xref: /linux/mm/memory.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67 
68 #include "internal.h"
69 
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74 
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78 
79 unsigned long num_physpages;
80 /*
81  * A number of key systems in x86 including ioremap() rely on the assumption
82  * that high_memory defines the upper bound on direct map memory, then end
83  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
84  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85  * and ZONE_HIGHMEM.
86  */
87 void * high_memory;
88 
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91 
92 /*
93  * Randomize the address space (stacks, mmaps, brk, etc.).
94  *
95  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96  *   as ancient (libc5 based) binaries can segfault. )
97  */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 					1;
101 #else
102 					2;
103 #endif
104 
105 static int __init disable_randmaps(char *s)
106 {
107 	randomize_va_space = 0;
108 	return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111 
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114 
115 /*
116  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117  */
118 static int __init init_zero_pfn(void)
119 {
120 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 	return 0;
122 }
123 core_initcall(init_zero_pfn);
124 
125 
126 #if defined(SPLIT_RSS_COUNTING)
127 
128 void sync_mm_rss(struct mm_struct *mm)
129 {
130 	int i;
131 
132 	for (i = 0; i < NR_MM_COUNTERS; i++) {
133 		if (current->rss_stat.count[i]) {
134 			add_mm_counter(mm, i, current->rss_stat.count[i]);
135 			current->rss_stat.count[i] = 0;
136 		}
137 	}
138 	current->rss_stat.events = 0;
139 }
140 
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 	struct task_struct *task = current;
144 
145 	if (likely(task->mm == mm))
146 		task->rss_stat.count[member] += val;
147 	else
148 		add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152 
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH	(64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 	if (unlikely(task != current))
158 		return;
159 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 		sync_mm_rss(task->mm);
161 }
162 #else /* SPLIT_RSS_COUNTING */
163 
164 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
165 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
166 
167 static void check_sync_rss_stat(struct task_struct *task)
168 {
169 }
170 
171 #endif /* SPLIT_RSS_COUNTING */
172 
173 #ifdef HAVE_GENERIC_MMU_GATHER
174 
175 static int tlb_next_batch(struct mmu_gather *tlb)
176 {
177 	struct mmu_gather_batch *batch;
178 
179 	batch = tlb->active;
180 	if (batch->next) {
181 		tlb->active = batch->next;
182 		return 1;
183 	}
184 
185 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
186 	if (!batch)
187 		return 0;
188 
189 	batch->next = NULL;
190 	batch->nr   = 0;
191 	batch->max  = MAX_GATHER_BATCH;
192 
193 	tlb->active->next = batch;
194 	tlb->active = batch;
195 
196 	return 1;
197 }
198 
199 /* tlb_gather_mmu
200  *	Called to initialize an (on-stack) mmu_gather structure for page-table
201  *	tear-down from @mm. The @fullmm argument is used when @mm is without
202  *	users and we're going to destroy the full address space (exit/execve).
203  */
204 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
205 {
206 	tlb->mm = mm;
207 
208 	tlb->fullmm     = fullmm;
209 	tlb->start	= -1UL;
210 	tlb->end	= 0;
211 	tlb->need_flush = 0;
212 	tlb->fast_mode  = (num_possible_cpus() == 1);
213 	tlb->local.next = NULL;
214 	tlb->local.nr   = 0;
215 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
216 	tlb->active     = &tlb->local;
217 
218 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
219 	tlb->batch = NULL;
220 #endif
221 }
222 
223 void tlb_flush_mmu(struct mmu_gather *tlb)
224 {
225 	struct mmu_gather_batch *batch;
226 
227 	if (!tlb->need_flush)
228 		return;
229 	tlb->need_flush = 0;
230 	tlb_flush(tlb);
231 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
232 	tlb_table_flush(tlb);
233 #endif
234 
235 	if (tlb_fast_mode(tlb))
236 		return;
237 
238 	for (batch = &tlb->local; batch; batch = batch->next) {
239 		free_pages_and_swap_cache(batch->pages, batch->nr);
240 		batch->nr = 0;
241 	}
242 	tlb->active = &tlb->local;
243 }
244 
245 /* tlb_finish_mmu
246  *	Called at the end of the shootdown operation to free up any resources
247  *	that were required.
248  */
249 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
250 {
251 	struct mmu_gather_batch *batch, *next;
252 
253 	tlb->start = start;
254 	tlb->end   = end;
255 	tlb_flush_mmu(tlb);
256 
257 	/* keep the page table cache within bounds */
258 	check_pgt_cache();
259 
260 	for (batch = tlb->local.next; batch; batch = next) {
261 		next = batch->next;
262 		free_pages((unsigned long)batch, 0);
263 	}
264 	tlb->local.next = NULL;
265 }
266 
267 /* __tlb_remove_page
268  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
269  *	handling the additional races in SMP caused by other CPUs caching valid
270  *	mappings in their TLBs. Returns the number of free page slots left.
271  *	When out of page slots we must call tlb_flush_mmu().
272  */
273 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
274 {
275 	struct mmu_gather_batch *batch;
276 
277 	VM_BUG_ON(!tlb->need_flush);
278 
279 	if (tlb_fast_mode(tlb)) {
280 		free_page_and_swap_cache(page);
281 		return 1; /* avoid calling tlb_flush_mmu() */
282 	}
283 
284 	batch = tlb->active;
285 	batch->pages[batch->nr++] = page;
286 	if (batch->nr == batch->max) {
287 		if (!tlb_next_batch(tlb))
288 			return 0;
289 		batch = tlb->active;
290 	}
291 	VM_BUG_ON(batch->nr > batch->max);
292 
293 	return batch->max - batch->nr;
294 }
295 
296 #endif /* HAVE_GENERIC_MMU_GATHER */
297 
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
299 
300 /*
301  * See the comment near struct mmu_table_batch.
302  */
303 
304 static void tlb_remove_table_smp_sync(void *arg)
305 {
306 	/* Simply deliver the interrupt */
307 }
308 
309 static void tlb_remove_table_one(void *table)
310 {
311 	/*
312 	 * This isn't an RCU grace period and hence the page-tables cannot be
313 	 * assumed to be actually RCU-freed.
314 	 *
315 	 * It is however sufficient for software page-table walkers that rely on
316 	 * IRQ disabling. See the comment near struct mmu_table_batch.
317 	 */
318 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 	__tlb_remove_table(table);
320 }
321 
322 static void tlb_remove_table_rcu(struct rcu_head *head)
323 {
324 	struct mmu_table_batch *batch;
325 	int i;
326 
327 	batch = container_of(head, struct mmu_table_batch, rcu);
328 
329 	for (i = 0; i < batch->nr; i++)
330 		__tlb_remove_table(batch->tables[i]);
331 
332 	free_page((unsigned long)batch);
333 }
334 
335 void tlb_table_flush(struct mmu_gather *tlb)
336 {
337 	struct mmu_table_batch **batch = &tlb->batch;
338 
339 	if (*batch) {
340 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 		*batch = NULL;
342 	}
343 }
344 
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
346 {
347 	struct mmu_table_batch **batch = &tlb->batch;
348 
349 	tlb->need_flush = 1;
350 
351 	/*
352 	 * When there's less then two users of this mm there cannot be a
353 	 * concurrent page-table walk.
354 	 */
355 	if (atomic_read(&tlb->mm->mm_users) < 2) {
356 		__tlb_remove_table(table);
357 		return;
358 	}
359 
360 	if (*batch == NULL) {
361 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 		if (*batch == NULL) {
363 			tlb_remove_table_one(table);
364 			return;
365 		}
366 		(*batch)->nr = 0;
367 	}
368 	(*batch)->tables[(*batch)->nr++] = table;
369 	if ((*batch)->nr == MAX_TABLE_BATCH)
370 		tlb_table_flush(tlb);
371 }
372 
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
374 
375 /*
376  * If a p?d_bad entry is found while walking page tables, report
377  * the error, before resetting entry to p?d_none.  Usually (but
378  * very seldom) called out from the p?d_none_or_clear_bad macros.
379  */
380 
381 void pgd_clear_bad(pgd_t *pgd)
382 {
383 	pgd_ERROR(*pgd);
384 	pgd_clear(pgd);
385 }
386 
387 void pud_clear_bad(pud_t *pud)
388 {
389 	pud_ERROR(*pud);
390 	pud_clear(pud);
391 }
392 
393 void pmd_clear_bad(pmd_t *pmd)
394 {
395 	pmd_ERROR(*pmd);
396 	pmd_clear(pmd);
397 }
398 
399 /*
400  * Note: this doesn't free the actual pages themselves. That
401  * has been handled earlier when unmapping all the memory regions.
402  */
403 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
404 			   unsigned long addr)
405 {
406 	pgtable_t token = pmd_pgtable(*pmd);
407 	pmd_clear(pmd);
408 	pte_free_tlb(tlb, token, addr);
409 	tlb->mm->nr_ptes--;
410 }
411 
412 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
413 				unsigned long addr, unsigned long end,
414 				unsigned long floor, unsigned long ceiling)
415 {
416 	pmd_t *pmd;
417 	unsigned long next;
418 	unsigned long start;
419 
420 	start = addr;
421 	pmd = pmd_offset(pud, addr);
422 	do {
423 		next = pmd_addr_end(addr, end);
424 		if (pmd_none_or_clear_bad(pmd))
425 			continue;
426 		free_pte_range(tlb, pmd, addr);
427 	} while (pmd++, addr = next, addr != end);
428 
429 	start &= PUD_MASK;
430 	if (start < floor)
431 		return;
432 	if (ceiling) {
433 		ceiling &= PUD_MASK;
434 		if (!ceiling)
435 			return;
436 	}
437 	if (end - 1 > ceiling - 1)
438 		return;
439 
440 	pmd = pmd_offset(pud, start);
441 	pud_clear(pud);
442 	pmd_free_tlb(tlb, pmd, start);
443 }
444 
445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
446 				unsigned long addr, unsigned long end,
447 				unsigned long floor, unsigned long ceiling)
448 {
449 	pud_t *pud;
450 	unsigned long next;
451 	unsigned long start;
452 
453 	start = addr;
454 	pud = pud_offset(pgd, addr);
455 	do {
456 		next = pud_addr_end(addr, end);
457 		if (pud_none_or_clear_bad(pud))
458 			continue;
459 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
460 	} while (pud++, addr = next, addr != end);
461 
462 	start &= PGDIR_MASK;
463 	if (start < floor)
464 		return;
465 	if (ceiling) {
466 		ceiling &= PGDIR_MASK;
467 		if (!ceiling)
468 			return;
469 	}
470 	if (end - 1 > ceiling - 1)
471 		return;
472 
473 	pud = pud_offset(pgd, start);
474 	pgd_clear(pgd);
475 	pud_free_tlb(tlb, pud, start);
476 }
477 
478 /*
479  * This function frees user-level page tables of a process.
480  *
481  * Must be called with pagetable lock held.
482  */
483 void free_pgd_range(struct mmu_gather *tlb,
484 			unsigned long addr, unsigned long end,
485 			unsigned long floor, unsigned long ceiling)
486 {
487 	pgd_t *pgd;
488 	unsigned long next;
489 
490 	/*
491 	 * The next few lines have given us lots of grief...
492 	 *
493 	 * Why are we testing PMD* at this top level?  Because often
494 	 * there will be no work to do at all, and we'd prefer not to
495 	 * go all the way down to the bottom just to discover that.
496 	 *
497 	 * Why all these "- 1"s?  Because 0 represents both the bottom
498 	 * of the address space and the top of it (using -1 for the
499 	 * top wouldn't help much: the masks would do the wrong thing).
500 	 * The rule is that addr 0 and floor 0 refer to the bottom of
501 	 * the address space, but end 0 and ceiling 0 refer to the top
502 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 	 * that end 0 case should be mythical).
504 	 *
505 	 * Wherever addr is brought up or ceiling brought down, we must
506 	 * be careful to reject "the opposite 0" before it confuses the
507 	 * subsequent tests.  But what about where end is brought down
508 	 * by PMD_SIZE below? no, end can't go down to 0 there.
509 	 *
510 	 * Whereas we round start (addr) and ceiling down, by different
511 	 * masks at different levels, in order to test whether a table
512 	 * now has no other vmas using it, so can be freed, we don't
513 	 * bother to round floor or end up - the tests don't need that.
514 	 */
515 
516 	addr &= PMD_MASK;
517 	if (addr < floor) {
518 		addr += PMD_SIZE;
519 		if (!addr)
520 			return;
521 	}
522 	if (ceiling) {
523 		ceiling &= PMD_MASK;
524 		if (!ceiling)
525 			return;
526 	}
527 	if (end - 1 > ceiling - 1)
528 		end -= PMD_SIZE;
529 	if (addr > end - 1)
530 		return;
531 
532 	pgd = pgd_offset(tlb->mm, addr);
533 	do {
534 		next = pgd_addr_end(addr, end);
535 		if (pgd_none_or_clear_bad(pgd))
536 			continue;
537 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
538 	} while (pgd++, addr = next, addr != end);
539 }
540 
541 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
542 		unsigned long floor, unsigned long ceiling)
543 {
544 	while (vma) {
545 		struct vm_area_struct *next = vma->vm_next;
546 		unsigned long addr = vma->vm_start;
547 
548 		/*
549 		 * Hide vma from rmap and truncate_pagecache before freeing
550 		 * pgtables
551 		 */
552 		unlink_anon_vmas(vma);
553 		unlink_file_vma(vma);
554 
555 		if (is_vm_hugetlb_page(vma)) {
556 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
557 				floor, next? next->vm_start: ceiling);
558 		} else {
559 			/*
560 			 * Optimization: gather nearby vmas into one call down
561 			 */
562 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
563 			       && !is_vm_hugetlb_page(next)) {
564 				vma = next;
565 				next = vma->vm_next;
566 				unlink_anon_vmas(vma);
567 				unlink_file_vma(vma);
568 			}
569 			free_pgd_range(tlb, addr, vma->vm_end,
570 				floor, next? next->vm_start: ceiling);
571 		}
572 		vma = next;
573 	}
574 }
575 
576 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
577 		pmd_t *pmd, unsigned long address)
578 {
579 	pgtable_t new = pte_alloc_one(mm, address);
580 	int wait_split_huge_page;
581 	if (!new)
582 		return -ENOMEM;
583 
584 	/*
585 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
586 	 * visible before the pte is made visible to other CPUs by being
587 	 * put into page tables.
588 	 *
589 	 * The other side of the story is the pointer chasing in the page
590 	 * table walking code (when walking the page table without locking;
591 	 * ie. most of the time). Fortunately, these data accesses consist
592 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
593 	 * being the notable exception) will already guarantee loads are
594 	 * seen in-order. See the alpha page table accessors for the
595 	 * smp_read_barrier_depends() barriers in page table walking code.
596 	 */
597 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
598 
599 	spin_lock(&mm->page_table_lock);
600 	wait_split_huge_page = 0;
601 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
602 		mm->nr_ptes++;
603 		pmd_populate(mm, pmd, new);
604 		new = NULL;
605 	} else if (unlikely(pmd_trans_splitting(*pmd)))
606 		wait_split_huge_page = 1;
607 	spin_unlock(&mm->page_table_lock);
608 	if (new)
609 		pte_free(mm, new);
610 	if (wait_split_huge_page)
611 		wait_split_huge_page(vma->anon_vma, pmd);
612 	return 0;
613 }
614 
615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
616 {
617 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
618 	if (!new)
619 		return -ENOMEM;
620 
621 	smp_wmb(); /* See comment in __pte_alloc */
622 
623 	spin_lock(&init_mm.page_table_lock);
624 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
625 		pmd_populate_kernel(&init_mm, pmd, new);
626 		new = NULL;
627 	} else
628 		VM_BUG_ON(pmd_trans_splitting(*pmd));
629 	spin_unlock(&init_mm.page_table_lock);
630 	if (new)
631 		pte_free_kernel(&init_mm, new);
632 	return 0;
633 }
634 
635 static inline void init_rss_vec(int *rss)
636 {
637 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
638 }
639 
640 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
641 {
642 	int i;
643 
644 	if (current->mm == mm)
645 		sync_mm_rss(mm);
646 	for (i = 0; i < NR_MM_COUNTERS; i++)
647 		if (rss[i])
648 			add_mm_counter(mm, i, rss[i]);
649 }
650 
651 /*
652  * This function is called to print an error when a bad pte
653  * is found. For example, we might have a PFN-mapped pte in
654  * a region that doesn't allow it.
655  *
656  * The calling function must still handle the error.
657  */
658 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
659 			  pte_t pte, struct page *page)
660 {
661 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
662 	pud_t *pud = pud_offset(pgd, addr);
663 	pmd_t *pmd = pmd_offset(pud, addr);
664 	struct address_space *mapping;
665 	pgoff_t index;
666 	static unsigned long resume;
667 	static unsigned long nr_shown;
668 	static unsigned long nr_unshown;
669 
670 	/*
671 	 * Allow a burst of 60 reports, then keep quiet for that minute;
672 	 * or allow a steady drip of one report per second.
673 	 */
674 	if (nr_shown == 60) {
675 		if (time_before(jiffies, resume)) {
676 			nr_unshown++;
677 			return;
678 		}
679 		if (nr_unshown) {
680 			printk(KERN_ALERT
681 				"BUG: Bad page map: %lu messages suppressed\n",
682 				nr_unshown);
683 			nr_unshown = 0;
684 		}
685 		nr_shown = 0;
686 	}
687 	if (nr_shown++ == 0)
688 		resume = jiffies + 60 * HZ;
689 
690 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
691 	index = linear_page_index(vma, addr);
692 
693 	printk(KERN_ALERT
694 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
695 		current->comm,
696 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
697 	if (page)
698 		dump_page(page);
699 	printk(KERN_ALERT
700 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
701 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
702 	/*
703 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
704 	 */
705 	if (vma->vm_ops)
706 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
707 				(unsigned long)vma->vm_ops->fault);
708 	if (vma->vm_file && vma->vm_file->f_op)
709 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
710 				(unsigned long)vma->vm_file->f_op->mmap);
711 	dump_stack();
712 	add_taint(TAINT_BAD_PAGE);
713 }
714 
715 static inline bool is_cow_mapping(vm_flags_t flags)
716 {
717 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
718 }
719 
720 #ifndef is_zero_pfn
721 static inline int is_zero_pfn(unsigned long pfn)
722 {
723 	return pfn == zero_pfn;
724 }
725 #endif
726 
727 #ifndef my_zero_pfn
728 static inline unsigned long my_zero_pfn(unsigned long addr)
729 {
730 	return zero_pfn;
731 }
732 #endif
733 
734 /*
735  * vm_normal_page -- This function gets the "struct page" associated with a pte.
736  *
737  * "Special" mappings do not wish to be associated with a "struct page" (either
738  * it doesn't exist, or it exists but they don't want to touch it). In this
739  * case, NULL is returned here. "Normal" mappings do have a struct page.
740  *
741  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
742  * pte bit, in which case this function is trivial. Secondly, an architecture
743  * may not have a spare pte bit, which requires a more complicated scheme,
744  * described below.
745  *
746  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
747  * special mapping (even if there are underlying and valid "struct pages").
748  * COWed pages of a VM_PFNMAP are always normal.
749  *
750  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
751  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
752  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
753  * mapping will always honor the rule
754  *
755  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
756  *
757  * And for normal mappings this is false.
758  *
759  * This restricts such mappings to be a linear translation from virtual address
760  * to pfn. To get around this restriction, we allow arbitrary mappings so long
761  * as the vma is not a COW mapping; in that case, we know that all ptes are
762  * special (because none can have been COWed).
763  *
764  *
765  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
766  *
767  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
768  * page" backing, however the difference is that _all_ pages with a struct
769  * page (that is, those where pfn_valid is true) are refcounted and considered
770  * normal pages by the VM. The disadvantage is that pages are refcounted
771  * (which can be slower and simply not an option for some PFNMAP users). The
772  * advantage is that we don't have to follow the strict linearity rule of
773  * PFNMAP mappings in order to support COWable mappings.
774  *
775  */
776 #ifdef __HAVE_ARCH_PTE_SPECIAL
777 # define HAVE_PTE_SPECIAL 1
778 #else
779 # define HAVE_PTE_SPECIAL 0
780 #endif
781 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
782 				pte_t pte)
783 {
784 	unsigned long pfn = pte_pfn(pte);
785 
786 	if (HAVE_PTE_SPECIAL) {
787 		if (likely(!pte_special(pte)))
788 			goto check_pfn;
789 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
790 			return NULL;
791 		if (!is_zero_pfn(pfn))
792 			print_bad_pte(vma, addr, pte, NULL);
793 		return NULL;
794 	}
795 
796 	/* !HAVE_PTE_SPECIAL case follows: */
797 
798 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
799 		if (vma->vm_flags & VM_MIXEDMAP) {
800 			if (!pfn_valid(pfn))
801 				return NULL;
802 			goto out;
803 		} else {
804 			unsigned long off;
805 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
806 			if (pfn == vma->vm_pgoff + off)
807 				return NULL;
808 			if (!is_cow_mapping(vma->vm_flags))
809 				return NULL;
810 		}
811 	}
812 
813 	if (is_zero_pfn(pfn))
814 		return NULL;
815 check_pfn:
816 	if (unlikely(pfn > highest_memmap_pfn)) {
817 		print_bad_pte(vma, addr, pte, NULL);
818 		return NULL;
819 	}
820 
821 	/*
822 	 * NOTE! We still have PageReserved() pages in the page tables.
823 	 * eg. VDSO mappings can cause them to exist.
824 	 */
825 out:
826 	return pfn_to_page(pfn);
827 }
828 
829 /*
830  * copy one vm_area from one task to the other. Assumes the page tables
831  * already present in the new task to be cleared in the whole range
832  * covered by this vma.
833  */
834 
835 static inline unsigned long
836 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
837 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
838 		unsigned long addr, int *rss)
839 {
840 	unsigned long vm_flags = vma->vm_flags;
841 	pte_t pte = *src_pte;
842 	struct page *page;
843 
844 	/* pte contains position in swap or file, so copy. */
845 	if (unlikely(!pte_present(pte))) {
846 		if (!pte_file(pte)) {
847 			swp_entry_t entry = pte_to_swp_entry(pte);
848 
849 			if (swap_duplicate(entry) < 0)
850 				return entry.val;
851 
852 			/* make sure dst_mm is on swapoff's mmlist. */
853 			if (unlikely(list_empty(&dst_mm->mmlist))) {
854 				spin_lock(&mmlist_lock);
855 				if (list_empty(&dst_mm->mmlist))
856 					list_add(&dst_mm->mmlist,
857 						 &src_mm->mmlist);
858 				spin_unlock(&mmlist_lock);
859 			}
860 			if (likely(!non_swap_entry(entry)))
861 				rss[MM_SWAPENTS]++;
862 			else if (is_migration_entry(entry)) {
863 				page = migration_entry_to_page(entry);
864 
865 				if (PageAnon(page))
866 					rss[MM_ANONPAGES]++;
867 				else
868 					rss[MM_FILEPAGES]++;
869 
870 				if (is_write_migration_entry(entry) &&
871 				    is_cow_mapping(vm_flags)) {
872 					/*
873 					 * COW mappings require pages in both
874 					 * parent and child to be set to read.
875 					 */
876 					make_migration_entry_read(&entry);
877 					pte = swp_entry_to_pte(entry);
878 					set_pte_at(src_mm, addr, src_pte, pte);
879 				}
880 			}
881 		}
882 		goto out_set_pte;
883 	}
884 
885 	/*
886 	 * If it's a COW mapping, write protect it both
887 	 * in the parent and the child
888 	 */
889 	if (is_cow_mapping(vm_flags)) {
890 		ptep_set_wrprotect(src_mm, addr, src_pte);
891 		pte = pte_wrprotect(pte);
892 	}
893 
894 	/*
895 	 * If it's a shared mapping, mark it clean in
896 	 * the child
897 	 */
898 	if (vm_flags & VM_SHARED)
899 		pte = pte_mkclean(pte);
900 	pte = pte_mkold(pte);
901 
902 	page = vm_normal_page(vma, addr, pte);
903 	if (page) {
904 		get_page(page);
905 		page_dup_rmap(page);
906 		if (PageAnon(page))
907 			rss[MM_ANONPAGES]++;
908 		else
909 			rss[MM_FILEPAGES]++;
910 	}
911 
912 out_set_pte:
913 	set_pte_at(dst_mm, addr, dst_pte, pte);
914 	return 0;
915 }
916 
917 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
918 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
919 		   unsigned long addr, unsigned long end)
920 {
921 	pte_t *orig_src_pte, *orig_dst_pte;
922 	pte_t *src_pte, *dst_pte;
923 	spinlock_t *src_ptl, *dst_ptl;
924 	int progress = 0;
925 	int rss[NR_MM_COUNTERS];
926 	swp_entry_t entry = (swp_entry_t){0};
927 
928 again:
929 	init_rss_vec(rss);
930 
931 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
932 	if (!dst_pte)
933 		return -ENOMEM;
934 	src_pte = pte_offset_map(src_pmd, addr);
935 	src_ptl = pte_lockptr(src_mm, src_pmd);
936 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
937 	orig_src_pte = src_pte;
938 	orig_dst_pte = dst_pte;
939 	arch_enter_lazy_mmu_mode();
940 
941 	do {
942 		/*
943 		 * We are holding two locks at this point - either of them
944 		 * could generate latencies in another task on another CPU.
945 		 */
946 		if (progress >= 32) {
947 			progress = 0;
948 			if (need_resched() ||
949 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
950 				break;
951 		}
952 		if (pte_none(*src_pte)) {
953 			progress++;
954 			continue;
955 		}
956 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
957 							vma, addr, rss);
958 		if (entry.val)
959 			break;
960 		progress += 8;
961 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
962 
963 	arch_leave_lazy_mmu_mode();
964 	spin_unlock(src_ptl);
965 	pte_unmap(orig_src_pte);
966 	add_mm_rss_vec(dst_mm, rss);
967 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
968 	cond_resched();
969 
970 	if (entry.val) {
971 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
972 			return -ENOMEM;
973 		progress = 0;
974 	}
975 	if (addr != end)
976 		goto again;
977 	return 0;
978 }
979 
980 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
981 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
982 		unsigned long addr, unsigned long end)
983 {
984 	pmd_t *src_pmd, *dst_pmd;
985 	unsigned long next;
986 
987 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
988 	if (!dst_pmd)
989 		return -ENOMEM;
990 	src_pmd = pmd_offset(src_pud, addr);
991 	do {
992 		next = pmd_addr_end(addr, end);
993 		if (pmd_trans_huge(*src_pmd)) {
994 			int err;
995 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
996 			err = copy_huge_pmd(dst_mm, src_mm,
997 					    dst_pmd, src_pmd, addr, vma);
998 			if (err == -ENOMEM)
999 				return -ENOMEM;
1000 			if (!err)
1001 				continue;
1002 			/* fall through */
1003 		}
1004 		if (pmd_none_or_clear_bad(src_pmd))
1005 			continue;
1006 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1007 						vma, addr, next))
1008 			return -ENOMEM;
1009 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1010 	return 0;
1011 }
1012 
1013 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1014 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1015 		unsigned long addr, unsigned long end)
1016 {
1017 	pud_t *src_pud, *dst_pud;
1018 	unsigned long next;
1019 
1020 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1021 	if (!dst_pud)
1022 		return -ENOMEM;
1023 	src_pud = pud_offset(src_pgd, addr);
1024 	do {
1025 		next = pud_addr_end(addr, end);
1026 		if (pud_none_or_clear_bad(src_pud))
1027 			continue;
1028 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1029 						vma, addr, next))
1030 			return -ENOMEM;
1031 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1032 	return 0;
1033 }
1034 
1035 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1036 		struct vm_area_struct *vma)
1037 {
1038 	pgd_t *src_pgd, *dst_pgd;
1039 	unsigned long next;
1040 	unsigned long addr = vma->vm_start;
1041 	unsigned long end = vma->vm_end;
1042 	unsigned long mmun_start;	/* For mmu_notifiers */
1043 	unsigned long mmun_end;		/* For mmu_notifiers */
1044 	bool is_cow;
1045 	int ret;
1046 
1047 	/*
1048 	 * Don't copy ptes where a page fault will fill them correctly.
1049 	 * Fork becomes much lighter when there are big shared or private
1050 	 * readonly mappings. The tradeoff is that copy_page_range is more
1051 	 * efficient than faulting.
1052 	 */
1053 	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1054 			       VM_PFNMAP | VM_MIXEDMAP))) {
1055 		if (!vma->anon_vma)
1056 			return 0;
1057 	}
1058 
1059 	if (is_vm_hugetlb_page(vma))
1060 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1061 
1062 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1063 		/*
1064 		 * We do not free on error cases below as remove_vma
1065 		 * gets called on error from higher level routine
1066 		 */
1067 		ret = track_pfn_copy(vma);
1068 		if (ret)
1069 			return ret;
1070 	}
1071 
1072 	/*
1073 	 * We need to invalidate the secondary MMU mappings only when
1074 	 * there could be a permission downgrade on the ptes of the
1075 	 * parent mm. And a permission downgrade will only happen if
1076 	 * is_cow_mapping() returns true.
1077 	 */
1078 	is_cow = is_cow_mapping(vma->vm_flags);
1079 	mmun_start = addr;
1080 	mmun_end   = end;
1081 	if (is_cow)
1082 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1083 						    mmun_end);
1084 
1085 	ret = 0;
1086 	dst_pgd = pgd_offset(dst_mm, addr);
1087 	src_pgd = pgd_offset(src_mm, addr);
1088 	do {
1089 		next = pgd_addr_end(addr, end);
1090 		if (pgd_none_or_clear_bad(src_pgd))
1091 			continue;
1092 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1093 					    vma, addr, next))) {
1094 			ret = -ENOMEM;
1095 			break;
1096 		}
1097 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1098 
1099 	if (is_cow)
1100 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1101 	return ret;
1102 }
1103 
1104 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1105 				struct vm_area_struct *vma, pmd_t *pmd,
1106 				unsigned long addr, unsigned long end,
1107 				struct zap_details *details)
1108 {
1109 	struct mm_struct *mm = tlb->mm;
1110 	int force_flush = 0;
1111 	int rss[NR_MM_COUNTERS];
1112 	spinlock_t *ptl;
1113 	pte_t *start_pte;
1114 	pte_t *pte;
1115 
1116 again:
1117 	init_rss_vec(rss);
1118 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1119 	pte = start_pte;
1120 	arch_enter_lazy_mmu_mode();
1121 	do {
1122 		pte_t ptent = *pte;
1123 		if (pte_none(ptent)) {
1124 			continue;
1125 		}
1126 
1127 		if (pte_present(ptent)) {
1128 			struct page *page;
1129 
1130 			page = vm_normal_page(vma, addr, ptent);
1131 			if (unlikely(details) && page) {
1132 				/*
1133 				 * unmap_shared_mapping_pages() wants to
1134 				 * invalidate cache without truncating:
1135 				 * unmap shared but keep private pages.
1136 				 */
1137 				if (details->check_mapping &&
1138 				    details->check_mapping != page->mapping)
1139 					continue;
1140 				/*
1141 				 * Each page->index must be checked when
1142 				 * invalidating or truncating nonlinear.
1143 				 */
1144 				if (details->nonlinear_vma &&
1145 				    (page->index < details->first_index ||
1146 				     page->index > details->last_index))
1147 					continue;
1148 			}
1149 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1150 							tlb->fullmm);
1151 			tlb_remove_tlb_entry(tlb, pte, addr);
1152 			if (unlikely(!page))
1153 				continue;
1154 			if (unlikely(details) && details->nonlinear_vma
1155 			    && linear_page_index(details->nonlinear_vma,
1156 						addr) != page->index)
1157 				set_pte_at(mm, addr, pte,
1158 					   pgoff_to_pte(page->index));
1159 			if (PageAnon(page))
1160 				rss[MM_ANONPAGES]--;
1161 			else {
1162 				if (pte_dirty(ptent))
1163 					set_page_dirty(page);
1164 				if (pte_young(ptent) &&
1165 				    likely(!VM_SequentialReadHint(vma)))
1166 					mark_page_accessed(page);
1167 				rss[MM_FILEPAGES]--;
1168 			}
1169 			page_remove_rmap(page);
1170 			if (unlikely(page_mapcount(page) < 0))
1171 				print_bad_pte(vma, addr, ptent, page);
1172 			force_flush = !__tlb_remove_page(tlb, page);
1173 			if (force_flush)
1174 				break;
1175 			continue;
1176 		}
1177 		/*
1178 		 * If details->check_mapping, we leave swap entries;
1179 		 * if details->nonlinear_vma, we leave file entries.
1180 		 */
1181 		if (unlikely(details))
1182 			continue;
1183 		if (pte_file(ptent)) {
1184 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1185 				print_bad_pte(vma, addr, ptent, NULL);
1186 		} else {
1187 			swp_entry_t entry = pte_to_swp_entry(ptent);
1188 
1189 			if (!non_swap_entry(entry))
1190 				rss[MM_SWAPENTS]--;
1191 			else if (is_migration_entry(entry)) {
1192 				struct page *page;
1193 
1194 				page = migration_entry_to_page(entry);
1195 
1196 				if (PageAnon(page))
1197 					rss[MM_ANONPAGES]--;
1198 				else
1199 					rss[MM_FILEPAGES]--;
1200 			}
1201 			if (unlikely(!free_swap_and_cache(entry)))
1202 				print_bad_pte(vma, addr, ptent, NULL);
1203 		}
1204 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1205 	} while (pte++, addr += PAGE_SIZE, addr != end);
1206 
1207 	add_mm_rss_vec(mm, rss);
1208 	arch_leave_lazy_mmu_mode();
1209 	pte_unmap_unlock(start_pte, ptl);
1210 
1211 	/*
1212 	 * mmu_gather ran out of room to batch pages, we break out of
1213 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1214 	 * and page-free while holding it.
1215 	 */
1216 	if (force_flush) {
1217 		force_flush = 0;
1218 
1219 #ifdef HAVE_GENERIC_MMU_GATHER
1220 		tlb->start = addr;
1221 		tlb->end = end;
1222 #endif
1223 		tlb_flush_mmu(tlb);
1224 		if (addr != end)
1225 			goto again;
1226 	}
1227 
1228 	return addr;
1229 }
1230 
1231 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1232 				struct vm_area_struct *vma, pud_t *pud,
1233 				unsigned long addr, unsigned long end,
1234 				struct zap_details *details)
1235 {
1236 	pmd_t *pmd;
1237 	unsigned long next;
1238 
1239 	pmd = pmd_offset(pud, addr);
1240 	do {
1241 		next = pmd_addr_end(addr, end);
1242 		if (pmd_trans_huge(*pmd)) {
1243 			if (next - addr != HPAGE_PMD_SIZE) {
1244 #ifdef CONFIG_DEBUG_VM
1245 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1246 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1247 						__func__, addr, end,
1248 						vma->vm_start,
1249 						vma->vm_end);
1250 					BUG();
1251 				}
1252 #endif
1253 				split_huge_page_pmd(vma->vm_mm, pmd);
1254 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1255 				goto next;
1256 			/* fall through */
1257 		}
1258 		/*
1259 		 * Here there can be other concurrent MADV_DONTNEED or
1260 		 * trans huge page faults running, and if the pmd is
1261 		 * none or trans huge it can change under us. This is
1262 		 * because MADV_DONTNEED holds the mmap_sem in read
1263 		 * mode.
1264 		 */
1265 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1266 			goto next;
1267 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1268 next:
1269 		cond_resched();
1270 	} while (pmd++, addr = next, addr != end);
1271 
1272 	return addr;
1273 }
1274 
1275 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1276 				struct vm_area_struct *vma, pgd_t *pgd,
1277 				unsigned long addr, unsigned long end,
1278 				struct zap_details *details)
1279 {
1280 	pud_t *pud;
1281 	unsigned long next;
1282 
1283 	pud = pud_offset(pgd, addr);
1284 	do {
1285 		next = pud_addr_end(addr, end);
1286 		if (pud_none_or_clear_bad(pud))
1287 			continue;
1288 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1289 	} while (pud++, addr = next, addr != end);
1290 
1291 	return addr;
1292 }
1293 
1294 static void unmap_page_range(struct mmu_gather *tlb,
1295 			     struct vm_area_struct *vma,
1296 			     unsigned long addr, unsigned long end,
1297 			     struct zap_details *details)
1298 {
1299 	pgd_t *pgd;
1300 	unsigned long next;
1301 
1302 	if (details && !details->check_mapping && !details->nonlinear_vma)
1303 		details = NULL;
1304 
1305 	BUG_ON(addr >= end);
1306 	mem_cgroup_uncharge_start();
1307 	tlb_start_vma(tlb, vma);
1308 	pgd = pgd_offset(vma->vm_mm, addr);
1309 	do {
1310 		next = pgd_addr_end(addr, end);
1311 		if (pgd_none_or_clear_bad(pgd))
1312 			continue;
1313 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1314 	} while (pgd++, addr = next, addr != end);
1315 	tlb_end_vma(tlb, vma);
1316 	mem_cgroup_uncharge_end();
1317 }
1318 
1319 
1320 static void unmap_single_vma(struct mmu_gather *tlb,
1321 		struct vm_area_struct *vma, unsigned long start_addr,
1322 		unsigned long end_addr,
1323 		struct zap_details *details)
1324 {
1325 	unsigned long start = max(vma->vm_start, start_addr);
1326 	unsigned long end;
1327 
1328 	if (start >= vma->vm_end)
1329 		return;
1330 	end = min(vma->vm_end, end_addr);
1331 	if (end <= vma->vm_start)
1332 		return;
1333 
1334 	if (vma->vm_file)
1335 		uprobe_munmap(vma, start, end);
1336 
1337 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1338 		untrack_pfn(vma, 0, 0);
1339 
1340 	if (start != end) {
1341 		if (unlikely(is_vm_hugetlb_page(vma))) {
1342 			/*
1343 			 * It is undesirable to test vma->vm_file as it
1344 			 * should be non-null for valid hugetlb area.
1345 			 * However, vm_file will be NULL in the error
1346 			 * cleanup path of do_mmap_pgoff. When
1347 			 * hugetlbfs ->mmap method fails,
1348 			 * do_mmap_pgoff() nullifies vma->vm_file
1349 			 * before calling this function to clean up.
1350 			 * Since no pte has actually been setup, it is
1351 			 * safe to do nothing in this case.
1352 			 */
1353 			if (vma->vm_file) {
1354 				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1355 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1356 				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1357 			}
1358 		} else
1359 			unmap_page_range(tlb, vma, start, end, details);
1360 	}
1361 }
1362 
1363 /**
1364  * unmap_vmas - unmap a range of memory covered by a list of vma's
1365  * @tlb: address of the caller's struct mmu_gather
1366  * @vma: the starting vma
1367  * @start_addr: virtual address at which to start unmapping
1368  * @end_addr: virtual address at which to end unmapping
1369  *
1370  * Unmap all pages in the vma list.
1371  *
1372  * Only addresses between `start' and `end' will be unmapped.
1373  *
1374  * The VMA list must be sorted in ascending virtual address order.
1375  *
1376  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1377  * range after unmap_vmas() returns.  So the only responsibility here is to
1378  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1379  * drops the lock and schedules.
1380  */
1381 void unmap_vmas(struct mmu_gather *tlb,
1382 		struct vm_area_struct *vma, unsigned long start_addr,
1383 		unsigned long end_addr)
1384 {
1385 	struct mm_struct *mm = vma->vm_mm;
1386 
1387 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1388 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1389 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1390 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1391 }
1392 
1393 /**
1394  * zap_page_range - remove user pages in a given range
1395  * @vma: vm_area_struct holding the applicable pages
1396  * @start: starting address of pages to zap
1397  * @size: number of bytes to zap
1398  * @details: details of nonlinear truncation or shared cache invalidation
1399  *
1400  * Caller must protect the VMA list
1401  */
1402 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1403 		unsigned long size, struct zap_details *details)
1404 {
1405 	struct mm_struct *mm = vma->vm_mm;
1406 	struct mmu_gather tlb;
1407 	unsigned long end = start + size;
1408 
1409 	lru_add_drain();
1410 	tlb_gather_mmu(&tlb, mm, 0);
1411 	update_hiwater_rss(mm);
1412 	mmu_notifier_invalidate_range_start(mm, start, end);
1413 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1414 		unmap_single_vma(&tlb, vma, start, end, details);
1415 	mmu_notifier_invalidate_range_end(mm, start, end);
1416 	tlb_finish_mmu(&tlb, start, end);
1417 }
1418 
1419 /**
1420  * zap_page_range_single - remove user pages in a given range
1421  * @vma: vm_area_struct holding the applicable pages
1422  * @address: starting address of pages to zap
1423  * @size: number of bytes to zap
1424  * @details: details of nonlinear truncation or shared cache invalidation
1425  *
1426  * The range must fit into one VMA.
1427  */
1428 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1429 		unsigned long size, struct zap_details *details)
1430 {
1431 	struct mm_struct *mm = vma->vm_mm;
1432 	struct mmu_gather tlb;
1433 	unsigned long end = address + size;
1434 
1435 	lru_add_drain();
1436 	tlb_gather_mmu(&tlb, mm, 0);
1437 	update_hiwater_rss(mm);
1438 	mmu_notifier_invalidate_range_start(mm, address, end);
1439 	unmap_single_vma(&tlb, vma, address, end, details);
1440 	mmu_notifier_invalidate_range_end(mm, address, end);
1441 	tlb_finish_mmu(&tlb, address, end);
1442 }
1443 
1444 /**
1445  * zap_vma_ptes - remove ptes mapping the vma
1446  * @vma: vm_area_struct holding ptes to be zapped
1447  * @address: starting address of pages to zap
1448  * @size: number of bytes to zap
1449  *
1450  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1451  *
1452  * The entire address range must be fully contained within the vma.
1453  *
1454  * Returns 0 if successful.
1455  */
1456 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1457 		unsigned long size)
1458 {
1459 	if (address < vma->vm_start || address + size > vma->vm_end ||
1460 	    		!(vma->vm_flags & VM_PFNMAP))
1461 		return -1;
1462 	zap_page_range_single(vma, address, size, NULL);
1463 	return 0;
1464 }
1465 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1466 
1467 /**
1468  * follow_page - look up a page descriptor from a user-virtual address
1469  * @vma: vm_area_struct mapping @address
1470  * @address: virtual address to look up
1471  * @flags: flags modifying lookup behaviour
1472  *
1473  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1474  *
1475  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1476  * an error pointer if there is a mapping to something not represented
1477  * by a page descriptor (see also vm_normal_page()).
1478  */
1479 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1480 			unsigned int flags)
1481 {
1482 	pgd_t *pgd;
1483 	pud_t *pud;
1484 	pmd_t *pmd;
1485 	pte_t *ptep, pte;
1486 	spinlock_t *ptl;
1487 	struct page *page;
1488 	struct mm_struct *mm = vma->vm_mm;
1489 
1490 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1491 	if (!IS_ERR(page)) {
1492 		BUG_ON(flags & FOLL_GET);
1493 		goto out;
1494 	}
1495 
1496 	page = NULL;
1497 	pgd = pgd_offset(mm, address);
1498 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1499 		goto no_page_table;
1500 
1501 	pud = pud_offset(pgd, address);
1502 	if (pud_none(*pud))
1503 		goto no_page_table;
1504 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1505 		BUG_ON(flags & FOLL_GET);
1506 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1507 		goto out;
1508 	}
1509 	if (unlikely(pud_bad(*pud)))
1510 		goto no_page_table;
1511 
1512 	pmd = pmd_offset(pud, address);
1513 	if (pmd_none(*pmd))
1514 		goto no_page_table;
1515 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1516 		BUG_ON(flags & FOLL_GET);
1517 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1518 		goto out;
1519 	}
1520 	if (pmd_trans_huge(*pmd)) {
1521 		if (flags & FOLL_SPLIT) {
1522 			split_huge_page_pmd(mm, pmd);
1523 			goto split_fallthrough;
1524 		}
1525 		spin_lock(&mm->page_table_lock);
1526 		if (likely(pmd_trans_huge(*pmd))) {
1527 			if (unlikely(pmd_trans_splitting(*pmd))) {
1528 				spin_unlock(&mm->page_table_lock);
1529 				wait_split_huge_page(vma->anon_vma, pmd);
1530 			} else {
1531 				page = follow_trans_huge_pmd(vma, address,
1532 							     pmd, flags);
1533 				spin_unlock(&mm->page_table_lock);
1534 				goto out;
1535 			}
1536 		} else
1537 			spin_unlock(&mm->page_table_lock);
1538 		/* fall through */
1539 	}
1540 split_fallthrough:
1541 	if (unlikely(pmd_bad(*pmd)))
1542 		goto no_page_table;
1543 
1544 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1545 
1546 	pte = *ptep;
1547 	if (!pte_present(pte))
1548 		goto no_page;
1549 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1550 		goto unlock;
1551 
1552 	page = vm_normal_page(vma, address, pte);
1553 	if (unlikely(!page)) {
1554 		if ((flags & FOLL_DUMP) ||
1555 		    !is_zero_pfn(pte_pfn(pte)))
1556 			goto bad_page;
1557 		page = pte_page(pte);
1558 	}
1559 
1560 	if (flags & FOLL_GET)
1561 		get_page_foll(page);
1562 	if (flags & FOLL_TOUCH) {
1563 		if ((flags & FOLL_WRITE) &&
1564 		    !pte_dirty(pte) && !PageDirty(page))
1565 			set_page_dirty(page);
1566 		/*
1567 		 * pte_mkyoung() would be more correct here, but atomic care
1568 		 * is needed to avoid losing the dirty bit: it is easier to use
1569 		 * mark_page_accessed().
1570 		 */
1571 		mark_page_accessed(page);
1572 	}
1573 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1574 		/*
1575 		 * The preliminary mapping check is mainly to avoid the
1576 		 * pointless overhead of lock_page on the ZERO_PAGE
1577 		 * which might bounce very badly if there is contention.
1578 		 *
1579 		 * If the page is already locked, we don't need to
1580 		 * handle it now - vmscan will handle it later if and
1581 		 * when it attempts to reclaim the page.
1582 		 */
1583 		if (page->mapping && trylock_page(page)) {
1584 			lru_add_drain();  /* push cached pages to LRU */
1585 			/*
1586 			 * Because we lock page here, and migration is
1587 			 * blocked by the pte's page reference, and we
1588 			 * know the page is still mapped, we don't even
1589 			 * need to check for file-cache page truncation.
1590 			 */
1591 			mlock_vma_page(page);
1592 			unlock_page(page);
1593 		}
1594 	}
1595 unlock:
1596 	pte_unmap_unlock(ptep, ptl);
1597 out:
1598 	return page;
1599 
1600 bad_page:
1601 	pte_unmap_unlock(ptep, ptl);
1602 	return ERR_PTR(-EFAULT);
1603 
1604 no_page:
1605 	pte_unmap_unlock(ptep, ptl);
1606 	if (!pte_none(pte))
1607 		return page;
1608 
1609 no_page_table:
1610 	/*
1611 	 * When core dumping an enormous anonymous area that nobody
1612 	 * has touched so far, we don't want to allocate unnecessary pages or
1613 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1614 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1615 	 * But we can only make this optimization where a hole would surely
1616 	 * be zero-filled if handle_mm_fault() actually did handle it.
1617 	 */
1618 	if ((flags & FOLL_DUMP) &&
1619 	    (!vma->vm_ops || !vma->vm_ops->fault))
1620 		return ERR_PTR(-EFAULT);
1621 	return page;
1622 }
1623 
1624 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1625 {
1626 	return stack_guard_page_start(vma, addr) ||
1627 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1628 }
1629 
1630 /**
1631  * __get_user_pages() - pin user pages in memory
1632  * @tsk:	task_struct of target task
1633  * @mm:		mm_struct of target mm
1634  * @start:	starting user address
1635  * @nr_pages:	number of pages from start to pin
1636  * @gup_flags:	flags modifying pin behaviour
1637  * @pages:	array that receives pointers to the pages pinned.
1638  *		Should be at least nr_pages long. Or NULL, if caller
1639  *		only intends to ensure the pages are faulted in.
1640  * @vmas:	array of pointers to vmas corresponding to each page.
1641  *		Or NULL if the caller does not require them.
1642  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1643  *
1644  * Returns number of pages pinned. This may be fewer than the number
1645  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1646  * were pinned, returns -errno. Each page returned must be released
1647  * with a put_page() call when it is finished with. vmas will only
1648  * remain valid while mmap_sem is held.
1649  *
1650  * Must be called with mmap_sem held for read or write.
1651  *
1652  * __get_user_pages walks a process's page tables and takes a reference to
1653  * each struct page that each user address corresponds to at a given
1654  * instant. That is, it takes the page that would be accessed if a user
1655  * thread accesses the given user virtual address at that instant.
1656  *
1657  * This does not guarantee that the page exists in the user mappings when
1658  * __get_user_pages returns, and there may even be a completely different
1659  * page there in some cases (eg. if mmapped pagecache has been invalidated
1660  * and subsequently re faulted). However it does guarantee that the page
1661  * won't be freed completely. And mostly callers simply care that the page
1662  * contains data that was valid *at some point in time*. Typically, an IO
1663  * or similar operation cannot guarantee anything stronger anyway because
1664  * locks can't be held over the syscall boundary.
1665  *
1666  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1667  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1668  * appropriate) must be called after the page is finished with, and
1669  * before put_page is called.
1670  *
1671  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1672  * or mmap_sem contention, and if waiting is needed to pin all pages,
1673  * *@nonblocking will be set to 0.
1674  *
1675  * In most cases, get_user_pages or get_user_pages_fast should be used
1676  * instead of __get_user_pages. __get_user_pages should be used only if
1677  * you need some special @gup_flags.
1678  */
1679 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1680 		     unsigned long start, int nr_pages, unsigned int gup_flags,
1681 		     struct page **pages, struct vm_area_struct **vmas,
1682 		     int *nonblocking)
1683 {
1684 	int i;
1685 	unsigned long vm_flags;
1686 
1687 	if (nr_pages <= 0)
1688 		return 0;
1689 
1690 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1691 
1692 	/*
1693 	 * Require read or write permissions.
1694 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1695 	 */
1696 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1697 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1698 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1699 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1700 	i = 0;
1701 
1702 	do {
1703 		struct vm_area_struct *vma;
1704 
1705 		vma = find_extend_vma(mm, start);
1706 		if (!vma && in_gate_area(mm, start)) {
1707 			unsigned long pg = start & PAGE_MASK;
1708 			pgd_t *pgd;
1709 			pud_t *pud;
1710 			pmd_t *pmd;
1711 			pte_t *pte;
1712 
1713 			/* user gate pages are read-only */
1714 			if (gup_flags & FOLL_WRITE)
1715 				return i ? : -EFAULT;
1716 			if (pg > TASK_SIZE)
1717 				pgd = pgd_offset_k(pg);
1718 			else
1719 				pgd = pgd_offset_gate(mm, pg);
1720 			BUG_ON(pgd_none(*pgd));
1721 			pud = pud_offset(pgd, pg);
1722 			BUG_ON(pud_none(*pud));
1723 			pmd = pmd_offset(pud, pg);
1724 			if (pmd_none(*pmd))
1725 				return i ? : -EFAULT;
1726 			VM_BUG_ON(pmd_trans_huge(*pmd));
1727 			pte = pte_offset_map(pmd, pg);
1728 			if (pte_none(*pte)) {
1729 				pte_unmap(pte);
1730 				return i ? : -EFAULT;
1731 			}
1732 			vma = get_gate_vma(mm);
1733 			if (pages) {
1734 				struct page *page;
1735 
1736 				page = vm_normal_page(vma, start, *pte);
1737 				if (!page) {
1738 					if (!(gup_flags & FOLL_DUMP) &&
1739 					     is_zero_pfn(pte_pfn(*pte)))
1740 						page = pte_page(*pte);
1741 					else {
1742 						pte_unmap(pte);
1743 						return i ? : -EFAULT;
1744 					}
1745 				}
1746 				pages[i] = page;
1747 				get_page(page);
1748 			}
1749 			pte_unmap(pte);
1750 			goto next_page;
1751 		}
1752 
1753 		if (!vma ||
1754 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1755 		    !(vm_flags & vma->vm_flags))
1756 			return i ? : -EFAULT;
1757 
1758 		if (is_vm_hugetlb_page(vma)) {
1759 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1760 					&start, &nr_pages, i, gup_flags);
1761 			continue;
1762 		}
1763 
1764 		do {
1765 			struct page *page;
1766 			unsigned int foll_flags = gup_flags;
1767 
1768 			/*
1769 			 * If we have a pending SIGKILL, don't keep faulting
1770 			 * pages and potentially allocating memory.
1771 			 */
1772 			if (unlikely(fatal_signal_pending(current)))
1773 				return i ? i : -ERESTARTSYS;
1774 
1775 			cond_resched();
1776 			while (!(page = follow_page(vma, start, foll_flags))) {
1777 				int ret;
1778 				unsigned int fault_flags = 0;
1779 
1780 				/* For mlock, just skip the stack guard page. */
1781 				if (foll_flags & FOLL_MLOCK) {
1782 					if (stack_guard_page(vma, start))
1783 						goto next_page;
1784 				}
1785 				if (foll_flags & FOLL_WRITE)
1786 					fault_flags |= FAULT_FLAG_WRITE;
1787 				if (nonblocking)
1788 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1789 				if (foll_flags & FOLL_NOWAIT)
1790 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1791 
1792 				ret = handle_mm_fault(mm, vma, start,
1793 							fault_flags);
1794 
1795 				if (ret & VM_FAULT_ERROR) {
1796 					if (ret & VM_FAULT_OOM)
1797 						return i ? i : -ENOMEM;
1798 					if (ret & (VM_FAULT_HWPOISON |
1799 						   VM_FAULT_HWPOISON_LARGE)) {
1800 						if (i)
1801 							return i;
1802 						else if (gup_flags & FOLL_HWPOISON)
1803 							return -EHWPOISON;
1804 						else
1805 							return -EFAULT;
1806 					}
1807 					if (ret & VM_FAULT_SIGBUS)
1808 						return i ? i : -EFAULT;
1809 					BUG();
1810 				}
1811 
1812 				if (tsk) {
1813 					if (ret & VM_FAULT_MAJOR)
1814 						tsk->maj_flt++;
1815 					else
1816 						tsk->min_flt++;
1817 				}
1818 
1819 				if (ret & VM_FAULT_RETRY) {
1820 					if (nonblocking)
1821 						*nonblocking = 0;
1822 					return i;
1823 				}
1824 
1825 				/*
1826 				 * The VM_FAULT_WRITE bit tells us that
1827 				 * do_wp_page has broken COW when necessary,
1828 				 * even if maybe_mkwrite decided not to set
1829 				 * pte_write. We can thus safely do subsequent
1830 				 * page lookups as if they were reads. But only
1831 				 * do so when looping for pte_write is futile:
1832 				 * in some cases userspace may also be wanting
1833 				 * to write to the gotten user page, which a
1834 				 * read fault here might prevent (a readonly
1835 				 * page might get reCOWed by userspace write).
1836 				 */
1837 				if ((ret & VM_FAULT_WRITE) &&
1838 				    !(vma->vm_flags & VM_WRITE))
1839 					foll_flags &= ~FOLL_WRITE;
1840 
1841 				cond_resched();
1842 			}
1843 			if (IS_ERR(page))
1844 				return i ? i : PTR_ERR(page);
1845 			if (pages) {
1846 				pages[i] = page;
1847 
1848 				flush_anon_page(vma, page, start);
1849 				flush_dcache_page(page);
1850 			}
1851 next_page:
1852 			if (vmas)
1853 				vmas[i] = vma;
1854 			i++;
1855 			start += PAGE_SIZE;
1856 			nr_pages--;
1857 		} while (nr_pages && start < vma->vm_end);
1858 	} while (nr_pages);
1859 	return i;
1860 }
1861 EXPORT_SYMBOL(__get_user_pages);
1862 
1863 /*
1864  * fixup_user_fault() - manually resolve a user page fault
1865  * @tsk:	the task_struct to use for page fault accounting, or
1866  *		NULL if faults are not to be recorded.
1867  * @mm:		mm_struct of target mm
1868  * @address:	user address
1869  * @fault_flags:flags to pass down to handle_mm_fault()
1870  *
1871  * This is meant to be called in the specific scenario where for locking reasons
1872  * we try to access user memory in atomic context (within a pagefault_disable()
1873  * section), this returns -EFAULT, and we want to resolve the user fault before
1874  * trying again.
1875  *
1876  * Typically this is meant to be used by the futex code.
1877  *
1878  * The main difference with get_user_pages() is that this function will
1879  * unconditionally call handle_mm_fault() which will in turn perform all the
1880  * necessary SW fixup of the dirty and young bits in the PTE, while
1881  * handle_mm_fault() only guarantees to update these in the struct page.
1882  *
1883  * This is important for some architectures where those bits also gate the
1884  * access permission to the page because they are maintained in software.  On
1885  * such architectures, gup() will not be enough to make a subsequent access
1886  * succeed.
1887  *
1888  * This should be called with the mm_sem held for read.
1889  */
1890 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1891 		     unsigned long address, unsigned int fault_flags)
1892 {
1893 	struct vm_area_struct *vma;
1894 	int ret;
1895 
1896 	vma = find_extend_vma(mm, address);
1897 	if (!vma || address < vma->vm_start)
1898 		return -EFAULT;
1899 
1900 	ret = handle_mm_fault(mm, vma, address, fault_flags);
1901 	if (ret & VM_FAULT_ERROR) {
1902 		if (ret & VM_FAULT_OOM)
1903 			return -ENOMEM;
1904 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1905 			return -EHWPOISON;
1906 		if (ret & VM_FAULT_SIGBUS)
1907 			return -EFAULT;
1908 		BUG();
1909 	}
1910 	if (tsk) {
1911 		if (ret & VM_FAULT_MAJOR)
1912 			tsk->maj_flt++;
1913 		else
1914 			tsk->min_flt++;
1915 	}
1916 	return 0;
1917 }
1918 
1919 /*
1920  * get_user_pages() - pin user pages in memory
1921  * @tsk:	the task_struct to use for page fault accounting, or
1922  *		NULL if faults are not to be recorded.
1923  * @mm:		mm_struct of target mm
1924  * @start:	starting user address
1925  * @nr_pages:	number of pages from start to pin
1926  * @write:	whether pages will be written to by the caller
1927  * @force:	whether to force write access even if user mapping is
1928  *		readonly. This will result in the page being COWed even
1929  *		in MAP_SHARED mappings. You do not want this.
1930  * @pages:	array that receives pointers to the pages pinned.
1931  *		Should be at least nr_pages long. Or NULL, if caller
1932  *		only intends to ensure the pages are faulted in.
1933  * @vmas:	array of pointers to vmas corresponding to each page.
1934  *		Or NULL if the caller does not require them.
1935  *
1936  * Returns number of pages pinned. This may be fewer than the number
1937  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1938  * were pinned, returns -errno. Each page returned must be released
1939  * with a put_page() call when it is finished with. vmas will only
1940  * remain valid while mmap_sem is held.
1941  *
1942  * Must be called with mmap_sem held for read or write.
1943  *
1944  * get_user_pages walks a process's page tables and takes a reference to
1945  * each struct page that each user address corresponds to at a given
1946  * instant. That is, it takes the page that would be accessed if a user
1947  * thread accesses the given user virtual address at that instant.
1948  *
1949  * This does not guarantee that the page exists in the user mappings when
1950  * get_user_pages returns, and there may even be a completely different
1951  * page there in some cases (eg. if mmapped pagecache has been invalidated
1952  * and subsequently re faulted). However it does guarantee that the page
1953  * won't be freed completely. And mostly callers simply care that the page
1954  * contains data that was valid *at some point in time*. Typically, an IO
1955  * or similar operation cannot guarantee anything stronger anyway because
1956  * locks can't be held over the syscall boundary.
1957  *
1958  * If write=0, the page must not be written to. If the page is written to,
1959  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1960  * after the page is finished with, and before put_page is called.
1961  *
1962  * get_user_pages is typically used for fewer-copy IO operations, to get a
1963  * handle on the memory by some means other than accesses via the user virtual
1964  * addresses. The pages may be submitted for DMA to devices or accessed via
1965  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1966  * use the correct cache flushing APIs.
1967  *
1968  * See also get_user_pages_fast, for performance critical applications.
1969  */
1970 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1971 		unsigned long start, int nr_pages, int write, int force,
1972 		struct page **pages, struct vm_area_struct **vmas)
1973 {
1974 	int flags = FOLL_TOUCH;
1975 
1976 	if (pages)
1977 		flags |= FOLL_GET;
1978 	if (write)
1979 		flags |= FOLL_WRITE;
1980 	if (force)
1981 		flags |= FOLL_FORCE;
1982 
1983 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1984 				NULL);
1985 }
1986 EXPORT_SYMBOL(get_user_pages);
1987 
1988 /**
1989  * get_dump_page() - pin user page in memory while writing it to core dump
1990  * @addr: user address
1991  *
1992  * Returns struct page pointer of user page pinned for dump,
1993  * to be freed afterwards by page_cache_release() or put_page().
1994  *
1995  * Returns NULL on any kind of failure - a hole must then be inserted into
1996  * the corefile, to preserve alignment with its headers; and also returns
1997  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1998  * allowing a hole to be left in the corefile to save diskspace.
1999  *
2000  * Called without mmap_sem, but after all other threads have been killed.
2001  */
2002 #ifdef CONFIG_ELF_CORE
2003 struct page *get_dump_page(unsigned long addr)
2004 {
2005 	struct vm_area_struct *vma;
2006 	struct page *page;
2007 
2008 	if (__get_user_pages(current, current->mm, addr, 1,
2009 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2010 			     NULL) < 1)
2011 		return NULL;
2012 	flush_cache_page(vma, addr, page_to_pfn(page));
2013 	return page;
2014 }
2015 #endif /* CONFIG_ELF_CORE */
2016 
2017 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2018 			spinlock_t **ptl)
2019 {
2020 	pgd_t * pgd = pgd_offset(mm, addr);
2021 	pud_t * pud = pud_alloc(mm, pgd, addr);
2022 	if (pud) {
2023 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2024 		if (pmd) {
2025 			VM_BUG_ON(pmd_trans_huge(*pmd));
2026 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2027 		}
2028 	}
2029 	return NULL;
2030 }
2031 
2032 /*
2033  * This is the old fallback for page remapping.
2034  *
2035  * For historical reasons, it only allows reserved pages. Only
2036  * old drivers should use this, and they needed to mark their
2037  * pages reserved for the old functions anyway.
2038  */
2039 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2040 			struct page *page, pgprot_t prot)
2041 {
2042 	struct mm_struct *mm = vma->vm_mm;
2043 	int retval;
2044 	pte_t *pte;
2045 	spinlock_t *ptl;
2046 
2047 	retval = -EINVAL;
2048 	if (PageAnon(page))
2049 		goto out;
2050 	retval = -ENOMEM;
2051 	flush_dcache_page(page);
2052 	pte = get_locked_pte(mm, addr, &ptl);
2053 	if (!pte)
2054 		goto out;
2055 	retval = -EBUSY;
2056 	if (!pte_none(*pte))
2057 		goto out_unlock;
2058 
2059 	/* Ok, finally just insert the thing.. */
2060 	get_page(page);
2061 	inc_mm_counter_fast(mm, MM_FILEPAGES);
2062 	page_add_file_rmap(page);
2063 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2064 
2065 	retval = 0;
2066 	pte_unmap_unlock(pte, ptl);
2067 	return retval;
2068 out_unlock:
2069 	pte_unmap_unlock(pte, ptl);
2070 out:
2071 	return retval;
2072 }
2073 
2074 /**
2075  * vm_insert_page - insert single page into user vma
2076  * @vma: user vma to map to
2077  * @addr: target user address of this page
2078  * @page: source kernel page
2079  *
2080  * This allows drivers to insert individual pages they've allocated
2081  * into a user vma.
2082  *
2083  * The page has to be a nice clean _individual_ kernel allocation.
2084  * If you allocate a compound page, you need to have marked it as
2085  * such (__GFP_COMP), or manually just split the page up yourself
2086  * (see split_page()).
2087  *
2088  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2089  * took an arbitrary page protection parameter. This doesn't allow
2090  * that. Your vma protection will have to be set up correctly, which
2091  * means that if you want a shared writable mapping, you'd better
2092  * ask for a shared writable mapping!
2093  *
2094  * The page does not need to be reserved.
2095  *
2096  * Usually this function is called from f_op->mmap() handler
2097  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2098  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2099  * function from other places, for example from page-fault handler.
2100  */
2101 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2102 			struct page *page)
2103 {
2104 	if (addr < vma->vm_start || addr >= vma->vm_end)
2105 		return -EFAULT;
2106 	if (!page_count(page))
2107 		return -EINVAL;
2108 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2109 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2110 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2111 		vma->vm_flags |= VM_MIXEDMAP;
2112 	}
2113 	return insert_page(vma, addr, page, vma->vm_page_prot);
2114 }
2115 EXPORT_SYMBOL(vm_insert_page);
2116 
2117 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2118 			unsigned long pfn, pgprot_t prot)
2119 {
2120 	struct mm_struct *mm = vma->vm_mm;
2121 	int retval;
2122 	pte_t *pte, entry;
2123 	spinlock_t *ptl;
2124 
2125 	retval = -ENOMEM;
2126 	pte = get_locked_pte(mm, addr, &ptl);
2127 	if (!pte)
2128 		goto out;
2129 	retval = -EBUSY;
2130 	if (!pte_none(*pte))
2131 		goto out_unlock;
2132 
2133 	/* Ok, finally just insert the thing.. */
2134 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2135 	set_pte_at(mm, addr, pte, entry);
2136 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2137 
2138 	retval = 0;
2139 out_unlock:
2140 	pte_unmap_unlock(pte, ptl);
2141 out:
2142 	return retval;
2143 }
2144 
2145 /**
2146  * vm_insert_pfn - insert single pfn into user vma
2147  * @vma: user vma to map to
2148  * @addr: target user address of this page
2149  * @pfn: source kernel pfn
2150  *
2151  * Similar to vm_insert_page, this allows drivers to insert individual pages
2152  * they've allocated into a user vma. Same comments apply.
2153  *
2154  * This function should only be called from a vm_ops->fault handler, and
2155  * in that case the handler should return NULL.
2156  *
2157  * vma cannot be a COW mapping.
2158  *
2159  * As this is called only for pages that do not currently exist, we
2160  * do not need to flush old virtual caches or the TLB.
2161  */
2162 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2163 			unsigned long pfn)
2164 {
2165 	int ret;
2166 	pgprot_t pgprot = vma->vm_page_prot;
2167 	/*
2168 	 * Technically, architectures with pte_special can avoid all these
2169 	 * restrictions (same for remap_pfn_range).  However we would like
2170 	 * consistency in testing and feature parity among all, so we should
2171 	 * try to keep these invariants in place for everybody.
2172 	 */
2173 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2174 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2175 						(VM_PFNMAP|VM_MIXEDMAP));
2176 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2177 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2178 
2179 	if (addr < vma->vm_start || addr >= vma->vm_end)
2180 		return -EFAULT;
2181 	if (track_pfn_insert(vma, &pgprot, pfn))
2182 		return -EINVAL;
2183 
2184 	ret = insert_pfn(vma, addr, pfn, pgprot);
2185 
2186 	return ret;
2187 }
2188 EXPORT_SYMBOL(vm_insert_pfn);
2189 
2190 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2191 			unsigned long pfn)
2192 {
2193 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2194 
2195 	if (addr < vma->vm_start || addr >= vma->vm_end)
2196 		return -EFAULT;
2197 
2198 	/*
2199 	 * If we don't have pte special, then we have to use the pfn_valid()
2200 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2201 	 * refcount the page if pfn_valid is true (hence insert_page rather
2202 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2203 	 * without pte special, it would there be refcounted as a normal page.
2204 	 */
2205 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2206 		struct page *page;
2207 
2208 		page = pfn_to_page(pfn);
2209 		return insert_page(vma, addr, page, vma->vm_page_prot);
2210 	}
2211 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2212 }
2213 EXPORT_SYMBOL(vm_insert_mixed);
2214 
2215 /*
2216  * maps a range of physical memory into the requested pages. the old
2217  * mappings are removed. any references to nonexistent pages results
2218  * in null mappings (currently treated as "copy-on-access")
2219  */
2220 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2221 			unsigned long addr, unsigned long end,
2222 			unsigned long pfn, pgprot_t prot)
2223 {
2224 	pte_t *pte;
2225 	spinlock_t *ptl;
2226 
2227 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2228 	if (!pte)
2229 		return -ENOMEM;
2230 	arch_enter_lazy_mmu_mode();
2231 	do {
2232 		BUG_ON(!pte_none(*pte));
2233 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2234 		pfn++;
2235 	} while (pte++, addr += PAGE_SIZE, addr != end);
2236 	arch_leave_lazy_mmu_mode();
2237 	pte_unmap_unlock(pte - 1, ptl);
2238 	return 0;
2239 }
2240 
2241 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2242 			unsigned long addr, unsigned long end,
2243 			unsigned long pfn, pgprot_t prot)
2244 {
2245 	pmd_t *pmd;
2246 	unsigned long next;
2247 
2248 	pfn -= addr >> PAGE_SHIFT;
2249 	pmd = pmd_alloc(mm, pud, addr);
2250 	if (!pmd)
2251 		return -ENOMEM;
2252 	VM_BUG_ON(pmd_trans_huge(*pmd));
2253 	do {
2254 		next = pmd_addr_end(addr, end);
2255 		if (remap_pte_range(mm, pmd, addr, next,
2256 				pfn + (addr >> PAGE_SHIFT), prot))
2257 			return -ENOMEM;
2258 	} while (pmd++, addr = next, addr != end);
2259 	return 0;
2260 }
2261 
2262 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2263 			unsigned long addr, unsigned long end,
2264 			unsigned long pfn, pgprot_t prot)
2265 {
2266 	pud_t *pud;
2267 	unsigned long next;
2268 
2269 	pfn -= addr >> PAGE_SHIFT;
2270 	pud = pud_alloc(mm, pgd, addr);
2271 	if (!pud)
2272 		return -ENOMEM;
2273 	do {
2274 		next = pud_addr_end(addr, end);
2275 		if (remap_pmd_range(mm, pud, addr, next,
2276 				pfn + (addr >> PAGE_SHIFT), prot))
2277 			return -ENOMEM;
2278 	} while (pud++, addr = next, addr != end);
2279 	return 0;
2280 }
2281 
2282 /**
2283  * remap_pfn_range - remap kernel memory to userspace
2284  * @vma: user vma to map to
2285  * @addr: target user address to start at
2286  * @pfn: physical address of kernel memory
2287  * @size: size of map area
2288  * @prot: page protection flags for this mapping
2289  *
2290  *  Note: this is only safe if the mm semaphore is held when called.
2291  */
2292 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2293 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2294 {
2295 	pgd_t *pgd;
2296 	unsigned long next;
2297 	unsigned long end = addr + PAGE_ALIGN(size);
2298 	struct mm_struct *mm = vma->vm_mm;
2299 	int err;
2300 
2301 	/*
2302 	 * Physically remapped pages are special. Tell the
2303 	 * rest of the world about it:
2304 	 *   VM_IO tells people not to look at these pages
2305 	 *	(accesses can have side effects).
2306 	 *   VM_PFNMAP tells the core MM that the base pages are just
2307 	 *	raw PFN mappings, and do not have a "struct page" associated
2308 	 *	with them.
2309 	 *   VM_DONTEXPAND
2310 	 *      Disable vma merging and expanding with mremap().
2311 	 *   VM_DONTDUMP
2312 	 *      Omit vma from core dump, even when VM_IO turned off.
2313 	 *
2314 	 * There's a horrible special case to handle copy-on-write
2315 	 * behaviour that some programs depend on. We mark the "original"
2316 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2317 	 * See vm_normal_page() for details.
2318 	 */
2319 	if (is_cow_mapping(vma->vm_flags)) {
2320 		if (addr != vma->vm_start || end != vma->vm_end)
2321 			return -EINVAL;
2322 		vma->vm_pgoff = pfn;
2323 	}
2324 
2325 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2326 	if (err)
2327 		return -EINVAL;
2328 
2329 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2330 
2331 	BUG_ON(addr >= end);
2332 	pfn -= addr >> PAGE_SHIFT;
2333 	pgd = pgd_offset(mm, addr);
2334 	flush_cache_range(vma, addr, end);
2335 	do {
2336 		next = pgd_addr_end(addr, end);
2337 		err = remap_pud_range(mm, pgd, addr, next,
2338 				pfn + (addr >> PAGE_SHIFT), prot);
2339 		if (err)
2340 			break;
2341 	} while (pgd++, addr = next, addr != end);
2342 
2343 	if (err)
2344 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2345 
2346 	return err;
2347 }
2348 EXPORT_SYMBOL(remap_pfn_range);
2349 
2350 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2351 				     unsigned long addr, unsigned long end,
2352 				     pte_fn_t fn, void *data)
2353 {
2354 	pte_t *pte;
2355 	int err;
2356 	pgtable_t token;
2357 	spinlock_t *uninitialized_var(ptl);
2358 
2359 	pte = (mm == &init_mm) ?
2360 		pte_alloc_kernel(pmd, addr) :
2361 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2362 	if (!pte)
2363 		return -ENOMEM;
2364 
2365 	BUG_ON(pmd_huge(*pmd));
2366 
2367 	arch_enter_lazy_mmu_mode();
2368 
2369 	token = pmd_pgtable(*pmd);
2370 
2371 	do {
2372 		err = fn(pte++, token, addr, data);
2373 		if (err)
2374 			break;
2375 	} while (addr += PAGE_SIZE, addr != end);
2376 
2377 	arch_leave_lazy_mmu_mode();
2378 
2379 	if (mm != &init_mm)
2380 		pte_unmap_unlock(pte-1, ptl);
2381 	return err;
2382 }
2383 
2384 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2385 				     unsigned long addr, unsigned long end,
2386 				     pte_fn_t fn, void *data)
2387 {
2388 	pmd_t *pmd;
2389 	unsigned long next;
2390 	int err;
2391 
2392 	BUG_ON(pud_huge(*pud));
2393 
2394 	pmd = pmd_alloc(mm, pud, addr);
2395 	if (!pmd)
2396 		return -ENOMEM;
2397 	do {
2398 		next = pmd_addr_end(addr, end);
2399 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2400 		if (err)
2401 			break;
2402 	} while (pmd++, addr = next, addr != end);
2403 	return err;
2404 }
2405 
2406 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2407 				     unsigned long addr, unsigned long end,
2408 				     pte_fn_t fn, void *data)
2409 {
2410 	pud_t *pud;
2411 	unsigned long next;
2412 	int err;
2413 
2414 	pud = pud_alloc(mm, pgd, addr);
2415 	if (!pud)
2416 		return -ENOMEM;
2417 	do {
2418 		next = pud_addr_end(addr, end);
2419 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2420 		if (err)
2421 			break;
2422 	} while (pud++, addr = next, addr != end);
2423 	return err;
2424 }
2425 
2426 /*
2427  * Scan a region of virtual memory, filling in page tables as necessary
2428  * and calling a provided function on each leaf page table.
2429  */
2430 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2431 			unsigned long size, pte_fn_t fn, void *data)
2432 {
2433 	pgd_t *pgd;
2434 	unsigned long next;
2435 	unsigned long end = addr + size;
2436 	int err;
2437 
2438 	BUG_ON(addr >= end);
2439 	pgd = pgd_offset(mm, addr);
2440 	do {
2441 		next = pgd_addr_end(addr, end);
2442 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2443 		if (err)
2444 			break;
2445 	} while (pgd++, addr = next, addr != end);
2446 
2447 	return err;
2448 }
2449 EXPORT_SYMBOL_GPL(apply_to_page_range);
2450 
2451 /*
2452  * handle_pte_fault chooses page fault handler according to an entry
2453  * which was read non-atomically.  Before making any commitment, on
2454  * those architectures or configurations (e.g. i386 with PAE) which
2455  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2456  * must check under lock before unmapping the pte and proceeding
2457  * (but do_wp_page is only called after already making such a check;
2458  * and do_anonymous_page can safely check later on).
2459  */
2460 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2461 				pte_t *page_table, pte_t orig_pte)
2462 {
2463 	int same = 1;
2464 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2465 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2466 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2467 		spin_lock(ptl);
2468 		same = pte_same(*page_table, orig_pte);
2469 		spin_unlock(ptl);
2470 	}
2471 #endif
2472 	pte_unmap(page_table);
2473 	return same;
2474 }
2475 
2476 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2477 {
2478 	/*
2479 	 * If the source page was a PFN mapping, we don't have
2480 	 * a "struct page" for it. We do a best-effort copy by
2481 	 * just copying from the original user address. If that
2482 	 * fails, we just zero-fill it. Live with it.
2483 	 */
2484 	if (unlikely(!src)) {
2485 		void *kaddr = kmap_atomic(dst);
2486 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2487 
2488 		/*
2489 		 * This really shouldn't fail, because the page is there
2490 		 * in the page tables. But it might just be unreadable,
2491 		 * in which case we just give up and fill the result with
2492 		 * zeroes.
2493 		 */
2494 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2495 			clear_page(kaddr);
2496 		kunmap_atomic(kaddr);
2497 		flush_dcache_page(dst);
2498 	} else
2499 		copy_user_highpage(dst, src, va, vma);
2500 }
2501 
2502 /*
2503  * This routine handles present pages, when users try to write
2504  * to a shared page. It is done by copying the page to a new address
2505  * and decrementing the shared-page counter for the old page.
2506  *
2507  * Note that this routine assumes that the protection checks have been
2508  * done by the caller (the low-level page fault routine in most cases).
2509  * Thus we can safely just mark it writable once we've done any necessary
2510  * COW.
2511  *
2512  * We also mark the page dirty at this point even though the page will
2513  * change only once the write actually happens. This avoids a few races,
2514  * and potentially makes it more efficient.
2515  *
2516  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2517  * but allow concurrent faults), with pte both mapped and locked.
2518  * We return with mmap_sem still held, but pte unmapped and unlocked.
2519  */
2520 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2521 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2522 		spinlock_t *ptl, pte_t orig_pte)
2523 	__releases(ptl)
2524 {
2525 	struct page *old_page, *new_page = NULL;
2526 	pte_t entry;
2527 	int ret = 0;
2528 	int page_mkwrite = 0;
2529 	struct page *dirty_page = NULL;
2530 	unsigned long mmun_start;	/* For mmu_notifiers */
2531 	unsigned long mmun_end;		/* For mmu_notifiers */
2532 	bool mmun_called = false;	/* For mmu_notifiers */
2533 
2534 	old_page = vm_normal_page(vma, address, orig_pte);
2535 	if (!old_page) {
2536 		/*
2537 		 * VM_MIXEDMAP !pfn_valid() case
2538 		 *
2539 		 * We should not cow pages in a shared writeable mapping.
2540 		 * Just mark the pages writable as we can't do any dirty
2541 		 * accounting on raw pfn maps.
2542 		 */
2543 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2544 				     (VM_WRITE|VM_SHARED))
2545 			goto reuse;
2546 		goto gotten;
2547 	}
2548 
2549 	/*
2550 	 * Take out anonymous pages first, anonymous shared vmas are
2551 	 * not dirty accountable.
2552 	 */
2553 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2554 		if (!trylock_page(old_page)) {
2555 			page_cache_get(old_page);
2556 			pte_unmap_unlock(page_table, ptl);
2557 			lock_page(old_page);
2558 			page_table = pte_offset_map_lock(mm, pmd, address,
2559 							 &ptl);
2560 			if (!pte_same(*page_table, orig_pte)) {
2561 				unlock_page(old_page);
2562 				goto unlock;
2563 			}
2564 			page_cache_release(old_page);
2565 		}
2566 		if (reuse_swap_page(old_page)) {
2567 			/*
2568 			 * The page is all ours.  Move it to our anon_vma so
2569 			 * the rmap code will not search our parent or siblings.
2570 			 * Protected against the rmap code by the page lock.
2571 			 */
2572 			page_move_anon_rmap(old_page, vma, address);
2573 			unlock_page(old_page);
2574 			goto reuse;
2575 		}
2576 		unlock_page(old_page);
2577 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2578 					(VM_WRITE|VM_SHARED))) {
2579 		/*
2580 		 * Only catch write-faults on shared writable pages,
2581 		 * read-only shared pages can get COWed by
2582 		 * get_user_pages(.write=1, .force=1).
2583 		 */
2584 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2585 			struct vm_fault vmf;
2586 			int tmp;
2587 
2588 			vmf.virtual_address = (void __user *)(address &
2589 								PAGE_MASK);
2590 			vmf.pgoff = old_page->index;
2591 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2592 			vmf.page = old_page;
2593 
2594 			/*
2595 			 * Notify the address space that the page is about to
2596 			 * become writable so that it can prohibit this or wait
2597 			 * for the page to get into an appropriate state.
2598 			 *
2599 			 * We do this without the lock held, so that it can
2600 			 * sleep if it needs to.
2601 			 */
2602 			page_cache_get(old_page);
2603 			pte_unmap_unlock(page_table, ptl);
2604 
2605 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2606 			if (unlikely(tmp &
2607 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2608 				ret = tmp;
2609 				goto unwritable_page;
2610 			}
2611 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2612 				lock_page(old_page);
2613 				if (!old_page->mapping) {
2614 					ret = 0; /* retry the fault */
2615 					unlock_page(old_page);
2616 					goto unwritable_page;
2617 				}
2618 			} else
2619 				VM_BUG_ON(!PageLocked(old_page));
2620 
2621 			/*
2622 			 * Since we dropped the lock we need to revalidate
2623 			 * the PTE as someone else may have changed it.  If
2624 			 * they did, we just return, as we can count on the
2625 			 * MMU to tell us if they didn't also make it writable.
2626 			 */
2627 			page_table = pte_offset_map_lock(mm, pmd, address,
2628 							 &ptl);
2629 			if (!pte_same(*page_table, orig_pte)) {
2630 				unlock_page(old_page);
2631 				goto unlock;
2632 			}
2633 
2634 			page_mkwrite = 1;
2635 		}
2636 		dirty_page = old_page;
2637 		get_page(dirty_page);
2638 
2639 reuse:
2640 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2641 		entry = pte_mkyoung(orig_pte);
2642 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2643 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2644 			update_mmu_cache(vma, address, page_table);
2645 		pte_unmap_unlock(page_table, ptl);
2646 		ret |= VM_FAULT_WRITE;
2647 
2648 		if (!dirty_page)
2649 			return ret;
2650 
2651 		/*
2652 		 * Yes, Virginia, this is actually required to prevent a race
2653 		 * with clear_page_dirty_for_io() from clearing the page dirty
2654 		 * bit after it clear all dirty ptes, but before a racing
2655 		 * do_wp_page installs a dirty pte.
2656 		 *
2657 		 * __do_fault is protected similarly.
2658 		 */
2659 		if (!page_mkwrite) {
2660 			wait_on_page_locked(dirty_page);
2661 			set_page_dirty_balance(dirty_page, page_mkwrite);
2662 			/* file_update_time outside page_lock */
2663 			if (vma->vm_file)
2664 				file_update_time(vma->vm_file);
2665 		}
2666 		put_page(dirty_page);
2667 		if (page_mkwrite) {
2668 			struct address_space *mapping = dirty_page->mapping;
2669 
2670 			set_page_dirty(dirty_page);
2671 			unlock_page(dirty_page);
2672 			page_cache_release(dirty_page);
2673 			if (mapping)	{
2674 				/*
2675 				 * Some device drivers do not set page.mapping
2676 				 * but still dirty their pages
2677 				 */
2678 				balance_dirty_pages_ratelimited(mapping);
2679 			}
2680 		}
2681 
2682 		return ret;
2683 	}
2684 
2685 	/*
2686 	 * Ok, we need to copy. Oh, well..
2687 	 */
2688 	page_cache_get(old_page);
2689 gotten:
2690 	pte_unmap_unlock(page_table, ptl);
2691 
2692 	if (unlikely(anon_vma_prepare(vma)))
2693 		goto oom;
2694 
2695 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2696 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2697 		if (!new_page)
2698 			goto oom;
2699 	} else {
2700 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2701 		if (!new_page)
2702 			goto oom;
2703 		cow_user_page(new_page, old_page, address, vma);
2704 	}
2705 	__SetPageUptodate(new_page);
2706 
2707 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2708 		goto oom_free_new;
2709 
2710 	mmun_start  = address & PAGE_MASK;
2711 	mmun_end    = (address & PAGE_MASK) + PAGE_SIZE;
2712 	mmun_called = true;
2713 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2714 
2715 	/*
2716 	 * Re-check the pte - we dropped the lock
2717 	 */
2718 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2719 	if (likely(pte_same(*page_table, orig_pte))) {
2720 		if (old_page) {
2721 			if (!PageAnon(old_page)) {
2722 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2723 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2724 			}
2725 		} else
2726 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2727 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2728 		entry = mk_pte(new_page, vma->vm_page_prot);
2729 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2730 		/*
2731 		 * Clear the pte entry and flush it first, before updating the
2732 		 * pte with the new entry. This will avoid a race condition
2733 		 * seen in the presence of one thread doing SMC and another
2734 		 * thread doing COW.
2735 		 */
2736 		ptep_clear_flush(vma, address, page_table);
2737 		page_add_new_anon_rmap(new_page, vma, address);
2738 		/*
2739 		 * We call the notify macro here because, when using secondary
2740 		 * mmu page tables (such as kvm shadow page tables), we want the
2741 		 * new page to be mapped directly into the secondary page table.
2742 		 */
2743 		set_pte_at_notify(mm, address, page_table, entry);
2744 		update_mmu_cache(vma, address, page_table);
2745 		if (old_page) {
2746 			/*
2747 			 * Only after switching the pte to the new page may
2748 			 * we remove the mapcount here. Otherwise another
2749 			 * process may come and find the rmap count decremented
2750 			 * before the pte is switched to the new page, and
2751 			 * "reuse" the old page writing into it while our pte
2752 			 * here still points into it and can be read by other
2753 			 * threads.
2754 			 *
2755 			 * The critical issue is to order this
2756 			 * page_remove_rmap with the ptp_clear_flush above.
2757 			 * Those stores are ordered by (if nothing else,)
2758 			 * the barrier present in the atomic_add_negative
2759 			 * in page_remove_rmap.
2760 			 *
2761 			 * Then the TLB flush in ptep_clear_flush ensures that
2762 			 * no process can access the old page before the
2763 			 * decremented mapcount is visible. And the old page
2764 			 * cannot be reused until after the decremented
2765 			 * mapcount is visible. So transitively, TLBs to
2766 			 * old page will be flushed before it can be reused.
2767 			 */
2768 			page_remove_rmap(old_page);
2769 		}
2770 
2771 		/* Free the old page.. */
2772 		new_page = old_page;
2773 		ret |= VM_FAULT_WRITE;
2774 	} else
2775 		mem_cgroup_uncharge_page(new_page);
2776 
2777 	if (new_page)
2778 		page_cache_release(new_page);
2779 unlock:
2780 	pte_unmap_unlock(page_table, ptl);
2781 	if (mmun_called)
2782 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2783 	if (old_page) {
2784 		/*
2785 		 * Don't let another task, with possibly unlocked vma,
2786 		 * keep the mlocked page.
2787 		 */
2788 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2789 			lock_page(old_page);	/* LRU manipulation */
2790 			munlock_vma_page(old_page);
2791 			unlock_page(old_page);
2792 		}
2793 		page_cache_release(old_page);
2794 	}
2795 	return ret;
2796 oom_free_new:
2797 	page_cache_release(new_page);
2798 oom:
2799 	if (old_page) {
2800 		if (page_mkwrite) {
2801 			unlock_page(old_page);
2802 			page_cache_release(old_page);
2803 		}
2804 		page_cache_release(old_page);
2805 	}
2806 	return VM_FAULT_OOM;
2807 
2808 unwritable_page:
2809 	page_cache_release(old_page);
2810 	return ret;
2811 }
2812 
2813 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2814 		unsigned long start_addr, unsigned long end_addr,
2815 		struct zap_details *details)
2816 {
2817 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2818 }
2819 
2820 static inline void unmap_mapping_range_tree(struct rb_root *root,
2821 					    struct zap_details *details)
2822 {
2823 	struct vm_area_struct *vma;
2824 	pgoff_t vba, vea, zba, zea;
2825 
2826 	vma_interval_tree_foreach(vma, root,
2827 			details->first_index, details->last_index) {
2828 
2829 		vba = vma->vm_pgoff;
2830 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2831 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2832 		zba = details->first_index;
2833 		if (zba < vba)
2834 			zba = vba;
2835 		zea = details->last_index;
2836 		if (zea > vea)
2837 			zea = vea;
2838 
2839 		unmap_mapping_range_vma(vma,
2840 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2841 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2842 				details);
2843 	}
2844 }
2845 
2846 static inline void unmap_mapping_range_list(struct list_head *head,
2847 					    struct zap_details *details)
2848 {
2849 	struct vm_area_struct *vma;
2850 
2851 	/*
2852 	 * In nonlinear VMAs there is no correspondence between virtual address
2853 	 * offset and file offset.  So we must perform an exhaustive search
2854 	 * across *all* the pages in each nonlinear VMA, not just the pages
2855 	 * whose virtual address lies outside the file truncation point.
2856 	 */
2857 	list_for_each_entry(vma, head, shared.nonlinear) {
2858 		details->nonlinear_vma = vma;
2859 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2860 	}
2861 }
2862 
2863 /**
2864  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2865  * @mapping: the address space containing mmaps to be unmapped.
2866  * @holebegin: byte in first page to unmap, relative to the start of
2867  * the underlying file.  This will be rounded down to a PAGE_SIZE
2868  * boundary.  Note that this is different from truncate_pagecache(), which
2869  * must keep the partial page.  In contrast, we must get rid of
2870  * partial pages.
2871  * @holelen: size of prospective hole in bytes.  This will be rounded
2872  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2873  * end of the file.
2874  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2875  * but 0 when invalidating pagecache, don't throw away private data.
2876  */
2877 void unmap_mapping_range(struct address_space *mapping,
2878 		loff_t const holebegin, loff_t const holelen, int even_cows)
2879 {
2880 	struct zap_details details;
2881 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2882 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2883 
2884 	/* Check for overflow. */
2885 	if (sizeof(holelen) > sizeof(hlen)) {
2886 		long long holeend =
2887 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2888 		if (holeend & ~(long long)ULONG_MAX)
2889 			hlen = ULONG_MAX - hba + 1;
2890 	}
2891 
2892 	details.check_mapping = even_cows? NULL: mapping;
2893 	details.nonlinear_vma = NULL;
2894 	details.first_index = hba;
2895 	details.last_index = hba + hlen - 1;
2896 	if (details.last_index < details.first_index)
2897 		details.last_index = ULONG_MAX;
2898 
2899 
2900 	mutex_lock(&mapping->i_mmap_mutex);
2901 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2902 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2903 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2904 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2905 	mutex_unlock(&mapping->i_mmap_mutex);
2906 }
2907 EXPORT_SYMBOL(unmap_mapping_range);
2908 
2909 /*
2910  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2911  * but allow concurrent faults), and pte mapped but not yet locked.
2912  * We return with mmap_sem still held, but pte unmapped and unlocked.
2913  */
2914 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2915 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2916 		unsigned int flags, pte_t orig_pte)
2917 {
2918 	spinlock_t *ptl;
2919 	struct page *page, *swapcache = NULL;
2920 	swp_entry_t entry;
2921 	pte_t pte;
2922 	int locked;
2923 	struct mem_cgroup *ptr;
2924 	int exclusive = 0;
2925 	int ret = 0;
2926 
2927 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2928 		goto out;
2929 
2930 	entry = pte_to_swp_entry(orig_pte);
2931 	if (unlikely(non_swap_entry(entry))) {
2932 		if (is_migration_entry(entry)) {
2933 			migration_entry_wait(mm, pmd, address);
2934 		} else if (is_hwpoison_entry(entry)) {
2935 			ret = VM_FAULT_HWPOISON;
2936 		} else {
2937 			print_bad_pte(vma, address, orig_pte, NULL);
2938 			ret = VM_FAULT_SIGBUS;
2939 		}
2940 		goto out;
2941 	}
2942 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2943 	page = lookup_swap_cache(entry);
2944 	if (!page) {
2945 		page = swapin_readahead(entry,
2946 					GFP_HIGHUSER_MOVABLE, vma, address);
2947 		if (!page) {
2948 			/*
2949 			 * Back out if somebody else faulted in this pte
2950 			 * while we released the pte lock.
2951 			 */
2952 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2953 			if (likely(pte_same(*page_table, orig_pte)))
2954 				ret = VM_FAULT_OOM;
2955 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2956 			goto unlock;
2957 		}
2958 
2959 		/* Had to read the page from swap area: Major fault */
2960 		ret = VM_FAULT_MAJOR;
2961 		count_vm_event(PGMAJFAULT);
2962 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2963 	} else if (PageHWPoison(page)) {
2964 		/*
2965 		 * hwpoisoned dirty swapcache pages are kept for killing
2966 		 * owner processes (which may be unknown at hwpoison time)
2967 		 */
2968 		ret = VM_FAULT_HWPOISON;
2969 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2970 		goto out_release;
2971 	}
2972 
2973 	locked = lock_page_or_retry(page, mm, flags);
2974 
2975 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2976 	if (!locked) {
2977 		ret |= VM_FAULT_RETRY;
2978 		goto out_release;
2979 	}
2980 
2981 	/*
2982 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2983 	 * release the swapcache from under us.  The page pin, and pte_same
2984 	 * test below, are not enough to exclude that.  Even if it is still
2985 	 * swapcache, we need to check that the page's swap has not changed.
2986 	 */
2987 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2988 		goto out_page;
2989 
2990 	if (ksm_might_need_to_copy(page, vma, address)) {
2991 		swapcache = page;
2992 		page = ksm_does_need_to_copy(page, vma, address);
2993 
2994 		if (unlikely(!page)) {
2995 			ret = VM_FAULT_OOM;
2996 			page = swapcache;
2997 			swapcache = NULL;
2998 			goto out_page;
2999 		}
3000 	}
3001 
3002 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3003 		ret = VM_FAULT_OOM;
3004 		goto out_page;
3005 	}
3006 
3007 	/*
3008 	 * Back out if somebody else already faulted in this pte.
3009 	 */
3010 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3011 	if (unlikely(!pte_same(*page_table, orig_pte)))
3012 		goto out_nomap;
3013 
3014 	if (unlikely(!PageUptodate(page))) {
3015 		ret = VM_FAULT_SIGBUS;
3016 		goto out_nomap;
3017 	}
3018 
3019 	/*
3020 	 * The page isn't present yet, go ahead with the fault.
3021 	 *
3022 	 * Be careful about the sequence of operations here.
3023 	 * To get its accounting right, reuse_swap_page() must be called
3024 	 * while the page is counted on swap but not yet in mapcount i.e.
3025 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3026 	 * must be called after the swap_free(), or it will never succeed.
3027 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3028 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3029 	 * in page->private. In this case, a record in swap_cgroup  is silently
3030 	 * discarded at swap_free().
3031 	 */
3032 
3033 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3034 	dec_mm_counter_fast(mm, MM_SWAPENTS);
3035 	pte = mk_pte(page, vma->vm_page_prot);
3036 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3037 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3038 		flags &= ~FAULT_FLAG_WRITE;
3039 		ret |= VM_FAULT_WRITE;
3040 		exclusive = 1;
3041 	}
3042 	flush_icache_page(vma, page);
3043 	set_pte_at(mm, address, page_table, pte);
3044 	do_page_add_anon_rmap(page, vma, address, exclusive);
3045 	/* It's better to call commit-charge after rmap is established */
3046 	mem_cgroup_commit_charge_swapin(page, ptr);
3047 
3048 	swap_free(entry);
3049 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3050 		try_to_free_swap(page);
3051 	unlock_page(page);
3052 	if (swapcache) {
3053 		/*
3054 		 * Hold the lock to avoid the swap entry to be reused
3055 		 * until we take the PT lock for the pte_same() check
3056 		 * (to avoid false positives from pte_same). For
3057 		 * further safety release the lock after the swap_free
3058 		 * so that the swap count won't change under a
3059 		 * parallel locked swapcache.
3060 		 */
3061 		unlock_page(swapcache);
3062 		page_cache_release(swapcache);
3063 	}
3064 
3065 	if (flags & FAULT_FLAG_WRITE) {
3066 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3067 		if (ret & VM_FAULT_ERROR)
3068 			ret &= VM_FAULT_ERROR;
3069 		goto out;
3070 	}
3071 
3072 	/* No need to invalidate - it was non-present before */
3073 	update_mmu_cache(vma, address, page_table);
3074 unlock:
3075 	pte_unmap_unlock(page_table, ptl);
3076 out:
3077 	return ret;
3078 out_nomap:
3079 	mem_cgroup_cancel_charge_swapin(ptr);
3080 	pte_unmap_unlock(page_table, ptl);
3081 out_page:
3082 	unlock_page(page);
3083 out_release:
3084 	page_cache_release(page);
3085 	if (swapcache) {
3086 		unlock_page(swapcache);
3087 		page_cache_release(swapcache);
3088 	}
3089 	return ret;
3090 }
3091 
3092 /*
3093  * This is like a special single-page "expand_{down|up}wards()",
3094  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3095  * doesn't hit another vma.
3096  */
3097 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3098 {
3099 	address &= PAGE_MASK;
3100 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3101 		struct vm_area_struct *prev = vma->vm_prev;
3102 
3103 		/*
3104 		 * Is there a mapping abutting this one below?
3105 		 *
3106 		 * That's only ok if it's the same stack mapping
3107 		 * that has gotten split..
3108 		 */
3109 		if (prev && prev->vm_end == address)
3110 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3111 
3112 		expand_downwards(vma, address - PAGE_SIZE);
3113 	}
3114 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3115 		struct vm_area_struct *next = vma->vm_next;
3116 
3117 		/* As VM_GROWSDOWN but s/below/above/ */
3118 		if (next && next->vm_start == address + PAGE_SIZE)
3119 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3120 
3121 		expand_upwards(vma, address + PAGE_SIZE);
3122 	}
3123 	return 0;
3124 }
3125 
3126 /*
3127  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3128  * but allow concurrent faults), and pte mapped but not yet locked.
3129  * We return with mmap_sem still held, but pte unmapped and unlocked.
3130  */
3131 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3132 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3133 		unsigned int flags)
3134 {
3135 	struct page *page;
3136 	spinlock_t *ptl;
3137 	pte_t entry;
3138 
3139 	pte_unmap(page_table);
3140 
3141 	/* Check if we need to add a guard page to the stack */
3142 	if (check_stack_guard_page(vma, address) < 0)
3143 		return VM_FAULT_SIGBUS;
3144 
3145 	/* Use the zero-page for reads */
3146 	if (!(flags & FAULT_FLAG_WRITE)) {
3147 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3148 						vma->vm_page_prot));
3149 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3150 		if (!pte_none(*page_table))
3151 			goto unlock;
3152 		goto setpte;
3153 	}
3154 
3155 	/* Allocate our own private page. */
3156 	if (unlikely(anon_vma_prepare(vma)))
3157 		goto oom;
3158 	page = alloc_zeroed_user_highpage_movable(vma, address);
3159 	if (!page)
3160 		goto oom;
3161 	__SetPageUptodate(page);
3162 
3163 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3164 		goto oom_free_page;
3165 
3166 	entry = mk_pte(page, vma->vm_page_prot);
3167 	if (vma->vm_flags & VM_WRITE)
3168 		entry = pte_mkwrite(pte_mkdirty(entry));
3169 
3170 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3171 	if (!pte_none(*page_table))
3172 		goto release;
3173 
3174 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3175 	page_add_new_anon_rmap(page, vma, address);
3176 setpte:
3177 	set_pte_at(mm, address, page_table, entry);
3178 
3179 	/* No need to invalidate - it was non-present before */
3180 	update_mmu_cache(vma, address, page_table);
3181 unlock:
3182 	pte_unmap_unlock(page_table, ptl);
3183 	return 0;
3184 release:
3185 	mem_cgroup_uncharge_page(page);
3186 	page_cache_release(page);
3187 	goto unlock;
3188 oom_free_page:
3189 	page_cache_release(page);
3190 oom:
3191 	return VM_FAULT_OOM;
3192 }
3193 
3194 /*
3195  * __do_fault() tries to create a new page mapping. It aggressively
3196  * tries to share with existing pages, but makes a separate copy if
3197  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3198  * the next page fault.
3199  *
3200  * As this is called only for pages that do not currently exist, we
3201  * do not need to flush old virtual caches or the TLB.
3202  *
3203  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3204  * but allow concurrent faults), and pte neither mapped nor locked.
3205  * We return with mmap_sem still held, but pte unmapped and unlocked.
3206  */
3207 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3208 		unsigned long address, pmd_t *pmd,
3209 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3210 {
3211 	pte_t *page_table;
3212 	spinlock_t *ptl;
3213 	struct page *page;
3214 	struct page *cow_page;
3215 	pte_t entry;
3216 	int anon = 0;
3217 	struct page *dirty_page = NULL;
3218 	struct vm_fault vmf;
3219 	int ret;
3220 	int page_mkwrite = 0;
3221 
3222 	/*
3223 	 * If we do COW later, allocate page befor taking lock_page()
3224 	 * on the file cache page. This will reduce lock holding time.
3225 	 */
3226 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3227 
3228 		if (unlikely(anon_vma_prepare(vma)))
3229 			return VM_FAULT_OOM;
3230 
3231 		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3232 		if (!cow_page)
3233 			return VM_FAULT_OOM;
3234 
3235 		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3236 			page_cache_release(cow_page);
3237 			return VM_FAULT_OOM;
3238 		}
3239 	} else
3240 		cow_page = NULL;
3241 
3242 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3243 	vmf.pgoff = pgoff;
3244 	vmf.flags = flags;
3245 	vmf.page = NULL;
3246 
3247 	ret = vma->vm_ops->fault(vma, &vmf);
3248 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3249 			    VM_FAULT_RETRY)))
3250 		goto uncharge_out;
3251 
3252 	if (unlikely(PageHWPoison(vmf.page))) {
3253 		if (ret & VM_FAULT_LOCKED)
3254 			unlock_page(vmf.page);
3255 		ret = VM_FAULT_HWPOISON;
3256 		goto uncharge_out;
3257 	}
3258 
3259 	/*
3260 	 * For consistency in subsequent calls, make the faulted page always
3261 	 * locked.
3262 	 */
3263 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3264 		lock_page(vmf.page);
3265 	else
3266 		VM_BUG_ON(!PageLocked(vmf.page));
3267 
3268 	/*
3269 	 * Should we do an early C-O-W break?
3270 	 */
3271 	page = vmf.page;
3272 	if (flags & FAULT_FLAG_WRITE) {
3273 		if (!(vma->vm_flags & VM_SHARED)) {
3274 			page = cow_page;
3275 			anon = 1;
3276 			copy_user_highpage(page, vmf.page, address, vma);
3277 			__SetPageUptodate(page);
3278 		} else {
3279 			/*
3280 			 * If the page will be shareable, see if the backing
3281 			 * address space wants to know that the page is about
3282 			 * to become writable
3283 			 */
3284 			if (vma->vm_ops->page_mkwrite) {
3285 				int tmp;
3286 
3287 				unlock_page(page);
3288 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3289 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3290 				if (unlikely(tmp &
3291 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3292 					ret = tmp;
3293 					goto unwritable_page;
3294 				}
3295 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3296 					lock_page(page);
3297 					if (!page->mapping) {
3298 						ret = 0; /* retry the fault */
3299 						unlock_page(page);
3300 						goto unwritable_page;
3301 					}
3302 				} else
3303 					VM_BUG_ON(!PageLocked(page));
3304 				page_mkwrite = 1;
3305 			}
3306 		}
3307 
3308 	}
3309 
3310 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3311 
3312 	/*
3313 	 * This silly early PAGE_DIRTY setting removes a race
3314 	 * due to the bad i386 page protection. But it's valid
3315 	 * for other architectures too.
3316 	 *
3317 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3318 	 * an exclusive copy of the page, or this is a shared mapping,
3319 	 * so we can make it writable and dirty to avoid having to
3320 	 * handle that later.
3321 	 */
3322 	/* Only go through if we didn't race with anybody else... */
3323 	if (likely(pte_same(*page_table, orig_pte))) {
3324 		flush_icache_page(vma, page);
3325 		entry = mk_pte(page, vma->vm_page_prot);
3326 		if (flags & FAULT_FLAG_WRITE)
3327 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3328 		if (anon) {
3329 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3330 			page_add_new_anon_rmap(page, vma, address);
3331 		} else {
3332 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3333 			page_add_file_rmap(page);
3334 			if (flags & FAULT_FLAG_WRITE) {
3335 				dirty_page = page;
3336 				get_page(dirty_page);
3337 			}
3338 		}
3339 		set_pte_at(mm, address, page_table, entry);
3340 
3341 		/* no need to invalidate: a not-present page won't be cached */
3342 		update_mmu_cache(vma, address, page_table);
3343 	} else {
3344 		if (cow_page)
3345 			mem_cgroup_uncharge_page(cow_page);
3346 		if (anon)
3347 			page_cache_release(page);
3348 		else
3349 			anon = 1; /* no anon but release faulted_page */
3350 	}
3351 
3352 	pte_unmap_unlock(page_table, ptl);
3353 
3354 	if (dirty_page) {
3355 		struct address_space *mapping = page->mapping;
3356 		int dirtied = 0;
3357 
3358 		if (set_page_dirty(dirty_page))
3359 			dirtied = 1;
3360 		unlock_page(dirty_page);
3361 		put_page(dirty_page);
3362 		if ((dirtied || page_mkwrite) && mapping) {
3363 			/*
3364 			 * Some device drivers do not set page.mapping but still
3365 			 * dirty their pages
3366 			 */
3367 			balance_dirty_pages_ratelimited(mapping);
3368 		}
3369 
3370 		/* file_update_time outside page_lock */
3371 		if (vma->vm_file && !page_mkwrite)
3372 			file_update_time(vma->vm_file);
3373 	} else {
3374 		unlock_page(vmf.page);
3375 		if (anon)
3376 			page_cache_release(vmf.page);
3377 	}
3378 
3379 	return ret;
3380 
3381 unwritable_page:
3382 	page_cache_release(page);
3383 	return ret;
3384 uncharge_out:
3385 	/* fs's fault handler get error */
3386 	if (cow_page) {
3387 		mem_cgroup_uncharge_page(cow_page);
3388 		page_cache_release(cow_page);
3389 	}
3390 	return ret;
3391 }
3392 
3393 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3394 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3395 		unsigned int flags, pte_t orig_pte)
3396 {
3397 	pgoff_t pgoff = (((address & PAGE_MASK)
3398 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3399 
3400 	pte_unmap(page_table);
3401 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3402 }
3403 
3404 /*
3405  * Fault of a previously existing named mapping. Repopulate the pte
3406  * from the encoded file_pte if possible. This enables swappable
3407  * nonlinear vmas.
3408  *
3409  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3410  * but allow concurrent faults), and pte mapped but not yet locked.
3411  * We return with mmap_sem still held, but pte unmapped and unlocked.
3412  */
3413 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3414 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3415 		unsigned int flags, pte_t orig_pte)
3416 {
3417 	pgoff_t pgoff;
3418 
3419 	flags |= FAULT_FLAG_NONLINEAR;
3420 
3421 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3422 		return 0;
3423 
3424 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3425 		/*
3426 		 * Page table corrupted: show pte and kill process.
3427 		 */
3428 		print_bad_pte(vma, address, orig_pte, NULL);
3429 		return VM_FAULT_SIGBUS;
3430 	}
3431 
3432 	pgoff = pte_to_pgoff(orig_pte);
3433 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3434 }
3435 
3436 /*
3437  * These routines also need to handle stuff like marking pages dirty
3438  * and/or accessed for architectures that don't do it in hardware (most
3439  * RISC architectures).  The early dirtying is also good on the i386.
3440  *
3441  * There is also a hook called "update_mmu_cache()" that architectures
3442  * with external mmu caches can use to update those (ie the Sparc or
3443  * PowerPC hashed page tables that act as extended TLBs).
3444  *
3445  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3446  * but allow concurrent faults), and pte mapped but not yet locked.
3447  * We return with mmap_sem still held, but pte unmapped and unlocked.
3448  */
3449 int handle_pte_fault(struct mm_struct *mm,
3450 		     struct vm_area_struct *vma, unsigned long address,
3451 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3452 {
3453 	pte_t entry;
3454 	spinlock_t *ptl;
3455 
3456 	entry = *pte;
3457 	if (!pte_present(entry)) {
3458 		if (pte_none(entry)) {
3459 			if (vma->vm_ops) {
3460 				if (likely(vma->vm_ops->fault))
3461 					return do_linear_fault(mm, vma, address,
3462 						pte, pmd, flags, entry);
3463 			}
3464 			return do_anonymous_page(mm, vma, address,
3465 						 pte, pmd, flags);
3466 		}
3467 		if (pte_file(entry))
3468 			return do_nonlinear_fault(mm, vma, address,
3469 					pte, pmd, flags, entry);
3470 		return do_swap_page(mm, vma, address,
3471 					pte, pmd, flags, entry);
3472 	}
3473 
3474 	ptl = pte_lockptr(mm, pmd);
3475 	spin_lock(ptl);
3476 	if (unlikely(!pte_same(*pte, entry)))
3477 		goto unlock;
3478 	if (flags & FAULT_FLAG_WRITE) {
3479 		if (!pte_write(entry))
3480 			return do_wp_page(mm, vma, address,
3481 					pte, pmd, ptl, entry);
3482 		entry = pte_mkdirty(entry);
3483 	}
3484 	entry = pte_mkyoung(entry);
3485 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3486 		update_mmu_cache(vma, address, pte);
3487 	} else {
3488 		/*
3489 		 * This is needed only for protection faults but the arch code
3490 		 * is not yet telling us if this is a protection fault or not.
3491 		 * This still avoids useless tlb flushes for .text page faults
3492 		 * with threads.
3493 		 */
3494 		if (flags & FAULT_FLAG_WRITE)
3495 			flush_tlb_fix_spurious_fault(vma, address);
3496 	}
3497 unlock:
3498 	pte_unmap_unlock(pte, ptl);
3499 	return 0;
3500 }
3501 
3502 /*
3503  * By the time we get here, we already hold the mm semaphore
3504  */
3505 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3506 		unsigned long address, unsigned int flags)
3507 {
3508 	pgd_t *pgd;
3509 	pud_t *pud;
3510 	pmd_t *pmd;
3511 	pte_t *pte;
3512 
3513 	__set_current_state(TASK_RUNNING);
3514 
3515 	count_vm_event(PGFAULT);
3516 	mem_cgroup_count_vm_event(mm, PGFAULT);
3517 
3518 	/* do counter updates before entering really critical section. */
3519 	check_sync_rss_stat(current);
3520 
3521 	if (unlikely(is_vm_hugetlb_page(vma)))
3522 		return hugetlb_fault(mm, vma, address, flags);
3523 
3524 retry:
3525 	pgd = pgd_offset(mm, address);
3526 	pud = pud_alloc(mm, pgd, address);
3527 	if (!pud)
3528 		return VM_FAULT_OOM;
3529 	pmd = pmd_alloc(mm, pud, address);
3530 	if (!pmd)
3531 		return VM_FAULT_OOM;
3532 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3533 		if (!vma->vm_ops)
3534 			return do_huge_pmd_anonymous_page(mm, vma, address,
3535 							  pmd, flags);
3536 	} else {
3537 		pmd_t orig_pmd = *pmd;
3538 		int ret;
3539 
3540 		barrier();
3541 		if (pmd_trans_huge(orig_pmd)) {
3542 			if (flags & FAULT_FLAG_WRITE &&
3543 			    !pmd_write(orig_pmd) &&
3544 			    !pmd_trans_splitting(orig_pmd)) {
3545 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3546 							  orig_pmd);
3547 				/*
3548 				 * If COW results in an oom, the huge pmd will
3549 				 * have been split, so retry the fault on the
3550 				 * pte for a smaller charge.
3551 				 */
3552 				if (unlikely(ret & VM_FAULT_OOM))
3553 					goto retry;
3554 				return ret;
3555 			}
3556 			return 0;
3557 		}
3558 	}
3559 
3560 	/*
3561 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3562 	 * run pte_offset_map on the pmd, if an huge pmd could
3563 	 * materialize from under us from a different thread.
3564 	 */
3565 	if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3566 		return VM_FAULT_OOM;
3567 	/* if an huge pmd materialized from under us just retry later */
3568 	if (unlikely(pmd_trans_huge(*pmd)))
3569 		return 0;
3570 	/*
3571 	 * A regular pmd is established and it can't morph into a huge pmd
3572 	 * from under us anymore at this point because we hold the mmap_sem
3573 	 * read mode and khugepaged takes it in write mode. So now it's
3574 	 * safe to run pte_offset_map().
3575 	 */
3576 	pte = pte_offset_map(pmd, address);
3577 
3578 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3579 }
3580 
3581 #ifndef __PAGETABLE_PUD_FOLDED
3582 /*
3583  * Allocate page upper directory.
3584  * We've already handled the fast-path in-line.
3585  */
3586 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3587 {
3588 	pud_t *new = pud_alloc_one(mm, address);
3589 	if (!new)
3590 		return -ENOMEM;
3591 
3592 	smp_wmb(); /* See comment in __pte_alloc */
3593 
3594 	spin_lock(&mm->page_table_lock);
3595 	if (pgd_present(*pgd))		/* Another has populated it */
3596 		pud_free(mm, new);
3597 	else
3598 		pgd_populate(mm, pgd, new);
3599 	spin_unlock(&mm->page_table_lock);
3600 	return 0;
3601 }
3602 #endif /* __PAGETABLE_PUD_FOLDED */
3603 
3604 #ifndef __PAGETABLE_PMD_FOLDED
3605 /*
3606  * Allocate page middle directory.
3607  * We've already handled the fast-path in-line.
3608  */
3609 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3610 {
3611 	pmd_t *new = pmd_alloc_one(mm, address);
3612 	if (!new)
3613 		return -ENOMEM;
3614 
3615 	smp_wmb(); /* See comment in __pte_alloc */
3616 
3617 	spin_lock(&mm->page_table_lock);
3618 #ifndef __ARCH_HAS_4LEVEL_HACK
3619 	if (pud_present(*pud))		/* Another has populated it */
3620 		pmd_free(mm, new);
3621 	else
3622 		pud_populate(mm, pud, new);
3623 #else
3624 	if (pgd_present(*pud))		/* Another has populated it */
3625 		pmd_free(mm, new);
3626 	else
3627 		pgd_populate(mm, pud, new);
3628 #endif /* __ARCH_HAS_4LEVEL_HACK */
3629 	spin_unlock(&mm->page_table_lock);
3630 	return 0;
3631 }
3632 #endif /* __PAGETABLE_PMD_FOLDED */
3633 
3634 int make_pages_present(unsigned long addr, unsigned long end)
3635 {
3636 	int ret, len, write;
3637 	struct vm_area_struct * vma;
3638 
3639 	vma = find_vma(current->mm, addr);
3640 	if (!vma)
3641 		return -ENOMEM;
3642 	/*
3643 	 * We want to touch writable mappings with a write fault in order
3644 	 * to break COW, except for shared mappings because these don't COW
3645 	 * and we would not want to dirty them for nothing.
3646 	 */
3647 	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3648 	BUG_ON(addr >= end);
3649 	BUG_ON(end > vma->vm_end);
3650 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3651 	ret = get_user_pages(current, current->mm, addr,
3652 			len, write, 0, NULL, NULL);
3653 	if (ret < 0)
3654 		return ret;
3655 	return ret == len ? 0 : -EFAULT;
3656 }
3657 
3658 #if !defined(__HAVE_ARCH_GATE_AREA)
3659 
3660 #if defined(AT_SYSINFO_EHDR)
3661 static struct vm_area_struct gate_vma;
3662 
3663 static int __init gate_vma_init(void)
3664 {
3665 	gate_vma.vm_mm = NULL;
3666 	gate_vma.vm_start = FIXADDR_USER_START;
3667 	gate_vma.vm_end = FIXADDR_USER_END;
3668 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3669 	gate_vma.vm_page_prot = __P101;
3670 
3671 	return 0;
3672 }
3673 __initcall(gate_vma_init);
3674 #endif
3675 
3676 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3677 {
3678 #ifdef AT_SYSINFO_EHDR
3679 	return &gate_vma;
3680 #else
3681 	return NULL;
3682 #endif
3683 }
3684 
3685 int in_gate_area_no_mm(unsigned long addr)
3686 {
3687 #ifdef AT_SYSINFO_EHDR
3688 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3689 		return 1;
3690 #endif
3691 	return 0;
3692 }
3693 
3694 #endif	/* __HAVE_ARCH_GATE_AREA */
3695 
3696 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3697 		pte_t **ptepp, spinlock_t **ptlp)
3698 {
3699 	pgd_t *pgd;
3700 	pud_t *pud;
3701 	pmd_t *pmd;
3702 	pte_t *ptep;
3703 
3704 	pgd = pgd_offset(mm, address);
3705 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3706 		goto out;
3707 
3708 	pud = pud_offset(pgd, address);
3709 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3710 		goto out;
3711 
3712 	pmd = pmd_offset(pud, address);
3713 	VM_BUG_ON(pmd_trans_huge(*pmd));
3714 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3715 		goto out;
3716 
3717 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3718 	if (pmd_huge(*pmd))
3719 		goto out;
3720 
3721 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3722 	if (!ptep)
3723 		goto out;
3724 	if (!pte_present(*ptep))
3725 		goto unlock;
3726 	*ptepp = ptep;
3727 	return 0;
3728 unlock:
3729 	pte_unmap_unlock(ptep, *ptlp);
3730 out:
3731 	return -EINVAL;
3732 }
3733 
3734 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3735 			     pte_t **ptepp, spinlock_t **ptlp)
3736 {
3737 	int res;
3738 
3739 	/* (void) is needed to make gcc happy */
3740 	(void) __cond_lock(*ptlp,
3741 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3742 	return res;
3743 }
3744 
3745 /**
3746  * follow_pfn - look up PFN at a user virtual address
3747  * @vma: memory mapping
3748  * @address: user virtual address
3749  * @pfn: location to store found PFN
3750  *
3751  * Only IO mappings and raw PFN mappings are allowed.
3752  *
3753  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3754  */
3755 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3756 	unsigned long *pfn)
3757 {
3758 	int ret = -EINVAL;
3759 	spinlock_t *ptl;
3760 	pte_t *ptep;
3761 
3762 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3763 		return ret;
3764 
3765 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3766 	if (ret)
3767 		return ret;
3768 	*pfn = pte_pfn(*ptep);
3769 	pte_unmap_unlock(ptep, ptl);
3770 	return 0;
3771 }
3772 EXPORT_SYMBOL(follow_pfn);
3773 
3774 #ifdef CONFIG_HAVE_IOREMAP_PROT
3775 int follow_phys(struct vm_area_struct *vma,
3776 		unsigned long address, unsigned int flags,
3777 		unsigned long *prot, resource_size_t *phys)
3778 {
3779 	int ret = -EINVAL;
3780 	pte_t *ptep, pte;
3781 	spinlock_t *ptl;
3782 
3783 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3784 		goto out;
3785 
3786 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3787 		goto out;
3788 	pte = *ptep;
3789 
3790 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3791 		goto unlock;
3792 
3793 	*prot = pgprot_val(pte_pgprot(pte));
3794 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3795 
3796 	ret = 0;
3797 unlock:
3798 	pte_unmap_unlock(ptep, ptl);
3799 out:
3800 	return ret;
3801 }
3802 
3803 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3804 			void *buf, int len, int write)
3805 {
3806 	resource_size_t phys_addr;
3807 	unsigned long prot = 0;
3808 	void __iomem *maddr;
3809 	int offset = addr & (PAGE_SIZE-1);
3810 
3811 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3812 		return -EINVAL;
3813 
3814 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3815 	if (write)
3816 		memcpy_toio(maddr + offset, buf, len);
3817 	else
3818 		memcpy_fromio(buf, maddr + offset, len);
3819 	iounmap(maddr);
3820 
3821 	return len;
3822 }
3823 #endif
3824 
3825 /*
3826  * Access another process' address space as given in mm.  If non-NULL, use the
3827  * given task for page fault accounting.
3828  */
3829 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3830 		unsigned long addr, void *buf, int len, int write)
3831 {
3832 	struct vm_area_struct *vma;
3833 	void *old_buf = buf;
3834 
3835 	down_read(&mm->mmap_sem);
3836 	/* ignore errors, just check how much was successfully transferred */
3837 	while (len) {
3838 		int bytes, ret, offset;
3839 		void *maddr;
3840 		struct page *page = NULL;
3841 
3842 		ret = get_user_pages(tsk, mm, addr, 1,
3843 				write, 1, &page, &vma);
3844 		if (ret <= 0) {
3845 			/*
3846 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3847 			 * we can access using slightly different code.
3848 			 */
3849 #ifdef CONFIG_HAVE_IOREMAP_PROT
3850 			vma = find_vma(mm, addr);
3851 			if (!vma || vma->vm_start > addr)
3852 				break;
3853 			if (vma->vm_ops && vma->vm_ops->access)
3854 				ret = vma->vm_ops->access(vma, addr, buf,
3855 							  len, write);
3856 			if (ret <= 0)
3857 #endif
3858 				break;
3859 			bytes = ret;
3860 		} else {
3861 			bytes = len;
3862 			offset = addr & (PAGE_SIZE-1);
3863 			if (bytes > PAGE_SIZE-offset)
3864 				bytes = PAGE_SIZE-offset;
3865 
3866 			maddr = kmap(page);
3867 			if (write) {
3868 				copy_to_user_page(vma, page, addr,
3869 						  maddr + offset, buf, bytes);
3870 				set_page_dirty_lock(page);
3871 			} else {
3872 				copy_from_user_page(vma, page, addr,
3873 						    buf, maddr + offset, bytes);
3874 			}
3875 			kunmap(page);
3876 			page_cache_release(page);
3877 		}
3878 		len -= bytes;
3879 		buf += bytes;
3880 		addr += bytes;
3881 	}
3882 	up_read(&mm->mmap_sem);
3883 
3884 	return buf - old_buf;
3885 }
3886 
3887 /**
3888  * access_remote_vm - access another process' address space
3889  * @mm:		the mm_struct of the target address space
3890  * @addr:	start address to access
3891  * @buf:	source or destination buffer
3892  * @len:	number of bytes to transfer
3893  * @write:	whether the access is a write
3894  *
3895  * The caller must hold a reference on @mm.
3896  */
3897 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3898 		void *buf, int len, int write)
3899 {
3900 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3901 }
3902 
3903 /*
3904  * Access another process' address space.
3905  * Source/target buffer must be kernel space,
3906  * Do not walk the page table directly, use get_user_pages
3907  */
3908 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3909 		void *buf, int len, int write)
3910 {
3911 	struct mm_struct *mm;
3912 	int ret;
3913 
3914 	mm = get_task_mm(tsk);
3915 	if (!mm)
3916 		return 0;
3917 
3918 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3919 	mmput(mm);
3920 
3921 	return ret;
3922 }
3923 
3924 /*
3925  * Print the name of a VMA.
3926  */
3927 void print_vma_addr(char *prefix, unsigned long ip)
3928 {
3929 	struct mm_struct *mm = current->mm;
3930 	struct vm_area_struct *vma;
3931 
3932 	/*
3933 	 * Do not print if we are in atomic
3934 	 * contexts (in exception stacks, etc.):
3935 	 */
3936 	if (preempt_count())
3937 		return;
3938 
3939 	down_read(&mm->mmap_sem);
3940 	vma = find_vma(mm, ip);
3941 	if (vma && vma->vm_file) {
3942 		struct file *f = vma->vm_file;
3943 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3944 		if (buf) {
3945 			char *p, *s;
3946 
3947 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3948 			if (IS_ERR(p))
3949 				p = "?";
3950 			s = strrchr(p, '/');
3951 			if (s)
3952 				p = s+1;
3953 			printk("%s%s[%lx+%lx]", prefix, p,
3954 					vma->vm_start,
3955 					vma->vm_end - vma->vm_start);
3956 			free_page((unsigned long)buf);
3957 		}
3958 	}
3959 	up_read(&mm->mmap_sem);
3960 }
3961 
3962 #ifdef CONFIG_PROVE_LOCKING
3963 void might_fault(void)
3964 {
3965 	/*
3966 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3967 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3968 	 * get paged out, therefore we'll never actually fault, and the
3969 	 * below annotations will generate false positives.
3970 	 */
3971 	if (segment_eq(get_fs(), KERNEL_DS))
3972 		return;
3973 
3974 	might_sleep();
3975 	/*
3976 	 * it would be nicer only to annotate paths which are not under
3977 	 * pagefault_disable, however that requires a larger audit and
3978 	 * providing helpers like get_user_atomic.
3979 	 */
3980 	if (!in_atomic() && current->mm)
3981 		might_lock_read(&current->mm->mmap_sem);
3982 }
3983 EXPORT_SYMBOL(might_fault);
3984 #endif
3985 
3986 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3987 static void clear_gigantic_page(struct page *page,
3988 				unsigned long addr,
3989 				unsigned int pages_per_huge_page)
3990 {
3991 	int i;
3992 	struct page *p = page;
3993 
3994 	might_sleep();
3995 	for (i = 0; i < pages_per_huge_page;
3996 	     i++, p = mem_map_next(p, page, i)) {
3997 		cond_resched();
3998 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3999 	}
4000 }
4001 void clear_huge_page(struct page *page,
4002 		     unsigned long addr, unsigned int pages_per_huge_page)
4003 {
4004 	int i;
4005 
4006 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4007 		clear_gigantic_page(page, addr, pages_per_huge_page);
4008 		return;
4009 	}
4010 
4011 	might_sleep();
4012 	for (i = 0; i < pages_per_huge_page; i++) {
4013 		cond_resched();
4014 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4015 	}
4016 }
4017 
4018 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4019 				    unsigned long addr,
4020 				    struct vm_area_struct *vma,
4021 				    unsigned int pages_per_huge_page)
4022 {
4023 	int i;
4024 	struct page *dst_base = dst;
4025 	struct page *src_base = src;
4026 
4027 	for (i = 0; i < pages_per_huge_page; ) {
4028 		cond_resched();
4029 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4030 
4031 		i++;
4032 		dst = mem_map_next(dst, dst_base, i);
4033 		src = mem_map_next(src, src_base, i);
4034 	}
4035 }
4036 
4037 void copy_user_huge_page(struct page *dst, struct page *src,
4038 			 unsigned long addr, struct vm_area_struct *vma,
4039 			 unsigned int pages_per_huge_page)
4040 {
4041 	int i;
4042 
4043 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4044 		copy_user_gigantic_page(dst, src, addr, vma,
4045 					pages_per_huge_page);
4046 		return;
4047 	}
4048 
4049 	might_sleep();
4050 	for (i = 0; i < pages_per_huge_page; i++) {
4051 		cond_resched();
4052 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4053 	}
4054 }
4055 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4056