275 			ret = VM_FAULT_HWPOISON;
4276 		} else if (is_pte_marker_entry(entry)) {
4277 			ret = handle_pte_marker(vmf);
4278 		} else {
4279 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4280 			ret = VM_FAULT_SIGBUS;
4281 		}
4282 		goto out;
4283 	}
4284 
4285 	/* Prevent swapoff from happening to us. */
4286 	si = get_swap_device(entry);
4287 	if (unlikely(!si))
4288 		goto out;
4289 
4290 	folio = swap_cache_get_folio(entry, vma, vmf->address);
4291 	if (folio)
4292 		page = folio_file_page(folio, swp_offset(entry));
4293 	swapcache = folio;
4294 
4295 	if (!folio) {
4296 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
4297 		    __swap_count(entry) == 1) {
4298 			/* skip swapcache */
4299 			folio = alloc_swap_folio(vmf);
4300 			if (folio) {
4301 				__folio_set_locked(folio);
4302 				__folio_set_swapbacked(folio);
4303 
4304 				nr_pages = folio_nr_pages(folio);
4305 				if (folio_test_large(folio))
4306 					entry.val = ALIGN_DOWN(entry.val, nr_pages);
4307 				/*
4308 				 * Prevent parallel swapin from proceeding with
4309 				 * the cache flag. Otherwise, another thread
4310 				 * may finish swapin first, free the entry, and
4311 				 * swapout reusing the same entry. It's
4312 				 * undetectable as pte_same() returns true due
4313 				 * to entry reuse.
4314 				 */
4315 				if (swapcache_prepare(entry, nr_pages)) {
4316 					/*
4317 					 * Relax a bit to prevent rapid
4318 					 * repeated page faults.
4319 					 */
4320 					add_wait_queue(&swapcache_wq, &wait);
4321 					schedule_timeout_uninterruptible(1);
4322 					remove_wait_queue(&swapcache_wq, &wait);
4323 					goto out_page;
4324 				}
4325 				need_clear_cache = true;
4326 
4327 				mem_cgroup_swapin_uncharge_swap(entry, nr_pages);
4328 
4329 				shadow = get_shadow_from_swap_cache(entry);
4330 				if (shadow)
4331 					workingset_refault(folio, shadow);
4332 
4333 				folio_add_lru(folio);
4334 
4335 				/* To provide entry to swap_read_folio() */
4336 				folio->swap = entry;
4337 				swap_read_folio(folio, NULL);
4338 				folio->private = NULL;
4339 			}
4340 		} else {
4341 			folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
4342 						vmf);
4343 			swapcache = folio;
4344 		}
4345 
4346 		if (!folio) {
4347 			/*
4348 			 * Back out if somebody else faulted in this pte
4349 			 * while we released the pte lock.
4350 			 */
4351 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4352 					vmf->address, &vmf->ptl);
4353 			if (likely(vmf->pte &&
4354 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4355 				ret = VM_FAULT_OOM;
4356 			goto unlock;
4357 		}
4358 
4359 		/* Had to read the page from swap area: Major fault */
4360 		ret = VM_FAULT_MAJOR;
4361 		count_vm_event(PGMAJFAULT);
4362 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4363 		page = folio_file_page(folio, swp_offset(entry));
4364 	} else if (PageHWPoison(page)) {
4365 		/*
4366 		 * hwpoisoned dirty swapcache pages are kept for killing
4367 		 * owner processes (which may be unknown at hwpoison time)
4368 		 */
4369 		ret = VM_FAULT_HWPOISON;
4370 		goto out_release;
4371 	}
4372 
4373 	ret |= folio_lock_or_retry(folio, vmf);
4374 	if (ret & VM_FAULT_RETRY)
4375 		goto out_release;
4376 
4377 	if (swapcache) {
4378 		/*
4379 		 * Make sure folio_free_swap() or swapoff did not release the
4380 		 * swapcache from under us.  The page pin, and pte_same test
4381 		 * below, are not enough to exclude that.  Even if it is still
4382 		 * swapcache, we need to check that the page's swap has not
4383 		 * changed.
4384 		 */
4385 		if (unlikely(!folio_test_swapcache(folio) ||
4386 			     page_swap_entry(page).val != entry.val))
4387 			goto out_page;
4388 
4389 		/*
4390 		 * KSM sometimes has to copy on read faults, for example, if
4391 		 * page->index of !PageKSM() pages would be nonlinear inside the
4392 		 * anon VMA -- PageKSM() is lost on actual swapout.
4393 		 */
4394 		folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4395 		if (unlikely(!folio)) {
4396 			ret = VM_FAULT_OOM;
4397 			folio = swapcache;
4398 			goto out_page;
4399 		} else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4400 			ret = VM_FAULT_HWPOISON;
4401 			folio = swapcache;
4402 			goto out_page;
4403 		}
4404 		if (folio != swapcache)
4405 			page = folio_page(folio, 0);
4406 
4407 		/*
4408 		 * If we want to map a page that's in the swapcache writable, we
4409 		 * have to detect via the refcount if we're really the exclusive
4410 		 * owner. Try removing the extra reference from the local LRU
4411 		 * caches if required.
4412 		 */
4413 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
4414 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
4415 			lru_add_drain();
4416 	}
4417 
4418 	folio_throttle_swaprate(folio, GFP_KERNEL);
4419 
4420 	/*
4421 	 * Back out if somebody else already faulted in this pte.
4422 	 */
4423 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4424 			&vmf->ptl);
4425 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4426 		goto out_nomap;
4427 
4428 	if (unlikely(!folio_test_uptodate(folio))) {
4429 		ret = VM_FAULT_SIGBUS;
4430 		goto out_nomap;
4431 	}
4432 
4433 	/* allocated large folios for SWP_SYNCHRONOUS_IO */
4434 	if (folio_test_large(folio) && !folio_test_swapcache(folio)) {
4435 		unsigned long nr = folio_nr_pages(folio);
4436 		unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE);
4437 		unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE;
4438 		pte_t *folio_ptep = vmf->pte - idx;
4439 		pte_t folio_pte = ptep_get(folio_ptep);
4440 
4441 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4442 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4443 			goto out_nomap;
4444 
4445 		page_idx = idx;
4446 		address = folio_start;
4447 		ptep = folio_ptep;
4448 		goto check_folio;
4449 	}
4450 
4451 	nr_pages = 1;
4452 	page_idx = 0;
4453 	address = vmf->address;
4454 	ptep = vmf->pte;
4455 	if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4456 		int nr = folio_nr_pages(folio);
4457 		unsigned long idx = folio_page_idx(folio, page);
4458 		unsigned long folio_start = address - idx * PAGE_SIZE;
4459 		unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4460 		pte_t *folio_ptep;
4461 		pte_t folio_pte;
4462 
4463 		if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4464 			goto check_folio;
4465 		if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4466 			goto check_folio;
4467 
4468 		folio_ptep = vmf->pte - idx;
4469 		folio_pte = ptep_get(folio_ptep);
4470 		if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4471 		    swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4472 			goto check_folio;
4473 
4474 		page_idx = idx;
4475 		address = folio_start;
4476 		ptep = folio_ptep;
4477 		nr_pages = nr;
4478 		entry = folio->swap;
4479 		page = &folio->page;
4480 	}
4481 
4482 check_folio:
4483 	/*
4484 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4485 	 * must never point at an anonymous page in the swapcache that is
4486 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
4487 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4488 	 * check after taking the PT lock and making sure that nobody
4489 	 * concurrently faulted in this page and set PG_anon_exclusive.
4490 	 */
4491 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4492 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4493 
4494 	/*
4495 	 * Check under PT lock (to protect against concurrent fork() sharing
4496 	 * the swap entry concurrently) for certainly exclusive pages.
4497 	 */
4498 	if (!folio_test_ksm(folio)) {
4499 		exclusive = pte_swp_exclusive(vmf->orig_pte);
4500 		if (folio != swapcache) {
4501 			/*
4502 			 * We have a fresh page that is not exposed to the
4503 			 * swapcache -> certainly exclusive.
4504 			 */
4505 			exclusive = true;
4506 		} else if (exclusive && folio_test_writeback(folio) &&
4507 			  data_race(si->flags & SWP_STABLE_WRITES)) {
4508 			/*
4509 			 * This is tricky: not all swap backends support
4510 			 * concurrent page modifications while under writeback.
4511 			 *
4512 			 * So if we stumble over such a page in the swapcache
4513 			 * we must not set the page exclusive, otherwise we can
4514 			 * map it writable without further checks and modify it
4515 			 * while still under writeback.
4516 			 *
4517 			 * For these problematic swap backends, simply drop the
4518 			 * exclusive marker: this is perfectly fine as we start
4519 			 * writeback only if we fully unmapped the page and
4520 			 * there are no unexpected references on the page after
4521 			 * unmapping succeeded. After fully unmapped, no
4522 			 * further GUP references (FOLL_GET and FOLL_PIN) can
4523 			 * appear, so dropping the exclusive marker and mapping
4524 			 * it only R/O is fine.
4525 			 */
4526 			exclusive = false;
4527 		}
4528 	}
4529 
4530 	/*
4531 	 * Some architectures may have to restore extra metadata to the page
4532 	 * when reading from swap. This metadata may be indexed by swap entry
4533 	 * so this must be called before swap_free().
4534 	 */
4535 	arch_swap_restore(folio_swap(entry, folio), folio);
4536 
4537 	/*
4538 	 * Remove the swap entry and conditionally try to free up the swapcache.
4539 	 * We're already holding a reference on the page but haven't mapped it
4540 	 * yet.
4541 	 */
4542 	swap_free_nr(entry, nr_pages);
4543 	if (should_try_to_free_swap(folio, vma, vmf->flags))
4544 		folio_free_swap(folio);
4545 
4546 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4547 	add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
4548 	pte = mk_pte(page, vma->vm_page_prot);
4549 	if (pte_swp_soft_dirty(vmf->orig_pte))
4550 		pte = pte_mksoft_dirty(pte);
4551 	if (pte_swp_uffd_wp(vmf->orig_pte))
4552 		pte = pte_mkuffd_wp(pte);
4553 
4554 	/*
4555 	 * Same logic as in do_wp_page(); however, optimize for pages that are
4556 	 * certainly not shared either because we just allocated them without
4557 	 * exposing them to the swapcache or because the swap entry indicates
4558 	 * exclusivity.
4559 	 */
4560 	if (!folio_test_ksm(folio) &&
4561 	    (exclusive || folio_ref_count(folio) == 1)) {
4562 		if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
4563 		    !pte_needs_soft_dirty_wp(vma, pte)) {
4564 			pte = pte_mkwrite(pte, vma);
4565 			if (vmf->flags & FAULT_FLAG_WRITE) {
4566 				pte = pte_mkdirty(pte);
4567 				vmf->flags &= ~FAULT_FLAG_WRITE;
4568 			}
4569 		}
4570 		rmap_flags |= RMAP_EXCLUSIVE;
4571 	}
4572 	folio_ref_add(folio, nr_pages - 1);
4573 	flush_icache_pages(vma, page, nr_pages);
4574 	vmf->orig_pte = pte_advance_pfn(pte, page_idx);
4575 
4576 	/* ksm created a completely new copy */
4577 	if (unlikely(folio != swapcache && swapcache)) {
4578 		folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
4579 		folio_add_lru_vma(folio, vma);
4580 	} else if (!folio_test_anon(folio)) {
4581 		/*
4582 		 * We currently only expect small !anon folios which are either
4583 		 * fully exclusive or fully shared, or new allocated large
4584 		 * folios which are fully exclusive. If we ever get large
4585 		 * folios within swapcache here, we have to be careful.
4586 		 */
4587 		VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio));
4588 		VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
4589 		folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
4590 	} else {
4591 		folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
4592 					rmap_flags);
4593 	}
4594 
4595 	VM_BUG_ON(!folio_test_anon(folio) ||
4596 			(pte_write(pte) && !PageAnonExclusive(page)));
4597 	set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
4598 	arch_do_swap_page_nr(vma->vm_mm, vma, address,
4599 			pte, pte, nr_pages);
4600 
4601 	folio_unlock(folio);
4602 	if (folio != swapcache && swapcache) {
4603 		/*
4604 		 * Hold the lock to avoid the swap entry to be reused
4605 		 * until we take the PT lock for the pte_same() check
4606 		 * (to avoid false positives from pte_same). For
4607 		 * further safety release the lock after the swap_free
4608 		 * so that the swap count won't change under a
4609 		 * parallel locked swapcache.
4610 		 */
4611 		folio_unlock(swapcache);
4612 		folio_put(swapcache);
4613 	}
4614 
4615 	if (vmf->flags & FAULT_FLAG_WRITE) {
4616 		ret |= do_wp_page(vmf);
4617 		if (ret & VM_FAULT_ERROR)
4618 			ret &= VM_FAULT_ERROR;
4619 		goto out;
4620 	}
4621 
4622 	/* No need to invalidate - it was non-present before */
4623 	update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
4624 unlock:
4625 	if (vmf->pte)
4626 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4627 out:
4628 	/* Clear the swap cache pin for direct swapin after PTL unlock */
4629 	if (need_clear_cache) {
4630 		swapcache_clear(si, entry, nr_pages);
4631 		if (waitqueue_active(&swapcache_wq))
4632 			wake_up(&swapcache_wq);
4633 	}
4634 	if (si)
4635 		put_swap_device(si);
4636 	return ret;
4637 out_nomap:
4638 	if (vmf->pte)
4639 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4640 out_page:
4641 	folio_unlock(folio);
4642 out_release:
4643 	folio_put(folio);
4644 	if (folio != swapcache && swapcache) {
4645 		folio_unlock(swapcache);
4646 		folio_put(swapcache);
4647 	}
4648 	if (need_clear_cache) {
4649 		swapcache_clear(si, entry, nr_pages);
4650 		if (waitqueue_active(&swapcache_wq))
4651 			wake_up(&swapcache_wq);
4652 	}
4653 	if (si)
4654 		put_swap_device(si);
4655 	return ret;
4656 }
4657 
4658 static bool pte_range_none(pte_t *pte, int nr_pages)
4659 {
4660 	int i;
4661 
4662 	for (i = 0; i < nr_pages; i++) {
4663 		if (!pte_none(ptep_get_lockless(pte + i)))
4664 			return false;
4665 	}
4666 
4667 	return true;
4668 }
4669 
4670 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
4671 {
4672 	struct vm_area_struct *vma = vmf->vma;
4673 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4674 	unsigned long orders;
4675 	struct folio *folio;
4676 	unsigned long addr;
4677 	pte_t *pte;
4678 	gfp_t gfp;
4679 	int order;
4680 
4681 	/*
4682 	 * If uffd is active for the vma we need per-page fault fidelity to
4683 	 * maintain the uffd semantics.
4684 	 */
4685 	if (unlikely(userfaultfd_armed(vma)))
4686 		goto fallback;
4687 
4688 	/*
4689 	 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4690 	 * for this vma. Then filter out the orders that can't be allocated over
4691 	 * the faulting address and still be fully contained in the vma.
4692 	 */
4693 	orders = thp_vma_allowable_orders(vma, vma->vm_flags,
4694 			TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1);
4695 	orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4696 
4697 	if (!orders)
4698 		goto fallback;
4699 
4700 	pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
4701 	if (!pte)
4702 		return ERR_PTR(-EAGAIN);
4703 
4704 	/*
4705 	 * Find the highest order where the aligned range is completely
4706 	 * pte_none(). Note that all remaining orders will be completely
4707 	 * pte_none().
4708 	 */
4709 	order = highest_order(orders);
4710 	while (orders) {
4711 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4712 		if (pte_range_none(pte + pte_index(addr), 1 << order))
4713 			break;
4714 		order = next_order(&orders, order);
4715 	}
4716 
4717 	pte_unmap(pte);
4718 
4719 	if (!orders)
4720 		goto fallback;
4721 
4722 	/* Try allocating the highest of the remaining orders. */
4723 	gfp = vma_thp_gfp_mask(vma);
4724 	while (orders) {
4725 		addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4726 		folio = vma_alloc_folio(gfp, order, vma, addr);
4727 		if (folio) {
4728 			if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
4729 				count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
4730 				folio_put(folio);
4731 				goto next;
4732 			}
4733 			folio_throttle_swaprate(folio, gfp);
4734 			/*
4735 			 * When a folio is not zeroed during allocation
4736 			 * (__GFP_ZERO not used) or user folios require special
4737 			 * handling, folio_zero_user() is used to make sure
4738 			 * that the page corresponding to the faulting address
4739 			 * will be hot in the cache after zeroing.
4740 			 */
4741 			if (user_alloc_needs_zeroing())
4742 				folio_zero_user(folio, vmf->address);
4743 			return folio;
4744 		}
4745 next:
4746 		count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
4747 		order = next_order(&orders, order);
4748 	}
4749 
4750 fallback:
4751 #endif
4752 	return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
4753 }
4754 
4755 /*
4756  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4757  * but allow concurrent faults), and pte mapped but not yet locked.
4758  * We return with mmap_lock still held, but pte unmapped and unlocked.
4759  */
4760 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4761 {
4762 	struct vm_area_struct *vma = vmf->vma;
4763 	unsigned long addr = vmf->address;
4764 	struct folio *folio;
4765 	vm_fault_t ret = 0;
4766 	int nr_pages = 1;
4767 	pte_t entry;
4768 
4769 	/* File mapping without ->vm_ops ? */
4770 	if (vma->vm_flags & VM_SHARED)
4771 		return VM_FAULT_SIGBUS;
4772 
4773 	/*
4774 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4775 	 * be distinguished from a transient failure of pte_offset_map().
4776 	 */
4777 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4778 		return VM_FAULT_OOM;
4779 
4780 	/* Use the zero-page for reads */
4781 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4782 			!mm_forbids_zeropage(vma->vm_mm)) {
4783 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4784 						vma->vm_page_prot));
4785 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4786 				vmf->address, &vmf->ptl);
4787 		if (!vmf->pte)
4788 			goto unlock;
4789 		if (vmf_pte_changed(vmf)) {
4790 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4791 			goto unlock;
4792 		}
4793 		ret = check_stable_address_space(vma->vm_mm);
4794 		if (ret)
4795 			goto unlock;
4796 		/* Deliver the page fault to userland, check inside PT lock */
4797 		if (userfaultfd_missing(vma)) {
4798 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4799 			return handle_userfault(vmf, VM_UFFD_MISSING);
4800 		}
4801 		goto setpte;
4802 	}
4803 
4804 	/* Allocate our own private page. */
4805 	ret = vmf_anon_prepare(vmf);
4806 	if (ret)
4807 		return ret;
4808 	/* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
4809 	folio = alloc_anon_folio(vmf);
4810 	if (IS_ERR(folio))
4811 		return 0;
4812 	if (!folio)
4813 		goto oom;
4814 
4815 	nr_pages = folio_nr_pages(folio);
4816 	addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4817 
4818 	/*
4819 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4820 	 * preceding stores to the page contents become visible before
4821 	 * the set_pte_at() write.
4822 	 */
4823 	__folio_mark_uptodate(folio);
4824 
4825 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4826 	entry = pte_sw_mkyoung(entry);
4827 	if (vma->vm_flags & VM_WRITE)
4828 		entry = pte_mkwrite(pte_mkdirty(entry), vma);
4829 
4830 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
4831 	if (!vmf->pte)
4832 		goto release;
4833 	if (nr_pages == 1 && vmf_pte_changed(vmf)) {
4834 		update_mmu_tlb(vma, addr, vmf->pte);
4835 		goto release;
4836 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
4837 		update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
4838 		goto release;
4839 	}
4840 
4841 	ret = check_stable_address_space(vma->vm_mm);
4842 	if (ret)
4843 		goto release;
4844 
4845 	/* Deliver the page fault to userland, check inside PT lock */
4846 	if (userfaultfd_missing(vma)) {
4847 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4848 		folio_put(folio);
4849 		return handle_userfault(vmf, VM_UFFD_MISSING);
4850 	}
4851 
4852 	folio_ref_add(folio, nr_pages - 1);
4853 	add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
4854 	count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
4855 	folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
4856 	folio_add_lru_vma(folio, vma);
4857 setpte:
4858 	if (vmf_orig_pte_uffd_wp(vmf))
4859 		entry = pte_mkuffd_wp(entry);
4860 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
4861 
4862 	/* No need to invalidate - it was non-present before */
4863 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
4864 unlock:
4865 	if (vmf->pte)
4866 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4867 	return ret;
4868 release:
4869 	folio_put(folio);
4870 	goto unlock;
4871 oom:
4872 	return VM_FAULT_OOM;
4873 }
4874 
4875 /*
4876  * The mmap_lock must have been held on entry, and may have been
4877  * released depending on flags and vma->vm_ops->fault() return value.
4878  * See filemap_fault() and __lock_page_retry().
4879  */
4880 static vm_fault_t __do_fault(struct vm_fault *vmf)
4881 {
4882 	struct vm_area_struct *vma = vmf->vma;
4883 	struct folio *folio;
4884 	vm_fault_t ret;
4885 
4886 	/*
4887 	 * Preallocate pte before we take page_lock because this might lead to
4888 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4889 	 *				lock_page(A)
4890 	 *				SetPageWriteback(A)
4891 	 *				unlock_page(A)
4892 	 * lock_page(B)
4893 	 *				lock_page(B)
4894 	 * pte_alloc_one
4895 	 *   shrink_folio_list
4896 	 *     wait_on_page_writeback(A)
4897 	 *				SetPageWriteback(B)
4898 	 *				unlock_page(B)
4899 	 *				# flush A, B to clear the writeback
4900 	 */
4901 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4902 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4903 		if (!vmf->prealloc_pte)
4904 			return VM_FAULT_OOM;
4905 	}
4906 
4907 	ret = vma->vm_ops->fault(vmf);
4908 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4909 			    VM_FAULT_DONE_COW)))
4910 		return ret;
4911 
4912 	folio = page_folio(vmf->page);
4913 	if (unlikely(PageHWPoison(vmf->page))) {
4914 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4915 		if (ret & VM_FAULT_LOCKED) {
4916 			if (page_mapped(vmf->page))
4917 				unmap_mapping_folio(folio);
4918 			/* Retry if a clean folio was removed from the cache. */
4919 			if (mapping_evict_folio(folio->mapping, folio))
4920 				poisonret = VM_FAULT_NOPAGE;
4921 			folio_unlock(folio);
4922 		}
4923 		folio_put(folio);
4924 		vmf->page = NULL;
4925 		return poisonret;
4926 	}
4927 
4928 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4929 		folio_lock(folio);
4930 	else
4931 		VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
4932 
4933 	return ret;
4934 }
4935 
4936 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4937 static void deposit_prealloc_pte(struct vm_fault *vmf)
4938 {
4939 	struct vm_area_struct *vma = vmf->vma;
4940 
4941 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4942 	/*
4943 	 * We are going to consume the prealloc table,
4944 	 * count that as nr_ptes.
4945 	 */
4946 	mm_inc_nr_ptes(vma->vm_mm);
4947 	vmf->prealloc_pte = NULL;
4948 }
4949 
4950 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4951 {
4952 	struct folio *folio = page_folio(page);
4953 	struct vm_area_struct *vma = vmf->vma;
4954 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4955 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4956 	pmd_t entry;
4957 	vm_fault_t ret = VM_FAULT_FALLBACK;
4958 
4959 	/*
4960 	 * It is too late to allocate a small folio, we already have a large
4961 	 * folio in the pagecache: especially s390 KVM cannot tolerate any
4962 	 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
4963 	 * PMD mappings if THPs are disabled.
4964 	 */
4965 	if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags))
4966 		return ret;
4967 
4968 	if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
4969 		return ret;
4970 
4971 	if (folio_order(folio) != HPAGE_PMD_ORDER)
4972 		return ret;
4973 	page = &folio->page;
4974 
4975 	/*
4976 	 * Just backoff if any subpage of a THP is corrupted otherwise
4977 	 * the corrupted page may mapped by PMD silently to escape the
4978 	 * check.  This kind of THP just can be PTE mapped.  Access to
4979 	 * the corrupted subpage should trigger SIGBUS as expected.
4980 	 */
4981 	if (unlikely(folio_test_has_hwpoisoned(folio)))
4982 		return ret;
4983 
4984 	/*
4985 	 * Archs like ppc64 need additional space to store information
4986 	 * related to pte entry. Use the preallocated table for that.
4987 	 */
4988 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4989 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4990 		if (!vmf->prealloc_pte)
4991 			return VM_FAULT_OOM;
4992 	}
4993 
4994 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4995 	if (unlikely(!pmd_none(*vmf->pmd)))
4996 		goto out;
4997 
4998 	flush_icache_pages(vma, page, HPAGE_PMD_NR);
4999 
5000 	entry = mk_huge_pmd(page, vma->vm_page_prot);
5001 	if (write)
5002 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5003 
5004 	add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5005 	folio_add_file_rmap_pmd(folio, page, vma);
5006 
5007 	/*
5008 	 * deposit and withdraw with pmd lock held
5009 	 */
5010 	if (arch_needs_pgtable_deposit())
5011 		deposit_prealloc_pte(vmf);
5012 
5013 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5014 
5015 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5016 
5017 	/* fault is handled */
5018 	ret = 0;
5019 	count_vm_event(THP_FILE_MAPPED);
5020 out:
5021 	spin_unlock(vmf->ptl);
5022 	return ret;
5023 }
5024 #else
5025 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
5026 {
5027 	return VM_FAULT_FALLBACK;
5028 }
5029 #endif
5030 
5031 /**
5032  * set_pte_range - Set a range of PTEs to point to pages in a folio.
5033  * @vmf: Fault decription.
5034  * @folio: The folio that contains @page.
5035  * @page: The first page to create a PTE for.
5036  * @nr: The number of PTEs to create.
5037  * @addr: The first address to create a PTE for.
5038  */
5039 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5040 		struct page *page, unsigned int nr, unsigned long addr)
5041 {
5042 	struct vm_area_struct *vma = vmf->vma;
5043 	bool write = vmf->flags & FAULT_FLAG_WRITE;
5044 	bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5045 	pte_t entry;
5046 
5047 	flush_icache_pages(vma, page, nr);
5048 	entry = mk_pte(page, vma->vm_page_prot);
5049 
5050 	if (prefault && arch_wants_old_prefaulted_pte())
5051 		entry = pte_mkold(entry);
5052 	else
5053 		entry = pte_sw_mkyoung(entry);
5054 
5055 	if (write)
5056 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5057 	if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5058 		entry = pte_mkuffd_wp(entry);
5059 	/* copy-on-write page */
5060 	if (write && !(vma->vm_flags & VM_SHARED)) {
5061 		VM_BUG_ON_FOLIO(nr != 1, folio);
5062 		folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5063 		folio_add_lru_vma(folio, vma);
5064 	} else {
5065 		folio_add_file_rmap_ptes(folio, page, nr, vma);
5066 	}
5067 	set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5068 
5069 	/* no need to invalidate: a not-present page won't be cached */
5070 	update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5071 }
5072 
5073 static bool vmf_pte_changed(struct vm_fault *vmf)
5074 {
5075 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5076 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5077 
5078 	return !pte_none(ptep_get(vmf->pte));
5079 }
5080 
5081 /**
5082  * finish_fault - finish page fault once we have prepared the page to fault
5083  *
5084  * @vmf: structure describing the fault
5085  *
5086  * This function handles all that is needed to finish a page fault once the
5087  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5088  * given page, adds reverse page mapping, handles memcg charges and LRU
5089  * addition.
5090  *
5091  * The function expects the page to be locked and on success it consumes a
5092  * reference of a page being mapped (for the PTE which maps it).
5093  *
5094  * Return: %0 on success, %VM_FAULT_ code in case of error.
5095  */
5096 vm_fault_t finish_fault(struct vm_fault *vmf)
5097 {
5098 	struct vm_area_struct *vma = vmf->vma;
5099 	struct page *page;
5100 	struct folio *folio;
5101 	vm_fault_t ret;
5102 	bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5103 		      !(vma->vm_flags & VM_SHARED);
5104 	int type, nr_pages;
5105 	unsigned long addr = vmf->address;
5106 
5107 	/* Did we COW the page? */
5108 	if (is_cow)
5109 		page = vmf->cow_page;
5110 	else
5111 		page = vmf->page;
5112 
5113 	/*
5114 	 * check even for read faults because we might have lost our CoWed
5115 	 * page
5116 	 */
5117 	if (!(vma->vm_flags & VM_SHARED)) {
5118 		ret = check_stable_address_space(vma->vm_mm);
5119 		if (ret)
5120 			return ret;
5121 	}
5122 
5123 	if (pmd_none(*vmf->pmd)) {
5124 		if (PageTransCompound(page)) {
5125 			ret = do_set_pmd(vmf, page);
5126 			if (ret != VM_FAULT_FALLBACK)
5127 				return ret;
5128 		}
5129 
5130 		if (vmf->prealloc_pte)
5131 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5132 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5133 			return VM_FAULT_OOM;
5134 	}
5135 
5136 	folio = page_folio(page);
5137 	nr_pages = folio_nr_pages(folio);
5138 
5139 	/*
5140 	 * Using per-page fault to maintain the uffd semantics, and same
5141 	 * approach also applies to non-anonymous-shmem faults to avoid
5142 	 * inflating the RSS of the process.
5143 	 */
5144 	if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma))) {
5145 		nr_pages = 1;
5146 	} else if (nr_pages > 1) {
5147 		pgoff_t idx = folio_page_idx(folio, page);
5148 		/* The page offset of vmf->address within the VMA. */
5149 		pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5150 		/* The index of the entry in the pagetable for fault page. */
5151 		pgoff_t pte_off = pte_index(vmf->address);
5152 
5153 		/*
5154 		 * Fallback to per-page fault in case the folio size in page
5155 		 * cache beyond the VMA limits and PMD pagetable limits.
5156 		 */
5157 		if (unlikely(vma_off < idx ||
5158 			    vma_off + (nr_pages - idx) > vma_pages(vma) ||
5159 			    pte_off < idx ||
5160 			    pte_off + (nr_pages - idx)  > PTRS_PER_PTE)) {
5161 			nr_pages = 1;
5162 		} else {
5163 			/* Now we can set mappings for the whole large folio. */
5164 			addr = vmf->address - idx * PAGE_SIZE;
5165 			page = &folio->page;
5166 		}
5167 	}
5168 
5169 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5170 				       addr, &vmf->ptl);
5171 	if (!vmf->pte)
5172 		return VM_FAULT_NOPAGE;
5173 
5174 	/* Re-check under ptl */
5175 	if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5176 		update_mmu_tlb(vma, addr, vmf->pte);
5177 		ret = VM_FAULT_NOPAGE;
5178 		goto unlock;
5179 	} else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5180 		update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5181 		ret = VM_FAULT_NOPAGE;
5182 		goto unlock;
5183 	}
5184 
5185 	folio_ref_add(folio, nr_pages - 1);
5186 	set_pte_range(vmf, folio, page, nr_pages, addr);
5187 	type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5188 	add_mm_counter(vma->vm_mm, type, nr_pages);
5189 	ret = 0;
5190 
5191 unlock:
5192 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5193 	return ret;
5194 }
5195 
5196 static unsigned long fault_around_pages __read_mostly =
5197 	65536 >> PAGE_SHIFT;
5198 
5199 #ifdef CONFIG_DEBUG_FS
5200 static int fault_around_bytes_get(void *data, u64 *val)
5201 {
5202 	*val = fault_around_pages << PAGE_SHIFT;
5203 	return 0;
5204 }
5205 
5206 /*
5207  * fault_around_bytes must be rounded down to the nearest page order as it's
5208  * what do_fault_around() expects to see.
5209  */
5210 static int fault_around_bytes_set(void *data, u64 val)
5211 {
5212 	if (val / PAGE_SIZE > PTRS_PER_PTE)
5213 		return -EINVAL;
5214 
5215 	/*
5216 	 * The minimum value is 1 page, however this results in no fault-around
5217 	 * at all. See should_fault_around().
5218 	 */
5219 	val = max(val, PAGE_SIZE);
5220 	fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5221 
5222 	return 0;
5223 }
5224 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5225 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5226 
5227 static int __init fault_around_debugfs(void)
5228 {
5229 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5230 				   &fault_around_bytes_fops);
5231 	return 0;
5232 }
5233 late_initcall(fault_around_debugfs);
5234 #endif
5235 
5236 /*
5237  * do_fault_around() tries to map few pages around the fault address. The hope
5238  * is that the pages will be needed soon and this will lower the number of
5239  * faults to handle.
5240  *
5241  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5242  * not ready to be mapped: not up-to-date, locked, etc.
5243  *
5244  * This function doesn't cross VMA or page table boundaries, in order to call
5245  * map_pages() and acquire a PTE lock only once.
5246  *
5247  * fault_around_pages defines how many pages we'll try to map.
5248  * do_fault_around() expects it to be set to a power of two less than or equal
5249  * to PTRS_PER_PTE.
5250  *
5251  * The virtual address of the area that we map is naturally aligned to
5252  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5253  * (and therefore to page order).  This way it's easier to guarantee
5254  * that we don't cross page table boundaries.
5255  */
5256 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5257 {
5258 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5259 	pgoff_t pte_off = pte_index(vmf->address);
5260 	/* The page offset of vmf->address within the VMA. */
5261 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5262 	pgoff_t from_pte, to_pte;
5263 	vm_fault_t ret;
5264 
5265 	/* The PTE offset of the start address, clamped to the VMA. */
5266 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5267 		       pte_off - min(pte_off, vma_off));
5268 
5269 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
5270 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5271 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5272 
5273 	if (pmd_none(*vmf->pmd)) {
5274 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5275 		if (!vmf->prealloc_pte)
5276 			return VM_FAULT_OOM;
5277 	}
5278 
5279 	rcu_read_lock();
5280 	ret = vmf->vma->vm_ops->map_pages(vmf,
5281 			vmf->pgoff + from_pte - pte_off,
5282 			vmf->pgoff + to_pte - pte_off);
5283 	rcu_read_unlock();
5284 
5285 	return ret;
5286 }
5287 
5288 /* Return true if we should do read fault-around, false otherwise */
5289 static inline bool should_fault_around(struct vm_fault *vmf)
5290 {
5291 	/* No ->map_pages?  No way to fault around... */
5292 	if (!vmf->vma->vm_ops->map_pages)
5293 		return false;
5294 
5295 	if (uffd_disable_fault_around(vmf->vma))
5296 		return false;
5297 
5298 	/* A single page implies no faulting 'around' at all. */
5299 	return fault_around_pages > 1;
5300 }
5301 
5302 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5303 {
5304 	vm_fault_t ret = 0;
5305 	struct folio *folio;
5306 
5307 	/*
5308 	 * Let's call ->map_pages() first and use ->fault() as fallback
5309 	 * if page by the offset is not ready to be mapped (cold cache or
5310 	 * something).
5311 	 */
5312 	if (should_fault_around(vmf)) {
5313 		ret = do_fault_around(vmf);
5314 		if (ret)
5315 			return ret;
5316 	}
5317 
5318 	ret = vmf_can_call_fault(vmf);
5319 	if (ret)
5320 		return ret;
5321 
5322 	ret = __do_fault(vmf);
5323 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5324 		return ret;
5325 
5326 	ret |= finish_fault(vmf);
5327 	folio = page_folio(vmf->page);
5328 	folio_unlock(folio);
5329 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5330 		folio_put(folio);
5331 	return ret;
5332 }
5333 
5334 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5335 {
5336 	struct vm_area_struct *vma = vmf->vma;
5337 	struct folio *folio;
5338 	vm_fault_t ret;
5339 
5340 	ret = vmf_can_call_fault(vmf);
5341 	if (!ret)
5342 		ret = vmf_anon_prepare(vmf);
5343 	if (ret)
5344 		return ret;
5345 
5346 	folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5347 	if (!folio)
5348 		return VM_FAULT_OOM;
5349 
5350 	vmf->cow_page = &folio->page;
5351 
5352 	ret = __do_fault(vmf);
5353 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5354 		goto uncharge_out;
5355 	if (ret & VM_FAULT_DONE_COW)
5356 		return ret;
5357 
5358 	if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5359 		ret = VM_FAULT_HWPOISON;
5360 		goto unlock;
5361 	}
5362 	__folio_mark_uptodate(folio);
5363 
5364 	ret |= finish_fault(vmf);
5365 unlock:
5366 	unlock_page(vmf->page);
5367 	put_page(vmf->page);
5368 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5369 		goto uncharge_out;
5370 	return ret;
5371 uncharge_out:
5372 	folio_put(folio);
5373 	return ret;
5374 }
5375 
5376 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5377 {
5378 	struct vm_area_struct *vma = vmf->vma;
5379 	vm_fault_t ret, tmp;
5380 	struct folio *folio;
5381 
5382 	ret = vmf_can_call_fault(vmf);
5383 	if (ret)
5384 		return ret;
5385 
5386 	ret = __do_fault(vmf);
5387 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5388 		return ret;
5389 
5390 	folio = page_folio(vmf->page);
5391 
5392 	/*
5393 	 * Check if the backing address space wants to know that the page is
5394 	 * about to become writable
5395 	 */
5396 	if (vma->vm_ops->page_mkwrite) {
5397 		folio_unlock(folio);
5398 		tmp = do_page_mkwrite(vmf, folio);
5399 		if (unlikely(!tmp ||
5400 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5401 			folio_put(folio);
5402 			return tmp;
5403 		}
5404 	}
5405 
5406 	ret |= finish_fault(vmf);
5407 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5408 					VM_FAULT_RETRY))) {
5409 		folio_unlock(folio);
5410 		folio_put(folio);
5411 		return ret;
5412 	}
5413 
5414 	ret |= fault_dirty_shared_page(vmf);
5415 	return ret;
5416 }
5417 
5418 /*
5419  * We enter with non-exclusive mmap_lock (to exclude vma changes,
5420  * but allow concurrent faults).
5421  * The mmap_lock may have been released depending on flags and our
5422  * return value.  See filemap_fault() and __folio_lock_or_retry().
5423  * If mmap_lock is released, vma may become invalid (for example
5424  * by other thread calling munmap()).
5425  */
5426 static vm_fault_t do_fault(struct vm_fault *vmf)
5427 {
5428 	struct vm_area_struct *vma = vmf->vma;
5429 	struct mm_struct *vm_mm = vma->vm_mm;
5430 	vm_fault_t ret;
5431 
5432 	/*
5433 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5434 	 */
5435 	if (!vma->vm_ops->fault) {
5436 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5437 					       vmf->address, &vmf->ptl);
5438 		if (unlikely(!vmf->pte))
5439 			ret = VM_FAULT_SIGBUS;
5440 		else {
5441 			/*
5442 			 * Make sure this is not a temporary clearing of pte
5443 			 * by holding ptl and checking again. A R/M/W update
5444 			 * of pte involves: take ptl, clearing the pte so that
5445 			 * we don't have concurrent modification by hardware
5446 			 * followed by an update.
5447 			 */
5448 			if (unlikely(pte_none(ptep_get(vmf->pte))))
5449 				ret = VM_FAULT_SIGBUS;
5450 			else
5451 				ret = VM_FAULT_NOPAGE;
5452 
5453 			pte_unmap_unlock(vmf->pte, vmf->ptl);
5454 		}
5455 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
5456 		ret = do_read_fault(vmf);
5457 	else if (!(vma->vm_flags & VM_SHARED))
5458 		ret = do_cow_fault(vmf);
5459 	else
5460 		ret = do_shared_fault(vmf);
5461 
5462 	/* preallocated pagetable is unused: free it */
5463 	if (vmf->prealloc_pte) {
5464 		pte_free(vm_mm, vmf->prealloc_pte);
5465 		vmf->prealloc_pte = NULL;
5466 	}
5467 	return ret;
5468 }
5469 
5470 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5471 		      unsigned long addr, int *flags,
5472 		      bool writable, int *last_cpupid)
5473 {
5474 	struct vm_area_struct *vma = vmf->vma;
5475 
5476 	/*
5477 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5478 	 * much anyway since they can be in shared cache state. This misses
5479 	 * the case where a mapping is writable but the process never writes
5480 	 * to it but pte_write gets cleared during protection updates and
5481 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
5482 	 * background writeback, dirty balancing and application behaviour.
5483 	 */
5484 	if (!writable)
5485 		*flags |= TNF_NO_GROUP;
5486 
5487 	/*
5488 	 * Flag if the folio is shared between multiple address spaces. This
5489 	 * is later used when determining whether to group tasks together
5490 	 */
5491 	if (folio_likely_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5492 		*flags |= TNF_SHARED;
5493 	/*
5494 	 * For memory tiering mode, cpupid of slow memory page is used
5495 	 * to record page access time.  So use default value.
5496 	 */
5497 	if (folio_use_access_time(folio))
5498 		*last_cpupid = (-1 & LAST_CPUPID_MASK);
5499 	else
5500 		*last_cpupid = folio_last_cpupid(folio);
5501 
5502 	/* Record the current PID acceesing VMA */
5503 	vma_set_access_pid_bit(vma);
5504 
5505 	count_vm_numa_event(NUMA_HINT_FAULTS);
5506 #ifdef CONFIG_NUMA_BALANCING
5507 	count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5508 #endif
5509 	if (folio_nid(folio) == numa_node_id()) {
5510 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5511 		*flags |= TNF_FAULT_LOCAL;
5512 	}
5513 
5514 	return mpol_misplaced(folio, vmf, addr);
5515 }
5516 
5517 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5518 					unsigned long fault_addr, pte_t *fault_pte,
5519 					bool writable)
5520 {
5521 	pte_t pte, old_pte;
5522 
5523 	old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
5524 	pte = pte_modify(old_pte, vma->vm_page_prot);
5525 	pte = pte_mkyoung(pte);
5526 	if (writable)
5527 		pte = pte_mkwrite(pte, vma);
5528 	ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
5529 	update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
5530 }
5531 
5532 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5533 				       struct folio *folio, pte_t fault_pte,
5534 				       bool ignore_writable, bool pte_write_upgrade)
5535 {
5536 	int nr = pte_pfn(fault_pte) - folio_pfn(folio);
5537 	unsigned long start, end, addr = vmf->address;
5538 	unsigned long addr_start = addr - (nr << PAGE_SHIFT);
5539 	unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
5540 	pte_t *start_ptep;
5541 
5542 	/* Stay within the VMA and within the page table. */
5543 	start = max3(addr_start, pt_start, vma->vm_start);
5544 	end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
5545 		   vma->vm_end);
5546 	start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
5547 
5548 	/* Restore all PTEs' mapping of the large folio */
5549 	for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
5550 		pte_t ptent = ptep_get(start_ptep);
5551 		bool writable = false;
5552 
5553 		if (!pte_present(ptent) || !pte_protnone(ptent))
5554 			continue;
5555 
5556 		if (pfn_folio(pte_pfn(ptent)) != folio)
5557 			continue;
5558 
5559 		if (!ignore_writable) {
5560 			ptent = pte_modify(ptent, vma->vm_page_prot);
5561 			writable = pte_write(ptent);
5562 			if (!writable && pte_write_upgrade &&
5563 			    can_change_pte_writable(vma, addr, ptent))
5564 				writable = true;
5565 		}
5566 
5567 		numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
5568 	}
5569 }
5570 
5571 static vm_fault_t do_numa_page(struct vm_fault *vmf)
5572 {
5573 	struct vm_area_struct *vma = vmf->vma;
5574 	struct folio *folio = NULL;
5575 	int nid = NUMA_NO_NODE;
5576 	bool writable = false, ignore_writable = false;
5577 	bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
5578 	int last_cpupid;
5579 	int target_nid;
5580 	pte_t pte, old_pte;
5581 	int flags = 0, nr_pages;
5582 
5583 	/*
5584 	 * The pte cannot be used safely until we verify, while holding the page
5585 	 * table lock, that its contents have not changed during fault handling.
5586 	 */
5587 	spin_lock(vmf->ptl);
5588 	/* Read the live PTE from the page tables: */
5589 	old_pte = ptep_get(vmf->pte);
5590 
5591 	if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
5592 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5593 		return 0;
5594 	}
5595 
5596 	pte = pte_modify(old_pte, vma->vm_page_prot);
5597 
5598 	/*
5599 	 * Detect now whether the PTE could be writable; this information
5600 	 * is only valid while holding the PT lock.
5601 	 */
5602 	writable = pte_write(pte);
5603 	if (!writable && pte_write_upgrade &&
5604 	    can_change_pte_writable(vma, vmf->address, pte))
5605 		writable = true;
5606 
5607 	folio = vm_normal_folio(vma, vmf->address, pte);
5608 	if (!folio || folio_is_zone_device(folio))
5609 		goto out_map;
5610 
5611 	nid = folio_nid(folio);
5612 	nr_pages = folio_nr_pages(folio);
5613 
5614 	target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
5615 					writable, &last_cpupid);
5616 	if (target_nid == NUMA_NO_NODE)
5617 		goto out_map;
5618 	if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
5619 		flags |= TNF_MIGRATE_FAIL;
5620 		goto out_map;
5621 	}
5622 	/* The folio is isolated and isolation code holds a folio reference. */
5623 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5624 	writable = false;
5625 	ignore_writable = true;
5626 
5627 	/* Migrate to the requested node */
5628 	if (!migrate_misplaced_folio(folio, vma, target_nid)) {
5629 		nid = target_nid;
5630 		flags |= TNF_MIGRATED;
5631 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5632 		return 0;
5633 	}
5634 
5635 	flags |= TNF_MIGRATE_FAIL;
5636 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5637 				       vmf->address, &vmf->ptl);
5638 	if (unlikely(!vmf->pte))
5639 		return 0;
5640 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
5641 		pte_unmap_unlock(vmf->pte, vmf->ptl);
5642 		return 0;
5643 	}
5644 out_map:
5645 	/*
5646 	 * Make it present again, depending on how arch implements
5647 	 * non-accessible ptes, some can allow access by kernel mode.
5648 	 */
5649 	if (folio && folio_test_large(folio))
5650 		numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
5651 					   pte_write_upgrade);
5652 	else
5653 		numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
5654 					    writable);
5655 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5656 
5657 	if (nid != NUMA_NO_NODE)
5658 		task_numa_fault(last_cpupid, nid, nr_pages, flags);
5659 	return 0;
5660 }
5661 
5662 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
5663 {
5664 	struct vm_area_struct *vma = vmf->vma;
5665 	if (vma_is_anonymous(vma))
5666 		return do_huge_pmd_anonymous_page(vmf);
5667 	if (vma->vm_ops->huge_fault)
5668 		return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5669 	return VM_FAULT_FALLBACK;
5670 }
5671 
5672 /* `inline' is required to avoid gcc 4.1.2 build error */
5673 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
5674 {
5675 	struct vm_area_struct *vma = vmf->vma;
5676 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
5677 	vm_fault_t ret;
5678 
5679 	if (vma_is_anonymous(vma)) {
5680 		if (likely(!unshare) &&
5681 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
5682 			if (userfaultfd_wp_async(vmf->vma))
5683 				goto split;
5684 			return handle_userfault(vmf, VM_UFFD_WP);
5685 		}
5686 		return do_huge_pmd_wp_page(vmf);
5687 	}
5688 
5689 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5690 		if (vma->vm_ops->huge_fault) {
5691 			ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
5692 			if (!(ret & VM_FAULT_FALLBACK))
5693 				return ret;
5694 		}
5695 	}
5696 
5697 split:
5698 	/* COW or write-notify handled on pte level: split pmd. */
5699 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
5700 
5701 	return VM_FAULT_FALLBACK;
5702 }
5703 
5704 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
5705 {
5706 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5707 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5708 	struct vm_area_struct *vma = vmf->vma;
5709 	/* No support for anonymous transparent PUD pages yet */
5710 	if (vma_is_anonymous(vma))
5711 		return VM_FAULT_FALLBACK;
5712 	if (vma->vm_ops->huge_fault)
5713 		return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5714 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5715 	return VM_FAULT_FALLBACK;
5716 }
5717 
5718 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
5719 {
5720 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
5721 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
5722 	struct vm_area_struct *vma = vmf->vma;
5723 	vm_fault_t ret;
5724 
5725 	/* No support for anonymous transparent PUD pages yet */
5726 	if (vma_is_anonymous(vma))
5727 		goto split;
5728 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
5729 		if (vma->vm_ops->huge_fault) {
5730 			ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
5731 			if (!(ret & VM_FAULT_FALLBACK))
5732 				return ret;
5733 		}
5734 	}
5735 split:
5736 	/* COW or write-notify not handled on PUD level: split pud.*/
5737 	__split_huge_pud(vma, vmf->pud, vmf->address);
5738 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
5739 	return VM_FAULT_FALLBACK;
5740 }
5741 
5742 /*
5743  * These routines also need to handle stuff like marking pages dirty
5744  * and/or accessed for architectures that don't do it in hardware (most
5745  * RISC architectures).  The early dirtying is also good on the i386.
5746  *
5747  * There is also a hook called "update_mmu_cache()" that architectures
5748  * with external mmu caches can use to update those (ie the Sparc or
5749  * PowerPC hashed page tables that act as extended TLBs).
5750  *
5751  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
5752  * concurrent faults).
5753  *
5754  * The mmap_lock may have been released depending on flags and our return value.
5755  * See filemap_fault() and __folio_lock_or_retry().
5756  */
5757 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
5758 {
5759 	pte_t entry;
5760 
5761 	if (unlikely(pmd_none(*vmf->pmd))) {
5762 		/*
5763 		 * Leave __pte_alloc() until later: because vm_ops->fault may
5764 		 * want to allocate huge page, and if we expose page table
5765 		 * for an instant, it will be difficult to retract from
5766 		 * concurrent faults and from rmap lookups.
5767 		 */
5768 		vmf->pte = NULL;
5769 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
5770 	} else {
5771 		pmd_t dummy_pmdval;
5772 
5773 		/*
5774 		 * A regular pmd is established and it can't morph into a huge
5775 		 * pmd by anon khugepaged, since that takes mmap_lock in write
5776 		 * mode; but shmem or file collapse to THP could still morph
5777 		 * it into a huge pmd: just retry later if so.
5778 		 *
5779 		 * Use the maywrite version to indicate that vmf->pte may be
5780 		 * modified, but since we will use pte_same() to detect the
5781 		 * change of the !pte_none() entry, there is no need to recheck
5782 		 * the pmdval. Here we chooes to pass a dummy variable instead
5783 		 * of NULL, which helps new user think about why this place is
5784 		 * special.
5785 		 */
5786 		vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
5787 						    vmf->address, &dummy_pmdval,
5788 						    &vmf->ptl);
5789 		if (unlikely(!vmf->pte))
5790 			return 0;
5791 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
5792 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
5793 
5794 		if (pte_none(vmf->orig_pte)) {
5795 			pte_unmap(vmf->pte);
5796 			vmf->pte = NULL;
5797 		}
5798 	}
5799 
5800 	if (!vmf->pte)
5801 		return do_pte_missing(vmf);
5802 
5803 	if (!pte_present(vmf->orig_pte))
5804 		return do_swap_page(vmf);
5805 
5806 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5807 		return do_numa_page(vmf);
5808 
5809 	spin_lock(vmf->ptl);
5810 	entry = vmf->orig_pte;
5811 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5812 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5813 		goto unlock;
5814 	}
5815 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5816 		if (!pte_write(entry))
5817 			return do_wp_page(vmf);
5818 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5819 			entry = pte_mkdirty(entry);
5820 	}
5821 	entry = pte_mkyoung(entry);
5822 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5823 				vmf->flags & FAULT_FLAG_WRITE)) {
5824 		update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5825 				vmf->pte, 1);
5826 	} else {
5827 		/* Skip spurious TLB flush for retried page fault */
5828 		if (vmf->flags & FAULT_FLAG_TRIED)
5829 			goto unlock;
5830 		/*
5831 		 * This is needed only for protection faults but the arch code
5832 		 * is not yet telling us if this is a protection fault or not.
5833 		 * This still avoids useless tlb flushes for .text page faults
5834 		 * with threads.
5835 		 */
5836 		if (vmf->flags & FAULT_FLAG_WRITE)
5837 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5838 						     vmf->pte);
5839 	}
5840 unlock:
5841 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5842 	return 0;
5843 }
5844 
5845 /*
5846  * On entry, we hold either the VMA lock or the mmap_lock
5847  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5848  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5849  * and __folio_lock_or_retry().
5850  */
5851 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5852 		unsigned long address, unsigned int flags)
5853 {
5854 	struct vm_fault vmf = {
5855 		.vma = vma,
5856 		.address = address & PAGE_MASK,
5857 		.real_address = address,
5858 		.flags = flags,
5859 		.pgoff = linear_page_index(vma, address),
5860 		.gfp_mask = __get_fault_gfp_mask(vma),
5861 	};
5862 	struct mm_struct *mm = vma->vm_mm;
5863 	unsigned long vm_flags = vma->vm_flags;
5864 	pgd_t *pgd;
5865 	p4d_t *p4d;
5866 	vm_fault_t ret;
5867 
5868 	pgd = pgd_offset(mm, address);
5869 	p4d = p4d_alloc(mm, pgd, address);
5870 	if (!p4d)
5871 		return VM_FAULT_OOM;
5872 
5873 	vmf.pud = pud_alloc(mm, p4d, address);
5874 	if (!vmf.pud)
5875 		return VM_FAULT_OOM;
5876 retry_pud:
5877 	if (pud_none(*vmf.pud) &&
5878 	    thp_vma_allowable_order(vma, vm_flags,
5879 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) {
5880 		ret = create_huge_pud(&vmf);
5881 		if (!(ret & VM_FAULT_FALLBACK))
5882 			return ret;
5883 	} else {
5884 		pud_t orig_pud = *vmf.pud;
5885 
5886 		barrier();
5887 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5888 
5889 			/*
5890 			 * TODO once we support anonymous PUDs: NUMA case and
5891 			 * FAULT_FLAG_UNSHARE handling.
5892 			 */
5893 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5894 				ret = wp_huge_pud(&vmf, orig_pud);
5895 				if (!(ret & VM_FAULT_FALLBACK))
5896 					return ret;
5897 			} else {
5898 				huge_pud_set_accessed(&vmf, orig_pud);
5899 				return 0;
5900 			}
5901 		}
5902 	}
5903 
5904 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5905 	if (!vmf.pmd)
5906 		return VM_FAULT_OOM;
5907 
5908 	/* Huge pud page fault raced with pmd_alloc? */
5909 	if (pud_trans_unstable(vmf.pud))
5910 		goto retry_pud;
5911 
5912 	if (pmd_none(*vmf.pmd) &&
5913 	    thp_vma_allowable_order(vma, vm_flags,
5914 				TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) {
5915 		ret = create_huge_pmd(&vmf);
5916 		if (!(ret & VM_FAULT_FALLBACK))
5917 			return ret;
5918 	} else {
5919 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5920 
5921 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5922 			VM_BUG_ON(thp_migration_supported() &&
5923 					  !is_pmd_migration_entry(vmf.orig_pmd));
5924 			if (is_pmd_migration_entry(vmf.orig_pmd))
5925 				pmd_migration_entry_wait(mm, vmf.pmd);
5926 			return 0;
5927 		}
5928 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5929 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5930 				return do_huge_pmd_numa_page(&vmf);
5931 
5932 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5933 			    !pmd_write(vmf.orig_pmd)) {
5934 				ret = wp_huge_pmd(&vmf);
5935 				if (!(ret & VM_FAULT_FALLBACK))
5936 					return ret;
5937 			} else {
5938 				huge_pmd_set_accessed(&vmf);
5939 				return 0;
5940 			}
5941 		}
5942 	}
5943 
5944 	return handle_pte_fault(&vmf);
5945 }
5946 
5947 /**
5948  * mm_account_fault - Do page fault accounting
5949  * @mm: mm from which memcg should be extracted. It can be NULL.
5950  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5951  *        of perf event counters, but we'll still do the per-task accounting to
5952  *        the task who triggered this page fault.
5953  * @address: the faulted address.
5954  * @flags: the fault flags.
5955  * @ret: the fault retcode.
5956  *
5957  * This will take care of most of the page fault accounting.  Meanwhile, it
5958  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5959  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5960  * still be in per-arch page fault handlers at the entry of page fault.
5961  */
5962 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5963 				    unsigned long address, unsigned int flags,
5964 				    vm_fault_t ret)
5965 {
5966 	bool major;
5967 
5968 	/* Incomplete faults will be accounted upon completion. */
5969 	if (ret & VM_FAULT_RETRY)
5970 		return;
5971 
5972 	/*
5973 	 * To preserve the behavior of older kernels, PGFAULT counters record
5974 	 * both successful and failed faults, as opposed to perf counters,
5975 	 * which ignore failed cases.
5976 	 */
5977 	count_vm_event(PGFAULT);
5978 	count_memcg_event_mm(mm, PGFAULT);
5979 
5980 	/*
5981 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5982 	 * valid).  That includes arch_vma_access_permitted() failing before
5983 	 * reaching here. So this is not a "this many hardware page faults"
5984 	 * counter.  We should use the hw profiling for that.
5985 	 */
5986 	if (ret & VM_FAULT_ERROR)
5987 		return;
5988 
5989 	/*
5990 	 * We define the fault as a major fault when the final successful fault
5991 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5992 	 * handle it immediately previously).
5993 	 */
5994 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5995 
5996 	if (major)
5997 		current->maj_flt++;
5998 	else
5999 		current->min_flt++;
6000 
6001 	/*
6002 	 * If the fault is done for GUP, regs will be NULL.  We only do the
6003 	 * accounting for the per thread fault counters who triggered the
6004 	 * fault, and we skip the perf event updates.
6005 	 */
6006 	if (!regs)
6007 		return;
6008 
6009 	if (major)
6010 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6011 	else
6012 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6013 }
6014 
6015 #ifdef CONFIG_LRU_GEN
6016 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6017 {
6018 	/* the LRU algorithm only applies to accesses with recency */
6019 	current->in_lru_fault = vma_has_recency(vma);
6020 }
6021 
6022 static void lru_gen_exit_fault(void)
6023 {
6024 	current->in_lru_fault = false;
6025 }
6026 #else
6027 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6028 {
6029 }
6030 
6031 static void lru_gen_exit_fault(void)
6032 {
6033 }
6034 #endif /* CONFIG_LRU_GEN */
6035 
6036 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6037 				       unsigned int *flags)
6038 {
6039 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6040 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6041 			return VM_FAULT_SIGSEGV;
6042 		/*
6043 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6044 		 * just treat it like an ordinary read-fault otherwise.
6045 		 */
6046 		if (!is_cow_mapping(vma->vm_flags))
6047 			*flags &= ~FAULT_FLAG_UNSHARE;
6048 	} else if (*flags & FAULT_FLAG_WRITE) {
6049 		/* Write faults on read-only mappings are impossible ... */
6050 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6051 			return VM_FAULT_SIGSEGV;
6052 		/* ... and FOLL_FORCE only applies to COW mappings. */
6053 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6054 				 !is_cow_mapping(vma->vm_flags)))
6055 			return VM_FAULT_SIGSEGV;
6056 	}
6057 #ifdef CONFIG_PER_VMA_LOCK
6058 	/*
6059 	 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6060 	 * the assumption that lock is dropped on VM_FAULT_RETRY.
6061 	 */
6062 	if (WARN_ON_ONCE((*flags &
6063 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6064 			(FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6065 		return VM_FAULT_SIGSEGV;
6066 #endif
6067 
6068 	return 0;
6069 }
6070 
6071 /*
6072  * By the time we get here, we already hold the mm semaphore
6073  *
6074  * The mmap_lock may have been released depending on flags and our
6075  * return value.  See filemap_fault() and __folio_lock_or_retry().
6076  */
6077 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6078 			   unsigned int flags, struct pt_regs *regs)
6079 {
6080 	/* If the fault handler drops the mmap_lock, vma may be freed */
6081 	struct mm_struct *mm = vma->vm_mm;
6082 	vm_fault_t ret;
6083 	bool is_droppable;
6084 
6085 	__set_current_state(TASK_RUNNING);
6086 
6087 	ret = sanitize_fault_flags(vma, &flags);
6088 	if (ret)
6089 		goto out;
6090 
6091 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6092 					    flags & FAULT_FLAG_INSTRUCTION,
6093 					    flags & FAULT_FLAG_REMOTE)) {
6094 		ret = VM_FAULT_SIGSEGV;
6095 		goto out;
6096 	}
6097 
6098 	is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6099 
6100 	/*
6101 	 * Enable the memcg OOM handling for faults triggered in user
6102 	 * space.  Kernel faults are handled more gracefully.
6103 	 */
6104 	if (flags & FAULT_FLAG_USER)
6105 		mem_cgroup_enter_user_fault();
6106 
6107 	lru_gen_enter_fault(vma);
6108 
6109 	if (unlikely(is_vm_hugetlb_page(vma)))
6110 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6111 	else
6112 		ret = __handle_mm_fault(vma, address, flags);
6113 
6114 	/*
6115 	 * Warning: It is no longer safe to dereference vma-> after this point,
6116 	 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6117 	 * vma might be destroyed from underneath us.
6118 	 */
6119 
6120 	lru_gen_exit_fault();
6121 
6122 	/* If the mapping is droppable, then errors due to OOM aren't fatal. */
6123 	if (is_droppable)
6124 		ret &= ~VM_FAULT_OOM;
6125 
6126 	if (flags & FAULT_FLAG_USER) {
6127 		mem_cgroup_exit_user_fault();
6128 		/*
6129 		 * The task may have entered a memcg OOM situation but
6130 		 * if the allocation error was handled gracefully (no
6131 		 * VM_FAULT_OOM), there is no need to kill anything.
6132 		 * Just clean up the OOM state peacefully.
6133 		 */
6134 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6135 			mem_cgroup_oom_synchronize(false);
6136 	}
6137 out:
6138 	mm_account_fault(mm, regs, address, flags, ret);
6139 
6140 	return ret;
6141 }
6142 EXPORT_SYMBOL_GPL(handle_mm_fault);
6143 
6144 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
6145 #include <linux/extable.h>
6146 
6147 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6148 {
6149 	if (likely(mmap_read_trylock(mm)))
6150 		return true;
6151 
6152 	if (regs && !user_mode(regs)) {
6153 		unsigned long ip = exception_ip(regs);
6154 		if (!search_exception_tables(ip))
6155 			return false;
6156 	}
6157 
6158 	return !mmap_read_lock_killable(mm);
6159 }
6160 
6161 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
6162 {
6163 	/*
6164 	 * We don't have this operation yet.
6165 	 *
6166 	 * It should be easy enough to do: it's basically a
6167 	 *    atomic_long_try_cmpxchg_acquire()
6168 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
6169 	 * it also needs the proper lockdep magic etc.
6170 	 */
6171 	return false;
6172 }
6173 
6174 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
6175 {
6176 	mmap_read_unlock(mm);
6177 	if (regs && !user_mode(regs)) {
6178 		unsigned long ip = exception_ip(regs);
6179 		if (!search_exception_tables(ip))
6180 			return false;
6181 	}
6182 	return !mmap_write_lock_killable(mm);
6183 }
6184 
6185 /*
6186  * Helper for page fault handling.
6187  *
6188  * This is kind of equivalend to "mmap_read_lock()" followed
6189  * by "find_extend_vma()", except it's a lot more careful about
6190  * the locking (and will drop the lock on failure).
6191  *
6192  * For example, if we have a kernel bug that causes a page
6193  * fault, we don't want to just use mmap_read_lock() to get
6194  * the mm lock, because that would deadlock if the bug were
6195  * to happen while we're holding the mm lock for writing.
6196  *
6197  * So this checks the exception tables on kernel faults in
6198  * order to only do this all for instructions that are actually
6199  * expected to fault.
6200  *
6201  * We can also actually take the mm lock for writing if we
6202  * need to extend the vma, which helps the VM layer a lot.
6203  */
6204 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
6205 			unsigned long addr, struct pt_regs *regs)
6206 {
6207 	struct vm_area_struct *vma;
6208 
6209 	if (!get_mmap_lock_carefully(mm, regs))
6210 		return NULL;
6211 
6212 	vma = find_vma(mm, addr);
6213 	if (likely(vma && (vma->vm_start <= addr)))
6214 		return vma;
6215 
6216 	/*
6217 	 * Well, dang. We might still be successful, but only
6218 	 * if we can extend a vma to do so.
6219 	 */
6220 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
6221 		mmap_read_unlock(mm);
6222 		return NULL;
6223 	}
6224 
6225 	/*
6226 	 * We can try to upgrade the mmap lock atomically,
6227 	 * in which case we can continue to use the vma
6228 	 * we already looked up.
6229 	 *
6230 	 * Otherwise we'll have to drop the mmap lock and
6231 	 * re-take it, and also look up the vma again,
6232 	 * re-checking it.
6233 	 */
6234 	if (!mmap_upgrade_trylock(mm)) {
6235 		if (!upgrade_mmap_lock_carefully(mm, regs))
6236 			return NULL;
6237 
6238 		vma = find_vma(mm, addr);
6239 		if (!vma)
6240 			goto fail;
6241 		if (vma->vm_start <= addr)
6242 			goto success;
6243 		if (!(vma->vm_flags & VM_GROWSDOWN))
6244 			goto fail;
6245 	}
6246 
6247 	if (expand_stack_locked(vma, addr))
6248 		goto fail;
6249 
6250 success:
6251 	mmap_write_downgrade(mm);
6252 	return vma;
6253 
6254 fail:
6255 	mmap_write_unlock(mm);
6256 	return NULL;
6257 }
6258 #endif
6259 
6260 #ifdef CONFIG_PER_VMA_LOCK
6261 /*
6262  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
6263  * stable and not isolated. If the VMA is not found or is being modified the
6264  * function returns NULL.
6265  */
6266 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
6267 					  unsigned long address)
6268 {
6269 	MA_STATE(mas, &mm->mm_mt, address, address);
6270 	struct vm_area_struct *vma;
6271 
6272 	rcu_read_lock();
6273 retry:
6274 	vma = mas_walk(&mas);
6275 	if (!vma)
6276 		goto inval;
6277 
6278 	if (!vma_start_read(vma))
6279 		goto inval;
6280 
6281 	/* Check if the VMA got isolated after we found it */
6282 	if (vma->detached) {
6283 		vma_end_read(vma);
6284 		count_vm_vma_lock_event(VMA_LOCK_MISS);
6285 		/* The area was replaced with another one */
6286 		goto retry;
6287 	}
6288 	/*
6289 	 * At this point, we have a stable reference to a VMA: The VMA is
6290 	 * locked and we know it hasn't already been isolated.
6291 	 * From here on, we can access the VMA without worrying about which
6292 	 * fields are accessible for RCU readers.
6293 	 */
6294 
6295 	/* Check since vm_start/vm_end might change before we lock the VMA */
6296 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6297 		goto inval_end_read;
6298 
6299 	rcu_read_unlock();
6300 	return vma;
6301 
6302 inval_end_read:
6303 	vma_end_read(vma);
6304 inval:
6305 	rcu_read_unlock();
6306 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
6307 	return NULL;
6308 }
6309 #endif /* CONFIG_PER_VMA_LOCK */
6310 
6311 #ifndef __PAGETABLE_P4D_FOLDED
6312 /*
6313  * Allocate p4d page table.
6314  * We've already handled the fast-path in-line.
6315  */
6316 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6317 {
6318 	p4d_t *new = p4d_alloc_one(mm, address);
6319 	if (!new)
6320 		return -ENOMEM;
6321 
6322 	spin_lock(&mm->page_table_lock);
6323 	if (pgd_present(*pgd)) {	/* Another has populated it */
6324 		p4d_free(mm, new);
6325 	} else {
6326 		smp_wmb(); /* See comment in pmd_install() */
6327 		pgd_populate(mm, pgd, new);
6328 	}
6329 	spin_unlock(&mm->page_table_lock);
6330 	return 0;
6331 }
6332 #endif /* __PAGETABLE_P4D_FOLDED */
6333 
6334 #ifndef __PAGETABLE_PUD_FOLDED
6335 /*
6336  * Allocate page upper directory.
6337  * We've already handled the fast-path in-line.
6338  */
6339 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6340 {
6341 	pud_t *new = pud_alloc_one(mm, address);
6342 	if (!new)
6343 		return -ENOMEM;
6344 
6345 	spin_lock(&mm->page_table_lock);
6346 	if (!p4d_present(*p4d)) {
6347 		mm_inc_nr_puds(mm);
6348 		smp_wmb(); /* See comment in pmd_install() */
6349 		p4d_populate(mm, p4d, new);
6350 	} else	/* Another has populated it */
6351 		pud_free(mm, new);
6352 	spin_unlock(&mm->page_table_lock);
6353 	return 0;
6354 }
6355 #endif /* __PAGETABLE_PUD_FOLDED */
6356 
6357 #ifndef __PAGETABLE_PMD_FOLDED
6358 /*
6359  * Allocate page middle directory.
6360  * We've already handled the fast-path in-line.
6361  */
6362 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6363 {
6364 	spinlock_t *ptl;
6365 	pmd_t *new = pmd_alloc_one(mm, address);
6366 	if (!new)
6367 		return -ENOMEM;
6368 
6369 	ptl = pud_lock(mm, pud);
6370 	if (!pud_present(*pud)) {
6371 		mm_inc_nr_pmds(mm);
6372 		smp_wmb(); /* See comment in pmd_install() */
6373 		pud_populate(mm, pud, new);
6374 	} else {	/* Another has populated it */
6375 		pmd_free(mm, new);
6376 	}
6377 	spin_unlock(ptl);
6378 	return 0;
6379 }
6380 #endif /* __PAGETABLE_PMD_FOLDED */
6381 
6382 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6383 				     spinlock_t *lock, pte_t *ptep,
6384 				     pgprot_t pgprot, unsigned long pfn_base,
6385 				     unsigned long addr_mask, bool writable,
6386 				     bool special)
6387 {
6388 	args->lock = lock;
6389 	args->ptep = ptep;
6390 	args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6391 	args->pgprot = pgprot;
6392 	args->writable = writable;
6393 	args->special = special;
6394 }
6395 
6396 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6397 {
6398 #ifdef CONFIG_LOCKDEP
6399 	struct file *file = vma->vm_file;
6400 	struct address_space *mapping = file ? file->f_mapping : NULL;
6401 
6402 	if (mapping)
6403 		lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6404 			       lockdep_is_held(&vma->vm_mm->mmap_lock));
6405 	else
6406 		lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6407 #endif
6408 }
6409 
6410 /**
6411  * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6412  * @args: Pointer to struct @follow_pfnmap_args
6413  *
6414  * The caller needs to setup args->vma and args->address to point to the
6415  * virtual address as the target of such lookup.  On a successful return,
6416  * the results will be put into other output fields.
6417  *
6418  * After the caller finished using the fields, the caller must invoke
6419  * another follow_pfnmap_end() to proper releases the locks and resources
6420  * of such look up request.
6421  *
6422  * During the start() and end() calls, the results in @args will be valid
6423  * as proper locks will be held.  After the end() is called, all the fields
6424  * in @follow_pfnmap_args will be invalid to be further accessed.  Further
6425  * use of such information after end() may require proper synchronizations
6426  * by the caller with page table updates, otherwise it can create a
6427  * security bug.
6428  *
6429  * If the PTE maps a refcounted page, callers are responsible to protect
6430  * against invalidation with MMU notifiers; otherwise access to the PFN at
6431  * a later point in time can trigger use-after-free.
6432  *
6433  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
6434  * should be taken for read, and the mmap semaphore cannot be released
6435  * before the end() is invoked.
6436  *
6437  * This function must not be used to modify PTE content.
6438  *
6439  * Return: zero on success, negative otherwise.
6440  */
6441 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6442 {
6443 	struct vm_area_struct *vma = args->vma;
6444 	unsigned long address = args->address;
6445 	struct mm_struct *mm = vma->vm_mm;
6446 	spinlock_t *lock;
6447 	pgd_t *pgdp;
6448 	p4d_t *p4dp, p4d;
6449 	pud_t *pudp, pud;
6450 	pmd_t *pmdp, pmd;
6451 	pte_t *ptep, pte;
6452 
6453 	pfnmap_lockdep_assert(vma);
6454 
6455 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6456 		goto out;
6457 
6458 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6459 		goto out;
6460 retry:
6461 	pgdp = pgd_offset(mm, address);
6462 	if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6463 		goto out;
6464 
6465 	p4dp = p4d_offset(pgdp, address);
6466 	p4d = READ_ONCE(*p4dp);
6467 	if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6468 		goto out;
6469 
6470 	pudp = pud_offset(p4dp, address);
6471 	pud = READ_ONCE(*pudp);
6472 	if (pud_none(pud))
6473 		goto out;
6474 	if (pud_leaf(pud)) {
6475 		lock = pud_lock(mm, pudp);
6476 		if (!unlikely(pud_leaf(pud))) {
6477 			spin_unlock(lock);
6478 			goto retry;
6479 		}
6480 		pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6481 				  pud_pfn(pud), PUD_MASK, pud_write(pud),
6482 				  pud_special(pud));
6483 		return 0;
6484 	}
6485 
6486 	pmdp = pmd_offset(pudp, address);
6487 	pmd = pmdp_get_lockless(pmdp);
6488 	if (pmd_leaf(pmd)) {
6489 		lock = pmd_lock(mm, pmdp);
6490 		if (!unlikely(pmd_leaf(pmd))) {
6491 			spin_unlock(lock);
6492 			goto retry;
6493 		}
6494 		pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6495 				  pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6496 				  pmd_special(pmd));
6497 		return 0;
6498 	}
6499 
6500 	ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6501 	if (!ptep)
6502 		goto out;
6503 	pte = ptep_get(ptep);
6504 	if (!pte_present(pte))
6505 		goto unlock;
6506 	pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6507 			  pte_pfn(pte), PAGE_MASK, pte_write(pte),
6508 			  pte_special(pte));
6509 	return 0;
6510 unlock:
6511 	pte_unmap_unlock(ptep, lock);
6512 out:
6513 	return -EINVAL;
6514 }
6515 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6516 
6517 /**
6518  * follow_pfnmap_end(): End a follow_pfnmap_start() process
6519  * @args: Pointer to struct @follow_pfnmap_args
6520  *
6521  * Must be used in pair of follow_pfnmap_start().  See the start() function
6522  * above for more information.
6523  */
6524 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6525 {
6526 	if (args->lock)
6527 		spin_unlock(args->lock);
6528 	if (args->ptep)
6529 		pte_unmap(args->ptep);
6530 }
6531 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6532 
6533 #ifdef CONFIG_HAVE_IOREMAP_PROT
6534 /**
6535  * generic_access_phys - generic implementation for iomem mmap access
6536  * @vma: the vma to access
6537  * @addr: userspace address, not relative offset within @vma
6538  * @buf: buffer to read/write
6539  * @len: length of transfer
6540  * @write: set to FOLL_WRITE when writing, otherwise reading
6541  *
6542  * This is a generic implementation for &vm_operations_struct.access for an
6543  * iomem mapping. This callback is used by access_process_vm() when the @vma is
6544  * not page based.
6545  */
6546 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6547 			void *buf, int len, int write)
6548 {
6549 	resource_size_t phys_addr;
6550 	unsigned long prot = 0;
6551 	void __iomem *maddr;
6552 	int offset = offset_in_page(addr);
6553 	int ret = -EINVAL;
6554 	bool writable;
6555 	struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6556 
6557 retry:
6558 	if (follow_pfnmap_start(&args))
6559 		return -EINVAL;
6560 	prot = pgprot_val(args.pgprot);
6561 	phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6562 	writable = args.writable;
6563 	follow_pfnmap_end(&args);
6564 
6565 	if ((write & FOLL_WRITE) && !writable)
6566 		return -EINVAL;
6567 
6568 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6569 	if (!maddr)
6570 		return -ENOMEM;
6571 
6572 	if (follow_pfnmap_start(&args))
6573 		goto out_unmap;
6574 
6575 	if ((prot != pgprot_val(args.pgprot)) ||
6576 	    (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6577 	    (writable != args.writable)) {
6578 		follow_pfnmap_end(&args);
6579 		iounmap(maddr);
6580 		goto retry;
6581 	}
6582 
6583 	if (write)
6584 		memcpy_toio(maddr + offset, buf, len);
6585 	else
6586 		memcpy_fromio(buf, maddr + offset, len);
6587 	ret = len;
6588 	follow_pfnmap_end(&args);
6589 out_unmap:
6590 	iounmap(maddr);
6591 
6592 	return ret;
6593 }
6594 EXPORT_SYMBOL_GPL(generic_access_phys);
6595 #endif
6596 
6597 /*
6598  * Access another process' address space as given in mm.
6599  */
6600 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6601 			      void *buf, int len, unsigned int gup_flags)
6602 {
6603 	void *old_buf = buf;
6604 	int write = gup_flags & FOLL_WRITE;
6605 
6606 	if (mmap_read_lock_killable(mm))
6607 		return 0;
6608 
6609 	/* Untag the address before looking up the VMA */
6610 	addr = untagged_addr_remote(mm, addr);
6611 
6612 	/* Avoid triggering the temporary warning in __get_user_pages */
6613 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6614 		return 0;
6615 
6616 	/* ignore errors, just check how much was successfully transferred */
6617 	while (len) {
6618 		int bytes, offset;
6619 		void *maddr;
6620 		struct vm_area_struct *vma = NULL;
6621 		struct page *page = get_user_page_vma_remote(mm, addr,
6622 							     gup_flags, &vma);
6623 
6624 		if (IS_ERR(page)) {
6625 			/* We might need to expand the stack to access it */
6626 			vma = vma_lookup(mm, addr);
6627 			if (!vma) {
6628 				vma = expand_stack(mm, addr);
6629 
6630 				/* mmap_lock was dropped on failure */
6631 				if (!vma)
6632 					return buf - old_buf;
6633 
6634 				/* Try again if stack expansion worked */
6635 				continue;
6636 			}
6637 
6638 			/*
6639 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6640 			 * we can access using slightly different code.
6641 			 */
6642 			bytes = 0;
6643 #ifdef CONFIG_HAVE_IOREMAP_PROT
6644 			if (vma->vm_ops && vma->vm_ops->access)
6645 				bytes = vma->vm_ops->access(vma, addr, buf,
6646 							    len, write);
6647 #endif
6648 			if (bytes <= 0)
6649 				break;
6650 		} else {
6651 			bytes = len;
6652 			offset = addr & (PAGE_SIZE-1);
6653 			if (bytes > PAGE_SIZE-offset)
6654 				bytes = PAGE_SIZE-offset;
6655 
6656 			maddr = kmap_local_page(page);
6657 			if (write) {
6658 				copy_to_user_page(vma, page, addr,
6659 						  maddr + offset, buf, bytes);
6660 				set_page_dirty_lock(page);
6661 			} else {
6662 				copy_from_user_page(vma, page, addr,
6663 						    buf, maddr + offset, bytes);
6664 			}
6665 			unmap_and_put_page(page, maddr);
6666 		}
6667 		len -= bytes;
6668 		buf += bytes;
6669 		addr += bytes;
6670 	}
6671 	mmap_read_unlock(mm);
6672 
6673 	return buf - old_buf;
6674 }
6675 
6676 /**
6677  * access_remote_vm - access another process' address space
6678  * @mm:		the mm_struct of the target address space
6679  * @addr:	start address to access
6680  * @buf:	source or destination buffer
6681  * @len:	number of bytes to transfer
6682  * @gup_flags:	flags modifying lookup behaviour
6683  *
6684  * The caller must hold a reference on @mm.
6685  *
6686  * Return: number of bytes copied from source to destination.
6687  */
6688 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6689 		void *buf, int len, unsigned int gup_flags)
6690 {
6691 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
6692 }
6693 
6694 /*
6695  * Access another process' address space.
6696  * Source/target buffer must be kernel space,
6697  * Do not walk the page table directly, use get_user_pages
6698  */
6699 int access_process_vm(struct task_struct *tsk, unsigned long addr,
6700 		void *buf, int len, unsigned int gup_flags)
6701 {
6702 	struct mm_struct *mm;
6703 	int ret;
6704 
6705 	mm = get_task_mm(tsk);
6706 	if (!mm)
6707 		return 0;
6708 
6709 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
6710 
6711 	mmput(mm);
6712 
6713 	return ret;
6714 }
6715 EXPORT_SYMBOL_GPL(access_process_vm);
6716 
6717 /*
6718  * Print the name of a VMA.
6719  */
6720 void print_vma_addr(char *prefix, unsigned long ip)
6721 {
6722 	struct mm_struct *mm = current->mm;
6723 	struct vm_area_struct *vma;
6724 
6725 	/*
6726 	 * we might be running from an atomic context so we cannot sleep
6727 	 */
6728 	if (!mmap_read_trylock(mm))
6729 		return;
6730 
6731 	vma = vma_lookup(mm, ip);
6732 	if (vma && vma->vm_file) {
6733 		struct file *f = vma->vm_file;
6734 		ip -= vma->vm_start;
6735 		ip += vma->vm_pgoff << PAGE_SHIFT;
6736 		printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
6737 				vma->vm_start,
6738 				vma->vm_end - vma->vm_start);
6739 	}
6740 	mmap_read_unlock(mm);
6741 }
6742 
6743 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6744 void __might_fault(const char *file, int line)
6745 {
6746 	if (pagefault_disabled())
6747 		return;
6748 	__might_sleep(file, line);
6749 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
6750 	if (current->mm)
6751 		might_lock_read(&current->mm->mmap_lock);
6752 #endif
6753 }
6754 EXPORT_SYMBOL(__might_fault);
6755 #endif
6756 
6757 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
6758 /*
6759  * Process all subpages of the specified huge page with the specified
6760  * operation.  The target subpage will be processed last to keep its
6761  * cache lines hot.
6762  */
6763 static inline int process_huge_page(
6764 	unsigned long addr_hint, unsigned int nr_pages,
6765 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
6766 	void *arg)
6767 {
6768 	int i, n, base, l, ret;
6769 	unsigned long addr = addr_hint &
6770 		~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
6771 
6772 	/* Process target subpage last to keep its cache lines hot */
6773 	might_sleep();
6774 	n = (addr_hint - addr) / PAGE_SIZE;
6775 	if (2 * n <= nr_pages) {
6776 		/* If target subpage in first half of huge page */
6777 		base = 0;
6778 		l = n;
6779 		/* Process subpages at the end of huge page */
6780 		for (i = nr_pages - 1; i >= 2 * n; i--) {
6781 			cond_resched();
6782 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6783 			if (ret)
6784 				return ret;
6785 		}
6786 	} else {
6787 		/* If target subpage in second half of huge page */
6788 		base = nr_pages - 2 * (nr_pages - n);
6789 		l = nr_pages - n;
6790 		/* Process subpages at the begin of huge page */
6791 		for (i = 0; i < base; i++) {
6792 			cond_resched();
6793 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
6794 			if (ret)
6795 				return ret;
6796 		}
6797 	}
6798 	/*
6799 	 * Process remaining subpages in left-right-left-right pattern
6800 	 * towards the target subpage
6801 	 */
6802 	for (i = 0; i < l; i++) {
6803 		int left_idx = base + i;
6804 		int right_idx = base + 2 * l - 1 - i;
6805 
6806 		cond_resched();
6807 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6808 		if (ret)
6809 			return ret;
6810 		cond_resched();
6811 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6812 		if (ret)
6813 			return ret;
6814 	}
6815 	return 0;
6816 }
6817 
6818 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint,
6819 				unsigned int nr_pages)
6820 {
6821 	unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio));
6822 	int i;
6823 
6824 	might_sleep();
6825 	for (i = 0; i < nr_pages; i++) {
6826 		cond_resched();
6827 		clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE);
6828 	}
6829 }
6830 
6831 static int clear_subpage(unsigned long addr, int idx, void *arg)
6832 {
6833 	struct folio *folio = arg;
6834 
6835 	clear_user_highpage(folio_page(folio, idx), addr);
6836 	return 0;
6837 }
6838 
6839 /**
6840  * folio_zero_user - Zero a folio which will be mapped to userspace.
6841  * @folio: The folio to zero.
6842  * @addr_hint: The address will be accessed or the base address if uncelar.
6843  */
6844 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
6845 {
6846 	unsigned int nr_pages = folio_nr_pages(folio);
6847 
6848 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6849 		clear_gigantic_page(folio, addr_hint, nr_pages);
6850 	else
6851 		process_huge_page(addr_hint, nr_pages, clear_subpage, folio);
6852 }
6853 
6854 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6855 				   unsigned long addr_hint,
6856 				   struct vm_area_struct *vma,
6857 				   unsigned int nr_pages)
6858 {
6859 	unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
6860 	struct page *dst_page;
6861 	struct page *src_page;
6862 	int i;
6863 
6864 	for (i = 0; i < nr_pages; i++) {
6865 		dst_page = folio_page(dst, i);
6866 		src_page = folio_page(src, i);
6867 
6868 		cond_resched();
6869 		if (copy_mc_user_highpage(dst_page, src_page,
6870 					  addr + i*PAGE_SIZE, vma))
6871 			return -EHWPOISON;
6872 	}
6873 	return 0;
6874 }
6875 
6876 struct copy_subpage_arg {
6877 	struct folio *dst;
6878 	struct folio *src;
6879 	struct vm_area_struct *vma;
6880 };
6881 
6882 static int copy_subpage(unsigned long addr, int idx, void *arg)
6883 {
6884 	struct copy_subpage_arg *copy_arg = arg;
6885 	struct page *dst = folio_page(copy_arg->dst, idx);
6886 	struct page *src = folio_page(copy_arg->src, idx);
6887 
6888 	if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
6889 		return -EHWPOISON;
6890 	return 0;
6891 }
6892 
6893 int copy_user_large_folio(struct folio *dst, struct folio *src,
6894 			  unsigned long addr_hint, struct vm_area_struct *vma)
6895 {
6896 	unsigned int nr_pages = folio_nr_pages(dst);
6897 	struct copy_subpage_arg arg = {
6898 		.dst = dst,
6899 		.src = src,
6900 		.vma = vma,
6901 	};
6902 
6903 	if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
6904 		return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
6905 
6906 	return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
6907 }
6908 
6909 long copy_folio_from_user(struct folio *dst_folio,
6910 			   const void __user *usr_src,
6911 			   bool allow_pagefault)
6912 {
6913 	void *kaddr;
6914 	unsigned long i, rc = 0;
6915 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6916 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6917 	struct page *subpage;
6918 
6919 	for (i = 0; i < nr_pages; i++) {
6920 		subpage = folio_page(dst_folio, i);
6921 		kaddr = kmap_local_page(subpage);
6922 		if (!allow_pagefault)
6923 			pagefault_disable();
6924 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6925 		if (!allow_pagefault)
6926 			pagefault_enable();
6927 		kunmap_local(kaddr);
6928 
6929 		ret_val -= (PAGE_SIZE - rc);
6930 		if (rc)
6931 			break;
6932 
6933 		flush_dcache_page(subpage);
6934 
6935 		cond_resched();
6936 	}
6937 	return ret_val;
6938 }
6939 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6940 
6941 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
6942 
6943 static struct kmem_cache *page_ptl_cachep;
6944 
6945 void __init ptlock_cache_init(void)
6946 {
6947 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6948 			SLAB_PANIC, NULL);
6949 }
6950 
6951 bool ptlock_alloc(struct ptdesc *ptdesc)
6952 {
6953 	spinlock_t *ptl;
6954 
6955 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6956 	if (!ptl)
6957 		return false;
6958 	ptdesc->ptl = ptl;
6959 	return true;
6960 }
6961 
6962 void ptlock_free(struct ptdesc *ptdesc)
6963 {
6964 	kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
6965 }
6966 #endif
6967 
6968 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
6969 {
6970 	if (is_vm_hugetlb_page(vma))
6971 		hugetlb_vma_lock_read(vma);
6972 }
6973 
6974 void vma_pgtable_walk_end(struct vm_area_struct *vma)
6975 {
6976 	if (is_vm_hugetlb_page(vma))
6977 		hugetlb_vma_unlock_read(vma);
6978 }
6979