xref: /linux/mm/memory.c (revision 13abf8130139c2ccd4962a7e5a8902be5e6cb5a7)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/init.h>
51 
52 #include <asm/pgalloc.h>
53 #include <asm/uaccess.h>
54 #include <asm/tlb.h>
55 #include <asm/tlbflush.h>
56 #include <asm/pgtable.h>
57 
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 
61 #ifndef CONFIG_NEED_MULTIPLE_NODES
62 /* use the per-pgdat data instead for discontigmem - mbligh */
63 unsigned long max_mapnr;
64 struct page *mem_map;
65 
66 EXPORT_SYMBOL(max_mapnr);
67 EXPORT_SYMBOL(mem_map);
68 #endif
69 
70 unsigned long num_physpages;
71 /*
72  * A number of key systems in x86 including ioremap() rely on the assumption
73  * that high_memory defines the upper bound on direct map memory, then end
74  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
75  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
76  * and ZONE_HIGHMEM.
77  */
78 void * high_memory;
79 unsigned long vmalloc_earlyreserve;
80 
81 EXPORT_SYMBOL(num_physpages);
82 EXPORT_SYMBOL(high_memory);
83 EXPORT_SYMBOL(vmalloc_earlyreserve);
84 
85 /*
86  * If a p?d_bad entry is found while walking page tables, report
87  * the error, before resetting entry to p?d_none.  Usually (but
88  * very seldom) called out from the p?d_none_or_clear_bad macros.
89  */
90 
91 void pgd_clear_bad(pgd_t *pgd)
92 {
93 	pgd_ERROR(*pgd);
94 	pgd_clear(pgd);
95 }
96 
97 void pud_clear_bad(pud_t *pud)
98 {
99 	pud_ERROR(*pud);
100 	pud_clear(pud);
101 }
102 
103 void pmd_clear_bad(pmd_t *pmd)
104 {
105 	pmd_ERROR(*pmd);
106 	pmd_clear(pmd);
107 }
108 
109 /*
110  * Note: this doesn't free the actual pages themselves. That
111  * has been handled earlier when unmapping all the memory regions.
112  */
113 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
114 {
115 	struct page *page = pmd_page(*pmd);
116 	pmd_clear(pmd);
117 	pte_free_tlb(tlb, page);
118 	dec_page_state(nr_page_table_pages);
119 	tlb->mm->nr_ptes--;
120 }
121 
122 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
123 				unsigned long addr, unsigned long end,
124 				unsigned long floor, unsigned long ceiling)
125 {
126 	pmd_t *pmd;
127 	unsigned long next;
128 	unsigned long start;
129 
130 	start = addr;
131 	pmd = pmd_offset(pud, addr);
132 	do {
133 		next = pmd_addr_end(addr, end);
134 		if (pmd_none_or_clear_bad(pmd))
135 			continue;
136 		free_pte_range(tlb, pmd);
137 	} while (pmd++, addr = next, addr != end);
138 
139 	start &= PUD_MASK;
140 	if (start < floor)
141 		return;
142 	if (ceiling) {
143 		ceiling &= PUD_MASK;
144 		if (!ceiling)
145 			return;
146 	}
147 	if (end - 1 > ceiling - 1)
148 		return;
149 
150 	pmd = pmd_offset(pud, start);
151 	pud_clear(pud);
152 	pmd_free_tlb(tlb, pmd);
153 }
154 
155 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
156 				unsigned long addr, unsigned long end,
157 				unsigned long floor, unsigned long ceiling)
158 {
159 	pud_t *pud;
160 	unsigned long next;
161 	unsigned long start;
162 
163 	start = addr;
164 	pud = pud_offset(pgd, addr);
165 	do {
166 		next = pud_addr_end(addr, end);
167 		if (pud_none_or_clear_bad(pud))
168 			continue;
169 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
170 	} while (pud++, addr = next, addr != end);
171 
172 	start &= PGDIR_MASK;
173 	if (start < floor)
174 		return;
175 	if (ceiling) {
176 		ceiling &= PGDIR_MASK;
177 		if (!ceiling)
178 			return;
179 	}
180 	if (end - 1 > ceiling - 1)
181 		return;
182 
183 	pud = pud_offset(pgd, start);
184 	pgd_clear(pgd);
185 	pud_free_tlb(tlb, pud);
186 }
187 
188 /*
189  * This function frees user-level page tables of a process.
190  *
191  * Must be called with pagetable lock held.
192  */
193 void free_pgd_range(struct mmu_gather **tlb,
194 			unsigned long addr, unsigned long end,
195 			unsigned long floor, unsigned long ceiling)
196 {
197 	pgd_t *pgd;
198 	unsigned long next;
199 	unsigned long start;
200 
201 	/*
202 	 * The next few lines have given us lots of grief...
203 	 *
204 	 * Why are we testing PMD* at this top level?  Because often
205 	 * there will be no work to do at all, and we'd prefer not to
206 	 * go all the way down to the bottom just to discover that.
207 	 *
208 	 * Why all these "- 1"s?  Because 0 represents both the bottom
209 	 * of the address space and the top of it (using -1 for the
210 	 * top wouldn't help much: the masks would do the wrong thing).
211 	 * The rule is that addr 0 and floor 0 refer to the bottom of
212 	 * the address space, but end 0 and ceiling 0 refer to the top
213 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
214 	 * that end 0 case should be mythical).
215 	 *
216 	 * Wherever addr is brought up or ceiling brought down, we must
217 	 * be careful to reject "the opposite 0" before it confuses the
218 	 * subsequent tests.  But what about where end is brought down
219 	 * by PMD_SIZE below? no, end can't go down to 0 there.
220 	 *
221 	 * Whereas we round start (addr) and ceiling down, by different
222 	 * masks at different levels, in order to test whether a table
223 	 * now has no other vmas using it, so can be freed, we don't
224 	 * bother to round floor or end up - the tests don't need that.
225 	 */
226 
227 	addr &= PMD_MASK;
228 	if (addr < floor) {
229 		addr += PMD_SIZE;
230 		if (!addr)
231 			return;
232 	}
233 	if (ceiling) {
234 		ceiling &= PMD_MASK;
235 		if (!ceiling)
236 			return;
237 	}
238 	if (end - 1 > ceiling - 1)
239 		end -= PMD_SIZE;
240 	if (addr > end - 1)
241 		return;
242 
243 	start = addr;
244 	pgd = pgd_offset((*tlb)->mm, addr);
245 	do {
246 		next = pgd_addr_end(addr, end);
247 		if (pgd_none_or_clear_bad(pgd))
248 			continue;
249 		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
250 	} while (pgd++, addr = next, addr != end);
251 
252 	if (!tlb_is_full_mm(*tlb))
253 		flush_tlb_pgtables((*tlb)->mm, start, end);
254 }
255 
256 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
257 		unsigned long floor, unsigned long ceiling)
258 {
259 	while (vma) {
260 		struct vm_area_struct *next = vma->vm_next;
261 		unsigned long addr = vma->vm_start;
262 
263 		if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) {
264 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
265 				floor, next? next->vm_start: ceiling);
266 		} else {
267 			/*
268 			 * Optimization: gather nearby vmas into one call down
269 			 */
270 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
271 			  && !is_hugepage_only_range(vma->vm_mm, next->vm_start,
272 							HPAGE_SIZE)) {
273 				vma = next;
274 				next = vma->vm_next;
275 			}
276 			free_pgd_range(tlb, addr, vma->vm_end,
277 				floor, next? next->vm_start: ceiling);
278 		}
279 		vma = next;
280 	}
281 }
282 
283 pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd,
284 				unsigned long address)
285 {
286 	if (!pmd_present(*pmd)) {
287 		struct page *new;
288 
289 		spin_unlock(&mm->page_table_lock);
290 		new = pte_alloc_one(mm, address);
291 		spin_lock(&mm->page_table_lock);
292 		if (!new)
293 			return NULL;
294 		/*
295 		 * Because we dropped the lock, we should re-check the
296 		 * entry, as somebody else could have populated it..
297 		 */
298 		if (pmd_present(*pmd)) {
299 			pte_free(new);
300 			goto out;
301 		}
302 		mm->nr_ptes++;
303 		inc_page_state(nr_page_table_pages);
304 		pmd_populate(mm, pmd, new);
305 	}
306 out:
307 	return pte_offset_map(pmd, address);
308 }
309 
310 pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
311 {
312 	if (!pmd_present(*pmd)) {
313 		pte_t *new;
314 
315 		spin_unlock(&mm->page_table_lock);
316 		new = pte_alloc_one_kernel(mm, address);
317 		spin_lock(&mm->page_table_lock);
318 		if (!new)
319 			return NULL;
320 
321 		/*
322 		 * Because we dropped the lock, we should re-check the
323 		 * entry, as somebody else could have populated it..
324 		 */
325 		if (pmd_present(*pmd)) {
326 			pte_free_kernel(new);
327 			goto out;
328 		}
329 		pmd_populate_kernel(mm, pmd, new);
330 	}
331 out:
332 	return pte_offset_kernel(pmd, address);
333 }
334 
335 /*
336  * copy one vm_area from one task to the other. Assumes the page tables
337  * already present in the new task to be cleared in the whole range
338  * covered by this vma.
339  *
340  * dst->page_table_lock is held on entry and exit,
341  * but may be dropped within p[mg]d_alloc() and pte_alloc_map().
342  */
343 
344 static inline void
345 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
346 		pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags,
347 		unsigned long addr)
348 {
349 	pte_t pte = *src_pte;
350 	struct page *page;
351 	unsigned long pfn;
352 
353 	/* pte contains position in swap or file, so copy. */
354 	if (unlikely(!pte_present(pte))) {
355 		if (!pte_file(pte)) {
356 			swap_duplicate(pte_to_swp_entry(pte));
357 			/* make sure dst_mm is on swapoff's mmlist. */
358 			if (unlikely(list_empty(&dst_mm->mmlist))) {
359 				spin_lock(&mmlist_lock);
360 				list_add(&dst_mm->mmlist, &src_mm->mmlist);
361 				spin_unlock(&mmlist_lock);
362 			}
363 		}
364 		set_pte_at(dst_mm, addr, dst_pte, pte);
365 		return;
366 	}
367 
368 	pfn = pte_pfn(pte);
369 	/* the pte points outside of valid memory, the
370 	 * mapping is assumed to be good, meaningful
371 	 * and not mapped via rmap - duplicate the
372 	 * mapping as is.
373 	 */
374 	page = NULL;
375 	if (pfn_valid(pfn))
376 		page = pfn_to_page(pfn);
377 
378 	if (!page || PageReserved(page)) {
379 		set_pte_at(dst_mm, addr, dst_pte, pte);
380 		return;
381 	}
382 
383 	/*
384 	 * If it's a COW mapping, write protect it both
385 	 * in the parent and the child
386 	 */
387 	if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) {
388 		ptep_set_wrprotect(src_mm, addr, src_pte);
389 		pte = *src_pte;
390 	}
391 
392 	/*
393 	 * If it's a shared mapping, mark it clean in
394 	 * the child
395 	 */
396 	if (vm_flags & VM_SHARED)
397 		pte = pte_mkclean(pte);
398 	pte = pte_mkold(pte);
399 	get_page(page);
400 	inc_mm_counter(dst_mm, rss);
401 	if (PageAnon(page))
402 		inc_mm_counter(dst_mm, anon_rss);
403 	set_pte_at(dst_mm, addr, dst_pte, pte);
404 	page_dup_rmap(page);
405 }
406 
407 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
408 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
409 		unsigned long addr, unsigned long end)
410 {
411 	pte_t *src_pte, *dst_pte;
412 	unsigned long vm_flags = vma->vm_flags;
413 	int progress;
414 
415 again:
416 	dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr);
417 	if (!dst_pte)
418 		return -ENOMEM;
419 	src_pte = pte_offset_map_nested(src_pmd, addr);
420 
421 	progress = 0;
422 	spin_lock(&src_mm->page_table_lock);
423 	do {
424 		/*
425 		 * We are holding two locks at this point - either of them
426 		 * could generate latencies in another task on another CPU.
427 		 */
428 		if (progress >= 32 && (need_resched() ||
429 		    need_lockbreak(&src_mm->page_table_lock) ||
430 		    need_lockbreak(&dst_mm->page_table_lock)))
431 			break;
432 		if (pte_none(*src_pte)) {
433 			progress++;
434 			continue;
435 		}
436 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr);
437 		progress += 8;
438 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
439 	spin_unlock(&src_mm->page_table_lock);
440 
441 	pte_unmap_nested(src_pte - 1);
442 	pte_unmap(dst_pte - 1);
443 	cond_resched_lock(&dst_mm->page_table_lock);
444 	if (addr != end)
445 		goto again;
446 	return 0;
447 }
448 
449 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
450 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
451 		unsigned long addr, unsigned long end)
452 {
453 	pmd_t *src_pmd, *dst_pmd;
454 	unsigned long next;
455 
456 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
457 	if (!dst_pmd)
458 		return -ENOMEM;
459 	src_pmd = pmd_offset(src_pud, addr);
460 	do {
461 		next = pmd_addr_end(addr, end);
462 		if (pmd_none_or_clear_bad(src_pmd))
463 			continue;
464 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
465 						vma, addr, next))
466 			return -ENOMEM;
467 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
468 	return 0;
469 }
470 
471 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
472 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
473 		unsigned long addr, unsigned long end)
474 {
475 	pud_t *src_pud, *dst_pud;
476 	unsigned long next;
477 
478 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
479 	if (!dst_pud)
480 		return -ENOMEM;
481 	src_pud = pud_offset(src_pgd, addr);
482 	do {
483 		next = pud_addr_end(addr, end);
484 		if (pud_none_or_clear_bad(src_pud))
485 			continue;
486 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
487 						vma, addr, next))
488 			return -ENOMEM;
489 	} while (dst_pud++, src_pud++, addr = next, addr != end);
490 	return 0;
491 }
492 
493 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
494 		struct vm_area_struct *vma)
495 {
496 	pgd_t *src_pgd, *dst_pgd;
497 	unsigned long next;
498 	unsigned long addr = vma->vm_start;
499 	unsigned long end = vma->vm_end;
500 
501 	/*
502 	 * Don't copy ptes where a page fault will fill them correctly.
503 	 * Fork becomes much lighter when there are big shared or private
504 	 * readonly mappings. The tradeoff is that copy_page_range is more
505 	 * efficient than faulting.
506 	 */
507 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) {
508 		if (!vma->anon_vma)
509 			return 0;
510 	}
511 
512 	if (is_vm_hugetlb_page(vma))
513 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
514 
515 	dst_pgd = pgd_offset(dst_mm, addr);
516 	src_pgd = pgd_offset(src_mm, addr);
517 	do {
518 		next = pgd_addr_end(addr, end);
519 		if (pgd_none_or_clear_bad(src_pgd))
520 			continue;
521 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
522 						vma, addr, next))
523 			return -ENOMEM;
524 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
525 	return 0;
526 }
527 
528 static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
529 				unsigned long addr, unsigned long end,
530 				struct zap_details *details)
531 {
532 	pte_t *pte;
533 
534 	pte = pte_offset_map(pmd, addr);
535 	do {
536 		pte_t ptent = *pte;
537 		if (pte_none(ptent))
538 			continue;
539 		if (pte_present(ptent)) {
540 			struct page *page = NULL;
541 			unsigned long pfn = pte_pfn(ptent);
542 			if (pfn_valid(pfn)) {
543 				page = pfn_to_page(pfn);
544 				if (PageReserved(page))
545 					page = NULL;
546 			}
547 			if (unlikely(details) && page) {
548 				/*
549 				 * unmap_shared_mapping_pages() wants to
550 				 * invalidate cache without truncating:
551 				 * unmap shared but keep private pages.
552 				 */
553 				if (details->check_mapping &&
554 				    details->check_mapping != page->mapping)
555 					continue;
556 				/*
557 				 * Each page->index must be checked when
558 				 * invalidating or truncating nonlinear.
559 				 */
560 				if (details->nonlinear_vma &&
561 				    (page->index < details->first_index ||
562 				     page->index > details->last_index))
563 					continue;
564 			}
565 			ptent = ptep_get_and_clear_full(tlb->mm, addr, pte,
566 							tlb->fullmm);
567 			tlb_remove_tlb_entry(tlb, pte, addr);
568 			if (unlikely(!page))
569 				continue;
570 			if (unlikely(details) && details->nonlinear_vma
571 			    && linear_page_index(details->nonlinear_vma,
572 						addr) != page->index)
573 				set_pte_at(tlb->mm, addr, pte,
574 					   pgoff_to_pte(page->index));
575 			if (pte_dirty(ptent))
576 				set_page_dirty(page);
577 			if (PageAnon(page))
578 				dec_mm_counter(tlb->mm, anon_rss);
579 			else if (pte_young(ptent))
580 				mark_page_accessed(page);
581 			tlb->freed++;
582 			page_remove_rmap(page);
583 			tlb_remove_page(tlb, page);
584 			continue;
585 		}
586 		/*
587 		 * If details->check_mapping, we leave swap entries;
588 		 * if details->nonlinear_vma, we leave file entries.
589 		 */
590 		if (unlikely(details))
591 			continue;
592 		if (!pte_file(ptent))
593 			free_swap_and_cache(pte_to_swp_entry(ptent));
594 		pte_clear_full(tlb->mm, addr, pte, tlb->fullmm);
595 	} while (pte++, addr += PAGE_SIZE, addr != end);
596 	pte_unmap(pte - 1);
597 }
598 
599 static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud,
600 				unsigned long addr, unsigned long end,
601 				struct zap_details *details)
602 {
603 	pmd_t *pmd;
604 	unsigned long next;
605 
606 	pmd = pmd_offset(pud, addr);
607 	do {
608 		next = pmd_addr_end(addr, end);
609 		if (pmd_none_or_clear_bad(pmd))
610 			continue;
611 		zap_pte_range(tlb, pmd, addr, next, details);
612 	} while (pmd++, addr = next, addr != end);
613 }
614 
615 static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
616 				unsigned long addr, unsigned long end,
617 				struct zap_details *details)
618 {
619 	pud_t *pud;
620 	unsigned long next;
621 
622 	pud = pud_offset(pgd, addr);
623 	do {
624 		next = pud_addr_end(addr, end);
625 		if (pud_none_or_clear_bad(pud))
626 			continue;
627 		zap_pmd_range(tlb, pud, addr, next, details);
628 	} while (pud++, addr = next, addr != end);
629 }
630 
631 static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
632 				unsigned long addr, unsigned long end,
633 				struct zap_details *details)
634 {
635 	pgd_t *pgd;
636 	unsigned long next;
637 
638 	if (details && !details->check_mapping && !details->nonlinear_vma)
639 		details = NULL;
640 
641 	BUG_ON(addr >= end);
642 	tlb_start_vma(tlb, vma);
643 	pgd = pgd_offset(vma->vm_mm, addr);
644 	do {
645 		next = pgd_addr_end(addr, end);
646 		if (pgd_none_or_clear_bad(pgd))
647 			continue;
648 		zap_pud_range(tlb, pgd, addr, next, details);
649 	} while (pgd++, addr = next, addr != end);
650 	tlb_end_vma(tlb, vma);
651 }
652 
653 #ifdef CONFIG_PREEMPT
654 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
655 #else
656 /* No preempt: go for improved straight-line efficiency */
657 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
658 #endif
659 
660 /**
661  * unmap_vmas - unmap a range of memory covered by a list of vma's
662  * @tlbp: address of the caller's struct mmu_gather
663  * @mm: the controlling mm_struct
664  * @vma: the starting vma
665  * @start_addr: virtual address at which to start unmapping
666  * @end_addr: virtual address at which to end unmapping
667  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
668  * @details: details of nonlinear truncation or shared cache invalidation
669  *
670  * Returns the end address of the unmapping (restart addr if interrupted).
671  *
672  * Unmap all pages in the vma list.  Called under page_table_lock.
673  *
674  * We aim to not hold page_table_lock for too long (for scheduling latency
675  * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
676  * return the ending mmu_gather to the caller.
677  *
678  * Only addresses between `start' and `end' will be unmapped.
679  *
680  * The VMA list must be sorted in ascending virtual address order.
681  *
682  * unmap_vmas() assumes that the caller will flush the whole unmapped address
683  * range after unmap_vmas() returns.  So the only responsibility here is to
684  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
685  * drops the lock and schedules.
686  */
687 unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm,
688 		struct vm_area_struct *vma, unsigned long start_addr,
689 		unsigned long end_addr, unsigned long *nr_accounted,
690 		struct zap_details *details)
691 {
692 	unsigned long zap_bytes = ZAP_BLOCK_SIZE;
693 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
694 	int tlb_start_valid = 0;
695 	unsigned long start = start_addr;
696 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
697 	int fullmm = tlb_is_full_mm(*tlbp);
698 
699 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
700 		unsigned long end;
701 
702 		start = max(vma->vm_start, start_addr);
703 		if (start >= vma->vm_end)
704 			continue;
705 		end = min(vma->vm_end, end_addr);
706 		if (end <= vma->vm_start)
707 			continue;
708 
709 		if (vma->vm_flags & VM_ACCOUNT)
710 			*nr_accounted += (end - start) >> PAGE_SHIFT;
711 
712 		while (start != end) {
713 			unsigned long block;
714 
715 			if (!tlb_start_valid) {
716 				tlb_start = start;
717 				tlb_start_valid = 1;
718 			}
719 
720 			if (is_vm_hugetlb_page(vma)) {
721 				block = end - start;
722 				unmap_hugepage_range(vma, start, end);
723 			} else {
724 				block = min(zap_bytes, end - start);
725 				unmap_page_range(*tlbp, vma, start,
726 						start + block, details);
727 			}
728 
729 			start += block;
730 			zap_bytes -= block;
731 			if ((long)zap_bytes > 0)
732 				continue;
733 
734 			tlb_finish_mmu(*tlbp, tlb_start, start);
735 
736 			if (need_resched() ||
737 				need_lockbreak(&mm->page_table_lock) ||
738 				(i_mmap_lock && need_lockbreak(i_mmap_lock))) {
739 				if (i_mmap_lock) {
740 					/* must reset count of rss freed */
741 					*tlbp = tlb_gather_mmu(mm, fullmm);
742 					goto out;
743 				}
744 				spin_unlock(&mm->page_table_lock);
745 				cond_resched();
746 				spin_lock(&mm->page_table_lock);
747 			}
748 
749 			*tlbp = tlb_gather_mmu(mm, fullmm);
750 			tlb_start_valid = 0;
751 			zap_bytes = ZAP_BLOCK_SIZE;
752 		}
753 	}
754 out:
755 	return start;	/* which is now the end (or restart) address */
756 }
757 
758 /**
759  * zap_page_range - remove user pages in a given range
760  * @vma: vm_area_struct holding the applicable pages
761  * @address: starting address of pages to zap
762  * @size: number of bytes to zap
763  * @details: details of nonlinear truncation or shared cache invalidation
764  */
765 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
766 		unsigned long size, struct zap_details *details)
767 {
768 	struct mm_struct *mm = vma->vm_mm;
769 	struct mmu_gather *tlb;
770 	unsigned long end = address + size;
771 	unsigned long nr_accounted = 0;
772 
773 	if (is_vm_hugetlb_page(vma)) {
774 		zap_hugepage_range(vma, address, size);
775 		return end;
776 	}
777 
778 	lru_add_drain();
779 	spin_lock(&mm->page_table_lock);
780 	tlb = tlb_gather_mmu(mm, 0);
781 	end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details);
782 	tlb_finish_mmu(tlb, address, end);
783 	spin_unlock(&mm->page_table_lock);
784 	return end;
785 }
786 
787 /*
788  * Do a quick page-table lookup for a single page.
789  * mm->page_table_lock must be held.
790  */
791 static struct page *__follow_page(struct mm_struct *mm, unsigned long address,
792 			int read, int write, int accessed)
793 {
794 	pgd_t *pgd;
795 	pud_t *pud;
796 	pmd_t *pmd;
797 	pte_t *ptep, pte;
798 	unsigned long pfn;
799 	struct page *page;
800 
801 	page = follow_huge_addr(mm, address, write);
802 	if (! IS_ERR(page))
803 		return page;
804 
805 	pgd = pgd_offset(mm, address);
806 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
807 		goto out;
808 
809 	pud = pud_offset(pgd, address);
810 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
811 		goto out;
812 
813 	pmd = pmd_offset(pud, address);
814 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
815 		goto out;
816 	if (pmd_huge(*pmd))
817 		return follow_huge_pmd(mm, address, pmd, write);
818 
819 	ptep = pte_offset_map(pmd, address);
820 	if (!ptep)
821 		goto out;
822 
823 	pte = *ptep;
824 	pte_unmap(ptep);
825 	if (pte_present(pte)) {
826 		if (write && !pte_write(pte))
827 			goto out;
828 		if (read && !pte_read(pte))
829 			goto out;
830 		pfn = pte_pfn(pte);
831 		if (pfn_valid(pfn)) {
832 			page = pfn_to_page(pfn);
833 			if (accessed) {
834 				if (write && !pte_dirty(pte) &&!PageDirty(page))
835 					set_page_dirty(page);
836 				mark_page_accessed(page);
837 			}
838 			return page;
839 		}
840 	}
841 
842 out:
843 	return NULL;
844 }
845 
846 inline struct page *
847 follow_page(struct mm_struct *mm, unsigned long address, int write)
848 {
849 	return __follow_page(mm, address, 0, write, 1);
850 }
851 
852 /*
853  * check_user_page_readable() can be called frm niterrupt context by oprofile,
854  * so we need to avoid taking any non-irq-safe locks
855  */
856 int check_user_page_readable(struct mm_struct *mm, unsigned long address)
857 {
858 	return __follow_page(mm, address, 1, 0, 0) != NULL;
859 }
860 EXPORT_SYMBOL(check_user_page_readable);
861 
862 static inline int
863 untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma,
864 			 unsigned long address)
865 {
866 	pgd_t *pgd;
867 	pud_t *pud;
868 	pmd_t *pmd;
869 
870 	/* Check if the vma is for an anonymous mapping. */
871 	if (vma->vm_ops && vma->vm_ops->nopage)
872 		return 0;
873 
874 	/* Check if page directory entry exists. */
875 	pgd = pgd_offset(mm, address);
876 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
877 		return 1;
878 
879 	pud = pud_offset(pgd, address);
880 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
881 		return 1;
882 
883 	/* Check if page middle directory entry exists. */
884 	pmd = pmd_offset(pud, address);
885 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
886 		return 1;
887 
888 	/* There is a pte slot for 'address' in 'mm'. */
889 	return 0;
890 }
891 
892 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
893 		unsigned long start, int len, int write, int force,
894 		struct page **pages, struct vm_area_struct **vmas)
895 {
896 	int i;
897 	unsigned int flags;
898 
899 	/*
900 	 * Require read or write permissions.
901 	 * If 'force' is set, we only require the "MAY" flags.
902 	 */
903 	flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
904 	flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
905 	i = 0;
906 
907 	do {
908 		struct vm_area_struct *	vma;
909 
910 		vma = find_extend_vma(mm, start);
911 		if (!vma && in_gate_area(tsk, start)) {
912 			unsigned long pg = start & PAGE_MASK;
913 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
914 			pgd_t *pgd;
915 			pud_t *pud;
916 			pmd_t *pmd;
917 			pte_t *pte;
918 			if (write) /* user gate pages are read-only */
919 				return i ? : -EFAULT;
920 			if (pg > TASK_SIZE)
921 				pgd = pgd_offset_k(pg);
922 			else
923 				pgd = pgd_offset_gate(mm, pg);
924 			BUG_ON(pgd_none(*pgd));
925 			pud = pud_offset(pgd, pg);
926 			BUG_ON(pud_none(*pud));
927 			pmd = pmd_offset(pud, pg);
928 			if (pmd_none(*pmd))
929 				return i ? : -EFAULT;
930 			pte = pte_offset_map(pmd, pg);
931 			if (pte_none(*pte)) {
932 				pte_unmap(pte);
933 				return i ? : -EFAULT;
934 			}
935 			if (pages) {
936 				pages[i] = pte_page(*pte);
937 				get_page(pages[i]);
938 			}
939 			pte_unmap(pte);
940 			if (vmas)
941 				vmas[i] = gate_vma;
942 			i++;
943 			start += PAGE_SIZE;
944 			len--;
945 			continue;
946 		}
947 
948 		if (!vma || (vma->vm_flags & VM_IO)
949 				|| !(flags & vma->vm_flags))
950 			return i ? : -EFAULT;
951 
952 		if (is_vm_hugetlb_page(vma)) {
953 			i = follow_hugetlb_page(mm, vma, pages, vmas,
954 						&start, &len, i);
955 			continue;
956 		}
957 		spin_lock(&mm->page_table_lock);
958 		do {
959 			int write_access = write;
960 			struct page *page;
961 
962 			cond_resched_lock(&mm->page_table_lock);
963 			while (!(page = follow_page(mm, start, write_access))) {
964 				int ret;
965 
966 				/*
967 				 * Shortcut for anonymous pages. We don't want
968 				 * to force the creation of pages tables for
969 				 * insanely big anonymously mapped areas that
970 				 * nobody touched so far. This is important
971 				 * for doing a core dump for these mappings.
972 				 */
973 				if (!write && untouched_anonymous_page(mm,vma,start)) {
974 					page = ZERO_PAGE(start);
975 					break;
976 				}
977 				spin_unlock(&mm->page_table_lock);
978 				ret = __handle_mm_fault(mm, vma, start, write_access);
979 
980 				/*
981 				 * The VM_FAULT_WRITE bit tells us that do_wp_page has
982 				 * broken COW when necessary, even if maybe_mkwrite
983 				 * decided not to set pte_write. We can thus safely do
984 				 * subsequent page lookups as if they were reads.
985 				 */
986 				if (ret & VM_FAULT_WRITE)
987 					write_access = 0;
988 
989 				switch (ret & ~VM_FAULT_WRITE) {
990 				case VM_FAULT_MINOR:
991 					tsk->min_flt++;
992 					break;
993 				case VM_FAULT_MAJOR:
994 					tsk->maj_flt++;
995 					break;
996 				case VM_FAULT_SIGBUS:
997 					return i ? i : -EFAULT;
998 				case VM_FAULT_OOM:
999 					return i ? i : -ENOMEM;
1000 				default:
1001 					BUG();
1002 				}
1003 				spin_lock(&mm->page_table_lock);
1004 			}
1005 			if (pages) {
1006 				pages[i] = page;
1007 				flush_dcache_page(page);
1008 				if (!PageReserved(page))
1009 					page_cache_get(page);
1010 			}
1011 			if (vmas)
1012 				vmas[i] = vma;
1013 			i++;
1014 			start += PAGE_SIZE;
1015 			len--;
1016 		} while (len && start < vma->vm_end);
1017 		spin_unlock(&mm->page_table_lock);
1018 	} while (len);
1019 	return i;
1020 }
1021 EXPORT_SYMBOL(get_user_pages);
1022 
1023 static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1024 			unsigned long addr, unsigned long end, pgprot_t prot)
1025 {
1026 	pte_t *pte;
1027 
1028 	pte = pte_alloc_map(mm, pmd, addr);
1029 	if (!pte)
1030 		return -ENOMEM;
1031 	do {
1032 		pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot));
1033 		BUG_ON(!pte_none(*pte));
1034 		set_pte_at(mm, addr, pte, zero_pte);
1035 	} while (pte++, addr += PAGE_SIZE, addr != end);
1036 	pte_unmap(pte - 1);
1037 	return 0;
1038 }
1039 
1040 static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud,
1041 			unsigned long addr, unsigned long end, pgprot_t prot)
1042 {
1043 	pmd_t *pmd;
1044 	unsigned long next;
1045 
1046 	pmd = pmd_alloc(mm, pud, addr);
1047 	if (!pmd)
1048 		return -ENOMEM;
1049 	do {
1050 		next = pmd_addr_end(addr, end);
1051 		if (zeromap_pte_range(mm, pmd, addr, next, prot))
1052 			return -ENOMEM;
1053 	} while (pmd++, addr = next, addr != end);
1054 	return 0;
1055 }
1056 
1057 static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1058 			unsigned long addr, unsigned long end, pgprot_t prot)
1059 {
1060 	pud_t *pud;
1061 	unsigned long next;
1062 
1063 	pud = pud_alloc(mm, pgd, addr);
1064 	if (!pud)
1065 		return -ENOMEM;
1066 	do {
1067 		next = pud_addr_end(addr, end);
1068 		if (zeromap_pmd_range(mm, pud, addr, next, prot))
1069 			return -ENOMEM;
1070 	} while (pud++, addr = next, addr != end);
1071 	return 0;
1072 }
1073 
1074 int zeromap_page_range(struct vm_area_struct *vma,
1075 			unsigned long addr, unsigned long size, pgprot_t prot)
1076 {
1077 	pgd_t *pgd;
1078 	unsigned long next;
1079 	unsigned long end = addr + size;
1080 	struct mm_struct *mm = vma->vm_mm;
1081 	int err;
1082 
1083 	BUG_ON(addr >= end);
1084 	pgd = pgd_offset(mm, addr);
1085 	flush_cache_range(vma, addr, end);
1086 	spin_lock(&mm->page_table_lock);
1087 	do {
1088 		next = pgd_addr_end(addr, end);
1089 		err = zeromap_pud_range(mm, pgd, addr, next, prot);
1090 		if (err)
1091 			break;
1092 	} while (pgd++, addr = next, addr != end);
1093 	spin_unlock(&mm->page_table_lock);
1094 	return err;
1095 }
1096 
1097 /*
1098  * maps a range of physical memory into the requested pages. the old
1099  * mappings are removed. any references to nonexistent pages results
1100  * in null mappings (currently treated as "copy-on-access")
1101  */
1102 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1103 			unsigned long addr, unsigned long end,
1104 			unsigned long pfn, pgprot_t prot)
1105 {
1106 	pte_t *pte;
1107 
1108 	pte = pte_alloc_map(mm, pmd, addr);
1109 	if (!pte)
1110 		return -ENOMEM;
1111 	do {
1112 		BUG_ON(!pte_none(*pte));
1113 		if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn)))
1114 			set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1115 		pfn++;
1116 	} while (pte++, addr += PAGE_SIZE, addr != end);
1117 	pte_unmap(pte - 1);
1118 	return 0;
1119 }
1120 
1121 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1122 			unsigned long addr, unsigned long end,
1123 			unsigned long pfn, pgprot_t prot)
1124 {
1125 	pmd_t *pmd;
1126 	unsigned long next;
1127 
1128 	pfn -= addr >> PAGE_SHIFT;
1129 	pmd = pmd_alloc(mm, pud, addr);
1130 	if (!pmd)
1131 		return -ENOMEM;
1132 	do {
1133 		next = pmd_addr_end(addr, end);
1134 		if (remap_pte_range(mm, pmd, addr, next,
1135 				pfn + (addr >> PAGE_SHIFT), prot))
1136 			return -ENOMEM;
1137 	} while (pmd++, addr = next, addr != end);
1138 	return 0;
1139 }
1140 
1141 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1142 			unsigned long addr, unsigned long end,
1143 			unsigned long pfn, pgprot_t prot)
1144 {
1145 	pud_t *pud;
1146 	unsigned long next;
1147 
1148 	pfn -= addr >> PAGE_SHIFT;
1149 	pud = pud_alloc(mm, pgd, addr);
1150 	if (!pud)
1151 		return -ENOMEM;
1152 	do {
1153 		next = pud_addr_end(addr, end);
1154 		if (remap_pmd_range(mm, pud, addr, next,
1155 				pfn + (addr >> PAGE_SHIFT), prot))
1156 			return -ENOMEM;
1157 	} while (pud++, addr = next, addr != end);
1158 	return 0;
1159 }
1160 
1161 /*  Note: this is only safe if the mm semaphore is held when called. */
1162 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1163 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1164 {
1165 	pgd_t *pgd;
1166 	unsigned long next;
1167 	unsigned long end = addr + PAGE_ALIGN(size);
1168 	struct mm_struct *mm = vma->vm_mm;
1169 	int err;
1170 
1171 	/*
1172 	 * Physically remapped pages are special. Tell the
1173 	 * rest of the world about it:
1174 	 *   VM_IO tells people not to look at these pages
1175 	 *	(accesses can have side effects).
1176 	 *   VM_RESERVED tells swapout not to try to touch
1177 	 *	this region.
1178 	 */
1179 	vma->vm_flags |= VM_IO | VM_RESERVED;
1180 
1181 	BUG_ON(addr >= end);
1182 	pfn -= addr >> PAGE_SHIFT;
1183 	pgd = pgd_offset(mm, addr);
1184 	flush_cache_range(vma, addr, end);
1185 	spin_lock(&mm->page_table_lock);
1186 	do {
1187 		next = pgd_addr_end(addr, end);
1188 		err = remap_pud_range(mm, pgd, addr, next,
1189 				pfn + (addr >> PAGE_SHIFT), prot);
1190 		if (err)
1191 			break;
1192 	} while (pgd++, addr = next, addr != end);
1193 	spin_unlock(&mm->page_table_lock);
1194 	return err;
1195 }
1196 EXPORT_SYMBOL(remap_pfn_range);
1197 
1198 /*
1199  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1200  * servicing faults for write access.  In the normal case, do always want
1201  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1202  * that do not have writing enabled, when used by access_process_vm.
1203  */
1204 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1205 {
1206 	if (likely(vma->vm_flags & VM_WRITE))
1207 		pte = pte_mkwrite(pte);
1208 	return pte;
1209 }
1210 
1211 /*
1212  * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock
1213  */
1214 static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,
1215 		pte_t *page_table)
1216 {
1217 	pte_t entry;
1218 
1219 	entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)),
1220 			      vma);
1221 	ptep_establish(vma, address, page_table, entry);
1222 	update_mmu_cache(vma, address, entry);
1223 	lazy_mmu_prot_update(entry);
1224 }
1225 
1226 /*
1227  * This routine handles present pages, when users try to write
1228  * to a shared page. It is done by copying the page to a new address
1229  * and decrementing the shared-page counter for the old page.
1230  *
1231  * Goto-purists beware: the only reason for goto's here is that it results
1232  * in better assembly code.. The "default" path will see no jumps at all.
1233  *
1234  * Note that this routine assumes that the protection checks have been
1235  * done by the caller (the low-level page fault routine in most cases).
1236  * Thus we can safely just mark it writable once we've done any necessary
1237  * COW.
1238  *
1239  * We also mark the page dirty at this point even though the page will
1240  * change only once the write actually happens. This avoids a few races,
1241  * and potentially makes it more efficient.
1242  *
1243  * We hold the mm semaphore and the page_table_lock on entry and exit
1244  * with the page_table_lock released.
1245  */
1246 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma,
1247 	unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte)
1248 {
1249 	struct page *old_page, *new_page;
1250 	unsigned long pfn = pte_pfn(pte);
1251 	pte_t entry;
1252 	int ret;
1253 
1254 	if (unlikely(!pfn_valid(pfn))) {
1255 		/*
1256 		 * This should really halt the system so it can be debugged or
1257 		 * at least the kernel stops what it's doing before it corrupts
1258 		 * data, but for the moment just pretend this is OOM.
1259 		 */
1260 		pte_unmap(page_table);
1261 		printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n",
1262 				address);
1263 		spin_unlock(&mm->page_table_lock);
1264 		return VM_FAULT_OOM;
1265 	}
1266 	old_page = pfn_to_page(pfn);
1267 
1268 	if (PageAnon(old_page) && !TestSetPageLocked(old_page)) {
1269 		int reuse = can_share_swap_page(old_page);
1270 		unlock_page(old_page);
1271 		if (reuse) {
1272 			flush_cache_page(vma, address, pfn);
1273 			entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)),
1274 					      vma);
1275 			ptep_set_access_flags(vma, address, page_table, entry, 1);
1276 			update_mmu_cache(vma, address, entry);
1277 			lazy_mmu_prot_update(entry);
1278 			pte_unmap(page_table);
1279 			spin_unlock(&mm->page_table_lock);
1280 			return VM_FAULT_MINOR|VM_FAULT_WRITE;
1281 		}
1282 	}
1283 	pte_unmap(page_table);
1284 
1285 	/*
1286 	 * Ok, we need to copy. Oh, well..
1287 	 */
1288 	if (!PageReserved(old_page))
1289 		page_cache_get(old_page);
1290 	spin_unlock(&mm->page_table_lock);
1291 
1292 	if (unlikely(anon_vma_prepare(vma)))
1293 		goto no_new_page;
1294 	if (old_page == ZERO_PAGE(address)) {
1295 		new_page = alloc_zeroed_user_highpage(vma, address);
1296 		if (!new_page)
1297 			goto no_new_page;
1298 	} else {
1299 		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1300 		if (!new_page)
1301 			goto no_new_page;
1302 		copy_user_highpage(new_page, old_page, address);
1303 	}
1304 	/*
1305 	 * Re-check the pte - we dropped the lock
1306 	 */
1307 	ret = VM_FAULT_MINOR;
1308 	spin_lock(&mm->page_table_lock);
1309 	page_table = pte_offset_map(pmd, address);
1310 	if (likely(pte_same(*page_table, pte))) {
1311 		if (PageAnon(old_page))
1312 			dec_mm_counter(mm, anon_rss);
1313 		if (PageReserved(old_page))
1314 			inc_mm_counter(mm, rss);
1315 		else
1316 			page_remove_rmap(old_page);
1317 		flush_cache_page(vma, address, pfn);
1318 		break_cow(vma, new_page, address, page_table);
1319 		lru_cache_add_active(new_page);
1320 		page_add_anon_rmap(new_page, vma, address);
1321 
1322 		/* Free the old page.. */
1323 		new_page = old_page;
1324 		ret |= VM_FAULT_WRITE;
1325 	}
1326 	pte_unmap(page_table);
1327 	page_cache_release(new_page);
1328 	page_cache_release(old_page);
1329 	spin_unlock(&mm->page_table_lock);
1330 	return ret;
1331 
1332 no_new_page:
1333 	page_cache_release(old_page);
1334 	return VM_FAULT_OOM;
1335 }
1336 
1337 /*
1338  * Helper functions for unmap_mapping_range().
1339  *
1340  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1341  *
1342  * We have to restart searching the prio_tree whenever we drop the lock,
1343  * since the iterator is only valid while the lock is held, and anyway
1344  * a later vma might be split and reinserted earlier while lock dropped.
1345  *
1346  * The list of nonlinear vmas could be handled more efficiently, using
1347  * a placeholder, but handle it in the same way until a need is shown.
1348  * It is important to search the prio_tree before nonlinear list: a vma
1349  * may become nonlinear and be shifted from prio_tree to nonlinear list
1350  * while the lock is dropped; but never shifted from list to prio_tree.
1351  *
1352  * In order to make forward progress despite restarting the search,
1353  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1354  * quickly skip it next time around.  Since the prio_tree search only
1355  * shows us those vmas affected by unmapping the range in question, we
1356  * can't efficiently keep all vmas in step with mapping->truncate_count:
1357  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1358  * mapping->truncate_count and vma->vm_truncate_count are protected by
1359  * i_mmap_lock.
1360  *
1361  * In order to make forward progress despite repeatedly restarting some
1362  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1363  * and restart from that address when we reach that vma again.  It might
1364  * have been split or merged, shrunk or extended, but never shifted: so
1365  * restart_addr remains valid so long as it remains in the vma's range.
1366  * unmap_mapping_range forces truncate_count to leap over page-aligned
1367  * values so we can save vma's restart_addr in its truncate_count field.
1368  */
1369 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1370 
1371 static void reset_vma_truncate_counts(struct address_space *mapping)
1372 {
1373 	struct vm_area_struct *vma;
1374 	struct prio_tree_iter iter;
1375 
1376 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1377 		vma->vm_truncate_count = 0;
1378 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1379 		vma->vm_truncate_count = 0;
1380 }
1381 
1382 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1383 		unsigned long start_addr, unsigned long end_addr,
1384 		struct zap_details *details)
1385 {
1386 	unsigned long restart_addr;
1387 	int need_break;
1388 
1389 again:
1390 	restart_addr = vma->vm_truncate_count;
1391 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1392 		start_addr = restart_addr;
1393 		if (start_addr >= end_addr) {
1394 			/* Top of vma has been split off since last time */
1395 			vma->vm_truncate_count = details->truncate_count;
1396 			return 0;
1397 		}
1398 	}
1399 
1400 	restart_addr = zap_page_range(vma, start_addr,
1401 					end_addr - start_addr, details);
1402 
1403 	/*
1404 	 * We cannot rely on the break test in unmap_vmas:
1405 	 * on the one hand, we don't want to restart our loop
1406 	 * just because that broke out for the page_table_lock;
1407 	 * on the other hand, it does no test when vma is small.
1408 	 */
1409 	need_break = need_resched() ||
1410 			need_lockbreak(details->i_mmap_lock);
1411 
1412 	if (restart_addr >= end_addr) {
1413 		/* We have now completed this vma: mark it so */
1414 		vma->vm_truncate_count = details->truncate_count;
1415 		if (!need_break)
1416 			return 0;
1417 	} else {
1418 		/* Note restart_addr in vma's truncate_count field */
1419 		vma->vm_truncate_count = restart_addr;
1420 		if (!need_break)
1421 			goto again;
1422 	}
1423 
1424 	spin_unlock(details->i_mmap_lock);
1425 	cond_resched();
1426 	spin_lock(details->i_mmap_lock);
1427 	return -EINTR;
1428 }
1429 
1430 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1431 					    struct zap_details *details)
1432 {
1433 	struct vm_area_struct *vma;
1434 	struct prio_tree_iter iter;
1435 	pgoff_t vba, vea, zba, zea;
1436 
1437 restart:
1438 	vma_prio_tree_foreach(vma, &iter, root,
1439 			details->first_index, details->last_index) {
1440 		/* Skip quickly over those we have already dealt with */
1441 		if (vma->vm_truncate_count == details->truncate_count)
1442 			continue;
1443 
1444 		vba = vma->vm_pgoff;
1445 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1446 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1447 		zba = details->first_index;
1448 		if (zba < vba)
1449 			zba = vba;
1450 		zea = details->last_index;
1451 		if (zea > vea)
1452 			zea = vea;
1453 
1454 		if (unmap_mapping_range_vma(vma,
1455 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1456 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1457 				details) < 0)
1458 			goto restart;
1459 	}
1460 }
1461 
1462 static inline void unmap_mapping_range_list(struct list_head *head,
1463 					    struct zap_details *details)
1464 {
1465 	struct vm_area_struct *vma;
1466 
1467 	/*
1468 	 * In nonlinear VMAs there is no correspondence between virtual address
1469 	 * offset and file offset.  So we must perform an exhaustive search
1470 	 * across *all* the pages in each nonlinear VMA, not just the pages
1471 	 * whose virtual address lies outside the file truncation point.
1472 	 */
1473 restart:
1474 	list_for_each_entry(vma, head, shared.vm_set.list) {
1475 		/* Skip quickly over those we have already dealt with */
1476 		if (vma->vm_truncate_count == details->truncate_count)
1477 			continue;
1478 		details->nonlinear_vma = vma;
1479 		if (unmap_mapping_range_vma(vma, vma->vm_start,
1480 					vma->vm_end, details) < 0)
1481 			goto restart;
1482 	}
1483 }
1484 
1485 /**
1486  * unmap_mapping_range - unmap the portion of all mmaps
1487  * in the specified address_space corresponding to the specified
1488  * page range in the underlying file.
1489  * @mapping: the address space containing mmaps to be unmapped.
1490  * @holebegin: byte in first page to unmap, relative to the start of
1491  * the underlying file.  This will be rounded down to a PAGE_SIZE
1492  * boundary.  Note that this is different from vmtruncate(), which
1493  * must keep the partial page.  In contrast, we must get rid of
1494  * partial pages.
1495  * @holelen: size of prospective hole in bytes.  This will be rounded
1496  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1497  * end of the file.
1498  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1499  * but 0 when invalidating pagecache, don't throw away private data.
1500  */
1501 void unmap_mapping_range(struct address_space *mapping,
1502 		loff_t const holebegin, loff_t const holelen, int even_cows)
1503 {
1504 	struct zap_details details;
1505 	pgoff_t hba = holebegin >> PAGE_SHIFT;
1506 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1507 
1508 	/* Check for overflow. */
1509 	if (sizeof(holelen) > sizeof(hlen)) {
1510 		long long holeend =
1511 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1512 		if (holeend & ~(long long)ULONG_MAX)
1513 			hlen = ULONG_MAX - hba + 1;
1514 	}
1515 
1516 	details.check_mapping = even_cows? NULL: mapping;
1517 	details.nonlinear_vma = NULL;
1518 	details.first_index = hba;
1519 	details.last_index = hba + hlen - 1;
1520 	if (details.last_index < details.first_index)
1521 		details.last_index = ULONG_MAX;
1522 	details.i_mmap_lock = &mapping->i_mmap_lock;
1523 
1524 	spin_lock(&mapping->i_mmap_lock);
1525 
1526 	/* serialize i_size write against truncate_count write */
1527 	smp_wmb();
1528 	/* Protect against page faults, and endless unmapping loops */
1529 	mapping->truncate_count++;
1530 	/*
1531 	 * For archs where spin_lock has inclusive semantics like ia64
1532 	 * this smp_mb() will prevent to read pagetable contents
1533 	 * before the truncate_count increment is visible to
1534 	 * other cpus.
1535 	 */
1536 	smp_mb();
1537 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1538 		if (mapping->truncate_count == 0)
1539 			reset_vma_truncate_counts(mapping);
1540 		mapping->truncate_count++;
1541 	}
1542 	details.truncate_count = mapping->truncate_count;
1543 
1544 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1545 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1546 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1547 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1548 	spin_unlock(&mapping->i_mmap_lock);
1549 }
1550 EXPORT_SYMBOL(unmap_mapping_range);
1551 
1552 /*
1553  * Handle all mappings that got truncated by a "truncate()"
1554  * system call.
1555  *
1556  * NOTE! We have to be ready to update the memory sharing
1557  * between the file and the memory map for a potential last
1558  * incomplete page.  Ugly, but necessary.
1559  */
1560 int vmtruncate(struct inode * inode, loff_t offset)
1561 {
1562 	struct address_space *mapping = inode->i_mapping;
1563 	unsigned long limit;
1564 
1565 	if (inode->i_size < offset)
1566 		goto do_expand;
1567 	/*
1568 	 * truncation of in-use swapfiles is disallowed - it would cause
1569 	 * subsequent swapout to scribble on the now-freed blocks.
1570 	 */
1571 	if (IS_SWAPFILE(inode))
1572 		goto out_busy;
1573 	i_size_write(inode, offset);
1574 	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1575 	truncate_inode_pages(mapping, offset);
1576 	goto out_truncate;
1577 
1578 do_expand:
1579 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1580 	if (limit != RLIM_INFINITY && offset > limit)
1581 		goto out_sig;
1582 	if (offset > inode->i_sb->s_maxbytes)
1583 		goto out_big;
1584 	i_size_write(inode, offset);
1585 
1586 out_truncate:
1587 	if (inode->i_op && inode->i_op->truncate)
1588 		inode->i_op->truncate(inode);
1589 	return 0;
1590 out_sig:
1591 	send_sig(SIGXFSZ, current, 0);
1592 out_big:
1593 	return -EFBIG;
1594 out_busy:
1595 	return -ETXTBSY;
1596 }
1597 
1598 EXPORT_SYMBOL(vmtruncate);
1599 
1600 /*
1601  * Primitive swap readahead code. We simply read an aligned block of
1602  * (1 << page_cluster) entries in the swap area. This method is chosen
1603  * because it doesn't cost us any seek time.  We also make sure to queue
1604  * the 'original' request together with the readahead ones...
1605  *
1606  * This has been extended to use the NUMA policies from the mm triggering
1607  * the readahead.
1608  *
1609  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1610  */
1611 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
1612 {
1613 #ifdef CONFIG_NUMA
1614 	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
1615 #endif
1616 	int i, num;
1617 	struct page *new_page;
1618 	unsigned long offset;
1619 
1620 	/*
1621 	 * Get the number of handles we should do readahead io to.
1622 	 */
1623 	num = valid_swaphandles(entry, &offset);
1624 	for (i = 0; i < num; offset++, i++) {
1625 		/* Ok, do the async read-ahead now */
1626 		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
1627 							   offset), vma, addr);
1628 		if (!new_page)
1629 			break;
1630 		page_cache_release(new_page);
1631 #ifdef CONFIG_NUMA
1632 		/*
1633 		 * Find the next applicable VMA for the NUMA policy.
1634 		 */
1635 		addr += PAGE_SIZE;
1636 		if (addr == 0)
1637 			vma = NULL;
1638 		if (vma) {
1639 			if (addr >= vma->vm_end) {
1640 				vma = next_vma;
1641 				next_vma = vma ? vma->vm_next : NULL;
1642 			}
1643 			if (vma && addr < vma->vm_start)
1644 				vma = NULL;
1645 		} else {
1646 			if (next_vma && addr >= next_vma->vm_start) {
1647 				vma = next_vma;
1648 				next_vma = vma->vm_next;
1649 			}
1650 		}
1651 #endif
1652 	}
1653 	lru_add_drain();	/* Push any new pages onto the LRU now */
1654 }
1655 
1656 /*
1657  * We hold the mm semaphore and the page_table_lock on entry and
1658  * should release the pagetable lock on exit..
1659  */
1660 static int do_swap_page(struct mm_struct * mm,
1661 	struct vm_area_struct * vma, unsigned long address,
1662 	pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access)
1663 {
1664 	struct page *page;
1665 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
1666 	pte_t pte;
1667 	int ret = VM_FAULT_MINOR;
1668 
1669 	pte_unmap(page_table);
1670 	spin_unlock(&mm->page_table_lock);
1671 	page = lookup_swap_cache(entry);
1672 	if (!page) {
1673  		swapin_readahead(entry, address, vma);
1674  		page = read_swap_cache_async(entry, vma, address);
1675 		if (!page) {
1676 			/*
1677 			 * Back out if somebody else faulted in this pte while
1678 			 * we released the page table lock.
1679 			 */
1680 			spin_lock(&mm->page_table_lock);
1681 			page_table = pte_offset_map(pmd, address);
1682 			if (likely(pte_same(*page_table, orig_pte)))
1683 				ret = VM_FAULT_OOM;
1684 			else
1685 				ret = VM_FAULT_MINOR;
1686 			pte_unmap(page_table);
1687 			spin_unlock(&mm->page_table_lock);
1688 			goto out;
1689 		}
1690 
1691 		/* Had to read the page from swap area: Major fault */
1692 		ret = VM_FAULT_MAJOR;
1693 		inc_page_state(pgmajfault);
1694 		grab_swap_token();
1695 	}
1696 
1697 	mark_page_accessed(page);
1698 	lock_page(page);
1699 
1700 	/*
1701 	 * Back out if somebody else faulted in this pte while we
1702 	 * released the page table lock.
1703 	 */
1704 	spin_lock(&mm->page_table_lock);
1705 	page_table = pte_offset_map(pmd, address);
1706 	if (unlikely(!pte_same(*page_table, orig_pte))) {
1707 		ret = VM_FAULT_MINOR;
1708 		goto out_nomap;
1709 	}
1710 
1711 	if (unlikely(!PageUptodate(page))) {
1712 		ret = VM_FAULT_SIGBUS;
1713 		goto out_nomap;
1714 	}
1715 
1716 	/* The page isn't present yet, go ahead with the fault. */
1717 
1718 	inc_mm_counter(mm, rss);
1719 	pte = mk_pte(page, vma->vm_page_prot);
1720 	if (write_access && can_share_swap_page(page)) {
1721 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
1722 		write_access = 0;
1723 	}
1724 
1725 	flush_icache_page(vma, page);
1726 	set_pte_at(mm, address, page_table, pte);
1727 	page_add_anon_rmap(page, vma, address);
1728 
1729 	swap_free(entry);
1730 	if (vm_swap_full())
1731 		remove_exclusive_swap_page(page);
1732 	unlock_page(page);
1733 
1734 	if (write_access) {
1735 		if (do_wp_page(mm, vma, address,
1736 				page_table, pmd, pte) == VM_FAULT_OOM)
1737 			ret = VM_FAULT_OOM;
1738 		goto out;
1739 	}
1740 
1741 	/* No need to invalidate - it was non-present before */
1742 	update_mmu_cache(vma, address, pte);
1743 	lazy_mmu_prot_update(pte);
1744 	pte_unmap(page_table);
1745 	spin_unlock(&mm->page_table_lock);
1746 out:
1747 	return ret;
1748 out_nomap:
1749 	pte_unmap(page_table);
1750 	spin_unlock(&mm->page_table_lock);
1751 	unlock_page(page);
1752 	page_cache_release(page);
1753 	goto out;
1754 }
1755 
1756 /*
1757  * We are called with the MM semaphore and page_table_lock
1758  * spinlock held to protect against concurrent faults in
1759  * multithreaded programs.
1760  */
1761 static int
1762 do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
1763 		pte_t *page_table, pmd_t *pmd, int write_access,
1764 		unsigned long addr)
1765 {
1766 	pte_t entry;
1767 	struct page * page = ZERO_PAGE(addr);
1768 
1769 	/* Read-only mapping of ZERO_PAGE. */
1770 	entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot));
1771 
1772 	/* ..except if it's a write access */
1773 	if (write_access) {
1774 		/* Allocate our own private page. */
1775 		pte_unmap(page_table);
1776 		spin_unlock(&mm->page_table_lock);
1777 
1778 		if (unlikely(anon_vma_prepare(vma)))
1779 			goto no_mem;
1780 		page = alloc_zeroed_user_highpage(vma, addr);
1781 		if (!page)
1782 			goto no_mem;
1783 
1784 		spin_lock(&mm->page_table_lock);
1785 		page_table = pte_offset_map(pmd, addr);
1786 
1787 		if (!pte_none(*page_table)) {
1788 			pte_unmap(page_table);
1789 			page_cache_release(page);
1790 			spin_unlock(&mm->page_table_lock);
1791 			goto out;
1792 		}
1793 		inc_mm_counter(mm, rss);
1794 		entry = maybe_mkwrite(pte_mkdirty(mk_pte(page,
1795 							 vma->vm_page_prot)),
1796 				      vma);
1797 		lru_cache_add_active(page);
1798 		SetPageReferenced(page);
1799 		page_add_anon_rmap(page, vma, addr);
1800 	}
1801 
1802 	set_pte_at(mm, addr, page_table, entry);
1803 	pte_unmap(page_table);
1804 
1805 	/* No need to invalidate - it was non-present before */
1806 	update_mmu_cache(vma, addr, entry);
1807 	lazy_mmu_prot_update(entry);
1808 	spin_unlock(&mm->page_table_lock);
1809 out:
1810 	return VM_FAULT_MINOR;
1811 no_mem:
1812 	return VM_FAULT_OOM;
1813 }
1814 
1815 /*
1816  * do_no_page() tries to create a new page mapping. It aggressively
1817  * tries to share with existing pages, but makes a separate copy if
1818  * the "write_access" parameter is true in order to avoid the next
1819  * page fault.
1820  *
1821  * As this is called only for pages that do not currently exist, we
1822  * do not need to flush old virtual caches or the TLB.
1823  *
1824  * This is called with the MM semaphore held and the page table
1825  * spinlock held. Exit with the spinlock released.
1826  */
1827 static int
1828 do_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
1829 	unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd)
1830 {
1831 	struct page * new_page;
1832 	struct address_space *mapping = NULL;
1833 	pte_t entry;
1834 	unsigned int sequence = 0;
1835 	int ret = VM_FAULT_MINOR;
1836 	int anon = 0;
1837 
1838 	if (!vma->vm_ops || !vma->vm_ops->nopage)
1839 		return do_anonymous_page(mm, vma, page_table,
1840 					pmd, write_access, address);
1841 	pte_unmap(page_table);
1842 	spin_unlock(&mm->page_table_lock);
1843 
1844 	if (vma->vm_file) {
1845 		mapping = vma->vm_file->f_mapping;
1846 		sequence = mapping->truncate_count;
1847 		smp_rmb(); /* serializes i_size against truncate_count */
1848 	}
1849 retry:
1850 	cond_resched();
1851 	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
1852 	/*
1853 	 * No smp_rmb is needed here as long as there's a full
1854 	 * spin_lock/unlock sequence inside the ->nopage callback
1855 	 * (for the pagecache lookup) that acts as an implicit
1856 	 * smp_mb() and prevents the i_size read to happen
1857 	 * after the next truncate_count read.
1858 	 */
1859 
1860 	/* no page was available -- either SIGBUS or OOM */
1861 	if (new_page == NOPAGE_SIGBUS)
1862 		return VM_FAULT_SIGBUS;
1863 	if (new_page == NOPAGE_OOM)
1864 		return VM_FAULT_OOM;
1865 
1866 	/*
1867 	 * Should we do an early C-O-W break?
1868 	 */
1869 	if (write_access && !(vma->vm_flags & VM_SHARED)) {
1870 		struct page *page;
1871 
1872 		if (unlikely(anon_vma_prepare(vma)))
1873 			goto oom;
1874 		page = alloc_page_vma(GFP_HIGHUSER, vma, address);
1875 		if (!page)
1876 			goto oom;
1877 		copy_user_highpage(page, new_page, address);
1878 		page_cache_release(new_page);
1879 		new_page = page;
1880 		anon = 1;
1881 	}
1882 
1883 	spin_lock(&mm->page_table_lock);
1884 	/*
1885 	 * For a file-backed vma, someone could have truncated or otherwise
1886 	 * invalidated this page.  If unmap_mapping_range got called,
1887 	 * retry getting the page.
1888 	 */
1889 	if (mapping && unlikely(sequence != mapping->truncate_count)) {
1890 		sequence = mapping->truncate_count;
1891 		spin_unlock(&mm->page_table_lock);
1892 		page_cache_release(new_page);
1893 		goto retry;
1894 	}
1895 	page_table = pte_offset_map(pmd, address);
1896 
1897 	/*
1898 	 * This silly early PAGE_DIRTY setting removes a race
1899 	 * due to the bad i386 page protection. But it's valid
1900 	 * for other architectures too.
1901 	 *
1902 	 * Note that if write_access is true, we either now have
1903 	 * an exclusive copy of the page, or this is a shared mapping,
1904 	 * so we can make it writable and dirty to avoid having to
1905 	 * handle that later.
1906 	 */
1907 	/* Only go through if we didn't race with anybody else... */
1908 	if (pte_none(*page_table)) {
1909 		if (!PageReserved(new_page))
1910 			inc_mm_counter(mm, rss);
1911 
1912 		flush_icache_page(vma, new_page);
1913 		entry = mk_pte(new_page, vma->vm_page_prot);
1914 		if (write_access)
1915 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1916 		set_pte_at(mm, address, page_table, entry);
1917 		if (anon) {
1918 			lru_cache_add_active(new_page);
1919 			page_add_anon_rmap(new_page, vma, address);
1920 		} else
1921 			page_add_file_rmap(new_page);
1922 		pte_unmap(page_table);
1923 	} else {
1924 		/* One of our sibling threads was faster, back out. */
1925 		pte_unmap(page_table);
1926 		page_cache_release(new_page);
1927 		spin_unlock(&mm->page_table_lock);
1928 		goto out;
1929 	}
1930 
1931 	/* no need to invalidate: a not-present page shouldn't be cached */
1932 	update_mmu_cache(vma, address, entry);
1933 	lazy_mmu_prot_update(entry);
1934 	spin_unlock(&mm->page_table_lock);
1935 out:
1936 	return ret;
1937 oom:
1938 	page_cache_release(new_page);
1939 	ret = VM_FAULT_OOM;
1940 	goto out;
1941 }
1942 
1943 /*
1944  * Fault of a previously existing named mapping. Repopulate the pte
1945  * from the encoded file_pte if possible. This enables swappable
1946  * nonlinear vmas.
1947  */
1948 static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma,
1949 	unsigned long address, int write_access, pte_t *pte, pmd_t *pmd)
1950 {
1951 	unsigned long pgoff;
1952 	int err;
1953 
1954 	BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage);
1955 	/*
1956 	 * Fall back to the linear mapping if the fs does not support
1957 	 * ->populate:
1958 	 */
1959 	if (!vma->vm_ops->populate ||
1960 			(write_access && !(vma->vm_flags & VM_SHARED))) {
1961 		pte_clear(mm, address, pte);
1962 		return do_no_page(mm, vma, address, write_access, pte, pmd);
1963 	}
1964 
1965 	pgoff = pte_to_pgoff(*pte);
1966 
1967 	pte_unmap(pte);
1968 	spin_unlock(&mm->page_table_lock);
1969 
1970 	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0);
1971 	if (err == -ENOMEM)
1972 		return VM_FAULT_OOM;
1973 	if (err)
1974 		return VM_FAULT_SIGBUS;
1975 	return VM_FAULT_MAJOR;
1976 }
1977 
1978 /*
1979  * These routines also need to handle stuff like marking pages dirty
1980  * and/or accessed for architectures that don't do it in hardware (most
1981  * RISC architectures).  The early dirtying is also good on the i386.
1982  *
1983  * There is also a hook called "update_mmu_cache()" that architectures
1984  * with external mmu caches can use to update those (ie the Sparc or
1985  * PowerPC hashed page tables that act as extended TLBs).
1986  *
1987  * Note the "page_table_lock". It is to protect against kswapd removing
1988  * pages from under us. Note that kswapd only ever _removes_ pages, never
1989  * adds them. As such, once we have noticed that the page is not present,
1990  * we can drop the lock early.
1991  *
1992  * The adding of pages is protected by the MM semaphore (which we hold),
1993  * so we don't need to worry about a page being suddenly been added into
1994  * our VM.
1995  *
1996  * We enter with the pagetable spinlock held, we are supposed to
1997  * release it when done.
1998  */
1999 static inline int handle_pte_fault(struct mm_struct *mm,
2000 	struct vm_area_struct * vma, unsigned long address,
2001 	int write_access, pte_t *pte, pmd_t *pmd)
2002 {
2003 	pte_t entry;
2004 
2005 	entry = *pte;
2006 	if (!pte_present(entry)) {
2007 		/*
2008 		 * If it truly wasn't present, we know that kswapd
2009 		 * and the PTE updates will not touch it later. So
2010 		 * drop the lock.
2011 		 */
2012 		if (pte_none(entry))
2013 			return do_no_page(mm, vma, address, write_access, pte, pmd);
2014 		if (pte_file(entry))
2015 			return do_file_page(mm, vma, address, write_access, pte, pmd);
2016 		return do_swap_page(mm, vma, address, pte, pmd, entry, write_access);
2017 	}
2018 
2019 	if (write_access) {
2020 		if (!pte_write(entry))
2021 			return do_wp_page(mm, vma, address, pte, pmd, entry);
2022 		entry = pte_mkdirty(entry);
2023 	}
2024 	entry = pte_mkyoung(entry);
2025 	ptep_set_access_flags(vma, address, pte, entry, write_access);
2026 	update_mmu_cache(vma, address, entry);
2027 	lazy_mmu_prot_update(entry);
2028 	pte_unmap(pte);
2029 	spin_unlock(&mm->page_table_lock);
2030 	return VM_FAULT_MINOR;
2031 }
2032 
2033 /*
2034  * By the time we get here, we already hold the mm semaphore
2035  */
2036 int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma,
2037 		unsigned long address, int write_access)
2038 {
2039 	pgd_t *pgd;
2040 	pud_t *pud;
2041 	pmd_t *pmd;
2042 	pte_t *pte;
2043 
2044 	__set_current_state(TASK_RUNNING);
2045 
2046 	inc_page_state(pgfault);
2047 
2048 	if (is_vm_hugetlb_page(vma))
2049 		return VM_FAULT_SIGBUS;	/* mapping truncation does this. */
2050 
2051 	/*
2052 	 * We need the page table lock to synchronize with kswapd
2053 	 * and the SMP-safe atomic PTE updates.
2054 	 */
2055 	pgd = pgd_offset(mm, address);
2056 	spin_lock(&mm->page_table_lock);
2057 
2058 	pud = pud_alloc(mm, pgd, address);
2059 	if (!pud)
2060 		goto oom;
2061 
2062 	pmd = pmd_alloc(mm, pud, address);
2063 	if (!pmd)
2064 		goto oom;
2065 
2066 	pte = pte_alloc_map(mm, pmd, address);
2067 	if (!pte)
2068 		goto oom;
2069 
2070 	return handle_pte_fault(mm, vma, address, write_access, pte, pmd);
2071 
2072  oom:
2073 	spin_unlock(&mm->page_table_lock);
2074 	return VM_FAULT_OOM;
2075 }
2076 
2077 #ifndef __PAGETABLE_PUD_FOLDED
2078 /*
2079  * Allocate page upper directory.
2080  *
2081  * We've already handled the fast-path in-line, and we own the
2082  * page table lock.
2083  */
2084 pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2085 {
2086 	pud_t *new;
2087 
2088 	spin_unlock(&mm->page_table_lock);
2089 	new = pud_alloc_one(mm, address);
2090 	spin_lock(&mm->page_table_lock);
2091 	if (!new)
2092 		return NULL;
2093 
2094 	/*
2095 	 * Because we dropped the lock, we should re-check the
2096 	 * entry, as somebody else could have populated it..
2097 	 */
2098 	if (pgd_present(*pgd)) {
2099 		pud_free(new);
2100 		goto out;
2101 	}
2102 	pgd_populate(mm, pgd, new);
2103  out:
2104 	return pud_offset(pgd, address);
2105 }
2106 #endif /* __PAGETABLE_PUD_FOLDED */
2107 
2108 #ifndef __PAGETABLE_PMD_FOLDED
2109 /*
2110  * Allocate page middle directory.
2111  *
2112  * We've already handled the fast-path in-line, and we own the
2113  * page table lock.
2114  */
2115 pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2116 {
2117 	pmd_t *new;
2118 
2119 	spin_unlock(&mm->page_table_lock);
2120 	new = pmd_alloc_one(mm, address);
2121 	spin_lock(&mm->page_table_lock);
2122 	if (!new)
2123 		return NULL;
2124 
2125 	/*
2126 	 * Because we dropped the lock, we should re-check the
2127 	 * entry, as somebody else could have populated it..
2128 	 */
2129 #ifndef __ARCH_HAS_4LEVEL_HACK
2130 	if (pud_present(*pud)) {
2131 		pmd_free(new);
2132 		goto out;
2133 	}
2134 	pud_populate(mm, pud, new);
2135 #else
2136 	if (pgd_present(*pud)) {
2137 		pmd_free(new);
2138 		goto out;
2139 	}
2140 	pgd_populate(mm, pud, new);
2141 #endif /* __ARCH_HAS_4LEVEL_HACK */
2142 
2143  out:
2144 	return pmd_offset(pud, address);
2145 }
2146 #endif /* __PAGETABLE_PMD_FOLDED */
2147 
2148 int make_pages_present(unsigned long addr, unsigned long end)
2149 {
2150 	int ret, len, write;
2151 	struct vm_area_struct * vma;
2152 
2153 	vma = find_vma(current->mm, addr);
2154 	if (!vma)
2155 		return -1;
2156 	write = (vma->vm_flags & VM_WRITE) != 0;
2157 	if (addr >= end)
2158 		BUG();
2159 	if (end > vma->vm_end)
2160 		BUG();
2161 	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE;
2162 	ret = get_user_pages(current, current->mm, addr,
2163 			len, write, 0, NULL, NULL);
2164 	if (ret < 0)
2165 		return ret;
2166 	return ret == len ? 0 : -1;
2167 }
2168 
2169 /*
2170  * Map a vmalloc()-space virtual address to the physical page.
2171  */
2172 struct page * vmalloc_to_page(void * vmalloc_addr)
2173 {
2174 	unsigned long addr = (unsigned long) vmalloc_addr;
2175 	struct page *page = NULL;
2176 	pgd_t *pgd = pgd_offset_k(addr);
2177 	pud_t *pud;
2178 	pmd_t *pmd;
2179 	pte_t *ptep, pte;
2180 
2181 	if (!pgd_none(*pgd)) {
2182 		pud = pud_offset(pgd, addr);
2183 		if (!pud_none(*pud)) {
2184 			pmd = pmd_offset(pud, addr);
2185 			if (!pmd_none(*pmd)) {
2186 				ptep = pte_offset_map(pmd, addr);
2187 				pte = *ptep;
2188 				if (pte_present(pte))
2189 					page = pte_page(pte);
2190 				pte_unmap(ptep);
2191 			}
2192 		}
2193 	}
2194 	return page;
2195 }
2196 
2197 EXPORT_SYMBOL(vmalloc_to_page);
2198 
2199 /*
2200  * Map a vmalloc()-space virtual address to the physical page frame number.
2201  */
2202 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2203 {
2204 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2205 }
2206 
2207 EXPORT_SYMBOL(vmalloc_to_pfn);
2208 
2209 /*
2210  * update_mem_hiwater
2211  *	- update per process rss and vm high water data
2212  */
2213 void update_mem_hiwater(struct task_struct *tsk)
2214 {
2215 	if (tsk->mm) {
2216 		unsigned long rss = get_mm_counter(tsk->mm, rss);
2217 
2218 		if (tsk->mm->hiwater_rss < rss)
2219 			tsk->mm->hiwater_rss = rss;
2220 		if (tsk->mm->hiwater_vm < tsk->mm->total_vm)
2221 			tsk->mm->hiwater_vm = tsk->mm->total_vm;
2222 	}
2223 }
2224 
2225 #if !defined(__HAVE_ARCH_GATE_AREA)
2226 
2227 #if defined(AT_SYSINFO_EHDR)
2228 struct vm_area_struct gate_vma;
2229 
2230 static int __init gate_vma_init(void)
2231 {
2232 	gate_vma.vm_mm = NULL;
2233 	gate_vma.vm_start = FIXADDR_USER_START;
2234 	gate_vma.vm_end = FIXADDR_USER_END;
2235 	gate_vma.vm_page_prot = PAGE_READONLY;
2236 	gate_vma.vm_flags = 0;
2237 	return 0;
2238 }
2239 __initcall(gate_vma_init);
2240 #endif
2241 
2242 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2243 {
2244 #ifdef AT_SYSINFO_EHDR
2245 	return &gate_vma;
2246 #else
2247 	return NULL;
2248 #endif
2249 }
2250 
2251 int in_gate_area_no_task(unsigned long addr)
2252 {
2253 #ifdef AT_SYSINFO_EHDR
2254 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2255 		return 1;
2256 #endif
2257 	return 0;
2258 }
2259 
2260 #endif	/* __HAVE_ARCH_GATE_AREA */
2261