1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/init.h> 51 52 #include <asm/pgalloc.h> 53 #include <asm/uaccess.h> 54 #include <asm/tlb.h> 55 #include <asm/tlbflush.h> 56 #include <asm/pgtable.h> 57 58 #include <linux/swapops.h> 59 #include <linux/elf.h> 60 61 #ifndef CONFIG_NEED_MULTIPLE_NODES 62 /* use the per-pgdat data instead for discontigmem - mbligh */ 63 unsigned long max_mapnr; 64 struct page *mem_map; 65 66 EXPORT_SYMBOL(max_mapnr); 67 EXPORT_SYMBOL(mem_map); 68 #endif 69 70 unsigned long num_physpages; 71 /* 72 * A number of key systems in x86 including ioremap() rely on the assumption 73 * that high_memory defines the upper bound on direct map memory, then end 74 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 75 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 76 * and ZONE_HIGHMEM. 77 */ 78 void * high_memory; 79 unsigned long vmalloc_earlyreserve; 80 81 EXPORT_SYMBOL(num_physpages); 82 EXPORT_SYMBOL(high_memory); 83 EXPORT_SYMBOL(vmalloc_earlyreserve); 84 85 int randomize_va_space __read_mostly = 1; 86 87 static int __init disable_randmaps(char *s) 88 { 89 randomize_va_space = 0; 90 return 1; 91 } 92 __setup("norandmaps", disable_randmaps); 93 94 95 /* 96 * If a p?d_bad entry is found while walking page tables, report 97 * the error, before resetting entry to p?d_none. Usually (but 98 * very seldom) called out from the p?d_none_or_clear_bad macros. 99 */ 100 101 void pgd_clear_bad(pgd_t *pgd) 102 { 103 pgd_ERROR(*pgd); 104 pgd_clear(pgd); 105 } 106 107 void pud_clear_bad(pud_t *pud) 108 { 109 pud_ERROR(*pud); 110 pud_clear(pud); 111 } 112 113 void pmd_clear_bad(pmd_t *pmd) 114 { 115 pmd_ERROR(*pmd); 116 pmd_clear(pmd); 117 } 118 119 /* 120 * Note: this doesn't free the actual pages themselves. That 121 * has been handled earlier when unmapping all the memory regions. 122 */ 123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 124 { 125 struct page *page = pmd_page(*pmd); 126 pmd_clear(pmd); 127 pte_lock_deinit(page); 128 pte_free_tlb(tlb, page); 129 dec_zone_page_state(page, NR_PAGETABLE); 130 tlb->mm->nr_ptes--; 131 } 132 133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 134 unsigned long addr, unsigned long end, 135 unsigned long floor, unsigned long ceiling) 136 { 137 pmd_t *pmd; 138 unsigned long next; 139 unsigned long start; 140 141 start = addr; 142 pmd = pmd_offset(pud, addr); 143 do { 144 next = pmd_addr_end(addr, end); 145 if (pmd_none_or_clear_bad(pmd)) 146 continue; 147 free_pte_range(tlb, pmd); 148 } while (pmd++, addr = next, addr != end); 149 150 start &= PUD_MASK; 151 if (start < floor) 152 return; 153 if (ceiling) { 154 ceiling &= PUD_MASK; 155 if (!ceiling) 156 return; 157 } 158 if (end - 1 > ceiling - 1) 159 return; 160 161 pmd = pmd_offset(pud, start); 162 pud_clear(pud); 163 pmd_free_tlb(tlb, pmd); 164 } 165 166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 167 unsigned long addr, unsigned long end, 168 unsigned long floor, unsigned long ceiling) 169 { 170 pud_t *pud; 171 unsigned long next; 172 unsigned long start; 173 174 start = addr; 175 pud = pud_offset(pgd, addr); 176 do { 177 next = pud_addr_end(addr, end); 178 if (pud_none_or_clear_bad(pud)) 179 continue; 180 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 181 } while (pud++, addr = next, addr != end); 182 183 start &= PGDIR_MASK; 184 if (start < floor) 185 return; 186 if (ceiling) { 187 ceiling &= PGDIR_MASK; 188 if (!ceiling) 189 return; 190 } 191 if (end - 1 > ceiling - 1) 192 return; 193 194 pud = pud_offset(pgd, start); 195 pgd_clear(pgd); 196 pud_free_tlb(tlb, pud); 197 } 198 199 /* 200 * This function frees user-level page tables of a process. 201 * 202 * Must be called with pagetable lock held. 203 */ 204 void free_pgd_range(struct mmu_gather **tlb, 205 unsigned long addr, unsigned long end, 206 unsigned long floor, unsigned long ceiling) 207 { 208 pgd_t *pgd; 209 unsigned long next; 210 unsigned long start; 211 212 /* 213 * The next few lines have given us lots of grief... 214 * 215 * Why are we testing PMD* at this top level? Because often 216 * there will be no work to do at all, and we'd prefer not to 217 * go all the way down to the bottom just to discover that. 218 * 219 * Why all these "- 1"s? Because 0 represents both the bottom 220 * of the address space and the top of it (using -1 for the 221 * top wouldn't help much: the masks would do the wrong thing). 222 * The rule is that addr 0 and floor 0 refer to the bottom of 223 * the address space, but end 0 and ceiling 0 refer to the top 224 * Comparisons need to use "end - 1" and "ceiling - 1" (though 225 * that end 0 case should be mythical). 226 * 227 * Wherever addr is brought up or ceiling brought down, we must 228 * be careful to reject "the opposite 0" before it confuses the 229 * subsequent tests. But what about where end is brought down 230 * by PMD_SIZE below? no, end can't go down to 0 there. 231 * 232 * Whereas we round start (addr) and ceiling down, by different 233 * masks at different levels, in order to test whether a table 234 * now has no other vmas using it, so can be freed, we don't 235 * bother to round floor or end up - the tests don't need that. 236 */ 237 238 addr &= PMD_MASK; 239 if (addr < floor) { 240 addr += PMD_SIZE; 241 if (!addr) 242 return; 243 } 244 if (ceiling) { 245 ceiling &= PMD_MASK; 246 if (!ceiling) 247 return; 248 } 249 if (end - 1 > ceiling - 1) 250 end -= PMD_SIZE; 251 if (addr > end - 1) 252 return; 253 254 start = addr; 255 pgd = pgd_offset((*tlb)->mm, addr); 256 do { 257 next = pgd_addr_end(addr, end); 258 if (pgd_none_or_clear_bad(pgd)) 259 continue; 260 free_pud_range(*tlb, pgd, addr, next, floor, ceiling); 261 } while (pgd++, addr = next, addr != end); 262 263 if (!(*tlb)->fullmm) 264 flush_tlb_pgtables((*tlb)->mm, start, end); 265 } 266 267 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, 268 unsigned long floor, unsigned long ceiling) 269 { 270 while (vma) { 271 struct vm_area_struct *next = vma->vm_next; 272 unsigned long addr = vma->vm_start; 273 274 /* 275 * Hide vma from rmap and vmtruncate before freeing pgtables 276 */ 277 anon_vma_unlink(vma); 278 unlink_file_vma(vma); 279 280 if (is_vm_hugetlb_page(vma)) { 281 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 282 floor, next? next->vm_start: ceiling); 283 } else { 284 /* 285 * Optimization: gather nearby vmas into one call down 286 */ 287 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 288 && !is_vm_hugetlb_page(next)) { 289 vma = next; 290 next = vma->vm_next; 291 anon_vma_unlink(vma); 292 unlink_file_vma(vma); 293 } 294 free_pgd_range(tlb, addr, vma->vm_end, 295 floor, next? next->vm_start: ceiling); 296 } 297 vma = next; 298 } 299 } 300 301 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 302 { 303 struct page *new = pte_alloc_one(mm, address); 304 if (!new) 305 return -ENOMEM; 306 307 pte_lock_init(new); 308 spin_lock(&mm->page_table_lock); 309 if (pmd_present(*pmd)) { /* Another has populated it */ 310 pte_lock_deinit(new); 311 pte_free(new); 312 } else { 313 mm->nr_ptes++; 314 inc_zone_page_state(new, NR_PAGETABLE); 315 pmd_populate(mm, pmd, new); 316 } 317 spin_unlock(&mm->page_table_lock); 318 return 0; 319 } 320 321 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 322 { 323 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 324 if (!new) 325 return -ENOMEM; 326 327 spin_lock(&init_mm.page_table_lock); 328 if (pmd_present(*pmd)) /* Another has populated it */ 329 pte_free_kernel(new); 330 else 331 pmd_populate_kernel(&init_mm, pmd, new); 332 spin_unlock(&init_mm.page_table_lock); 333 return 0; 334 } 335 336 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 337 { 338 if (file_rss) 339 add_mm_counter(mm, file_rss, file_rss); 340 if (anon_rss) 341 add_mm_counter(mm, anon_rss, anon_rss); 342 } 343 344 /* 345 * This function is called to print an error when a bad pte 346 * is found. For example, we might have a PFN-mapped pte in 347 * a region that doesn't allow it. 348 * 349 * The calling function must still handle the error. 350 */ 351 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) 352 { 353 printk(KERN_ERR "Bad pte = %08llx, process = %s, " 354 "vm_flags = %lx, vaddr = %lx\n", 355 (long long)pte_val(pte), 356 (vma->vm_mm == current->mm ? current->comm : "???"), 357 vma->vm_flags, vaddr); 358 dump_stack(); 359 } 360 361 static inline int is_cow_mapping(unsigned int flags) 362 { 363 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 364 } 365 366 /* 367 * This function gets the "struct page" associated with a pte. 368 * 369 * NOTE! Some mappings do not have "struct pages". A raw PFN mapping 370 * will have each page table entry just pointing to a raw page frame 371 * number, and as far as the VM layer is concerned, those do not have 372 * pages associated with them - even if the PFN might point to memory 373 * that otherwise is perfectly fine and has a "struct page". 374 * 375 * The way we recognize those mappings is through the rules set up 376 * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set, 377 * and the vm_pgoff will point to the first PFN mapped: thus every 378 * page that is a raw mapping will always honor the rule 379 * 380 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 381 * 382 * and if that isn't true, the page has been COW'ed (in which case it 383 * _does_ have a "struct page" associated with it even if it is in a 384 * VM_PFNMAP range). 385 */ 386 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte) 387 { 388 unsigned long pfn = pte_pfn(pte); 389 390 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 391 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT; 392 if (pfn == vma->vm_pgoff + off) 393 return NULL; 394 if (!is_cow_mapping(vma->vm_flags)) 395 return NULL; 396 } 397 398 /* 399 * Add some anal sanity checks for now. Eventually, 400 * we should just do "return pfn_to_page(pfn)", but 401 * in the meantime we check that we get a valid pfn, 402 * and that the resulting page looks ok. 403 */ 404 if (unlikely(!pfn_valid(pfn))) { 405 print_bad_pte(vma, pte, addr); 406 return NULL; 407 } 408 409 /* 410 * NOTE! We still have PageReserved() pages in the page 411 * tables. 412 * 413 * The PAGE_ZERO() pages and various VDSO mappings can 414 * cause them to exist. 415 */ 416 return pfn_to_page(pfn); 417 } 418 419 /* 420 * copy one vm_area from one task to the other. Assumes the page tables 421 * already present in the new task to be cleared in the whole range 422 * covered by this vma. 423 */ 424 425 static inline void 426 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 427 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 428 unsigned long addr, int *rss) 429 { 430 unsigned long vm_flags = vma->vm_flags; 431 pte_t pte = *src_pte; 432 struct page *page; 433 434 /* pte contains position in swap or file, so copy. */ 435 if (unlikely(!pte_present(pte))) { 436 if (!pte_file(pte)) { 437 swp_entry_t entry = pte_to_swp_entry(pte); 438 439 swap_duplicate(entry); 440 /* make sure dst_mm is on swapoff's mmlist. */ 441 if (unlikely(list_empty(&dst_mm->mmlist))) { 442 spin_lock(&mmlist_lock); 443 if (list_empty(&dst_mm->mmlist)) 444 list_add(&dst_mm->mmlist, 445 &src_mm->mmlist); 446 spin_unlock(&mmlist_lock); 447 } 448 if (is_write_migration_entry(entry) && 449 is_cow_mapping(vm_flags)) { 450 /* 451 * COW mappings require pages in both parent 452 * and child to be set to read. 453 */ 454 make_migration_entry_read(&entry); 455 pte = swp_entry_to_pte(entry); 456 set_pte_at(src_mm, addr, src_pte, pte); 457 } 458 } 459 goto out_set_pte; 460 } 461 462 /* 463 * If it's a COW mapping, write protect it both 464 * in the parent and the child 465 */ 466 if (is_cow_mapping(vm_flags)) { 467 ptep_set_wrprotect(src_mm, addr, src_pte); 468 pte = *src_pte; 469 } 470 471 /* 472 * If it's a shared mapping, mark it clean in 473 * the child 474 */ 475 if (vm_flags & VM_SHARED) 476 pte = pte_mkclean(pte); 477 pte = pte_mkold(pte); 478 479 page = vm_normal_page(vma, addr, pte); 480 if (page) { 481 get_page(page); 482 page_dup_rmap(page); 483 rss[!!PageAnon(page)]++; 484 } 485 486 out_set_pte: 487 set_pte_at(dst_mm, addr, dst_pte, pte); 488 } 489 490 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 491 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 492 unsigned long addr, unsigned long end) 493 { 494 pte_t *src_pte, *dst_pte; 495 spinlock_t *src_ptl, *dst_ptl; 496 int progress = 0; 497 int rss[2]; 498 499 again: 500 rss[1] = rss[0] = 0; 501 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 502 if (!dst_pte) 503 return -ENOMEM; 504 src_pte = pte_offset_map_nested(src_pmd, addr); 505 src_ptl = pte_lockptr(src_mm, src_pmd); 506 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 507 508 do { 509 /* 510 * We are holding two locks at this point - either of them 511 * could generate latencies in another task on another CPU. 512 */ 513 if (progress >= 32) { 514 progress = 0; 515 if (need_resched() || 516 need_lockbreak(src_ptl) || 517 need_lockbreak(dst_ptl)) 518 break; 519 } 520 if (pte_none(*src_pte)) { 521 progress++; 522 continue; 523 } 524 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 525 progress += 8; 526 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 527 528 spin_unlock(src_ptl); 529 pte_unmap_nested(src_pte - 1); 530 add_mm_rss(dst_mm, rss[0], rss[1]); 531 pte_unmap_unlock(dst_pte - 1, dst_ptl); 532 cond_resched(); 533 if (addr != end) 534 goto again; 535 return 0; 536 } 537 538 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 539 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 540 unsigned long addr, unsigned long end) 541 { 542 pmd_t *src_pmd, *dst_pmd; 543 unsigned long next; 544 545 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 546 if (!dst_pmd) 547 return -ENOMEM; 548 src_pmd = pmd_offset(src_pud, addr); 549 do { 550 next = pmd_addr_end(addr, end); 551 if (pmd_none_or_clear_bad(src_pmd)) 552 continue; 553 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 554 vma, addr, next)) 555 return -ENOMEM; 556 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 557 return 0; 558 } 559 560 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 561 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 562 unsigned long addr, unsigned long end) 563 { 564 pud_t *src_pud, *dst_pud; 565 unsigned long next; 566 567 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 568 if (!dst_pud) 569 return -ENOMEM; 570 src_pud = pud_offset(src_pgd, addr); 571 do { 572 next = pud_addr_end(addr, end); 573 if (pud_none_or_clear_bad(src_pud)) 574 continue; 575 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 576 vma, addr, next)) 577 return -ENOMEM; 578 } while (dst_pud++, src_pud++, addr = next, addr != end); 579 return 0; 580 } 581 582 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 583 struct vm_area_struct *vma) 584 { 585 pgd_t *src_pgd, *dst_pgd; 586 unsigned long next; 587 unsigned long addr = vma->vm_start; 588 unsigned long end = vma->vm_end; 589 590 /* 591 * Don't copy ptes where a page fault will fill them correctly. 592 * Fork becomes much lighter when there are big shared or private 593 * readonly mappings. The tradeoff is that copy_page_range is more 594 * efficient than faulting. 595 */ 596 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 597 if (!vma->anon_vma) 598 return 0; 599 } 600 601 if (is_vm_hugetlb_page(vma)) 602 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 603 604 dst_pgd = pgd_offset(dst_mm, addr); 605 src_pgd = pgd_offset(src_mm, addr); 606 do { 607 next = pgd_addr_end(addr, end); 608 if (pgd_none_or_clear_bad(src_pgd)) 609 continue; 610 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 611 vma, addr, next)) 612 return -ENOMEM; 613 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 614 return 0; 615 } 616 617 static unsigned long zap_pte_range(struct mmu_gather *tlb, 618 struct vm_area_struct *vma, pmd_t *pmd, 619 unsigned long addr, unsigned long end, 620 long *zap_work, struct zap_details *details) 621 { 622 struct mm_struct *mm = tlb->mm; 623 pte_t *pte; 624 spinlock_t *ptl; 625 int file_rss = 0; 626 int anon_rss = 0; 627 628 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 629 do { 630 pte_t ptent = *pte; 631 if (pte_none(ptent)) { 632 (*zap_work)--; 633 continue; 634 } 635 636 (*zap_work) -= PAGE_SIZE; 637 638 if (pte_present(ptent)) { 639 struct page *page; 640 641 page = vm_normal_page(vma, addr, ptent); 642 if (unlikely(details) && page) { 643 /* 644 * unmap_shared_mapping_pages() wants to 645 * invalidate cache without truncating: 646 * unmap shared but keep private pages. 647 */ 648 if (details->check_mapping && 649 details->check_mapping != page->mapping) 650 continue; 651 /* 652 * Each page->index must be checked when 653 * invalidating or truncating nonlinear. 654 */ 655 if (details->nonlinear_vma && 656 (page->index < details->first_index || 657 page->index > details->last_index)) 658 continue; 659 } 660 ptent = ptep_get_and_clear_full(mm, addr, pte, 661 tlb->fullmm); 662 tlb_remove_tlb_entry(tlb, pte, addr); 663 if (unlikely(!page)) 664 continue; 665 if (unlikely(details) && details->nonlinear_vma 666 && linear_page_index(details->nonlinear_vma, 667 addr) != page->index) 668 set_pte_at(mm, addr, pte, 669 pgoff_to_pte(page->index)); 670 if (PageAnon(page)) 671 anon_rss--; 672 else { 673 if (pte_dirty(ptent)) 674 set_page_dirty(page); 675 if (pte_young(ptent)) 676 mark_page_accessed(page); 677 file_rss--; 678 } 679 page_remove_rmap(page); 680 tlb_remove_page(tlb, page); 681 continue; 682 } 683 /* 684 * If details->check_mapping, we leave swap entries; 685 * if details->nonlinear_vma, we leave file entries. 686 */ 687 if (unlikely(details)) 688 continue; 689 if (!pte_file(ptent)) 690 free_swap_and_cache(pte_to_swp_entry(ptent)); 691 pte_clear_full(mm, addr, pte, tlb->fullmm); 692 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 693 694 add_mm_rss(mm, file_rss, anon_rss); 695 pte_unmap_unlock(pte - 1, ptl); 696 697 return addr; 698 } 699 700 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 701 struct vm_area_struct *vma, pud_t *pud, 702 unsigned long addr, unsigned long end, 703 long *zap_work, struct zap_details *details) 704 { 705 pmd_t *pmd; 706 unsigned long next; 707 708 pmd = pmd_offset(pud, addr); 709 do { 710 next = pmd_addr_end(addr, end); 711 if (pmd_none_or_clear_bad(pmd)) { 712 (*zap_work)--; 713 continue; 714 } 715 next = zap_pte_range(tlb, vma, pmd, addr, next, 716 zap_work, details); 717 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 718 719 return addr; 720 } 721 722 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 723 struct vm_area_struct *vma, pgd_t *pgd, 724 unsigned long addr, unsigned long end, 725 long *zap_work, struct zap_details *details) 726 { 727 pud_t *pud; 728 unsigned long next; 729 730 pud = pud_offset(pgd, addr); 731 do { 732 next = pud_addr_end(addr, end); 733 if (pud_none_or_clear_bad(pud)) { 734 (*zap_work)--; 735 continue; 736 } 737 next = zap_pmd_range(tlb, vma, pud, addr, next, 738 zap_work, details); 739 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 740 741 return addr; 742 } 743 744 static unsigned long unmap_page_range(struct mmu_gather *tlb, 745 struct vm_area_struct *vma, 746 unsigned long addr, unsigned long end, 747 long *zap_work, struct zap_details *details) 748 { 749 pgd_t *pgd; 750 unsigned long next; 751 752 if (details && !details->check_mapping && !details->nonlinear_vma) 753 details = NULL; 754 755 BUG_ON(addr >= end); 756 tlb_start_vma(tlb, vma); 757 pgd = pgd_offset(vma->vm_mm, addr); 758 do { 759 next = pgd_addr_end(addr, end); 760 if (pgd_none_or_clear_bad(pgd)) { 761 (*zap_work)--; 762 continue; 763 } 764 next = zap_pud_range(tlb, vma, pgd, addr, next, 765 zap_work, details); 766 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 767 tlb_end_vma(tlb, vma); 768 769 return addr; 770 } 771 772 #ifdef CONFIG_PREEMPT 773 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 774 #else 775 /* No preempt: go for improved straight-line efficiency */ 776 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 777 #endif 778 779 /** 780 * unmap_vmas - unmap a range of memory covered by a list of vma's 781 * @tlbp: address of the caller's struct mmu_gather 782 * @vma: the starting vma 783 * @start_addr: virtual address at which to start unmapping 784 * @end_addr: virtual address at which to end unmapping 785 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 786 * @details: details of nonlinear truncation or shared cache invalidation 787 * 788 * Returns the end address of the unmapping (restart addr if interrupted). 789 * 790 * Unmap all pages in the vma list. 791 * 792 * We aim to not hold locks for too long (for scheduling latency reasons). 793 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 794 * return the ending mmu_gather to the caller. 795 * 796 * Only addresses between `start' and `end' will be unmapped. 797 * 798 * The VMA list must be sorted in ascending virtual address order. 799 * 800 * unmap_vmas() assumes that the caller will flush the whole unmapped address 801 * range after unmap_vmas() returns. So the only responsibility here is to 802 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 803 * drops the lock and schedules. 804 */ 805 unsigned long unmap_vmas(struct mmu_gather **tlbp, 806 struct vm_area_struct *vma, unsigned long start_addr, 807 unsigned long end_addr, unsigned long *nr_accounted, 808 struct zap_details *details) 809 { 810 long zap_work = ZAP_BLOCK_SIZE; 811 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 812 int tlb_start_valid = 0; 813 unsigned long start = start_addr; 814 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 815 int fullmm = (*tlbp)->fullmm; 816 817 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 818 unsigned long end; 819 820 start = max(vma->vm_start, start_addr); 821 if (start >= vma->vm_end) 822 continue; 823 end = min(vma->vm_end, end_addr); 824 if (end <= vma->vm_start) 825 continue; 826 827 if (vma->vm_flags & VM_ACCOUNT) 828 *nr_accounted += (end - start) >> PAGE_SHIFT; 829 830 while (start != end) { 831 if (!tlb_start_valid) { 832 tlb_start = start; 833 tlb_start_valid = 1; 834 } 835 836 if (unlikely(is_vm_hugetlb_page(vma))) { 837 unmap_hugepage_range(vma, start, end); 838 zap_work -= (end - start) / 839 (HPAGE_SIZE / PAGE_SIZE); 840 start = end; 841 } else 842 start = unmap_page_range(*tlbp, vma, 843 start, end, &zap_work, details); 844 845 if (zap_work > 0) { 846 BUG_ON(start != end); 847 break; 848 } 849 850 tlb_finish_mmu(*tlbp, tlb_start, start); 851 852 if (need_resched() || 853 (i_mmap_lock && need_lockbreak(i_mmap_lock))) { 854 if (i_mmap_lock) { 855 *tlbp = NULL; 856 goto out; 857 } 858 cond_resched(); 859 } 860 861 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 862 tlb_start_valid = 0; 863 zap_work = ZAP_BLOCK_SIZE; 864 } 865 } 866 out: 867 return start; /* which is now the end (or restart) address */ 868 } 869 870 /** 871 * zap_page_range - remove user pages in a given range 872 * @vma: vm_area_struct holding the applicable pages 873 * @address: starting address of pages to zap 874 * @size: number of bytes to zap 875 * @details: details of nonlinear truncation or shared cache invalidation 876 */ 877 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 878 unsigned long size, struct zap_details *details) 879 { 880 struct mm_struct *mm = vma->vm_mm; 881 struct mmu_gather *tlb; 882 unsigned long end = address + size; 883 unsigned long nr_accounted = 0; 884 885 lru_add_drain(); 886 tlb = tlb_gather_mmu(mm, 0); 887 update_hiwater_rss(mm); 888 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 889 if (tlb) 890 tlb_finish_mmu(tlb, address, end); 891 return end; 892 } 893 894 /* 895 * Do a quick page-table lookup for a single page. 896 */ 897 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 898 unsigned int flags) 899 { 900 pgd_t *pgd; 901 pud_t *pud; 902 pmd_t *pmd; 903 pte_t *ptep, pte; 904 spinlock_t *ptl; 905 struct page *page; 906 struct mm_struct *mm = vma->vm_mm; 907 908 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 909 if (!IS_ERR(page)) { 910 BUG_ON(flags & FOLL_GET); 911 goto out; 912 } 913 914 page = NULL; 915 pgd = pgd_offset(mm, address); 916 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 917 goto no_page_table; 918 919 pud = pud_offset(pgd, address); 920 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 921 goto no_page_table; 922 923 pmd = pmd_offset(pud, address); 924 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 925 goto no_page_table; 926 927 if (pmd_huge(*pmd)) { 928 BUG_ON(flags & FOLL_GET); 929 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 930 goto out; 931 } 932 933 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 934 if (!ptep) 935 goto out; 936 937 pte = *ptep; 938 if (!pte_present(pte)) 939 goto unlock; 940 if ((flags & FOLL_WRITE) && !pte_write(pte)) 941 goto unlock; 942 page = vm_normal_page(vma, address, pte); 943 if (unlikely(!page)) 944 goto unlock; 945 946 if (flags & FOLL_GET) 947 get_page(page); 948 if (flags & FOLL_TOUCH) { 949 if ((flags & FOLL_WRITE) && 950 !pte_dirty(pte) && !PageDirty(page)) 951 set_page_dirty(page); 952 mark_page_accessed(page); 953 } 954 unlock: 955 pte_unmap_unlock(ptep, ptl); 956 out: 957 return page; 958 959 no_page_table: 960 /* 961 * When core dumping an enormous anonymous area that nobody 962 * has touched so far, we don't want to allocate page tables. 963 */ 964 if (flags & FOLL_ANON) { 965 page = ZERO_PAGE(address); 966 if (flags & FOLL_GET) 967 get_page(page); 968 BUG_ON(flags & FOLL_WRITE); 969 } 970 return page; 971 } 972 973 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 974 unsigned long start, int len, int write, int force, 975 struct page **pages, struct vm_area_struct **vmas) 976 { 977 int i; 978 unsigned int vm_flags; 979 980 /* 981 * Require read or write permissions. 982 * If 'force' is set, we only require the "MAY" flags. 983 */ 984 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 985 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 986 i = 0; 987 988 do { 989 struct vm_area_struct *vma; 990 unsigned int foll_flags; 991 992 vma = find_extend_vma(mm, start); 993 if (!vma && in_gate_area(tsk, start)) { 994 unsigned long pg = start & PAGE_MASK; 995 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 996 pgd_t *pgd; 997 pud_t *pud; 998 pmd_t *pmd; 999 pte_t *pte; 1000 if (write) /* user gate pages are read-only */ 1001 return i ? : -EFAULT; 1002 if (pg > TASK_SIZE) 1003 pgd = pgd_offset_k(pg); 1004 else 1005 pgd = pgd_offset_gate(mm, pg); 1006 BUG_ON(pgd_none(*pgd)); 1007 pud = pud_offset(pgd, pg); 1008 BUG_ON(pud_none(*pud)); 1009 pmd = pmd_offset(pud, pg); 1010 if (pmd_none(*pmd)) 1011 return i ? : -EFAULT; 1012 pte = pte_offset_map(pmd, pg); 1013 if (pte_none(*pte)) { 1014 pte_unmap(pte); 1015 return i ? : -EFAULT; 1016 } 1017 if (pages) { 1018 struct page *page = vm_normal_page(gate_vma, start, *pte); 1019 pages[i] = page; 1020 if (page) 1021 get_page(page); 1022 } 1023 pte_unmap(pte); 1024 if (vmas) 1025 vmas[i] = gate_vma; 1026 i++; 1027 start += PAGE_SIZE; 1028 len--; 1029 continue; 1030 } 1031 1032 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1033 || !(vm_flags & vma->vm_flags)) 1034 return i ? : -EFAULT; 1035 1036 if (is_vm_hugetlb_page(vma)) { 1037 i = follow_hugetlb_page(mm, vma, pages, vmas, 1038 &start, &len, i); 1039 continue; 1040 } 1041 1042 foll_flags = FOLL_TOUCH; 1043 if (pages) 1044 foll_flags |= FOLL_GET; 1045 if (!write && !(vma->vm_flags & VM_LOCKED) && 1046 (!vma->vm_ops || !vma->vm_ops->nopage)) 1047 foll_flags |= FOLL_ANON; 1048 1049 do { 1050 struct page *page; 1051 1052 if (write) 1053 foll_flags |= FOLL_WRITE; 1054 1055 cond_resched(); 1056 while (!(page = follow_page(vma, start, foll_flags))) { 1057 int ret; 1058 ret = __handle_mm_fault(mm, vma, start, 1059 foll_flags & FOLL_WRITE); 1060 /* 1061 * The VM_FAULT_WRITE bit tells us that do_wp_page has 1062 * broken COW when necessary, even if maybe_mkwrite 1063 * decided not to set pte_write. We can thus safely do 1064 * subsequent page lookups as if they were reads. 1065 */ 1066 if (ret & VM_FAULT_WRITE) 1067 foll_flags &= ~FOLL_WRITE; 1068 1069 switch (ret & ~VM_FAULT_WRITE) { 1070 case VM_FAULT_MINOR: 1071 tsk->min_flt++; 1072 break; 1073 case VM_FAULT_MAJOR: 1074 tsk->maj_flt++; 1075 break; 1076 case VM_FAULT_SIGBUS: 1077 return i ? i : -EFAULT; 1078 case VM_FAULT_OOM: 1079 return i ? i : -ENOMEM; 1080 default: 1081 BUG(); 1082 } 1083 } 1084 if (pages) { 1085 pages[i] = page; 1086 1087 flush_anon_page(page, start); 1088 flush_dcache_page(page); 1089 } 1090 if (vmas) 1091 vmas[i] = vma; 1092 i++; 1093 start += PAGE_SIZE; 1094 len--; 1095 } while (len && start < vma->vm_end); 1096 } while (len); 1097 return i; 1098 } 1099 EXPORT_SYMBOL(get_user_pages); 1100 1101 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1102 unsigned long addr, unsigned long end, pgprot_t prot) 1103 { 1104 pte_t *pte; 1105 spinlock_t *ptl; 1106 1107 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1108 if (!pte) 1109 return -ENOMEM; 1110 do { 1111 struct page *page = ZERO_PAGE(addr); 1112 pte_t zero_pte = pte_wrprotect(mk_pte(page, prot)); 1113 page_cache_get(page); 1114 page_add_file_rmap(page); 1115 inc_mm_counter(mm, file_rss); 1116 BUG_ON(!pte_none(*pte)); 1117 set_pte_at(mm, addr, pte, zero_pte); 1118 } while (pte++, addr += PAGE_SIZE, addr != end); 1119 pte_unmap_unlock(pte - 1, ptl); 1120 return 0; 1121 } 1122 1123 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, 1124 unsigned long addr, unsigned long end, pgprot_t prot) 1125 { 1126 pmd_t *pmd; 1127 unsigned long next; 1128 1129 pmd = pmd_alloc(mm, pud, addr); 1130 if (!pmd) 1131 return -ENOMEM; 1132 do { 1133 next = pmd_addr_end(addr, end); 1134 if (zeromap_pte_range(mm, pmd, addr, next, prot)) 1135 return -ENOMEM; 1136 } while (pmd++, addr = next, addr != end); 1137 return 0; 1138 } 1139 1140 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1141 unsigned long addr, unsigned long end, pgprot_t prot) 1142 { 1143 pud_t *pud; 1144 unsigned long next; 1145 1146 pud = pud_alloc(mm, pgd, addr); 1147 if (!pud) 1148 return -ENOMEM; 1149 do { 1150 next = pud_addr_end(addr, end); 1151 if (zeromap_pmd_range(mm, pud, addr, next, prot)) 1152 return -ENOMEM; 1153 } while (pud++, addr = next, addr != end); 1154 return 0; 1155 } 1156 1157 int zeromap_page_range(struct vm_area_struct *vma, 1158 unsigned long addr, unsigned long size, pgprot_t prot) 1159 { 1160 pgd_t *pgd; 1161 unsigned long next; 1162 unsigned long end = addr + size; 1163 struct mm_struct *mm = vma->vm_mm; 1164 int err; 1165 1166 BUG_ON(addr >= end); 1167 pgd = pgd_offset(mm, addr); 1168 flush_cache_range(vma, addr, end); 1169 do { 1170 next = pgd_addr_end(addr, end); 1171 err = zeromap_pud_range(mm, pgd, addr, next, prot); 1172 if (err) 1173 break; 1174 } while (pgd++, addr = next, addr != end); 1175 return err; 1176 } 1177 1178 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) 1179 { 1180 pgd_t * pgd = pgd_offset(mm, addr); 1181 pud_t * pud = pud_alloc(mm, pgd, addr); 1182 if (pud) { 1183 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1184 if (pmd) 1185 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1186 } 1187 return NULL; 1188 } 1189 1190 /* 1191 * This is the old fallback for page remapping. 1192 * 1193 * For historical reasons, it only allows reserved pages. Only 1194 * old drivers should use this, and they needed to mark their 1195 * pages reserved for the old functions anyway. 1196 */ 1197 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot) 1198 { 1199 int retval; 1200 pte_t *pte; 1201 spinlock_t *ptl; 1202 1203 retval = -EINVAL; 1204 if (PageAnon(page)) 1205 goto out; 1206 retval = -ENOMEM; 1207 flush_dcache_page(page); 1208 pte = get_locked_pte(mm, addr, &ptl); 1209 if (!pte) 1210 goto out; 1211 retval = -EBUSY; 1212 if (!pte_none(*pte)) 1213 goto out_unlock; 1214 1215 /* Ok, finally just insert the thing.. */ 1216 get_page(page); 1217 inc_mm_counter(mm, file_rss); 1218 page_add_file_rmap(page); 1219 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1220 1221 retval = 0; 1222 out_unlock: 1223 pte_unmap_unlock(pte, ptl); 1224 out: 1225 return retval; 1226 } 1227 1228 /* 1229 * This allows drivers to insert individual pages they've allocated 1230 * into a user vma. 1231 * 1232 * The page has to be a nice clean _individual_ kernel allocation. 1233 * If you allocate a compound page, you need to have marked it as 1234 * such (__GFP_COMP), or manually just split the page up yourself 1235 * (see split_page()). 1236 * 1237 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1238 * took an arbitrary page protection parameter. This doesn't allow 1239 * that. Your vma protection will have to be set up correctly, which 1240 * means that if you want a shared writable mapping, you'd better 1241 * ask for a shared writable mapping! 1242 * 1243 * The page does not need to be reserved. 1244 */ 1245 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page) 1246 { 1247 if (addr < vma->vm_start || addr >= vma->vm_end) 1248 return -EFAULT; 1249 if (!page_count(page)) 1250 return -EINVAL; 1251 vma->vm_flags |= VM_INSERTPAGE; 1252 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot); 1253 } 1254 EXPORT_SYMBOL(vm_insert_page); 1255 1256 /* 1257 * maps a range of physical memory into the requested pages. the old 1258 * mappings are removed. any references to nonexistent pages results 1259 * in null mappings (currently treated as "copy-on-access") 1260 */ 1261 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1262 unsigned long addr, unsigned long end, 1263 unsigned long pfn, pgprot_t prot) 1264 { 1265 pte_t *pte; 1266 spinlock_t *ptl; 1267 1268 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1269 if (!pte) 1270 return -ENOMEM; 1271 do { 1272 BUG_ON(!pte_none(*pte)); 1273 set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); 1274 pfn++; 1275 } while (pte++, addr += PAGE_SIZE, addr != end); 1276 pte_unmap_unlock(pte - 1, ptl); 1277 return 0; 1278 } 1279 1280 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1281 unsigned long addr, unsigned long end, 1282 unsigned long pfn, pgprot_t prot) 1283 { 1284 pmd_t *pmd; 1285 unsigned long next; 1286 1287 pfn -= addr >> PAGE_SHIFT; 1288 pmd = pmd_alloc(mm, pud, addr); 1289 if (!pmd) 1290 return -ENOMEM; 1291 do { 1292 next = pmd_addr_end(addr, end); 1293 if (remap_pte_range(mm, pmd, addr, next, 1294 pfn + (addr >> PAGE_SHIFT), prot)) 1295 return -ENOMEM; 1296 } while (pmd++, addr = next, addr != end); 1297 return 0; 1298 } 1299 1300 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1301 unsigned long addr, unsigned long end, 1302 unsigned long pfn, pgprot_t prot) 1303 { 1304 pud_t *pud; 1305 unsigned long next; 1306 1307 pfn -= addr >> PAGE_SHIFT; 1308 pud = pud_alloc(mm, pgd, addr); 1309 if (!pud) 1310 return -ENOMEM; 1311 do { 1312 next = pud_addr_end(addr, end); 1313 if (remap_pmd_range(mm, pud, addr, next, 1314 pfn + (addr >> PAGE_SHIFT), prot)) 1315 return -ENOMEM; 1316 } while (pud++, addr = next, addr != end); 1317 return 0; 1318 } 1319 1320 /* Note: this is only safe if the mm semaphore is held when called. */ 1321 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1322 unsigned long pfn, unsigned long size, pgprot_t prot) 1323 { 1324 pgd_t *pgd; 1325 unsigned long next; 1326 unsigned long end = addr + PAGE_ALIGN(size); 1327 struct mm_struct *mm = vma->vm_mm; 1328 int err; 1329 1330 /* 1331 * Physically remapped pages are special. Tell the 1332 * rest of the world about it: 1333 * VM_IO tells people not to look at these pages 1334 * (accesses can have side effects). 1335 * VM_RESERVED is specified all over the place, because 1336 * in 2.4 it kept swapout's vma scan off this vma; but 1337 * in 2.6 the LRU scan won't even find its pages, so this 1338 * flag means no more than count its pages in reserved_vm, 1339 * and omit it from core dump, even when VM_IO turned off. 1340 * VM_PFNMAP tells the core MM that the base pages are just 1341 * raw PFN mappings, and do not have a "struct page" associated 1342 * with them. 1343 * 1344 * There's a horrible special case to handle copy-on-write 1345 * behaviour that some programs depend on. We mark the "original" 1346 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1347 */ 1348 if (is_cow_mapping(vma->vm_flags)) { 1349 if (addr != vma->vm_start || end != vma->vm_end) 1350 return -EINVAL; 1351 vma->vm_pgoff = pfn; 1352 } 1353 1354 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1355 1356 BUG_ON(addr >= end); 1357 pfn -= addr >> PAGE_SHIFT; 1358 pgd = pgd_offset(mm, addr); 1359 flush_cache_range(vma, addr, end); 1360 do { 1361 next = pgd_addr_end(addr, end); 1362 err = remap_pud_range(mm, pgd, addr, next, 1363 pfn + (addr >> PAGE_SHIFT), prot); 1364 if (err) 1365 break; 1366 } while (pgd++, addr = next, addr != end); 1367 return err; 1368 } 1369 EXPORT_SYMBOL(remap_pfn_range); 1370 1371 /* 1372 * handle_pte_fault chooses page fault handler according to an entry 1373 * which was read non-atomically. Before making any commitment, on 1374 * those architectures or configurations (e.g. i386 with PAE) which 1375 * might give a mix of unmatched parts, do_swap_page and do_file_page 1376 * must check under lock before unmapping the pte and proceeding 1377 * (but do_wp_page is only called after already making such a check; 1378 * and do_anonymous_page and do_no_page can safely check later on). 1379 */ 1380 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1381 pte_t *page_table, pte_t orig_pte) 1382 { 1383 int same = 1; 1384 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1385 if (sizeof(pte_t) > sizeof(unsigned long)) { 1386 spinlock_t *ptl = pte_lockptr(mm, pmd); 1387 spin_lock(ptl); 1388 same = pte_same(*page_table, orig_pte); 1389 spin_unlock(ptl); 1390 } 1391 #endif 1392 pte_unmap(page_table); 1393 return same; 1394 } 1395 1396 /* 1397 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1398 * servicing faults for write access. In the normal case, do always want 1399 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1400 * that do not have writing enabled, when used by access_process_vm. 1401 */ 1402 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1403 { 1404 if (likely(vma->vm_flags & VM_WRITE)) 1405 pte = pte_mkwrite(pte); 1406 return pte; 1407 } 1408 1409 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va) 1410 { 1411 /* 1412 * If the source page was a PFN mapping, we don't have 1413 * a "struct page" for it. We do a best-effort copy by 1414 * just copying from the original user address. If that 1415 * fails, we just zero-fill it. Live with it. 1416 */ 1417 if (unlikely(!src)) { 1418 void *kaddr = kmap_atomic(dst, KM_USER0); 1419 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1420 1421 /* 1422 * This really shouldn't fail, because the page is there 1423 * in the page tables. But it might just be unreadable, 1424 * in which case we just give up and fill the result with 1425 * zeroes. 1426 */ 1427 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1428 memset(kaddr, 0, PAGE_SIZE); 1429 kunmap_atomic(kaddr, KM_USER0); 1430 return; 1431 1432 } 1433 copy_user_highpage(dst, src, va); 1434 } 1435 1436 /* 1437 * This routine handles present pages, when users try to write 1438 * to a shared page. It is done by copying the page to a new address 1439 * and decrementing the shared-page counter for the old page. 1440 * 1441 * Note that this routine assumes that the protection checks have been 1442 * done by the caller (the low-level page fault routine in most cases). 1443 * Thus we can safely just mark it writable once we've done any necessary 1444 * COW. 1445 * 1446 * We also mark the page dirty at this point even though the page will 1447 * change only once the write actually happens. This avoids a few races, 1448 * and potentially makes it more efficient. 1449 * 1450 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1451 * but allow concurrent faults), with pte both mapped and locked. 1452 * We return with mmap_sem still held, but pte unmapped and unlocked. 1453 */ 1454 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1455 unsigned long address, pte_t *page_table, pmd_t *pmd, 1456 spinlock_t *ptl, pte_t orig_pte) 1457 { 1458 struct page *old_page, *new_page; 1459 pte_t entry; 1460 int reuse, ret = VM_FAULT_MINOR; 1461 1462 old_page = vm_normal_page(vma, address, orig_pte); 1463 if (!old_page) 1464 goto gotten; 1465 1466 if (unlikely((vma->vm_flags & (VM_SHARED|VM_WRITE)) == 1467 (VM_SHARED|VM_WRITE))) { 1468 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 1469 /* 1470 * Notify the address space that the page is about to 1471 * become writable so that it can prohibit this or wait 1472 * for the page to get into an appropriate state. 1473 * 1474 * We do this without the lock held, so that it can 1475 * sleep if it needs to. 1476 */ 1477 page_cache_get(old_page); 1478 pte_unmap_unlock(page_table, ptl); 1479 1480 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) 1481 goto unwritable_page; 1482 1483 page_cache_release(old_page); 1484 1485 /* 1486 * Since we dropped the lock we need to revalidate 1487 * the PTE as someone else may have changed it. If 1488 * they did, we just return, as we can count on the 1489 * MMU to tell us if they didn't also make it writable. 1490 */ 1491 page_table = pte_offset_map_lock(mm, pmd, address, 1492 &ptl); 1493 if (!pte_same(*page_table, orig_pte)) 1494 goto unlock; 1495 } 1496 1497 reuse = 1; 1498 } else if (PageAnon(old_page) && !TestSetPageLocked(old_page)) { 1499 reuse = can_share_swap_page(old_page); 1500 unlock_page(old_page); 1501 } else { 1502 reuse = 0; 1503 } 1504 1505 if (reuse) { 1506 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1507 entry = pte_mkyoung(orig_pte); 1508 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1509 ptep_set_access_flags(vma, address, page_table, entry, 1); 1510 update_mmu_cache(vma, address, entry); 1511 lazy_mmu_prot_update(entry); 1512 ret |= VM_FAULT_WRITE; 1513 goto unlock; 1514 } 1515 1516 /* 1517 * Ok, we need to copy. Oh, well.. 1518 */ 1519 page_cache_get(old_page); 1520 gotten: 1521 pte_unmap_unlock(page_table, ptl); 1522 1523 if (unlikely(anon_vma_prepare(vma))) 1524 goto oom; 1525 if (old_page == ZERO_PAGE(address)) { 1526 new_page = alloc_zeroed_user_highpage(vma, address); 1527 if (!new_page) 1528 goto oom; 1529 } else { 1530 new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); 1531 if (!new_page) 1532 goto oom; 1533 cow_user_page(new_page, old_page, address); 1534 } 1535 1536 /* 1537 * Re-check the pte - we dropped the lock 1538 */ 1539 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1540 if (likely(pte_same(*page_table, orig_pte))) { 1541 if (old_page) { 1542 page_remove_rmap(old_page); 1543 if (!PageAnon(old_page)) { 1544 dec_mm_counter(mm, file_rss); 1545 inc_mm_counter(mm, anon_rss); 1546 } 1547 } else 1548 inc_mm_counter(mm, anon_rss); 1549 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1550 entry = mk_pte(new_page, vma->vm_page_prot); 1551 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1552 ptep_establish(vma, address, page_table, entry); 1553 update_mmu_cache(vma, address, entry); 1554 lazy_mmu_prot_update(entry); 1555 lru_cache_add_active(new_page); 1556 page_add_new_anon_rmap(new_page, vma, address); 1557 1558 /* Free the old page.. */ 1559 new_page = old_page; 1560 ret |= VM_FAULT_WRITE; 1561 } 1562 if (new_page) 1563 page_cache_release(new_page); 1564 if (old_page) 1565 page_cache_release(old_page); 1566 unlock: 1567 pte_unmap_unlock(page_table, ptl); 1568 return ret; 1569 oom: 1570 if (old_page) 1571 page_cache_release(old_page); 1572 return VM_FAULT_OOM; 1573 1574 unwritable_page: 1575 page_cache_release(old_page); 1576 return VM_FAULT_SIGBUS; 1577 } 1578 1579 /* 1580 * Helper functions for unmap_mapping_range(). 1581 * 1582 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 1583 * 1584 * We have to restart searching the prio_tree whenever we drop the lock, 1585 * since the iterator is only valid while the lock is held, and anyway 1586 * a later vma might be split and reinserted earlier while lock dropped. 1587 * 1588 * The list of nonlinear vmas could be handled more efficiently, using 1589 * a placeholder, but handle it in the same way until a need is shown. 1590 * It is important to search the prio_tree before nonlinear list: a vma 1591 * may become nonlinear and be shifted from prio_tree to nonlinear list 1592 * while the lock is dropped; but never shifted from list to prio_tree. 1593 * 1594 * In order to make forward progress despite restarting the search, 1595 * vm_truncate_count is used to mark a vma as now dealt with, so we can 1596 * quickly skip it next time around. Since the prio_tree search only 1597 * shows us those vmas affected by unmapping the range in question, we 1598 * can't efficiently keep all vmas in step with mapping->truncate_count: 1599 * so instead reset them all whenever it wraps back to 0 (then go to 1). 1600 * mapping->truncate_count and vma->vm_truncate_count are protected by 1601 * i_mmap_lock. 1602 * 1603 * In order to make forward progress despite repeatedly restarting some 1604 * large vma, note the restart_addr from unmap_vmas when it breaks out: 1605 * and restart from that address when we reach that vma again. It might 1606 * have been split or merged, shrunk or extended, but never shifted: so 1607 * restart_addr remains valid so long as it remains in the vma's range. 1608 * unmap_mapping_range forces truncate_count to leap over page-aligned 1609 * values so we can save vma's restart_addr in its truncate_count field. 1610 */ 1611 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 1612 1613 static void reset_vma_truncate_counts(struct address_space *mapping) 1614 { 1615 struct vm_area_struct *vma; 1616 struct prio_tree_iter iter; 1617 1618 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 1619 vma->vm_truncate_count = 0; 1620 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1621 vma->vm_truncate_count = 0; 1622 } 1623 1624 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 1625 unsigned long start_addr, unsigned long end_addr, 1626 struct zap_details *details) 1627 { 1628 unsigned long restart_addr; 1629 int need_break; 1630 1631 again: 1632 restart_addr = vma->vm_truncate_count; 1633 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 1634 start_addr = restart_addr; 1635 if (start_addr >= end_addr) { 1636 /* Top of vma has been split off since last time */ 1637 vma->vm_truncate_count = details->truncate_count; 1638 return 0; 1639 } 1640 } 1641 1642 restart_addr = zap_page_range(vma, start_addr, 1643 end_addr - start_addr, details); 1644 need_break = need_resched() || 1645 need_lockbreak(details->i_mmap_lock); 1646 1647 if (restart_addr >= end_addr) { 1648 /* We have now completed this vma: mark it so */ 1649 vma->vm_truncate_count = details->truncate_count; 1650 if (!need_break) 1651 return 0; 1652 } else { 1653 /* Note restart_addr in vma's truncate_count field */ 1654 vma->vm_truncate_count = restart_addr; 1655 if (!need_break) 1656 goto again; 1657 } 1658 1659 spin_unlock(details->i_mmap_lock); 1660 cond_resched(); 1661 spin_lock(details->i_mmap_lock); 1662 return -EINTR; 1663 } 1664 1665 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 1666 struct zap_details *details) 1667 { 1668 struct vm_area_struct *vma; 1669 struct prio_tree_iter iter; 1670 pgoff_t vba, vea, zba, zea; 1671 1672 restart: 1673 vma_prio_tree_foreach(vma, &iter, root, 1674 details->first_index, details->last_index) { 1675 /* Skip quickly over those we have already dealt with */ 1676 if (vma->vm_truncate_count == details->truncate_count) 1677 continue; 1678 1679 vba = vma->vm_pgoff; 1680 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 1681 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 1682 zba = details->first_index; 1683 if (zba < vba) 1684 zba = vba; 1685 zea = details->last_index; 1686 if (zea > vea) 1687 zea = vea; 1688 1689 if (unmap_mapping_range_vma(vma, 1690 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 1691 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 1692 details) < 0) 1693 goto restart; 1694 } 1695 } 1696 1697 static inline void unmap_mapping_range_list(struct list_head *head, 1698 struct zap_details *details) 1699 { 1700 struct vm_area_struct *vma; 1701 1702 /* 1703 * In nonlinear VMAs there is no correspondence between virtual address 1704 * offset and file offset. So we must perform an exhaustive search 1705 * across *all* the pages in each nonlinear VMA, not just the pages 1706 * whose virtual address lies outside the file truncation point. 1707 */ 1708 restart: 1709 list_for_each_entry(vma, head, shared.vm_set.list) { 1710 /* Skip quickly over those we have already dealt with */ 1711 if (vma->vm_truncate_count == details->truncate_count) 1712 continue; 1713 details->nonlinear_vma = vma; 1714 if (unmap_mapping_range_vma(vma, vma->vm_start, 1715 vma->vm_end, details) < 0) 1716 goto restart; 1717 } 1718 } 1719 1720 /** 1721 * unmap_mapping_range - unmap the portion of all mmaps 1722 * in the specified address_space corresponding to the specified 1723 * page range in the underlying file. 1724 * @mapping: the address space containing mmaps to be unmapped. 1725 * @holebegin: byte in first page to unmap, relative to the start of 1726 * the underlying file. This will be rounded down to a PAGE_SIZE 1727 * boundary. Note that this is different from vmtruncate(), which 1728 * must keep the partial page. In contrast, we must get rid of 1729 * partial pages. 1730 * @holelen: size of prospective hole in bytes. This will be rounded 1731 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 1732 * end of the file. 1733 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 1734 * but 0 when invalidating pagecache, don't throw away private data. 1735 */ 1736 void unmap_mapping_range(struct address_space *mapping, 1737 loff_t const holebegin, loff_t const holelen, int even_cows) 1738 { 1739 struct zap_details details; 1740 pgoff_t hba = holebegin >> PAGE_SHIFT; 1741 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1742 1743 /* Check for overflow. */ 1744 if (sizeof(holelen) > sizeof(hlen)) { 1745 long long holeend = 1746 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 1747 if (holeend & ~(long long)ULONG_MAX) 1748 hlen = ULONG_MAX - hba + 1; 1749 } 1750 1751 details.check_mapping = even_cows? NULL: mapping; 1752 details.nonlinear_vma = NULL; 1753 details.first_index = hba; 1754 details.last_index = hba + hlen - 1; 1755 if (details.last_index < details.first_index) 1756 details.last_index = ULONG_MAX; 1757 details.i_mmap_lock = &mapping->i_mmap_lock; 1758 1759 spin_lock(&mapping->i_mmap_lock); 1760 1761 /* serialize i_size write against truncate_count write */ 1762 smp_wmb(); 1763 /* Protect against page faults, and endless unmapping loops */ 1764 mapping->truncate_count++; 1765 /* 1766 * For archs where spin_lock has inclusive semantics like ia64 1767 * this smp_mb() will prevent to read pagetable contents 1768 * before the truncate_count increment is visible to 1769 * other cpus. 1770 */ 1771 smp_mb(); 1772 if (unlikely(is_restart_addr(mapping->truncate_count))) { 1773 if (mapping->truncate_count == 0) 1774 reset_vma_truncate_counts(mapping); 1775 mapping->truncate_count++; 1776 } 1777 details.truncate_count = mapping->truncate_count; 1778 1779 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 1780 unmap_mapping_range_tree(&mapping->i_mmap, &details); 1781 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 1782 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 1783 spin_unlock(&mapping->i_mmap_lock); 1784 } 1785 EXPORT_SYMBOL(unmap_mapping_range); 1786 1787 /* 1788 * Handle all mappings that got truncated by a "truncate()" 1789 * system call. 1790 * 1791 * NOTE! We have to be ready to update the memory sharing 1792 * between the file and the memory map for a potential last 1793 * incomplete page. Ugly, but necessary. 1794 */ 1795 int vmtruncate(struct inode * inode, loff_t offset) 1796 { 1797 struct address_space *mapping = inode->i_mapping; 1798 unsigned long limit; 1799 1800 if (inode->i_size < offset) 1801 goto do_expand; 1802 /* 1803 * truncation of in-use swapfiles is disallowed - it would cause 1804 * subsequent swapout to scribble on the now-freed blocks. 1805 */ 1806 if (IS_SWAPFILE(inode)) 1807 goto out_busy; 1808 i_size_write(inode, offset); 1809 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 1810 truncate_inode_pages(mapping, offset); 1811 goto out_truncate; 1812 1813 do_expand: 1814 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1815 if (limit != RLIM_INFINITY && offset > limit) 1816 goto out_sig; 1817 if (offset > inode->i_sb->s_maxbytes) 1818 goto out_big; 1819 i_size_write(inode, offset); 1820 1821 out_truncate: 1822 if (inode->i_op && inode->i_op->truncate) 1823 inode->i_op->truncate(inode); 1824 return 0; 1825 out_sig: 1826 send_sig(SIGXFSZ, current, 0); 1827 out_big: 1828 return -EFBIG; 1829 out_busy: 1830 return -ETXTBSY; 1831 } 1832 EXPORT_SYMBOL(vmtruncate); 1833 1834 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 1835 { 1836 struct address_space *mapping = inode->i_mapping; 1837 1838 /* 1839 * If the underlying filesystem is not going to provide 1840 * a way to truncate a range of blocks (punch a hole) - 1841 * we should return failure right now. 1842 */ 1843 if (!inode->i_op || !inode->i_op->truncate_range) 1844 return -ENOSYS; 1845 1846 mutex_lock(&inode->i_mutex); 1847 down_write(&inode->i_alloc_sem); 1848 unmap_mapping_range(mapping, offset, (end - offset), 1); 1849 truncate_inode_pages_range(mapping, offset, end); 1850 inode->i_op->truncate_range(inode, offset, end); 1851 up_write(&inode->i_alloc_sem); 1852 mutex_unlock(&inode->i_mutex); 1853 1854 return 0; 1855 } 1856 EXPORT_UNUSED_SYMBOL(vmtruncate_range); /* June 2006 */ 1857 1858 /* 1859 * Primitive swap readahead code. We simply read an aligned block of 1860 * (1 << page_cluster) entries in the swap area. This method is chosen 1861 * because it doesn't cost us any seek time. We also make sure to queue 1862 * the 'original' request together with the readahead ones... 1863 * 1864 * This has been extended to use the NUMA policies from the mm triggering 1865 * the readahead. 1866 * 1867 * Caller must hold down_read on the vma->vm_mm if vma is not NULL. 1868 */ 1869 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) 1870 { 1871 #ifdef CONFIG_NUMA 1872 struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; 1873 #endif 1874 int i, num; 1875 struct page *new_page; 1876 unsigned long offset; 1877 1878 /* 1879 * Get the number of handles we should do readahead io to. 1880 */ 1881 num = valid_swaphandles(entry, &offset); 1882 for (i = 0; i < num; offset++, i++) { 1883 /* Ok, do the async read-ahead now */ 1884 new_page = read_swap_cache_async(swp_entry(swp_type(entry), 1885 offset), vma, addr); 1886 if (!new_page) 1887 break; 1888 page_cache_release(new_page); 1889 #ifdef CONFIG_NUMA 1890 /* 1891 * Find the next applicable VMA for the NUMA policy. 1892 */ 1893 addr += PAGE_SIZE; 1894 if (addr == 0) 1895 vma = NULL; 1896 if (vma) { 1897 if (addr >= vma->vm_end) { 1898 vma = next_vma; 1899 next_vma = vma ? vma->vm_next : NULL; 1900 } 1901 if (vma && addr < vma->vm_start) 1902 vma = NULL; 1903 } else { 1904 if (next_vma && addr >= next_vma->vm_start) { 1905 vma = next_vma; 1906 next_vma = vma->vm_next; 1907 } 1908 } 1909 #endif 1910 } 1911 lru_add_drain(); /* Push any new pages onto the LRU now */ 1912 } 1913 1914 /* 1915 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1916 * but allow concurrent faults), and pte mapped but not yet locked. 1917 * We return with mmap_sem still held, but pte unmapped and unlocked. 1918 */ 1919 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 1920 unsigned long address, pte_t *page_table, pmd_t *pmd, 1921 int write_access, pte_t orig_pte) 1922 { 1923 spinlock_t *ptl; 1924 struct page *page; 1925 swp_entry_t entry; 1926 pte_t pte; 1927 int ret = VM_FAULT_MINOR; 1928 1929 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 1930 goto out; 1931 1932 entry = pte_to_swp_entry(orig_pte); 1933 if (is_migration_entry(entry)) { 1934 migration_entry_wait(mm, pmd, address); 1935 goto out; 1936 } 1937 page = lookup_swap_cache(entry); 1938 if (!page) { 1939 swapin_readahead(entry, address, vma); 1940 page = read_swap_cache_async(entry, vma, address); 1941 if (!page) { 1942 /* 1943 * Back out if somebody else faulted in this pte 1944 * while we released the pte lock. 1945 */ 1946 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1947 if (likely(pte_same(*page_table, orig_pte))) 1948 ret = VM_FAULT_OOM; 1949 goto unlock; 1950 } 1951 1952 /* Had to read the page from swap area: Major fault */ 1953 ret = VM_FAULT_MAJOR; 1954 count_vm_event(PGMAJFAULT); 1955 grab_swap_token(); 1956 } 1957 1958 mark_page_accessed(page); 1959 lock_page(page); 1960 1961 /* 1962 * Back out if somebody else already faulted in this pte. 1963 */ 1964 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1965 if (unlikely(!pte_same(*page_table, orig_pte))) 1966 goto out_nomap; 1967 1968 if (unlikely(!PageUptodate(page))) { 1969 ret = VM_FAULT_SIGBUS; 1970 goto out_nomap; 1971 } 1972 1973 /* The page isn't present yet, go ahead with the fault. */ 1974 1975 inc_mm_counter(mm, anon_rss); 1976 pte = mk_pte(page, vma->vm_page_prot); 1977 if (write_access && can_share_swap_page(page)) { 1978 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 1979 write_access = 0; 1980 } 1981 1982 flush_icache_page(vma, page); 1983 set_pte_at(mm, address, page_table, pte); 1984 page_add_anon_rmap(page, vma, address); 1985 1986 swap_free(entry); 1987 if (vm_swap_full()) 1988 remove_exclusive_swap_page(page); 1989 unlock_page(page); 1990 1991 if (write_access) { 1992 if (do_wp_page(mm, vma, address, 1993 page_table, pmd, ptl, pte) == VM_FAULT_OOM) 1994 ret = VM_FAULT_OOM; 1995 goto out; 1996 } 1997 1998 /* No need to invalidate - it was non-present before */ 1999 update_mmu_cache(vma, address, pte); 2000 lazy_mmu_prot_update(pte); 2001 unlock: 2002 pte_unmap_unlock(page_table, ptl); 2003 out: 2004 return ret; 2005 out_nomap: 2006 pte_unmap_unlock(page_table, ptl); 2007 unlock_page(page); 2008 page_cache_release(page); 2009 return ret; 2010 } 2011 2012 /* 2013 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2014 * but allow concurrent faults), and pte mapped but not yet locked. 2015 * We return with mmap_sem still held, but pte unmapped and unlocked. 2016 */ 2017 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2018 unsigned long address, pte_t *page_table, pmd_t *pmd, 2019 int write_access) 2020 { 2021 struct page *page; 2022 spinlock_t *ptl; 2023 pte_t entry; 2024 2025 if (write_access) { 2026 /* Allocate our own private page. */ 2027 pte_unmap(page_table); 2028 2029 if (unlikely(anon_vma_prepare(vma))) 2030 goto oom; 2031 page = alloc_zeroed_user_highpage(vma, address); 2032 if (!page) 2033 goto oom; 2034 2035 entry = mk_pte(page, vma->vm_page_prot); 2036 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2037 2038 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2039 if (!pte_none(*page_table)) 2040 goto release; 2041 inc_mm_counter(mm, anon_rss); 2042 lru_cache_add_active(page); 2043 page_add_new_anon_rmap(page, vma, address); 2044 } else { 2045 /* Map the ZERO_PAGE - vm_page_prot is readonly */ 2046 page = ZERO_PAGE(address); 2047 page_cache_get(page); 2048 entry = mk_pte(page, vma->vm_page_prot); 2049 2050 ptl = pte_lockptr(mm, pmd); 2051 spin_lock(ptl); 2052 if (!pte_none(*page_table)) 2053 goto release; 2054 inc_mm_counter(mm, file_rss); 2055 page_add_file_rmap(page); 2056 } 2057 2058 set_pte_at(mm, address, page_table, entry); 2059 2060 /* No need to invalidate - it was non-present before */ 2061 update_mmu_cache(vma, address, entry); 2062 lazy_mmu_prot_update(entry); 2063 unlock: 2064 pte_unmap_unlock(page_table, ptl); 2065 return VM_FAULT_MINOR; 2066 release: 2067 page_cache_release(page); 2068 goto unlock; 2069 oom: 2070 return VM_FAULT_OOM; 2071 } 2072 2073 /* 2074 * do_no_page() tries to create a new page mapping. It aggressively 2075 * tries to share with existing pages, but makes a separate copy if 2076 * the "write_access" parameter is true in order to avoid the next 2077 * page fault. 2078 * 2079 * As this is called only for pages that do not currently exist, we 2080 * do not need to flush old virtual caches or the TLB. 2081 * 2082 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2083 * but allow concurrent faults), and pte mapped but not yet locked. 2084 * We return with mmap_sem still held, but pte unmapped and unlocked. 2085 */ 2086 static int do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, 2087 unsigned long address, pte_t *page_table, pmd_t *pmd, 2088 int write_access) 2089 { 2090 spinlock_t *ptl; 2091 struct page *new_page; 2092 struct address_space *mapping = NULL; 2093 pte_t entry; 2094 unsigned int sequence = 0; 2095 int ret = VM_FAULT_MINOR; 2096 int anon = 0; 2097 2098 pte_unmap(page_table); 2099 BUG_ON(vma->vm_flags & VM_PFNMAP); 2100 2101 if (vma->vm_file) { 2102 mapping = vma->vm_file->f_mapping; 2103 sequence = mapping->truncate_count; 2104 smp_rmb(); /* serializes i_size against truncate_count */ 2105 } 2106 retry: 2107 new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); 2108 /* 2109 * No smp_rmb is needed here as long as there's a full 2110 * spin_lock/unlock sequence inside the ->nopage callback 2111 * (for the pagecache lookup) that acts as an implicit 2112 * smp_mb() and prevents the i_size read to happen 2113 * after the next truncate_count read. 2114 */ 2115 2116 /* no page was available -- either SIGBUS or OOM */ 2117 if (new_page == NOPAGE_SIGBUS) 2118 return VM_FAULT_SIGBUS; 2119 if (new_page == NOPAGE_OOM) 2120 return VM_FAULT_OOM; 2121 2122 /* 2123 * Should we do an early C-O-W break? 2124 */ 2125 if (write_access) { 2126 if (!(vma->vm_flags & VM_SHARED)) { 2127 struct page *page; 2128 2129 if (unlikely(anon_vma_prepare(vma))) 2130 goto oom; 2131 page = alloc_page_vma(GFP_HIGHUSER, vma, address); 2132 if (!page) 2133 goto oom; 2134 copy_user_highpage(page, new_page, address); 2135 page_cache_release(new_page); 2136 new_page = page; 2137 anon = 1; 2138 2139 } else { 2140 /* if the page will be shareable, see if the backing 2141 * address space wants to know that the page is about 2142 * to become writable */ 2143 if (vma->vm_ops->page_mkwrite && 2144 vma->vm_ops->page_mkwrite(vma, new_page) < 0 2145 ) { 2146 page_cache_release(new_page); 2147 return VM_FAULT_SIGBUS; 2148 } 2149 } 2150 } 2151 2152 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2153 /* 2154 * For a file-backed vma, someone could have truncated or otherwise 2155 * invalidated this page. If unmap_mapping_range got called, 2156 * retry getting the page. 2157 */ 2158 if (mapping && unlikely(sequence != mapping->truncate_count)) { 2159 pte_unmap_unlock(page_table, ptl); 2160 page_cache_release(new_page); 2161 cond_resched(); 2162 sequence = mapping->truncate_count; 2163 smp_rmb(); 2164 goto retry; 2165 } 2166 2167 /* 2168 * This silly early PAGE_DIRTY setting removes a race 2169 * due to the bad i386 page protection. But it's valid 2170 * for other architectures too. 2171 * 2172 * Note that if write_access is true, we either now have 2173 * an exclusive copy of the page, or this is a shared mapping, 2174 * so we can make it writable and dirty to avoid having to 2175 * handle that later. 2176 */ 2177 /* Only go through if we didn't race with anybody else... */ 2178 if (pte_none(*page_table)) { 2179 flush_icache_page(vma, new_page); 2180 entry = mk_pte(new_page, vma->vm_page_prot); 2181 if (write_access) 2182 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2183 set_pte_at(mm, address, page_table, entry); 2184 if (anon) { 2185 inc_mm_counter(mm, anon_rss); 2186 lru_cache_add_active(new_page); 2187 page_add_new_anon_rmap(new_page, vma, address); 2188 } else { 2189 inc_mm_counter(mm, file_rss); 2190 page_add_file_rmap(new_page); 2191 } 2192 } else { 2193 /* One of our sibling threads was faster, back out. */ 2194 page_cache_release(new_page); 2195 goto unlock; 2196 } 2197 2198 /* no need to invalidate: a not-present page shouldn't be cached */ 2199 update_mmu_cache(vma, address, entry); 2200 lazy_mmu_prot_update(entry); 2201 unlock: 2202 pte_unmap_unlock(page_table, ptl); 2203 return ret; 2204 oom: 2205 page_cache_release(new_page); 2206 return VM_FAULT_OOM; 2207 } 2208 2209 /* 2210 * Fault of a previously existing named mapping. Repopulate the pte 2211 * from the encoded file_pte if possible. This enables swappable 2212 * nonlinear vmas. 2213 * 2214 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2215 * but allow concurrent faults), and pte mapped but not yet locked. 2216 * We return with mmap_sem still held, but pte unmapped and unlocked. 2217 */ 2218 static int do_file_page(struct mm_struct *mm, struct vm_area_struct *vma, 2219 unsigned long address, pte_t *page_table, pmd_t *pmd, 2220 int write_access, pte_t orig_pte) 2221 { 2222 pgoff_t pgoff; 2223 int err; 2224 2225 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2226 return VM_FAULT_MINOR; 2227 2228 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 2229 /* 2230 * Page table corrupted: show pte and kill process. 2231 */ 2232 print_bad_pte(vma, orig_pte, address); 2233 return VM_FAULT_OOM; 2234 } 2235 /* We can then assume vm->vm_ops && vma->vm_ops->populate */ 2236 2237 pgoff = pte_to_pgoff(orig_pte); 2238 err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, 2239 vma->vm_page_prot, pgoff, 0); 2240 if (err == -ENOMEM) 2241 return VM_FAULT_OOM; 2242 if (err) 2243 return VM_FAULT_SIGBUS; 2244 return VM_FAULT_MAJOR; 2245 } 2246 2247 /* 2248 * These routines also need to handle stuff like marking pages dirty 2249 * and/or accessed for architectures that don't do it in hardware (most 2250 * RISC architectures). The early dirtying is also good on the i386. 2251 * 2252 * There is also a hook called "update_mmu_cache()" that architectures 2253 * with external mmu caches can use to update those (ie the Sparc or 2254 * PowerPC hashed page tables that act as extended TLBs). 2255 * 2256 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2257 * but allow concurrent faults), and pte mapped but not yet locked. 2258 * We return with mmap_sem still held, but pte unmapped and unlocked. 2259 */ 2260 static inline int handle_pte_fault(struct mm_struct *mm, 2261 struct vm_area_struct *vma, unsigned long address, 2262 pte_t *pte, pmd_t *pmd, int write_access) 2263 { 2264 pte_t entry; 2265 pte_t old_entry; 2266 spinlock_t *ptl; 2267 2268 old_entry = entry = *pte; 2269 if (!pte_present(entry)) { 2270 if (pte_none(entry)) { 2271 if (!vma->vm_ops || !vma->vm_ops->nopage) 2272 return do_anonymous_page(mm, vma, address, 2273 pte, pmd, write_access); 2274 return do_no_page(mm, vma, address, 2275 pte, pmd, write_access); 2276 } 2277 if (pte_file(entry)) 2278 return do_file_page(mm, vma, address, 2279 pte, pmd, write_access, entry); 2280 return do_swap_page(mm, vma, address, 2281 pte, pmd, write_access, entry); 2282 } 2283 2284 ptl = pte_lockptr(mm, pmd); 2285 spin_lock(ptl); 2286 if (unlikely(!pte_same(*pte, entry))) 2287 goto unlock; 2288 if (write_access) { 2289 if (!pte_write(entry)) 2290 return do_wp_page(mm, vma, address, 2291 pte, pmd, ptl, entry); 2292 entry = pte_mkdirty(entry); 2293 } 2294 entry = pte_mkyoung(entry); 2295 if (!pte_same(old_entry, entry)) { 2296 ptep_set_access_flags(vma, address, pte, entry, write_access); 2297 update_mmu_cache(vma, address, entry); 2298 lazy_mmu_prot_update(entry); 2299 } else { 2300 /* 2301 * This is needed only for protection faults but the arch code 2302 * is not yet telling us if this is a protection fault or not. 2303 * This still avoids useless tlb flushes for .text page faults 2304 * with threads. 2305 */ 2306 if (write_access) 2307 flush_tlb_page(vma, address); 2308 } 2309 unlock: 2310 pte_unmap_unlock(pte, ptl); 2311 return VM_FAULT_MINOR; 2312 } 2313 2314 /* 2315 * By the time we get here, we already hold the mm semaphore 2316 */ 2317 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2318 unsigned long address, int write_access) 2319 { 2320 pgd_t *pgd; 2321 pud_t *pud; 2322 pmd_t *pmd; 2323 pte_t *pte; 2324 2325 __set_current_state(TASK_RUNNING); 2326 2327 count_vm_event(PGFAULT); 2328 2329 if (unlikely(is_vm_hugetlb_page(vma))) 2330 return hugetlb_fault(mm, vma, address, write_access); 2331 2332 pgd = pgd_offset(mm, address); 2333 pud = pud_alloc(mm, pgd, address); 2334 if (!pud) 2335 return VM_FAULT_OOM; 2336 pmd = pmd_alloc(mm, pud, address); 2337 if (!pmd) 2338 return VM_FAULT_OOM; 2339 pte = pte_alloc_map(mm, pmd, address); 2340 if (!pte) 2341 return VM_FAULT_OOM; 2342 2343 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2344 } 2345 2346 EXPORT_SYMBOL_GPL(__handle_mm_fault); 2347 2348 #ifndef __PAGETABLE_PUD_FOLDED 2349 /* 2350 * Allocate page upper directory. 2351 * We've already handled the fast-path in-line. 2352 */ 2353 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2354 { 2355 pud_t *new = pud_alloc_one(mm, address); 2356 if (!new) 2357 return -ENOMEM; 2358 2359 spin_lock(&mm->page_table_lock); 2360 if (pgd_present(*pgd)) /* Another has populated it */ 2361 pud_free(new); 2362 else 2363 pgd_populate(mm, pgd, new); 2364 spin_unlock(&mm->page_table_lock); 2365 return 0; 2366 } 2367 #else 2368 /* Workaround for gcc 2.96 */ 2369 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2370 { 2371 return 0; 2372 } 2373 #endif /* __PAGETABLE_PUD_FOLDED */ 2374 2375 #ifndef __PAGETABLE_PMD_FOLDED 2376 /* 2377 * Allocate page middle directory. 2378 * We've already handled the fast-path in-line. 2379 */ 2380 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2381 { 2382 pmd_t *new = pmd_alloc_one(mm, address); 2383 if (!new) 2384 return -ENOMEM; 2385 2386 spin_lock(&mm->page_table_lock); 2387 #ifndef __ARCH_HAS_4LEVEL_HACK 2388 if (pud_present(*pud)) /* Another has populated it */ 2389 pmd_free(new); 2390 else 2391 pud_populate(mm, pud, new); 2392 #else 2393 if (pgd_present(*pud)) /* Another has populated it */ 2394 pmd_free(new); 2395 else 2396 pgd_populate(mm, pud, new); 2397 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2398 spin_unlock(&mm->page_table_lock); 2399 return 0; 2400 } 2401 #else 2402 /* Workaround for gcc 2.96 */ 2403 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2404 { 2405 return 0; 2406 } 2407 #endif /* __PAGETABLE_PMD_FOLDED */ 2408 2409 int make_pages_present(unsigned long addr, unsigned long end) 2410 { 2411 int ret, len, write; 2412 struct vm_area_struct * vma; 2413 2414 vma = find_vma(current->mm, addr); 2415 if (!vma) 2416 return -1; 2417 write = (vma->vm_flags & VM_WRITE) != 0; 2418 BUG_ON(addr >= end); 2419 BUG_ON(end > vma->vm_end); 2420 len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; 2421 ret = get_user_pages(current, current->mm, addr, 2422 len, write, 0, NULL, NULL); 2423 if (ret < 0) 2424 return ret; 2425 return ret == len ? 0 : -1; 2426 } 2427 2428 /* 2429 * Map a vmalloc()-space virtual address to the physical page. 2430 */ 2431 struct page * vmalloc_to_page(void * vmalloc_addr) 2432 { 2433 unsigned long addr = (unsigned long) vmalloc_addr; 2434 struct page *page = NULL; 2435 pgd_t *pgd = pgd_offset_k(addr); 2436 pud_t *pud; 2437 pmd_t *pmd; 2438 pte_t *ptep, pte; 2439 2440 if (!pgd_none(*pgd)) { 2441 pud = pud_offset(pgd, addr); 2442 if (!pud_none(*pud)) { 2443 pmd = pmd_offset(pud, addr); 2444 if (!pmd_none(*pmd)) { 2445 ptep = pte_offset_map(pmd, addr); 2446 pte = *ptep; 2447 if (pte_present(pte)) 2448 page = pte_page(pte); 2449 pte_unmap(ptep); 2450 } 2451 } 2452 } 2453 return page; 2454 } 2455 2456 EXPORT_SYMBOL(vmalloc_to_page); 2457 2458 /* 2459 * Map a vmalloc()-space virtual address to the physical page frame number. 2460 */ 2461 unsigned long vmalloc_to_pfn(void * vmalloc_addr) 2462 { 2463 return page_to_pfn(vmalloc_to_page(vmalloc_addr)); 2464 } 2465 2466 EXPORT_SYMBOL(vmalloc_to_pfn); 2467 2468 #if !defined(__HAVE_ARCH_GATE_AREA) 2469 2470 #if defined(AT_SYSINFO_EHDR) 2471 static struct vm_area_struct gate_vma; 2472 2473 static int __init gate_vma_init(void) 2474 { 2475 gate_vma.vm_mm = NULL; 2476 gate_vma.vm_start = FIXADDR_USER_START; 2477 gate_vma.vm_end = FIXADDR_USER_END; 2478 gate_vma.vm_page_prot = PAGE_READONLY; 2479 gate_vma.vm_flags = 0; 2480 return 0; 2481 } 2482 __initcall(gate_vma_init); 2483 #endif 2484 2485 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2486 { 2487 #ifdef AT_SYSINFO_EHDR 2488 return &gate_vma; 2489 #else 2490 return NULL; 2491 #endif 2492 } 2493 2494 int in_gate_area_no_task(unsigned long addr) 2495 { 2496 #ifdef AT_SYSINFO_EHDR 2497 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2498 return 1; 2499 #endif 2500 return 0; 2501 } 2502 2503 #endif /* __HAVE_ARCH_GATE_AREA */ 2504