1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/memremap.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/export.h> 56 #include <linux/delayacct.h> 57 #include <linux/init.h> 58 #include <linux/pfn_t.h> 59 #include <linux/writeback.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/kallsyms.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/dma-debug.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 74 #include <asm/io.h> 75 #include <asm/mmu_context.h> 76 #include <asm/pgalloc.h> 77 #include <linux/uaccess.h> 78 #include <asm/tlb.h> 79 #include <asm/tlbflush.h> 80 #include <asm/pgtable.h> 81 82 #include "internal.h" 83 84 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 86 #endif 87 88 #ifndef CONFIG_NEED_MULTIPLE_NODES 89 /* use the per-pgdat data instead for discontigmem - mbligh */ 90 unsigned long max_mapnr; 91 EXPORT_SYMBOL(max_mapnr); 92 93 struct page *mem_map; 94 EXPORT_SYMBOL(mem_map); 95 #endif 96 97 /* 98 * A number of key systems in x86 including ioremap() rely on the assumption 99 * that high_memory defines the upper bound on direct map memory, then end 100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 102 * and ZONE_HIGHMEM. 103 */ 104 void *high_memory; 105 EXPORT_SYMBOL(high_memory); 106 107 /* 108 * Randomize the address space (stacks, mmaps, brk, etc.). 109 * 110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 111 * as ancient (libc5 based) binaries can segfault. ) 112 */ 113 int randomize_va_space __read_mostly = 114 #ifdef CONFIG_COMPAT_BRK 115 1; 116 #else 117 2; 118 #endif 119 120 static int __init disable_randmaps(char *s) 121 { 122 randomize_va_space = 0; 123 return 1; 124 } 125 __setup("norandmaps", disable_randmaps); 126 127 unsigned long zero_pfn __read_mostly; 128 EXPORT_SYMBOL(zero_pfn); 129 130 unsigned long highest_memmap_pfn __read_mostly; 131 132 /* 133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 134 */ 135 static int __init init_zero_pfn(void) 136 { 137 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 138 return 0; 139 } 140 core_initcall(init_zero_pfn); 141 142 143 #if defined(SPLIT_RSS_COUNTING) 144 145 void sync_mm_rss(struct mm_struct *mm) 146 { 147 int i; 148 149 for (i = 0; i < NR_MM_COUNTERS; i++) { 150 if (current->rss_stat.count[i]) { 151 add_mm_counter(mm, i, current->rss_stat.count[i]); 152 current->rss_stat.count[i] = 0; 153 } 154 } 155 current->rss_stat.events = 0; 156 } 157 158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 159 { 160 struct task_struct *task = current; 161 162 if (likely(task->mm == mm)) 163 task->rss_stat.count[member] += val; 164 else 165 add_mm_counter(mm, member, val); 166 } 167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 169 170 /* sync counter once per 64 page faults */ 171 #define TASK_RSS_EVENTS_THRESH (64) 172 static void check_sync_rss_stat(struct task_struct *task) 173 { 174 if (unlikely(task != current)) 175 return; 176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 177 sync_mm_rss(task->mm); 178 } 179 #else /* SPLIT_RSS_COUNTING */ 180 181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 183 184 static void check_sync_rss_stat(struct task_struct *task) 185 { 186 } 187 188 #endif /* SPLIT_RSS_COUNTING */ 189 190 #ifdef HAVE_GENERIC_MMU_GATHER 191 192 static bool tlb_next_batch(struct mmu_gather *tlb) 193 { 194 struct mmu_gather_batch *batch; 195 196 batch = tlb->active; 197 if (batch->next) { 198 tlb->active = batch->next; 199 return true; 200 } 201 202 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 203 return false; 204 205 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 206 if (!batch) 207 return false; 208 209 tlb->batch_count++; 210 batch->next = NULL; 211 batch->nr = 0; 212 batch->max = MAX_GATHER_BATCH; 213 214 tlb->active->next = batch; 215 tlb->active = batch; 216 217 return true; 218 } 219 220 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 221 unsigned long start, unsigned long end) 222 { 223 tlb->mm = mm; 224 225 /* Is it from 0 to ~0? */ 226 tlb->fullmm = !(start | (end+1)); 227 tlb->need_flush_all = 0; 228 tlb->local.next = NULL; 229 tlb->local.nr = 0; 230 tlb->local.max = ARRAY_SIZE(tlb->__pages); 231 tlb->active = &tlb->local; 232 tlb->batch_count = 0; 233 234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 235 tlb->batch = NULL; 236 #endif 237 tlb->page_size = 0; 238 239 __tlb_reset_range(tlb); 240 } 241 242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 243 { 244 if (!tlb->end) 245 return; 246 247 tlb_flush(tlb); 248 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 249 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 250 tlb_table_flush(tlb); 251 #endif 252 __tlb_reset_range(tlb); 253 } 254 255 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 256 { 257 struct mmu_gather_batch *batch; 258 259 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 260 free_pages_and_swap_cache(batch->pages, batch->nr); 261 batch->nr = 0; 262 } 263 tlb->active = &tlb->local; 264 } 265 266 void tlb_flush_mmu(struct mmu_gather *tlb) 267 { 268 tlb_flush_mmu_tlbonly(tlb); 269 tlb_flush_mmu_free(tlb); 270 } 271 272 /* tlb_finish_mmu 273 * Called at the end of the shootdown operation to free up any resources 274 * that were required. 275 */ 276 void arch_tlb_finish_mmu(struct mmu_gather *tlb, 277 unsigned long start, unsigned long end, bool force) 278 { 279 struct mmu_gather_batch *batch, *next; 280 281 if (force) 282 __tlb_adjust_range(tlb, start, end - start); 283 284 tlb_flush_mmu(tlb); 285 286 /* keep the page table cache within bounds */ 287 check_pgt_cache(); 288 289 for (batch = tlb->local.next; batch; batch = next) { 290 next = batch->next; 291 free_pages((unsigned long)batch, 0); 292 } 293 tlb->local.next = NULL; 294 } 295 296 /* __tlb_remove_page 297 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 298 * handling the additional races in SMP caused by other CPUs caching valid 299 * mappings in their TLBs. Returns the number of free page slots left. 300 * When out of page slots we must call tlb_flush_mmu(). 301 *returns true if the caller should flush. 302 */ 303 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) 304 { 305 struct mmu_gather_batch *batch; 306 307 VM_BUG_ON(!tlb->end); 308 VM_WARN_ON(tlb->page_size != page_size); 309 310 batch = tlb->active; 311 /* 312 * Add the page and check if we are full. If so 313 * force a flush. 314 */ 315 batch->pages[batch->nr++] = page; 316 if (batch->nr == batch->max) { 317 if (!tlb_next_batch(tlb)) 318 return true; 319 batch = tlb->active; 320 } 321 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 322 323 return false; 324 } 325 326 #endif /* HAVE_GENERIC_MMU_GATHER */ 327 328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 329 330 /* 331 * See the comment near struct mmu_table_batch. 332 */ 333 334 static void tlb_remove_table_smp_sync(void *arg) 335 { 336 /* Simply deliver the interrupt */ 337 } 338 339 static void tlb_remove_table_one(void *table) 340 { 341 /* 342 * This isn't an RCU grace period and hence the page-tables cannot be 343 * assumed to be actually RCU-freed. 344 * 345 * It is however sufficient for software page-table walkers that rely on 346 * IRQ disabling. See the comment near struct mmu_table_batch. 347 */ 348 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 349 __tlb_remove_table(table); 350 } 351 352 static void tlb_remove_table_rcu(struct rcu_head *head) 353 { 354 struct mmu_table_batch *batch; 355 int i; 356 357 batch = container_of(head, struct mmu_table_batch, rcu); 358 359 for (i = 0; i < batch->nr; i++) 360 __tlb_remove_table(batch->tables[i]); 361 362 free_page((unsigned long)batch); 363 } 364 365 void tlb_table_flush(struct mmu_gather *tlb) 366 { 367 struct mmu_table_batch **batch = &tlb->batch; 368 369 if (*batch) { 370 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 371 *batch = NULL; 372 } 373 } 374 375 void tlb_remove_table(struct mmu_gather *tlb, void *table) 376 { 377 struct mmu_table_batch **batch = &tlb->batch; 378 379 /* 380 * When there's less then two users of this mm there cannot be a 381 * concurrent page-table walk. 382 */ 383 if (atomic_read(&tlb->mm->mm_users) < 2) { 384 __tlb_remove_table(table); 385 return; 386 } 387 388 if (*batch == NULL) { 389 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 390 if (*batch == NULL) { 391 tlb_remove_table_one(table); 392 return; 393 } 394 (*batch)->nr = 0; 395 } 396 (*batch)->tables[(*batch)->nr++] = table; 397 if ((*batch)->nr == MAX_TABLE_BATCH) 398 tlb_table_flush(tlb); 399 } 400 401 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 402 403 /** 404 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down 405 * @tlb: the mmu_gather structure to initialize 406 * @mm: the mm_struct of the target address space 407 * @start: start of the region that will be removed from the page-table 408 * @end: end of the region that will be removed from the page-table 409 * 410 * Called to initialize an (on-stack) mmu_gather structure for page-table 411 * tear-down from @mm. The @start and @end are set to 0 and -1 412 * respectively when @mm is without users and we're going to destroy 413 * the full address space (exit/execve). 414 */ 415 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 416 unsigned long start, unsigned long end) 417 { 418 arch_tlb_gather_mmu(tlb, mm, start, end); 419 inc_tlb_flush_pending(tlb->mm); 420 } 421 422 void tlb_finish_mmu(struct mmu_gather *tlb, 423 unsigned long start, unsigned long end) 424 { 425 /* 426 * If there are parallel threads are doing PTE changes on same range 427 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB 428 * flush by batching, a thread has stable TLB entry can fail to flush 429 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB 430 * forcefully if we detect parallel PTE batching threads. 431 */ 432 bool force = mm_tlb_flush_nested(tlb->mm); 433 434 arch_tlb_finish_mmu(tlb, start, end, force); 435 dec_tlb_flush_pending(tlb->mm); 436 } 437 438 /* 439 * Note: this doesn't free the actual pages themselves. That 440 * has been handled earlier when unmapping all the memory regions. 441 */ 442 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 443 unsigned long addr) 444 { 445 pgtable_t token = pmd_pgtable(*pmd); 446 pmd_clear(pmd); 447 pte_free_tlb(tlb, token, addr); 448 mm_dec_nr_ptes(tlb->mm); 449 } 450 451 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 452 unsigned long addr, unsigned long end, 453 unsigned long floor, unsigned long ceiling) 454 { 455 pmd_t *pmd; 456 unsigned long next; 457 unsigned long start; 458 459 start = addr; 460 pmd = pmd_offset(pud, addr); 461 do { 462 next = pmd_addr_end(addr, end); 463 if (pmd_none_or_clear_bad(pmd)) 464 continue; 465 free_pte_range(tlb, pmd, addr); 466 } while (pmd++, addr = next, addr != end); 467 468 start &= PUD_MASK; 469 if (start < floor) 470 return; 471 if (ceiling) { 472 ceiling &= PUD_MASK; 473 if (!ceiling) 474 return; 475 } 476 if (end - 1 > ceiling - 1) 477 return; 478 479 pmd = pmd_offset(pud, start); 480 pud_clear(pud); 481 pmd_free_tlb(tlb, pmd, start); 482 mm_dec_nr_pmds(tlb->mm); 483 } 484 485 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 486 unsigned long addr, unsigned long end, 487 unsigned long floor, unsigned long ceiling) 488 { 489 pud_t *pud; 490 unsigned long next; 491 unsigned long start; 492 493 start = addr; 494 pud = pud_offset(p4d, addr); 495 do { 496 next = pud_addr_end(addr, end); 497 if (pud_none_or_clear_bad(pud)) 498 continue; 499 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 500 } while (pud++, addr = next, addr != end); 501 502 start &= P4D_MASK; 503 if (start < floor) 504 return; 505 if (ceiling) { 506 ceiling &= P4D_MASK; 507 if (!ceiling) 508 return; 509 } 510 if (end - 1 > ceiling - 1) 511 return; 512 513 pud = pud_offset(p4d, start); 514 p4d_clear(p4d); 515 pud_free_tlb(tlb, pud, start); 516 mm_dec_nr_puds(tlb->mm); 517 } 518 519 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 520 unsigned long addr, unsigned long end, 521 unsigned long floor, unsigned long ceiling) 522 { 523 p4d_t *p4d; 524 unsigned long next; 525 unsigned long start; 526 527 start = addr; 528 p4d = p4d_offset(pgd, addr); 529 do { 530 next = p4d_addr_end(addr, end); 531 if (p4d_none_or_clear_bad(p4d)) 532 continue; 533 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 534 } while (p4d++, addr = next, addr != end); 535 536 start &= PGDIR_MASK; 537 if (start < floor) 538 return; 539 if (ceiling) { 540 ceiling &= PGDIR_MASK; 541 if (!ceiling) 542 return; 543 } 544 if (end - 1 > ceiling - 1) 545 return; 546 547 p4d = p4d_offset(pgd, start); 548 pgd_clear(pgd); 549 p4d_free_tlb(tlb, p4d, start); 550 } 551 552 /* 553 * This function frees user-level page tables of a process. 554 */ 555 void free_pgd_range(struct mmu_gather *tlb, 556 unsigned long addr, unsigned long end, 557 unsigned long floor, unsigned long ceiling) 558 { 559 pgd_t *pgd; 560 unsigned long next; 561 562 /* 563 * The next few lines have given us lots of grief... 564 * 565 * Why are we testing PMD* at this top level? Because often 566 * there will be no work to do at all, and we'd prefer not to 567 * go all the way down to the bottom just to discover that. 568 * 569 * Why all these "- 1"s? Because 0 represents both the bottom 570 * of the address space and the top of it (using -1 for the 571 * top wouldn't help much: the masks would do the wrong thing). 572 * The rule is that addr 0 and floor 0 refer to the bottom of 573 * the address space, but end 0 and ceiling 0 refer to the top 574 * Comparisons need to use "end - 1" and "ceiling - 1" (though 575 * that end 0 case should be mythical). 576 * 577 * Wherever addr is brought up or ceiling brought down, we must 578 * be careful to reject "the opposite 0" before it confuses the 579 * subsequent tests. But what about where end is brought down 580 * by PMD_SIZE below? no, end can't go down to 0 there. 581 * 582 * Whereas we round start (addr) and ceiling down, by different 583 * masks at different levels, in order to test whether a table 584 * now has no other vmas using it, so can be freed, we don't 585 * bother to round floor or end up - the tests don't need that. 586 */ 587 588 addr &= PMD_MASK; 589 if (addr < floor) { 590 addr += PMD_SIZE; 591 if (!addr) 592 return; 593 } 594 if (ceiling) { 595 ceiling &= PMD_MASK; 596 if (!ceiling) 597 return; 598 } 599 if (end - 1 > ceiling - 1) 600 end -= PMD_SIZE; 601 if (addr > end - 1) 602 return; 603 /* 604 * We add page table cache pages with PAGE_SIZE, 605 * (see pte_free_tlb()), flush the tlb if we need 606 */ 607 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 608 pgd = pgd_offset(tlb->mm, addr); 609 do { 610 next = pgd_addr_end(addr, end); 611 if (pgd_none_or_clear_bad(pgd)) 612 continue; 613 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 614 } while (pgd++, addr = next, addr != end); 615 } 616 617 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 618 unsigned long floor, unsigned long ceiling) 619 { 620 while (vma) { 621 struct vm_area_struct *next = vma->vm_next; 622 unsigned long addr = vma->vm_start; 623 624 /* 625 * Hide vma from rmap and truncate_pagecache before freeing 626 * pgtables 627 */ 628 unlink_anon_vmas(vma); 629 unlink_file_vma(vma); 630 631 if (is_vm_hugetlb_page(vma)) { 632 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 633 floor, next ? next->vm_start : ceiling); 634 } else { 635 /* 636 * Optimization: gather nearby vmas into one call down 637 */ 638 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 639 && !is_vm_hugetlb_page(next)) { 640 vma = next; 641 next = vma->vm_next; 642 unlink_anon_vmas(vma); 643 unlink_file_vma(vma); 644 } 645 free_pgd_range(tlb, addr, vma->vm_end, 646 floor, next ? next->vm_start : ceiling); 647 } 648 vma = next; 649 } 650 } 651 652 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 653 { 654 spinlock_t *ptl; 655 pgtable_t new = pte_alloc_one(mm, address); 656 if (!new) 657 return -ENOMEM; 658 659 /* 660 * Ensure all pte setup (eg. pte page lock and page clearing) are 661 * visible before the pte is made visible to other CPUs by being 662 * put into page tables. 663 * 664 * The other side of the story is the pointer chasing in the page 665 * table walking code (when walking the page table without locking; 666 * ie. most of the time). Fortunately, these data accesses consist 667 * of a chain of data-dependent loads, meaning most CPUs (alpha 668 * being the notable exception) will already guarantee loads are 669 * seen in-order. See the alpha page table accessors for the 670 * smp_read_barrier_depends() barriers in page table walking code. 671 */ 672 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 673 674 ptl = pmd_lock(mm, pmd); 675 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 676 mm_inc_nr_ptes(mm); 677 pmd_populate(mm, pmd, new); 678 new = NULL; 679 } 680 spin_unlock(ptl); 681 if (new) 682 pte_free(mm, new); 683 return 0; 684 } 685 686 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 687 { 688 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 689 if (!new) 690 return -ENOMEM; 691 692 smp_wmb(); /* See comment in __pte_alloc */ 693 694 spin_lock(&init_mm.page_table_lock); 695 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 696 pmd_populate_kernel(&init_mm, pmd, new); 697 new = NULL; 698 } 699 spin_unlock(&init_mm.page_table_lock); 700 if (new) 701 pte_free_kernel(&init_mm, new); 702 return 0; 703 } 704 705 static inline void init_rss_vec(int *rss) 706 { 707 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 708 } 709 710 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 711 { 712 int i; 713 714 if (current->mm == mm) 715 sync_mm_rss(mm); 716 for (i = 0; i < NR_MM_COUNTERS; i++) 717 if (rss[i]) 718 add_mm_counter(mm, i, rss[i]); 719 } 720 721 /* 722 * This function is called to print an error when a bad pte 723 * is found. For example, we might have a PFN-mapped pte in 724 * a region that doesn't allow it. 725 * 726 * The calling function must still handle the error. 727 */ 728 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 729 pte_t pte, struct page *page) 730 { 731 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 732 p4d_t *p4d = p4d_offset(pgd, addr); 733 pud_t *pud = pud_offset(p4d, addr); 734 pmd_t *pmd = pmd_offset(pud, addr); 735 struct address_space *mapping; 736 pgoff_t index; 737 static unsigned long resume; 738 static unsigned long nr_shown; 739 static unsigned long nr_unshown; 740 741 /* 742 * Allow a burst of 60 reports, then keep quiet for that minute; 743 * or allow a steady drip of one report per second. 744 */ 745 if (nr_shown == 60) { 746 if (time_before(jiffies, resume)) { 747 nr_unshown++; 748 return; 749 } 750 if (nr_unshown) { 751 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 752 nr_unshown); 753 nr_unshown = 0; 754 } 755 nr_shown = 0; 756 } 757 if (nr_shown++ == 0) 758 resume = jiffies + 60 * HZ; 759 760 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 761 index = linear_page_index(vma, addr); 762 763 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 764 current->comm, 765 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 766 if (page) 767 dump_page(page, "bad pte"); 768 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 769 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 770 /* 771 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 772 */ 773 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 774 vma->vm_file, 775 vma->vm_ops ? vma->vm_ops->fault : NULL, 776 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 777 mapping ? mapping->a_ops->readpage : NULL); 778 dump_stack(); 779 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 780 } 781 782 /* 783 * vm_normal_page -- This function gets the "struct page" associated with a pte. 784 * 785 * "Special" mappings do not wish to be associated with a "struct page" (either 786 * it doesn't exist, or it exists but they don't want to touch it). In this 787 * case, NULL is returned here. "Normal" mappings do have a struct page. 788 * 789 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 790 * pte bit, in which case this function is trivial. Secondly, an architecture 791 * may not have a spare pte bit, which requires a more complicated scheme, 792 * described below. 793 * 794 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 795 * special mapping (even if there are underlying and valid "struct pages"). 796 * COWed pages of a VM_PFNMAP are always normal. 797 * 798 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 799 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 800 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 801 * mapping will always honor the rule 802 * 803 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 804 * 805 * And for normal mappings this is false. 806 * 807 * This restricts such mappings to be a linear translation from virtual address 808 * to pfn. To get around this restriction, we allow arbitrary mappings so long 809 * as the vma is not a COW mapping; in that case, we know that all ptes are 810 * special (because none can have been COWed). 811 * 812 * 813 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 814 * 815 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 816 * page" backing, however the difference is that _all_ pages with a struct 817 * page (that is, those where pfn_valid is true) are refcounted and considered 818 * normal pages by the VM. The disadvantage is that pages are refcounted 819 * (which can be slower and simply not an option for some PFNMAP users). The 820 * advantage is that we don't have to follow the strict linearity rule of 821 * PFNMAP mappings in order to support COWable mappings. 822 * 823 */ 824 #ifdef __HAVE_ARCH_PTE_SPECIAL 825 # define HAVE_PTE_SPECIAL 1 826 #else 827 # define HAVE_PTE_SPECIAL 0 828 #endif 829 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 830 pte_t pte, bool with_public_device) 831 { 832 unsigned long pfn = pte_pfn(pte); 833 834 if (HAVE_PTE_SPECIAL) { 835 if (likely(!pte_special(pte))) 836 goto check_pfn; 837 if (vma->vm_ops && vma->vm_ops->find_special_page) 838 return vma->vm_ops->find_special_page(vma, addr); 839 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 840 return NULL; 841 if (is_zero_pfn(pfn)) 842 return NULL; 843 844 /* 845 * Device public pages are special pages (they are ZONE_DEVICE 846 * pages but different from persistent memory). They behave 847 * allmost like normal pages. The difference is that they are 848 * not on the lru and thus should never be involve with any- 849 * thing that involve lru manipulation (mlock, numa balancing, 850 * ...). 851 * 852 * This is why we still want to return NULL for such page from 853 * vm_normal_page() so that we do not have to special case all 854 * call site of vm_normal_page(). 855 */ 856 if (likely(pfn <= highest_memmap_pfn)) { 857 struct page *page = pfn_to_page(pfn); 858 859 if (is_device_public_page(page)) { 860 if (with_public_device) 861 return page; 862 return NULL; 863 } 864 } 865 print_bad_pte(vma, addr, pte, NULL); 866 return NULL; 867 } 868 869 /* !HAVE_PTE_SPECIAL case follows: */ 870 871 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 872 if (vma->vm_flags & VM_MIXEDMAP) { 873 if (!pfn_valid(pfn)) 874 return NULL; 875 goto out; 876 } else { 877 unsigned long off; 878 off = (addr - vma->vm_start) >> PAGE_SHIFT; 879 if (pfn == vma->vm_pgoff + off) 880 return NULL; 881 if (!is_cow_mapping(vma->vm_flags)) 882 return NULL; 883 } 884 } 885 886 if (is_zero_pfn(pfn)) 887 return NULL; 888 check_pfn: 889 if (unlikely(pfn > highest_memmap_pfn)) { 890 print_bad_pte(vma, addr, pte, NULL); 891 return NULL; 892 } 893 894 /* 895 * NOTE! We still have PageReserved() pages in the page tables. 896 * eg. VDSO mappings can cause them to exist. 897 */ 898 out: 899 return pfn_to_page(pfn); 900 } 901 902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 903 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 904 pmd_t pmd) 905 { 906 unsigned long pfn = pmd_pfn(pmd); 907 908 /* 909 * There is no pmd_special() but there may be special pmds, e.g. 910 * in a direct-access (dax) mapping, so let's just replicate the 911 * !HAVE_PTE_SPECIAL case from vm_normal_page() here. 912 */ 913 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 914 if (vma->vm_flags & VM_MIXEDMAP) { 915 if (!pfn_valid(pfn)) 916 return NULL; 917 goto out; 918 } else { 919 unsigned long off; 920 off = (addr - vma->vm_start) >> PAGE_SHIFT; 921 if (pfn == vma->vm_pgoff + off) 922 return NULL; 923 if (!is_cow_mapping(vma->vm_flags)) 924 return NULL; 925 } 926 } 927 928 if (is_zero_pfn(pfn)) 929 return NULL; 930 if (unlikely(pfn > highest_memmap_pfn)) 931 return NULL; 932 933 /* 934 * NOTE! We still have PageReserved() pages in the page tables. 935 * eg. VDSO mappings can cause them to exist. 936 */ 937 out: 938 return pfn_to_page(pfn); 939 } 940 #endif 941 942 /* 943 * copy one vm_area from one task to the other. Assumes the page tables 944 * already present in the new task to be cleared in the whole range 945 * covered by this vma. 946 */ 947 948 static inline unsigned long 949 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 950 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 951 unsigned long addr, int *rss) 952 { 953 unsigned long vm_flags = vma->vm_flags; 954 pte_t pte = *src_pte; 955 struct page *page; 956 957 /* pte contains position in swap or file, so copy. */ 958 if (unlikely(!pte_present(pte))) { 959 swp_entry_t entry = pte_to_swp_entry(pte); 960 961 if (likely(!non_swap_entry(entry))) { 962 if (swap_duplicate(entry) < 0) 963 return entry.val; 964 965 /* make sure dst_mm is on swapoff's mmlist. */ 966 if (unlikely(list_empty(&dst_mm->mmlist))) { 967 spin_lock(&mmlist_lock); 968 if (list_empty(&dst_mm->mmlist)) 969 list_add(&dst_mm->mmlist, 970 &src_mm->mmlist); 971 spin_unlock(&mmlist_lock); 972 } 973 rss[MM_SWAPENTS]++; 974 } else if (is_migration_entry(entry)) { 975 page = migration_entry_to_page(entry); 976 977 rss[mm_counter(page)]++; 978 979 if (is_write_migration_entry(entry) && 980 is_cow_mapping(vm_flags)) { 981 /* 982 * COW mappings require pages in both 983 * parent and child to be set to read. 984 */ 985 make_migration_entry_read(&entry); 986 pte = swp_entry_to_pte(entry); 987 if (pte_swp_soft_dirty(*src_pte)) 988 pte = pte_swp_mksoft_dirty(pte); 989 set_pte_at(src_mm, addr, src_pte, pte); 990 } 991 } else if (is_device_private_entry(entry)) { 992 page = device_private_entry_to_page(entry); 993 994 /* 995 * Update rss count even for unaddressable pages, as 996 * they should treated just like normal pages in this 997 * respect. 998 * 999 * We will likely want to have some new rss counters 1000 * for unaddressable pages, at some point. But for now 1001 * keep things as they are. 1002 */ 1003 get_page(page); 1004 rss[mm_counter(page)]++; 1005 page_dup_rmap(page, false); 1006 1007 /* 1008 * We do not preserve soft-dirty information, because so 1009 * far, checkpoint/restore is the only feature that 1010 * requires that. And checkpoint/restore does not work 1011 * when a device driver is involved (you cannot easily 1012 * save and restore device driver state). 1013 */ 1014 if (is_write_device_private_entry(entry) && 1015 is_cow_mapping(vm_flags)) { 1016 make_device_private_entry_read(&entry); 1017 pte = swp_entry_to_pte(entry); 1018 set_pte_at(src_mm, addr, src_pte, pte); 1019 } 1020 } 1021 goto out_set_pte; 1022 } 1023 1024 /* 1025 * If it's a COW mapping, write protect it both 1026 * in the parent and the child 1027 */ 1028 if (is_cow_mapping(vm_flags)) { 1029 ptep_set_wrprotect(src_mm, addr, src_pte); 1030 pte = pte_wrprotect(pte); 1031 } 1032 1033 /* 1034 * If it's a shared mapping, mark it clean in 1035 * the child 1036 */ 1037 if (vm_flags & VM_SHARED) 1038 pte = pte_mkclean(pte); 1039 pte = pte_mkold(pte); 1040 1041 page = vm_normal_page(vma, addr, pte); 1042 if (page) { 1043 get_page(page); 1044 page_dup_rmap(page, false); 1045 rss[mm_counter(page)]++; 1046 } else if (pte_devmap(pte)) { 1047 page = pte_page(pte); 1048 1049 /* 1050 * Cache coherent device memory behave like regular page and 1051 * not like persistent memory page. For more informations see 1052 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 1053 */ 1054 if (is_device_public_page(page)) { 1055 get_page(page); 1056 page_dup_rmap(page, false); 1057 rss[mm_counter(page)]++; 1058 } 1059 } 1060 1061 out_set_pte: 1062 set_pte_at(dst_mm, addr, dst_pte, pte); 1063 return 0; 1064 } 1065 1066 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1067 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 1068 unsigned long addr, unsigned long end) 1069 { 1070 pte_t *orig_src_pte, *orig_dst_pte; 1071 pte_t *src_pte, *dst_pte; 1072 spinlock_t *src_ptl, *dst_ptl; 1073 int progress = 0; 1074 int rss[NR_MM_COUNTERS]; 1075 swp_entry_t entry = (swp_entry_t){0}; 1076 1077 again: 1078 init_rss_vec(rss); 1079 1080 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1081 if (!dst_pte) 1082 return -ENOMEM; 1083 src_pte = pte_offset_map(src_pmd, addr); 1084 src_ptl = pte_lockptr(src_mm, src_pmd); 1085 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1086 orig_src_pte = src_pte; 1087 orig_dst_pte = dst_pte; 1088 arch_enter_lazy_mmu_mode(); 1089 1090 do { 1091 /* 1092 * We are holding two locks at this point - either of them 1093 * could generate latencies in another task on another CPU. 1094 */ 1095 if (progress >= 32) { 1096 progress = 0; 1097 if (need_resched() || 1098 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1099 break; 1100 } 1101 if (pte_none(*src_pte)) { 1102 progress++; 1103 continue; 1104 } 1105 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 1106 vma, addr, rss); 1107 if (entry.val) 1108 break; 1109 progress += 8; 1110 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1111 1112 arch_leave_lazy_mmu_mode(); 1113 spin_unlock(src_ptl); 1114 pte_unmap(orig_src_pte); 1115 add_mm_rss_vec(dst_mm, rss); 1116 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1117 cond_resched(); 1118 1119 if (entry.val) { 1120 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 1121 return -ENOMEM; 1122 progress = 0; 1123 } 1124 if (addr != end) 1125 goto again; 1126 return 0; 1127 } 1128 1129 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1130 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 1131 unsigned long addr, unsigned long end) 1132 { 1133 pmd_t *src_pmd, *dst_pmd; 1134 unsigned long next; 1135 1136 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1137 if (!dst_pmd) 1138 return -ENOMEM; 1139 src_pmd = pmd_offset(src_pud, addr); 1140 do { 1141 next = pmd_addr_end(addr, end); 1142 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1143 || pmd_devmap(*src_pmd)) { 1144 int err; 1145 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 1146 err = copy_huge_pmd(dst_mm, src_mm, 1147 dst_pmd, src_pmd, addr, vma); 1148 if (err == -ENOMEM) 1149 return -ENOMEM; 1150 if (!err) 1151 continue; 1152 /* fall through */ 1153 } 1154 if (pmd_none_or_clear_bad(src_pmd)) 1155 continue; 1156 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1157 vma, addr, next)) 1158 return -ENOMEM; 1159 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1160 return 0; 1161 } 1162 1163 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1164 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 1165 unsigned long addr, unsigned long end) 1166 { 1167 pud_t *src_pud, *dst_pud; 1168 unsigned long next; 1169 1170 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1171 if (!dst_pud) 1172 return -ENOMEM; 1173 src_pud = pud_offset(src_p4d, addr); 1174 do { 1175 next = pud_addr_end(addr, end); 1176 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1177 int err; 1178 1179 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 1180 err = copy_huge_pud(dst_mm, src_mm, 1181 dst_pud, src_pud, addr, vma); 1182 if (err == -ENOMEM) 1183 return -ENOMEM; 1184 if (!err) 1185 continue; 1186 /* fall through */ 1187 } 1188 if (pud_none_or_clear_bad(src_pud)) 1189 continue; 1190 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1191 vma, addr, next)) 1192 return -ENOMEM; 1193 } while (dst_pud++, src_pud++, addr = next, addr != end); 1194 return 0; 1195 } 1196 1197 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1198 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1199 unsigned long addr, unsigned long end) 1200 { 1201 p4d_t *src_p4d, *dst_p4d; 1202 unsigned long next; 1203 1204 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1205 if (!dst_p4d) 1206 return -ENOMEM; 1207 src_p4d = p4d_offset(src_pgd, addr); 1208 do { 1209 next = p4d_addr_end(addr, end); 1210 if (p4d_none_or_clear_bad(src_p4d)) 1211 continue; 1212 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 1213 vma, addr, next)) 1214 return -ENOMEM; 1215 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1216 return 0; 1217 } 1218 1219 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1220 struct vm_area_struct *vma) 1221 { 1222 pgd_t *src_pgd, *dst_pgd; 1223 unsigned long next; 1224 unsigned long addr = vma->vm_start; 1225 unsigned long end = vma->vm_end; 1226 unsigned long mmun_start; /* For mmu_notifiers */ 1227 unsigned long mmun_end; /* For mmu_notifiers */ 1228 bool is_cow; 1229 int ret; 1230 1231 /* 1232 * Don't copy ptes where a page fault will fill them correctly. 1233 * Fork becomes much lighter when there are big shared or private 1234 * readonly mappings. The tradeoff is that copy_page_range is more 1235 * efficient than faulting. 1236 */ 1237 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1238 !vma->anon_vma) 1239 return 0; 1240 1241 if (is_vm_hugetlb_page(vma)) 1242 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1243 1244 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1245 /* 1246 * We do not free on error cases below as remove_vma 1247 * gets called on error from higher level routine 1248 */ 1249 ret = track_pfn_copy(vma); 1250 if (ret) 1251 return ret; 1252 } 1253 1254 /* 1255 * We need to invalidate the secondary MMU mappings only when 1256 * there could be a permission downgrade on the ptes of the 1257 * parent mm. And a permission downgrade will only happen if 1258 * is_cow_mapping() returns true. 1259 */ 1260 is_cow = is_cow_mapping(vma->vm_flags); 1261 mmun_start = addr; 1262 mmun_end = end; 1263 if (is_cow) 1264 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1265 mmun_end); 1266 1267 ret = 0; 1268 dst_pgd = pgd_offset(dst_mm, addr); 1269 src_pgd = pgd_offset(src_mm, addr); 1270 do { 1271 next = pgd_addr_end(addr, end); 1272 if (pgd_none_or_clear_bad(src_pgd)) 1273 continue; 1274 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1275 vma, addr, next))) { 1276 ret = -ENOMEM; 1277 break; 1278 } 1279 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1280 1281 if (is_cow) 1282 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1283 return ret; 1284 } 1285 1286 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1287 struct vm_area_struct *vma, pmd_t *pmd, 1288 unsigned long addr, unsigned long end, 1289 struct zap_details *details) 1290 { 1291 struct mm_struct *mm = tlb->mm; 1292 int force_flush = 0; 1293 int rss[NR_MM_COUNTERS]; 1294 spinlock_t *ptl; 1295 pte_t *start_pte; 1296 pte_t *pte; 1297 swp_entry_t entry; 1298 1299 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1300 again: 1301 init_rss_vec(rss); 1302 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1303 pte = start_pte; 1304 flush_tlb_batched_pending(mm); 1305 arch_enter_lazy_mmu_mode(); 1306 do { 1307 pte_t ptent = *pte; 1308 if (pte_none(ptent)) 1309 continue; 1310 1311 if (pte_present(ptent)) { 1312 struct page *page; 1313 1314 page = _vm_normal_page(vma, addr, ptent, true); 1315 if (unlikely(details) && page) { 1316 /* 1317 * unmap_shared_mapping_pages() wants to 1318 * invalidate cache without truncating: 1319 * unmap shared but keep private pages. 1320 */ 1321 if (details->check_mapping && 1322 details->check_mapping != page_rmapping(page)) 1323 continue; 1324 } 1325 ptent = ptep_get_and_clear_full(mm, addr, pte, 1326 tlb->fullmm); 1327 tlb_remove_tlb_entry(tlb, pte, addr); 1328 if (unlikely(!page)) 1329 continue; 1330 1331 if (!PageAnon(page)) { 1332 if (pte_dirty(ptent)) { 1333 force_flush = 1; 1334 set_page_dirty(page); 1335 } 1336 if (pte_young(ptent) && 1337 likely(!(vma->vm_flags & VM_SEQ_READ))) 1338 mark_page_accessed(page); 1339 } 1340 rss[mm_counter(page)]--; 1341 page_remove_rmap(page, false); 1342 if (unlikely(page_mapcount(page) < 0)) 1343 print_bad_pte(vma, addr, ptent, page); 1344 if (unlikely(__tlb_remove_page(tlb, page))) { 1345 force_flush = 1; 1346 addr += PAGE_SIZE; 1347 break; 1348 } 1349 continue; 1350 } 1351 1352 entry = pte_to_swp_entry(ptent); 1353 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1354 struct page *page = device_private_entry_to_page(entry); 1355 1356 if (unlikely(details && details->check_mapping)) { 1357 /* 1358 * unmap_shared_mapping_pages() wants to 1359 * invalidate cache without truncating: 1360 * unmap shared but keep private pages. 1361 */ 1362 if (details->check_mapping != 1363 page_rmapping(page)) 1364 continue; 1365 } 1366 1367 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1368 rss[mm_counter(page)]--; 1369 page_remove_rmap(page, false); 1370 put_page(page); 1371 continue; 1372 } 1373 1374 /* If details->check_mapping, we leave swap entries. */ 1375 if (unlikely(details)) 1376 continue; 1377 1378 entry = pte_to_swp_entry(ptent); 1379 if (!non_swap_entry(entry)) 1380 rss[MM_SWAPENTS]--; 1381 else if (is_migration_entry(entry)) { 1382 struct page *page; 1383 1384 page = migration_entry_to_page(entry); 1385 rss[mm_counter(page)]--; 1386 } 1387 if (unlikely(!free_swap_and_cache(entry))) 1388 print_bad_pte(vma, addr, ptent, NULL); 1389 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1390 } while (pte++, addr += PAGE_SIZE, addr != end); 1391 1392 add_mm_rss_vec(mm, rss); 1393 arch_leave_lazy_mmu_mode(); 1394 1395 /* Do the actual TLB flush before dropping ptl */ 1396 if (force_flush) 1397 tlb_flush_mmu_tlbonly(tlb); 1398 pte_unmap_unlock(start_pte, ptl); 1399 1400 /* 1401 * If we forced a TLB flush (either due to running out of 1402 * batch buffers or because we needed to flush dirty TLB 1403 * entries before releasing the ptl), free the batched 1404 * memory too. Restart if we didn't do everything. 1405 */ 1406 if (force_flush) { 1407 force_flush = 0; 1408 tlb_flush_mmu_free(tlb); 1409 if (addr != end) 1410 goto again; 1411 } 1412 1413 return addr; 1414 } 1415 1416 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1417 struct vm_area_struct *vma, pud_t *pud, 1418 unsigned long addr, unsigned long end, 1419 struct zap_details *details) 1420 { 1421 pmd_t *pmd; 1422 unsigned long next; 1423 1424 pmd = pmd_offset(pud, addr); 1425 do { 1426 next = pmd_addr_end(addr, end); 1427 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1428 if (next - addr != HPAGE_PMD_SIZE) { 1429 VM_BUG_ON_VMA(vma_is_anonymous(vma) && 1430 !rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1431 __split_huge_pmd(vma, pmd, addr, false, NULL); 1432 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1433 goto next; 1434 /* fall through */ 1435 } 1436 /* 1437 * Here there can be other concurrent MADV_DONTNEED or 1438 * trans huge page faults running, and if the pmd is 1439 * none or trans huge it can change under us. This is 1440 * because MADV_DONTNEED holds the mmap_sem in read 1441 * mode. 1442 */ 1443 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1444 goto next; 1445 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1446 next: 1447 cond_resched(); 1448 } while (pmd++, addr = next, addr != end); 1449 1450 return addr; 1451 } 1452 1453 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1454 struct vm_area_struct *vma, p4d_t *p4d, 1455 unsigned long addr, unsigned long end, 1456 struct zap_details *details) 1457 { 1458 pud_t *pud; 1459 unsigned long next; 1460 1461 pud = pud_offset(p4d, addr); 1462 do { 1463 next = pud_addr_end(addr, end); 1464 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1465 if (next - addr != HPAGE_PUD_SIZE) { 1466 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1467 split_huge_pud(vma, pud, addr); 1468 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1469 goto next; 1470 /* fall through */ 1471 } 1472 if (pud_none_or_clear_bad(pud)) 1473 continue; 1474 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1475 next: 1476 cond_resched(); 1477 } while (pud++, addr = next, addr != end); 1478 1479 return addr; 1480 } 1481 1482 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1483 struct vm_area_struct *vma, pgd_t *pgd, 1484 unsigned long addr, unsigned long end, 1485 struct zap_details *details) 1486 { 1487 p4d_t *p4d; 1488 unsigned long next; 1489 1490 p4d = p4d_offset(pgd, addr); 1491 do { 1492 next = p4d_addr_end(addr, end); 1493 if (p4d_none_or_clear_bad(p4d)) 1494 continue; 1495 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1496 } while (p4d++, addr = next, addr != end); 1497 1498 return addr; 1499 } 1500 1501 void unmap_page_range(struct mmu_gather *tlb, 1502 struct vm_area_struct *vma, 1503 unsigned long addr, unsigned long end, 1504 struct zap_details *details) 1505 { 1506 pgd_t *pgd; 1507 unsigned long next; 1508 1509 BUG_ON(addr >= end); 1510 tlb_start_vma(tlb, vma); 1511 pgd = pgd_offset(vma->vm_mm, addr); 1512 do { 1513 next = pgd_addr_end(addr, end); 1514 if (pgd_none_or_clear_bad(pgd)) 1515 continue; 1516 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1517 } while (pgd++, addr = next, addr != end); 1518 tlb_end_vma(tlb, vma); 1519 } 1520 1521 1522 static void unmap_single_vma(struct mmu_gather *tlb, 1523 struct vm_area_struct *vma, unsigned long start_addr, 1524 unsigned long end_addr, 1525 struct zap_details *details) 1526 { 1527 unsigned long start = max(vma->vm_start, start_addr); 1528 unsigned long end; 1529 1530 if (start >= vma->vm_end) 1531 return; 1532 end = min(vma->vm_end, end_addr); 1533 if (end <= vma->vm_start) 1534 return; 1535 1536 if (vma->vm_file) 1537 uprobe_munmap(vma, start, end); 1538 1539 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1540 untrack_pfn(vma, 0, 0); 1541 1542 if (start != end) { 1543 if (unlikely(is_vm_hugetlb_page(vma))) { 1544 /* 1545 * It is undesirable to test vma->vm_file as it 1546 * should be non-null for valid hugetlb area. 1547 * However, vm_file will be NULL in the error 1548 * cleanup path of mmap_region. When 1549 * hugetlbfs ->mmap method fails, 1550 * mmap_region() nullifies vma->vm_file 1551 * before calling this function to clean up. 1552 * Since no pte has actually been setup, it is 1553 * safe to do nothing in this case. 1554 */ 1555 if (vma->vm_file) { 1556 i_mmap_lock_write(vma->vm_file->f_mapping); 1557 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1558 i_mmap_unlock_write(vma->vm_file->f_mapping); 1559 } 1560 } else 1561 unmap_page_range(tlb, vma, start, end, details); 1562 } 1563 } 1564 1565 /** 1566 * unmap_vmas - unmap a range of memory covered by a list of vma's 1567 * @tlb: address of the caller's struct mmu_gather 1568 * @vma: the starting vma 1569 * @start_addr: virtual address at which to start unmapping 1570 * @end_addr: virtual address at which to end unmapping 1571 * 1572 * Unmap all pages in the vma list. 1573 * 1574 * Only addresses between `start' and `end' will be unmapped. 1575 * 1576 * The VMA list must be sorted in ascending virtual address order. 1577 * 1578 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1579 * range after unmap_vmas() returns. So the only responsibility here is to 1580 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1581 * drops the lock and schedules. 1582 */ 1583 void unmap_vmas(struct mmu_gather *tlb, 1584 struct vm_area_struct *vma, unsigned long start_addr, 1585 unsigned long end_addr) 1586 { 1587 struct mm_struct *mm = vma->vm_mm; 1588 1589 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1590 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1591 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1592 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1593 } 1594 1595 /** 1596 * zap_page_range - remove user pages in a given range 1597 * @vma: vm_area_struct holding the applicable pages 1598 * @start: starting address of pages to zap 1599 * @size: number of bytes to zap 1600 * 1601 * Caller must protect the VMA list 1602 */ 1603 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1604 unsigned long size) 1605 { 1606 struct mm_struct *mm = vma->vm_mm; 1607 struct mmu_gather tlb; 1608 unsigned long end = start + size; 1609 1610 lru_add_drain(); 1611 tlb_gather_mmu(&tlb, mm, start, end); 1612 update_hiwater_rss(mm); 1613 mmu_notifier_invalidate_range_start(mm, start, end); 1614 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 1615 unmap_single_vma(&tlb, vma, start, end, NULL); 1616 1617 /* 1618 * zap_page_range does not specify whether mmap_sem should be 1619 * held for read or write. That allows parallel zap_page_range 1620 * operations to unmap a PTE and defer a flush meaning that 1621 * this call observes pte_none and fails to flush the TLB. 1622 * Rather than adding a complex API, ensure that no stale 1623 * TLB entries exist when this call returns. 1624 */ 1625 flush_tlb_range(vma, start, end); 1626 } 1627 1628 mmu_notifier_invalidate_range_end(mm, start, end); 1629 tlb_finish_mmu(&tlb, start, end); 1630 } 1631 1632 /** 1633 * zap_page_range_single - remove user pages in a given range 1634 * @vma: vm_area_struct holding the applicable pages 1635 * @address: starting address of pages to zap 1636 * @size: number of bytes to zap 1637 * @details: details of shared cache invalidation 1638 * 1639 * The range must fit into one VMA. 1640 */ 1641 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1642 unsigned long size, struct zap_details *details) 1643 { 1644 struct mm_struct *mm = vma->vm_mm; 1645 struct mmu_gather tlb; 1646 unsigned long end = address + size; 1647 1648 lru_add_drain(); 1649 tlb_gather_mmu(&tlb, mm, address, end); 1650 update_hiwater_rss(mm); 1651 mmu_notifier_invalidate_range_start(mm, address, end); 1652 unmap_single_vma(&tlb, vma, address, end, details); 1653 mmu_notifier_invalidate_range_end(mm, address, end); 1654 tlb_finish_mmu(&tlb, address, end); 1655 } 1656 1657 /** 1658 * zap_vma_ptes - remove ptes mapping the vma 1659 * @vma: vm_area_struct holding ptes to be zapped 1660 * @address: starting address of pages to zap 1661 * @size: number of bytes to zap 1662 * 1663 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1664 * 1665 * The entire address range must be fully contained within the vma. 1666 * 1667 * Returns 0 if successful. 1668 */ 1669 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1670 unsigned long size) 1671 { 1672 if (address < vma->vm_start || address + size > vma->vm_end || 1673 !(vma->vm_flags & VM_PFNMAP)) 1674 return -1; 1675 zap_page_range_single(vma, address, size, NULL); 1676 return 0; 1677 } 1678 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1679 1680 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1681 spinlock_t **ptl) 1682 { 1683 pgd_t *pgd; 1684 p4d_t *p4d; 1685 pud_t *pud; 1686 pmd_t *pmd; 1687 1688 pgd = pgd_offset(mm, addr); 1689 p4d = p4d_alloc(mm, pgd, addr); 1690 if (!p4d) 1691 return NULL; 1692 pud = pud_alloc(mm, p4d, addr); 1693 if (!pud) 1694 return NULL; 1695 pmd = pmd_alloc(mm, pud, addr); 1696 if (!pmd) 1697 return NULL; 1698 1699 VM_BUG_ON(pmd_trans_huge(*pmd)); 1700 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1701 } 1702 1703 /* 1704 * This is the old fallback for page remapping. 1705 * 1706 * For historical reasons, it only allows reserved pages. Only 1707 * old drivers should use this, and they needed to mark their 1708 * pages reserved for the old functions anyway. 1709 */ 1710 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1711 struct page *page, pgprot_t prot) 1712 { 1713 struct mm_struct *mm = vma->vm_mm; 1714 int retval; 1715 pte_t *pte; 1716 spinlock_t *ptl; 1717 1718 retval = -EINVAL; 1719 if (PageAnon(page)) 1720 goto out; 1721 retval = -ENOMEM; 1722 flush_dcache_page(page); 1723 pte = get_locked_pte(mm, addr, &ptl); 1724 if (!pte) 1725 goto out; 1726 retval = -EBUSY; 1727 if (!pte_none(*pte)) 1728 goto out_unlock; 1729 1730 /* Ok, finally just insert the thing.. */ 1731 get_page(page); 1732 inc_mm_counter_fast(mm, mm_counter_file(page)); 1733 page_add_file_rmap(page, false); 1734 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1735 1736 retval = 0; 1737 pte_unmap_unlock(pte, ptl); 1738 return retval; 1739 out_unlock: 1740 pte_unmap_unlock(pte, ptl); 1741 out: 1742 return retval; 1743 } 1744 1745 /** 1746 * vm_insert_page - insert single page into user vma 1747 * @vma: user vma to map to 1748 * @addr: target user address of this page 1749 * @page: source kernel page 1750 * 1751 * This allows drivers to insert individual pages they've allocated 1752 * into a user vma. 1753 * 1754 * The page has to be a nice clean _individual_ kernel allocation. 1755 * If you allocate a compound page, you need to have marked it as 1756 * such (__GFP_COMP), or manually just split the page up yourself 1757 * (see split_page()). 1758 * 1759 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1760 * took an arbitrary page protection parameter. This doesn't allow 1761 * that. Your vma protection will have to be set up correctly, which 1762 * means that if you want a shared writable mapping, you'd better 1763 * ask for a shared writable mapping! 1764 * 1765 * The page does not need to be reserved. 1766 * 1767 * Usually this function is called from f_op->mmap() handler 1768 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1769 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1770 * function from other places, for example from page-fault handler. 1771 */ 1772 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1773 struct page *page) 1774 { 1775 if (addr < vma->vm_start || addr >= vma->vm_end) 1776 return -EFAULT; 1777 if (!page_count(page)) 1778 return -EINVAL; 1779 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1780 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1781 BUG_ON(vma->vm_flags & VM_PFNMAP); 1782 vma->vm_flags |= VM_MIXEDMAP; 1783 } 1784 return insert_page(vma, addr, page, vma->vm_page_prot); 1785 } 1786 EXPORT_SYMBOL(vm_insert_page); 1787 1788 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1789 pfn_t pfn, pgprot_t prot, bool mkwrite) 1790 { 1791 struct mm_struct *mm = vma->vm_mm; 1792 int retval; 1793 pte_t *pte, entry; 1794 spinlock_t *ptl; 1795 1796 retval = -ENOMEM; 1797 pte = get_locked_pte(mm, addr, &ptl); 1798 if (!pte) 1799 goto out; 1800 retval = -EBUSY; 1801 if (!pte_none(*pte)) { 1802 if (mkwrite) { 1803 /* 1804 * For read faults on private mappings the PFN passed 1805 * in may not match the PFN we have mapped if the 1806 * mapped PFN is a writeable COW page. In the mkwrite 1807 * case we are creating a writable PTE for a shared 1808 * mapping and we expect the PFNs to match. 1809 */ 1810 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn))) 1811 goto out_unlock; 1812 entry = *pte; 1813 goto out_mkwrite; 1814 } else 1815 goto out_unlock; 1816 } 1817 1818 /* Ok, finally just insert the thing.. */ 1819 if (pfn_t_devmap(pfn)) 1820 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1821 else 1822 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1823 1824 out_mkwrite: 1825 if (mkwrite) { 1826 entry = pte_mkyoung(entry); 1827 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1828 } 1829 1830 set_pte_at(mm, addr, pte, entry); 1831 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1832 1833 retval = 0; 1834 out_unlock: 1835 pte_unmap_unlock(pte, ptl); 1836 out: 1837 return retval; 1838 } 1839 1840 /** 1841 * vm_insert_pfn - insert single pfn into user vma 1842 * @vma: user vma to map to 1843 * @addr: target user address of this page 1844 * @pfn: source kernel pfn 1845 * 1846 * Similar to vm_insert_page, this allows drivers to insert individual pages 1847 * they've allocated into a user vma. Same comments apply. 1848 * 1849 * This function should only be called from a vm_ops->fault handler, and 1850 * in that case the handler should return NULL. 1851 * 1852 * vma cannot be a COW mapping. 1853 * 1854 * As this is called only for pages that do not currently exist, we 1855 * do not need to flush old virtual caches or the TLB. 1856 */ 1857 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1858 unsigned long pfn) 1859 { 1860 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1861 } 1862 EXPORT_SYMBOL(vm_insert_pfn); 1863 1864 /** 1865 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1866 * @vma: user vma to map to 1867 * @addr: target user address of this page 1868 * @pfn: source kernel pfn 1869 * @pgprot: pgprot flags for the inserted page 1870 * 1871 * This is exactly like vm_insert_pfn, except that it allows drivers to 1872 * to override pgprot on a per-page basis. 1873 * 1874 * This only makes sense for IO mappings, and it makes no sense for 1875 * cow mappings. In general, using multiple vmas is preferable; 1876 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1877 * impractical. 1878 */ 1879 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1880 unsigned long pfn, pgprot_t pgprot) 1881 { 1882 int ret; 1883 /* 1884 * Technically, architectures with pte_special can avoid all these 1885 * restrictions (same for remap_pfn_range). However we would like 1886 * consistency in testing and feature parity among all, so we should 1887 * try to keep these invariants in place for everybody. 1888 */ 1889 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1890 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1891 (VM_PFNMAP|VM_MIXEDMAP)); 1892 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1893 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1894 1895 if (addr < vma->vm_start || addr >= vma->vm_end) 1896 return -EFAULT; 1897 1898 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1899 1900 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1901 false); 1902 1903 return ret; 1904 } 1905 EXPORT_SYMBOL(vm_insert_pfn_prot); 1906 1907 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1908 pfn_t pfn, bool mkwrite) 1909 { 1910 pgprot_t pgprot = vma->vm_page_prot; 1911 1912 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1913 1914 if (addr < vma->vm_start || addr >= vma->vm_end) 1915 return -EFAULT; 1916 1917 track_pfn_insert(vma, &pgprot, pfn); 1918 1919 /* 1920 * If we don't have pte special, then we have to use the pfn_valid() 1921 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1922 * refcount the page if pfn_valid is true (hence insert_page rather 1923 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1924 * without pte special, it would there be refcounted as a normal page. 1925 */ 1926 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1927 struct page *page; 1928 1929 /* 1930 * At this point we are committed to insert_page() 1931 * regardless of whether the caller specified flags that 1932 * result in pfn_t_has_page() == false. 1933 */ 1934 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1935 return insert_page(vma, addr, page, pgprot); 1936 } 1937 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1938 } 1939 1940 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1941 pfn_t pfn) 1942 { 1943 return __vm_insert_mixed(vma, addr, pfn, false); 1944 1945 } 1946 EXPORT_SYMBOL(vm_insert_mixed); 1947 1948 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, 1949 pfn_t pfn) 1950 { 1951 return __vm_insert_mixed(vma, addr, pfn, true); 1952 } 1953 EXPORT_SYMBOL(vm_insert_mixed_mkwrite); 1954 1955 /* 1956 * maps a range of physical memory into the requested pages. the old 1957 * mappings are removed. any references to nonexistent pages results 1958 * in null mappings (currently treated as "copy-on-access") 1959 */ 1960 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1961 unsigned long addr, unsigned long end, 1962 unsigned long pfn, pgprot_t prot) 1963 { 1964 pte_t *pte; 1965 spinlock_t *ptl; 1966 1967 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1968 if (!pte) 1969 return -ENOMEM; 1970 arch_enter_lazy_mmu_mode(); 1971 do { 1972 BUG_ON(!pte_none(*pte)); 1973 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1974 pfn++; 1975 } while (pte++, addr += PAGE_SIZE, addr != end); 1976 arch_leave_lazy_mmu_mode(); 1977 pte_unmap_unlock(pte - 1, ptl); 1978 return 0; 1979 } 1980 1981 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1982 unsigned long addr, unsigned long end, 1983 unsigned long pfn, pgprot_t prot) 1984 { 1985 pmd_t *pmd; 1986 unsigned long next; 1987 1988 pfn -= addr >> PAGE_SHIFT; 1989 pmd = pmd_alloc(mm, pud, addr); 1990 if (!pmd) 1991 return -ENOMEM; 1992 VM_BUG_ON(pmd_trans_huge(*pmd)); 1993 do { 1994 next = pmd_addr_end(addr, end); 1995 if (remap_pte_range(mm, pmd, addr, next, 1996 pfn + (addr >> PAGE_SHIFT), prot)) 1997 return -ENOMEM; 1998 } while (pmd++, addr = next, addr != end); 1999 return 0; 2000 } 2001 2002 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2003 unsigned long addr, unsigned long end, 2004 unsigned long pfn, pgprot_t prot) 2005 { 2006 pud_t *pud; 2007 unsigned long next; 2008 2009 pfn -= addr >> PAGE_SHIFT; 2010 pud = pud_alloc(mm, p4d, addr); 2011 if (!pud) 2012 return -ENOMEM; 2013 do { 2014 next = pud_addr_end(addr, end); 2015 if (remap_pmd_range(mm, pud, addr, next, 2016 pfn + (addr >> PAGE_SHIFT), prot)) 2017 return -ENOMEM; 2018 } while (pud++, addr = next, addr != end); 2019 return 0; 2020 } 2021 2022 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2023 unsigned long addr, unsigned long end, 2024 unsigned long pfn, pgprot_t prot) 2025 { 2026 p4d_t *p4d; 2027 unsigned long next; 2028 2029 pfn -= addr >> PAGE_SHIFT; 2030 p4d = p4d_alloc(mm, pgd, addr); 2031 if (!p4d) 2032 return -ENOMEM; 2033 do { 2034 next = p4d_addr_end(addr, end); 2035 if (remap_pud_range(mm, p4d, addr, next, 2036 pfn + (addr >> PAGE_SHIFT), prot)) 2037 return -ENOMEM; 2038 } while (p4d++, addr = next, addr != end); 2039 return 0; 2040 } 2041 2042 /** 2043 * remap_pfn_range - remap kernel memory to userspace 2044 * @vma: user vma to map to 2045 * @addr: target user address to start at 2046 * @pfn: physical address of kernel memory 2047 * @size: size of map area 2048 * @prot: page protection flags for this mapping 2049 * 2050 * Note: this is only safe if the mm semaphore is held when called. 2051 */ 2052 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2053 unsigned long pfn, unsigned long size, pgprot_t prot) 2054 { 2055 pgd_t *pgd; 2056 unsigned long next; 2057 unsigned long end = addr + PAGE_ALIGN(size); 2058 struct mm_struct *mm = vma->vm_mm; 2059 unsigned long remap_pfn = pfn; 2060 int err; 2061 2062 /* 2063 * Physically remapped pages are special. Tell the 2064 * rest of the world about it: 2065 * VM_IO tells people not to look at these pages 2066 * (accesses can have side effects). 2067 * VM_PFNMAP tells the core MM that the base pages are just 2068 * raw PFN mappings, and do not have a "struct page" associated 2069 * with them. 2070 * VM_DONTEXPAND 2071 * Disable vma merging and expanding with mremap(). 2072 * VM_DONTDUMP 2073 * Omit vma from core dump, even when VM_IO turned off. 2074 * 2075 * There's a horrible special case to handle copy-on-write 2076 * behaviour that some programs depend on. We mark the "original" 2077 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2078 * See vm_normal_page() for details. 2079 */ 2080 if (is_cow_mapping(vma->vm_flags)) { 2081 if (addr != vma->vm_start || end != vma->vm_end) 2082 return -EINVAL; 2083 vma->vm_pgoff = pfn; 2084 } 2085 2086 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2087 if (err) 2088 return -EINVAL; 2089 2090 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2091 2092 BUG_ON(addr >= end); 2093 pfn -= addr >> PAGE_SHIFT; 2094 pgd = pgd_offset(mm, addr); 2095 flush_cache_range(vma, addr, end); 2096 do { 2097 next = pgd_addr_end(addr, end); 2098 err = remap_p4d_range(mm, pgd, addr, next, 2099 pfn + (addr >> PAGE_SHIFT), prot); 2100 if (err) 2101 break; 2102 } while (pgd++, addr = next, addr != end); 2103 2104 if (err) 2105 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2106 2107 return err; 2108 } 2109 EXPORT_SYMBOL(remap_pfn_range); 2110 2111 /** 2112 * vm_iomap_memory - remap memory to userspace 2113 * @vma: user vma to map to 2114 * @start: start of area 2115 * @len: size of area 2116 * 2117 * This is a simplified io_remap_pfn_range() for common driver use. The 2118 * driver just needs to give us the physical memory range to be mapped, 2119 * we'll figure out the rest from the vma information. 2120 * 2121 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2122 * whatever write-combining details or similar. 2123 */ 2124 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2125 { 2126 unsigned long vm_len, pfn, pages; 2127 2128 /* Check that the physical memory area passed in looks valid */ 2129 if (start + len < start) 2130 return -EINVAL; 2131 /* 2132 * You *really* shouldn't map things that aren't page-aligned, 2133 * but we've historically allowed it because IO memory might 2134 * just have smaller alignment. 2135 */ 2136 len += start & ~PAGE_MASK; 2137 pfn = start >> PAGE_SHIFT; 2138 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2139 if (pfn + pages < pfn) 2140 return -EINVAL; 2141 2142 /* We start the mapping 'vm_pgoff' pages into the area */ 2143 if (vma->vm_pgoff > pages) 2144 return -EINVAL; 2145 pfn += vma->vm_pgoff; 2146 pages -= vma->vm_pgoff; 2147 2148 /* Can we fit all of the mapping? */ 2149 vm_len = vma->vm_end - vma->vm_start; 2150 if (vm_len >> PAGE_SHIFT > pages) 2151 return -EINVAL; 2152 2153 /* Ok, let it rip */ 2154 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2155 } 2156 EXPORT_SYMBOL(vm_iomap_memory); 2157 2158 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2159 unsigned long addr, unsigned long end, 2160 pte_fn_t fn, void *data) 2161 { 2162 pte_t *pte; 2163 int err; 2164 pgtable_t token; 2165 spinlock_t *uninitialized_var(ptl); 2166 2167 pte = (mm == &init_mm) ? 2168 pte_alloc_kernel(pmd, addr) : 2169 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2170 if (!pte) 2171 return -ENOMEM; 2172 2173 BUG_ON(pmd_huge(*pmd)); 2174 2175 arch_enter_lazy_mmu_mode(); 2176 2177 token = pmd_pgtable(*pmd); 2178 2179 do { 2180 err = fn(pte++, token, addr, data); 2181 if (err) 2182 break; 2183 } while (addr += PAGE_SIZE, addr != end); 2184 2185 arch_leave_lazy_mmu_mode(); 2186 2187 if (mm != &init_mm) 2188 pte_unmap_unlock(pte-1, ptl); 2189 return err; 2190 } 2191 2192 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2193 unsigned long addr, unsigned long end, 2194 pte_fn_t fn, void *data) 2195 { 2196 pmd_t *pmd; 2197 unsigned long next; 2198 int err; 2199 2200 BUG_ON(pud_huge(*pud)); 2201 2202 pmd = pmd_alloc(mm, pud, addr); 2203 if (!pmd) 2204 return -ENOMEM; 2205 do { 2206 next = pmd_addr_end(addr, end); 2207 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2208 if (err) 2209 break; 2210 } while (pmd++, addr = next, addr != end); 2211 return err; 2212 } 2213 2214 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2215 unsigned long addr, unsigned long end, 2216 pte_fn_t fn, void *data) 2217 { 2218 pud_t *pud; 2219 unsigned long next; 2220 int err; 2221 2222 pud = pud_alloc(mm, p4d, addr); 2223 if (!pud) 2224 return -ENOMEM; 2225 do { 2226 next = pud_addr_end(addr, end); 2227 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2228 if (err) 2229 break; 2230 } while (pud++, addr = next, addr != end); 2231 return err; 2232 } 2233 2234 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2235 unsigned long addr, unsigned long end, 2236 pte_fn_t fn, void *data) 2237 { 2238 p4d_t *p4d; 2239 unsigned long next; 2240 int err; 2241 2242 p4d = p4d_alloc(mm, pgd, addr); 2243 if (!p4d) 2244 return -ENOMEM; 2245 do { 2246 next = p4d_addr_end(addr, end); 2247 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2248 if (err) 2249 break; 2250 } while (p4d++, addr = next, addr != end); 2251 return err; 2252 } 2253 2254 /* 2255 * Scan a region of virtual memory, filling in page tables as necessary 2256 * and calling a provided function on each leaf page table. 2257 */ 2258 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2259 unsigned long size, pte_fn_t fn, void *data) 2260 { 2261 pgd_t *pgd; 2262 unsigned long next; 2263 unsigned long end = addr + size; 2264 int err; 2265 2266 if (WARN_ON(addr >= end)) 2267 return -EINVAL; 2268 2269 pgd = pgd_offset(mm, addr); 2270 do { 2271 next = pgd_addr_end(addr, end); 2272 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2273 if (err) 2274 break; 2275 } while (pgd++, addr = next, addr != end); 2276 2277 return err; 2278 } 2279 EXPORT_SYMBOL_GPL(apply_to_page_range); 2280 2281 /* 2282 * handle_pte_fault chooses page fault handler according to an entry which was 2283 * read non-atomically. Before making any commitment, on those architectures 2284 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2285 * parts, do_swap_page must check under lock before unmapping the pte and 2286 * proceeding (but do_wp_page is only called after already making such a check; 2287 * and do_anonymous_page can safely check later on). 2288 */ 2289 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2290 pte_t *page_table, pte_t orig_pte) 2291 { 2292 int same = 1; 2293 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2294 if (sizeof(pte_t) > sizeof(unsigned long)) { 2295 spinlock_t *ptl = pte_lockptr(mm, pmd); 2296 spin_lock(ptl); 2297 same = pte_same(*page_table, orig_pte); 2298 spin_unlock(ptl); 2299 } 2300 #endif 2301 pte_unmap(page_table); 2302 return same; 2303 } 2304 2305 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2306 { 2307 debug_dma_assert_idle(src); 2308 2309 /* 2310 * If the source page was a PFN mapping, we don't have 2311 * a "struct page" for it. We do a best-effort copy by 2312 * just copying from the original user address. If that 2313 * fails, we just zero-fill it. Live with it. 2314 */ 2315 if (unlikely(!src)) { 2316 void *kaddr = kmap_atomic(dst); 2317 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2318 2319 /* 2320 * This really shouldn't fail, because the page is there 2321 * in the page tables. But it might just be unreadable, 2322 * in which case we just give up and fill the result with 2323 * zeroes. 2324 */ 2325 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2326 clear_page(kaddr); 2327 kunmap_atomic(kaddr); 2328 flush_dcache_page(dst); 2329 } else 2330 copy_user_highpage(dst, src, va, vma); 2331 } 2332 2333 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2334 { 2335 struct file *vm_file = vma->vm_file; 2336 2337 if (vm_file) 2338 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2339 2340 /* 2341 * Special mappings (e.g. VDSO) do not have any file so fake 2342 * a default GFP_KERNEL for them. 2343 */ 2344 return GFP_KERNEL; 2345 } 2346 2347 /* 2348 * Notify the address space that the page is about to become writable so that 2349 * it can prohibit this or wait for the page to get into an appropriate state. 2350 * 2351 * We do this without the lock held, so that it can sleep if it needs to. 2352 */ 2353 static int do_page_mkwrite(struct vm_fault *vmf) 2354 { 2355 int ret; 2356 struct page *page = vmf->page; 2357 unsigned int old_flags = vmf->flags; 2358 2359 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2360 2361 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2362 /* Restore original flags so that caller is not surprised */ 2363 vmf->flags = old_flags; 2364 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2365 return ret; 2366 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2367 lock_page(page); 2368 if (!page->mapping) { 2369 unlock_page(page); 2370 return 0; /* retry */ 2371 } 2372 ret |= VM_FAULT_LOCKED; 2373 } else 2374 VM_BUG_ON_PAGE(!PageLocked(page), page); 2375 return ret; 2376 } 2377 2378 /* 2379 * Handle dirtying of a page in shared file mapping on a write fault. 2380 * 2381 * The function expects the page to be locked and unlocks it. 2382 */ 2383 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2384 struct page *page) 2385 { 2386 struct address_space *mapping; 2387 bool dirtied; 2388 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2389 2390 dirtied = set_page_dirty(page); 2391 VM_BUG_ON_PAGE(PageAnon(page), page); 2392 /* 2393 * Take a local copy of the address_space - page.mapping may be zeroed 2394 * by truncate after unlock_page(). The address_space itself remains 2395 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2396 * release semantics to prevent the compiler from undoing this copying. 2397 */ 2398 mapping = page_rmapping(page); 2399 unlock_page(page); 2400 2401 if ((dirtied || page_mkwrite) && mapping) { 2402 /* 2403 * Some device drivers do not set page.mapping 2404 * but still dirty their pages 2405 */ 2406 balance_dirty_pages_ratelimited(mapping); 2407 } 2408 2409 if (!page_mkwrite) 2410 file_update_time(vma->vm_file); 2411 } 2412 2413 /* 2414 * Handle write page faults for pages that can be reused in the current vma 2415 * 2416 * This can happen either due to the mapping being with the VM_SHARED flag, 2417 * or due to us being the last reference standing to the page. In either 2418 * case, all we need to do here is to mark the page as writable and update 2419 * any related book-keeping. 2420 */ 2421 static inline void wp_page_reuse(struct vm_fault *vmf) 2422 __releases(vmf->ptl) 2423 { 2424 struct vm_area_struct *vma = vmf->vma; 2425 struct page *page = vmf->page; 2426 pte_t entry; 2427 /* 2428 * Clear the pages cpupid information as the existing 2429 * information potentially belongs to a now completely 2430 * unrelated process. 2431 */ 2432 if (page) 2433 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2434 2435 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2436 entry = pte_mkyoung(vmf->orig_pte); 2437 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2438 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2439 update_mmu_cache(vma, vmf->address, vmf->pte); 2440 pte_unmap_unlock(vmf->pte, vmf->ptl); 2441 } 2442 2443 /* 2444 * Handle the case of a page which we actually need to copy to a new page. 2445 * 2446 * Called with mmap_sem locked and the old page referenced, but 2447 * without the ptl held. 2448 * 2449 * High level logic flow: 2450 * 2451 * - Allocate a page, copy the content of the old page to the new one. 2452 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2453 * - Take the PTL. If the pte changed, bail out and release the allocated page 2454 * - If the pte is still the way we remember it, update the page table and all 2455 * relevant references. This includes dropping the reference the page-table 2456 * held to the old page, as well as updating the rmap. 2457 * - In any case, unlock the PTL and drop the reference we took to the old page. 2458 */ 2459 static int wp_page_copy(struct vm_fault *vmf) 2460 { 2461 struct vm_area_struct *vma = vmf->vma; 2462 struct mm_struct *mm = vma->vm_mm; 2463 struct page *old_page = vmf->page; 2464 struct page *new_page = NULL; 2465 pte_t entry; 2466 int page_copied = 0; 2467 const unsigned long mmun_start = vmf->address & PAGE_MASK; 2468 const unsigned long mmun_end = mmun_start + PAGE_SIZE; 2469 struct mem_cgroup *memcg; 2470 2471 if (unlikely(anon_vma_prepare(vma))) 2472 goto oom; 2473 2474 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2475 new_page = alloc_zeroed_user_highpage_movable(vma, 2476 vmf->address); 2477 if (!new_page) 2478 goto oom; 2479 } else { 2480 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2481 vmf->address); 2482 if (!new_page) 2483 goto oom; 2484 cow_user_page(new_page, old_page, vmf->address, vma); 2485 } 2486 2487 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) 2488 goto oom_free_new; 2489 2490 __SetPageUptodate(new_page); 2491 2492 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2493 2494 /* 2495 * Re-check the pte - we dropped the lock 2496 */ 2497 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2498 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2499 if (old_page) { 2500 if (!PageAnon(old_page)) { 2501 dec_mm_counter_fast(mm, 2502 mm_counter_file(old_page)); 2503 inc_mm_counter_fast(mm, MM_ANONPAGES); 2504 } 2505 } else { 2506 inc_mm_counter_fast(mm, MM_ANONPAGES); 2507 } 2508 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2509 entry = mk_pte(new_page, vma->vm_page_prot); 2510 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2511 /* 2512 * Clear the pte entry and flush it first, before updating the 2513 * pte with the new entry. This will avoid a race condition 2514 * seen in the presence of one thread doing SMC and another 2515 * thread doing COW. 2516 */ 2517 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2518 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2519 mem_cgroup_commit_charge(new_page, memcg, false, false); 2520 lru_cache_add_active_or_unevictable(new_page, vma); 2521 /* 2522 * We call the notify macro here because, when using secondary 2523 * mmu page tables (such as kvm shadow page tables), we want the 2524 * new page to be mapped directly into the secondary page table. 2525 */ 2526 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2527 update_mmu_cache(vma, vmf->address, vmf->pte); 2528 if (old_page) { 2529 /* 2530 * Only after switching the pte to the new page may 2531 * we remove the mapcount here. Otherwise another 2532 * process may come and find the rmap count decremented 2533 * before the pte is switched to the new page, and 2534 * "reuse" the old page writing into it while our pte 2535 * here still points into it and can be read by other 2536 * threads. 2537 * 2538 * The critical issue is to order this 2539 * page_remove_rmap with the ptp_clear_flush above. 2540 * Those stores are ordered by (if nothing else,) 2541 * the barrier present in the atomic_add_negative 2542 * in page_remove_rmap. 2543 * 2544 * Then the TLB flush in ptep_clear_flush ensures that 2545 * no process can access the old page before the 2546 * decremented mapcount is visible. And the old page 2547 * cannot be reused until after the decremented 2548 * mapcount is visible. So transitively, TLBs to 2549 * old page will be flushed before it can be reused. 2550 */ 2551 page_remove_rmap(old_page, false); 2552 } 2553 2554 /* Free the old page.. */ 2555 new_page = old_page; 2556 page_copied = 1; 2557 } else { 2558 mem_cgroup_cancel_charge(new_page, memcg, false); 2559 } 2560 2561 if (new_page) 2562 put_page(new_page); 2563 2564 pte_unmap_unlock(vmf->pte, vmf->ptl); 2565 /* 2566 * No need to double call mmu_notifier->invalidate_range() callback as 2567 * the above ptep_clear_flush_notify() did already call it. 2568 */ 2569 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end); 2570 if (old_page) { 2571 /* 2572 * Don't let another task, with possibly unlocked vma, 2573 * keep the mlocked page. 2574 */ 2575 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2576 lock_page(old_page); /* LRU manipulation */ 2577 if (PageMlocked(old_page)) 2578 munlock_vma_page(old_page); 2579 unlock_page(old_page); 2580 } 2581 put_page(old_page); 2582 } 2583 return page_copied ? VM_FAULT_WRITE : 0; 2584 oom_free_new: 2585 put_page(new_page); 2586 oom: 2587 if (old_page) 2588 put_page(old_page); 2589 return VM_FAULT_OOM; 2590 } 2591 2592 /** 2593 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2594 * writeable once the page is prepared 2595 * 2596 * @vmf: structure describing the fault 2597 * 2598 * This function handles all that is needed to finish a write page fault in a 2599 * shared mapping due to PTE being read-only once the mapped page is prepared. 2600 * It handles locking of PTE and modifying it. The function returns 2601 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE 2602 * lock. 2603 * 2604 * The function expects the page to be locked or other protection against 2605 * concurrent faults / writeback (such as DAX radix tree locks). 2606 */ 2607 int finish_mkwrite_fault(struct vm_fault *vmf) 2608 { 2609 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2610 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2611 &vmf->ptl); 2612 /* 2613 * We might have raced with another page fault while we released the 2614 * pte_offset_map_lock. 2615 */ 2616 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2617 pte_unmap_unlock(vmf->pte, vmf->ptl); 2618 return VM_FAULT_NOPAGE; 2619 } 2620 wp_page_reuse(vmf); 2621 return 0; 2622 } 2623 2624 /* 2625 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2626 * mapping 2627 */ 2628 static int wp_pfn_shared(struct vm_fault *vmf) 2629 { 2630 struct vm_area_struct *vma = vmf->vma; 2631 2632 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2633 int ret; 2634 2635 pte_unmap_unlock(vmf->pte, vmf->ptl); 2636 vmf->flags |= FAULT_FLAG_MKWRITE; 2637 ret = vma->vm_ops->pfn_mkwrite(vmf); 2638 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2639 return ret; 2640 return finish_mkwrite_fault(vmf); 2641 } 2642 wp_page_reuse(vmf); 2643 return VM_FAULT_WRITE; 2644 } 2645 2646 static int wp_page_shared(struct vm_fault *vmf) 2647 __releases(vmf->ptl) 2648 { 2649 struct vm_area_struct *vma = vmf->vma; 2650 2651 get_page(vmf->page); 2652 2653 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2654 int tmp; 2655 2656 pte_unmap_unlock(vmf->pte, vmf->ptl); 2657 tmp = do_page_mkwrite(vmf); 2658 if (unlikely(!tmp || (tmp & 2659 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2660 put_page(vmf->page); 2661 return tmp; 2662 } 2663 tmp = finish_mkwrite_fault(vmf); 2664 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2665 unlock_page(vmf->page); 2666 put_page(vmf->page); 2667 return tmp; 2668 } 2669 } else { 2670 wp_page_reuse(vmf); 2671 lock_page(vmf->page); 2672 } 2673 fault_dirty_shared_page(vma, vmf->page); 2674 put_page(vmf->page); 2675 2676 return VM_FAULT_WRITE; 2677 } 2678 2679 /* 2680 * This routine handles present pages, when users try to write 2681 * to a shared page. It is done by copying the page to a new address 2682 * and decrementing the shared-page counter for the old page. 2683 * 2684 * Note that this routine assumes that the protection checks have been 2685 * done by the caller (the low-level page fault routine in most cases). 2686 * Thus we can safely just mark it writable once we've done any necessary 2687 * COW. 2688 * 2689 * We also mark the page dirty at this point even though the page will 2690 * change only once the write actually happens. This avoids a few races, 2691 * and potentially makes it more efficient. 2692 * 2693 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2694 * but allow concurrent faults), with pte both mapped and locked. 2695 * We return with mmap_sem still held, but pte unmapped and unlocked. 2696 */ 2697 static int do_wp_page(struct vm_fault *vmf) 2698 __releases(vmf->ptl) 2699 { 2700 struct vm_area_struct *vma = vmf->vma; 2701 2702 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2703 if (!vmf->page) { 2704 /* 2705 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2706 * VM_PFNMAP VMA. 2707 * 2708 * We should not cow pages in a shared writeable mapping. 2709 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2710 */ 2711 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2712 (VM_WRITE|VM_SHARED)) 2713 return wp_pfn_shared(vmf); 2714 2715 pte_unmap_unlock(vmf->pte, vmf->ptl); 2716 return wp_page_copy(vmf); 2717 } 2718 2719 /* 2720 * Take out anonymous pages first, anonymous shared vmas are 2721 * not dirty accountable. 2722 */ 2723 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { 2724 int total_map_swapcount; 2725 if (!trylock_page(vmf->page)) { 2726 get_page(vmf->page); 2727 pte_unmap_unlock(vmf->pte, vmf->ptl); 2728 lock_page(vmf->page); 2729 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2730 vmf->address, &vmf->ptl); 2731 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2732 unlock_page(vmf->page); 2733 pte_unmap_unlock(vmf->pte, vmf->ptl); 2734 put_page(vmf->page); 2735 return 0; 2736 } 2737 put_page(vmf->page); 2738 } 2739 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2740 if (total_map_swapcount == 1) { 2741 /* 2742 * The page is all ours. Move it to 2743 * our anon_vma so the rmap code will 2744 * not search our parent or siblings. 2745 * Protected against the rmap code by 2746 * the page lock. 2747 */ 2748 page_move_anon_rmap(vmf->page, vma); 2749 } 2750 unlock_page(vmf->page); 2751 wp_page_reuse(vmf); 2752 return VM_FAULT_WRITE; 2753 } 2754 unlock_page(vmf->page); 2755 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2756 (VM_WRITE|VM_SHARED))) { 2757 return wp_page_shared(vmf); 2758 } 2759 2760 /* 2761 * Ok, we need to copy. Oh, well.. 2762 */ 2763 get_page(vmf->page); 2764 2765 pte_unmap_unlock(vmf->pte, vmf->ptl); 2766 return wp_page_copy(vmf); 2767 } 2768 2769 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2770 unsigned long start_addr, unsigned long end_addr, 2771 struct zap_details *details) 2772 { 2773 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2774 } 2775 2776 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2777 struct zap_details *details) 2778 { 2779 struct vm_area_struct *vma; 2780 pgoff_t vba, vea, zba, zea; 2781 2782 vma_interval_tree_foreach(vma, root, 2783 details->first_index, details->last_index) { 2784 2785 vba = vma->vm_pgoff; 2786 vea = vba + vma_pages(vma) - 1; 2787 zba = details->first_index; 2788 if (zba < vba) 2789 zba = vba; 2790 zea = details->last_index; 2791 if (zea > vea) 2792 zea = vea; 2793 2794 unmap_mapping_range_vma(vma, 2795 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2796 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2797 details); 2798 } 2799 } 2800 2801 /** 2802 * unmap_mapping_pages() - Unmap pages from processes. 2803 * @mapping: The address space containing pages to be unmapped. 2804 * @start: Index of first page to be unmapped. 2805 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2806 * @even_cows: Whether to unmap even private COWed pages. 2807 * 2808 * Unmap the pages in this address space from any userspace process which 2809 * has them mmaped. Generally, you want to remove COWed pages as well when 2810 * a file is being truncated, but not when invalidating pages from the page 2811 * cache. 2812 */ 2813 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2814 pgoff_t nr, bool even_cows) 2815 { 2816 struct zap_details details = { }; 2817 2818 details.check_mapping = even_cows ? NULL : mapping; 2819 details.first_index = start; 2820 details.last_index = start + nr - 1; 2821 if (details.last_index < details.first_index) 2822 details.last_index = ULONG_MAX; 2823 2824 i_mmap_lock_write(mapping); 2825 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2826 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2827 i_mmap_unlock_write(mapping); 2828 } 2829 2830 /** 2831 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2832 * address_space corresponding to the specified byte range in the underlying 2833 * file. 2834 * 2835 * @mapping: the address space containing mmaps to be unmapped. 2836 * @holebegin: byte in first page to unmap, relative to the start of 2837 * the underlying file. This will be rounded down to a PAGE_SIZE 2838 * boundary. Note that this is different from truncate_pagecache(), which 2839 * must keep the partial page. In contrast, we must get rid of 2840 * partial pages. 2841 * @holelen: size of prospective hole in bytes. This will be rounded 2842 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2843 * end of the file. 2844 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2845 * but 0 when invalidating pagecache, don't throw away private data. 2846 */ 2847 void unmap_mapping_range(struct address_space *mapping, 2848 loff_t const holebegin, loff_t const holelen, int even_cows) 2849 { 2850 pgoff_t hba = holebegin >> PAGE_SHIFT; 2851 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2852 2853 /* Check for overflow. */ 2854 if (sizeof(holelen) > sizeof(hlen)) { 2855 long long holeend = 2856 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2857 if (holeend & ~(long long)ULONG_MAX) 2858 hlen = ULONG_MAX - hba + 1; 2859 } 2860 2861 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2862 } 2863 EXPORT_SYMBOL(unmap_mapping_range); 2864 2865 /* 2866 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2867 * but allow concurrent faults), and pte mapped but not yet locked. 2868 * We return with pte unmapped and unlocked. 2869 * 2870 * We return with the mmap_sem locked or unlocked in the same cases 2871 * as does filemap_fault(). 2872 */ 2873 int do_swap_page(struct vm_fault *vmf) 2874 { 2875 struct vm_area_struct *vma = vmf->vma; 2876 struct page *page = NULL, *swapcache = NULL; 2877 struct mem_cgroup *memcg; 2878 struct vma_swap_readahead swap_ra; 2879 swp_entry_t entry; 2880 pte_t pte; 2881 int locked; 2882 int exclusive = 0; 2883 int ret = 0; 2884 bool vma_readahead = swap_use_vma_readahead(); 2885 2886 if (vma_readahead) { 2887 page = swap_readahead_detect(vmf, &swap_ra); 2888 swapcache = page; 2889 } 2890 2891 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) { 2892 if (page) 2893 put_page(page); 2894 goto out; 2895 } 2896 2897 entry = pte_to_swp_entry(vmf->orig_pte); 2898 if (unlikely(non_swap_entry(entry))) { 2899 if (is_migration_entry(entry)) { 2900 migration_entry_wait(vma->vm_mm, vmf->pmd, 2901 vmf->address); 2902 } else if (is_device_private_entry(entry)) { 2903 /* 2904 * For un-addressable device memory we call the pgmap 2905 * fault handler callback. The callback must migrate 2906 * the page back to some CPU accessible page. 2907 */ 2908 ret = device_private_entry_fault(vma, vmf->address, entry, 2909 vmf->flags, vmf->pmd); 2910 } else if (is_hwpoison_entry(entry)) { 2911 ret = VM_FAULT_HWPOISON; 2912 } else { 2913 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2914 ret = VM_FAULT_SIGBUS; 2915 } 2916 goto out; 2917 } 2918 2919 2920 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2921 if (!page) { 2922 page = lookup_swap_cache(entry, vma_readahead ? vma : NULL, 2923 vmf->address); 2924 swapcache = page; 2925 } 2926 2927 if (!page) { 2928 struct swap_info_struct *si = swp_swap_info(entry); 2929 2930 if (si->flags & SWP_SYNCHRONOUS_IO && 2931 __swap_count(si, entry) == 1) { 2932 /* skip swapcache */ 2933 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 2934 if (page) { 2935 __SetPageLocked(page); 2936 __SetPageSwapBacked(page); 2937 set_page_private(page, entry.val); 2938 lru_cache_add_anon(page); 2939 swap_readpage(page, true); 2940 } 2941 } else { 2942 if (vma_readahead) 2943 page = do_swap_page_readahead(entry, 2944 GFP_HIGHUSER_MOVABLE, vmf, &swap_ra); 2945 else 2946 page = swapin_readahead(entry, 2947 GFP_HIGHUSER_MOVABLE, vma, vmf->address); 2948 swapcache = page; 2949 } 2950 2951 if (!page) { 2952 /* 2953 * Back out if somebody else faulted in this pte 2954 * while we released the pte lock. 2955 */ 2956 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2957 vmf->address, &vmf->ptl); 2958 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2959 ret = VM_FAULT_OOM; 2960 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2961 goto unlock; 2962 } 2963 2964 /* Had to read the page from swap area: Major fault */ 2965 ret = VM_FAULT_MAJOR; 2966 count_vm_event(PGMAJFAULT); 2967 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2968 } else if (PageHWPoison(page)) { 2969 /* 2970 * hwpoisoned dirty swapcache pages are kept for killing 2971 * owner processes (which may be unknown at hwpoison time) 2972 */ 2973 ret = VM_FAULT_HWPOISON; 2974 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2975 swapcache = page; 2976 goto out_release; 2977 } 2978 2979 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2980 2981 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2982 if (!locked) { 2983 ret |= VM_FAULT_RETRY; 2984 goto out_release; 2985 } 2986 2987 /* 2988 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2989 * release the swapcache from under us. The page pin, and pte_same 2990 * test below, are not enough to exclude that. Even if it is still 2991 * swapcache, we need to check that the page's swap has not changed. 2992 */ 2993 if (unlikely((!PageSwapCache(page) || 2994 page_private(page) != entry.val)) && swapcache) 2995 goto out_page; 2996 2997 page = ksm_might_need_to_copy(page, vma, vmf->address); 2998 if (unlikely(!page)) { 2999 ret = VM_FAULT_OOM; 3000 page = swapcache; 3001 goto out_page; 3002 } 3003 3004 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 3005 &memcg, false)) { 3006 ret = VM_FAULT_OOM; 3007 goto out_page; 3008 } 3009 3010 /* 3011 * Back out if somebody else already faulted in this pte. 3012 */ 3013 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3014 &vmf->ptl); 3015 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3016 goto out_nomap; 3017 3018 if (unlikely(!PageUptodate(page))) { 3019 ret = VM_FAULT_SIGBUS; 3020 goto out_nomap; 3021 } 3022 3023 /* 3024 * The page isn't present yet, go ahead with the fault. 3025 * 3026 * Be careful about the sequence of operations here. 3027 * To get its accounting right, reuse_swap_page() must be called 3028 * while the page is counted on swap but not yet in mapcount i.e. 3029 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3030 * must be called after the swap_free(), or it will never succeed. 3031 */ 3032 3033 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3034 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3035 pte = mk_pte(page, vma->vm_page_prot); 3036 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3037 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3038 vmf->flags &= ~FAULT_FLAG_WRITE; 3039 ret |= VM_FAULT_WRITE; 3040 exclusive = RMAP_EXCLUSIVE; 3041 } 3042 flush_icache_page(vma, page); 3043 if (pte_swp_soft_dirty(vmf->orig_pte)) 3044 pte = pte_mksoft_dirty(pte); 3045 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3046 vmf->orig_pte = pte; 3047 3048 /* ksm created a completely new copy */ 3049 if (unlikely(page != swapcache && swapcache)) { 3050 page_add_new_anon_rmap(page, vma, vmf->address, false); 3051 mem_cgroup_commit_charge(page, memcg, false, false); 3052 lru_cache_add_active_or_unevictable(page, vma); 3053 } else { 3054 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3055 mem_cgroup_commit_charge(page, memcg, true, false); 3056 activate_page(page); 3057 } 3058 3059 swap_free(entry); 3060 if (mem_cgroup_swap_full(page) || 3061 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3062 try_to_free_swap(page); 3063 unlock_page(page); 3064 if (page != swapcache && swapcache) { 3065 /* 3066 * Hold the lock to avoid the swap entry to be reused 3067 * until we take the PT lock for the pte_same() check 3068 * (to avoid false positives from pte_same). For 3069 * further safety release the lock after the swap_free 3070 * so that the swap count won't change under a 3071 * parallel locked swapcache. 3072 */ 3073 unlock_page(swapcache); 3074 put_page(swapcache); 3075 } 3076 3077 if (vmf->flags & FAULT_FLAG_WRITE) { 3078 ret |= do_wp_page(vmf); 3079 if (ret & VM_FAULT_ERROR) 3080 ret &= VM_FAULT_ERROR; 3081 goto out; 3082 } 3083 3084 /* No need to invalidate - it was non-present before */ 3085 update_mmu_cache(vma, vmf->address, vmf->pte); 3086 unlock: 3087 pte_unmap_unlock(vmf->pte, vmf->ptl); 3088 out: 3089 return ret; 3090 out_nomap: 3091 mem_cgroup_cancel_charge(page, memcg, false); 3092 pte_unmap_unlock(vmf->pte, vmf->ptl); 3093 out_page: 3094 unlock_page(page); 3095 out_release: 3096 put_page(page); 3097 if (page != swapcache && swapcache) { 3098 unlock_page(swapcache); 3099 put_page(swapcache); 3100 } 3101 return ret; 3102 } 3103 3104 /* 3105 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3106 * but allow concurrent faults), and pte mapped but not yet locked. 3107 * We return with mmap_sem still held, but pte unmapped and unlocked. 3108 */ 3109 static int do_anonymous_page(struct vm_fault *vmf) 3110 { 3111 struct vm_area_struct *vma = vmf->vma; 3112 struct mem_cgroup *memcg; 3113 struct page *page; 3114 int ret = 0; 3115 pte_t entry; 3116 3117 /* File mapping without ->vm_ops ? */ 3118 if (vma->vm_flags & VM_SHARED) 3119 return VM_FAULT_SIGBUS; 3120 3121 /* 3122 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3123 * pte_offset_map() on pmds where a huge pmd might be created 3124 * from a different thread. 3125 * 3126 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 3127 * parallel threads are excluded by other means. 3128 * 3129 * Here we only have down_read(mmap_sem). 3130 */ 3131 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address)) 3132 return VM_FAULT_OOM; 3133 3134 /* See the comment in pte_alloc_one_map() */ 3135 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3136 return 0; 3137 3138 /* Use the zero-page for reads */ 3139 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3140 !mm_forbids_zeropage(vma->vm_mm)) { 3141 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3142 vma->vm_page_prot)); 3143 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3144 vmf->address, &vmf->ptl); 3145 if (!pte_none(*vmf->pte)) 3146 goto unlock; 3147 ret = check_stable_address_space(vma->vm_mm); 3148 if (ret) 3149 goto unlock; 3150 /* Deliver the page fault to userland, check inside PT lock */ 3151 if (userfaultfd_missing(vma)) { 3152 pte_unmap_unlock(vmf->pte, vmf->ptl); 3153 return handle_userfault(vmf, VM_UFFD_MISSING); 3154 } 3155 goto setpte; 3156 } 3157 3158 /* Allocate our own private page. */ 3159 if (unlikely(anon_vma_prepare(vma))) 3160 goto oom; 3161 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3162 if (!page) 3163 goto oom; 3164 3165 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 3166 goto oom_free_page; 3167 3168 /* 3169 * The memory barrier inside __SetPageUptodate makes sure that 3170 * preceeding stores to the page contents become visible before 3171 * the set_pte_at() write. 3172 */ 3173 __SetPageUptodate(page); 3174 3175 entry = mk_pte(page, vma->vm_page_prot); 3176 if (vma->vm_flags & VM_WRITE) 3177 entry = pte_mkwrite(pte_mkdirty(entry)); 3178 3179 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3180 &vmf->ptl); 3181 if (!pte_none(*vmf->pte)) 3182 goto release; 3183 3184 ret = check_stable_address_space(vma->vm_mm); 3185 if (ret) 3186 goto release; 3187 3188 /* Deliver the page fault to userland, check inside PT lock */ 3189 if (userfaultfd_missing(vma)) { 3190 pte_unmap_unlock(vmf->pte, vmf->ptl); 3191 mem_cgroup_cancel_charge(page, memcg, false); 3192 put_page(page); 3193 return handle_userfault(vmf, VM_UFFD_MISSING); 3194 } 3195 3196 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3197 page_add_new_anon_rmap(page, vma, vmf->address, false); 3198 mem_cgroup_commit_charge(page, memcg, false, false); 3199 lru_cache_add_active_or_unevictable(page, vma); 3200 setpte: 3201 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3202 3203 /* No need to invalidate - it was non-present before */ 3204 update_mmu_cache(vma, vmf->address, vmf->pte); 3205 unlock: 3206 pte_unmap_unlock(vmf->pte, vmf->ptl); 3207 return ret; 3208 release: 3209 mem_cgroup_cancel_charge(page, memcg, false); 3210 put_page(page); 3211 goto unlock; 3212 oom_free_page: 3213 put_page(page); 3214 oom: 3215 return VM_FAULT_OOM; 3216 } 3217 3218 /* 3219 * The mmap_sem must have been held on entry, and may have been 3220 * released depending on flags and vma->vm_ops->fault() return value. 3221 * See filemap_fault() and __lock_page_retry(). 3222 */ 3223 static int __do_fault(struct vm_fault *vmf) 3224 { 3225 struct vm_area_struct *vma = vmf->vma; 3226 int ret; 3227 3228 ret = vma->vm_ops->fault(vmf); 3229 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3230 VM_FAULT_DONE_COW))) 3231 return ret; 3232 3233 if (unlikely(PageHWPoison(vmf->page))) { 3234 if (ret & VM_FAULT_LOCKED) 3235 unlock_page(vmf->page); 3236 put_page(vmf->page); 3237 vmf->page = NULL; 3238 return VM_FAULT_HWPOISON; 3239 } 3240 3241 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3242 lock_page(vmf->page); 3243 else 3244 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3245 3246 return ret; 3247 } 3248 3249 /* 3250 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3251 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3252 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3253 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3254 */ 3255 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3256 { 3257 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3258 } 3259 3260 static int pte_alloc_one_map(struct vm_fault *vmf) 3261 { 3262 struct vm_area_struct *vma = vmf->vma; 3263 3264 if (!pmd_none(*vmf->pmd)) 3265 goto map_pte; 3266 if (vmf->prealloc_pte) { 3267 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3268 if (unlikely(!pmd_none(*vmf->pmd))) { 3269 spin_unlock(vmf->ptl); 3270 goto map_pte; 3271 } 3272 3273 mm_inc_nr_ptes(vma->vm_mm); 3274 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3275 spin_unlock(vmf->ptl); 3276 vmf->prealloc_pte = NULL; 3277 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) { 3278 return VM_FAULT_OOM; 3279 } 3280 map_pte: 3281 /* 3282 * If a huge pmd materialized under us just retry later. Use 3283 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3284 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3285 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3286 * running immediately after a huge pmd fault in a different thread of 3287 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3288 * All we have to ensure is that it is a regular pmd that we can walk 3289 * with pte_offset_map() and we can do that through an atomic read in 3290 * C, which is what pmd_trans_unstable() provides. 3291 */ 3292 if (pmd_devmap_trans_unstable(vmf->pmd)) 3293 return VM_FAULT_NOPAGE; 3294 3295 /* 3296 * At this point we know that our vmf->pmd points to a page of ptes 3297 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3298 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3299 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3300 * be valid and we will re-check to make sure the vmf->pte isn't 3301 * pte_none() under vmf->ptl protection when we return to 3302 * alloc_set_pte(). 3303 */ 3304 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3305 &vmf->ptl); 3306 return 0; 3307 } 3308 3309 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3310 3311 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3312 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3313 unsigned long haddr) 3314 { 3315 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3316 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3317 return false; 3318 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3319 return false; 3320 return true; 3321 } 3322 3323 static void deposit_prealloc_pte(struct vm_fault *vmf) 3324 { 3325 struct vm_area_struct *vma = vmf->vma; 3326 3327 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3328 /* 3329 * We are going to consume the prealloc table, 3330 * count that as nr_ptes. 3331 */ 3332 mm_inc_nr_ptes(vma->vm_mm); 3333 vmf->prealloc_pte = NULL; 3334 } 3335 3336 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3337 { 3338 struct vm_area_struct *vma = vmf->vma; 3339 bool write = vmf->flags & FAULT_FLAG_WRITE; 3340 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3341 pmd_t entry; 3342 int i, ret; 3343 3344 if (!transhuge_vma_suitable(vma, haddr)) 3345 return VM_FAULT_FALLBACK; 3346 3347 ret = VM_FAULT_FALLBACK; 3348 page = compound_head(page); 3349 3350 /* 3351 * Archs like ppc64 need additonal space to store information 3352 * related to pte entry. Use the preallocated table for that. 3353 */ 3354 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3355 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address); 3356 if (!vmf->prealloc_pte) 3357 return VM_FAULT_OOM; 3358 smp_wmb(); /* See comment in __pte_alloc() */ 3359 } 3360 3361 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3362 if (unlikely(!pmd_none(*vmf->pmd))) 3363 goto out; 3364 3365 for (i = 0; i < HPAGE_PMD_NR; i++) 3366 flush_icache_page(vma, page + i); 3367 3368 entry = mk_huge_pmd(page, vma->vm_page_prot); 3369 if (write) 3370 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3371 3372 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR); 3373 page_add_file_rmap(page, true); 3374 /* 3375 * deposit and withdraw with pmd lock held 3376 */ 3377 if (arch_needs_pgtable_deposit()) 3378 deposit_prealloc_pte(vmf); 3379 3380 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3381 3382 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3383 3384 /* fault is handled */ 3385 ret = 0; 3386 count_vm_event(THP_FILE_MAPPED); 3387 out: 3388 spin_unlock(vmf->ptl); 3389 return ret; 3390 } 3391 #else 3392 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3393 { 3394 BUILD_BUG(); 3395 return 0; 3396 } 3397 #endif 3398 3399 /** 3400 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3401 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3402 * 3403 * @vmf: fault environment 3404 * @memcg: memcg to charge page (only for private mappings) 3405 * @page: page to map 3406 * 3407 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3408 * return. 3409 * 3410 * Target users are page handler itself and implementations of 3411 * vm_ops->map_pages. 3412 */ 3413 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3414 struct page *page) 3415 { 3416 struct vm_area_struct *vma = vmf->vma; 3417 bool write = vmf->flags & FAULT_FLAG_WRITE; 3418 pte_t entry; 3419 int ret; 3420 3421 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3422 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3423 /* THP on COW? */ 3424 VM_BUG_ON_PAGE(memcg, page); 3425 3426 ret = do_set_pmd(vmf, page); 3427 if (ret != VM_FAULT_FALLBACK) 3428 return ret; 3429 } 3430 3431 if (!vmf->pte) { 3432 ret = pte_alloc_one_map(vmf); 3433 if (ret) 3434 return ret; 3435 } 3436 3437 /* Re-check under ptl */ 3438 if (unlikely(!pte_none(*vmf->pte))) 3439 return VM_FAULT_NOPAGE; 3440 3441 flush_icache_page(vma, page); 3442 entry = mk_pte(page, vma->vm_page_prot); 3443 if (write) 3444 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3445 /* copy-on-write page */ 3446 if (write && !(vma->vm_flags & VM_SHARED)) { 3447 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3448 page_add_new_anon_rmap(page, vma, vmf->address, false); 3449 mem_cgroup_commit_charge(page, memcg, false, false); 3450 lru_cache_add_active_or_unevictable(page, vma); 3451 } else { 3452 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3453 page_add_file_rmap(page, false); 3454 } 3455 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3456 3457 /* no need to invalidate: a not-present page won't be cached */ 3458 update_mmu_cache(vma, vmf->address, vmf->pte); 3459 3460 return 0; 3461 } 3462 3463 3464 /** 3465 * finish_fault - finish page fault once we have prepared the page to fault 3466 * 3467 * @vmf: structure describing the fault 3468 * 3469 * This function handles all that is needed to finish a page fault once the 3470 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3471 * given page, adds reverse page mapping, handles memcg charges and LRU 3472 * addition. The function returns 0 on success, VM_FAULT_ code in case of 3473 * error. 3474 * 3475 * The function expects the page to be locked and on success it consumes a 3476 * reference of a page being mapped (for the PTE which maps it). 3477 */ 3478 int finish_fault(struct vm_fault *vmf) 3479 { 3480 struct page *page; 3481 int ret = 0; 3482 3483 /* Did we COW the page? */ 3484 if ((vmf->flags & FAULT_FLAG_WRITE) && 3485 !(vmf->vma->vm_flags & VM_SHARED)) 3486 page = vmf->cow_page; 3487 else 3488 page = vmf->page; 3489 3490 /* 3491 * check even for read faults because we might have lost our CoWed 3492 * page 3493 */ 3494 if (!(vmf->vma->vm_flags & VM_SHARED)) 3495 ret = check_stable_address_space(vmf->vma->vm_mm); 3496 if (!ret) 3497 ret = alloc_set_pte(vmf, vmf->memcg, page); 3498 if (vmf->pte) 3499 pte_unmap_unlock(vmf->pte, vmf->ptl); 3500 return ret; 3501 } 3502 3503 static unsigned long fault_around_bytes __read_mostly = 3504 rounddown_pow_of_two(65536); 3505 3506 #ifdef CONFIG_DEBUG_FS 3507 static int fault_around_bytes_get(void *data, u64 *val) 3508 { 3509 *val = fault_around_bytes; 3510 return 0; 3511 } 3512 3513 /* 3514 * fault_around_bytes must be rounded down to the nearest page order as it's 3515 * what do_fault_around() expects to see. 3516 */ 3517 static int fault_around_bytes_set(void *data, u64 val) 3518 { 3519 if (val / PAGE_SIZE > PTRS_PER_PTE) 3520 return -EINVAL; 3521 if (val > PAGE_SIZE) 3522 fault_around_bytes = rounddown_pow_of_two(val); 3523 else 3524 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3525 return 0; 3526 } 3527 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3528 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3529 3530 static int __init fault_around_debugfs(void) 3531 { 3532 void *ret; 3533 3534 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3535 &fault_around_bytes_fops); 3536 if (!ret) 3537 pr_warn("Failed to create fault_around_bytes in debugfs"); 3538 return 0; 3539 } 3540 late_initcall(fault_around_debugfs); 3541 #endif 3542 3543 /* 3544 * do_fault_around() tries to map few pages around the fault address. The hope 3545 * is that the pages will be needed soon and this will lower the number of 3546 * faults to handle. 3547 * 3548 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3549 * not ready to be mapped: not up-to-date, locked, etc. 3550 * 3551 * This function is called with the page table lock taken. In the split ptlock 3552 * case the page table lock only protects only those entries which belong to 3553 * the page table corresponding to the fault address. 3554 * 3555 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3556 * only once. 3557 * 3558 * fault_around_bytes defines how many bytes we'll try to map. 3559 * do_fault_around() expects it to be set to a power of two less than or equal 3560 * to PTRS_PER_PTE. 3561 * 3562 * The virtual address of the area that we map is naturally aligned to 3563 * fault_around_bytes rounded down to the machine page size 3564 * (and therefore to page order). This way it's easier to guarantee 3565 * that we don't cross page table boundaries. 3566 */ 3567 static int do_fault_around(struct vm_fault *vmf) 3568 { 3569 unsigned long address = vmf->address, nr_pages, mask; 3570 pgoff_t start_pgoff = vmf->pgoff; 3571 pgoff_t end_pgoff; 3572 int off, ret = 0; 3573 3574 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3575 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3576 3577 vmf->address = max(address & mask, vmf->vma->vm_start); 3578 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3579 start_pgoff -= off; 3580 3581 /* 3582 * end_pgoff is either the end of the page table, the end of 3583 * the vma or nr_pages from start_pgoff, depending what is nearest. 3584 */ 3585 end_pgoff = start_pgoff - 3586 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3587 PTRS_PER_PTE - 1; 3588 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3589 start_pgoff + nr_pages - 1); 3590 3591 if (pmd_none(*vmf->pmd)) { 3592 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm, 3593 vmf->address); 3594 if (!vmf->prealloc_pte) 3595 goto out; 3596 smp_wmb(); /* See comment in __pte_alloc() */ 3597 } 3598 3599 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3600 3601 /* Huge page is mapped? Page fault is solved */ 3602 if (pmd_trans_huge(*vmf->pmd)) { 3603 ret = VM_FAULT_NOPAGE; 3604 goto out; 3605 } 3606 3607 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3608 if (!vmf->pte) 3609 goto out; 3610 3611 /* check if the page fault is solved */ 3612 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3613 if (!pte_none(*vmf->pte)) 3614 ret = VM_FAULT_NOPAGE; 3615 pte_unmap_unlock(vmf->pte, vmf->ptl); 3616 out: 3617 vmf->address = address; 3618 vmf->pte = NULL; 3619 return ret; 3620 } 3621 3622 static int do_read_fault(struct vm_fault *vmf) 3623 { 3624 struct vm_area_struct *vma = vmf->vma; 3625 int ret = 0; 3626 3627 /* 3628 * Let's call ->map_pages() first and use ->fault() as fallback 3629 * if page by the offset is not ready to be mapped (cold cache or 3630 * something). 3631 */ 3632 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3633 ret = do_fault_around(vmf); 3634 if (ret) 3635 return ret; 3636 } 3637 3638 ret = __do_fault(vmf); 3639 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3640 return ret; 3641 3642 ret |= finish_fault(vmf); 3643 unlock_page(vmf->page); 3644 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3645 put_page(vmf->page); 3646 return ret; 3647 } 3648 3649 static int do_cow_fault(struct vm_fault *vmf) 3650 { 3651 struct vm_area_struct *vma = vmf->vma; 3652 int ret; 3653 3654 if (unlikely(anon_vma_prepare(vma))) 3655 return VM_FAULT_OOM; 3656 3657 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3658 if (!vmf->cow_page) 3659 return VM_FAULT_OOM; 3660 3661 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3662 &vmf->memcg, false)) { 3663 put_page(vmf->cow_page); 3664 return VM_FAULT_OOM; 3665 } 3666 3667 ret = __do_fault(vmf); 3668 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3669 goto uncharge_out; 3670 if (ret & VM_FAULT_DONE_COW) 3671 return ret; 3672 3673 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3674 __SetPageUptodate(vmf->cow_page); 3675 3676 ret |= finish_fault(vmf); 3677 unlock_page(vmf->page); 3678 put_page(vmf->page); 3679 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3680 goto uncharge_out; 3681 return ret; 3682 uncharge_out: 3683 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3684 put_page(vmf->cow_page); 3685 return ret; 3686 } 3687 3688 static int do_shared_fault(struct vm_fault *vmf) 3689 { 3690 struct vm_area_struct *vma = vmf->vma; 3691 int ret, tmp; 3692 3693 ret = __do_fault(vmf); 3694 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3695 return ret; 3696 3697 /* 3698 * Check if the backing address space wants to know that the page is 3699 * about to become writable 3700 */ 3701 if (vma->vm_ops->page_mkwrite) { 3702 unlock_page(vmf->page); 3703 tmp = do_page_mkwrite(vmf); 3704 if (unlikely(!tmp || 3705 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3706 put_page(vmf->page); 3707 return tmp; 3708 } 3709 } 3710 3711 ret |= finish_fault(vmf); 3712 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3713 VM_FAULT_RETRY))) { 3714 unlock_page(vmf->page); 3715 put_page(vmf->page); 3716 return ret; 3717 } 3718 3719 fault_dirty_shared_page(vma, vmf->page); 3720 return ret; 3721 } 3722 3723 /* 3724 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3725 * but allow concurrent faults). 3726 * The mmap_sem may have been released depending on flags and our 3727 * return value. See filemap_fault() and __lock_page_or_retry(). 3728 */ 3729 static int do_fault(struct vm_fault *vmf) 3730 { 3731 struct vm_area_struct *vma = vmf->vma; 3732 int ret; 3733 3734 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3735 if (!vma->vm_ops->fault) 3736 ret = VM_FAULT_SIGBUS; 3737 else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3738 ret = do_read_fault(vmf); 3739 else if (!(vma->vm_flags & VM_SHARED)) 3740 ret = do_cow_fault(vmf); 3741 else 3742 ret = do_shared_fault(vmf); 3743 3744 /* preallocated pagetable is unused: free it */ 3745 if (vmf->prealloc_pte) { 3746 pte_free(vma->vm_mm, vmf->prealloc_pte); 3747 vmf->prealloc_pte = NULL; 3748 } 3749 return ret; 3750 } 3751 3752 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3753 unsigned long addr, int page_nid, 3754 int *flags) 3755 { 3756 get_page(page); 3757 3758 count_vm_numa_event(NUMA_HINT_FAULTS); 3759 if (page_nid == numa_node_id()) { 3760 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3761 *flags |= TNF_FAULT_LOCAL; 3762 } 3763 3764 return mpol_misplaced(page, vma, addr); 3765 } 3766 3767 static int do_numa_page(struct vm_fault *vmf) 3768 { 3769 struct vm_area_struct *vma = vmf->vma; 3770 struct page *page = NULL; 3771 int page_nid = -1; 3772 int last_cpupid; 3773 int target_nid; 3774 bool migrated = false; 3775 pte_t pte; 3776 bool was_writable = pte_savedwrite(vmf->orig_pte); 3777 int flags = 0; 3778 3779 /* 3780 * The "pte" at this point cannot be used safely without 3781 * validation through pte_unmap_same(). It's of NUMA type but 3782 * the pfn may be screwed if the read is non atomic. 3783 */ 3784 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3785 spin_lock(vmf->ptl); 3786 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3787 pte_unmap_unlock(vmf->pte, vmf->ptl); 3788 goto out; 3789 } 3790 3791 /* 3792 * Make it present again, Depending on how arch implementes non 3793 * accessible ptes, some can allow access by kernel mode. 3794 */ 3795 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte); 3796 pte = pte_modify(pte, vma->vm_page_prot); 3797 pte = pte_mkyoung(pte); 3798 if (was_writable) 3799 pte = pte_mkwrite(pte); 3800 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte); 3801 update_mmu_cache(vma, vmf->address, vmf->pte); 3802 3803 page = vm_normal_page(vma, vmf->address, pte); 3804 if (!page) { 3805 pte_unmap_unlock(vmf->pte, vmf->ptl); 3806 return 0; 3807 } 3808 3809 /* TODO: handle PTE-mapped THP */ 3810 if (PageCompound(page)) { 3811 pte_unmap_unlock(vmf->pte, vmf->ptl); 3812 return 0; 3813 } 3814 3815 /* 3816 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3817 * much anyway since they can be in shared cache state. This misses 3818 * the case where a mapping is writable but the process never writes 3819 * to it but pte_write gets cleared during protection updates and 3820 * pte_dirty has unpredictable behaviour between PTE scan updates, 3821 * background writeback, dirty balancing and application behaviour. 3822 */ 3823 if (!pte_write(pte)) 3824 flags |= TNF_NO_GROUP; 3825 3826 /* 3827 * Flag if the page is shared between multiple address spaces. This 3828 * is later used when determining whether to group tasks together 3829 */ 3830 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3831 flags |= TNF_SHARED; 3832 3833 last_cpupid = page_cpupid_last(page); 3834 page_nid = page_to_nid(page); 3835 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3836 &flags); 3837 pte_unmap_unlock(vmf->pte, vmf->ptl); 3838 if (target_nid == -1) { 3839 put_page(page); 3840 goto out; 3841 } 3842 3843 /* Migrate to the requested node */ 3844 migrated = migrate_misplaced_page(page, vma, target_nid); 3845 if (migrated) { 3846 page_nid = target_nid; 3847 flags |= TNF_MIGRATED; 3848 } else 3849 flags |= TNF_MIGRATE_FAIL; 3850 3851 out: 3852 if (page_nid != -1) 3853 task_numa_fault(last_cpupid, page_nid, 1, flags); 3854 return 0; 3855 } 3856 3857 static inline int create_huge_pmd(struct vm_fault *vmf) 3858 { 3859 if (vma_is_anonymous(vmf->vma)) 3860 return do_huge_pmd_anonymous_page(vmf); 3861 if (vmf->vma->vm_ops->huge_fault) 3862 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3863 return VM_FAULT_FALLBACK; 3864 } 3865 3866 /* `inline' is required to avoid gcc 4.1.2 build error */ 3867 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3868 { 3869 if (vma_is_anonymous(vmf->vma)) 3870 return do_huge_pmd_wp_page(vmf, orig_pmd); 3871 if (vmf->vma->vm_ops->huge_fault) 3872 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3873 3874 /* COW handled on pte level: split pmd */ 3875 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3876 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3877 3878 return VM_FAULT_FALLBACK; 3879 } 3880 3881 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3882 { 3883 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3884 } 3885 3886 static int create_huge_pud(struct vm_fault *vmf) 3887 { 3888 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3889 /* No support for anonymous transparent PUD pages yet */ 3890 if (vma_is_anonymous(vmf->vma)) 3891 return VM_FAULT_FALLBACK; 3892 if (vmf->vma->vm_ops->huge_fault) 3893 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3894 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3895 return VM_FAULT_FALLBACK; 3896 } 3897 3898 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3899 { 3900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3901 /* No support for anonymous transparent PUD pages yet */ 3902 if (vma_is_anonymous(vmf->vma)) 3903 return VM_FAULT_FALLBACK; 3904 if (vmf->vma->vm_ops->huge_fault) 3905 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3906 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3907 return VM_FAULT_FALLBACK; 3908 } 3909 3910 /* 3911 * These routines also need to handle stuff like marking pages dirty 3912 * and/or accessed for architectures that don't do it in hardware (most 3913 * RISC architectures). The early dirtying is also good on the i386. 3914 * 3915 * There is also a hook called "update_mmu_cache()" that architectures 3916 * with external mmu caches can use to update those (ie the Sparc or 3917 * PowerPC hashed page tables that act as extended TLBs). 3918 * 3919 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3920 * concurrent faults). 3921 * 3922 * The mmap_sem may have been released depending on flags and our return value. 3923 * See filemap_fault() and __lock_page_or_retry(). 3924 */ 3925 static int handle_pte_fault(struct vm_fault *vmf) 3926 { 3927 pte_t entry; 3928 3929 if (unlikely(pmd_none(*vmf->pmd))) { 3930 /* 3931 * Leave __pte_alloc() until later: because vm_ops->fault may 3932 * want to allocate huge page, and if we expose page table 3933 * for an instant, it will be difficult to retract from 3934 * concurrent faults and from rmap lookups. 3935 */ 3936 vmf->pte = NULL; 3937 } else { 3938 /* See comment in pte_alloc_one_map() */ 3939 if (pmd_devmap_trans_unstable(vmf->pmd)) 3940 return 0; 3941 /* 3942 * A regular pmd is established and it can't morph into a huge 3943 * pmd from under us anymore at this point because we hold the 3944 * mmap_sem read mode and khugepaged takes it in write mode. 3945 * So now it's safe to run pte_offset_map(). 3946 */ 3947 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3948 vmf->orig_pte = *vmf->pte; 3949 3950 /* 3951 * some architectures can have larger ptes than wordsize, 3952 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3953 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3954 * accesses. The code below just needs a consistent view 3955 * for the ifs and we later double check anyway with the 3956 * ptl lock held. So here a barrier will do. 3957 */ 3958 barrier(); 3959 if (pte_none(vmf->orig_pte)) { 3960 pte_unmap(vmf->pte); 3961 vmf->pte = NULL; 3962 } 3963 } 3964 3965 if (!vmf->pte) { 3966 if (vma_is_anonymous(vmf->vma)) 3967 return do_anonymous_page(vmf); 3968 else 3969 return do_fault(vmf); 3970 } 3971 3972 if (!pte_present(vmf->orig_pte)) 3973 return do_swap_page(vmf); 3974 3975 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3976 return do_numa_page(vmf); 3977 3978 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3979 spin_lock(vmf->ptl); 3980 entry = vmf->orig_pte; 3981 if (unlikely(!pte_same(*vmf->pte, entry))) 3982 goto unlock; 3983 if (vmf->flags & FAULT_FLAG_WRITE) { 3984 if (!pte_write(entry)) 3985 return do_wp_page(vmf); 3986 entry = pte_mkdirty(entry); 3987 } 3988 entry = pte_mkyoung(entry); 3989 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3990 vmf->flags & FAULT_FLAG_WRITE)) { 3991 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3992 } else { 3993 /* 3994 * This is needed only for protection faults but the arch code 3995 * is not yet telling us if this is a protection fault or not. 3996 * This still avoids useless tlb flushes for .text page faults 3997 * with threads. 3998 */ 3999 if (vmf->flags & FAULT_FLAG_WRITE) 4000 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4001 } 4002 unlock: 4003 pte_unmap_unlock(vmf->pte, vmf->ptl); 4004 return 0; 4005 } 4006 4007 /* 4008 * By the time we get here, we already hold the mm semaphore 4009 * 4010 * The mmap_sem may have been released depending on flags and our 4011 * return value. See filemap_fault() and __lock_page_or_retry(). 4012 */ 4013 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4014 unsigned int flags) 4015 { 4016 struct vm_fault vmf = { 4017 .vma = vma, 4018 .address = address & PAGE_MASK, 4019 .flags = flags, 4020 .pgoff = linear_page_index(vma, address), 4021 .gfp_mask = __get_fault_gfp_mask(vma), 4022 }; 4023 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4024 struct mm_struct *mm = vma->vm_mm; 4025 pgd_t *pgd; 4026 p4d_t *p4d; 4027 int ret; 4028 4029 pgd = pgd_offset(mm, address); 4030 p4d = p4d_alloc(mm, pgd, address); 4031 if (!p4d) 4032 return VM_FAULT_OOM; 4033 4034 vmf.pud = pud_alloc(mm, p4d, address); 4035 if (!vmf.pud) 4036 return VM_FAULT_OOM; 4037 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) { 4038 ret = create_huge_pud(&vmf); 4039 if (!(ret & VM_FAULT_FALLBACK)) 4040 return ret; 4041 } else { 4042 pud_t orig_pud = *vmf.pud; 4043 4044 barrier(); 4045 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4046 4047 /* NUMA case for anonymous PUDs would go here */ 4048 4049 if (dirty && !pud_write(orig_pud)) { 4050 ret = wp_huge_pud(&vmf, orig_pud); 4051 if (!(ret & VM_FAULT_FALLBACK)) 4052 return ret; 4053 } else { 4054 huge_pud_set_accessed(&vmf, orig_pud); 4055 return 0; 4056 } 4057 } 4058 } 4059 4060 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4061 if (!vmf.pmd) 4062 return VM_FAULT_OOM; 4063 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { 4064 ret = create_huge_pmd(&vmf); 4065 if (!(ret & VM_FAULT_FALLBACK)) 4066 return ret; 4067 } else { 4068 pmd_t orig_pmd = *vmf.pmd; 4069 4070 barrier(); 4071 if (unlikely(is_swap_pmd(orig_pmd))) { 4072 VM_BUG_ON(thp_migration_supported() && 4073 !is_pmd_migration_entry(orig_pmd)); 4074 if (is_pmd_migration_entry(orig_pmd)) 4075 pmd_migration_entry_wait(mm, vmf.pmd); 4076 return 0; 4077 } 4078 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4079 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4080 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4081 4082 if (dirty && !pmd_write(orig_pmd)) { 4083 ret = wp_huge_pmd(&vmf, orig_pmd); 4084 if (!(ret & VM_FAULT_FALLBACK)) 4085 return ret; 4086 } else { 4087 huge_pmd_set_accessed(&vmf, orig_pmd); 4088 return 0; 4089 } 4090 } 4091 } 4092 4093 return handle_pte_fault(&vmf); 4094 } 4095 4096 /* 4097 * By the time we get here, we already hold the mm semaphore 4098 * 4099 * The mmap_sem may have been released depending on flags and our 4100 * return value. See filemap_fault() and __lock_page_or_retry(). 4101 */ 4102 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4103 unsigned int flags) 4104 { 4105 int ret; 4106 4107 __set_current_state(TASK_RUNNING); 4108 4109 count_vm_event(PGFAULT); 4110 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4111 4112 /* do counter updates before entering really critical section. */ 4113 check_sync_rss_stat(current); 4114 4115 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4116 flags & FAULT_FLAG_INSTRUCTION, 4117 flags & FAULT_FLAG_REMOTE)) 4118 return VM_FAULT_SIGSEGV; 4119 4120 /* 4121 * Enable the memcg OOM handling for faults triggered in user 4122 * space. Kernel faults are handled more gracefully. 4123 */ 4124 if (flags & FAULT_FLAG_USER) 4125 mem_cgroup_oom_enable(); 4126 4127 if (unlikely(is_vm_hugetlb_page(vma))) 4128 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4129 else 4130 ret = __handle_mm_fault(vma, address, flags); 4131 4132 if (flags & FAULT_FLAG_USER) { 4133 mem_cgroup_oom_disable(); 4134 /* 4135 * The task may have entered a memcg OOM situation but 4136 * if the allocation error was handled gracefully (no 4137 * VM_FAULT_OOM), there is no need to kill anything. 4138 * Just clean up the OOM state peacefully. 4139 */ 4140 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4141 mem_cgroup_oom_synchronize(false); 4142 } 4143 4144 return ret; 4145 } 4146 EXPORT_SYMBOL_GPL(handle_mm_fault); 4147 4148 #ifndef __PAGETABLE_P4D_FOLDED 4149 /* 4150 * Allocate p4d page table. 4151 * We've already handled the fast-path in-line. 4152 */ 4153 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4154 { 4155 p4d_t *new = p4d_alloc_one(mm, address); 4156 if (!new) 4157 return -ENOMEM; 4158 4159 smp_wmb(); /* See comment in __pte_alloc */ 4160 4161 spin_lock(&mm->page_table_lock); 4162 if (pgd_present(*pgd)) /* Another has populated it */ 4163 p4d_free(mm, new); 4164 else 4165 pgd_populate(mm, pgd, new); 4166 spin_unlock(&mm->page_table_lock); 4167 return 0; 4168 } 4169 #endif /* __PAGETABLE_P4D_FOLDED */ 4170 4171 #ifndef __PAGETABLE_PUD_FOLDED 4172 /* 4173 * Allocate page upper directory. 4174 * We've already handled the fast-path in-line. 4175 */ 4176 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4177 { 4178 pud_t *new = pud_alloc_one(mm, address); 4179 if (!new) 4180 return -ENOMEM; 4181 4182 smp_wmb(); /* See comment in __pte_alloc */ 4183 4184 spin_lock(&mm->page_table_lock); 4185 #ifndef __ARCH_HAS_5LEVEL_HACK 4186 if (!p4d_present(*p4d)) { 4187 mm_inc_nr_puds(mm); 4188 p4d_populate(mm, p4d, new); 4189 } else /* Another has populated it */ 4190 pud_free(mm, new); 4191 #else 4192 if (!pgd_present(*p4d)) { 4193 mm_inc_nr_puds(mm); 4194 pgd_populate(mm, p4d, new); 4195 } else /* Another has populated it */ 4196 pud_free(mm, new); 4197 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4198 spin_unlock(&mm->page_table_lock); 4199 return 0; 4200 } 4201 #endif /* __PAGETABLE_PUD_FOLDED */ 4202 4203 #ifndef __PAGETABLE_PMD_FOLDED 4204 /* 4205 * Allocate page middle directory. 4206 * We've already handled the fast-path in-line. 4207 */ 4208 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4209 { 4210 spinlock_t *ptl; 4211 pmd_t *new = pmd_alloc_one(mm, address); 4212 if (!new) 4213 return -ENOMEM; 4214 4215 smp_wmb(); /* See comment in __pte_alloc */ 4216 4217 ptl = pud_lock(mm, pud); 4218 #ifndef __ARCH_HAS_4LEVEL_HACK 4219 if (!pud_present(*pud)) { 4220 mm_inc_nr_pmds(mm); 4221 pud_populate(mm, pud, new); 4222 } else /* Another has populated it */ 4223 pmd_free(mm, new); 4224 #else 4225 if (!pgd_present(*pud)) { 4226 mm_inc_nr_pmds(mm); 4227 pgd_populate(mm, pud, new); 4228 } else /* Another has populated it */ 4229 pmd_free(mm, new); 4230 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4231 spin_unlock(ptl); 4232 return 0; 4233 } 4234 #endif /* __PAGETABLE_PMD_FOLDED */ 4235 4236 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4237 unsigned long *start, unsigned long *end, 4238 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4239 { 4240 pgd_t *pgd; 4241 p4d_t *p4d; 4242 pud_t *pud; 4243 pmd_t *pmd; 4244 pte_t *ptep; 4245 4246 pgd = pgd_offset(mm, address); 4247 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4248 goto out; 4249 4250 p4d = p4d_offset(pgd, address); 4251 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4252 goto out; 4253 4254 pud = pud_offset(p4d, address); 4255 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4256 goto out; 4257 4258 pmd = pmd_offset(pud, address); 4259 VM_BUG_ON(pmd_trans_huge(*pmd)); 4260 4261 if (pmd_huge(*pmd)) { 4262 if (!pmdpp) 4263 goto out; 4264 4265 if (start && end) { 4266 *start = address & PMD_MASK; 4267 *end = *start + PMD_SIZE; 4268 mmu_notifier_invalidate_range_start(mm, *start, *end); 4269 } 4270 *ptlp = pmd_lock(mm, pmd); 4271 if (pmd_huge(*pmd)) { 4272 *pmdpp = pmd; 4273 return 0; 4274 } 4275 spin_unlock(*ptlp); 4276 if (start && end) 4277 mmu_notifier_invalidate_range_end(mm, *start, *end); 4278 } 4279 4280 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4281 goto out; 4282 4283 if (start && end) { 4284 *start = address & PAGE_MASK; 4285 *end = *start + PAGE_SIZE; 4286 mmu_notifier_invalidate_range_start(mm, *start, *end); 4287 } 4288 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4289 if (!pte_present(*ptep)) 4290 goto unlock; 4291 *ptepp = ptep; 4292 return 0; 4293 unlock: 4294 pte_unmap_unlock(ptep, *ptlp); 4295 if (start && end) 4296 mmu_notifier_invalidate_range_end(mm, *start, *end); 4297 out: 4298 return -EINVAL; 4299 } 4300 4301 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4302 pte_t **ptepp, spinlock_t **ptlp) 4303 { 4304 int res; 4305 4306 /* (void) is needed to make gcc happy */ 4307 (void) __cond_lock(*ptlp, 4308 !(res = __follow_pte_pmd(mm, address, NULL, NULL, 4309 ptepp, NULL, ptlp))); 4310 return res; 4311 } 4312 4313 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4314 unsigned long *start, unsigned long *end, 4315 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4316 { 4317 int res; 4318 4319 /* (void) is needed to make gcc happy */ 4320 (void) __cond_lock(*ptlp, 4321 !(res = __follow_pte_pmd(mm, address, start, end, 4322 ptepp, pmdpp, ptlp))); 4323 return res; 4324 } 4325 EXPORT_SYMBOL(follow_pte_pmd); 4326 4327 /** 4328 * follow_pfn - look up PFN at a user virtual address 4329 * @vma: memory mapping 4330 * @address: user virtual address 4331 * @pfn: location to store found PFN 4332 * 4333 * Only IO mappings and raw PFN mappings are allowed. 4334 * 4335 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4336 */ 4337 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4338 unsigned long *pfn) 4339 { 4340 int ret = -EINVAL; 4341 spinlock_t *ptl; 4342 pte_t *ptep; 4343 4344 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4345 return ret; 4346 4347 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4348 if (ret) 4349 return ret; 4350 *pfn = pte_pfn(*ptep); 4351 pte_unmap_unlock(ptep, ptl); 4352 return 0; 4353 } 4354 EXPORT_SYMBOL(follow_pfn); 4355 4356 #ifdef CONFIG_HAVE_IOREMAP_PROT 4357 int follow_phys(struct vm_area_struct *vma, 4358 unsigned long address, unsigned int flags, 4359 unsigned long *prot, resource_size_t *phys) 4360 { 4361 int ret = -EINVAL; 4362 pte_t *ptep, pte; 4363 spinlock_t *ptl; 4364 4365 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4366 goto out; 4367 4368 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4369 goto out; 4370 pte = *ptep; 4371 4372 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4373 goto unlock; 4374 4375 *prot = pgprot_val(pte_pgprot(pte)); 4376 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4377 4378 ret = 0; 4379 unlock: 4380 pte_unmap_unlock(ptep, ptl); 4381 out: 4382 return ret; 4383 } 4384 4385 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4386 void *buf, int len, int write) 4387 { 4388 resource_size_t phys_addr; 4389 unsigned long prot = 0; 4390 void __iomem *maddr; 4391 int offset = addr & (PAGE_SIZE-1); 4392 4393 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4394 return -EINVAL; 4395 4396 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4397 if (write) 4398 memcpy_toio(maddr + offset, buf, len); 4399 else 4400 memcpy_fromio(buf, maddr + offset, len); 4401 iounmap(maddr); 4402 4403 return len; 4404 } 4405 EXPORT_SYMBOL_GPL(generic_access_phys); 4406 #endif 4407 4408 /* 4409 * Access another process' address space as given in mm. If non-NULL, use the 4410 * given task for page fault accounting. 4411 */ 4412 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4413 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4414 { 4415 struct vm_area_struct *vma; 4416 void *old_buf = buf; 4417 int write = gup_flags & FOLL_WRITE; 4418 4419 down_read(&mm->mmap_sem); 4420 /* ignore errors, just check how much was successfully transferred */ 4421 while (len) { 4422 int bytes, ret, offset; 4423 void *maddr; 4424 struct page *page = NULL; 4425 4426 ret = get_user_pages_remote(tsk, mm, addr, 1, 4427 gup_flags, &page, &vma, NULL); 4428 if (ret <= 0) { 4429 #ifndef CONFIG_HAVE_IOREMAP_PROT 4430 break; 4431 #else 4432 /* 4433 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4434 * we can access using slightly different code. 4435 */ 4436 vma = find_vma(mm, addr); 4437 if (!vma || vma->vm_start > addr) 4438 break; 4439 if (vma->vm_ops && vma->vm_ops->access) 4440 ret = vma->vm_ops->access(vma, addr, buf, 4441 len, write); 4442 if (ret <= 0) 4443 break; 4444 bytes = ret; 4445 #endif 4446 } else { 4447 bytes = len; 4448 offset = addr & (PAGE_SIZE-1); 4449 if (bytes > PAGE_SIZE-offset) 4450 bytes = PAGE_SIZE-offset; 4451 4452 maddr = kmap(page); 4453 if (write) { 4454 copy_to_user_page(vma, page, addr, 4455 maddr + offset, buf, bytes); 4456 set_page_dirty_lock(page); 4457 } else { 4458 copy_from_user_page(vma, page, addr, 4459 buf, maddr + offset, bytes); 4460 } 4461 kunmap(page); 4462 put_page(page); 4463 } 4464 len -= bytes; 4465 buf += bytes; 4466 addr += bytes; 4467 } 4468 up_read(&mm->mmap_sem); 4469 4470 return buf - old_buf; 4471 } 4472 4473 /** 4474 * access_remote_vm - access another process' address space 4475 * @mm: the mm_struct of the target address space 4476 * @addr: start address to access 4477 * @buf: source or destination buffer 4478 * @len: number of bytes to transfer 4479 * @gup_flags: flags modifying lookup behaviour 4480 * 4481 * The caller must hold a reference on @mm. 4482 */ 4483 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4484 void *buf, int len, unsigned int gup_flags) 4485 { 4486 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4487 } 4488 4489 /* 4490 * Access another process' address space. 4491 * Source/target buffer must be kernel space, 4492 * Do not walk the page table directly, use get_user_pages 4493 */ 4494 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4495 void *buf, int len, unsigned int gup_flags) 4496 { 4497 struct mm_struct *mm; 4498 int ret; 4499 4500 mm = get_task_mm(tsk); 4501 if (!mm) 4502 return 0; 4503 4504 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4505 4506 mmput(mm); 4507 4508 return ret; 4509 } 4510 EXPORT_SYMBOL_GPL(access_process_vm); 4511 4512 /* 4513 * Print the name of a VMA. 4514 */ 4515 void print_vma_addr(char *prefix, unsigned long ip) 4516 { 4517 struct mm_struct *mm = current->mm; 4518 struct vm_area_struct *vma; 4519 4520 /* 4521 * we might be running from an atomic context so we cannot sleep 4522 */ 4523 if (!down_read_trylock(&mm->mmap_sem)) 4524 return; 4525 4526 vma = find_vma(mm, ip); 4527 if (vma && vma->vm_file) { 4528 struct file *f = vma->vm_file; 4529 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4530 if (buf) { 4531 char *p; 4532 4533 p = file_path(f, buf, PAGE_SIZE); 4534 if (IS_ERR(p)) 4535 p = "?"; 4536 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4537 vma->vm_start, 4538 vma->vm_end - vma->vm_start); 4539 free_page((unsigned long)buf); 4540 } 4541 } 4542 up_read(&mm->mmap_sem); 4543 } 4544 4545 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4546 void __might_fault(const char *file, int line) 4547 { 4548 /* 4549 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4550 * holding the mmap_sem, this is safe because kernel memory doesn't 4551 * get paged out, therefore we'll never actually fault, and the 4552 * below annotations will generate false positives. 4553 */ 4554 if (uaccess_kernel()) 4555 return; 4556 if (pagefault_disabled()) 4557 return; 4558 __might_sleep(file, line, 0); 4559 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4560 if (current->mm) 4561 might_lock_read(¤t->mm->mmap_sem); 4562 #endif 4563 } 4564 EXPORT_SYMBOL(__might_fault); 4565 #endif 4566 4567 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4568 static void clear_gigantic_page(struct page *page, 4569 unsigned long addr, 4570 unsigned int pages_per_huge_page) 4571 { 4572 int i; 4573 struct page *p = page; 4574 4575 might_sleep(); 4576 for (i = 0; i < pages_per_huge_page; 4577 i++, p = mem_map_next(p, page, i)) { 4578 cond_resched(); 4579 clear_user_highpage(p, addr + i * PAGE_SIZE); 4580 } 4581 } 4582 void clear_huge_page(struct page *page, 4583 unsigned long addr_hint, unsigned int pages_per_huge_page) 4584 { 4585 int i, n, base, l; 4586 unsigned long addr = addr_hint & 4587 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4588 4589 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4590 clear_gigantic_page(page, addr, pages_per_huge_page); 4591 return; 4592 } 4593 4594 /* Clear sub-page to access last to keep its cache lines hot */ 4595 might_sleep(); 4596 n = (addr_hint - addr) / PAGE_SIZE; 4597 if (2 * n <= pages_per_huge_page) { 4598 /* If sub-page to access in first half of huge page */ 4599 base = 0; 4600 l = n; 4601 /* Clear sub-pages at the end of huge page */ 4602 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4603 cond_resched(); 4604 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4605 } 4606 } else { 4607 /* If sub-page to access in second half of huge page */ 4608 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4609 l = pages_per_huge_page - n; 4610 /* Clear sub-pages at the begin of huge page */ 4611 for (i = 0; i < base; i++) { 4612 cond_resched(); 4613 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4614 } 4615 } 4616 /* 4617 * Clear remaining sub-pages in left-right-left-right pattern 4618 * towards the sub-page to access 4619 */ 4620 for (i = 0; i < l; i++) { 4621 int left_idx = base + i; 4622 int right_idx = base + 2 * l - 1 - i; 4623 4624 cond_resched(); 4625 clear_user_highpage(page + left_idx, 4626 addr + left_idx * PAGE_SIZE); 4627 cond_resched(); 4628 clear_user_highpage(page + right_idx, 4629 addr + right_idx * PAGE_SIZE); 4630 } 4631 } 4632 4633 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4634 unsigned long addr, 4635 struct vm_area_struct *vma, 4636 unsigned int pages_per_huge_page) 4637 { 4638 int i; 4639 struct page *dst_base = dst; 4640 struct page *src_base = src; 4641 4642 for (i = 0; i < pages_per_huge_page; ) { 4643 cond_resched(); 4644 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4645 4646 i++; 4647 dst = mem_map_next(dst, dst_base, i); 4648 src = mem_map_next(src, src_base, i); 4649 } 4650 } 4651 4652 void copy_user_huge_page(struct page *dst, struct page *src, 4653 unsigned long addr, struct vm_area_struct *vma, 4654 unsigned int pages_per_huge_page) 4655 { 4656 int i; 4657 4658 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4659 copy_user_gigantic_page(dst, src, addr, vma, 4660 pages_per_huge_page); 4661 return; 4662 } 4663 4664 might_sleep(); 4665 for (i = 0; i < pages_per_huge_page; i++) { 4666 cond_resched(); 4667 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4668 } 4669 } 4670 4671 long copy_huge_page_from_user(struct page *dst_page, 4672 const void __user *usr_src, 4673 unsigned int pages_per_huge_page, 4674 bool allow_pagefault) 4675 { 4676 void *src = (void *)usr_src; 4677 void *page_kaddr; 4678 unsigned long i, rc = 0; 4679 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4680 4681 for (i = 0; i < pages_per_huge_page; i++) { 4682 if (allow_pagefault) 4683 page_kaddr = kmap(dst_page + i); 4684 else 4685 page_kaddr = kmap_atomic(dst_page + i); 4686 rc = copy_from_user(page_kaddr, 4687 (const void __user *)(src + i * PAGE_SIZE), 4688 PAGE_SIZE); 4689 if (allow_pagefault) 4690 kunmap(dst_page + i); 4691 else 4692 kunmap_atomic(page_kaddr); 4693 4694 ret_val -= (PAGE_SIZE - rc); 4695 if (rc) 4696 break; 4697 4698 cond_resched(); 4699 } 4700 return ret_val; 4701 } 4702 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4703 4704 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4705 4706 static struct kmem_cache *page_ptl_cachep; 4707 4708 void __init ptlock_cache_init(void) 4709 { 4710 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4711 SLAB_PANIC, NULL); 4712 } 4713 4714 bool ptlock_alloc(struct page *page) 4715 { 4716 spinlock_t *ptl; 4717 4718 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4719 if (!ptl) 4720 return false; 4721 page->ptl = ptl; 4722 return true; 4723 } 4724 4725 void ptlock_free(struct page *page) 4726 { 4727 kmem_cache_free(page_ptl_cachep, page->ptl); 4728 } 4729 #endif 4730