xref: /linux/mm/memory.c (revision 0ade34c37012ea5c516d9aa4d19a56e9f40a55ed)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81 
82 #include "internal.h"
83 
84 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87 
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92 
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96 
97 /*
98  * A number of key systems in x86 including ioremap() rely on the assumption
99  * that high_memory defines the upper bound on direct map memory, then end
100  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
101  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102  * and ZONE_HIGHMEM.
103  */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106 
107 /*
108  * Randomize the address space (stacks, mmaps, brk, etc.).
109  *
110  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111  *   as ancient (libc5 based) binaries can segfault. )
112  */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115 					1;
116 #else
117 					2;
118 #endif
119 
120 static int __init disable_randmaps(char *s)
121 {
122 	randomize_va_space = 0;
123 	return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126 
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129 
130 unsigned long highest_memmap_pfn __read_mostly;
131 
132 /*
133  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134  */
135 static int __init init_zero_pfn(void)
136 {
137 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 	return 0;
139 }
140 core_initcall(init_zero_pfn);
141 
142 
143 #if defined(SPLIT_RSS_COUNTING)
144 
145 void sync_mm_rss(struct mm_struct *mm)
146 {
147 	int i;
148 
149 	for (i = 0; i < NR_MM_COUNTERS; i++) {
150 		if (current->rss_stat.count[i]) {
151 			add_mm_counter(mm, i, current->rss_stat.count[i]);
152 			current->rss_stat.count[i] = 0;
153 		}
154 	}
155 	current->rss_stat.events = 0;
156 }
157 
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160 	struct task_struct *task = current;
161 
162 	if (likely(task->mm == mm))
163 		task->rss_stat.count[member] += val;
164 	else
165 		add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169 
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH	(64)
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174 	if (unlikely(task != current))
175 		return;
176 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177 		sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180 
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183 
184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187 
188 #endif /* SPLIT_RSS_COUNTING */
189 
190 #ifdef HAVE_GENERIC_MMU_GATHER
191 
192 static bool tlb_next_batch(struct mmu_gather *tlb)
193 {
194 	struct mmu_gather_batch *batch;
195 
196 	batch = tlb->active;
197 	if (batch->next) {
198 		tlb->active = batch->next;
199 		return true;
200 	}
201 
202 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
203 		return false;
204 
205 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
206 	if (!batch)
207 		return false;
208 
209 	tlb->batch_count++;
210 	batch->next = NULL;
211 	batch->nr   = 0;
212 	batch->max  = MAX_GATHER_BATCH;
213 
214 	tlb->active->next = batch;
215 	tlb->active = batch;
216 
217 	return true;
218 }
219 
220 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
221 				unsigned long start, unsigned long end)
222 {
223 	tlb->mm = mm;
224 
225 	/* Is it from 0 to ~0? */
226 	tlb->fullmm     = !(start | (end+1));
227 	tlb->need_flush_all = 0;
228 	tlb->local.next = NULL;
229 	tlb->local.nr   = 0;
230 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
231 	tlb->active     = &tlb->local;
232 	tlb->batch_count = 0;
233 
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 	tlb->batch = NULL;
236 #endif
237 	tlb->page_size = 0;
238 
239 	__tlb_reset_range(tlb);
240 }
241 
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
243 {
244 	if (!tlb->end)
245 		return;
246 
247 	tlb_flush(tlb);
248 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
249 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
250 	tlb_table_flush(tlb);
251 #endif
252 	__tlb_reset_range(tlb);
253 }
254 
255 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
256 {
257 	struct mmu_gather_batch *batch;
258 
259 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
260 		free_pages_and_swap_cache(batch->pages, batch->nr);
261 		batch->nr = 0;
262 	}
263 	tlb->active = &tlb->local;
264 }
265 
266 void tlb_flush_mmu(struct mmu_gather *tlb)
267 {
268 	tlb_flush_mmu_tlbonly(tlb);
269 	tlb_flush_mmu_free(tlb);
270 }
271 
272 /* tlb_finish_mmu
273  *	Called at the end of the shootdown operation to free up any resources
274  *	that were required.
275  */
276 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
277 		unsigned long start, unsigned long end, bool force)
278 {
279 	struct mmu_gather_batch *batch, *next;
280 
281 	if (force)
282 		__tlb_adjust_range(tlb, start, end - start);
283 
284 	tlb_flush_mmu(tlb);
285 
286 	/* keep the page table cache within bounds */
287 	check_pgt_cache();
288 
289 	for (batch = tlb->local.next; batch; batch = next) {
290 		next = batch->next;
291 		free_pages((unsigned long)batch, 0);
292 	}
293 	tlb->local.next = NULL;
294 }
295 
296 /* __tlb_remove_page
297  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298  *	handling the additional races in SMP caused by other CPUs caching valid
299  *	mappings in their TLBs. Returns the number of free page slots left.
300  *	When out of page slots we must call tlb_flush_mmu().
301  *returns true if the caller should flush.
302  */
303 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
304 {
305 	struct mmu_gather_batch *batch;
306 
307 	VM_BUG_ON(!tlb->end);
308 	VM_WARN_ON(tlb->page_size != page_size);
309 
310 	batch = tlb->active;
311 	/*
312 	 * Add the page and check if we are full. If so
313 	 * force a flush.
314 	 */
315 	batch->pages[batch->nr++] = page;
316 	if (batch->nr == batch->max) {
317 		if (!tlb_next_batch(tlb))
318 			return true;
319 		batch = tlb->active;
320 	}
321 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
322 
323 	return false;
324 }
325 
326 #endif /* HAVE_GENERIC_MMU_GATHER */
327 
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
329 
330 /*
331  * See the comment near struct mmu_table_batch.
332  */
333 
334 static void tlb_remove_table_smp_sync(void *arg)
335 {
336 	/* Simply deliver the interrupt */
337 }
338 
339 static void tlb_remove_table_one(void *table)
340 {
341 	/*
342 	 * This isn't an RCU grace period and hence the page-tables cannot be
343 	 * assumed to be actually RCU-freed.
344 	 *
345 	 * It is however sufficient for software page-table walkers that rely on
346 	 * IRQ disabling. See the comment near struct mmu_table_batch.
347 	 */
348 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
349 	__tlb_remove_table(table);
350 }
351 
352 static void tlb_remove_table_rcu(struct rcu_head *head)
353 {
354 	struct mmu_table_batch *batch;
355 	int i;
356 
357 	batch = container_of(head, struct mmu_table_batch, rcu);
358 
359 	for (i = 0; i < batch->nr; i++)
360 		__tlb_remove_table(batch->tables[i]);
361 
362 	free_page((unsigned long)batch);
363 }
364 
365 void tlb_table_flush(struct mmu_gather *tlb)
366 {
367 	struct mmu_table_batch **batch = &tlb->batch;
368 
369 	if (*batch) {
370 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
371 		*batch = NULL;
372 	}
373 }
374 
375 void tlb_remove_table(struct mmu_gather *tlb, void *table)
376 {
377 	struct mmu_table_batch **batch = &tlb->batch;
378 
379 	/*
380 	 * When there's less then two users of this mm there cannot be a
381 	 * concurrent page-table walk.
382 	 */
383 	if (atomic_read(&tlb->mm->mm_users) < 2) {
384 		__tlb_remove_table(table);
385 		return;
386 	}
387 
388 	if (*batch == NULL) {
389 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
390 		if (*batch == NULL) {
391 			tlb_remove_table_one(table);
392 			return;
393 		}
394 		(*batch)->nr = 0;
395 	}
396 	(*batch)->tables[(*batch)->nr++] = table;
397 	if ((*batch)->nr == MAX_TABLE_BATCH)
398 		tlb_table_flush(tlb);
399 }
400 
401 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
402 
403 /**
404  * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
405  * @tlb: the mmu_gather structure to initialize
406  * @mm: the mm_struct of the target address space
407  * @start: start of the region that will be removed from the page-table
408  * @end: end of the region that will be removed from the page-table
409  *
410  * Called to initialize an (on-stack) mmu_gather structure for page-table
411  * tear-down from @mm. The @start and @end are set to 0 and -1
412  * respectively when @mm is without users and we're going to destroy
413  * the full address space (exit/execve).
414  */
415 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
416 			unsigned long start, unsigned long end)
417 {
418 	arch_tlb_gather_mmu(tlb, mm, start, end);
419 	inc_tlb_flush_pending(tlb->mm);
420 }
421 
422 void tlb_finish_mmu(struct mmu_gather *tlb,
423 		unsigned long start, unsigned long end)
424 {
425 	/*
426 	 * If there are parallel threads are doing PTE changes on same range
427 	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
428 	 * flush by batching, a thread has stable TLB entry can fail to flush
429 	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
430 	 * forcefully if we detect parallel PTE batching threads.
431 	 */
432 	bool force = mm_tlb_flush_nested(tlb->mm);
433 
434 	arch_tlb_finish_mmu(tlb, start, end, force);
435 	dec_tlb_flush_pending(tlb->mm);
436 }
437 
438 /*
439  * Note: this doesn't free the actual pages themselves. That
440  * has been handled earlier when unmapping all the memory regions.
441  */
442 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
443 			   unsigned long addr)
444 {
445 	pgtable_t token = pmd_pgtable(*pmd);
446 	pmd_clear(pmd);
447 	pte_free_tlb(tlb, token, addr);
448 	mm_dec_nr_ptes(tlb->mm);
449 }
450 
451 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
452 				unsigned long addr, unsigned long end,
453 				unsigned long floor, unsigned long ceiling)
454 {
455 	pmd_t *pmd;
456 	unsigned long next;
457 	unsigned long start;
458 
459 	start = addr;
460 	pmd = pmd_offset(pud, addr);
461 	do {
462 		next = pmd_addr_end(addr, end);
463 		if (pmd_none_or_clear_bad(pmd))
464 			continue;
465 		free_pte_range(tlb, pmd, addr);
466 	} while (pmd++, addr = next, addr != end);
467 
468 	start &= PUD_MASK;
469 	if (start < floor)
470 		return;
471 	if (ceiling) {
472 		ceiling &= PUD_MASK;
473 		if (!ceiling)
474 			return;
475 	}
476 	if (end - 1 > ceiling - 1)
477 		return;
478 
479 	pmd = pmd_offset(pud, start);
480 	pud_clear(pud);
481 	pmd_free_tlb(tlb, pmd, start);
482 	mm_dec_nr_pmds(tlb->mm);
483 }
484 
485 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
486 				unsigned long addr, unsigned long end,
487 				unsigned long floor, unsigned long ceiling)
488 {
489 	pud_t *pud;
490 	unsigned long next;
491 	unsigned long start;
492 
493 	start = addr;
494 	pud = pud_offset(p4d, addr);
495 	do {
496 		next = pud_addr_end(addr, end);
497 		if (pud_none_or_clear_bad(pud))
498 			continue;
499 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
500 	} while (pud++, addr = next, addr != end);
501 
502 	start &= P4D_MASK;
503 	if (start < floor)
504 		return;
505 	if (ceiling) {
506 		ceiling &= P4D_MASK;
507 		if (!ceiling)
508 			return;
509 	}
510 	if (end - 1 > ceiling - 1)
511 		return;
512 
513 	pud = pud_offset(p4d, start);
514 	p4d_clear(p4d);
515 	pud_free_tlb(tlb, pud, start);
516 	mm_dec_nr_puds(tlb->mm);
517 }
518 
519 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
520 				unsigned long addr, unsigned long end,
521 				unsigned long floor, unsigned long ceiling)
522 {
523 	p4d_t *p4d;
524 	unsigned long next;
525 	unsigned long start;
526 
527 	start = addr;
528 	p4d = p4d_offset(pgd, addr);
529 	do {
530 		next = p4d_addr_end(addr, end);
531 		if (p4d_none_or_clear_bad(p4d))
532 			continue;
533 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
534 	} while (p4d++, addr = next, addr != end);
535 
536 	start &= PGDIR_MASK;
537 	if (start < floor)
538 		return;
539 	if (ceiling) {
540 		ceiling &= PGDIR_MASK;
541 		if (!ceiling)
542 			return;
543 	}
544 	if (end - 1 > ceiling - 1)
545 		return;
546 
547 	p4d = p4d_offset(pgd, start);
548 	pgd_clear(pgd);
549 	p4d_free_tlb(tlb, p4d, start);
550 }
551 
552 /*
553  * This function frees user-level page tables of a process.
554  */
555 void free_pgd_range(struct mmu_gather *tlb,
556 			unsigned long addr, unsigned long end,
557 			unsigned long floor, unsigned long ceiling)
558 {
559 	pgd_t *pgd;
560 	unsigned long next;
561 
562 	/*
563 	 * The next few lines have given us lots of grief...
564 	 *
565 	 * Why are we testing PMD* at this top level?  Because often
566 	 * there will be no work to do at all, and we'd prefer not to
567 	 * go all the way down to the bottom just to discover that.
568 	 *
569 	 * Why all these "- 1"s?  Because 0 represents both the bottom
570 	 * of the address space and the top of it (using -1 for the
571 	 * top wouldn't help much: the masks would do the wrong thing).
572 	 * The rule is that addr 0 and floor 0 refer to the bottom of
573 	 * the address space, but end 0 and ceiling 0 refer to the top
574 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
575 	 * that end 0 case should be mythical).
576 	 *
577 	 * Wherever addr is brought up or ceiling brought down, we must
578 	 * be careful to reject "the opposite 0" before it confuses the
579 	 * subsequent tests.  But what about where end is brought down
580 	 * by PMD_SIZE below? no, end can't go down to 0 there.
581 	 *
582 	 * Whereas we round start (addr) and ceiling down, by different
583 	 * masks at different levels, in order to test whether a table
584 	 * now has no other vmas using it, so can be freed, we don't
585 	 * bother to round floor or end up - the tests don't need that.
586 	 */
587 
588 	addr &= PMD_MASK;
589 	if (addr < floor) {
590 		addr += PMD_SIZE;
591 		if (!addr)
592 			return;
593 	}
594 	if (ceiling) {
595 		ceiling &= PMD_MASK;
596 		if (!ceiling)
597 			return;
598 	}
599 	if (end - 1 > ceiling - 1)
600 		end -= PMD_SIZE;
601 	if (addr > end - 1)
602 		return;
603 	/*
604 	 * We add page table cache pages with PAGE_SIZE,
605 	 * (see pte_free_tlb()), flush the tlb if we need
606 	 */
607 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
608 	pgd = pgd_offset(tlb->mm, addr);
609 	do {
610 		next = pgd_addr_end(addr, end);
611 		if (pgd_none_or_clear_bad(pgd))
612 			continue;
613 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
614 	} while (pgd++, addr = next, addr != end);
615 }
616 
617 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
618 		unsigned long floor, unsigned long ceiling)
619 {
620 	while (vma) {
621 		struct vm_area_struct *next = vma->vm_next;
622 		unsigned long addr = vma->vm_start;
623 
624 		/*
625 		 * Hide vma from rmap and truncate_pagecache before freeing
626 		 * pgtables
627 		 */
628 		unlink_anon_vmas(vma);
629 		unlink_file_vma(vma);
630 
631 		if (is_vm_hugetlb_page(vma)) {
632 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
633 				floor, next ? next->vm_start : ceiling);
634 		} else {
635 			/*
636 			 * Optimization: gather nearby vmas into one call down
637 			 */
638 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
639 			       && !is_vm_hugetlb_page(next)) {
640 				vma = next;
641 				next = vma->vm_next;
642 				unlink_anon_vmas(vma);
643 				unlink_file_vma(vma);
644 			}
645 			free_pgd_range(tlb, addr, vma->vm_end,
646 				floor, next ? next->vm_start : ceiling);
647 		}
648 		vma = next;
649 	}
650 }
651 
652 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
653 {
654 	spinlock_t *ptl;
655 	pgtable_t new = pte_alloc_one(mm, address);
656 	if (!new)
657 		return -ENOMEM;
658 
659 	/*
660 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
661 	 * visible before the pte is made visible to other CPUs by being
662 	 * put into page tables.
663 	 *
664 	 * The other side of the story is the pointer chasing in the page
665 	 * table walking code (when walking the page table without locking;
666 	 * ie. most of the time). Fortunately, these data accesses consist
667 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
668 	 * being the notable exception) will already guarantee loads are
669 	 * seen in-order. See the alpha page table accessors for the
670 	 * smp_read_barrier_depends() barriers in page table walking code.
671 	 */
672 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
673 
674 	ptl = pmd_lock(mm, pmd);
675 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
676 		mm_inc_nr_ptes(mm);
677 		pmd_populate(mm, pmd, new);
678 		new = NULL;
679 	}
680 	spin_unlock(ptl);
681 	if (new)
682 		pte_free(mm, new);
683 	return 0;
684 }
685 
686 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
687 {
688 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
689 	if (!new)
690 		return -ENOMEM;
691 
692 	smp_wmb(); /* See comment in __pte_alloc */
693 
694 	spin_lock(&init_mm.page_table_lock);
695 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
696 		pmd_populate_kernel(&init_mm, pmd, new);
697 		new = NULL;
698 	}
699 	spin_unlock(&init_mm.page_table_lock);
700 	if (new)
701 		pte_free_kernel(&init_mm, new);
702 	return 0;
703 }
704 
705 static inline void init_rss_vec(int *rss)
706 {
707 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
708 }
709 
710 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
711 {
712 	int i;
713 
714 	if (current->mm == mm)
715 		sync_mm_rss(mm);
716 	for (i = 0; i < NR_MM_COUNTERS; i++)
717 		if (rss[i])
718 			add_mm_counter(mm, i, rss[i]);
719 }
720 
721 /*
722  * This function is called to print an error when a bad pte
723  * is found. For example, we might have a PFN-mapped pte in
724  * a region that doesn't allow it.
725  *
726  * The calling function must still handle the error.
727  */
728 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
729 			  pte_t pte, struct page *page)
730 {
731 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
732 	p4d_t *p4d = p4d_offset(pgd, addr);
733 	pud_t *pud = pud_offset(p4d, addr);
734 	pmd_t *pmd = pmd_offset(pud, addr);
735 	struct address_space *mapping;
736 	pgoff_t index;
737 	static unsigned long resume;
738 	static unsigned long nr_shown;
739 	static unsigned long nr_unshown;
740 
741 	/*
742 	 * Allow a burst of 60 reports, then keep quiet for that minute;
743 	 * or allow a steady drip of one report per second.
744 	 */
745 	if (nr_shown == 60) {
746 		if (time_before(jiffies, resume)) {
747 			nr_unshown++;
748 			return;
749 		}
750 		if (nr_unshown) {
751 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
752 				 nr_unshown);
753 			nr_unshown = 0;
754 		}
755 		nr_shown = 0;
756 	}
757 	if (nr_shown++ == 0)
758 		resume = jiffies + 60 * HZ;
759 
760 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
761 	index = linear_page_index(vma, addr);
762 
763 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
764 		 current->comm,
765 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
766 	if (page)
767 		dump_page(page, "bad pte");
768 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
769 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
770 	/*
771 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
772 	 */
773 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
774 		 vma->vm_file,
775 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
776 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
777 		 mapping ? mapping->a_ops->readpage : NULL);
778 	dump_stack();
779 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
780 }
781 
782 /*
783  * vm_normal_page -- This function gets the "struct page" associated with a pte.
784  *
785  * "Special" mappings do not wish to be associated with a "struct page" (either
786  * it doesn't exist, or it exists but they don't want to touch it). In this
787  * case, NULL is returned here. "Normal" mappings do have a struct page.
788  *
789  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
790  * pte bit, in which case this function is trivial. Secondly, an architecture
791  * may not have a spare pte bit, which requires a more complicated scheme,
792  * described below.
793  *
794  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
795  * special mapping (even if there are underlying and valid "struct pages").
796  * COWed pages of a VM_PFNMAP are always normal.
797  *
798  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
799  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
800  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
801  * mapping will always honor the rule
802  *
803  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
804  *
805  * And for normal mappings this is false.
806  *
807  * This restricts such mappings to be a linear translation from virtual address
808  * to pfn. To get around this restriction, we allow arbitrary mappings so long
809  * as the vma is not a COW mapping; in that case, we know that all ptes are
810  * special (because none can have been COWed).
811  *
812  *
813  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
814  *
815  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
816  * page" backing, however the difference is that _all_ pages with a struct
817  * page (that is, those where pfn_valid is true) are refcounted and considered
818  * normal pages by the VM. The disadvantage is that pages are refcounted
819  * (which can be slower and simply not an option for some PFNMAP users). The
820  * advantage is that we don't have to follow the strict linearity rule of
821  * PFNMAP mappings in order to support COWable mappings.
822  *
823  */
824 #ifdef __HAVE_ARCH_PTE_SPECIAL
825 # define HAVE_PTE_SPECIAL 1
826 #else
827 # define HAVE_PTE_SPECIAL 0
828 #endif
829 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
830 			     pte_t pte, bool with_public_device)
831 {
832 	unsigned long pfn = pte_pfn(pte);
833 
834 	if (HAVE_PTE_SPECIAL) {
835 		if (likely(!pte_special(pte)))
836 			goto check_pfn;
837 		if (vma->vm_ops && vma->vm_ops->find_special_page)
838 			return vma->vm_ops->find_special_page(vma, addr);
839 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
840 			return NULL;
841 		if (is_zero_pfn(pfn))
842 			return NULL;
843 
844 		/*
845 		 * Device public pages are special pages (they are ZONE_DEVICE
846 		 * pages but different from persistent memory). They behave
847 		 * allmost like normal pages. The difference is that they are
848 		 * not on the lru and thus should never be involve with any-
849 		 * thing that involve lru manipulation (mlock, numa balancing,
850 		 * ...).
851 		 *
852 		 * This is why we still want to return NULL for such page from
853 		 * vm_normal_page() so that we do not have to special case all
854 		 * call site of vm_normal_page().
855 		 */
856 		if (likely(pfn <= highest_memmap_pfn)) {
857 			struct page *page = pfn_to_page(pfn);
858 
859 			if (is_device_public_page(page)) {
860 				if (with_public_device)
861 					return page;
862 				return NULL;
863 			}
864 		}
865 		print_bad_pte(vma, addr, pte, NULL);
866 		return NULL;
867 	}
868 
869 	/* !HAVE_PTE_SPECIAL case follows: */
870 
871 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
872 		if (vma->vm_flags & VM_MIXEDMAP) {
873 			if (!pfn_valid(pfn))
874 				return NULL;
875 			goto out;
876 		} else {
877 			unsigned long off;
878 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
879 			if (pfn == vma->vm_pgoff + off)
880 				return NULL;
881 			if (!is_cow_mapping(vma->vm_flags))
882 				return NULL;
883 		}
884 	}
885 
886 	if (is_zero_pfn(pfn))
887 		return NULL;
888 check_pfn:
889 	if (unlikely(pfn > highest_memmap_pfn)) {
890 		print_bad_pte(vma, addr, pte, NULL);
891 		return NULL;
892 	}
893 
894 	/*
895 	 * NOTE! We still have PageReserved() pages in the page tables.
896 	 * eg. VDSO mappings can cause them to exist.
897 	 */
898 out:
899 	return pfn_to_page(pfn);
900 }
901 
902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
903 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
904 				pmd_t pmd)
905 {
906 	unsigned long pfn = pmd_pfn(pmd);
907 
908 	/*
909 	 * There is no pmd_special() but there may be special pmds, e.g.
910 	 * in a direct-access (dax) mapping, so let's just replicate the
911 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
912 	 */
913 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
914 		if (vma->vm_flags & VM_MIXEDMAP) {
915 			if (!pfn_valid(pfn))
916 				return NULL;
917 			goto out;
918 		} else {
919 			unsigned long off;
920 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
921 			if (pfn == vma->vm_pgoff + off)
922 				return NULL;
923 			if (!is_cow_mapping(vma->vm_flags))
924 				return NULL;
925 		}
926 	}
927 
928 	if (is_zero_pfn(pfn))
929 		return NULL;
930 	if (unlikely(pfn > highest_memmap_pfn))
931 		return NULL;
932 
933 	/*
934 	 * NOTE! We still have PageReserved() pages in the page tables.
935 	 * eg. VDSO mappings can cause them to exist.
936 	 */
937 out:
938 	return pfn_to_page(pfn);
939 }
940 #endif
941 
942 /*
943  * copy one vm_area from one task to the other. Assumes the page tables
944  * already present in the new task to be cleared in the whole range
945  * covered by this vma.
946  */
947 
948 static inline unsigned long
949 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
951 		unsigned long addr, int *rss)
952 {
953 	unsigned long vm_flags = vma->vm_flags;
954 	pte_t pte = *src_pte;
955 	struct page *page;
956 
957 	/* pte contains position in swap or file, so copy. */
958 	if (unlikely(!pte_present(pte))) {
959 		swp_entry_t entry = pte_to_swp_entry(pte);
960 
961 		if (likely(!non_swap_entry(entry))) {
962 			if (swap_duplicate(entry) < 0)
963 				return entry.val;
964 
965 			/* make sure dst_mm is on swapoff's mmlist. */
966 			if (unlikely(list_empty(&dst_mm->mmlist))) {
967 				spin_lock(&mmlist_lock);
968 				if (list_empty(&dst_mm->mmlist))
969 					list_add(&dst_mm->mmlist,
970 							&src_mm->mmlist);
971 				spin_unlock(&mmlist_lock);
972 			}
973 			rss[MM_SWAPENTS]++;
974 		} else if (is_migration_entry(entry)) {
975 			page = migration_entry_to_page(entry);
976 
977 			rss[mm_counter(page)]++;
978 
979 			if (is_write_migration_entry(entry) &&
980 					is_cow_mapping(vm_flags)) {
981 				/*
982 				 * COW mappings require pages in both
983 				 * parent and child to be set to read.
984 				 */
985 				make_migration_entry_read(&entry);
986 				pte = swp_entry_to_pte(entry);
987 				if (pte_swp_soft_dirty(*src_pte))
988 					pte = pte_swp_mksoft_dirty(pte);
989 				set_pte_at(src_mm, addr, src_pte, pte);
990 			}
991 		} else if (is_device_private_entry(entry)) {
992 			page = device_private_entry_to_page(entry);
993 
994 			/*
995 			 * Update rss count even for unaddressable pages, as
996 			 * they should treated just like normal pages in this
997 			 * respect.
998 			 *
999 			 * We will likely want to have some new rss counters
1000 			 * for unaddressable pages, at some point. But for now
1001 			 * keep things as they are.
1002 			 */
1003 			get_page(page);
1004 			rss[mm_counter(page)]++;
1005 			page_dup_rmap(page, false);
1006 
1007 			/*
1008 			 * We do not preserve soft-dirty information, because so
1009 			 * far, checkpoint/restore is the only feature that
1010 			 * requires that. And checkpoint/restore does not work
1011 			 * when a device driver is involved (you cannot easily
1012 			 * save and restore device driver state).
1013 			 */
1014 			if (is_write_device_private_entry(entry) &&
1015 			    is_cow_mapping(vm_flags)) {
1016 				make_device_private_entry_read(&entry);
1017 				pte = swp_entry_to_pte(entry);
1018 				set_pte_at(src_mm, addr, src_pte, pte);
1019 			}
1020 		}
1021 		goto out_set_pte;
1022 	}
1023 
1024 	/*
1025 	 * If it's a COW mapping, write protect it both
1026 	 * in the parent and the child
1027 	 */
1028 	if (is_cow_mapping(vm_flags)) {
1029 		ptep_set_wrprotect(src_mm, addr, src_pte);
1030 		pte = pte_wrprotect(pte);
1031 	}
1032 
1033 	/*
1034 	 * If it's a shared mapping, mark it clean in
1035 	 * the child
1036 	 */
1037 	if (vm_flags & VM_SHARED)
1038 		pte = pte_mkclean(pte);
1039 	pte = pte_mkold(pte);
1040 
1041 	page = vm_normal_page(vma, addr, pte);
1042 	if (page) {
1043 		get_page(page);
1044 		page_dup_rmap(page, false);
1045 		rss[mm_counter(page)]++;
1046 	} else if (pte_devmap(pte)) {
1047 		page = pte_page(pte);
1048 
1049 		/*
1050 		 * Cache coherent device memory behave like regular page and
1051 		 * not like persistent memory page. For more informations see
1052 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1053 		 */
1054 		if (is_device_public_page(page)) {
1055 			get_page(page);
1056 			page_dup_rmap(page, false);
1057 			rss[mm_counter(page)]++;
1058 		}
1059 	}
1060 
1061 out_set_pte:
1062 	set_pte_at(dst_mm, addr, dst_pte, pte);
1063 	return 0;
1064 }
1065 
1066 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1067 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1068 		   unsigned long addr, unsigned long end)
1069 {
1070 	pte_t *orig_src_pte, *orig_dst_pte;
1071 	pte_t *src_pte, *dst_pte;
1072 	spinlock_t *src_ptl, *dst_ptl;
1073 	int progress = 0;
1074 	int rss[NR_MM_COUNTERS];
1075 	swp_entry_t entry = (swp_entry_t){0};
1076 
1077 again:
1078 	init_rss_vec(rss);
1079 
1080 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1081 	if (!dst_pte)
1082 		return -ENOMEM;
1083 	src_pte = pte_offset_map(src_pmd, addr);
1084 	src_ptl = pte_lockptr(src_mm, src_pmd);
1085 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1086 	orig_src_pte = src_pte;
1087 	orig_dst_pte = dst_pte;
1088 	arch_enter_lazy_mmu_mode();
1089 
1090 	do {
1091 		/*
1092 		 * We are holding two locks at this point - either of them
1093 		 * could generate latencies in another task on another CPU.
1094 		 */
1095 		if (progress >= 32) {
1096 			progress = 0;
1097 			if (need_resched() ||
1098 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1099 				break;
1100 		}
1101 		if (pte_none(*src_pte)) {
1102 			progress++;
1103 			continue;
1104 		}
1105 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1106 							vma, addr, rss);
1107 		if (entry.val)
1108 			break;
1109 		progress += 8;
1110 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1111 
1112 	arch_leave_lazy_mmu_mode();
1113 	spin_unlock(src_ptl);
1114 	pte_unmap(orig_src_pte);
1115 	add_mm_rss_vec(dst_mm, rss);
1116 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1117 	cond_resched();
1118 
1119 	if (entry.val) {
1120 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1121 			return -ENOMEM;
1122 		progress = 0;
1123 	}
1124 	if (addr != end)
1125 		goto again;
1126 	return 0;
1127 }
1128 
1129 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1130 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1131 		unsigned long addr, unsigned long end)
1132 {
1133 	pmd_t *src_pmd, *dst_pmd;
1134 	unsigned long next;
1135 
1136 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1137 	if (!dst_pmd)
1138 		return -ENOMEM;
1139 	src_pmd = pmd_offset(src_pud, addr);
1140 	do {
1141 		next = pmd_addr_end(addr, end);
1142 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1143 			|| pmd_devmap(*src_pmd)) {
1144 			int err;
1145 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1146 			err = copy_huge_pmd(dst_mm, src_mm,
1147 					    dst_pmd, src_pmd, addr, vma);
1148 			if (err == -ENOMEM)
1149 				return -ENOMEM;
1150 			if (!err)
1151 				continue;
1152 			/* fall through */
1153 		}
1154 		if (pmd_none_or_clear_bad(src_pmd))
1155 			continue;
1156 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1157 						vma, addr, next))
1158 			return -ENOMEM;
1159 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1160 	return 0;
1161 }
1162 
1163 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1164 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1165 		unsigned long addr, unsigned long end)
1166 {
1167 	pud_t *src_pud, *dst_pud;
1168 	unsigned long next;
1169 
1170 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1171 	if (!dst_pud)
1172 		return -ENOMEM;
1173 	src_pud = pud_offset(src_p4d, addr);
1174 	do {
1175 		next = pud_addr_end(addr, end);
1176 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1177 			int err;
1178 
1179 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1180 			err = copy_huge_pud(dst_mm, src_mm,
1181 					    dst_pud, src_pud, addr, vma);
1182 			if (err == -ENOMEM)
1183 				return -ENOMEM;
1184 			if (!err)
1185 				continue;
1186 			/* fall through */
1187 		}
1188 		if (pud_none_or_clear_bad(src_pud))
1189 			continue;
1190 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1191 						vma, addr, next))
1192 			return -ENOMEM;
1193 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1194 	return 0;
1195 }
1196 
1197 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1198 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1199 		unsigned long addr, unsigned long end)
1200 {
1201 	p4d_t *src_p4d, *dst_p4d;
1202 	unsigned long next;
1203 
1204 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1205 	if (!dst_p4d)
1206 		return -ENOMEM;
1207 	src_p4d = p4d_offset(src_pgd, addr);
1208 	do {
1209 		next = p4d_addr_end(addr, end);
1210 		if (p4d_none_or_clear_bad(src_p4d))
1211 			continue;
1212 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1213 						vma, addr, next))
1214 			return -ENOMEM;
1215 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1216 	return 0;
1217 }
1218 
1219 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1220 		struct vm_area_struct *vma)
1221 {
1222 	pgd_t *src_pgd, *dst_pgd;
1223 	unsigned long next;
1224 	unsigned long addr = vma->vm_start;
1225 	unsigned long end = vma->vm_end;
1226 	unsigned long mmun_start;	/* For mmu_notifiers */
1227 	unsigned long mmun_end;		/* For mmu_notifiers */
1228 	bool is_cow;
1229 	int ret;
1230 
1231 	/*
1232 	 * Don't copy ptes where a page fault will fill them correctly.
1233 	 * Fork becomes much lighter when there are big shared or private
1234 	 * readonly mappings. The tradeoff is that copy_page_range is more
1235 	 * efficient than faulting.
1236 	 */
1237 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1238 			!vma->anon_vma)
1239 		return 0;
1240 
1241 	if (is_vm_hugetlb_page(vma))
1242 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1243 
1244 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1245 		/*
1246 		 * We do not free on error cases below as remove_vma
1247 		 * gets called on error from higher level routine
1248 		 */
1249 		ret = track_pfn_copy(vma);
1250 		if (ret)
1251 			return ret;
1252 	}
1253 
1254 	/*
1255 	 * We need to invalidate the secondary MMU mappings only when
1256 	 * there could be a permission downgrade on the ptes of the
1257 	 * parent mm. And a permission downgrade will only happen if
1258 	 * is_cow_mapping() returns true.
1259 	 */
1260 	is_cow = is_cow_mapping(vma->vm_flags);
1261 	mmun_start = addr;
1262 	mmun_end   = end;
1263 	if (is_cow)
1264 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1265 						    mmun_end);
1266 
1267 	ret = 0;
1268 	dst_pgd = pgd_offset(dst_mm, addr);
1269 	src_pgd = pgd_offset(src_mm, addr);
1270 	do {
1271 		next = pgd_addr_end(addr, end);
1272 		if (pgd_none_or_clear_bad(src_pgd))
1273 			continue;
1274 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1275 					    vma, addr, next))) {
1276 			ret = -ENOMEM;
1277 			break;
1278 		}
1279 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1280 
1281 	if (is_cow)
1282 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1283 	return ret;
1284 }
1285 
1286 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1287 				struct vm_area_struct *vma, pmd_t *pmd,
1288 				unsigned long addr, unsigned long end,
1289 				struct zap_details *details)
1290 {
1291 	struct mm_struct *mm = tlb->mm;
1292 	int force_flush = 0;
1293 	int rss[NR_MM_COUNTERS];
1294 	spinlock_t *ptl;
1295 	pte_t *start_pte;
1296 	pte_t *pte;
1297 	swp_entry_t entry;
1298 
1299 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1300 again:
1301 	init_rss_vec(rss);
1302 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1303 	pte = start_pte;
1304 	flush_tlb_batched_pending(mm);
1305 	arch_enter_lazy_mmu_mode();
1306 	do {
1307 		pte_t ptent = *pte;
1308 		if (pte_none(ptent))
1309 			continue;
1310 
1311 		if (pte_present(ptent)) {
1312 			struct page *page;
1313 
1314 			page = _vm_normal_page(vma, addr, ptent, true);
1315 			if (unlikely(details) && page) {
1316 				/*
1317 				 * unmap_shared_mapping_pages() wants to
1318 				 * invalidate cache without truncating:
1319 				 * unmap shared but keep private pages.
1320 				 */
1321 				if (details->check_mapping &&
1322 				    details->check_mapping != page_rmapping(page))
1323 					continue;
1324 			}
1325 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1326 							tlb->fullmm);
1327 			tlb_remove_tlb_entry(tlb, pte, addr);
1328 			if (unlikely(!page))
1329 				continue;
1330 
1331 			if (!PageAnon(page)) {
1332 				if (pte_dirty(ptent)) {
1333 					force_flush = 1;
1334 					set_page_dirty(page);
1335 				}
1336 				if (pte_young(ptent) &&
1337 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1338 					mark_page_accessed(page);
1339 			}
1340 			rss[mm_counter(page)]--;
1341 			page_remove_rmap(page, false);
1342 			if (unlikely(page_mapcount(page) < 0))
1343 				print_bad_pte(vma, addr, ptent, page);
1344 			if (unlikely(__tlb_remove_page(tlb, page))) {
1345 				force_flush = 1;
1346 				addr += PAGE_SIZE;
1347 				break;
1348 			}
1349 			continue;
1350 		}
1351 
1352 		entry = pte_to_swp_entry(ptent);
1353 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1354 			struct page *page = device_private_entry_to_page(entry);
1355 
1356 			if (unlikely(details && details->check_mapping)) {
1357 				/*
1358 				 * unmap_shared_mapping_pages() wants to
1359 				 * invalidate cache without truncating:
1360 				 * unmap shared but keep private pages.
1361 				 */
1362 				if (details->check_mapping !=
1363 				    page_rmapping(page))
1364 					continue;
1365 			}
1366 
1367 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1368 			rss[mm_counter(page)]--;
1369 			page_remove_rmap(page, false);
1370 			put_page(page);
1371 			continue;
1372 		}
1373 
1374 		/* If details->check_mapping, we leave swap entries. */
1375 		if (unlikely(details))
1376 			continue;
1377 
1378 		entry = pte_to_swp_entry(ptent);
1379 		if (!non_swap_entry(entry))
1380 			rss[MM_SWAPENTS]--;
1381 		else if (is_migration_entry(entry)) {
1382 			struct page *page;
1383 
1384 			page = migration_entry_to_page(entry);
1385 			rss[mm_counter(page)]--;
1386 		}
1387 		if (unlikely(!free_swap_and_cache(entry)))
1388 			print_bad_pte(vma, addr, ptent, NULL);
1389 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1390 	} while (pte++, addr += PAGE_SIZE, addr != end);
1391 
1392 	add_mm_rss_vec(mm, rss);
1393 	arch_leave_lazy_mmu_mode();
1394 
1395 	/* Do the actual TLB flush before dropping ptl */
1396 	if (force_flush)
1397 		tlb_flush_mmu_tlbonly(tlb);
1398 	pte_unmap_unlock(start_pte, ptl);
1399 
1400 	/*
1401 	 * If we forced a TLB flush (either due to running out of
1402 	 * batch buffers or because we needed to flush dirty TLB
1403 	 * entries before releasing the ptl), free the batched
1404 	 * memory too. Restart if we didn't do everything.
1405 	 */
1406 	if (force_flush) {
1407 		force_flush = 0;
1408 		tlb_flush_mmu_free(tlb);
1409 		if (addr != end)
1410 			goto again;
1411 	}
1412 
1413 	return addr;
1414 }
1415 
1416 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1417 				struct vm_area_struct *vma, pud_t *pud,
1418 				unsigned long addr, unsigned long end,
1419 				struct zap_details *details)
1420 {
1421 	pmd_t *pmd;
1422 	unsigned long next;
1423 
1424 	pmd = pmd_offset(pud, addr);
1425 	do {
1426 		next = pmd_addr_end(addr, end);
1427 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1428 			if (next - addr != HPAGE_PMD_SIZE) {
1429 				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1430 				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1431 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1432 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1433 				goto next;
1434 			/* fall through */
1435 		}
1436 		/*
1437 		 * Here there can be other concurrent MADV_DONTNEED or
1438 		 * trans huge page faults running, and if the pmd is
1439 		 * none or trans huge it can change under us. This is
1440 		 * because MADV_DONTNEED holds the mmap_sem in read
1441 		 * mode.
1442 		 */
1443 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1444 			goto next;
1445 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1446 next:
1447 		cond_resched();
1448 	} while (pmd++, addr = next, addr != end);
1449 
1450 	return addr;
1451 }
1452 
1453 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1454 				struct vm_area_struct *vma, p4d_t *p4d,
1455 				unsigned long addr, unsigned long end,
1456 				struct zap_details *details)
1457 {
1458 	pud_t *pud;
1459 	unsigned long next;
1460 
1461 	pud = pud_offset(p4d, addr);
1462 	do {
1463 		next = pud_addr_end(addr, end);
1464 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1465 			if (next - addr != HPAGE_PUD_SIZE) {
1466 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1467 				split_huge_pud(vma, pud, addr);
1468 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1469 				goto next;
1470 			/* fall through */
1471 		}
1472 		if (pud_none_or_clear_bad(pud))
1473 			continue;
1474 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1475 next:
1476 		cond_resched();
1477 	} while (pud++, addr = next, addr != end);
1478 
1479 	return addr;
1480 }
1481 
1482 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1483 				struct vm_area_struct *vma, pgd_t *pgd,
1484 				unsigned long addr, unsigned long end,
1485 				struct zap_details *details)
1486 {
1487 	p4d_t *p4d;
1488 	unsigned long next;
1489 
1490 	p4d = p4d_offset(pgd, addr);
1491 	do {
1492 		next = p4d_addr_end(addr, end);
1493 		if (p4d_none_or_clear_bad(p4d))
1494 			continue;
1495 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1496 	} while (p4d++, addr = next, addr != end);
1497 
1498 	return addr;
1499 }
1500 
1501 void unmap_page_range(struct mmu_gather *tlb,
1502 			     struct vm_area_struct *vma,
1503 			     unsigned long addr, unsigned long end,
1504 			     struct zap_details *details)
1505 {
1506 	pgd_t *pgd;
1507 	unsigned long next;
1508 
1509 	BUG_ON(addr >= end);
1510 	tlb_start_vma(tlb, vma);
1511 	pgd = pgd_offset(vma->vm_mm, addr);
1512 	do {
1513 		next = pgd_addr_end(addr, end);
1514 		if (pgd_none_or_clear_bad(pgd))
1515 			continue;
1516 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1517 	} while (pgd++, addr = next, addr != end);
1518 	tlb_end_vma(tlb, vma);
1519 }
1520 
1521 
1522 static void unmap_single_vma(struct mmu_gather *tlb,
1523 		struct vm_area_struct *vma, unsigned long start_addr,
1524 		unsigned long end_addr,
1525 		struct zap_details *details)
1526 {
1527 	unsigned long start = max(vma->vm_start, start_addr);
1528 	unsigned long end;
1529 
1530 	if (start >= vma->vm_end)
1531 		return;
1532 	end = min(vma->vm_end, end_addr);
1533 	if (end <= vma->vm_start)
1534 		return;
1535 
1536 	if (vma->vm_file)
1537 		uprobe_munmap(vma, start, end);
1538 
1539 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1540 		untrack_pfn(vma, 0, 0);
1541 
1542 	if (start != end) {
1543 		if (unlikely(is_vm_hugetlb_page(vma))) {
1544 			/*
1545 			 * It is undesirable to test vma->vm_file as it
1546 			 * should be non-null for valid hugetlb area.
1547 			 * However, vm_file will be NULL in the error
1548 			 * cleanup path of mmap_region. When
1549 			 * hugetlbfs ->mmap method fails,
1550 			 * mmap_region() nullifies vma->vm_file
1551 			 * before calling this function to clean up.
1552 			 * Since no pte has actually been setup, it is
1553 			 * safe to do nothing in this case.
1554 			 */
1555 			if (vma->vm_file) {
1556 				i_mmap_lock_write(vma->vm_file->f_mapping);
1557 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1558 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1559 			}
1560 		} else
1561 			unmap_page_range(tlb, vma, start, end, details);
1562 	}
1563 }
1564 
1565 /**
1566  * unmap_vmas - unmap a range of memory covered by a list of vma's
1567  * @tlb: address of the caller's struct mmu_gather
1568  * @vma: the starting vma
1569  * @start_addr: virtual address at which to start unmapping
1570  * @end_addr: virtual address at which to end unmapping
1571  *
1572  * Unmap all pages in the vma list.
1573  *
1574  * Only addresses between `start' and `end' will be unmapped.
1575  *
1576  * The VMA list must be sorted in ascending virtual address order.
1577  *
1578  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1579  * range after unmap_vmas() returns.  So the only responsibility here is to
1580  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1581  * drops the lock and schedules.
1582  */
1583 void unmap_vmas(struct mmu_gather *tlb,
1584 		struct vm_area_struct *vma, unsigned long start_addr,
1585 		unsigned long end_addr)
1586 {
1587 	struct mm_struct *mm = vma->vm_mm;
1588 
1589 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1590 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1591 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1592 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1593 }
1594 
1595 /**
1596  * zap_page_range - remove user pages in a given range
1597  * @vma: vm_area_struct holding the applicable pages
1598  * @start: starting address of pages to zap
1599  * @size: number of bytes to zap
1600  *
1601  * Caller must protect the VMA list
1602  */
1603 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1604 		unsigned long size)
1605 {
1606 	struct mm_struct *mm = vma->vm_mm;
1607 	struct mmu_gather tlb;
1608 	unsigned long end = start + size;
1609 
1610 	lru_add_drain();
1611 	tlb_gather_mmu(&tlb, mm, start, end);
1612 	update_hiwater_rss(mm);
1613 	mmu_notifier_invalidate_range_start(mm, start, end);
1614 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1615 		unmap_single_vma(&tlb, vma, start, end, NULL);
1616 
1617 		/*
1618 		 * zap_page_range does not specify whether mmap_sem should be
1619 		 * held for read or write. That allows parallel zap_page_range
1620 		 * operations to unmap a PTE and defer a flush meaning that
1621 		 * this call observes pte_none and fails to flush the TLB.
1622 		 * Rather than adding a complex API, ensure that no stale
1623 		 * TLB entries exist when this call returns.
1624 		 */
1625 		flush_tlb_range(vma, start, end);
1626 	}
1627 
1628 	mmu_notifier_invalidate_range_end(mm, start, end);
1629 	tlb_finish_mmu(&tlb, start, end);
1630 }
1631 
1632 /**
1633  * zap_page_range_single - remove user pages in a given range
1634  * @vma: vm_area_struct holding the applicable pages
1635  * @address: starting address of pages to zap
1636  * @size: number of bytes to zap
1637  * @details: details of shared cache invalidation
1638  *
1639  * The range must fit into one VMA.
1640  */
1641 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1642 		unsigned long size, struct zap_details *details)
1643 {
1644 	struct mm_struct *mm = vma->vm_mm;
1645 	struct mmu_gather tlb;
1646 	unsigned long end = address + size;
1647 
1648 	lru_add_drain();
1649 	tlb_gather_mmu(&tlb, mm, address, end);
1650 	update_hiwater_rss(mm);
1651 	mmu_notifier_invalidate_range_start(mm, address, end);
1652 	unmap_single_vma(&tlb, vma, address, end, details);
1653 	mmu_notifier_invalidate_range_end(mm, address, end);
1654 	tlb_finish_mmu(&tlb, address, end);
1655 }
1656 
1657 /**
1658  * zap_vma_ptes - remove ptes mapping the vma
1659  * @vma: vm_area_struct holding ptes to be zapped
1660  * @address: starting address of pages to zap
1661  * @size: number of bytes to zap
1662  *
1663  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1664  *
1665  * The entire address range must be fully contained within the vma.
1666  *
1667  * Returns 0 if successful.
1668  */
1669 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1670 		unsigned long size)
1671 {
1672 	if (address < vma->vm_start || address + size > vma->vm_end ||
1673 	    		!(vma->vm_flags & VM_PFNMAP))
1674 		return -1;
1675 	zap_page_range_single(vma, address, size, NULL);
1676 	return 0;
1677 }
1678 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1679 
1680 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1681 			spinlock_t **ptl)
1682 {
1683 	pgd_t *pgd;
1684 	p4d_t *p4d;
1685 	pud_t *pud;
1686 	pmd_t *pmd;
1687 
1688 	pgd = pgd_offset(mm, addr);
1689 	p4d = p4d_alloc(mm, pgd, addr);
1690 	if (!p4d)
1691 		return NULL;
1692 	pud = pud_alloc(mm, p4d, addr);
1693 	if (!pud)
1694 		return NULL;
1695 	pmd = pmd_alloc(mm, pud, addr);
1696 	if (!pmd)
1697 		return NULL;
1698 
1699 	VM_BUG_ON(pmd_trans_huge(*pmd));
1700 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1701 }
1702 
1703 /*
1704  * This is the old fallback for page remapping.
1705  *
1706  * For historical reasons, it only allows reserved pages. Only
1707  * old drivers should use this, and they needed to mark their
1708  * pages reserved for the old functions anyway.
1709  */
1710 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1711 			struct page *page, pgprot_t prot)
1712 {
1713 	struct mm_struct *mm = vma->vm_mm;
1714 	int retval;
1715 	pte_t *pte;
1716 	spinlock_t *ptl;
1717 
1718 	retval = -EINVAL;
1719 	if (PageAnon(page))
1720 		goto out;
1721 	retval = -ENOMEM;
1722 	flush_dcache_page(page);
1723 	pte = get_locked_pte(mm, addr, &ptl);
1724 	if (!pte)
1725 		goto out;
1726 	retval = -EBUSY;
1727 	if (!pte_none(*pte))
1728 		goto out_unlock;
1729 
1730 	/* Ok, finally just insert the thing.. */
1731 	get_page(page);
1732 	inc_mm_counter_fast(mm, mm_counter_file(page));
1733 	page_add_file_rmap(page, false);
1734 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1735 
1736 	retval = 0;
1737 	pte_unmap_unlock(pte, ptl);
1738 	return retval;
1739 out_unlock:
1740 	pte_unmap_unlock(pte, ptl);
1741 out:
1742 	return retval;
1743 }
1744 
1745 /**
1746  * vm_insert_page - insert single page into user vma
1747  * @vma: user vma to map to
1748  * @addr: target user address of this page
1749  * @page: source kernel page
1750  *
1751  * This allows drivers to insert individual pages they've allocated
1752  * into a user vma.
1753  *
1754  * The page has to be a nice clean _individual_ kernel allocation.
1755  * If you allocate a compound page, you need to have marked it as
1756  * such (__GFP_COMP), or manually just split the page up yourself
1757  * (see split_page()).
1758  *
1759  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1760  * took an arbitrary page protection parameter. This doesn't allow
1761  * that. Your vma protection will have to be set up correctly, which
1762  * means that if you want a shared writable mapping, you'd better
1763  * ask for a shared writable mapping!
1764  *
1765  * The page does not need to be reserved.
1766  *
1767  * Usually this function is called from f_op->mmap() handler
1768  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1769  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1770  * function from other places, for example from page-fault handler.
1771  */
1772 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1773 			struct page *page)
1774 {
1775 	if (addr < vma->vm_start || addr >= vma->vm_end)
1776 		return -EFAULT;
1777 	if (!page_count(page))
1778 		return -EINVAL;
1779 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1780 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1781 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1782 		vma->vm_flags |= VM_MIXEDMAP;
1783 	}
1784 	return insert_page(vma, addr, page, vma->vm_page_prot);
1785 }
1786 EXPORT_SYMBOL(vm_insert_page);
1787 
1788 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1789 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1790 {
1791 	struct mm_struct *mm = vma->vm_mm;
1792 	int retval;
1793 	pte_t *pte, entry;
1794 	spinlock_t *ptl;
1795 
1796 	retval = -ENOMEM;
1797 	pte = get_locked_pte(mm, addr, &ptl);
1798 	if (!pte)
1799 		goto out;
1800 	retval = -EBUSY;
1801 	if (!pte_none(*pte)) {
1802 		if (mkwrite) {
1803 			/*
1804 			 * For read faults on private mappings the PFN passed
1805 			 * in may not match the PFN we have mapped if the
1806 			 * mapped PFN is a writeable COW page.  In the mkwrite
1807 			 * case we are creating a writable PTE for a shared
1808 			 * mapping and we expect the PFNs to match.
1809 			 */
1810 			if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1811 				goto out_unlock;
1812 			entry = *pte;
1813 			goto out_mkwrite;
1814 		} else
1815 			goto out_unlock;
1816 	}
1817 
1818 	/* Ok, finally just insert the thing.. */
1819 	if (pfn_t_devmap(pfn))
1820 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1821 	else
1822 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1823 
1824 out_mkwrite:
1825 	if (mkwrite) {
1826 		entry = pte_mkyoung(entry);
1827 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1828 	}
1829 
1830 	set_pte_at(mm, addr, pte, entry);
1831 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1832 
1833 	retval = 0;
1834 out_unlock:
1835 	pte_unmap_unlock(pte, ptl);
1836 out:
1837 	return retval;
1838 }
1839 
1840 /**
1841  * vm_insert_pfn - insert single pfn into user vma
1842  * @vma: user vma to map to
1843  * @addr: target user address of this page
1844  * @pfn: source kernel pfn
1845  *
1846  * Similar to vm_insert_page, this allows drivers to insert individual pages
1847  * they've allocated into a user vma. Same comments apply.
1848  *
1849  * This function should only be called from a vm_ops->fault handler, and
1850  * in that case the handler should return NULL.
1851  *
1852  * vma cannot be a COW mapping.
1853  *
1854  * As this is called only for pages that do not currently exist, we
1855  * do not need to flush old virtual caches or the TLB.
1856  */
1857 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1858 			unsigned long pfn)
1859 {
1860 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1861 }
1862 EXPORT_SYMBOL(vm_insert_pfn);
1863 
1864 /**
1865  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1866  * @vma: user vma to map to
1867  * @addr: target user address of this page
1868  * @pfn: source kernel pfn
1869  * @pgprot: pgprot flags for the inserted page
1870  *
1871  * This is exactly like vm_insert_pfn, except that it allows drivers to
1872  * to override pgprot on a per-page basis.
1873  *
1874  * This only makes sense for IO mappings, and it makes no sense for
1875  * cow mappings.  In general, using multiple vmas is preferable;
1876  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1877  * impractical.
1878  */
1879 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1880 			unsigned long pfn, pgprot_t pgprot)
1881 {
1882 	int ret;
1883 	/*
1884 	 * Technically, architectures with pte_special can avoid all these
1885 	 * restrictions (same for remap_pfn_range).  However we would like
1886 	 * consistency in testing and feature parity among all, so we should
1887 	 * try to keep these invariants in place for everybody.
1888 	 */
1889 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1890 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1891 						(VM_PFNMAP|VM_MIXEDMAP));
1892 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1893 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1894 
1895 	if (addr < vma->vm_start || addr >= vma->vm_end)
1896 		return -EFAULT;
1897 
1898 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1899 
1900 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1901 			false);
1902 
1903 	return ret;
1904 }
1905 EXPORT_SYMBOL(vm_insert_pfn_prot);
1906 
1907 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1908 			pfn_t pfn, bool mkwrite)
1909 {
1910 	pgprot_t pgprot = vma->vm_page_prot;
1911 
1912 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1913 
1914 	if (addr < vma->vm_start || addr >= vma->vm_end)
1915 		return -EFAULT;
1916 
1917 	track_pfn_insert(vma, &pgprot, pfn);
1918 
1919 	/*
1920 	 * If we don't have pte special, then we have to use the pfn_valid()
1921 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1922 	 * refcount the page if pfn_valid is true (hence insert_page rather
1923 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1924 	 * without pte special, it would there be refcounted as a normal page.
1925 	 */
1926 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1927 		struct page *page;
1928 
1929 		/*
1930 		 * At this point we are committed to insert_page()
1931 		 * regardless of whether the caller specified flags that
1932 		 * result in pfn_t_has_page() == false.
1933 		 */
1934 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1935 		return insert_page(vma, addr, page, pgprot);
1936 	}
1937 	return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1938 }
1939 
1940 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1941 			pfn_t pfn)
1942 {
1943 	return __vm_insert_mixed(vma, addr, pfn, false);
1944 
1945 }
1946 EXPORT_SYMBOL(vm_insert_mixed);
1947 
1948 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1949 			pfn_t pfn)
1950 {
1951 	return __vm_insert_mixed(vma, addr, pfn, true);
1952 }
1953 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1954 
1955 /*
1956  * maps a range of physical memory into the requested pages. the old
1957  * mappings are removed. any references to nonexistent pages results
1958  * in null mappings (currently treated as "copy-on-access")
1959  */
1960 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1961 			unsigned long addr, unsigned long end,
1962 			unsigned long pfn, pgprot_t prot)
1963 {
1964 	pte_t *pte;
1965 	spinlock_t *ptl;
1966 
1967 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1968 	if (!pte)
1969 		return -ENOMEM;
1970 	arch_enter_lazy_mmu_mode();
1971 	do {
1972 		BUG_ON(!pte_none(*pte));
1973 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1974 		pfn++;
1975 	} while (pte++, addr += PAGE_SIZE, addr != end);
1976 	arch_leave_lazy_mmu_mode();
1977 	pte_unmap_unlock(pte - 1, ptl);
1978 	return 0;
1979 }
1980 
1981 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1982 			unsigned long addr, unsigned long end,
1983 			unsigned long pfn, pgprot_t prot)
1984 {
1985 	pmd_t *pmd;
1986 	unsigned long next;
1987 
1988 	pfn -= addr >> PAGE_SHIFT;
1989 	pmd = pmd_alloc(mm, pud, addr);
1990 	if (!pmd)
1991 		return -ENOMEM;
1992 	VM_BUG_ON(pmd_trans_huge(*pmd));
1993 	do {
1994 		next = pmd_addr_end(addr, end);
1995 		if (remap_pte_range(mm, pmd, addr, next,
1996 				pfn + (addr >> PAGE_SHIFT), prot))
1997 			return -ENOMEM;
1998 	} while (pmd++, addr = next, addr != end);
1999 	return 0;
2000 }
2001 
2002 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2003 			unsigned long addr, unsigned long end,
2004 			unsigned long pfn, pgprot_t prot)
2005 {
2006 	pud_t *pud;
2007 	unsigned long next;
2008 
2009 	pfn -= addr >> PAGE_SHIFT;
2010 	pud = pud_alloc(mm, p4d, addr);
2011 	if (!pud)
2012 		return -ENOMEM;
2013 	do {
2014 		next = pud_addr_end(addr, end);
2015 		if (remap_pmd_range(mm, pud, addr, next,
2016 				pfn + (addr >> PAGE_SHIFT), prot))
2017 			return -ENOMEM;
2018 	} while (pud++, addr = next, addr != end);
2019 	return 0;
2020 }
2021 
2022 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2023 			unsigned long addr, unsigned long end,
2024 			unsigned long pfn, pgprot_t prot)
2025 {
2026 	p4d_t *p4d;
2027 	unsigned long next;
2028 
2029 	pfn -= addr >> PAGE_SHIFT;
2030 	p4d = p4d_alloc(mm, pgd, addr);
2031 	if (!p4d)
2032 		return -ENOMEM;
2033 	do {
2034 		next = p4d_addr_end(addr, end);
2035 		if (remap_pud_range(mm, p4d, addr, next,
2036 				pfn + (addr >> PAGE_SHIFT), prot))
2037 			return -ENOMEM;
2038 	} while (p4d++, addr = next, addr != end);
2039 	return 0;
2040 }
2041 
2042 /**
2043  * remap_pfn_range - remap kernel memory to userspace
2044  * @vma: user vma to map to
2045  * @addr: target user address to start at
2046  * @pfn: physical address of kernel memory
2047  * @size: size of map area
2048  * @prot: page protection flags for this mapping
2049  *
2050  *  Note: this is only safe if the mm semaphore is held when called.
2051  */
2052 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2053 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2054 {
2055 	pgd_t *pgd;
2056 	unsigned long next;
2057 	unsigned long end = addr + PAGE_ALIGN(size);
2058 	struct mm_struct *mm = vma->vm_mm;
2059 	unsigned long remap_pfn = pfn;
2060 	int err;
2061 
2062 	/*
2063 	 * Physically remapped pages are special. Tell the
2064 	 * rest of the world about it:
2065 	 *   VM_IO tells people not to look at these pages
2066 	 *	(accesses can have side effects).
2067 	 *   VM_PFNMAP tells the core MM that the base pages are just
2068 	 *	raw PFN mappings, and do not have a "struct page" associated
2069 	 *	with them.
2070 	 *   VM_DONTEXPAND
2071 	 *      Disable vma merging and expanding with mremap().
2072 	 *   VM_DONTDUMP
2073 	 *      Omit vma from core dump, even when VM_IO turned off.
2074 	 *
2075 	 * There's a horrible special case to handle copy-on-write
2076 	 * behaviour that some programs depend on. We mark the "original"
2077 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2078 	 * See vm_normal_page() for details.
2079 	 */
2080 	if (is_cow_mapping(vma->vm_flags)) {
2081 		if (addr != vma->vm_start || end != vma->vm_end)
2082 			return -EINVAL;
2083 		vma->vm_pgoff = pfn;
2084 	}
2085 
2086 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2087 	if (err)
2088 		return -EINVAL;
2089 
2090 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2091 
2092 	BUG_ON(addr >= end);
2093 	pfn -= addr >> PAGE_SHIFT;
2094 	pgd = pgd_offset(mm, addr);
2095 	flush_cache_range(vma, addr, end);
2096 	do {
2097 		next = pgd_addr_end(addr, end);
2098 		err = remap_p4d_range(mm, pgd, addr, next,
2099 				pfn + (addr >> PAGE_SHIFT), prot);
2100 		if (err)
2101 			break;
2102 	} while (pgd++, addr = next, addr != end);
2103 
2104 	if (err)
2105 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2106 
2107 	return err;
2108 }
2109 EXPORT_SYMBOL(remap_pfn_range);
2110 
2111 /**
2112  * vm_iomap_memory - remap memory to userspace
2113  * @vma: user vma to map to
2114  * @start: start of area
2115  * @len: size of area
2116  *
2117  * This is a simplified io_remap_pfn_range() for common driver use. The
2118  * driver just needs to give us the physical memory range to be mapped,
2119  * we'll figure out the rest from the vma information.
2120  *
2121  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2122  * whatever write-combining details or similar.
2123  */
2124 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2125 {
2126 	unsigned long vm_len, pfn, pages;
2127 
2128 	/* Check that the physical memory area passed in looks valid */
2129 	if (start + len < start)
2130 		return -EINVAL;
2131 	/*
2132 	 * You *really* shouldn't map things that aren't page-aligned,
2133 	 * but we've historically allowed it because IO memory might
2134 	 * just have smaller alignment.
2135 	 */
2136 	len += start & ~PAGE_MASK;
2137 	pfn = start >> PAGE_SHIFT;
2138 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2139 	if (pfn + pages < pfn)
2140 		return -EINVAL;
2141 
2142 	/* We start the mapping 'vm_pgoff' pages into the area */
2143 	if (vma->vm_pgoff > pages)
2144 		return -EINVAL;
2145 	pfn += vma->vm_pgoff;
2146 	pages -= vma->vm_pgoff;
2147 
2148 	/* Can we fit all of the mapping? */
2149 	vm_len = vma->vm_end - vma->vm_start;
2150 	if (vm_len >> PAGE_SHIFT > pages)
2151 		return -EINVAL;
2152 
2153 	/* Ok, let it rip */
2154 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2155 }
2156 EXPORT_SYMBOL(vm_iomap_memory);
2157 
2158 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2159 				     unsigned long addr, unsigned long end,
2160 				     pte_fn_t fn, void *data)
2161 {
2162 	pte_t *pte;
2163 	int err;
2164 	pgtable_t token;
2165 	spinlock_t *uninitialized_var(ptl);
2166 
2167 	pte = (mm == &init_mm) ?
2168 		pte_alloc_kernel(pmd, addr) :
2169 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2170 	if (!pte)
2171 		return -ENOMEM;
2172 
2173 	BUG_ON(pmd_huge(*pmd));
2174 
2175 	arch_enter_lazy_mmu_mode();
2176 
2177 	token = pmd_pgtable(*pmd);
2178 
2179 	do {
2180 		err = fn(pte++, token, addr, data);
2181 		if (err)
2182 			break;
2183 	} while (addr += PAGE_SIZE, addr != end);
2184 
2185 	arch_leave_lazy_mmu_mode();
2186 
2187 	if (mm != &init_mm)
2188 		pte_unmap_unlock(pte-1, ptl);
2189 	return err;
2190 }
2191 
2192 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2193 				     unsigned long addr, unsigned long end,
2194 				     pte_fn_t fn, void *data)
2195 {
2196 	pmd_t *pmd;
2197 	unsigned long next;
2198 	int err;
2199 
2200 	BUG_ON(pud_huge(*pud));
2201 
2202 	pmd = pmd_alloc(mm, pud, addr);
2203 	if (!pmd)
2204 		return -ENOMEM;
2205 	do {
2206 		next = pmd_addr_end(addr, end);
2207 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2208 		if (err)
2209 			break;
2210 	} while (pmd++, addr = next, addr != end);
2211 	return err;
2212 }
2213 
2214 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2215 				     unsigned long addr, unsigned long end,
2216 				     pte_fn_t fn, void *data)
2217 {
2218 	pud_t *pud;
2219 	unsigned long next;
2220 	int err;
2221 
2222 	pud = pud_alloc(mm, p4d, addr);
2223 	if (!pud)
2224 		return -ENOMEM;
2225 	do {
2226 		next = pud_addr_end(addr, end);
2227 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2228 		if (err)
2229 			break;
2230 	} while (pud++, addr = next, addr != end);
2231 	return err;
2232 }
2233 
2234 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2235 				     unsigned long addr, unsigned long end,
2236 				     pte_fn_t fn, void *data)
2237 {
2238 	p4d_t *p4d;
2239 	unsigned long next;
2240 	int err;
2241 
2242 	p4d = p4d_alloc(mm, pgd, addr);
2243 	if (!p4d)
2244 		return -ENOMEM;
2245 	do {
2246 		next = p4d_addr_end(addr, end);
2247 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2248 		if (err)
2249 			break;
2250 	} while (p4d++, addr = next, addr != end);
2251 	return err;
2252 }
2253 
2254 /*
2255  * Scan a region of virtual memory, filling in page tables as necessary
2256  * and calling a provided function on each leaf page table.
2257  */
2258 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2259 			unsigned long size, pte_fn_t fn, void *data)
2260 {
2261 	pgd_t *pgd;
2262 	unsigned long next;
2263 	unsigned long end = addr + size;
2264 	int err;
2265 
2266 	if (WARN_ON(addr >= end))
2267 		return -EINVAL;
2268 
2269 	pgd = pgd_offset(mm, addr);
2270 	do {
2271 		next = pgd_addr_end(addr, end);
2272 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2273 		if (err)
2274 			break;
2275 	} while (pgd++, addr = next, addr != end);
2276 
2277 	return err;
2278 }
2279 EXPORT_SYMBOL_GPL(apply_to_page_range);
2280 
2281 /*
2282  * handle_pte_fault chooses page fault handler according to an entry which was
2283  * read non-atomically.  Before making any commitment, on those architectures
2284  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2285  * parts, do_swap_page must check under lock before unmapping the pte and
2286  * proceeding (but do_wp_page is only called after already making such a check;
2287  * and do_anonymous_page can safely check later on).
2288  */
2289 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2290 				pte_t *page_table, pte_t orig_pte)
2291 {
2292 	int same = 1;
2293 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2294 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2295 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2296 		spin_lock(ptl);
2297 		same = pte_same(*page_table, orig_pte);
2298 		spin_unlock(ptl);
2299 	}
2300 #endif
2301 	pte_unmap(page_table);
2302 	return same;
2303 }
2304 
2305 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2306 {
2307 	debug_dma_assert_idle(src);
2308 
2309 	/*
2310 	 * If the source page was a PFN mapping, we don't have
2311 	 * a "struct page" for it. We do a best-effort copy by
2312 	 * just copying from the original user address. If that
2313 	 * fails, we just zero-fill it. Live with it.
2314 	 */
2315 	if (unlikely(!src)) {
2316 		void *kaddr = kmap_atomic(dst);
2317 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2318 
2319 		/*
2320 		 * This really shouldn't fail, because the page is there
2321 		 * in the page tables. But it might just be unreadable,
2322 		 * in which case we just give up and fill the result with
2323 		 * zeroes.
2324 		 */
2325 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2326 			clear_page(kaddr);
2327 		kunmap_atomic(kaddr);
2328 		flush_dcache_page(dst);
2329 	} else
2330 		copy_user_highpage(dst, src, va, vma);
2331 }
2332 
2333 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2334 {
2335 	struct file *vm_file = vma->vm_file;
2336 
2337 	if (vm_file)
2338 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2339 
2340 	/*
2341 	 * Special mappings (e.g. VDSO) do not have any file so fake
2342 	 * a default GFP_KERNEL for them.
2343 	 */
2344 	return GFP_KERNEL;
2345 }
2346 
2347 /*
2348  * Notify the address space that the page is about to become writable so that
2349  * it can prohibit this or wait for the page to get into an appropriate state.
2350  *
2351  * We do this without the lock held, so that it can sleep if it needs to.
2352  */
2353 static int do_page_mkwrite(struct vm_fault *vmf)
2354 {
2355 	int ret;
2356 	struct page *page = vmf->page;
2357 	unsigned int old_flags = vmf->flags;
2358 
2359 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2360 
2361 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2362 	/* Restore original flags so that caller is not surprised */
2363 	vmf->flags = old_flags;
2364 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2365 		return ret;
2366 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2367 		lock_page(page);
2368 		if (!page->mapping) {
2369 			unlock_page(page);
2370 			return 0; /* retry */
2371 		}
2372 		ret |= VM_FAULT_LOCKED;
2373 	} else
2374 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2375 	return ret;
2376 }
2377 
2378 /*
2379  * Handle dirtying of a page in shared file mapping on a write fault.
2380  *
2381  * The function expects the page to be locked and unlocks it.
2382  */
2383 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2384 				    struct page *page)
2385 {
2386 	struct address_space *mapping;
2387 	bool dirtied;
2388 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2389 
2390 	dirtied = set_page_dirty(page);
2391 	VM_BUG_ON_PAGE(PageAnon(page), page);
2392 	/*
2393 	 * Take a local copy of the address_space - page.mapping may be zeroed
2394 	 * by truncate after unlock_page().   The address_space itself remains
2395 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2396 	 * release semantics to prevent the compiler from undoing this copying.
2397 	 */
2398 	mapping = page_rmapping(page);
2399 	unlock_page(page);
2400 
2401 	if ((dirtied || page_mkwrite) && mapping) {
2402 		/*
2403 		 * Some device drivers do not set page.mapping
2404 		 * but still dirty their pages
2405 		 */
2406 		balance_dirty_pages_ratelimited(mapping);
2407 	}
2408 
2409 	if (!page_mkwrite)
2410 		file_update_time(vma->vm_file);
2411 }
2412 
2413 /*
2414  * Handle write page faults for pages that can be reused in the current vma
2415  *
2416  * This can happen either due to the mapping being with the VM_SHARED flag,
2417  * or due to us being the last reference standing to the page. In either
2418  * case, all we need to do here is to mark the page as writable and update
2419  * any related book-keeping.
2420  */
2421 static inline void wp_page_reuse(struct vm_fault *vmf)
2422 	__releases(vmf->ptl)
2423 {
2424 	struct vm_area_struct *vma = vmf->vma;
2425 	struct page *page = vmf->page;
2426 	pte_t entry;
2427 	/*
2428 	 * Clear the pages cpupid information as the existing
2429 	 * information potentially belongs to a now completely
2430 	 * unrelated process.
2431 	 */
2432 	if (page)
2433 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2434 
2435 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2436 	entry = pte_mkyoung(vmf->orig_pte);
2437 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2438 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2439 		update_mmu_cache(vma, vmf->address, vmf->pte);
2440 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2441 }
2442 
2443 /*
2444  * Handle the case of a page which we actually need to copy to a new page.
2445  *
2446  * Called with mmap_sem locked and the old page referenced, but
2447  * without the ptl held.
2448  *
2449  * High level logic flow:
2450  *
2451  * - Allocate a page, copy the content of the old page to the new one.
2452  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2453  * - Take the PTL. If the pte changed, bail out and release the allocated page
2454  * - If the pte is still the way we remember it, update the page table and all
2455  *   relevant references. This includes dropping the reference the page-table
2456  *   held to the old page, as well as updating the rmap.
2457  * - In any case, unlock the PTL and drop the reference we took to the old page.
2458  */
2459 static int wp_page_copy(struct vm_fault *vmf)
2460 {
2461 	struct vm_area_struct *vma = vmf->vma;
2462 	struct mm_struct *mm = vma->vm_mm;
2463 	struct page *old_page = vmf->page;
2464 	struct page *new_page = NULL;
2465 	pte_t entry;
2466 	int page_copied = 0;
2467 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2468 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2469 	struct mem_cgroup *memcg;
2470 
2471 	if (unlikely(anon_vma_prepare(vma)))
2472 		goto oom;
2473 
2474 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2475 		new_page = alloc_zeroed_user_highpage_movable(vma,
2476 							      vmf->address);
2477 		if (!new_page)
2478 			goto oom;
2479 	} else {
2480 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2481 				vmf->address);
2482 		if (!new_page)
2483 			goto oom;
2484 		cow_user_page(new_page, old_page, vmf->address, vma);
2485 	}
2486 
2487 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2488 		goto oom_free_new;
2489 
2490 	__SetPageUptodate(new_page);
2491 
2492 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2493 
2494 	/*
2495 	 * Re-check the pte - we dropped the lock
2496 	 */
2497 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2498 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2499 		if (old_page) {
2500 			if (!PageAnon(old_page)) {
2501 				dec_mm_counter_fast(mm,
2502 						mm_counter_file(old_page));
2503 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2504 			}
2505 		} else {
2506 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2507 		}
2508 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2509 		entry = mk_pte(new_page, vma->vm_page_prot);
2510 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2511 		/*
2512 		 * Clear the pte entry and flush it first, before updating the
2513 		 * pte with the new entry. This will avoid a race condition
2514 		 * seen in the presence of one thread doing SMC and another
2515 		 * thread doing COW.
2516 		 */
2517 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2518 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2519 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2520 		lru_cache_add_active_or_unevictable(new_page, vma);
2521 		/*
2522 		 * We call the notify macro here because, when using secondary
2523 		 * mmu page tables (such as kvm shadow page tables), we want the
2524 		 * new page to be mapped directly into the secondary page table.
2525 		 */
2526 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2527 		update_mmu_cache(vma, vmf->address, vmf->pte);
2528 		if (old_page) {
2529 			/*
2530 			 * Only after switching the pte to the new page may
2531 			 * we remove the mapcount here. Otherwise another
2532 			 * process may come and find the rmap count decremented
2533 			 * before the pte is switched to the new page, and
2534 			 * "reuse" the old page writing into it while our pte
2535 			 * here still points into it and can be read by other
2536 			 * threads.
2537 			 *
2538 			 * The critical issue is to order this
2539 			 * page_remove_rmap with the ptp_clear_flush above.
2540 			 * Those stores are ordered by (if nothing else,)
2541 			 * the barrier present in the atomic_add_negative
2542 			 * in page_remove_rmap.
2543 			 *
2544 			 * Then the TLB flush in ptep_clear_flush ensures that
2545 			 * no process can access the old page before the
2546 			 * decremented mapcount is visible. And the old page
2547 			 * cannot be reused until after the decremented
2548 			 * mapcount is visible. So transitively, TLBs to
2549 			 * old page will be flushed before it can be reused.
2550 			 */
2551 			page_remove_rmap(old_page, false);
2552 		}
2553 
2554 		/* Free the old page.. */
2555 		new_page = old_page;
2556 		page_copied = 1;
2557 	} else {
2558 		mem_cgroup_cancel_charge(new_page, memcg, false);
2559 	}
2560 
2561 	if (new_page)
2562 		put_page(new_page);
2563 
2564 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2565 	/*
2566 	 * No need to double call mmu_notifier->invalidate_range() callback as
2567 	 * the above ptep_clear_flush_notify() did already call it.
2568 	 */
2569 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2570 	if (old_page) {
2571 		/*
2572 		 * Don't let another task, with possibly unlocked vma,
2573 		 * keep the mlocked page.
2574 		 */
2575 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2576 			lock_page(old_page);	/* LRU manipulation */
2577 			if (PageMlocked(old_page))
2578 				munlock_vma_page(old_page);
2579 			unlock_page(old_page);
2580 		}
2581 		put_page(old_page);
2582 	}
2583 	return page_copied ? VM_FAULT_WRITE : 0;
2584 oom_free_new:
2585 	put_page(new_page);
2586 oom:
2587 	if (old_page)
2588 		put_page(old_page);
2589 	return VM_FAULT_OOM;
2590 }
2591 
2592 /**
2593  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2594  *			  writeable once the page is prepared
2595  *
2596  * @vmf: structure describing the fault
2597  *
2598  * This function handles all that is needed to finish a write page fault in a
2599  * shared mapping due to PTE being read-only once the mapped page is prepared.
2600  * It handles locking of PTE and modifying it. The function returns
2601  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2602  * lock.
2603  *
2604  * The function expects the page to be locked or other protection against
2605  * concurrent faults / writeback (such as DAX radix tree locks).
2606  */
2607 int finish_mkwrite_fault(struct vm_fault *vmf)
2608 {
2609 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2610 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2611 				       &vmf->ptl);
2612 	/*
2613 	 * We might have raced with another page fault while we released the
2614 	 * pte_offset_map_lock.
2615 	 */
2616 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2617 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2618 		return VM_FAULT_NOPAGE;
2619 	}
2620 	wp_page_reuse(vmf);
2621 	return 0;
2622 }
2623 
2624 /*
2625  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2626  * mapping
2627  */
2628 static int wp_pfn_shared(struct vm_fault *vmf)
2629 {
2630 	struct vm_area_struct *vma = vmf->vma;
2631 
2632 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2633 		int ret;
2634 
2635 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2636 		vmf->flags |= FAULT_FLAG_MKWRITE;
2637 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2638 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2639 			return ret;
2640 		return finish_mkwrite_fault(vmf);
2641 	}
2642 	wp_page_reuse(vmf);
2643 	return VM_FAULT_WRITE;
2644 }
2645 
2646 static int wp_page_shared(struct vm_fault *vmf)
2647 	__releases(vmf->ptl)
2648 {
2649 	struct vm_area_struct *vma = vmf->vma;
2650 
2651 	get_page(vmf->page);
2652 
2653 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2654 		int tmp;
2655 
2656 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2657 		tmp = do_page_mkwrite(vmf);
2658 		if (unlikely(!tmp || (tmp &
2659 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2660 			put_page(vmf->page);
2661 			return tmp;
2662 		}
2663 		tmp = finish_mkwrite_fault(vmf);
2664 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2665 			unlock_page(vmf->page);
2666 			put_page(vmf->page);
2667 			return tmp;
2668 		}
2669 	} else {
2670 		wp_page_reuse(vmf);
2671 		lock_page(vmf->page);
2672 	}
2673 	fault_dirty_shared_page(vma, vmf->page);
2674 	put_page(vmf->page);
2675 
2676 	return VM_FAULT_WRITE;
2677 }
2678 
2679 /*
2680  * This routine handles present pages, when users try to write
2681  * to a shared page. It is done by copying the page to a new address
2682  * and decrementing the shared-page counter for the old page.
2683  *
2684  * Note that this routine assumes that the protection checks have been
2685  * done by the caller (the low-level page fault routine in most cases).
2686  * Thus we can safely just mark it writable once we've done any necessary
2687  * COW.
2688  *
2689  * We also mark the page dirty at this point even though the page will
2690  * change only once the write actually happens. This avoids a few races,
2691  * and potentially makes it more efficient.
2692  *
2693  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2694  * but allow concurrent faults), with pte both mapped and locked.
2695  * We return with mmap_sem still held, but pte unmapped and unlocked.
2696  */
2697 static int do_wp_page(struct vm_fault *vmf)
2698 	__releases(vmf->ptl)
2699 {
2700 	struct vm_area_struct *vma = vmf->vma;
2701 
2702 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2703 	if (!vmf->page) {
2704 		/*
2705 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2706 		 * VM_PFNMAP VMA.
2707 		 *
2708 		 * We should not cow pages in a shared writeable mapping.
2709 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2710 		 */
2711 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2712 				     (VM_WRITE|VM_SHARED))
2713 			return wp_pfn_shared(vmf);
2714 
2715 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2716 		return wp_page_copy(vmf);
2717 	}
2718 
2719 	/*
2720 	 * Take out anonymous pages first, anonymous shared vmas are
2721 	 * not dirty accountable.
2722 	 */
2723 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2724 		int total_map_swapcount;
2725 		if (!trylock_page(vmf->page)) {
2726 			get_page(vmf->page);
2727 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2728 			lock_page(vmf->page);
2729 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2730 					vmf->address, &vmf->ptl);
2731 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2732 				unlock_page(vmf->page);
2733 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2734 				put_page(vmf->page);
2735 				return 0;
2736 			}
2737 			put_page(vmf->page);
2738 		}
2739 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2740 			if (total_map_swapcount == 1) {
2741 				/*
2742 				 * The page is all ours. Move it to
2743 				 * our anon_vma so the rmap code will
2744 				 * not search our parent or siblings.
2745 				 * Protected against the rmap code by
2746 				 * the page lock.
2747 				 */
2748 				page_move_anon_rmap(vmf->page, vma);
2749 			}
2750 			unlock_page(vmf->page);
2751 			wp_page_reuse(vmf);
2752 			return VM_FAULT_WRITE;
2753 		}
2754 		unlock_page(vmf->page);
2755 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2756 					(VM_WRITE|VM_SHARED))) {
2757 		return wp_page_shared(vmf);
2758 	}
2759 
2760 	/*
2761 	 * Ok, we need to copy. Oh, well..
2762 	 */
2763 	get_page(vmf->page);
2764 
2765 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2766 	return wp_page_copy(vmf);
2767 }
2768 
2769 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2770 		unsigned long start_addr, unsigned long end_addr,
2771 		struct zap_details *details)
2772 {
2773 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2774 }
2775 
2776 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2777 					    struct zap_details *details)
2778 {
2779 	struct vm_area_struct *vma;
2780 	pgoff_t vba, vea, zba, zea;
2781 
2782 	vma_interval_tree_foreach(vma, root,
2783 			details->first_index, details->last_index) {
2784 
2785 		vba = vma->vm_pgoff;
2786 		vea = vba + vma_pages(vma) - 1;
2787 		zba = details->first_index;
2788 		if (zba < vba)
2789 			zba = vba;
2790 		zea = details->last_index;
2791 		if (zea > vea)
2792 			zea = vea;
2793 
2794 		unmap_mapping_range_vma(vma,
2795 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2796 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2797 				details);
2798 	}
2799 }
2800 
2801 /**
2802  * unmap_mapping_pages() - Unmap pages from processes.
2803  * @mapping: The address space containing pages to be unmapped.
2804  * @start: Index of first page to be unmapped.
2805  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2806  * @even_cows: Whether to unmap even private COWed pages.
2807  *
2808  * Unmap the pages in this address space from any userspace process which
2809  * has them mmaped.  Generally, you want to remove COWed pages as well when
2810  * a file is being truncated, but not when invalidating pages from the page
2811  * cache.
2812  */
2813 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2814 		pgoff_t nr, bool even_cows)
2815 {
2816 	struct zap_details details = { };
2817 
2818 	details.check_mapping = even_cows ? NULL : mapping;
2819 	details.first_index = start;
2820 	details.last_index = start + nr - 1;
2821 	if (details.last_index < details.first_index)
2822 		details.last_index = ULONG_MAX;
2823 
2824 	i_mmap_lock_write(mapping);
2825 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2826 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2827 	i_mmap_unlock_write(mapping);
2828 }
2829 
2830 /**
2831  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2832  * address_space corresponding to the specified byte range in the underlying
2833  * file.
2834  *
2835  * @mapping: the address space containing mmaps to be unmapped.
2836  * @holebegin: byte in first page to unmap, relative to the start of
2837  * the underlying file.  This will be rounded down to a PAGE_SIZE
2838  * boundary.  Note that this is different from truncate_pagecache(), which
2839  * must keep the partial page.  In contrast, we must get rid of
2840  * partial pages.
2841  * @holelen: size of prospective hole in bytes.  This will be rounded
2842  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2843  * end of the file.
2844  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2845  * but 0 when invalidating pagecache, don't throw away private data.
2846  */
2847 void unmap_mapping_range(struct address_space *mapping,
2848 		loff_t const holebegin, loff_t const holelen, int even_cows)
2849 {
2850 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2851 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2852 
2853 	/* Check for overflow. */
2854 	if (sizeof(holelen) > sizeof(hlen)) {
2855 		long long holeend =
2856 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2857 		if (holeend & ~(long long)ULONG_MAX)
2858 			hlen = ULONG_MAX - hba + 1;
2859 	}
2860 
2861 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2862 }
2863 EXPORT_SYMBOL(unmap_mapping_range);
2864 
2865 /*
2866  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2867  * but allow concurrent faults), and pte mapped but not yet locked.
2868  * We return with pte unmapped and unlocked.
2869  *
2870  * We return with the mmap_sem locked or unlocked in the same cases
2871  * as does filemap_fault().
2872  */
2873 int do_swap_page(struct vm_fault *vmf)
2874 {
2875 	struct vm_area_struct *vma = vmf->vma;
2876 	struct page *page = NULL, *swapcache = NULL;
2877 	struct mem_cgroup *memcg;
2878 	struct vma_swap_readahead swap_ra;
2879 	swp_entry_t entry;
2880 	pte_t pte;
2881 	int locked;
2882 	int exclusive = 0;
2883 	int ret = 0;
2884 	bool vma_readahead = swap_use_vma_readahead();
2885 
2886 	if (vma_readahead) {
2887 		page = swap_readahead_detect(vmf, &swap_ra);
2888 		swapcache = page;
2889 	}
2890 
2891 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2892 		if (page)
2893 			put_page(page);
2894 		goto out;
2895 	}
2896 
2897 	entry = pte_to_swp_entry(vmf->orig_pte);
2898 	if (unlikely(non_swap_entry(entry))) {
2899 		if (is_migration_entry(entry)) {
2900 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2901 					     vmf->address);
2902 		} else if (is_device_private_entry(entry)) {
2903 			/*
2904 			 * For un-addressable device memory we call the pgmap
2905 			 * fault handler callback. The callback must migrate
2906 			 * the page back to some CPU accessible page.
2907 			 */
2908 			ret = device_private_entry_fault(vma, vmf->address, entry,
2909 						 vmf->flags, vmf->pmd);
2910 		} else if (is_hwpoison_entry(entry)) {
2911 			ret = VM_FAULT_HWPOISON;
2912 		} else {
2913 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2914 			ret = VM_FAULT_SIGBUS;
2915 		}
2916 		goto out;
2917 	}
2918 
2919 
2920 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2921 	if (!page) {
2922 		page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2923 					 vmf->address);
2924 		swapcache = page;
2925 	}
2926 
2927 	if (!page) {
2928 		struct swap_info_struct *si = swp_swap_info(entry);
2929 
2930 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2931 				__swap_count(si, entry) == 1) {
2932 			/* skip swapcache */
2933 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2934 			if (page) {
2935 				__SetPageLocked(page);
2936 				__SetPageSwapBacked(page);
2937 				set_page_private(page, entry.val);
2938 				lru_cache_add_anon(page);
2939 				swap_readpage(page, true);
2940 			}
2941 		} else {
2942 			if (vma_readahead)
2943 				page = do_swap_page_readahead(entry,
2944 					GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2945 			else
2946 				page = swapin_readahead(entry,
2947 				       GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2948 			swapcache = page;
2949 		}
2950 
2951 		if (!page) {
2952 			/*
2953 			 * Back out if somebody else faulted in this pte
2954 			 * while we released the pte lock.
2955 			 */
2956 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2957 					vmf->address, &vmf->ptl);
2958 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2959 				ret = VM_FAULT_OOM;
2960 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2961 			goto unlock;
2962 		}
2963 
2964 		/* Had to read the page from swap area: Major fault */
2965 		ret = VM_FAULT_MAJOR;
2966 		count_vm_event(PGMAJFAULT);
2967 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2968 	} else if (PageHWPoison(page)) {
2969 		/*
2970 		 * hwpoisoned dirty swapcache pages are kept for killing
2971 		 * owner processes (which may be unknown at hwpoison time)
2972 		 */
2973 		ret = VM_FAULT_HWPOISON;
2974 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2975 		swapcache = page;
2976 		goto out_release;
2977 	}
2978 
2979 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2980 
2981 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2982 	if (!locked) {
2983 		ret |= VM_FAULT_RETRY;
2984 		goto out_release;
2985 	}
2986 
2987 	/*
2988 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2989 	 * release the swapcache from under us.  The page pin, and pte_same
2990 	 * test below, are not enough to exclude that.  Even if it is still
2991 	 * swapcache, we need to check that the page's swap has not changed.
2992 	 */
2993 	if (unlikely((!PageSwapCache(page) ||
2994 			page_private(page) != entry.val)) && swapcache)
2995 		goto out_page;
2996 
2997 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2998 	if (unlikely(!page)) {
2999 		ret = VM_FAULT_OOM;
3000 		page = swapcache;
3001 		goto out_page;
3002 	}
3003 
3004 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
3005 				&memcg, false)) {
3006 		ret = VM_FAULT_OOM;
3007 		goto out_page;
3008 	}
3009 
3010 	/*
3011 	 * Back out if somebody else already faulted in this pte.
3012 	 */
3013 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3014 			&vmf->ptl);
3015 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3016 		goto out_nomap;
3017 
3018 	if (unlikely(!PageUptodate(page))) {
3019 		ret = VM_FAULT_SIGBUS;
3020 		goto out_nomap;
3021 	}
3022 
3023 	/*
3024 	 * The page isn't present yet, go ahead with the fault.
3025 	 *
3026 	 * Be careful about the sequence of operations here.
3027 	 * To get its accounting right, reuse_swap_page() must be called
3028 	 * while the page is counted on swap but not yet in mapcount i.e.
3029 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3030 	 * must be called after the swap_free(), or it will never succeed.
3031 	 */
3032 
3033 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3034 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3035 	pte = mk_pte(page, vma->vm_page_prot);
3036 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3037 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3038 		vmf->flags &= ~FAULT_FLAG_WRITE;
3039 		ret |= VM_FAULT_WRITE;
3040 		exclusive = RMAP_EXCLUSIVE;
3041 	}
3042 	flush_icache_page(vma, page);
3043 	if (pte_swp_soft_dirty(vmf->orig_pte))
3044 		pte = pte_mksoft_dirty(pte);
3045 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3046 	vmf->orig_pte = pte;
3047 
3048 	/* ksm created a completely new copy */
3049 	if (unlikely(page != swapcache && swapcache)) {
3050 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3051 		mem_cgroup_commit_charge(page, memcg, false, false);
3052 		lru_cache_add_active_or_unevictable(page, vma);
3053 	} else {
3054 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3055 		mem_cgroup_commit_charge(page, memcg, true, false);
3056 		activate_page(page);
3057 	}
3058 
3059 	swap_free(entry);
3060 	if (mem_cgroup_swap_full(page) ||
3061 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3062 		try_to_free_swap(page);
3063 	unlock_page(page);
3064 	if (page != swapcache && swapcache) {
3065 		/*
3066 		 * Hold the lock to avoid the swap entry to be reused
3067 		 * until we take the PT lock for the pte_same() check
3068 		 * (to avoid false positives from pte_same). For
3069 		 * further safety release the lock after the swap_free
3070 		 * so that the swap count won't change under a
3071 		 * parallel locked swapcache.
3072 		 */
3073 		unlock_page(swapcache);
3074 		put_page(swapcache);
3075 	}
3076 
3077 	if (vmf->flags & FAULT_FLAG_WRITE) {
3078 		ret |= do_wp_page(vmf);
3079 		if (ret & VM_FAULT_ERROR)
3080 			ret &= VM_FAULT_ERROR;
3081 		goto out;
3082 	}
3083 
3084 	/* No need to invalidate - it was non-present before */
3085 	update_mmu_cache(vma, vmf->address, vmf->pte);
3086 unlock:
3087 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3088 out:
3089 	return ret;
3090 out_nomap:
3091 	mem_cgroup_cancel_charge(page, memcg, false);
3092 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3093 out_page:
3094 	unlock_page(page);
3095 out_release:
3096 	put_page(page);
3097 	if (page != swapcache && swapcache) {
3098 		unlock_page(swapcache);
3099 		put_page(swapcache);
3100 	}
3101 	return ret;
3102 }
3103 
3104 /*
3105  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3106  * but allow concurrent faults), and pte mapped but not yet locked.
3107  * We return with mmap_sem still held, but pte unmapped and unlocked.
3108  */
3109 static int do_anonymous_page(struct vm_fault *vmf)
3110 {
3111 	struct vm_area_struct *vma = vmf->vma;
3112 	struct mem_cgroup *memcg;
3113 	struct page *page;
3114 	int ret = 0;
3115 	pte_t entry;
3116 
3117 	/* File mapping without ->vm_ops ? */
3118 	if (vma->vm_flags & VM_SHARED)
3119 		return VM_FAULT_SIGBUS;
3120 
3121 	/*
3122 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3123 	 * pte_offset_map() on pmds where a huge pmd might be created
3124 	 * from a different thread.
3125 	 *
3126 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3127 	 * parallel threads are excluded by other means.
3128 	 *
3129 	 * Here we only have down_read(mmap_sem).
3130 	 */
3131 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3132 		return VM_FAULT_OOM;
3133 
3134 	/* See the comment in pte_alloc_one_map() */
3135 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3136 		return 0;
3137 
3138 	/* Use the zero-page for reads */
3139 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3140 			!mm_forbids_zeropage(vma->vm_mm)) {
3141 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3142 						vma->vm_page_prot));
3143 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3144 				vmf->address, &vmf->ptl);
3145 		if (!pte_none(*vmf->pte))
3146 			goto unlock;
3147 		ret = check_stable_address_space(vma->vm_mm);
3148 		if (ret)
3149 			goto unlock;
3150 		/* Deliver the page fault to userland, check inside PT lock */
3151 		if (userfaultfd_missing(vma)) {
3152 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3153 			return handle_userfault(vmf, VM_UFFD_MISSING);
3154 		}
3155 		goto setpte;
3156 	}
3157 
3158 	/* Allocate our own private page. */
3159 	if (unlikely(anon_vma_prepare(vma)))
3160 		goto oom;
3161 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3162 	if (!page)
3163 		goto oom;
3164 
3165 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3166 		goto oom_free_page;
3167 
3168 	/*
3169 	 * The memory barrier inside __SetPageUptodate makes sure that
3170 	 * preceeding stores to the page contents become visible before
3171 	 * the set_pte_at() write.
3172 	 */
3173 	__SetPageUptodate(page);
3174 
3175 	entry = mk_pte(page, vma->vm_page_prot);
3176 	if (vma->vm_flags & VM_WRITE)
3177 		entry = pte_mkwrite(pte_mkdirty(entry));
3178 
3179 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3180 			&vmf->ptl);
3181 	if (!pte_none(*vmf->pte))
3182 		goto release;
3183 
3184 	ret = check_stable_address_space(vma->vm_mm);
3185 	if (ret)
3186 		goto release;
3187 
3188 	/* Deliver the page fault to userland, check inside PT lock */
3189 	if (userfaultfd_missing(vma)) {
3190 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3191 		mem_cgroup_cancel_charge(page, memcg, false);
3192 		put_page(page);
3193 		return handle_userfault(vmf, VM_UFFD_MISSING);
3194 	}
3195 
3196 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3197 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3198 	mem_cgroup_commit_charge(page, memcg, false, false);
3199 	lru_cache_add_active_or_unevictable(page, vma);
3200 setpte:
3201 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3202 
3203 	/* No need to invalidate - it was non-present before */
3204 	update_mmu_cache(vma, vmf->address, vmf->pte);
3205 unlock:
3206 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3207 	return ret;
3208 release:
3209 	mem_cgroup_cancel_charge(page, memcg, false);
3210 	put_page(page);
3211 	goto unlock;
3212 oom_free_page:
3213 	put_page(page);
3214 oom:
3215 	return VM_FAULT_OOM;
3216 }
3217 
3218 /*
3219  * The mmap_sem must have been held on entry, and may have been
3220  * released depending on flags and vma->vm_ops->fault() return value.
3221  * See filemap_fault() and __lock_page_retry().
3222  */
3223 static int __do_fault(struct vm_fault *vmf)
3224 {
3225 	struct vm_area_struct *vma = vmf->vma;
3226 	int ret;
3227 
3228 	ret = vma->vm_ops->fault(vmf);
3229 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3230 			    VM_FAULT_DONE_COW)))
3231 		return ret;
3232 
3233 	if (unlikely(PageHWPoison(vmf->page))) {
3234 		if (ret & VM_FAULT_LOCKED)
3235 			unlock_page(vmf->page);
3236 		put_page(vmf->page);
3237 		vmf->page = NULL;
3238 		return VM_FAULT_HWPOISON;
3239 	}
3240 
3241 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3242 		lock_page(vmf->page);
3243 	else
3244 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3245 
3246 	return ret;
3247 }
3248 
3249 /*
3250  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3251  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3252  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3253  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3254  */
3255 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3256 {
3257 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3258 }
3259 
3260 static int pte_alloc_one_map(struct vm_fault *vmf)
3261 {
3262 	struct vm_area_struct *vma = vmf->vma;
3263 
3264 	if (!pmd_none(*vmf->pmd))
3265 		goto map_pte;
3266 	if (vmf->prealloc_pte) {
3267 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3268 		if (unlikely(!pmd_none(*vmf->pmd))) {
3269 			spin_unlock(vmf->ptl);
3270 			goto map_pte;
3271 		}
3272 
3273 		mm_inc_nr_ptes(vma->vm_mm);
3274 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3275 		spin_unlock(vmf->ptl);
3276 		vmf->prealloc_pte = NULL;
3277 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3278 		return VM_FAULT_OOM;
3279 	}
3280 map_pte:
3281 	/*
3282 	 * If a huge pmd materialized under us just retry later.  Use
3283 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3284 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3285 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3286 	 * running immediately after a huge pmd fault in a different thread of
3287 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3288 	 * All we have to ensure is that it is a regular pmd that we can walk
3289 	 * with pte_offset_map() and we can do that through an atomic read in
3290 	 * C, which is what pmd_trans_unstable() provides.
3291 	 */
3292 	if (pmd_devmap_trans_unstable(vmf->pmd))
3293 		return VM_FAULT_NOPAGE;
3294 
3295 	/*
3296 	 * At this point we know that our vmf->pmd points to a page of ptes
3297 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3298 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3299 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3300 	 * be valid and we will re-check to make sure the vmf->pte isn't
3301 	 * pte_none() under vmf->ptl protection when we return to
3302 	 * alloc_set_pte().
3303 	 */
3304 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3305 			&vmf->ptl);
3306 	return 0;
3307 }
3308 
3309 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3310 
3311 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3312 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3313 		unsigned long haddr)
3314 {
3315 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3316 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3317 		return false;
3318 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3319 		return false;
3320 	return true;
3321 }
3322 
3323 static void deposit_prealloc_pte(struct vm_fault *vmf)
3324 {
3325 	struct vm_area_struct *vma = vmf->vma;
3326 
3327 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3328 	/*
3329 	 * We are going to consume the prealloc table,
3330 	 * count that as nr_ptes.
3331 	 */
3332 	mm_inc_nr_ptes(vma->vm_mm);
3333 	vmf->prealloc_pte = NULL;
3334 }
3335 
3336 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3337 {
3338 	struct vm_area_struct *vma = vmf->vma;
3339 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3340 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3341 	pmd_t entry;
3342 	int i, ret;
3343 
3344 	if (!transhuge_vma_suitable(vma, haddr))
3345 		return VM_FAULT_FALLBACK;
3346 
3347 	ret = VM_FAULT_FALLBACK;
3348 	page = compound_head(page);
3349 
3350 	/*
3351 	 * Archs like ppc64 need additonal space to store information
3352 	 * related to pte entry. Use the preallocated table for that.
3353 	 */
3354 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3355 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3356 		if (!vmf->prealloc_pte)
3357 			return VM_FAULT_OOM;
3358 		smp_wmb(); /* See comment in __pte_alloc() */
3359 	}
3360 
3361 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3362 	if (unlikely(!pmd_none(*vmf->pmd)))
3363 		goto out;
3364 
3365 	for (i = 0; i < HPAGE_PMD_NR; i++)
3366 		flush_icache_page(vma, page + i);
3367 
3368 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3369 	if (write)
3370 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3371 
3372 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3373 	page_add_file_rmap(page, true);
3374 	/*
3375 	 * deposit and withdraw with pmd lock held
3376 	 */
3377 	if (arch_needs_pgtable_deposit())
3378 		deposit_prealloc_pte(vmf);
3379 
3380 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3381 
3382 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3383 
3384 	/* fault is handled */
3385 	ret = 0;
3386 	count_vm_event(THP_FILE_MAPPED);
3387 out:
3388 	spin_unlock(vmf->ptl);
3389 	return ret;
3390 }
3391 #else
3392 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3393 {
3394 	BUILD_BUG();
3395 	return 0;
3396 }
3397 #endif
3398 
3399 /**
3400  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3401  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3402  *
3403  * @vmf: fault environment
3404  * @memcg: memcg to charge page (only for private mappings)
3405  * @page: page to map
3406  *
3407  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3408  * return.
3409  *
3410  * Target users are page handler itself and implementations of
3411  * vm_ops->map_pages.
3412  */
3413 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3414 		struct page *page)
3415 {
3416 	struct vm_area_struct *vma = vmf->vma;
3417 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3418 	pte_t entry;
3419 	int ret;
3420 
3421 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3422 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3423 		/* THP on COW? */
3424 		VM_BUG_ON_PAGE(memcg, page);
3425 
3426 		ret = do_set_pmd(vmf, page);
3427 		if (ret != VM_FAULT_FALLBACK)
3428 			return ret;
3429 	}
3430 
3431 	if (!vmf->pte) {
3432 		ret = pte_alloc_one_map(vmf);
3433 		if (ret)
3434 			return ret;
3435 	}
3436 
3437 	/* Re-check under ptl */
3438 	if (unlikely(!pte_none(*vmf->pte)))
3439 		return VM_FAULT_NOPAGE;
3440 
3441 	flush_icache_page(vma, page);
3442 	entry = mk_pte(page, vma->vm_page_prot);
3443 	if (write)
3444 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3445 	/* copy-on-write page */
3446 	if (write && !(vma->vm_flags & VM_SHARED)) {
3447 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3448 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3449 		mem_cgroup_commit_charge(page, memcg, false, false);
3450 		lru_cache_add_active_or_unevictable(page, vma);
3451 	} else {
3452 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3453 		page_add_file_rmap(page, false);
3454 	}
3455 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3456 
3457 	/* no need to invalidate: a not-present page won't be cached */
3458 	update_mmu_cache(vma, vmf->address, vmf->pte);
3459 
3460 	return 0;
3461 }
3462 
3463 
3464 /**
3465  * finish_fault - finish page fault once we have prepared the page to fault
3466  *
3467  * @vmf: structure describing the fault
3468  *
3469  * This function handles all that is needed to finish a page fault once the
3470  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3471  * given page, adds reverse page mapping, handles memcg charges and LRU
3472  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3473  * error.
3474  *
3475  * The function expects the page to be locked and on success it consumes a
3476  * reference of a page being mapped (for the PTE which maps it).
3477  */
3478 int finish_fault(struct vm_fault *vmf)
3479 {
3480 	struct page *page;
3481 	int ret = 0;
3482 
3483 	/* Did we COW the page? */
3484 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3485 	    !(vmf->vma->vm_flags & VM_SHARED))
3486 		page = vmf->cow_page;
3487 	else
3488 		page = vmf->page;
3489 
3490 	/*
3491 	 * check even for read faults because we might have lost our CoWed
3492 	 * page
3493 	 */
3494 	if (!(vmf->vma->vm_flags & VM_SHARED))
3495 		ret = check_stable_address_space(vmf->vma->vm_mm);
3496 	if (!ret)
3497 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3498 	if (vmf->pte)
3499 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3500 	return ret;
3501 }
3502 
3503 static unsigned long fault_around_bytes __read_mostly =
3504 	rounddown_pow_of_two(65536);
3505 
3506 #ifdef CONFIG_DEBUG_FS
3507 static int fault_around_bytes_get(void *data, u64 *val)
3508 {
3509 	*val = fault_around_bytes;
3510 	return 0;
3511 }
3512 
3513 /*
3514  * fault_around_bytes must be rounded down to the nearest page order as it's
3515  * what do_fault_around() expects to see.
3516  */
3517 static int fault_around_bytes_set(void *data, u64 val)
3518 {
3519 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3520 		return -EINVAL;
3521 	if (val > PAGE_SIZE)
3522 		fault_around_bytes = rounddown_pow_of_two(val);
3523 	else
3524 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3525 	return 0;
3526 }
3527 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3528 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3529 
3530 static int __init fault_around_debugfs(void)
3531 {
3532 	void *ret;
3533 
3534 	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3535 			&fault_around_bytes_fops);
3536 	if (!ret)
3537 		pr_warn("Failed to create fault_around_bytes in debugfs");
3538 	return 0;
3539 }
3540 late_initcall(fault_around_debugfs);
3541 #endif
3542 
3543 /*
3544  * do_fault_around() tries to map few pages around the fault address. The hope
3545  * is that the pages will be needed soon and this will lower the number of
3546  * faults to handle.
3547  *
3548  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3549  * not ready to be mapped: not up-to-date, locked, etc.
3550  *
3551  * This function is called with the page table lock taken. In the split ptlock
3552  * case the page table lock only protects only those entries which belong to
3553  * the page table corresponding to the fault address.
3554  *
3555  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3556  * only once.
3557  *
3558  * fault_around_bytes defines how many bytes we'll try to map.
3559  * do_fault_around() expects it to be set to a power of two less than or equal
3560  * to PTRS_PER_PTE.
3561  *
3562  * The virtual address of the area that we map is naturally aligned to
3563  * fault_around_bytes rounded down to the machine page size
3564  * (and therefore to page order).  This way it's easier to guarantee
3565  * that we don't cross page table boundaries.
3566  */
3567 static int do_fault_around(struct vm_fault *vmf)
3568 {
3569 	unsigned long address = vmf->address, nr_pages, mask;
3570 	pgoff_t start_pgoff = vmf->pgoff;
3571 	pgoff_t end_pgoff;
3572 	int off, ret = 0;
3573 
3574 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3575 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3576 
3577 	vmf->address = max(address & mask, vmf->vma->vm_start);
3578 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3579 	start_pgoff -= off;
3580 
3581 	/*
3582 	 *  end_pgoff is either the end of the page table, the end of
3583 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3584 	 */
3585 	end_pgoff = start_pgoff -
3586 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3587 		PTRS_PER_PTE - 1;
3588 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3589 			start_pgoff + nr_pages - 1);
3590 
3591 	if (pmd_none(*vmf->pmd)) {
3592 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3593 						  vmf->address);
3594 		if (!vmf->prealloc_pte)
3595 			goto out;
3596 		smp_wmb(); /* See comment in __pte_alloc() */
3597 	}
3598 
3599 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3600 
3601 	/* Huge page is mapped? Page fault is solved */
3602 	if (pmd_trans_huge(*vmf->pmd)) {
3603 		ret = VM_FAULT_NOPAGE;
3604 		goto out;
3605 	}
3606 
3607 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3608 	if (!vmf->pte)
3609 		goto out;
3610 
3611 	/* check if the page fault is solved */
3612 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3613 	if (!pte_none(*vmf->pte))
3614 		ret = VM_FAULT_NOPAGE;
3615 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3616 out:
3617 	vmf->address = address;
3618 	vmf->pte = NULL;
3619 	return ret;
3620 }
3621 
3622 static int do_read_fault(struct vm_fault *vmf)
3623 {
3624 	struct vm_area_struct *vma = vmf->vma;
3625 	int ret = 0;
3626 
3627 	/*
3628 	 * Let's call ->map_pages() first and use ->fault() as fallback
3629 	 * if page by the offset is not ready to be mapped (cold cache or
3630 	 * something).
3631 	 */
3632 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3633 		ret = do_fault_around(vmf);
3634 		if (ret)
3635 			return ret;
3636 	}
3637 
3638 	ret = __do_fault(vmf);
3639 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3640 		return ret;
3641 
3642 	ret |= finish_fault(vmf);
3643 	unlock_page(vmf->page);
3644 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3645 		put_page(vmf->page);
3646 	return ret;
3647 }
3648 
3649 static int do_cow_fault(struct vm_fault *vmf)
3650 {
3651 	struct vm_area_struct *vma = vmf->vma;
3652 	int ret;
3653 
3654 	if (unlikely(anon_vma_prepare(vma)))
3655 		return VM_FAULT_OOM;
3656 
3657 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3658 	if (!vmf->cow_page)
3659 		return VM_FAULT_OOM;
3660 
3661 	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3662 				&vmf->memcg, false)) {
3663 		put_page(vmf->cow_page);
3664 		return VM_FAULT_OOM;
3665 	}
3666 
3667 	ret = __do_fault(vmf);
3668 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3669 		goto uncharge_out;
3670 	if (ret & VM_FAULT_DONE_COW)
3671 		return ret;
3672 
3673 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3674 	__SetPageUptodate(vmf->cow_page);
3675 
3676 	ret |= finish_fault(vmf);
3677 	unlock_page(vmf->page);
3678 	put_page(vmf->page);
3679 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3680 		goto uncharge_out;
3681 	return ret;
3682 uncharge_out:
3683 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3684 	put_page(vmf->cow_page);
3685 	return ret;
3686 }
3687 
3688 static int do_shared_fault(struct vm_fault *vmf)
3689 {
3690 	struct vm_area_struct *vma = vmf->vma;
3691 	int ret, tmp;
3692 
3693 	ret = __do_fault(vmf);
3694 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3695 		return ret;
3696 
3697 	/*
3698 	 * Check if the backing address space wants to know that the page is
3699 	 * about to become writable
3700 	 */
3701 	if (vma->vm_ops->page_mkwrite) {
3702 		unlock_page(vmf->page);
3703 		tmp = do_page_mkwrite(vmf);
3704 		if (unlikely(!tmp ||
3705 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3706 			put_page(vmf->page);
3707 			return tmp;
3708 		}
3709 	}
3710 
3711 	ret |= finish_fault(vmf);
3712 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3713 					VM_FAULT_RETRY))) {
3714 		unlock_page(vmf->page);
3715 		put_page(vmf->page);
3716 		return ret;
3717 	}
3718 
3719 	fault_dirty_shared_page(vma, vmf->page);
3720 	return ret;
3721 }
3722 
3723 /*
3724  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3725  * but allow concurrent faults).
3726  * The mmap_sem may have been released depending on flags and our
3727  * return value.  See filemap_fault() and __lock_page_or_retry().
3728  */
3729 static int do_fault(struct vm_fault *vmf)
3730 {
3731 	struct vm_area_struct *vma = vmf->vma;
3732 	int ret;
3733 
3734 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3735 	if (!vma->vm_ops->fault)
3736 		ret = VM_FAULT_SIGBUS;
3737 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3738 		ret = do_read_fault(vmf);
3739 	else if (!(vma->vm_flags & VM_SHARED))
3740 		ret = do_cow_fault(vmf);
3741 	else
3742 		ret = do_shared_fault(vmf);
3743 
3744 	/* preallocated pagetable is unused: free it */
3745 	if (vmf->prealloc_pte) {
3746 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3747 		vmf->prealloc_pte = NULL;
3748 	}
3749 	return ret;
3750 }
3751 
3752 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3753 				unsigned long addr, int page_nid,
3754 				int *flags)
3755 {
3756 	get_page(page);
3757 
3758 	count_vm_numa_event(NUMA_HINT_FAULTS);
3759 	if (page_nid == numa_node_id()) {
3760 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3761 		*flags |= TNF_FAULT_LOCAL;
3762 	}
3763 
3764 	return mpol_misplaced(page, vma, addr);
3765 }
3766 
3767 static int do_numa_page(struct vm_fault *vmf)
3768 {
3769 	struct vm_area_struct *vma = vmf->vma;
3770 	struct page *page = NULL;
3771 	int page_nid = -1;
3772 	int last_cpupid;
3773 	int target_nid;
3774 	bool migrated = false;
3775 	pte_t pte;
3776 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3777 	int flags = 0;
3778 
3779 	/*
3780 	 * The "pte" at this point cannot be used safely without
3781 	 * validation through pte_unmap_same(). It's of NUMA type but
3782 	 * the pfn may be screwed if the read is non atomic.
3783 	 */
3784 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3785 	spin_lock(vmf->ptl);
3786 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3787 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3788 		goto out;
3789 	}
3790 
3791 	/*
3792 	 * Make it present again, Depending on how arch implementes non
3793 	 * accessible ptes, some can allow access by kernel mode.
3794 	 */
3795 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3796 	pte = pte_modify(pte, vma->vm_page_prot);
3797 	pte = pte_mkyoung(pte);
3798 	if (was_writable)
3799 		pte = pte_mkwrite(pte);
3800 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3801 	update_mmu_cache(vma, vmf->address, vmf->pte);
3802 
3803 	page = vm_normal_page(vma, vmf->address, pte);
3804 	if (!page) {
3805 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3806 		return 0;
3807 	}
3808 
3809 	/* TODO: handle PTE-mapped THP */
3810 	if (PageCompound(page)) {
3811 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3812 		return 0;
3813 	}
3814 
3815 	/*
3816 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3817 	 * much anyway since they can be in shared cache state. This misses
3818 	 * the case where a mapping is writable but the process never writes
3819 	 * to it but pte_write gets cleared during protection updates and
3820 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3821 	 * background writeback, dirty balancing and application behaviour.
3822 	 */
3823 	if (!pte_write(pte))
3824 		flags |= TNF_NO_GROUP;
3825 
3826 	/*
3827 	 * Flag if the page is shared between multiple address spaces. This
3828 	 * is later used when determining whether to group tasks together
3829 	 */
3830 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3831 		flags |= TNF_SHARED;
3832 
3833 	last_cpupid = page_cpupid_last(page);
3834 	page_nid = page_to_nid(page);
3835 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3836 			&flags);
3837 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3838 	if (target_nid == -1) {
3839 		put_page(page);
3840 		goto out;
3841 	}
3842 
3843 	/* Migrate to the requested node */
3844 	migrated = migrate_misplaced_page(page, vma, target_nid);
3845 	if (migrated) {
3846 		page_nid = target_nid;
3847 		flags |= TNF_MIGRATED;
3848 	} else
3849 		flags |= TNF_MIGRATE_FAIL;
3850 
3851 out:
3852 	if (page_nid != -1)
3853 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3854 	return 0;
3855 }
3856 
3857 static inline int create_huge_pmd(struct vm_fault *vmf)
3858 {
3859 	if (vma_is_anonymous(vmf->vma))
3860 		return do_huge_pmd_anonymous_page(vmf);
3861 	if (vmf->vma->vm_ops->huge_fault)
3862 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3863 	return VM_FAULT_FALLBACK;
3864 }
3865 
3866 /* `inline' is required to avoid gcc 4.1.2 build error */
3867 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3868 {
3869 	if (vma_is_anonymous(vmf->vma))
3870 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3871 	if (vmf->vma->vm_ops->huge_fault)
3872 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3873 
3874 	/* COW handled on pte level: split pmd */
3875 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3876 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3877 
3878 	return VM_FAULT_FALLBACK;
3879 }
3880 
3881 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3882 {
3883 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3884 }
3885 
3886 static int create_huge_pud(struct vm_fault *vmf)
3887 {
3888 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3889 	/* No support for anonymous transparent PUD pages yet */
3890 	if (vma_is_anonymous(vmf->vma))
3891 		return VM_FAULT_FALLBACK;
3892 	if (vmf->vma->vm_ops->huge_fault)
3893 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3894 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3895 	return VM_FAULT_FALLBACK;
3896 }
3897 
3898 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3899 {
3900 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3901 	/* No support for anonymous transparent PUD pages yet */
3902 	if (vma_is_anonymous(vmf->vma))
3903 		return VM_FAULT_FALLBACK;
3904 	if (vmf->vma->vm_ops->huge_fault)
3905 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3906 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3907 	return VM_FAULT_FALLBACK;
3908 }
3909 
3910 /*
3911  * These routines also need to handle stuff like marking pages dirty
3912  * and/or accessed for architectures that don't do it in hardware (most
3913  * RISC architectures).  The early dirtying is also good on the i386.
3914  *
3915  * There is also a hook called "update_mmu_cache()" that architectures
3916  * with external mmu caches can use to update those (ie the Sparc or
3917  * PowerPC hashed page tables that act as extended TLBs).
3918  *
3919  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3920  * concurrent faults).
3921  *
3922  * The mmap_sem may have been released depending on flags and our return value.
3923  * See filemap_fault() and __lock_page_or_retry().
3924  */
3925 static int handle_pte_fault(struct vm_fault *vmf)
3926 {
3927 	pte_t entry;
3928 
3929 	if (unlikely(pmd_none(*vmf->pmd))) {
3930 		/*
3931 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3932 		 * want to allocate huge page, and if we expose page table
3933 		 * for an instant, it will be difficult to retract from
3934 		 * concurrent faults and from rmap lookups.
3935 		 */
3936 		vmf->pte = NULL;
3937 	} else {
3938 		/* See comment in pte_alloc_one_map() */
3939 		if (pmd_devmap_trans_unstable(vmf->pmd))
3940 			return 0;
3941 		/*
3942 		 * A regular pmd is established and it can't morph into a huge
3943 		 * pmd from under us anymore at this point because we hold the
3944 		 * mmap_sem read mode and khugepaged takes it in write mode.
3945 		 * So now it's safe to run pte_offset_map().
3946 		 */
3947 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3948 		vmf->orig_pte = *vmf->pte;
3949 
3950 		/*
3951 		 * some architectures can have larger ptes than wordsize,
3952 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3953 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3954 		 * accesses.  The code below just needs a consistent view
3955 		 * for the ifs and we later double check anyway with the
3956 		 * ptl lock held. So here a barrier will do.
3957 		 */
3958 		barrier();
3959 		if (pte_none(vmf->orig_pte)) {
3960 			pte_unmap(vmf->pte);
3961 			vmf->pte = NULL;
3962 		}
3963 	}
3964 
3965 	if (!vmf->pte) {
3966 		if (vma_is_anonymous(vmf->vma))
3967 			return do_anonymous_page(vmf);
3968 		else
3969 			return do_fault(vmf);
3970 	}
3971 
3972 	if (!pte_present(vmf->orig_pte))
3973 		return do_swap_page(vmf);
3974 
3975 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3976 		return do_numa_page(vmf);
3977 
3978 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3979 	spin_lock(vmf->ptl);
3980 	entry = vmf->orig_pte;
3981 	if (unlikely(!pte_same(*vmf->pte, entry)))
3982 		goto unlock;
3983 	if (vmf->flags & FAULT_FLAG_WRITE) {
3984 		if (!pte_write(entry))
3985 			return do_wp_page(vmf);
3986 		entry = pte_mkdirty(entry);
3987 	}
3988 	entry = pte_mkyoung(entry);
3989 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3990 				vmf->flags & FAULT_FLAG_WRITE)) {
3991 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3992 	} else {
3993 		/*
3994 		 * This is needed only for protection faults but the arch code
3995 		 * is not yet telling us if this is a protection fault or not.
3996 		 * This still avoids useless tlb flushes for .text page faults
3997 		 * with threads.
3998 		 */
3999 		if (vmf->flags & FAULT_FLAG_WRITE)
4000 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4001 	}
4002 unlock:
4003 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4004 	return 0;
4005 }
4006 
4007 /*
4008  * By the time we get here, we already hold the mm semaphore
4009  *
4010  * The mmap_sem may have been released depending on flags and our
4011  * return value.  See filemap_fault() and __lock_page_or_retry().
4012  */
4013 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4014 		unsigned int flags)
4015 {
4016 	struct vm_fault vmf = {
4017 		.vma = vma,
4018 		.address = address & PAGE_MASK,
4019 		.flags = flags,
4020 		.pgoff = linear_page_index(vma, address),
4021 		.gfp_mask = __get_fault_gfp_mask(vma),
4022 	};
4023 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4024 	struct mm_struct *mm = vma->vm_mm;
4025 	pgd_t *pgd;
4026 	p4d_t *p4d;
4027 	int ret;
4028 
4029 	pgd = pgd_offset(mm, address);
4030 	p4d = p4d_alloc(mm, pgd, address);
4031 	if (!p4d)
4032 		return VM_FAULT_OOM;
4033 
4034 	vmf.pud = pud_alloc(mm, p4d, address);
4035 	if (!vmf.pud)
4036 		return VM_FAULT_OOM;
4037 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4038 		ret = create_huge_pud(&vmf);
4039 		if (!(ret & VM_FAULT_FALLBACK))
4040 			return ret;
4041 	} else {
4042 		pud_t orig_pud = *vmf.pud;
4043 
4044 		barrier();
4045 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4046 
4047 			/* NUMA case for anonymous PUDs would go here */
4048 
4049 			if (dirty && !pud_write(orig_pud)) {
4050 				ret = wp_huge_pud(&vmf, orig_pud);
4051 				if (!(ret & VM_FAULT_FALLBACK))
4052 					return ret;
4053 			} else {
4054 				huge_pud_set_accessed(&vmf, orig_pud);
4055 				return 0;
4056 			}
4057 		}
4058 	}
4059 
4060 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4061 	if (!vmf.pmd)
4062 		return VM_FAULT_OOM;
4063 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4064 		ret = create_huge_pmd(&vmf);
4065 		if (!(ret & VM_FAULT_FALLBACK))
4066 			return ret;
4067 	} else {
4068 		pmd_t orig_pmd = *vmf.pmd;
4069 
4070 		barrier();
4071 		if (unlikely(is_swap_pmd(orig_pmd))) {
4072 			VM_BUG_ON(thp_migration_supported() &&
4073 					  !is_pmd_migration_entry(orig_pmd));
4074 			if (is_pmd_migration_entry(orig_pmd))
4075 				pmd_migration_entry_wait(mm, vmf.pmd);
4076 			return 0;
4077 		}
4078 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4079 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4080 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4081 
4082 			if (dirty && !pmd_write(orig_pmd)) {
4083 				ret = wp_huge_pmd(&vmf, orig_pmd);
4084 				if (!(ret & VM_FAULT_FALLBACK))
4085 					return ret;
4086 			} else {
4087 				huge_pmd_set_accessed(&vmf, orig_pmd);
4088 				return 0;
4089 			}
4090 		}
4091 	}
4092 
4093 	return handle_pte_fault(&vmf);
4094 }
4095 
4096 /*
4097  * By the time we get here, we already hold the mm semaphore
4098  *
4099  * The mmap_sem may have been released depending on flags and our
4100  * return value.  See filemap_fault() and __lock_page_or_retry().
4101  */
4102 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4103 		unsigned int flags)
4104 {
4105 	int ret;
4106 
4107 	__set_current_state(TASK_RUNNING);
4108 
4109 	count_vm_event(PGFAULT);
4110 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4111 
4112 	/* do counter updates before entering really critical section. */
4113 	check_sync_rss_stat(current);
4114 
4115 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4116 					    flags & FAULT_FLAG_INSTRUCTION,
4117 					    flags & FAULT_FLAG_REMOTE))
4118 		return VM_FAULT_SIGSEGV;
4119 
4120 	/*
4121 	 * Enable the memcg OOM handling for faults triggered in user
4122 	 * space.  Kernel faults are handled more gracefully.
4123 	 */
4124 	if (flags & FAULT_FLAG_USER)
4125 		mem_cgroup_oom_enable();
4126 
4127 	if (unlikely(is_vm_hugetlb_page(vma)))
4128 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4129 	else
4130 		ret = __handle_mm_fault(vma, address, flags);
4131 
4132 	if (flags & FAULT_FLAG_USER) {
4133 		mem_cgroup_oom_disable();
4134 		/*
4135 		 * The task may have entered a memcg OOM situation but
4136 		 * if the allocation error was handled gracefully (no
4137 		 * VM_FAULT_OOM), there is no need to kill anything.
4138 		 * Just clean up the OOM state peacefully.
4139 		 */
4140 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4141 			mem_cgroup_oom_synchronize(false);
4142 	}
4143 
4144 	return ret;
4145 }
4146 EXPORT_SYMBOL_GPL(handle_mm_fault);
4147 
4148 #ifndef __PAGETABLE_P4D_FOLDED
4149 /*
4150  * Allocate p4d page table.
4151  * We've already handled the fast-path in-line.
4152  */
4153 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4154 {
4155 	p4d_t *new = p4d_alloc_one(mm, address);
4156 	if (!new)
4157 		return -ENOMEM;
4158 
4159 	smp_wmb(); /* See comment in __pte_alloc */
4160 
4161 	spin_lock(&mm->page_table_lock);
4162 	if (pgd_present(*pgd))		/* Another has populated it */
4163 		p4d_free(mm, new);
4164 	else
4165 		pgd_populate(mm, pgd, new);
4166 	spin_unlock(&mm->page_table_lock);
4167 	return 0;
4168 }
4169 #endif /* __PAGETABLE_P4D_FOLDED */
4170 
4171 #ifndef __PAGETABLE_PUD_FOLDED
4172 /*
4173  * Allocate page upper directory.
4174  * We've already handled the fast-path in-line.
4175  */
4176 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4177 {
4178 	pud_t *new = pud_alloc_one(mm, address);
4179 	if (!new)
4180 		return -ENOMEM;
4181 
4182 	smp_wmb(); /* See comment in __pte_alloc */
4183 
4184 	spin_lock(&mm->page_table_lock);
4185 #ifndef __ARCH_HAS_5LEVEL_HACK
4186 	if (!p4d_present(*p4d)) {
4187 		mm_inc_nr_puds(mm);
4188 		p4d_populate(mm, p4d, new);
4189 	} else	/* Another has populated it */
4190 		pud_free(mm, new);
4191 #else
4192 	if (!pgd_present(*p4d)) {
4193 		mm_inc_nr_puds(mm);
4194 		pgd_populate(mm, p4d, new);
4195 	} else	/* Another has populated it */
4196 		pud_free(mm, new);
4197 #endif /* __ARCH_HAS_5LEVEL_HACK */
4198 	spin_unlock(&mm->page_table_lock);
4199 	return 0;
4200 }
4201 #endif /* __PAGETABLE_PUD_FOLDED */
4202 
4203 #ifndef __PAGETABLE_PMD_FOLDED
4204 /*
4205  * Allocate page middle directory.
4206  * We've already handled the fast-path in-line.
4207  */
4208 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4209 {
4210 	spinlock_t *ptl;
4211 	pmd_t *new = pmd_alloc_one(mm, address);
4212 	if (!new)
4213 		return -ENOMEM;
4214 
4215 	smp_wmb(); /* See comment in __pte_alloc */
4216 
4217 	ptl = pud_lock(mm, pud);
4218 #ifndef __ARCH_HAS_4LEVEL_HACK
4219 	if (!pud_present(*pud)) {
4220 		mm_inc_nr_pmds(mm);
4221 		pud_populate(mm, pud, new);
4222 	} else	/* Another has populated it */
4223 		pmd_free(mm, new);
4224 #else
4225 	if (!pgd_present(*pud)) {
4226 		mm_inc_nr_pmds(mm);
4227 		pgd_populate(mm, pud, new);
4228 	} else /* Another has populated it */
4229 		pmd_free(mm, new);
4230 #endif /* __ARCH_HAS_4LEVEL_HACK */
4231 	spin_unlock(ptl);
4232 	return 0;
4233 }
4234 #endif /* __PAGETABLE_PMD_FOLDED */
4235 
4236 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4237 			    unsigned long *start, unsigned long *end,
4238 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4239 {
4240 	pgd_t *pgd;
4241 	p4d_t *p4d;
4242 	pud_t *pud;
4243 	pmd_t *pmd;
4244 	pte_t *ptep;
4245 
4246 	pgd = pgd_offset(mm, address);
4247 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4248 		goto out;
4249 
4250 	p4d = p4d_offset(pgd, address);
4251 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4252 		goto out;
4253 
4254 	pud = pud_offset(p4d, address);
4255 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4256 		goto out;
4257 
4258 	pmd = pmd_offset(pud, address);
4259 	VM_BUG_ON(pmd_trans_huge(*pmd));
4260 
4261 	if (pmd_huge(*pmd)) {
4262 		if (!pmdpp)
4263 			goto out;
4264 
4265 		if (start && end) {
4266 			*start = address & PMD_MASK;
4267 			*end = *start + PMD_SIZE;
4268 			mmu_notifier_invalidate_range_start(mm, *start, *end);
4269 		}
4270 		*ptlp = pmd_lock(mm, pmd);
4271 		if (pmd_huge(*pmd)) {
4272 			*pmdpp = pmd;
4273 			return 0;
4274 		}
4275 		spin_unlock(*ptlp);
4276 		if (start && end)
4277 			mmu_notifier_invalidate_range_end(mm, *start, *end);
4278 	}
4279 
4280 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4281 		goto out;
4282 
4283 	if (start && end) {
4284 		*start = address & PAGE_MASK;
4285 		*end = *start + PAGE_SIZE;
4286 		mmu_notifier_invalidate_range_start(mm, *start, *end);
4287 	}
4288 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4289 	if (!pte_present(*ptep))
4290 		goto unlock;
4291 	*ptepp = ptep;
4292 	return 0;
4293 unlock:
4294 	pte_unmap_unlock(ptep, *ptlp);
4295 	if (start && end)
4296 		mmu_notifier_invalidate_range_end(mm, *start, *end);
4297 out:
4298 	return -EINVAL;
4299 }
4300 
4301 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4302 			     pte_t **ptepp, spinlock_t **ptlp)
4303 {
4304 	int res;
4305 
4306 	/* (void) is needed to make gcc happy */
4307 	(void) __cond_lock(*ptlp,
4308 			   !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4309 						    ptepp, NULL, ptlp)));
4310 	return res;
4311 }
4312 
4313 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4314 			     unsigned long *start, unsigned long *end,
4315 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4316 {
4317 	int res;
4318 
4319 	/* (void) is needed to make gcc happy */
4320 	(void) __cond_lock(*ptlp,
4321 			   !(res = __follow_pte_pmd(mm, address, start, end,
4322 						    ptepp, pmdpp, ptlp)));
4323 	return res;
4324 }
4325 EXPORT_SYMBOL(follow_pte_pmd);
4326 
4327 /**
4328  * follow_pfn - look up PFN at a user virtual address
4329  * @vma: memory mapping
4330  * @address: user virtual address
4331  * @pfn: location to store found PFN
4332  *
4333  * Only IO mappings and raw PFN mappings are allowed.
4334  *
4335  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4336  */
4337 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4338 	unsigned long *pfn)
4339 {
4340 	int ret = -EINVAL;
4341 	spinlock_t *ptl;
4342 	pte_t *ptep;
4343 
4344 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4345 		return ret;
4346 
4347 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4348 	if (ret)
4349 		return ret;
4350 	*pfn = pte_pfn(*ptep);
4351 	pte_unmap_unlock(ptep, ptl);
4352 	return 0;
4353 }
4354 EXPORT_SYMBOL(follow_pfn);
4355 
4356 #ifdef CONFIG_HAVE_IOREMAP_PROT
4357 int follow_phys(struct vm_area_struct *vma,
4358 		unsigned long address, unsigned int flags,
4359 		unsigned long *prot, resource_size_t *phys)
4360 {
4361 	int ret = -EINVAL;
4362 	pte_t *ptep, pte;
4363 	spinlock_t *ptl;
4364 
4365 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4366 		goto out;
4367 
4368 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4369 		goto out;
4370 	pte = *ptep;
4371 
4372 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4373 		goto unlock;
4374 
4375 	*prot = pgprot_val(pte_pgprot(pte));
4376 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4377 
4378 	ret = 0;
4379 unlock:
4380 	pte_unmap_unlock(ptep, ptl);
4381 out:
4382 	return ret;
4383 }
4384 
4385 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4386 			void *buf, int len, int write)
4387 {
4388 	resource_size_t phys_addr;
4389 	unsigned long prot = 0;
4390 	void __iomem *maddr;
4391 	int offset = addr & (PAGE_SIZE-1);
4392 
4393 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4394 		return -EINVAL;
4395 
4396 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4397 	if (write)
4398 		memcpy_toio(maddr + offset, buf, len);
4399 	else
4400 		memcpy_fromio(buf, maddr + offset, len);
4401 	iounmap(maddr);
4402 
4403 	return len;
4404 }
4405 EXPORT_SYMBOL_GPL(generic_access_phys);
4406 #endif
4407 
4408 /*
4409  * Access another process' address space as given in mm.  If non-NULL, use the
4410  * given task for page fault accounting.
4411  */
4412 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4413 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4414 {
4415 	struct vm_area_struct *vma;
4416 	void *old_buf = buf;
4417 	int write = gup_flags & FOLL_WRITE;
4418 
4419 	down_read(&mm->mmap_sem);
4420 	/* ignore errors, just check how much was successfully transferred */
4421 	while (len) {
4422 		int bytes, ret, offset;
4423 		void *maddr;
4424 		struct page *page = NULL;
4425 
4426 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4427 				gup_flags, &page, &vma, NULL);
4428 		if (ret <= 0) {
4429 #ifndef CONFIG_HAVE_IOREMAP_PROT
4430 			break;
4431 #else
4432 			/*
4433 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4434 			 * we can access using slightly different code.
4435 			 */
4436 			vma = find_vma(mm, addr);
4437 			if (!vma || vma->vm_start > addr)
4438 				break;
4439 			if (vma->vm_ops && vma->vm_ops->access)
4440 				ret = vma->vm_ops->access(vma, addr, buf,
4441 							  len, write);
4442 			if (ret <= 0)
4443 				break;
4444 			bytes = ret;
4445 #endif
4446 		} else {
4447 			bytes = len;
4448 			offset = addr & (PAGE_SIZE-1);
4449 			if (bytes > PAGE_SIZE-offset)
4450 				bytes = PAGE_SIZE-offset;
4451 
4452 			maddr = kmap(page);
4453 			if (write) {
4454 				copy_to_user_page(vma, page, addr,
4455 						  maddr + offset, buf, bytes);
4456 				set_page_dirty_lock(page);
4457 			} else {
4458 				copy_from_user_page(vma, page, addr,
4459 						    buf, maddr + offset, bytes);
4460 			}
4461 			kunmap(page);
4462 			put_page(page);
4463 		}
4464 		len -= bytes;
4465 		buf += bytes;
4466 		addr += bytes;
4467 	}
4468 	up_read(&mm->mmap_sem);
4469 
4470 	return buf - old_buf;
4471 }
4472 
4473 /**
4474  * access_remote_vm - access another process' address space
4475  * @mm:		the mm_struct of the target address space
4476  * @addr:	start address to access
4477  * @buf:	source or destination buffer
4478  * @len:	number of bytes to transfer
4479  * @gup_flags:	flags modifying lookup behaviour
4480  *
4481  * The caller must hold a reference on @mm.
4482  */
4483 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4484 		void *buf, int len, unsigned int gup_flags)
4485 {
4486 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4487 }
4488 
4489 /*
4490  * Access another process' address space.
4491  * Source/target buffer must be kernel space,
4492  * Do not walk the page table directly, use get_user_pages
4493  */
4494 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4495 		void *buf, int len, unsigned int gup_flags)
4496 {
4497 	struct mm_struct *mm;
4498 	int ret;
4499 
4500 	mm = get_task_mm(tsk);
4501 	if (!mm)
4502 		return 0;
4503 
4504 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4505 
4506 	mmput(mm);
4507 
4508 	return ret;
4509 }
4510 EXPORT_SYMBOL_GPL(access_process_vm);
4511 
4512 /*
4513  * Print the name of a VMA.
4514  */
4515 void print_vma_addr(char *prefix, unsigned long ip)
4516 {
4517 	struct mm_struct *mm = current->mm;
4518 	struct vm_area_struct *vma;
4519 
4520 	/*
4521 	 * we might be running from an atomic context so we cannot sleep
4522 	 */
4523 	if (!down_read_trylock(&mm->mmap_sem))
4524 		return;
4525 
4526 	vma = find_vma(mm, ip);
4527 	if (vma && vma->vm_file) {
4528 		struct file *f = vma->vm_file;
4529 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4530 		if (buf) {
4531 			char *p;
4532 
4533 			p = file_path(f, buf, PAGE_SIZE);
4534 			if (IS_ERR(p))
4535 				p = "?";
4536 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4537 					vma->vm_start,
4538 					vma->vm_end - vma->vm_start);
4539 			free_page((unsigned long)buf);
4540 		}
4541 	}
4542 	up_read(&mm->mmap_sem);
4543 }
4544 
4545 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4546 void __might_fault(const char *file, int line)
4547 {
4548 	/*
4549 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4550 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4551 	 * get paged out, therefore we'll never actually fault, and the
4552 	 * below annotations will generate false positives.
4553 	 */
4554 	if (uaccess_kernel())
4555 		return;
4556 	if (pagefault_disabled())
4557 		return;
4558 	__might_sleep(file, line, 0);
4559 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4560 	if (current->mm)
4561 		might_lock_read(&current->mm->mmap_sem);
4562 #endif
4563 }
4564 EXPORT_SYMBOL(__might_fault);
4565 #endif
4566 
4567 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4568 static void clear_gigantic_page(struct page *page,
4569 				unsigned long addr,
4570 				unsigned int pages_per_huge_page)
4571 {
4572 	int i;
4573 	struct page *p = page;
4574 
4575 	might_sleep();
4576 	for (i = 0; i < pages_per_huge_page;
4577 	     i++, p = mem_map_next(p, page, i)) {
4578 		cond_resched();
4579 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4580 	}
4581 }
4582 void clear_huge_page(struct page *page,
4583 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4584 {
4585 	int i, n, base, l;
4586 	unsigned long addr = addr_hint &
4587 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4588 
4589 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4590 		clear_gigantic_page(page, addr, pages_per_huge_page);
4591 		return;
4592 	}
4593 
4594 	/* Clear sub-page to access last to keep its cache lines hot */
4595 	might_sleep();
4596 	n = (addr_hint - addr) / PAGE_SIZE;
4597 	if (2 * n <= pages_per_huge_page) {
4598 		/* If sub-page to access in first half of huge page */
4599 		base = 0;
4600 		l = n;
4601 		/* Clear sub-pages at the end of huge page */
4602 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4603 			cond_resched();
4604 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4605 		}
4606 	} else {
4607 		/* If sub-page to access in second half of huge page */
4608 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4609 		l = pages_per_huge_page - n;
4610 		/* Clear sub-pages at the begin of huge page */
4611 		for (i = 0; i < base; i++) {
4612 			cond_resched();
4613 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4614 		}
4615 	}
4616 	/*
4617 	 * Clear remaining sub-pages in left-right-left-right pattern
4618 	 * towards the sub-page to access
4619 	 */
4620 	for (i = 0; i < l; i++) {
4621 		int left_idx = base + i;
4622 		int right_idx = base + 2 * l - 1 - i;
4623 
4624 		cond_resched();
4625 		clear_user_highpage(page + left_idx,
4626 				    addr + left_idx * PAGE_SIZE);
4627 		cond_resched();
4628 		clear_user_highpage(page + right_idx,
4629 				    addr + right_idx * PAGE_SIZE);
4630 	}
4631 }
4632 
4633 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4634 				    unsigned long addr,
4635 				    struct vm_area_struct *vma,
4636 				    unsigned int pages_per_huge_page)
4637 {
4638 	int i;
4639 	struct page *dst_base = dst;
4640 	struct page *src_base = src;
4641 
4642 	for (i = 0; i < pages_per_huge_page; ) {
4643 		cond_resched();
4644 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4645 
4646 		i++;
4647 		dst = mem_map_next(dst, dst_base, i);
4648 		src = mem_map_next(src, src_base, i);
4649 	}
4650 }
4651 
4652 void copy_user_huge_page(struct page *dst, struct page *src,
4653 			 unsigned long addr, struct vm_area_struct *vma,
4654 			 unsigned int pages_per_huge_page)
4655 {
4656 	int i;
4657 
4658 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4659 		copy_user_gigantic_page(dst, src, addr, vma,
4660 					pages_per_huge_page);
4661 		return;
4662 	}
4663 
4664 	might_sleep();
4665 	for (i = 0; i < pages_per_huge_page; i++) {
4666 		cond_resched();
4667 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4668 	}
4669 }
4670 
4671 long copy_huge_page_from_user(struct page *dst_page,
4672 				const void __user *usr_src,
4673 				unsigned int pages_per_huge_page,
4674 				bool allow_pagefault)
4675 {
4676 	void *src = (void *)usr_src;
4677 	void *page_kaddr;
4678 	unsigned long i, rc = 0;
4679 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4680 
4681 	for (i = 0; i < pages_per_huge_page; i++) {
4682 		if (allow_pagefault)
4683 			page_kaddr = kmap(dst_page + i);
4684 		else
4685 			page_kaddr = kmap_atomic(dst_page + i);
4686 		rc = copy_from_user(page_kaddr,
4687 				(const void __user *)(src + i * PAGE_SIZE),
4688 				PAGE_SIZE);
4689 		if (allow_pagefault)
4690 			kunmap(dst_page + i);
4691 		else
4692 			kunmap_atomic(page_kaddr);
4693 
4694 		ret_val -= (PAGE_SIZE - rc);
4695 		if (rc)
4696 			break;
4697 
4698 		cond_resched();
4699 	}
4700 	return ret_val;
4701 }
4702 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4703 
4704 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4705 
4706 static struct kmem_cache *page_ptl_cachep;
4707 
4708 void __init ptlock_cache_init(void)
4709 {
4710 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4711 			SLAB_PANIC, NULL);
4712 }
4713 
4714 bool ptlock_alloc(struct page *page)
4715 {
4716 	spinlock_t *ptl;
4717 
4718 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4719 	if (!ptl)
4720 		return false;
4721 	page->ptl = ptl;
4722 	return true;
4723 }
4724 
4725 void ptlock_free(struct page *page)
4726 {
4727 	kmem_cache_free(page_ptl_cachep, page->ptl);
4728 }
4729 #endif
4730