1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/delayacct.h> 51 #include <linux/init.h> 52 #include <linux/writeback.h> 53 #include <linux/memcontrol.h> 54 55 #include <asm/pgalloc.h> 56 #include <asm/uaccess.h> 57 #include <asm/tlb.h> 58 #include <asm/tlbflush.h> 59 #include <asm/pgtable.h> 60 61 #include <linux/swapops.h> 62 #include <linux/elf.h> 63 64 #ifndef CONFIG_NEED_MULTIPLE_NODES 65 /* use the per-pgdat data instead for discontigmem - mbligh */ 66 unsigned long max_mapnr; 67 struct page *mem_map; 68 69 EXPORT_SYMBOL(max_mapnr); 70 EXPORT_SYMBOL(mem_map); 71 #endif 72 73 unsigned long num_physpages; 74 /* 75 * A number of key systems in x86 including ioremap() rely on the assumption 76 * that high_memory defines the upper bound on direct map memory, then end 77 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 78 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 79 * and ZONE_HIGHMEM. 80 */ 81 void * high_memory; 82 83 EXPORT_SYMBOL(num_physpages); 84 EXPORT_SYMBOL(high_memory); 85 86 /* 87 * Randomize the address space (stacks, mmaps, brk, etc.). 88 * 89 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 90 * as ancient (libc5 based) binaries can segfault. ) 91 */ 92 int randomize_va_space __read_mostly = 93 #ifdef CONFIG_COMPAT_BRK 94 1; 95 #else 96 2; 97 #endif 98 99 static int __init disable_randmaps(char *s) 100 { 101 randomize_va_space = 0; 102 return 1; 103 } 104 __setup("norandmaps", disable_randmaps); 105 106 107 /* 108 * If a p?d_bad entry is found while walking page tables, report 109 * the error, before resetting entry to p?d_none. Usually (but 110 * very seldom) called out from the p?d_none_or_clear_bad macros. 111 */ 112 113 void pgd_clear_bad(pgd_t *pgd) 114 { 115 pgd_ERROR(*pgd); 116 pgd_clear(pgd); 117 } 118 119 void pud_clear_bad(pud_t *pud) 120 { 121 pud_ERROR(*pud); 122 pud_clear(pud); 123 } 124 125 void pmd_clear_bad(pmd_t *pmd) 126 { 127 pmd_ERROR(*pmd); 128 pmd_clear(pmd); 129 } 130 131 /* 132 * Note: this doesn't free the actual pages themselves. That 133 * has been handled earlier when unmapping all the memory regions. 134 */ 135 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 136 { 137 pgtable_t token = pmd_pgtable(*pmd); 138 pmd_clear(pmd); 139 pte_free_tlb(tlb, token); 140 tlb->mm->nr_ptes--; 141 } 142 143 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 144 unsigned long addr, unsigned long end, 145 unsigned long floor, unsigned long ceiling) 146 { 147 pmd_t *pmd; 148 unsigned long next; 149 unsigned long start; 150 151 start = addr; 152 pmd = pmd_offset(pud, addr); 153 do { 154 next = pmd_addr_end(addr, end); 155 if (pmd_none_or_clear_bad(pmd)) 156 continue; 157 free_pte_range(tlb, pmd); 158 } while (pmd++, addr = next, addr != end); 159 160 start &= PUD_MASK; 161 if (start < floor) 162 return; 163 if (ceiling) { 164 ceiling &= PUD_MASK; 165 if (!ceiling) 166 return; 167 } 168 if (end - 1 > ceiling - 1) 169 return; 170 171 pmd = pmd_offset(pud, start); 172 pud_clear(pud); 173 pmd_free_tlb(tlb, pmd); 174 } 175 176 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 177 unsigned long addr, unsigned long end, 178 unsigned long floor, unsigned long ceiling) 179 { 180 pud_t *pud; 181 unsigned long next; 182 unsigned long start; 183 184 start = addr; 185 pud = pud_offset(pgd, addr); 186 do { 187 next = pud_addr_end(addr, end); 188 if (pud_none_or_clear_bad(pud)) 189 continue; 190 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 191 } while (pud++, addr = next, addr != end); 192 193 start &= PGDIR_MASK; 194 if (start < floor) 195 return; 196 if (ceiling) { 197 ceiling &= PGDIR_MASK; 198 if (!ceiling) 199 return; 200 } 201 if (end - 1 > ceiling - 1) 202 return; 203 204 pud = pud_offset(pgd, start); 205 pgd_clear(pgd); 206 pud_free_tlb(tlb, pud); 207 } 208 209 /* 210 * This function frees user-level page tables of a process. 211 * 212 * Must be called with pagetable lock held. 213 */ 214 void free_pgd_range(struct mmu_gather **tlb, 215 unsigned long addr, unsigned long end, 216 unsigned long floor, unsigned long ceiling) 217 { 218 pgd_t *pgd; 219 unsigned long next; 220 unsigned long start; 221 222 /* 223 * The next few lines have given us lots of grief... 224 * 225 * Why are we testing PMD* at this top level? Because often 226 * there will be no work to do at all, and we'd prefer not to 227 * go all the way down to the bottom just to discover that. 228 * 229 * Why all these "- 1"s? Because 0 represents both the bottom 230 * of the address space and the top of it (using -1 for the 231 * top wouldn't help much: the masks would do the wrong thing). 232 * The rule is that addr 0 and floor 0 refer to the bottom of 233 * the address space, but end 0 and ceiling 0 refer to the top 234 * Comparisons need to use "end - 1" and "ceiling - 1" (though 235 * that end 0 case should be mythical). 236 * 237 * Wherever addr is brought up or ceiling brought down, we must 238 * be careful to reject "the opposite 0" before it confuses the 239 * subsequent tests. But what about where end is brought down 240 * by PMD_SIZE below? no, end can't go down to 0 there. 241 * 242 * Whereas we round start (addr) and ceiling down, by different 243 * masks at different levels, in order to test whether a table 244 * now has no other vmas using it, so can be freed, we don't 245 * bother to round floor or end up - the tests don't need that. 246 */ 247 248 addr &= PMD_MASK; 249 if (addr < floor) { 250 addr += PMD_SIZE; 251 if (!addr) 252 return; 253 } 254 if (ceiling) { 255 ceiling &= PMD_MASK; 256 if (!ceiling) 257 return; 258 } 259 if (end - 1 > ceiling - 1) 260 end -= PMD_SIZE; 261 if (addr > end - 1) 262 return; 263 264 start = addr; 265 pgd = pgd_offset((*tlb)->mm, addr); 266 do { 267 next = pgd_addr_end(addr, end); 268 if (pgd_none_or_clear_bad(pgd)) 269 continue; 270 free_pud_range(*tlb, pgd, addr, next, floor, ceiling); 271 } while (pgd++, addr = next, addr != end); 272 } 273 274 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, 275 unsigned long floor, unsigned long ceiling) 276 { 277 while (vma) { 278 struct vm_area_struct *next = vma->vm_next; 279 unsigned long addr = vma->vm_start; 280 281 /* 282 * Hide vma from rmap and vmtruncate before freeing pgtables 283 */ 284 anon_vma_unlink(vma); 285 unlink_file_vma(vma); 286 287 if (is_vm_hugetlb_page(vma)) { 288 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 289 floor, next? next->vm_start: ceiling); 290 } else { 291 /* 292 * Optimization: gather nearby vmas into one call down 293 */ 294 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 295 && !is_vm_hugetlb_page(next)) { 296 vma = next; 297 next = vma->vm_next; 298 anon_vma_unlink(vma); 299 unlink_file_vma(vma); 300 } 301 free_pgd_range(tlb, addr, vma->vm_end, 302 floor, next? next->vm_start: ceiling); 303 } 304 vma = next; 305 } 306 } 307 308 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 309 { 310 pgtable_t new = pte_alloc_one(mm, address); 311 if (!new) 312 return -ENOMEM; 313 314 /* 315 * Ensure all pte setup (eg. pte page lock and page clearing) are 316 * visible before the pte is made visible to other CPUs by being 317 * put into page tables. 318 * 319 * The other side of the story is the pointer chasing in the page 320 * table walking code (when walking the page table without locking; 321 * ie. most of the time). Fortunately, these data accesses consist 322 * of a chain of data-dependent loads, meaning most CPUs (alpha 323 * being the notable exception) will already guarantee loads are 324 * seen in-order. See the alpha page table accessors for the 325 * smp_read_barrier_depends() barriers in page table walking code. 326 */ 327 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 328 329 spin_lock(&mm->page_table_lock); 330 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 331 mm->nr_ptes++; 332 pmd_populate(mm, pmd, new); 333 new = NULL; 334 } 335 spin_unlock(&mm->page_table_lock); 336 if (new) 337 pte_free(mm, new); 338 return 0; 339 } 340 341 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 342 { 343 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 344 if (!new) 345 return -ENOMEM; 346 347 smp_wmb(); /* See comment in __pte_alloc */ 348 349 spin_lock(&init_mm.page_table_lock); 350 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 351 pmd_populate_kernel(&init_mm, pmd, new); 352 new = NULL; 353 } 354 spin_unlock(&init_mm.page_table_lock); 355 if (new) 356 pte_free_kernel(&init_mm, new); 357 return 0; 358 } 359 360 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 361 { 362 if (file_rss) 363 add_mm_counter(mm, file_rss, file_rss); 364 if (anon_rss) 365 add_mm_counter(mm, anon_rss, anon_rss); 366 } 367 368 /* 369 * This function is called to print an error when a bad pte 370 * is found. For example, we might have a PFN-mapped pte in 371 * a region that doesn't allow it. 372 * 373 * The calling function must still handle the error. 374 */ 375 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr) 376 { 377 printk(KERN_ERR "Bad pte = %08llx, process = %s, " 378 "vm_flags = %lx, vaddr = %lx\n", 379 (long long)pte_val(pte), 380 (vma->vm_mm == current->mm ? current->comm : "???"), 381 vma->vm_flags, vaddr); 382 dump_stack(); 383 } 384 385 static inline int is_cow_mapping(unsigned int flags) 386 { 387 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 388 } 389 390 /* 391 * vm_normal_page -- This function gets the "struct page" associated with a pte. 392 * 393 * "Special" mappings do not wish to be associated with a "struct page" (either 394 * it doesn't exist, or it exists but they don't want to touch it). In this 395 * case, NULL is returned here. "Normal" mappings do have a struct page. 396 * 397 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 398 * pte bit, in which case this function is trivial. Secondly, an architecture 399 * may not have a spare pte bit, which requires a more complicated scheme, 400 * described below. 401 * 402 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 403 * special mapping (even if there are underlying and valid "struct pages"). 404 * COWed pages of a VM_PFNMAP are always normal. 405 * 406 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 407 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 408 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 409 * mapping will always honor the rule 410 * 411 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 412 * 413 * And for normal mappings this is false. 414 * 415 * This restricts such mappings to be a linear translation from virtual address 416 * to pfn. To get around this restriction, we allow arbitrary mappings so long 417 * as the vma is not a COW mapping; in that case, we know that all ptes are 418 * special (because none can have been COWed). 419 * 420 * 421 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 422 * 423 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 424 * page" backing, however the difference is that _all_ pages with a struct 425 * page (that is, those where pfn_valid is true) are refcounted and considered 426 * normal pages by the VM. The disadvantage is that pages are refcounted 427 * (which can be slower and simply not an option for some PFNMAP users). The 428 * advantage is that we don't have to follow the strict linearity rule of 429 * PFNMAP mappings in order to support COWable mappings. 430 * 431 */ 432 #ifdef __HAVE_ARCH_PTE_SPECIAL 433 # define HAVE_PTE_SPECIAL 1 434 #else 435 # define HAVE_PTE_SPECIAL 0 436 #endif 437 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 438 pte_t pte) 439 { 440 unsigned long pfn; 441 442 if (HAVE_PTE_SPECIAL) { 443 if (likely(!pte_special(pte))) { 444 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 445 return pte_page(pte); 446 } 447 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 448 return NULL; 449 } 450 451 /* !HAVE_PTE_SPECIAL case follows: */ 452 453 pfn = pte_pfn(pte); 454 455 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 456 if (vma->vm_flags & VM_MIXEDMAP) { 457 if (!pfn_valid(pfn)) 458 return NULL; 459 goto out; 460 } else { 461 unsigned long off; 462 off = (addr - vma->vm_start) >> PAGE_SHIFT; 463 if (pfn == vma->vm_pgoff + off) 464 return NULL; 465 if (!is_cow_mapping(vma->vm_flags)) 466 return NULL; 467 } 468 } 469 470 VM_BUG_ON(!pfn_valid(pfn)); 471 472 /* 473 * NOTE! We still have PageReserved() pages in the page tables. 474 * 475 * eg. VDSO mappings can cause them to exist. 476 */ 477 out: 478 return pfn_to_page(pfn); 479 } 480 481 /* 482 * copy one vm_area from one task to the other. Assumes the page tables 483 * already present in the new task to be cleared in the whole range 484 * covered by this vma. 485 */ 486 487 static inline void 488 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 489 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 490 unsigned long addr, int *rss) 491 { 492 unsigned long vm_flags = vma->vm_flags; 493 pte_t pte = *src_pte; 494 struct page *page; 495 496 /* pte contains position in swap or file, so copy. */ 497 if (unlikely(!pte_present(pte))) { 498 if (!pte_file(pte)) { 499 swp_entry_t entry = pte_to_swp_entry(pte); 500 501 swap_duplicate(entry); 502 /* make sure dst_mm is on swapoff's mmlist. */ 503 if (unlikely(list_empty(&dst_mm->mmlist))) { 504 spin_lock(&mmlist_lock); 505 if (list_empty(&dst_mm->mmlist)) 506 list_add(&dst_mm->mmlist, 507 &src_mm->mmlist); 508 spin_unlock(&mmlist_lock); 509 } 510 if (is_write_migration_entry(entry) && 511 is_cow_mapping(vm_flags)) { 512 /* 513 * COW mappings require pages in both parent 514 * and child to be set to read. 515 */ 516 make_migration_entry_read(&entry); 517 pte = swp_entry_to_pte(entry); 518 set_pte_at(src_mm, addr, src_pte, pte); 519 } 520 } 521 goto out_set_pte; 522 } 523 524 /* 525 * If it's a COW mapping, write protect it both 526 * in the parent and the child 527 */ 528 if (is_cow_mapping(vm_flags)) { 529 ptep_set_wrprotect(src_mm, addr, src_pte); 530 pte = pte_wrprotect(pte); 531 } 532 533 /* 534 * If it's a shared mapping, mark it clean in 535 * the child 536 */ 537 if (vm_flags & VM_SHARED) 538 pte = pte_mkclean(pte); 539 pte = pte_mkold(pte); 540 541 page = vm_normal_page(vma, addr, pte); 542 if (page) { 543 get_page(page); 544 page_dup_rmap(page, vma, addr); 545 rss[!!PageAnon(page)]++; 546 } 547 548 out_set_pte: 549 set_pte_at(dst_mm, addr, dst_pte, pte); 550 } 551 552 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 553 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 554 unsigned long addr, unsigned long end) 555 { 556 pte_t *src_pte, *dst_pte; 557 spinlock_t *src_ptl, *dst_ptl; 558 int progress = 0; 559 int rss[2]; 560 561 again: 562 rss[1] = rss[0] = 0; 563 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 564 if (!dst_pte) 565 return -ENOMEM; 566 src_pte = pte_offset_map_nested(src_pmd, addr); 567 src_ptl = pte_lockptr(src_mm, src_pmd); 568 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 569 arch_enter_lazy_mmu_mode(); 570 571 do { 572 /* 573 * We are holding two locks at this point - either of them 574 * could generate latencies in another task on another CPU. 575 */ 576 if (progress >= 32) { 577 progress = 0; 578 if (need_resched() || 579 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 580 break; 581 } 582 if (pte_none(*src_pte)) { 583 progress++; 584 continue; 585 } 586 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 587 progress += 8; 588 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 589 590 arch_leave_lazy_mmu_mode(); 591 spin_unlock(src_ptl); 592 pte_unmap_nested(src_pte - 1); 593 add_mm_rss(dst_mm, rss[0], rss[1]); 594 pte_unmap_unlock(dst_pte - 1, dst_ptl); 595 cond_resched(); 596 if (addr != end) 597 goto again; 598 return 0; 599 } 600 601 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 602 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 603 unsigned long addr, unsigned long end) 604 { 605 pmd_t *src_pmd, *dst_pmd; 606 unsigned long next; 607 608 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 609 if (!dst_pmd) 610 return -ENOMEM; 611 src_pmd = pmd_offset(src_pud, addr); 612 do { 613 next = pmd_addr_end(addr, end); 614 if (pmd_none_or_clear_bad(src_pmd)) 615 continue; 616 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 617 vma, addr, next)) 618 return -ENOMEM; 619 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 620 return 0; 621 } 622 623 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 624 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 625 unsigned long addr, unsigned long end) 626 { 627 pud_t *src_pud, *dst_pud; 628 unsigned long next; 629 630 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 631 if (!dst_pud) 632 return -ENOMEM; 633 src_pud = pud_offset(src_pgd, addr); 634 do { 635 next = pud_addr_end(addr, end); 636 if (pud_none_or_clear_bad(src_pud)) 637 continue; 638 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 639 vma, addr, next)) 640 return -ENOMEM; 641 } while (dst_pud++, src_pud++, addr = next, addr != end); 642 return 0; 643 } 644 645 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 646 struct vm_area_struct *vma) 647 { 648 pgd_t *src_pgd, *dst_pgd; 649 unsigned long next; 650 unsigned long addr = vma->vm_start; 651 unsigned long end = vma->vm_end; 652 653 /* 654 * Don't copy ptes where a page fault will fill them correctly. 655 * Fork becomes much lighter when there are big shared or private 656 * readonly mappings. The tradeoff is that copy_page_range is more 657 * efficient than faulting. 658 */ 659 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 660 if (!vma->anon_vma) 661 return 0; 662 } 663 664 if (is_vm_hugetlb_page(vma)) 665 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 666 667 dst_pgd = pgd_offset(dst_mm, addr); 668 src_pgd = pgd_offset(src_mm, addr); 669 do { 670 next = pgd_addr_end(addr, end); 671 if (pgd_none_or_clear_bad(src_pgd)) 672 continue; 673 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 674 vma, addr, next)) 675 return -ENOMEM; 676 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 677 return 0; 678 } 679 680 static unsigned long zap_pte_range(struct mmu_gather *tlb, 681 struct vm_area_struct *vma, pmd_t *pmd, 682 unsigned long addr, unsigned long end, 683 long *zap_work, struct zap_details *details) 684 { 685 struct mm_struct *mm = tlb->mm; 686 pte_t *pte; 687 spinlock_t *ptl; 688 int file_rss = 0; 689 int anon_rss = 0; 690 691 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 692 arch_enter_lazy_mmu_mode(); 693 do { 694 pte_t ptent = *pte; 695 if (pte_none(ptent)) { 696 (*zap_work)--; 697 continue; 698 } 699 700 (*zap_work) -= PAGE_SIZE; 701 702 if (pte_present(ptent)) { 703 struct page *page; 704 705 page = vm_normal_page(vma, addr, ptent); 706 if (unlikely(details) && page) { 707 /* 708 * unmap_shared_mapping_pages() wants to 709 * invalidate cache without truncating: 710 * unmap shared but keep private pages. 711 */ 712 if (details->check_mapping && 713 details->check_mapping != page->mapping) 714 continue; 715 /* 716 * Each page->index must be checked when 717 * invalidating or truncating nonlinear. 718 */ 719 if (details->nonlinear_vma && 720 (page->index < details->first_index || 721 page->index > details->last_index)) 722 continue; 723 } 724 ptent = ptep_get_and_clear_full(mm, addr, pte, 725 tlb->fullmm); 726 tlb_remove_tlb_entry(tlb, pte, addr); 727 if (unlikely(!page)) 728 continue; 729 if (unlikely(details) && details->nonlinear_vma 730 && linear_page_index(details->nonlinear_vma, 731 addr) != page->index) 732 set_pte_at(mm, addr, pte, 733 pgoff_to_pte(page->index)); 734 if (PageAnon(page)) 735 anon_rss--; 736 else { 737 if (pte_dirty(ptent)) 738 set_page_dirty(page); 739 if (pte_young(ptent)) 740 SetPageReferenced(page); 741 file_rss--; 742 } 743 page_remove_rmap(page, vma); 744 tlb_remove_page(tlb, page); 745 continue; 746 } 747 /* 748 * If details->check_mapping, we leave swap entries; 749 * if details->nonlinear_vma, we leave file entries. 750 */ 751 if (unlikely(details)) 752 continue; 753 if (!pte_file(ptent)) 754 free_swap_and_cache(pte_to_swp_entry(ptent)); 755 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 756 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 757 758 add_mm_rss(mm, file_rss, anon_rss); 759 arch_leave_lazy_mmu_mode(); 760 pte_unmap_unlock(pte - 1, ptl); 761 762 return addr; 763 } 764 765 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 766 struct vm_area_struct *vma, pud_t *pud, 767 unsigned long addr, unsigned long end, 768 long *zap_work, struct zap_details *details) 769 { 770 pmd_t *pmd; 771 unsigned long next; 772 773 pmd = pmd_offset(pud, addr); 774 do { 775 next = pmd_addr_end(addr, end); 776 if (pmd_none_or_clear_bad(pmd)) { 777 (*zap_work)--; 778 continue; 779 } 780 next = zap_pte_range(tlb, vma, pmd, addr, next, 781 zap_work, details); 782 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 783 784 return addr; 785 } 786 787 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 788 struct vm_area_struct *vma, pgd_t *pgd, 789 unsigned long addr, unsigned long end, 790 long *zap_work, struct zap_details *details) 791 { 792 pud_t *pud; 793 unsigned long next; 794 795 pud = pud_offset(pgd, addr); 796 do { 797 next = pud_addr_end(addr, end); 798 if (pud_none_or_clear_bad(pud)) { 799 (*zap_work)--; 800 continue; 801 } 802 next = zap_pmd_range(tlb, vma, pud, addr, next, 803 zap_work, details); 804 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 805 806 return addr; 807 } 808 809 static unsigned long unmap_page_range(struct mmu_gather *tlb, 810 struct vm_area_struct *vma, 811 unsigned long addr, unsigned long end, 812 long *zap_work, struct zap_details *details) 813 { 814 pgd_t *pgd; 815 unsigned long next; 816 817 if (details && !details->check_mapping && !details->nonlinear_vma) 818 details = NULL; 819 820 BUG_ON(addr >= end); 821 tlb_start_vma(tlb, vma); 822 pgd = pgd_offset(vma->vm_mm, addr); 823 do { 824 next = pgd_addr_end(addr, end); 825 if (pgd_none_or_clear_bad(pgd)) { 826 (*zap_work)--; 827 continue; 828 } 829 next = zap_pud_range(tlb, vma, pgd, addr, next, 830 zap_work, details); 831 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 832 tlb_end_vma(tlb, vma); 833 834 return addr; 835 } 836 837 #ifdef CONFIG_PREEMPT 838 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 839 #else 840 /* No preempt: go for improved straight-line efficiency */ 841 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 842 #endif 843 844 /** 845 * unmap_vmas - unmap a range of memory covered by a list of vma's 846 * @tlbp: address of the caller's struct mmu_gather 847 * @vma: the starting vma 848 * @start_addr: virtual address at which to start unmapping 849 * @end_addr: virtual address at which to end unmapping 850 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 851 * @details: details of nonlinear truncation or shared cache invalidation 852 * 853 * Returns the end address of the unmapping (restart addr if interrupted). 854 * 855 * Unmap all pages in the vma list. 856 * 857 * We aim to not hold locks for too long (for scheduling latency reasons). 858 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 859 * return the ending mmu_gather to the caller. 860 * 861 * Only addresses between `start' and `end' will be unmapped. 862 * 863 * The VMA list must be sorted in ascending virtual address order. 864 * 865 * unmap_vmas() assumes that the caller will flush the whole unmapped address 866 * range after unmap_vmas() returns. So the only responsibility here is to 867 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 868 * drops the lock and schedules. 869 */ 870 unsigned long unmap_vmas(struct mmu_gather **tlbp, 871 struct vm_area_struct *vma, unsigned long start_addr, 872 unsigned long end_addr, unsigned long *nr_accounted, 873 struct zap_details *details) 874 { 875 long zap_work = ZAP_BLOCK_SIZE; 876 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 877 int tlb_start_valid = 0; 878 unsigned long start = start_addr; 879 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 880 int fullmm = (*tlbp)->fullmm; 881 882 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 883 unsigned long end; 884 885 start = max(vma->vm_start, start_addr); 886 if (start >= vma->vm_end) 887 continue; 888 end = min(vma->vm_end, end_addr); 889 if (end <= vma->vm_start) 890 continue; 891 892 if (vma->vm_flags & VM_ACCOUNT) 893 *nr_accounted += (end - start) >> PAGE_SHIFT; 894 895 while (start != end) { 896 if (!tlb_start_valid) { 897 tlb_start = start; 898 tlb_start_valid = 1; 899 } 900 901 if (unlikely(is_vm_hugetlb_page(vma))) { 902 unmap_hugepage_range(vma, start, end); 903 zap_work -= (end - start) / 904 (HPAGE_SIZE / PAGE_SIZE); 905 start = end; 906 } else 907 start = unmap_page_range(*tlbp, vma, 908 start, end, &zap_work, details); 909 910 if (zap_work > 0) { 911 BUG_ON(start != end); 912 break; 913 } 914 915 tlb_finish_mmu(*tlbp, tlb_start, start); 916 917 if (need_resched() || 918 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 919 if (i_mmap_lock) { 920 *tlbp = NULL; 921 goto out; 922 } 923 cond_resched(); 924 } 925 926 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 927 tlb_start_valid = 0; 928 zap_work = ZAP_BLOCK_SIZE; 929 } 930 } 931 out: 932 return start; /* which is now the end (or restart) address */ 933 } 934 935 /** 936 * zap_page_range - remove user pages in a given range 937 * @vma: vm_area_struct holding the applicable pages 938 * @address: starting address of pages to zap 939 * @size: number of bytes to zap 940 * @details: details of nonlinear truncation or shared cache invalidation 941 */ 942 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 943 unsigned long size, struct zap_details *details) 944 { 945 struct mm_struct *mm = vma->vm_mm; 946 struct mmu_gather *tlb; 947 unsigned long end = address + size; 948 unsigned long nr_accounted = 0; 949 950 lru_add_drain(); 951 tlb = tlb_gather_mmu(mm, 0); 952 update_hiwater_rss(mm); 953 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 954 if (tlb) 955 tlb_finish_mmu(tlb, address, end); 956 return end; 957 } 958 959 /* 960 * Do a quick page-table lookup for a single page. 961 */ 962 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 963 unsigned int flags) 964 { 965 pgd_t *pgd; 966 pud_t *pud; 967 pmd_t *pmd; 968 pte_t *ptep, pte; 969 spinlock_t *ptl; 970 struct page *page; 971 struct mm_struct *mm = vma->vm_mm; 972 973 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 974 if (!IS_ERR(page)) { 975 BUG_ON(flags & FOLL_GET); 976 goto out; 977 } 978 979 page = NULL; 980 pgd = pgd_offset(mm, address); 981 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 982 goto no_page_table; 983 984 pud = pud_offset(pgd, address); 985 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 986 goto no_page_table; 987 988 pmd = pmd_offset(pud, address); 989 if (pmd_none(*pmd)) 990 goto no_page_table; 991 992 if (pmd_huge(*pmd)) { 993 BUG_ON(flags & FOLL_GET); 994 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 995 goto out; 996 } 997 998 if (unlikely(pmd_bad(*pmd))) 999 goto no_page_table; 1000 1001 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1002 1003 pte = *ptep; 1004 if (!pte_present(pte)) 1005 goto no_page; 1006 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1007 goto unlock; 1008 page = vm_normal_page(vma, address, pte); 1009 if (unlikely(!page)) 1010 goto bad_page; 1011 1012 if (flags & FOLL_GET) 1013 get_page(page); 1014 if (flags & FOLL_TOUCH) { 1015 if ((flags & FOLL_WRITE) && 1016 !pte_dirty(pte) && !PageDirty(page)) 1017 set_page_dirty(page); 1018 mark_page_accessed(page); 1019 } 1020 unlock: 1021 pte_unmap_unlock(ptep, ptl); 1022 out: 1023 return page; 1024 1025 bad_page: 1026 pte_unmap_unlock(ptep, ptl); 1027 return ERR_PTR(-EFAULT); 1028 1029 no_page: 1030 pte_unmap_unlock(ptep, ptl); 1031 if (!pte_none(pte)) 1032 return page; 1033 /* Fall through to ZERO_PAGE handling */ 1034 no_page_table: 1035 /* 1036 * When core dumping an enormous anonymous area that nobody 1037 * has touched so far, we don't want to allocate page tables. 1038 */ 1039 if (flags & FOLL_ANON) { 1040 page = ZERO_PAGE(0); 1041 if (flags & FOLL_GET) 1042 get_page(page); 1043 BUG_ON(flags & FOLL_WRITE); 1044 } 1045 return page; 1046 } 1047 1048 /* Can we do the FOLL_ANON optimization? */ 1049 static inline int use_zero_page(struct vm_area_struct *vma) 1050 { 1051 /* 1052 * We don't want to optimize FOLL_ANON for make_pages_present() 1053 * when it tries to page in a VM_LOCKED region. As to VM_SHARED, 1054 * we want to get the page from the page tables to make sure 1055 * that we serialize and update with any other user of that 1056 * mapping. 1057 */ 1058 if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) 1059 return 0; 1060 /* 1061 * And if we have a fault routine, it's not an anonymous region. 1062 */ 1063 return !vma->vm_ops || !vma->vm_ops->fault; 1064 } 1065 1066 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1067 unsigned long start, int len, int write, int force, 1068 struct page **pages, struct vm_area_struct **vmas) 1069 { 1070 int i; 1071 unsigned int vm_flags; 1072 1073 if (len <= 0) 1074 return 0; 1075 /* 1076 * Require read or write permissions. 1077 * If 'force' is set, we only require the "MAY" flags. 1078 */ 1079 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1080 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1081 i = 0; 1082 1083 do { 1084 struct vm_area_struct *vma; 1085 unsigned int foll_flags; 1086 1087 vma = find_extend_vma(mm, start); 1088 if (!vma && in_gate_area(tsk, start)) { 1089 unsigned long pg = start & PAGE_MASK; 1090 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1091 pgd_t *pgd; 1092 pud_t *pud; 1093 pmd_t *pmd; 1094 pte_t *pte; 1095 if (write) /* user gate pages are read-only */ 1096 return i ? : -EFAULT; 1097 if (pg > TASK_SIZE) 1098 pgd = pgd_offset_k(pg); 1099 else 1100 pgd = pgd_offset_gate(mm, pg); 1101 BUG_ON(pgd_none(*pgd)); 1102 pud = pud_offset(pgd, pg); 1103 BUG_ON(pud_none(*pud)); 1104 pmd = pmd_offset(pud, pg); 1105 if (pmd_none(*pmd)) 1106 return i ? : -EFAULT; 1107 pte = pte_offset_map(pmd, pg); 1108 if (pte_none(*pte)) { 1109 pte_unmap(pte); 1110 return i ? : -EFAULT; 1111 } 1112 if (pages) { 1113 struct page *page = vm_normal_page(gate_vma, start, *pte); 1114 pages[i] = page; 1115 if (page) 1116 get_page(page); 1117 } 1118 pte_unmap(pte); 1119 if (vmas) 1120 vmas[i] = gate_vma; 1121 i++; 1122 start += PAGE_SIZE; 1123 len--; 1124 continue; 1125 } 1126 1127 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP)) 1128 || !(vm_flags & vma->vm_flags)) 1129 return i ? : -EFAULT; 1130 1131 if (is_vm_hugetlb_page(vma)) { 1132 i = follow_hugetlb_page(mm, vma, pages, vmas, 1133 &start, &len, i, write); 1134 continue; 1135 } 1136 1137 foll_flags = FOLL_TOUCH; 1138 if (pages) 1139 foll_flags |= FOLL_GET; 1140 if (!write && use_zero_page(vma)) 1141 foll_flags |= FOLL_ANON; 1142 1143 do { 1144 struct page *page; 1145 1146 /* 1147 * If tsk is ooming, cut off its access to large memory 1148 * allocations. It has a pending SIGKILL, but it can't 1149 * be processed until returning to user space. 1150 */ 1151 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) 1152 return i ? i : -ENOMEM; 1153 1154 if (write) 1155 foll_flags |= FOLL_WRITE; 1156 1157 cond_resched(); 1158 while (!(page = follow_page(vma, start, foll_flags))) { 1159 int ret; 1160 ret = handle_mm_fault(mm, vma, start, 1161 foll_flags & FOLL_WRITE); 1162 if (ret & VM_FAULT_ERROR) { 1163 if (ret & VM_FAULT_OOM) 1164 return i ? i : -ENOMEM; 1165 else if (ret & VM_FAULT_SIGBUS) 1166 return i ? i : -EFAULT; 1167 BUG(); 1168 } 1169 if (ret & VM_FAULT_MAJOR) 1170 tsk->maj_flt++; 1171 else 1172 tsk->min_flt++; 1173 1174 /* 1175 * The VM_FAULT_WRITE bit tells us that 1176 * do_wp_page has broken COW when necessary, 1177 * even if maybe_mkwrite decided not to set 1178 * pte_write. We can thus safely do subsequent 1179 * page lookups as if they were reads. 1180 */ 1181 if (ret & VM_FAULT_WRITE) 1182 foll_flags &= ~FOLL_WRITE; 1183 1184 cond_resched(); 1185 } 1186 if (IS_ERR(page)) 1187 return i ? i : PTR_ERR(page); 1188 if (pages) { 1189 pages[i] = page; 1190 1191 flush_anon_page(vma, page, start); 1192 flush_dcache_page(page); 1193 } 1194 if (vmas) 1195 vmas[i] = vma; 1196 i++; 1197 start += PAGE_SIZE; 1198 len--; 1199 } while (len && start < vma->vm_end); 1200 } while (len); 1201 return i; 1202 } 1203 EXPORT_SYMBOL(get_user_pages); 1204 1205 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1206 spinlock_t **ptl) 1207 { 1208 pgd_t * pgd = pgd_offset(mm, addr); 1209 pud_t * pud = pud_alloc(mm, pgd, addr); 1210 if (pud) { 1211 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1212 if (pmd) 1213 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1214 } 1215 return NULL; 1216 } 1217 1218 /* 1219 * This is the old fallback for page remapping. 1220 * 1221 * For historical reasons, it only allows reserved pages. Only 1222 * old drivers should use this, and they needed to mark their 1223 * pages reserved for the old functions anyway. 1224 */ 1225 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1226 struct page *page, pgprot_t prot) 1227 { 1228 struct mm_struct *mm = vma->vm_mm; 1229 int retval; 1230 pte_t *pte; 1231 spinlock_t *ptl; 1232 1233 retval = mem_cgroup_charge(page, mm, GFP_KERNEL); 1234 if (retval) 1235 goto out; 1236 1237 retval = -EINVAL; 1238 if (PageAnon(page)) 1239 goto out_uncharge; 1240 retval = -ENOMEM; 1241 flush_dcache_page(page); 1242 pte = get_locked_pte(mm, addr, &ptl); 1243 if (!pte) 1244 goto out_uncharge; 1245 retval = -EBUSY; 1246 if (!pte_none(*pte)) 1247 goto out_unlock; 1248 1249 /* Ok, finally just insert the thing.. */ 1250 get_page(page); 1251 inc_mm_counter(mm, file_rss); 1252 page_add_file_rmap(page); 1253 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1254 1255 retval = 0; 1256 pte_unmap_unlock(pte, ptl); 1257 return retval; 1258 out_unlock: 1259 pte_unmap_unlock(pte, ptl); 1260 out_uncharge: 1261 mem_cgroup_uncharge_page(page); 1262 out: 1263 return retval; 1264 } 1265 1266 /** 1267 * vm_insert_page - insert single page into user vma 1268 * @vma: user vma to map to 1269 * @addr: target user address of this page 1270 * @page: source kernel page 1271 * 1272 * This allows drivers to insert individual pages they've allocated 1273 * into a user vma. 1274 * 1275 * The page has to be a nice clean _individual_ kernel allocation. 1276 * If you allocate a compound page, you need to have marked it as 1277 * such (__GFP_COMP), or manually just split the page up yourself 1278 * (see split_page()). 1279 * 1280 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1281 * took an arbitrary page protection parameter. This doesn't allow 1282 * that. Your vma protection will have to be set up correctly, which 1283 * means that if you want a shared writable mapping, you'd better 1284 * ask for a shared writable mapping! 1285 * 1286 * The page does not need to be reserved. 1287 */ 1288 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1289 struct page *page) 1290 { 1291 if (addr < vma->vm_start || addr >= vma->vm_end) 1292 return -EFAULT; 1293 if (!page_count(page)) 1294 return -EINVAL; 1295 vma->vm_flags |= VM_INSERTPAGE; 1296 return insert_page(vma, addr, page, vma->vm_page_prot); 1297 } 1298 EXPORT_SYMBOL(vm_insert_page); 1299 1300 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1301 unsigned long pfn, pgprot_t prot) 1302 { 1303 struct mm_struct *mm = vma->vm_mm; 1304 int retval; 1305 pte_t *pte, entry; 1306 spinlock_t *ptl; 1307 1308 retval = -ENOMEM; 1309 pte = get_locked_pte(mm, addr, &ptl); 1310 if (!pte) 1311 goto out; 1312 retval = -EBUSY; 1313 if (!pte_none(*pte)) 1314 goto out_unlock; 1315 1316 /* Ok, finally just insert the thing.. */ 1317 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1318 set_pte_at(mm, addr, pte, entry); 1319 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ 1320 1321 retval = 0; 1322 out_unlock: 1323 pte_unmap_unlock(pte, ptl); 1324 out: 1325 return retval; 1326 } 1327 1328 /** 1329 * vm_insert_pfn - insert single pfn into user vma 1330 * @vma: user vma to map to 1331 * @addr: target user address of this page 1332 * @pfn: source kernel pfn 1333 * 1334 * Similar to vm_inert_page, this allows drivers to insert individual pages 1335 * they've allocated into a user vma. Same comments apply. 1336 * 1337 * This function should only be called from a vm_ops->fault handler, and 1338 * in that case the handler should return NULL. 1339 * 1340 * vma cannot be a COW mapping. 1341 * 1342 * As this is called only for pages that do not currently exist, we 1343 * do not need to flush old virtual caches or the TLB. 1344 */ 1345 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1346 unsigned long pfn) 1347 { 1348 /* 1349 * Technically, architectures with pte_special can avoid all these 1350 * restrictions (same for remap_pfn_range). However we would like 1351 * consistency in testing and feature parity among all, so we should 1352 * try to keep these invariants in place for everybody. 1353 */ 1354 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1355 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1356 (VM_PFNMAP|VM_MIXEDMAP)); 1357 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1358 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1359 1360 if (addr < vma->vm_start || addr >= vma->vm_end) 1361 return -EFAULT; 1362 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1363 } 1364 EXPORT_SYMBOL(vm_insert_pfn); 1365 1366 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1367 unsigned long pfn) 1368 { 1369 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1370 1371 if (addr < vma->vm_start || addr >= vma->vm_end) 1372 return -EFAULT; 1373 1374 /* 1375 * If we don't have pte special, then we have to use the pfn_valid() 1376 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1377 * refcount the page if pfn_valid is true (hence insert_page rather 1378 * than insert_pfn). 1379 */ 1380 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1381 struct page *page; 1382 1383 page = pfn_to_page(pfn); 1384 return insert_page(vma, addr, page, vma->vm_page_prot); 1385 } 1386 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1387 } 1388 EXPORT_SYMBOL(vm_insert_mixed); 1389 1390 /* 1391 * maps a range of physical memory into the requested pages. the old 1392 * mappings are removed. any references to nonexistent pages results 1393 * in null mappings (currently treated as "copy-on-access") 1394 */ 1395 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1396 unsigned long addr, unsigned long end, 1397 unsigned long pfn, pgprot_t prot) 1398 { 1399 pte_t *pte; 1400 spinlock_t *ptl; 1401 1402 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1403 if (!pte) 1404 return -ENOMEM; 1405 arch_enter_lazy_mmu_mode(); 1406 do { 1407 BUG_ON(!pte_none(*pte)); 1408 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1409 pfn++; 1410 } while (pte++, addr += PAGE_SIZE, addr != end); 1411 arch_leave_lazy_mmu_mode(); 1412 pte_unmap_unlock(pte - 1, ptl); 1413 return 0; 1414 } 1415 1416 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1417 unsigned long addr, unsigned long end, 1418 unsigned long pfn, pgprot_t prot) 1419 { 1420 pmd_t *pmd; 1421 unsigned long next; 1422 1423 pfn -= addr >> PAGE_SHIFT; 1424 pmd = pmd_alloc(mm, pud, addr); 1425 if (!pmd) 1426 return -ENOMEM; 1427 do { 1428 next = pmd_addr_end(addr, end); 1429 if (remap_pte_range(mm, pmd, addr, next, 1430 pfn + (addr >> PAGE_SHIFT), prot)) 1431 return -ENOMEM; 1432 } while (pmd++, addr = next, addr != end); 1433 return 0; 1434 } 1435 1436 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1437 unsigned long addr, unsigned long end, 1438 unsigned long pfn, pgprot_t prot) 1439 { 1440 pud_t *pud; 1441 unsigned long next; 1442 1443 pfn -= addr >> PAGE_SHIFT; 1444 pud = pud_alloc(mm, pgd, addr); 1445 if (!pud) 1446 return -ENOMEM; 1447 do { 1448 next = pud_addr_end(addr, end); 1449 if (remap_pmd_range(mm, pud, addr, next, 1450 pfn + (addr >> PAGE_SHIFT), prot)) 1451 return -ENOMEM; 1452 } while (pud++, addr = next, addr != end); 1453 return 0; 1454 } 1455 1456 /** 1457 * remap_pfn_range - remap kernel memory to userspace 1458 * @vma: user vma to map to 1459 * @addr: target user address to start at 1460 * @pfn: physical address of kernel memory 1461 * @size: size of map area 1462 * @prot: page protection flags for this mapping 1463 * 1464 * Note: this is only safe if the mm semaphore is held when called. 1465 */ 1466 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1467 unsigned long pfn, unsigned long size, pgprot_t prot) 1468 { 1469 pgd_t *pgd; 1470 unsigned long next; 1471 unsigned long end = addr + PAGE_ALIGN(size); 1472 struct mm_struct *mm = vma->vm_mm; 1473 int err; 1474 1475 /* 1476 * Physically remapped pages are special. Tell the 1477 * rest of the world about it: 1478 * VM_IO tells people not to look at these pages 1479 * (accesses can have side effects). 1480 * VM_RESERVED is specified all over the place, because 1481 * in 2.4 it kept swapout's vma scan off this vma; but 1482 * in 2.6 the LRU scan won't even find its pages, so this 1483 * flag means no more than count its pages in reserved_vm, 1484 * and omit it from core dump, even when VM_IO turned off. 1485 * VM_PFNMAP tells the core MM that the base pages are just 1486 * raw PFN mappings, and do not have a "struct page" associated 1487 * with them. 1488 * 1489 * There's a horrible special case to handle copy-on-write 1490 * behaviour that some programs depend on. We mark the "original" 1491 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1492 */ 1493 if (is_cow_mapping(vma->vm_flags)) { 1494 if (addr != vma->vm_start || end != vma->vm_end) 1495 return -EINVAL; 1496 vma->vm_pgoff = pfn; 1497 } 1498 1499 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1500 1501 BUG_ON(addr >= end); 1502 pfn -= addr >> PAGE_SHIFT; 1503 pgd = pgd_offset(mm, addr); 1504 flush_cache_range(vma, addr, end); 1505 do { 1506 next = pgd_addr_end(addr, end); 1507 err = remap_pud_range(mm, pgd, addr, next, 1508 pfn + (addr >> PAGE_SHIFT), prot); 1509 if (err) 1510 break; 1511 } while (pgd++, addr = next, addr != end); 1512 return err; 1513 } 1514 EXPORT_SYMBOL(remap_pfn_range); 1515 1516 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1517 unsigned long addr, unsigned long end, 1518 pte_fn_t fn, void *data) 1519 { 1520 pte_t *pte; 1521 int err; 1522 pgtable_t token; 1523 spinlock_t *uninitialized_var(ptl); 1524 1525 pte = (mm == &init_mm) ? 1526 pte_alloc_kernel(pmd, addr) : 1527 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1528 if (!pte) 1529 return -ENOMEM; 1530 1531 BUG_ON(pmd_huge(*pmd)); 1532 1533 token = pmd_pgtable(*pmd); 1534 1535 do { 1536 err = fn(pte, token, addr, data); 1537 if (err) 1538 break; 1539 } while (pte++, addr += PAGE_SIZE, addr != end); 1540 1541 if (mm != &init_mm) 1542 pte_unmap_unlock(pte-1, ptl); 1543 return err; 1544 } 1545 1546 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1547 unsigned long addr, unsigned long end, 1548 pte_fn_t fn, void *data) 1549 { 1550 pmd_t *pmd; 1551 unsigned long next; 1552 int err; 1553 1554 pmd = pmd_alloc(mm, pud, addr); 1555 if (!pmd) 1556 return -ENOMEM; 1557 do { 1558 next = pmd_addr_end(addr, end); 1559 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1560 if (err) 1561 break; 1562 } while (pmd++, addr = next, addr != end); 1563 return err; 1564 } 1565 1566 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1567 unsigned long addr, unsigned long end, 1568 pte_fn_t fn, void *data) 1569 { 1570 pud_t *pud; 1571 unsigned long next; 1572 int err; 1573 1574 pud = pud_alloc(mm, pgd, addr); 1575 if (!pud) 1576 return -ENOMEM; 1577 do { 1578 next = pud_addr_end(addr, end); 1579 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1580 if (err) 1581 break; 1582 } while (pud++, addr = next, addr != end); 1583 return err; 1584 } 1585 1586 /* 1587 * Scan a region of virtual memory, filling in page tables as necessary 1588 * and calling a provided function on each leaf page table. 1589 */ 1590 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1591 unsigned long size, pte_fn_t fn, void *data) 1592 { 1593 pgd_t *pgd; 1594 unsigned long next; 1595 unsigned long end = addr + size; 1596 int err; 1597 1598 BUG_ON(addr >= end); 1599 pgd = pgd_offset(mm, addr); 1600 do { 1601 next = pgd_addr_end(addr, end); 1602 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1603 if (err) 1604 break; 1605 } while (pgd++, addr = next, addr != end); 1606 return err; 1607 } 1608 EXPORT_SYMBOL_GPL(apply_to_page_range); 1609 1610 /* 1611 * handle_pte_fault chooses page fault handler according to an entry 1612 * which was read non-atomically. Before making any commitment, on 1613 * those architectures or configurations (e.g. i386 with PAE) which 1614 * might give a mix of unmatched parts, do_swap_page and do_file_page 1615 * must check under lock before unmapping the pte and proceeding 1616 * (but do_wp_page is only called after already making such a check; 1617 * and do_anonymous_page and do_no_page can safely check later on). 1618 */ 1619 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1620 pte_t *page_table, pte_t orig_pte) 1621 { 1622 int same = 1; 1623 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1624 if (sizeof(pte_t) > sizeof(unsigned long)) { 1625 spinlock_t *ptl = pte_lockptr(mm, pmd); 1626 spin_lock(ptl); 1627 same = pte_same(*page_table, orig_pte); 1628 spin_unlock(ptl); 1629 } 1630 #endif 1631 pte_unmap(page_table); 1632 return same; 1633 } 1634 1635 /* 1636 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1637 * servicing faults for write access. In the normal case, do always want 1638 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1639 * that do not have writing enabled, when used by access_process_vm. 1640 */ 1641 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1642 { 1643 if (likely(vma->vm_flags & VM_WRITE)) 1644 pte = pte_mkwrite(pte); 1645 return pte; 1646 } 1647 1648 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1649 { 1650 /* 1651 * If the source page was a PFN mapping, we don't have 1652 * a "struct page" for it. We do a best-effort copy by 1653 * just copying from the original user address. If that 1654 * fails, we just zero-fill it. Live with it. 1655 */ 1656 if (unlikely(!src)) { 1657 void *kaddr = kmap_atomic(dst, KM_USER0); 1658 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1659 1660 /* 1661 * This really shouldn't fail, because the page is there 1662 * in the page tables. But it might just be unreadable, 1663 * in which case we just give up and fill the result with 1664 * zeroes. 1665 */ 1666 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1667 memset(kaddr, 0, PAGE_SIZE); 1668 kunmap_atomic(kaddr, KM_USER0); 1669 flush_dcache_page(dst); 1670 } else 1671 copy_user_highpage(dst, src, va, vma); 1672 } 1673 1674 /* 1675 * This routine handles present pages, when users try to write 1676 * to a shared page. It is done by copying the page to a new address 1677 * and decrementing the shared-page counter for the old page. 1678 * 1679 * Note that this routine assumes that the protection checks have been 1680 * done by the caller (the low-level page fault routine in most cases). 1681 * Thus we can safely just mark it writable once we've done any necessary 1682 * COW. 1683 * 1684 * We also mark the page dirty at this point even though the page will 1685 * change only once the write actually happens. This avoids a few races, 1686 * and potentially makes it more efficient. 1687 * 1688 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1689 * but allow concurrent faults), with pte both mapped and locked. 1690 * We return with mmap_sem still held, but pte unmapped and unlocked. 1691 */ 1692 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1693 unsigned long address, pte_t *page_table, pmd_t *pmd, 1694 spinlock_t *ptl, pte_t orig_pte) 1695 { 1696 struct page *old_page, *new_page; 1697 pte_t entry; 1698 int reuse = 0, ret = 0; 1699 int page_mkwrite = 0; 1700 struct page *dirty_page = NULL; 1701 1702 old_page = vm_normal_page(vma, address, orig_pte); 1703 if (!old_page) { 1704 /* 1705 * VM_MIXEDMAP !pfn_valid() case 1706 * 1707 * We should not cow pages in a shared writeable mapping. 1708 * Just mark the pages writable as we can't do any dirty 1709 * accounting on raw pfn maps. 1710 */ 1711 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1712 (VM_WRITE|VM_SHARED)) 1713 goto reuse; 1714 goto gotten; 1715 } 1716 1717 /* 1718 * Take out anonymous pages first, anonymous shared vmas are 1719 * not dirty accountable. 1720 */ 1721 if (PageAnon(old_page)) { 1722 if (!TestSetPageLocked(old_page)) { 1723 reuse = can_share_swap_page(old_page); 1724 unlock_page(old_page); 1725 } 1726 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1727 (VM_WRITE|VM_SHARED))) { 1728 /* 1729 * Only catch write-faults on shared writable pages, 1730 * read-only shared pages can get COWed by 1731 * get_user_pages(.write=1, .force=1). 1732 */ 1733 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 1734 /* 1735 * Notify the address space that the page is about to 1736 * become writable so that it can prohibit this or wait 1737 * for the page to get into an appropriate state. 1738 * 1739 * We do this without the lock held, so that it can 1740 * sleep if it needs to. 1741 */ 1742 page_cache_get(old_page); 1743 pte_unmap_unlock(page_table, ptl); 1744 1745 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) 1746 goto unwritable_page; 1747 1748 /* 1749 * Since we dropped the lock we need to revalidate 1750 * the PTE as someone else may have changed it. If 1751 * they did, we just return, as we can count on the 1752 * MMU to tell us if they didn't also make it writable. 1753 */ 1754 page_table = pte_offset_map_lock(mm, pmd, address, 1755 &ptl); 1756 page_cache_release(old_page); 1757 if (!pte_same(*page_table, orig_pte)) 1758 goto unlock; 1759 1760 page_mkwrite = 1; 1761 } 1762 dirty_page = old_page; 1763 get_page(dirty_page); 1764 reuse = 1; 1765 } 1766 1767 if (reuse) { 1768 reuse: 1769 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1770 entry = pte_mkyoung(orig_pte); 1771 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1772 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 1773 update_mmu_cache(vma, address, entry); 1774 ret |= VM_FAULT_WRITE; 1775 goto unlock; 1776 } 1777 1778 /* 1779 * Ok, we need to copy. Oh, well.. 1780 */ 1781 page_cache_get(old_page); 1782 gotten: 1783 pte_unmap_unlock(page_table, ptl); 1784 1785 if (unlikely(anon_vma_prepare(vma))) 1786 goto oom; 1787 VM_BUG_ON(old_page == ZERO_PAGE(0)); 1788 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1789 if (!new_page) 1790 goto oom; 1791 cow_user_page(new_page, old_page, address, vma); 1792 __SetPageUptodate(new_page); 1793 1794 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 1795 goto oom_free_new; 1796 1797 /* 1798 * Re-check the pte - we dropped the lock 1799 */ 1800 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1801 if (likely(pte_same(*page_table, orig_pte))) { 1802 if (old_page) { 1803 if (!PageAnon(old_page)) { 1804 dec_mm_counter(mm, file_rss); 1805 inc_mm_counter(mm, anon_rss); 1806 } 1807 } else 1808 inc_mm_counter(mm, anon_rss); 1809 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1810 entry = mk_pte(new_page, vma->vm_page_prot); 1811 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1812 /* 1813 * Clear the pte entry and flush it first, before updating the 1814 * pte with the new entry. This will avoid a race condition 1815 * seen in the presence of one thread doing SMC and another 1816 * thread doing COW. 1817 */ 1818 ptep_clear_flush(vma, address, page_table); 1819 set_pte_at(mm, address, page_table, entry); 1820 update_mmu_cache(vma, address, entry); 1821 lru_cache_add_active(new_page); 1822 page_add_new_anon_rmap(new_page, vma, address); 1823 1824 if (old_page) { 1825 /* 1826 * Only after switching the pte to the new page may 1827 * we remove the mapcount here. Otherwise another 1828 * process may come and find the rmap count decremented 1829 * before the pte is switched to the new page, and 1830 * "reuse" the old page writing into it while our pte 1831 * here still points into it and can be read by other 1832 * threads. 1833 * 1834 * The critical issue is to order this 1835 * page_remove_rmap with the ptp_clear_flush above. 1836 * Those stores are ordered by (if nothing else,) 1837 * the barrier present in the atomic_add_negative 1838 * in page_remove_rmap. 1839 * 1840 * Then the TLB flush in ptep_clear_flush ensures that 1841 * no process can access the old page before the 1842 * decremented mapcount is visible. And the old page 1843 * cannot be reused until after the decremented 1844 * mapcount is visible. So transitively, TLBs to 1845 * old page will be flushed before it can be reused. 1846 */ 1847 page_remove_rmap(old_page, vma); 1848 } 1849 1850 /* Free the old page.. */ 1851 new_page = old_page; 1852 ret |= VM_FAULT_WRITE; 1853 } else 1854 mem_cgroup_uncharge_page(new_page); 1855 1856 if (new_page) 1857 page_cache_release(new_page); 1858 if (old_page) 1859 page_cache_release(old_page); 1860 unlock: 1861 pte_unmap_unlock(page_table, ptl); 1862 if (dirty_page) { 1863 if (vma->vm_file) 1864 file_update_time(vma->vm_file); 1865 1866 /* 1867 * Yes, Virginia, this is actually required to prevent a race 1868 * with clear_page_dirty_for_io() from clearing the page dirty 1869 * bit after it clear all dirty ptes, but before a racing 1870 * do_wp_page installs a dirty pte. 1871 * 1872 * do_no_page is protected similarly. 1873 */ 1874 wait_on_page_locked(dirty_page); 1875 set_page_dirty_balance(dirty_page, page_mkwrite); 1876 put_page(dirty_page); 1877 } 1878 return ret; 1879 oom_free_new: 1880 page_cache_release(new_page); 1881 oom: 1882 if (old_page) 1883 page_cache_release(old_page); 1884 return VM_FAULT_OOM; 1885 1886 unwritable_page: 1887 page_cache_release(old_page); 1888 return VM_FAULT_SIGBUS; 1889 } 1890 1891 /* 1892 * Helper functions for unmap_mapping_range(). 1893 * 1894 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 1895 * 1896 * We have to restart searching the prio_tree whenever we drop the lock, 1897 * since the iterator is only valid while the lock is held, and anyway 1898 * a later vma might be split and reinserted earlier while lock dropped. 1899 * 1900 * The list of nonlinear vmas could be handled more efficiently, using 1901 * a placeholder, but handle it in the same way until a need is shown. 1902 * It is important to search the prio_tree before nonlinear list: a vma 1903 * may become nonlinear and be shifted from prio_tree to nonlinear list 1904 * while the lock is dropped; but never shifted from list to prio_tree. 1905 * 1906 * In order to make forward progress despite restarting the search, 1907 * vm_truncate_count is used to mark a vma as now dealt with, so we can 1908 * quickly skip it next time around. Since the prio_tree search only 1909 * shows us those vmas affected by unmapping the range in question, we 1910 * can't efficiently keep all vmas in step with mapping->truncate_count: 1911 * so instead reset them all whenever it wraps back to 0 (then go to 1). 1912 * mapping->truncate_count and vma->vm_truncate_count are protected by 1913 * i_mmap_lock. 1914 * 1915 * In order to make forward progress despite repeatedly restarting some 1916 * large vma, note the restart_addr from unmap_vmas when it breaks out: 1917 * and restart from that address when we reach that vma again. It might 1918 * have been split or merged, shrunk or extended, but never shifted: so 1919 * restart_addr remains valid so long as it remains in the vma's range. 1920 * unmap_mapping_range forces truncate_count to leap over page-aligned 1921 * values so we can save vma's restart_addr in its truncate_count field. 1922 */ 1923 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 1924 1925 static void reset_vma_truncate_counts(struct address_space *mapping) 1926 { 1927 struct vm_area_struct *vma; 1928 struct prio_tree_iter iter; 1929 1930 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 1931 vma->vm_truncate_count = 0; 1932 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 1933 vma->vm_truncate_count = 0; 1934 } 1935 1936 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 1937 unsigned long start_addr, unsigned long end_addr, 1938 struct zap_details *details) 1939 { 1940 unsigned long restart_addr; 1941 int need_break; 1942 1943 /* 1944 * files that support invalidating or truncating portions of the 1945 * file from under mmaped areas must have their ->fault function 1946 * return a locked page (and set VM_FAULT_LOCKED in the return). 1947 * This provides synchronisation against concurrent unmapping here. 1948 */ 1949 1950 again: 1951 restart_addr = vma->vm_truncate_count; 1952 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 1953 start_addr = restart_addr; 1954 if (start_addr >= end_addr) { 1955 /* Top of vma has been split off since last time */ 1956 vma->vm_truncate_count = details->truncate_count; 1957 return 0; 1958 } 1959 } 1960 1961 restart_addr = zap_page_range(vma, start_addr, 1962 end_addr - start_addr, details); 1963 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 1964 1965 if (restart_addr >= end_addr) { 1966 /* We have now completed this vma: mark it so */ 1967 vma->vm_truncate_count = details->truncate_count; 1968 if (!need_break) 1969 return 0; 1970 } else { 1971 /* Note restart_addr in vma's truncate_count field */ 1972 vma->vm_truncate_count = restart_addr; 1973 if (!need_break) 1974 goto again; 1975 } 1976 1977 spin_unlock(details->i_mmap_lock); 1978 cond_resched(); 1979 spin_lock(details->i_mmap_lock); 1980 return -EINTR; 1981 } 1982 1983 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 1984 struct zap_details *details) 1985 { 1986 struct vm_area_struct *vma; 1987 struct prio_tree_iter iter; 1988 pgoff_t vba, vea, zba, zea; 1989 1990 restart: 1991 vma_prio_tree_foreach(vma, &iter, root, 1992 details->first_index, details->last_index) { 1993 /* Skip quickly over those we have already dealt with */ 1994 if (vma->vm_truncate_count == details->truncate_count) 1995 continue; 1996 1997 vba = vma->vm_pgoff; 1998 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 1999 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2000 zba = details->first_index; 2001 if (zba < vba) 2002 zba = vba; 2003 zea = details->last_index; 2004 if (zea > vea) 2005 zea = vea; 2006 2007 if (unmap_mapping_range_vma(vma, 2008 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2009 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2010 details) < 0) 2011 goto restart; 2012 } 2013 } 2014 2015 static inline void unmap_mapping_range_list(struct list_head *head, 2016 struct zap_details *details) 2017 { 2018 struct vm_area_struct *vma; 2019 2020 /* 2021 * In nonlinear VMAs there is no correspondence between virtual address 2022 * offset and file offset. So we must perform an exhaustive search 2023 * across *all* the pages in each nonlinear VMA, not just the pages 2024 * whose virtual address lies outside the file truncation point. 2025 */ 2026 restart: 2027 list_for_each_entry(vma, head, shared.vm_set.list) { 2028 /* Skip quickly over those we have already dealt with */ 2029 if (vma->vm_truncate_count == details->truncate_count) 2030 continue; 2031 details->nonlinear_vma = vma; 2032 if (unmap_mapping_range_vma(vma, vma->vm_start, 2033 vma->vm_end, details) < 0) 2034 goto restart; 2035 } 2036 } 2037 2038 /** 2039 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2040 * @mapping: the address space containing mmaps to be unmapped. 2041 * @holebegin: byte in first page to unmap, relative to the start of 2042 * the underlying file. This will be rounded down to a PAGE_SIZE 2043 * boundary. Note that this is different from vmtruncate(), which 2044 * must keep the partial page. In contrast, we must get rid of 2045 * partial pages. 2046 * @holelen: size of prospective hole in bytes. This will be rounded 2047 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2048 * end of the file. 2049 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2050 * but 0 when invalidating pagecache, don't throw away private data. 2051 */ 2052 void unmap_mapping_range(struct address_space *mapping, 2053 loff_t const holebegin, loff_t const holelen, int even_cows) 2054 { 2055 struct zap_details details; 2056 pgoff_t hba = holebegin >> PAGE_SHIFT; 2057 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2058 2059 /* Check for overflow. */ 2060 if (sizeof(holelen) > sizeof(hlen)) { 2061 long long holeend = 2062 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2063 if (holeend & ~(long long)ULONG_MAX) 2064 hlen = ULONG_MAX - hba + 1; 2065 } 2066 2067 details.check_mapping = even_cows? NULL: mapping; 2068 details.nonlinear_vma = NULL; 2069 details.first_index = hba; 2070 details.last_index = hba + hlen - 1; 2071 if (details.last_index < details.first_index) 2072 details.last_index = ULONG_MAX; 2073 details.i_mmap_lock = &mapping->i_mmap_lock; 2074 2075 spin_lock(&mapping->i_mmap_lock); 2076 2077 /* Protect against endless unmapping loops */ 2078 mapping->truncate_count++; 2079 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2080 if (mapping->truncate_count == 0) 2081 reset_vma_truncate_counts(mapping); 2082 mapping->truncate_count++; 2083 } 2084 details.truncate_count = mapping->truncate_count; 2085 2086 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2087 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2088 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2089 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2090 spin_unlock(&mapping->i_mmap_lock); 2091 } 2092 EXPORT_SYMBOL(unmap_mapping_range); 2093 2094 /** 2095 * vmtruncate - unmap mappings "freed" by truncate() syscall 2096 * @inode: inode of the file used 2097 * @offset: file offset to start truncating 2098 * 2099 * NOTE! We have to be ready to update the memory sharing 2100 * between the file and the memory map for a potential last 2101 * incomplete page. Ugly, but necessary. 2102 */ 2103 int vmtruncate(struct inode * inode, loff_t offset) 2104 { 2105 if (inode->i_size < offset) { 2106 unsigned long limit; 2107 2108 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2109 if (limit != RLIM_INFINITY && offset > limit) 2110 goto out_sig; 2111 if (offset > inode->i_sb->s_maxbytes) 2112 goto out_big; 2113 i_size_write(inode, offset); 2114 } else { 2115 struct address_space *mapping = inode->i_mapping; 2116 2117 /* 2118 * truncation of in-use swapfiles is disallowed - it would 2119 * cause subsequent swapout to scribble on the now-freed 2120 * blocks. 2121 */ 2122 if (IS_SWAPFILE(inode)) 2123 return -ETXTBSY; 2124 i_size_write(inode, offset); 2125 2126 /* 2127 * unmap_mapping_range is called twice, first simply for 2128 * efficiency so that truncate_inode_pages does fewer 2129 * single-page unmaps. However after this first call, and 2130 * before truncate_inode_pages finishes, it is possible for 2131 * private pages to be COWed, which remain after 2132 * truncate_inode_pages finishes, hence the second 2133 * unmap_mapping_range call must be made for correctness. 2134 */ 2135 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2136 truncate_inode_pages(mapping, offset); 2137 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2138 } 2139 2140 if (inode->i_op && inode->i_op->truncate) 2141 inode->i_op->truncate(inode); 2142 return 0; 2143 2144 out_sig: 2145 send_sig(SIGXFSZ, current, 0); 2146 out_big: 2147 return -EFBIG; 2148 } 2149 EXPORT_SYMBOL(vmtruncate); 2150 2151 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2152 { 2153 struct address_space *mapping = inode->i_mapping; 2154 2155 /* 2156 * If the underlying filesystem is not going to provide 2157 * a way to truncate a range of blocks (punch a hole) - 2158 * we should return failure right now. 2159 */ 2160 if (!inode->i_op || !inode->i_op->truncate_range) 2161 return -ENOSYS; 2162 2163 mutex_lock(&inode->i_mutex); 2164 down_write(&inode->i_alloc_sem); 2165 unmap_mapping_range(mapping, offset, (end - offset), 1); 2166 truncate_inode_pages_range(mapping, offset, end); 2167 unmap_mapping_range(mapping, offset, (end - offset), 1); 2168 inode->i_op->truncate_range(inode, offset, end); 2169 up_write(&inode->i_alloc_sem); 2170 mutex_unlock(&inode->i_mutex); 2171 2172 return 0; 2173 } 2174 2175 /* 2176 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2177 * but allow concurrent faults), and pte mapped but not yet locked. 2178 * We return with mmap_sem still held, but pte unmapped and unlocked. 2179 */ 2180 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2181 unsigned long address, pte_t *page_table, pmd_t *pmd, 2182 int write_access, pte_t orig_pte) 2183 { 2184 spinlock_t *ptl; 2185 struct page *page; 2186 swp_entry_t entry; 2187 pte_t pte; 2188 int ret = 0; 2189 2190 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2191 goto out; 2192 2193 entry = pte_to_swp_entry(orig_pte); 2194 if (is_migration_entry(entry)) { 2195 migration_entry_wait(mm, pmd, address); 2196 goto out; 2197 } 2198 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2199 page = lookup_swap_cache(entry); 2200 if (!page) { 2201 grab_swap_token(); /* Contend for token _before_ read-in */ 2202 page = swapin_readahead(entry, 2203 GFP_HIGHUSER_MOVABLE, vma, address); 2204 if (!page) { 2205 /* 2206 * Back out if somebody else faulted in this pte 2207 * while we released the pte lock. 2208 */ 2209 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2210 if (likely(pte_same(*page_table, orig_pte))) 2211 ret = VM_FAULT_OOM; 2212 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2213 goto unlock; 2214 } 2215 2216 /* Had to read the page from swap area: Major fault */ 2217 ret = VM_FAULT_MAJOR; 2218 count_vm_event(PGMAJFAULT); 2219 } 2220 2221 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { 2222 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2223 ret = VM_FAULT_OOM; 2224 goto out; 2225 } 2226 2227 mark_page_accessed(page); 2228 lock_page(page); 2229 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2230 2231 /* 2232 * Back out if somebody else already faulted in this pte. 2233 */ 2234 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2235 if (unlikely(!pte_same(*page_table, orig_pte))) 2236 goto out_nomap; 2237 2238 if (unlikely(!PageUptodate(page))) { 2239 ret = VM_FAULT_SIGBUS; 2240 goto out_nomap; 2241 } 2242 2243 /* The page isn't present yet, go ahead with the fault. */ 2244 2245 inc_mm_counter(mm, anon_rss); 2246 pte = mk_pte(page, vma->vm_page_prot); 2247 if (write_access && can_share_swap_page(page)) { 2248 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2249 write_access = 0; 2250 } 2251 2252 flush_icache_page(vma, page); 2253 set_pte_at(mm, address, page_table, pte); 2254 page_add_anon_rmap(page, vma, address); 2255 2256 swap_free(entry); 2257 if (vm_swap_full()) 2258 remove_exclusive_swap_page(page); 2259 unlock_page(page); 2260 2261 if (write_access) { 2262 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2263 if (ret & VM_FAULT_ERROR) 2264 ret &= VM_FAULT_ERROR; 2265 goto out; 2266 } 2267 2268 /* No need to invalidate - it was non-present before */ 2269 update_mmu_cache(vma, address, pte); 2270 unlock: 2271 pte_unmap_unlock(page_table, ptl); 2272 out: 2273 return ret; 2274 out_nomap: 2275 mem_cgroup_uncharge_page(page); 2276 pte_unmap_unlock(page_table, ptl); 2277 unlock_page(page); 2278 page_cache_release(page); 2279 return ret; 2280 } 2281 2282 /* 2283 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2284 * but allow concurrent faults), and pte mapped but not yet locked. 2285 * We return with mmap_sem still held, but pte unmapped and unlocked. 2286 */ 2287 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2288 unsigned long address, pte_t *page_table, pmd_t *pmd, 2289 int write_access) 2290 { 2291 struct page *page; 2292 spinlock_t *ptl; 2293 pte_t entry; 2294 2295 /* Allocate our own private page. */ 2296 pte_unmap(page_table); 2297 2298 if (unlikely(anon_vma_prepare(vma))) 2299 goto oom; 2300 page = alloc_zeroed_user_highpage_movable(vma, address); 2301 if (!page) 2302 goto oom; 2303 __SetPageUptodate(page); 2304 2305 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) 2306 goto oom_free_page; 2307 2308 entry = mk_pte(page, vma->vm_page_prot); 2309 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2310 2311 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2312 if (!pte_none(*page_table)) 2313 goto release; 2314 inc_mm_counter(mm, anon_rss); 2315 lru_cache_add_active(page); 2316 page_add_new_anon_rmap(page, vma, address); 2317 set_pte_at(mm, address, page_table, entry); 2318 2319 /* No need to invalidate - it was non-present before */ 2320 update_mmu_cache(vma, address, entry); 2321 unlock: 2322 pte_unmap_unlock(page_table, ptl); 2323 return 0; 2324 release: 2325 mem_cgroup_uncharge_page(page); 2326 page_cache_release(page); 2327 goto unlock; 2328 oom_free_page: 2329 page_cache_release(page); 2330 oom: 2331 return VM_FAULT_OOM; 2332 } 2333 2334 /* 2335 * __do_fault() tries to create a new page mapping. It aggressively 2336 * tries to share with existing pages, but makes a separate copy if 2337 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2338 * the next page fault. 2339 * 2340 * As this is called only for pages that do not currently exist, we 2341 * do not need to flush old virtual caches or the TLB. 2342 * 2343 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2344 * but allow concurrent faults), and pte neither mapped nor locked. 2345 * We return with mmap_sem still held, but pte unmapped and unlocked. 2346 */ 2347 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2348 unsigned long address, pmd_t *pmd, 2349 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2350 { 2351 pte_t *page_table; 2352 spinlock_t *ptl; 2353 struct page *page; 2354 pte_t entry; 2355 int anon = 0; 2356 struct page *dirty_page = NULL; 2357 struct vm_fault vmf; 2358 int ret; 2359 int page_mkwrite = 0; 2360 2361 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2362 vmf.pgoff = pgoff; 2363 vmf.flags = flags; 2364 vmf.page = NULL; 2365 2366 ret = vma->vm_ops->fault(vma, &vmf); 2367 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2368 return ret; 2369 2370 /* 2371 * For consistency in subsequent calls, make the faulted page always 2372 * locked. 2373 */ 2374 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2375 lock_page(vmf.page); 2376 else 2377 VM_BUG_ON(!PageLocked(vmf.page)); 2378 2379 /* 2380 * Should we do an early C-O-W break? 2381 */ 2382 page = vmf.page; 2383 if (flags & FAULT_FLAG_WRITE) { 2384 if (!(vma->vm_flags & VM_SHARED)) { 2385 anon = 1; 2386 if (unlikely(anon_vma_prepare(vma))) { 2387 ret = VM_FAULT_OOM; 2388 goto out; 2389 } 2390 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2391 vma, address); 2392 if (!page) { 2393 ret = VM_FAULT_OOM; 2394 goto out; 2395 } 2396 copy_user_highpage(page, vmf.page, address, vma); 2397 __SetPageUptodate(page); 2398 } else { 2399 /* 2400 * If the page will be shareable, see if the backing 2401 * address space wants to know that the page is about 2402 * to become writable 2403 */ 2404 if (vma->vm_ops->page_mkwrite) { 2405 unlock_page(page); 2406 if (vma->vm_ops->page_mkwrite(vma, page) < 0) { 2407 ret = VM_FAULT_SIGBUS; 2408 anon = 1; /* no anon but release vmf.page */ 2409 goto out_unlocked; 2410 } 2411 lock_page(page); 2412 /* 2413 * XXX: this is not quite right (racy vs 2414 * invalidate) to unlock and relock the page 2415 * like this, however a better fix requires 2416 * reworking page_mkwrite locking API, which 2417 * is better done later. 2418 */ 2419 if (!page->mapping) { 2420 ret = 0; 2421 anon = 1; /* no anon but release vmf.page */ 2422 goto out; 2423 } 2424 page_mkwrite = 1; 2425 } 2426 } 2427 2428 } 2429 2430 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { 2431 ret = VM_FAULT_OOM; 2432 goto out; 2433 } 2434 2435 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2436 2437 /* 2438 * This silly early PAGE_DIRTY setting removes a race 2439 * due to the bad i386 page protection. But it's valid 2440 * for other architectures too. 2441 * 2442 * Note that if write_access is true, we either now have 2443 * an exclusive copy of the page, or this is a shared mapping, 2444 * so we can make it writable and dirty to avoid having to 2445 * handle that later. 2446 */ 2447 /* Only go through if we didn't race with anybody else... */ 2448 if (likely(pte_same(*page_table, orig_pte))) { 2449 flush_icache_page(vma, page); 2450 entry = mk_pte(page, vma->vm_page_prot); 2451 if (flags & FAULT_FLAG_WRITE) 2452 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2453 set_pte_at(mm, address, page_table, entry); 2454 if (anon) { 2455 inc_mm_counter(mm, anon_rss); 2456 lru_cache_add_active(page); 2457 page_add_new_anon_rmap(page, vma, address); 2458 } else { 2459 inc_mm_counter(mm, file_rss); 2460 page_add_file_rmap(page); 2461 if (flags & FAULT_FLAG_WRITE) { 2462 dirty_page = page; 2463 get_page(dirty_page); 2464 } 2465 } 2466 2467 /* no need to invalidate: a not-present page won't be cached */ 2468 update_mmu_cache(vma, address, entry); 2469 } else { 2470 mem_cgroup_uncharge_page(page); 2471 if (anon) 2472 page_cache_release(page); 2473 else 2474 anon = 1; /* no anon but release faulted_page */ 2475 } 2476 2477 pte_unmap_unlock(page_table, ptl); 2478 2479 out: 2480 unlock_page(vmf.page); 2481 out_unlocked: 2482 if (anon) 2483 page_cache_release(vmf.page); 2484 else if (dirty_page) { 2485 if (vma->vm_file) 2486 file_update_time(vma->vm_file); 2487 2488 set_page_dirty_balance(dirty_page, page_mkwrite); 2489 put_page(dirty_page); 2490 } 2491 2492 return ret; 2493 } 2494 2495 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2496 unsigned long address, pte_t *page_table, pmd_t *pmd, 2497 int write_access, pte_t orig_pte) 2498 { 2499 pgoff_t pgoff = (((address & PAGE_MASK) 2500 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2501 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); 2502 2503 pte_unmap(page_table); 2504 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2505 } 2506 2507 /* 2508 * Fault of a previously existing named mapping. Repopulate the pte 2509 * from the encoded file_pte if possible. This enables swappable 2510 * nonlinear vmas. 2511 * 2512 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2513 * but allow concurrent faults), and pte mapped but not yet locked. 2514 * We return with mmap_sem still held, but pte unmapped and unlocked. 2515 */ 2516 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2517 unsigned long address, pte_t *page_table, pmd_t *pmd, 2518 int write_access, pte_t orig_pte) 2519 { 2520 unsigned int flags = FAULT_FLAG_NONLINEAR | 2521 (write_access ? FAULT_FLAG_WRITE : 0); 2522 pgoff_t pgoff; 2523 2524 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2525 return 0; 2526 2527 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) || 2528 !(vma->vm_flags & VM_CAN_NONLINEAR))) { 2529 /* 2530 * Page table corrupted: show pte and kill process. 2531 */ 2532 print_bad_pte(vma, orig_pte, address); 2533 return VM_FAULT_OOM; 2534 } 2535 2536 pgoff = pte_to_pgoff(orig_pte); 2537 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2538 } 2539 2540 /* 2541 * These routines also need to handle stuff like marking pages dirty 2542 * and/or accessed for architectures that don't do it in hardware (most 2543 * RISC architectures). The early dirtying is also good on the i386. 2544 * 2545 * There is also a hook called "update_mmu_cache()" that architectures 2546 * with external mmu caches can use to update those (ie the Sparc or 2547 * PowerPC hashed page tables that act as extended TLBs). 2548 * 2549 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2550 * but allow concurrent faults), and pte mapped but not yet locked. 2551 * We return with mmap_sem still held, but pte unmapped and unlocked. 2552 */ 2553 static inline int handle_pte_fault(struct mm_struct *mm, 2554 struct vm_area_struct *vma, unsigned long address, 2555 pte_t *pte, pmd_t *pmd, int write_access) 2556 { 2557 pte_t entry; 2558 spinlock_t *ptl; 2559 2560 entry = *pte; 2561 if (!pte_present(entry)) { 2562 if (pte_none(entry)) { 2563 if (vma->vm_ops) { 2564 if (likely(vma->vm_ops->fault)) 2565 return do_linear_fault(mm, vma, address, 2566 pte, pmd, write_access, entry); 2567 } 2568 return do_anonymous_page(mm, vma, address, 2569 pte, pmd, write_access); 2570 } 2571 if (pte_file(entry)) 2572 return do_nonlinear_fault(mm, vma, address, 2573 pte, pmd, write_access, entry); 2574 return do_swap_page(mm, vma, address, 2575 pte, pmd, write_access, entry); 2576 } 2577 2578 ptl = pte_lockptr(mm, pmd); 2579 spin_lock(ptl); 2580 if (unlikely(!pte_same(*pte, entry))) 2581 goto unlock; 2582 if (write_access) { 2583 if (!pte_write(entry)) 2584 return do_wp_page(mm, vma, address, 2585 pte, pmd, ptl, entry); 2586 entry = pte_mkdirty(entry); 2587 } 2588 entry = pte_mkyoung(entry); 2589 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { 2590 update_mmu_cache(vma, address, entry); 2591 } else { 2592 /* 2593 * This is needed only for protection faults but the arch code 2594 * is not yet telling us if this is a protection fault or not. 2595 * This still avoids useless tlb flushes for .text page faults 2596 * with threads. 2597 */ 2598 if (write_access) 2599 flush_tlb_page(vma, address); 2600 } 2601 unlock: 2602 pte_unmap_unlock(pte, ptl); 2603 return 0; 2604 } 2605 2606 /* 2607 * By the time we get here, we already hold the mm semaphore 2608 */ 2609 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2610 unsigned long address, int write_access) 2611 { 2612 pgd_t *pgd; 2613 pud_t *pud; 2614 pmd_t *pmd; 2615 pte_t *pte; 2616 2617 __set_current_state(TASK_RUNNING); 2618 2619 count_vm_event(PGFAULT); 2620 2621 if (unlikely(is_vm_hugetlb_page(vma))) 2622 return hugetlb_fault(mm, vma, address, write_access); 2623 2624 pgd = pgd_offset(mm, address); 2625 pud = pud_alloc(mm, pgd, address); 2626 if (!pud) 2627 return VM_FAULT_OOM; 2628 pmd = pmd_alloc(mm, pud, address); 2629 if (!pmd) 2630 return VM_FAULT_OOM; 2631 pte = pte_alloc_map(mm, pmd, address); 2632 if (!pte) 2633 return VM_FAULT_OOM; 2634 2635 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2636 } 2637 2638 #ifndef __PAGETABLE_PUD_FOLDED 2639 /* 2640 * Allocate page upper directory. 2641 * We've already handled the fast-path in-line. 2642 */ 2643 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2644 { 2645 pud_t *new = pud_alloc_one(mm, address); 2646 if (!new) 2647 return -ENOMEM; 2648 2649 smp_wmb(); /* See comment in __pte_alloc */ 2650 2651 spin_lock(&mm->page_table_lock); 2652 if (pgd_present(*pgd)) /* Another has populated it */ 2653 pud_free(mm, new); 2654 else 2655 pgd_populate(mm, pgd, new); 2656 spin_unlock(&mm->page_table_lock); 2657 return 0; 2658 } 2659 #endif /* __PAGETABLE_PUD_FOLDED */ 2660 2661 #ifndef __PAGETABLE_PMD_FOLDED 2662 /* 2663 * Allocate page middle directory. 2664 * We've already handled the fast-path in-line. 2665 */ 2666 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2667 { 2668 pmd_t *new = pmd_alloc_one(mm, address); 2669 if (!new) 2670 return -ENOMEM; 2671 2672 smp_wmb(); /* See comment in __pte_alloc */ 2673 2674 spin_lock(&mm->page_table_lock); 2675 #ifndef __ARCH_HAS_4LEVEL_HACK 2676 if (pud_present(*pud)) /* Another has populated it */ 2677 pmd_free(mm, new); 2678 else 2679 pud_populate(mm, pud, new); 2680 #else 2681 if (pgd_present(*pud)) /* Another has populated it */ 2682 pmd_free(mm, new); 2683 else 2684 pgd_populate(mm, pud, new); 2685 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2686 spin_unlock(&mm->page_table_lock); 2687 return 0; 2688 } 2689 #endif /* __PAGETABLE_PMD_FOLDED */ 2690 2691 int make_pages_present(unsigned long addr, unsigned long end) 2692 { 2693 int ret, len, write; 2694 struct vm_area_struct * vma; 2695 2696 vma = find_vma(current->mm, addr); 2697 if (!vma) 2698 return -1; 2699 write = (vma->vm_flags & VM_WRITE) != 0; 2700 BUG_ON(addr >= end); 2701 BUG_ON(end > vma->vm_end); 2702 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 2703 ret = get_user_pages(current, current->mm, addr, 2704 len, write, 0, NULL, NULL); 2705 if (ret < 0) 2706 return ret; 2707 return ret == len ? 0 : -1; 2708 } 2709 2710 #if !defined(__HAVE_ARCH_GATE_AREA) 2711 2712 #if defined(AT_SYSINFO_EHDR) 2713 static struct vm_area_struct gate_vma; 2714 2715 static int __init gate_vma_init(void) 2716 { 2717 gate_vma.vm_mm = NULL; 2718 gate_vma.vm_start = FIXADDR_USER_START; 2719 gate_vma.vm_end = FIXADDR_USER_END; 2720 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 2721 gate_vma.vm_page_prot = __P101; 2722 /* 2723 * Make sure the vDSO gets into every core dump. 2724 * Dumping its contents makes post-mortem fully interpretable later 2725 * without matching up the same kernel and hardware config to see 2726 * what PC values meant. 2727 */ 2728 gate_vma.vm_flags |= VM_ALWAYSDUMP; 2729 return 0; 2730 } 2731 __initcall(gate_vma_init); 2732 #endif 2733 2734 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2735 { 2736 #ifdef AT_SYSINFO_EHDR 2737 return &gate_vma; 2738 #else 2739 return NULL; 2740 #endif 2741 } 2742 2743 int in_gate_area_no_task(unsigned long addr) 2744 { 2745 #ifdef AT_SYSINFO_EHDR 2746 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2747 return 1; 2748 #endif 2749 return 0; 2750 } 2751 2752 #endif /* __HAVE_ARCH_GATE_AREA */ 2753 2754 /* 2755 * Access another process' address space. 2756 * Source/target buffer must be kernel space, 2757 * Do not walk the page table directly, use get_user_pages 2758 */ 2759 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 2760 { 2761 struct mm_struct *mm; 2762 struct vm_area_struct *vma; 2763 struct page *page; 2764 void *old_buf = buf; 2765 2766 mm = get_task_mm(tsk); 2767 if (!mm) 2768 return 0; 2769 2770 down_read(&mm->mmap_sem); 2771 /* ignore errors, just check how much was successfully transferred */ 2772 while (len) { 2773 int bytes, ret, offset; 2774 void *maddr; 2775 2776 ret = get_user_pages(tsk, mm, addr, 1, 2777 write, 1, &page, &vma); 2778 if (ret <= 0) 2779 break; 2780 2781 bytes = len; 2782 offset = addr & (PAGE_SIZE-1); 2783 if (bytes > PAGE_SIZE-offset) 2784 bytes = PAGE_SIZE-offset; 2785 2786 maddr = kmap(page); 2787 if (write) { 2788 copy_to_user_page(vma, page, addr, 2789 maddr + offset, buf, bytes); 2790 set_page_dirty_lock(page); 2791 } else { 2792 copy_from_user_page(vma, page, addr, 2793 buf, maddr + offset, bytes); 2794 } 2795 kunmap(page); 2796 page_cache_release(page); 2797 len -= bytes; 2798 buf += bytes; 2799 addr += bytes; 2800 } 2801 up_read(&mm->mmap_sem); 2802 mmput(mm); 2803 2804 return buf - old_buf; 2805 } 2806 2807 /* 2808 * Print the name of a VMA. 2809 */ 2810 void print_vma_addr(char *prefix, unsigned long ip) 2811 { 2812 struct mm_struct *mm = current->mm; 2813 struct vm_area_struct *vma; 2814 2815 /* 2816 * Do not print if we are in atomic 2817 * contexts (in exception stacks, etc.): 2818 */ 2819 if (preempt_count()) 2820 return; 2821 2822 down_read(&mm->mmap_sem); 2823 vma = find_vma(mm, ip); 2824 if (vma && vma->vm_file) { 2825 struct file *f = vma->vm_file; 2826 char *buf = (char *)__get_free_page(GFP_KERNEL); 2827 if (buf) { 2828 char *p, *s; 2829 2830 p = d_path(&f->f_path, buf, PAGE_SIZE); 2831 if (IS_ERR(p)) 2832 p = "?"; 2833 s = strrchr(p, '/'); 2834 if (s) 2835 p = s+1; 2836 printk("%s%s[%lx+%lx]", prefix, p, 2837 vma->vm_start, 2838 vma->vm_end - vma->vm_start); 2839 free_page((unsigned long)buf); 2840 } 2841 } 2842 up_read(¤t->mm->mmap_sem); 2843 } 2844