1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/kmsan.h> 55 #include <linux/ksm.h> 56 #include <linux/rmap.h> 57 #include <linux/export.h> 58 #include <linux/delayacct.h> 59 #include <linux/init.h> 60 #include <linux/pfn_t.h> 61 #include <linux/writeback.h> 62 #include <linux/memcontrol.h> 63 #include <linux/mmu_notifier.h> 64 #include <linux/swapops.h> 65 #include <linux/elf.h> 66 #include <linux/gfp.h> 67 #include <linux/migrate.h> 68 #include <linux/string.h> 69 #include <linux/memory-tiers.h> 70 #include <linux/debugfs.h> 71 #include <linux/userfaultfd_k.h> 72 #include <linux/dax.h> 73 #include <linux/oom.h> 74 #include <linux/numa.h> 75 #include <linux/perf_event.h> 76 #include <linux/ptrace.h> 77 #include <linux/vmalloc.h> 78 #include <linux/sched/sysctl.h> 79 80 #include <trace/events/kmem.h> 81 82 #include <asm/io.h> 83 #include <asm/mmu_context.h> 84 #include <asm/pgalloc.h> 85 #include <linux/uaccess.h> 86 #include <asm/tlb.h> 87 #include <asm/tlbflush.h> 88 89 #include "pgalloc-track.h" 90 #include "internal.h" 91 #include "swap.h" 92 93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 95 #endif 96 97 static vm_fault_t do_fault(struct vm_fault *vmf); 98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 99 static bool vmf_pte_changed(struct vm_fault *vmf); 100 101 /* 102 * Return true if the original pte was a uffd-wp pte marker (so the pte was 103 * wr-protected). 104 */ 105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 106 { 107 if (!userfaultfd_wp(vmf->vma)) 108 return false; 109 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 110 return false; 111 112 return pte_marker_uffd_wp(vmf->orig_pte); 113 } 114 115 /* 116 * Randomize the address space (stacks, mmaps, brk, etc.). 117 * 118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 119 * as ancient (libc5 based) binaries can segfault. ) 120 */ 121 int randomize_va_space __read_mostly = 122 #ifdef CONFIG_COMPAT_BRK 123 1; 124 #else 125 2; 126 #endif 127 128 #ifndef arch_wants_old_prefaulted_pte 129 static inline bool arch_wants_old_prefaulted_pte(void) 130 { 131 /* 132 * Transitioning a PTE from 'old' to 'young' can be expensive on 133 * some architectures, even if it's performed in hardware. By 134 * default, "false" means prefaulted entries will be 'young'. 135 */ 136 return false; 137 } 138 #endif 139 140 static int __init disable_randmaps(char *s) 141 { 142 randomize_va_space = 0; 143 return 1; 144 } 145 __setup("norandmaps", disable_randmaps); 146 147 unsigned long zero_pfn __read_mostly; 148 EXPORT_SYMBOL(zero_pfn); 149 150 unsigned long highest_memmap_pfn __read_mostly; 151 152 /* 153 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 154 */ 155 static int __init init_zero_pfn(void) 156 { 157 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 158 return 0; 159 } 160 early_initcall(init_zero_pfn); 161 162 void mm_trace_rss_stat(struct mm_struct *mm, int member) 163 { 164 trace_rss_stat(mm, member); 165 } 166 167 /* 168 * Note: this doesn't free the actual pages themselves. That 169 * has been handled earlier when unmapping all the memory regions. 170 */ 171 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 172 unsigned long addr) 173 { 174 pgtable_t token = pmd_pgtable(*pmd); 175 pmd_clear(pmd); 176 pte_free_tlb(tlb, token, addr); 177 mm_dec_nr_ptes(tlb->mm); 178 } 179 180 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 181 unsigned long addr, unsigned long end, 182 unsigned long floor, unsigned long ceiling) 183 { 184 pmd_t *pmd; 185 unsigned long next; 186 unsigned long start; 187 188 start = addr; 189 pmd = pmd_offset(pud, addr); 190 do { 191 next = pmd_addr_end(addr, end); 192 if (pmd_none_or_clear_bad(pmd)) 193 continue; 194 free_pte_range(tlb, pmd, addr); 195 } while (pmd++, addr = next, addr != end); 196 197 start &= PUD_MASK; 198 if (start < floor) 199 return; 200 if (ceiling) { 201 ceiling &= PUD_MASK; 202 if (!ceiling) 203 return; 204 } 205 if (end - 1 > ceiling - 1) 206 return; 207 208 pmd = pmd_offset(pud, start); 209 pud_clear(pud); 210 pmd_free_tlb(tlb, pmd, start); 211 mm_dec_nr_pmds(tlb->mm); 212 } 213 214 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 215 unsigned long addr, unsigned long end, 216 unsigned long floor, unsigned long ceiling) 217 { 218 pud_t *pud; 219 unsigned long next; 220 unsigned long start; 221 222 start = addr; 223 pud = pud_offset(p4d, addr); 224 do { 225 next = pud_addr_end(addr, end); 226 if (pud_none_or_clear_bad(pud)) 227 continue; 228 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 229 } while (pud++, addr = next, addr != end); 230 231 start &= P4D_MASK; 232 if (start < floor) 233 return; 234 if (ceiling) { 235 ceiling &= P4D_MASK; 236 if (!ceiling) 237 return; 238 } 239 if (end - 1 > ceiling - 1) 240 return; 241 242 pud = pud_offset(p4d, start); 243 p4d_clear(p4d); 244 pud_free_tlb(tlb, pud, start); 245 mm_dec_nr_puds(tlb->mm); 246 } 247 248 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 249 unsigned long addr, unsigned long end, 250 unsigned long floor, unsigned long ceiling) 251 { 252 p4d_t *p4d; 253 unsigned long next; 254 unsigned long start; 255 256 start = addr; 257 p4d = p4d_offset(pgd, addr); 258 do { 259 next = p4d_addr_end(addr, end); 260 if (p4d_none_or_clear_bad(p4d)) 261 continue; 262 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 263 } while (p4d++, addr = next, addr != end); 264 265 start &= PGDIR_MASK; 266 if (start < floor) 267 return; 268 if (ceiling) { 269 ceiling &= PGDIR_MASK; 270 if (!ceiling) 271 return; 272 } 273 if (end - 1 > ceiling - 1) 274 return; 275 276 p4d = p4d_offset(pgd, start); 277 pgd_clear(pgd); 278 p4d_free_tlb(tlb, p4d, start); 279 } 280 281 /** 282 * free_pgd_range - Unmap and free page tables in the range 283 * @tlb: the mmu_gather containing pending TLB flush info 284 * @addr: virtual address start 285 * @end: virtual address end 286 * @floor: lowest address boundary 287 * @ceiling: highest address boundary 288 * 289 * This function tears down all user-level page tables in the 290 * specified virtual address range [@addr..@end). It is part of 291 * the memory unmap flow. 292 */ 293 void free_pgd_range(struct mmu_gather *tlb, 294 unsigned long addr, unsigned long end, 295 unsigned long floor, unsigned long ceiling) 296 { 297 pgd_t *pgd; 298 unsigned long next; 299 300 /* 301 * The next few lines have given us lots of grief... 302 * 303 * Why are we testing PMD* at this top level? Because often 304 * there will be no work to do at all, and we'd prefer not to 305 * go all the way down to the bottom just to discover that. 306 * 307 * Why all these "- 1"s? Because 0 represents both the bottom 308 * of the address space and the top of it (using -1 for the 309 * top wouldn't help much: the masks would do the wrong thing). 310 * The rule is that addr 0 and floor 0 refer to the bottom of 311 * the address space, but end 0 and ceiling 0 refer to the top 312 * Comparisons need to use "end - 1" and "ceiling - 1" (though 313 * that end 0 case should be mythical). 314 * 315 * Wherever addr is brought up or ceiling brought down, we must 316 * be careful to reject "the opposite 0" before it confuses the 317 * subsequent tests. But what about where end is brought down 318 * by PMD_SIZE below? no, end can't go down to 0 there. 319 * 320 * Whereas we round start (addr) and ceiling down, by different 321 * masks at different levels, in order to test whether a table 322 * now has no other vmas using it, so can be freed, we don't 323 * bother to round floor or end up - the tests don't need that. 324 */ 325 326 addr &= PMD_MASK; 327 if (addr < floor) { 328 addr += PMD_SIZE; 329 if (!addr) 330 return; 331 } 332 if (ceiling) { 333 ceiling &= PMD_MASK; 334 if (!ceiling) 335 return; 336 } 337 if (end - 1 > ceiling - 1) 338 end -= PMD_SIZE; 339 if (addr > end - 1) 340 return; 341 /* 342 * We add page table cache pages with PAGE_SIZE, 343 * (see pte_free_tlb()), flush the tlb if we need 344 */ 345 tlb_change_page_size(tlb, PAGE_SIZE); 346 pgd = pgd_offset(tlb->mm, addr); 347 do { 348 next = pgd_addr_end(addr, end); 349 if (pgd_none_or_clear_bad(pgd)) 350 continue; 351 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 352 } while (pgd++, addr = next, addr != end); 353 } 354 355 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 356 struct vm_area_struct *vma, unsigned long floor, 357 unsigned long ceiling, bool mm_wr_locked) 358 { 359 struct unlink_vma_file_batch vb; 360 361 do { 362 unsigned long addr = vma->vm_start; 363 struct vm_area_struct *next; 364 365 /* 366 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 367 * be 0. This will underflow and is okay. 368 */ 369 next = mas_find(mas, ceiling - 1); 370 if (unlikely(xa_is_zero(next))) 371 next = NULL; 372 373 /* 374 * Hide vma from rmap and truncate_pagecache before freeing 375 * pgtables 376 */ 377 if (mm_wr_locked) 378 vma_start_write(vma); 379 unlink_anon_vmas(vma); 380 381 if (is_vm_hugetlb_page(vma)) { 382 unlink_file_vma(vma); 383 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 384 floor, next ? next->vm_start : ceiling); 385 } else { 386 unlink_file_vma_batch_init(&vb); 387 unlink_file_vma_batch_add(&vb, vma); 388 389 /* 390 * Optimization: gather nearby vmas into one call down 391 */ 392 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 393 && !is_vm_hugetlb_page(next)) { 394 vma = next; 395 next = mas_find(mas, ceiling - 1); 396 if (unlikely(xa_is_zero(next))) 397 next = NULL; 398 if (mm_wr_locked) 399 vma_start_write(vma); 400 unlink_anon_vmas(vma); 401 unlink_file_vma_batch_add(&vb, vma); 402 } 403 unlink_file_vma_batch_final(&vb); 404 free_pgd_range(tlb, addr, vma->vm_end, 405 floor, next ? next->vm_start : ceiling); 406 } 407 vma = next; 408 } while (vma); 409 } 410 411 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 412 { 413 spinlock_t *ptl = pmd_lock(mm, pmd); 414 415 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 416 mm_inc_nr_ptes(mm); 417 /* 418 * Ensure all pte setup (eg. pte page lock and page clearing) are 419 * visible before the pte is made visible to other CPUs by being 420 * put into page tables. 421 * 422 * The other side of the story is the pointer chasing in the page 423 * table walking code (when walking the page table without locking; 424 * ie. most of the time). Fortunately, these data accesses consist 425 * of a chain of data-dependent loads, meaning most CPUs (alpha 426 * being the notable exception) will already guarantee loads are 427 * seen in-order. See the alpha page table accessors for the 428 * smp_rmb() barriers in page table walking code. 429 */ 430 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 431 pmd_populate(mm, pmd, *pte); 432 *pte = NULL; 433 } 434 spin_unlock(ptl); 435 } 436 437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 438 { 439 pgtable_t new = pte_alloc_one(mm); 440 if (!new) 441 return -ENOMEM; 442 443 pmd_install(mm, pmd, &new); 444 if (new) 445 pte_free(mm, new); 446 return 0; 447 } 448 449 int __pte_alloc_kernel(pmd_t *pmd) 450 { 451 pte_t *new = pte_alloc_one_kernel(&init_mm); 452 if (!new) 453 return -ENOMEM; 454 455 spin_lock(&init_mm.page_table_lock); 456 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 457 smp_wmb(); /* See comment in pmd_install() */ 458 pmd_populate_kernel(&init_mm, pmd, new); 459 new = NULL; 460 } 461 spin_unlock(&init_mm.page_table_lock); 462 if (new) 463 pte_free_kernel(&init_mm, new); 464 return 0; 465 } 466 467 static inline void init_rss_vec(int *rss) 468 { 469 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 470 } 471 472 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 473 { 474 int i; 475 476 for (i = 0; i < NR_MM_COUNTERS; i++) 477 if (rss[i]) 478 add_mm_counter(mm, i, rss[i]); 479 } 480 481 /* 482 * This function is called to print an error when a bad pte 483 * is found. For example, we might have a PFN-mapped pte in 484 * a region that doesn't allow it. 485 * 486 * The calling function must still handle the error. 487 */ 488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 489 pte_t pte, struct page *page) 490 { 491 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 492 p4d_t *p4d = p4d_offset(pgd, addr); 493 pud_t *pud = pud_offset(p4d, addr); 494 pmd_t *pmd = pmd_offset(pud, addr); 495 struct address_space *mapping; 496 pgoff_t index; 497 static unsigned long resume; 498 static unsigned long nr_shown; 499 static unsigned long nr_unshown; 500 501 /* 502 * Allow a burst of 60 reports, then keep quiet for that minute; 503 * or allow a steady drip of one report per second. 504 */ 505 if (nr_shown == 60) { 506 if (time_before(jiffies, resume)) { 507 nr_unshown++; 508 return; 509 } 510 if (nr_unshown) { 511 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 512 nr_unshown); 513 nr_unshown = 0; 514 } 515 nr_shown = 0; 516 } 517 if (nr_shown++ == 0) 518 resume = jiffies + 60 * HZ; 519 520 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 521 index = linear_page_index(vma, addr); 522 523 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 524 current->comm, 525 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 526 if (page) 527 dump_page(page, "bad pte"); 528 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 529 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 530 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 531 vma->vm_file, 532 vma->vm_ops ? vma->vm_ops->fault : NULL, 533 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 534 mapping ? mapping->a_ops->read_folio : NULL); 535 dump_stack(); 536 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 537 } 538 539 /* 540 * vm_normal_page -- This function gets the "struct page" associated with a pte. 541 * 542 * "Special" mappings do not wish to be associated with a "struct page" (either 543 * it doesn't exist, or it exists but they don't want to touch it). In this 544 * case, NULL is returned here. "Normal" mappings do have a struct page. 545 * 546 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 547 * pte bit, in which case this function is trivial. Secondly, an architecture 548 * may not have a spare pte bit, which requires a more complicated scheme, 549 * described below. 550 * 551 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 552 * special mapping (even if there are underlying and valid "struct pages"). 553 * COWed pages of a VM_PFNMAP are always normal. 554 * 555 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 556 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 557 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 558 * mapping will always honor the rule 559 * 560 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 561 * 562 * And for normal mappings this is false. 563 * 564 * This restricts such mappings to be a linear translation from virtual address 565 * to pfn. To get around this restriction, we allow arbitrary mappings so long 566 * as the vma is not a COW mapping; in that case, we know that all ptes are 567 * special (because none can have been COWed). 568 * 569 * 570 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 571 * 572 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 573 * page" backing, however the difference is that _all_ pages with a struct 574 * page (that is, those where pfn_valid is true) are refcounted and considered 575 * normal pages by the VM. The only exception are zeropages, which are 576 * *never* refcounted. 577 * 578 * The disadvantage is that pages are refcounted (which can be slower and 579 * simply not an option for some PFNMAP users). The advantage is that we 580 * don't have to follow the strict linearity rule of PFNMAP mappings in 581 * order to support COWable mappings. 582 * 583 */ 584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 585 pte_t pte) 586 { 587 unsigned long pfn = pte_pfn(pte); 588 589 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 590 if (likely(!pte_special(pte))) 591 goto check_pfn; 592 if (vma->vm_ops && vma->vm_ops->find_special_page) 593 return vma->vm_ops->find_special_page(vma, addr); 594 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 595 return NULL; 596 if (is_zero_pfn(pfn)) 597 return NULL; 598 if (pte_devmap(pte)) 599 /* 600 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 601 * and will have refcounts incremented on their struct pages 602 * when they are inserted into PTEs, thus they are safe to 603 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 604 * do not have refcounts. Example of legacy ZONE_DEVICE is 605 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 606 */ 607 return NULL; 608 609 print_bad_pte(vma, addr, pte, NULL); 610 return NULL; 611 } 612 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 614 615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 616 if (vma->vm_flags & VM_MIXEDMAP) { 617 if (!pfn_valid(pfn)) 618 return NULL; 619 if (is_zero_pfn(pfn)) 620 return NULL; 621 goto out; 622 } else { 623 unsigned long off; 624 off = (addr - vma->vm_start) >> PAGE_SHIFT; 625 if (pfn == vma->vm_pgoff + off) 626 return NULL; 627 if (!is_cow_mapping(vma->vm_flags)) 628 return NULL; 629 } 630 } 631 632 if (is_zero_pfn(pfn)) 633 return NULL; 634 635 check_pfn: 636 if (unlikely(pfn > highest_memmap_pfn)) { 637 print_bad_pte(vma, addr, pte, NULL); 638 return NULL; 639 } 640 641 /* 642 * NOTE! We still have PageReserved() pages in the page tables. 643 * eg. VDSO mappings can cause them to exist. 644 */ 645 out: 646 VM_WARN_ON_ONCE(is_zero_pfn(pfn)); 647 return pfn_to_page(pfn); 648 } 649 650 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 651 pte_t pte) 652 { 653 struct page *page = vm_normal_page(vma, addr, pte); 654 655 if (page) 656 return page_folio(page); 657 return NULL; 658 } 659 660 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES 661 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 662 pmd_t pmd) 663 { 664 unsigned long pfn = pmd_pfn(pmd); 665 666 /* Currently it's only used for huge pfnmaps */ 667 if (unlikely(pmd_special(pmd))) 668 return NULL; 669 670 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 671 if (vma->vm_flags & VM_MIXEDMAP) { 672 if (!pfn_valid(pfn)) 673 return NULL; 674 goto out; 675 } else { 676 unsigned long off; 677 off = (addr - vma->vm_start) >> PAGE_SHIFT; 678 if (pfn == vma->vm_pgoff + off) 679 return NULL; 680 if (!is_cow_mapping(vma->vm_flags)) 681 return NULL; 682 } 683 } 684 685 if (pmd_devmap(pmd)) 686 return NULL; 687 if (is_huge_zero_pmd(pmd)) 688 return NULL; 689 if (unlikely(pfn > highest_memmap_pfn)) 690 return NULL; 691 692 /* 693 * NOTE! We still have PageReserved() pages in the page tables. 694 * eg. VDSO mappings can cause them to exist. 695 */ 696 out: 697 return pfn_to_page(pfn); 698 } 699 700 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 701 unsigned long addr, pmd_t pmd) 702 { 703 struct page *page = vm_normal_page_pmd(vma, addr, pmd); 704 705 if (page) 706 return page_folio(page); 707 return NULL; 708 } 709 #endif 710 711 /** 712 * restore_exclusive_pte - Restore a device-exclusive entry 713 * @vma: VMA covering @address 714 * @folio: the mapped folio 715 * @page: the mapped folio page 716 * @address: the virtual address 717 * @ptep: pte pointer into the locked page table mapping the folio page 718 * @orig_pte: pte value at @ptep 719 * 720 * Restore a device-exclusive non-swap entry to an ordinary present pte. 721 * 722 * The folio and the page table must be locked, and MMU notifiers must have 723 * been called to invalidate any (exclusive) device mappings. 724 * 725 * Locking the folio makes sure that anybody who just converted the pte to 726 * a device-exclusive entry can map it into the device to make forward 727 * progress without others converting it back until the folio was unlocked. 728 * 729 * If the folio lock ever becomes an issue, we can stop relying on the folio 730 * lock; it might make some scenarios with heavy thrashing less likely to 731 * make forward progress, but these scenarios might not be valid use cases. 732 * 733 * Note that the folio lock does not protect against all cases of concurrent 734 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers 735 * must use MMU notifiers to sync against any concurrent changes. 736 */ 737 static void restore_exclusive_pte(struct vm_area_struct *vma, 738 struct folio *folio, struct page *page, unsigned long address, 739 pte_t *ptep, pte_t orig_pte) 740 { 741 pte_t pte; 742 743 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 744 745 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 746 if (pte_swp_soft_dirty(orig_pte)) 747 pte = pte_mksoft_dirty(pte); 748 749 if (pte_swp_uffd_wp(orig_pte)) 750 pte = pte_mkuffd_wp(pte); 751 752 if ((vma->vm_flags & VM_WRITE) && 753 can_change_pte_writable(vma, address, pte)) { 754 if (folio_test_dirty(folio)) 755 pte = pte_mkdirty(pte); 756 pte = pte_mkwrite(pte, vma); 757 } 758 set_pte_at(vma->vm_mm, address, ptep, pte); 759 760 /* 761 * No need to invalidate - it was non-present before. However 762 * secondary CPUs may have mappings that need invalidating. 763 */ 764 update_mmu_cache(vma, address, ptep); 765 } 766 767 /* 768 * Tries to restore an exclusive pte if the page lock can be acquired without 769 * sleeping. 770 */ 771 static int try_restore_exclusive_pte(struct vm_area_struct *vma, 772 unsigned long addr, pte_t *ptep, pte_t orig_pte) 773 { 774 struct page *page = pfn_swap_entry_to_page(pte_to_swp_entry(orig_pte)); 775 struct folio *folio = page_folio(page); 776 777 if (folio_trylock(folio)) { 778 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte); 779 folio_unlock(folio); 780 return 0; 781 } 782 783 return -EBUSY; 784 } 785 786 /* 787 * copy one vm_area from one task to the other. Assumes the page tables 788 * already present in the new task to be cleared in the whole range 789 * covered by this vma. 790 */ 791 792 static unsigned long 793 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 794 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 795 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 796 { 797 unsigned long vm_flags = dst_vma->vm_flags; 798 pte_t orig_pte = ptep_get(src_pte); 799 pte_t pte = orig_pte; 800 struct folio *folio; 801 struct page *page; 802 swp_entry_t entry = pte_to_swp_entry(orig_pte); 803 804 if (likely(!non_swap_entry(entry))) { 805 if (swap_duplicate(entry) < 0) 806 return -EIO; 807 808 /* make sure dst_mm is on swapoff's mmlist. */ 809 if (unlikely(list_empty(&dst_mm->mmlist))) { 810 spin_lock(&mmlist_lock); 811 if (list_empty(&dst_mm->mmlist)) 812 list_add(&dst_mm->mmlist, 813 &src_mm->mmlist); 814 spin_unlock(&mmlist_lock); 815 } 816 /* Mark the swap entry as shared. */ 817 if (pte_swp_exclusive(orig_pte)) { 818 pte = pte_swp_clear_exclusive(orig_pte); 819 set_pte_at(src_mm, addr, src_pte, pte); 820 } 821 rss[MM_SWAPENTS]++; 822 } else if (is_migration_entry(entry)) { 823 folio = pfn_swap_entry_folio(entry); 824 825 rss[mm_counter(folio)]++; 826 827 if (!is_readable_migration_entry(entry) && 828 is_cow_mapping(vm_flags)) { 829 /* 830 * COW mappings require pages in both parent and child 831 * to be set to read. A previously exclusive entry is 832 * now shared. 833 */ 834 entry = make_readable_migration_entry( 835 swp_offset(entry)); 836 pte = swp_entry_to_pte(entry); 837 if (pte_swp_soft_dirty(orig_pte)) 838 pte = pte_swp_mksoft_dirty(pte); 839 if (pte_swp_uffd_wp(orig_pte)) 840 pte = pte_swp_mkuffd_wp(pte); 841 set_pte_at(src_mm, addr, src_pte, pte); 842 } 843 } else if (is_device_private_entry(entry)) { 844 page = pfn_swap_entry_to_page(entry); 845 folio = page_folio(page); 846 847 /* 848 * Update rss count even for unaddressable pages, as 849 * they should treated just like normal pages in this 850 * respect. 851 * 852 * We will likely want to have some new rss counters 853 * for unaddressable pages, at some point. But for now 854 * keep things as they are. 855 */ 856 folio_get(folio); 857 rss[mm_counter(folio)]++; 858 /* Cannot fail as these pages cannot get pinned. */ 859 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma); 860 861 /* 862 * We do not preserve soft-dirty information, because so 863 * far, checkpoint/restore is the only feature that 864 * requires that. And checkpoint/restore does not work 865 * when a device driver is involved (you cannot easily 866 * save and restore device driver state). 867 */ 868 if (is_writable_device_private_entry(entry) && 869 is_cow_mapping(vm_flags)) { 870 entry = make_readable_device_private_entry( 871 swp_offset(entry)); 872 pte = swp_entry_to_pte(entry); 873 if (pte_swp_uffd_wp(orig_pte)) 874 pte = pte_swp_mkuffd_wp(pte); 875 set_pte_at(src_mm, addr, src_pte, pte); 876 } 877 } else if (is_device_exclusive_entry(entry)) { 878 /* 879 * Make device exclusive entries present by restoring the 880 * original entry then copying as for a present pte. Device 881 * exclusive entries currently only support private writable 882 * (ie. COW) mappings. 883 */ 884 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 885 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte)) 886 return -EBUSY; 887 return -ENOENT; 888 } else if (is_pte_marker_entry(entry)) { 889 pte_marker marker = copy_pte_marker(entry, dst_vma); 890 891 if (marker) 892 set_pte_at(dst_mm, addr, dst_pte, 893 make_pte_marker(marker)); 894 return 0; 895 } 896 if (!userfaultfd_wp(dst_vma)) 897 pte = pte_swp_clear_uffd_wp(pte); 898 set_pte_at(dst_mm, addr, dst_pte, pte); 899 return 0; 900 } 901 902 /* 903 * Copy a present and normal page. 904 * 905 * NOTE! The usual case is that this isn't required; 906 * instead, the caller can just increase the page refcount 907 * and re-use the pte the traditional way. 908 * 909 * And if we need a pre-allocated page but don't yet have 910 * one, return a negative error to let the preallocation 911 * code know so that it can do so outside the page table 912 * lock. 913 */ 914 static inline int 915 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 916 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 917 struct folio **prealloc, struct page *page) 918 { 919 struct folio *new_folio; 920 pte_t pte; 921 922 new_folio = *prealloc; 923 if (!new_folio) 924 return -EAGAIN; 925 926 /* 927 * We have a prealloc page, all good! Take it 928 * over and copy the page & arm it. 929 */ 930 931 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma)) 932 return -EHWPOISON; 933 934 *prealloc = NULL; 935 __folio_mark_uptodate(new_folio); 936 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE); 937 folio_add_lru_vma(new_folio, dst_vma); 938 rss[MM_ANONPAGES]++; 939 940 /* All done, just insert the new page copy in the child */ 941 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot); 942 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 943 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 944 /* Uffd-wp needs to be delivered to dest pte as well */ 945 pte = pte_mkuffd_wp(pte); 946 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 947 return 0; 948 } 949 950 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma, 951 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte, 952 pte_t pte, unsigned long addr, int nr) 953 { 954 struct mm_struct *src_mm = src_vma->vm_mm; 955 956 /* If it's a COW mapping, write protect it both processes. */ 957 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) { 958 wrprotect_ptes(src_mm, addr, src_pte, nr); 959 pte = pte_wrprotect(pte); 960 } 961 962 /* If it's a shared mapping, mark it clean in the child. */ 963 if (src_vma->vm_flags & VM_SHARED) 964 pte = pte_mkclean(pte); 965 pte = pte_mkold(pte); 966 967 if (!userfaultfd_wp(dst_vma)) 968 pte = pte_clear_uffd_wp(pte); 969 970 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr); 971 } 972 973 /* 974 * Copy one present PTE, trying to batch-process subsequent PTEs that map 975 * consecutive pages of the same folio by copying them as well. 976 * 977 * Returns -EAGAIN if one preallocated page is required to copy the next PTE. 978 * Otherwise, returns the number of copied PTEs (at least 1). 979 */ 980 static inline int 981 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 982 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr, 983 int max_nr, int *rss, struct folio **prealloc) 984 { 985 struct page *page; 986 struct folio *folio; 987 bool any_writable; 988 fpb_t flags = 0; 989 int err, nr; 990 991 page = vm_normal_page(src_vma, addr, pte); 992 if (unlikely(!page)) 993 goto copy_pte; 994 995 folio = page_folio(page); 996 997 /* 998 * If we likely have to copy, just don't bother with batching. Make 999 * sure that the common "small folio" case is as fast as possible 1000 * by keeping the batching logic separate. 1001 */ 1002 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) { 1003 if (src_vma->vm_flags & VM_SHARED) 1004 flags |= FPB_IGNORE_DIRTY; 1005 if (!vma_soft_dirty_enabled(src_vma)) 1006 flags |= FPB_IGNORE_SOFT_DIRTY; 1007 1008 nr = folio_pte_batch(folio, addr, src_pte, pte, max_nr, flags, 1009 &any_writable, NULL, NULL); 1010 folio_ref_add(folio, nr); 1011 if (folio_test_anon(folio)) { 1012 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page, 1013 nr, dst_vma, src_vma))) { 1014 folio_ref_sub(folio, nr); 1015 return -EAGAIN; 1016 } 1017 rss[MM_ANONPAGES] += nr; 1018 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1019 } else { 1020 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma); 1021 rss[mm_counter_file(folio)] += nr; 1022 } 1023 if (any_writable) 1024 pte = pte_mkwrite(pte, src_vma); 1025 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, 1026 addr, nr); 1027 return nr; 1028 } 1029 1030 folio_get(folio); 1031 if (folio_test_anon(folio)) { 1032 /* 1033 * If this page may have been pinned by the parent process, 1034 * copy the page immediately for the child so that we'll always 1035 * guarantee the pinned page won't be randomly replaced in the 1036 * future. 1037 */ 1038 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) { 1039 /* Page may be pinned, we have to copy. */ 1040 folio_put(folio); 1041 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 1042 addr, rss, prealloc, page); 1043 return err ? err : 1; 1044 } 1045 rss[MM_ANONPAGES]++; 1046 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio); 1047 } else { 1048 folio_dup_file_rmap_pte(folio, page, dst_vma); 1049 rss[mm_counter_file(folio)]++; 1050 } 1051 1052 copy_pte: 1053 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1); 1054 return 1; 1055 } 1056 1057 static inline struct folio *folio_prealloc(struct mm_struct *src_mm, 1058 struct vm_area_struct *vma, unsigned long addr, bool need_zero) 1059 { 1060 struct folio *new_folio; 1061 1062 if (need_zero) 1063 new_folio = vma_alloc_zeroed_movable_folio(vma, addr); 1064 else 1065 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr); 1066 1067 if (!new_folio) 1068 return NULL; 1069 1070 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 1071 folio_put(new_folio); 1072 return NULL; 1073 } 1074 folio_throttle_swaprate(new_folio, GFP_KERNEL); 1075 1076 return new_folio; 1077 } 1078 1079 static int 1080 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1081 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1082 unsigned long end) 1083 { 1084 struct mm_struct *dst_mm = dst_vma->vm_mm; 1085 struct mm_struct *src_mm = src_vma->vm_mm; 1086 pte_t *orig_src_pte, *orig_dst_pte; 1087 pte_t *src_pte, *dst_pte; 1088 pmd_t dummy_pmdval; 1089 pte_t ptent; 1090 spinlock_t *src_ptl, *dst_ptl; 1091 int progress, max_nr, ret = 0; 1092 int rss[NR_MM_COUNTERS]; 1093 swp_entry_t entry = (swp_entry_t){0}; 1094 struct folio *prealloc = NULL; 1095 int nr; 1096 1097 again: 1098 progress = 0; 1099 init_rss_vec(rss); 1100 1101 /* 1102 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1103 * error handling here, assume that exclusive mmap_lock on dst and src 1104 * protects anon from unexpected THP transitions; with shmem and file 1105 * protected by mmap_lock-less collapse skipping areas with anon_vma 1106 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1107 * can remove such assumptions later, but this is good enough for now. 1108 */ 1109 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1110 if (!dst_pte) { 1111 ret = -ENOMEM; 1112 goto out; 1113 } 1114 1115 /* 1116 * We already hold the exclusive mmap_lock, the copy_pte_range() and 1117 * retract_page_tables() are using vma->anon_vma to be exclusive, so 1118 * the PTE page is stable, and there is no need to get pmdval and do 1119 * pmd_same() check. 1120 */ 1121 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval, 1122 &src_ptl); 1123 if (!src_pte) { 1124 pte_unmap_unlock(dst_pte, dst_ptl); 1125 /* ret == 0 */ 1126 goto out; 1127 } 1128 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1129 orig_src_pte = src_pte; 1130 orig_dst_pte = dst_pte; 1131 arch_enter_lazy_mmu_mode(); 1132 1133 do { 1134 nr = 1; 1135 1136 /* 1137 * We are holding two locks at this point - either of them 1138 * could generate latencies in another task on another CPU. 1139 */ 1140 if (progress >= 32) { 1141 progress = 0; 1142 if (need_resched() || 1143 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1144 break; 1145 } 1146 ptent = ptep_get(src_pte); 1147 if (pte_none(ptent)) { 1148 progress++; 1149 continue; 1150 } 1151 if (unlikely(!pte_present(ptent))) { 1152 ret = copy_nonpresent_pte(dst_mm, src_mm, 1153 dst_pte, src_pte, 1154 dst_vma, src_vma, 1155 addr, rss); 1156 if (ret == -EIO) { 1157 entry = pte_to_swp_entry(ptep_get(src_pte)); 1158 break; 1159 } else if (ret == -EBUSY) { 1160 break; 1161 } else if (!ret) { 1162 progress += 8; 1163 continue; 1164 } 1165 ptent = ptep_get(src_pte); 1166 VM_WARN_ON_ONCE(!pte_present(ptent)); 1167 1168 /* 1169 * Device exclusive entry restored, continue by copying 1170 * the now present pte. 1171 */ 1172 WARN_ON_ONCE(ret != -ENOENT); 1173 } 1174 /* copy_present_ptes() will clear `*prealloc' if consumed */ 1175 max_nr = (end - addr) / PAGE_SIZE; 1176 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, 1177 ptent, addr, max_nr, rss, &prealloc); 1178 /* 1179 * If we need a pre-allocated page for this pte, drop the 1180 * locks, allocate, and try again. 1181 * If copy failed due to hwpoison in source page, break out. 1182 */ 1183 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON)) 1184 break; 1185 if (unlikely(prealloc)) { 1186 /* 1187 * pre-alloc page cannot be reused by next time so as 1188 * to strictly follow mempolicy (e.g., alloc_page_vma() 1189 * will allocate page according to address). This 1190 * could only happen if one pinned pte changed. 1191 */ 1192 folio_put(prealloc); 1193 prealloc = NULL; 1194 } 1195 nr = ret; 1196 progress += 8 * nr; 1197 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr, 1198 addr != end); 1199 1200 arch_leave_lazy_mmu_mode(); 1201 pte_unmap_unlock(orig_src_pte, src_ptl); 1202 add_mm_rss_vec(dst_mm, rss); 1203 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1204 cond_resched(); 1205 1206 if (ret == -EIO) { 1207 VM_WARN_ON_ONCE(!entry.val); 1208 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1209 ret = -ENOMEM; 1210 goto out; 1211 } 1212 entry.val = 0; 1213 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) { 1214 goto out; 1215 } else if (ret == -EAGAIN) { 1216 prealloc = folio_prealloc(src_mm, src_vma, addr, false); 1217 if (!prealloc) 1218 return -ENOMEM; 1219 } else if (ret < 0) { 1220 VM_WARN_ON_ONCE(1); 1221 } 1222 1223 /* We've captured and resolved the error. Reset, try again. */ 1224 ret = 0; 1225 1226 if (addr != end) 1227 goto again; 1228 out: 1229 if (unlikely(prealloc)) 1230 folio_put(prealloc); 1231 return ret; 1232 } 1233 1234 static inline int 1235 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1236 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1237 unsigned long end) 1238 { 1239 struct mm_struct *dst_mm = dst_vma->vm_mm; 1240 struct mm_struct *src_mm = src_vma->vm_mm; 1241 pmd_t *src_pmd, *dst_pmd; 1242 unsigned long next; 1243 1244 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1245 if (!dst_pmd) 1246 return -ENOMEM; 1247 src_pmd = pmd_offset(src_pud, addr); 1248 do { 1249 next = pmd_addr_end(addr, end); 1250 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1251 || pmd_devmap(*src_pmd)) { 1252 int err; 1253 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1254 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1255 addr, dst_vma, src_vma); 1256 if (err == -ENOMEM) 1257 return -ENOMEM; 1258 if (!err) 1259 continue; 1260 /* fall through */ 1261 } 1262 if (pmd_none_or_clear_bad(src_pmd)) 1263 continue; 1264 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1265 addr, next)) 1266 return -ENOMEM; 1267 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1268 return 0; 1269 } 1270 1271 static inline int 1272 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1273 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1274 unsigned long end) 1275 { 1276 struct mm_struct *dst_mm = dst_vma->vm_mm; 1277 struct mm_struct *src_mm = src_vma->vm_mm; 1278 pud_t *src_pud, *dst_pud; 1279 unsigned long next; 1280 1281 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1282 if (!dst_pud) 1283 return -ENOMEM; 1284 src_pud = pud_offset(src_p4d, addr); 1285 do { 1286 next = pud_addr_end(addr, end); 1287 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1288 int err; 1289 1290 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1291 err = copy_huge_pud(dst_mm, src_mm, 1292 dst_pud, src_pud, addr, src_vma); 1293 if (err == -ENOMEM) 1294 return -ENOMEM; 1295 if (!err) 1296 continue; 1297 /* fall through */ 1298 } 1299 if (pud_none_or_clear_bad(src_pud)) 1300 continue; 1301 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1302 addr, next)) 1303 return -ENOMEM; 1304 } while (dst_pud++, src_pud++, addr = next, addr != end); 1305 return 0; 1306 } 1307 1308 static inline int 1309 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1310 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1311 unsigned long end) 1312 { 1313 struct mm_struct *dst_mm = dst_vma->vm_mm; 1314 p4d_t *src_p4d, *dst_p4d; 1315 unsigned long next; 1316 1317 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1318 if (!dst_p4d) 1319 return -ENOMEM; 1320 src_p4d = p4d_offset(src_pgd, addr); 1321 do { 1322 next = p4d_addr_end(addr, end); 1323 if (p4d_none_or_clear_bad(src_p4d)) 1324 continue; 1325 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1326 addr, next)) 1327 return -ENOMEM; 1328 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1329 return 0; 1330 } 1331 1332 /* 1333 * Return true if the vma needs to copy the pgtable during this fork(). Return 1334 * false when we can speed up fork() by allowing lazy page faults later until 1335 * when the child accesses the memory range. 1336 */ 1337 static bool 1338 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1339 { 1340 /* 1341 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1342 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1343 * contains uffd-wp protection information, that's something we can't 1344 * retrieve from page cache, and skip copying will lose those info. 1345 */ 1346 if (userfaultfd_wp(dst_vma)) 1347 return true; 1348 1349 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1350 return true; 1351 1352 if (src_vma->anon_vma) 1353 return true; 1354 1355 /* 1356 * Don't copy ptes where a page fault will fill them correctly. Fork 1357 * becomes much lighter when there are big shared or private readonly 1358 * mappings. The tradeoff is that copy_page_range is more efficient 1359 * than faulting. 1360 */ 1361 return false; 1362 } 1363 1364 int 1365 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1366 { 1367 pgd_t *src_pgd, *dst_pgd; 1368 unsigned long addr = src_vma->vm_start; 1369 unsigned long end = src_vma->vm_end; 1370 struct mm_struct *dst_mm = dst_vma->vm_mm; 1371 struct mm_struct *src_mm = src_vma->vm_mm; 1372 struct mmu_notifier_range range; 1373 unsigned long next, pfn = 0; 1374 bool is_cow; 1375 int ret; 1376 1377 if (!vma_needs_copy(dst_vma, src_vma)) 1378 return 0; 1379 1380 if (is_vm_hugetlb_page(src_vma)) 1381 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1382 1383 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1384 ret = track_pfn_copy(dst_vma, src_vma, &pfn); 1385 if (ret) 1386 return ret; 1387 } 1388 1389 /* 1390 * We need to invalidate the secondary MMU mappings only when 1391 * there could be a permission downgrade on the ptes of the 1392 * parent mm. And a permission downgrade will only happen if 1393 * is_cow_mapping() returns true. 1394 */ 1395 is_cow = is_cow_mapping(src_vma->vm_flags); 1396 1397 if (is_cow) { 1398 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1399 0, src_mm, addr, end); 1400 mmu_notifier_invalidate_range_start(&range); 1401 /* 1402 * Disabling preemption is not needed for the write side, as 1403 * the read side doesn't spin, but goes to the mmap_lock. 1404 * 1405 * Use the raw variant of the seqcount_t write API to avoid 1406 * lockdep complaining about preemptibility. 1407 */ 1408 vma_assert_write_locked(src_vma); 1409 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1410 } 1411 1412 ret = 0; 1413 dst_pgd = pgd_offset(dst_mm, addr); 1414 src_pgd = pgd_offset(src_mm, addr); 1415 do { 1416 next = pgd_addr_end(addr, end); 1417 if (pgd_none_or_clear_bad(src_pgd)) 1418 continue; 1419 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1420 addr, next))) { 1421 ret = -ENOMEM; 1422 break; 1423 } 1424 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1425 1426 if (is_cow) { 1427 raw_write_seqcount_end(&src_mm->write_protect_seq); 1428 mmu_notifier_invalidate_range_end(&range); 1429 } 1430 if (ret && unlikely(src_vma->vm_flags & VM_PFNMAP)) 1431 untrack_pfn_copy(dst_vma, pfn); 1432 return ret; 1433 } 1434 1435 /* Whether we should zap all COWed (private) pages too */ 1436 static inline bool should_zap_cows(struct zap_details *details) 1437 { 1438 /* By default, zap all pages */ 1439 if (!details || details->reclaim_pt) 1440 return true; 1441 1442 /* Or, we zap COWed pages only if the caller wants to */ 1443 return details->even_cows; 1444 } 1445 1446 /* Decides whether we should zap this folio with the folio pointer specified */ 1447 static inline bool should_zap_folio(struct zap_details *details, 1448 struct folio *folio) 1449 { 1450 /* If we can make a decision without *folio.. */ 1451 if (should_zap_cows(details)) 1452 return true; 1453 1454 /* Otherwise we should only zap non-anon folios */ 1455 return !folio_test_anon(folio); 1456 } 1457 1458 static inline bool zap_drop_markers(struct zap_details *details) 1459 { 1460 if (!details) 1461 return false; 1462 1463 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1464 } 1465 1466 /* 1467 * This function makes sure that we'll replace the none pte with an uffd-wp 1468 * swap special pte marker when necessary. Must be with the pgtable lock held. 1469 * 1470 * Returns true if uffd-wp ptes was installed, false otherwise. 1471 */ 1472 static inline bool 1473 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1474 unsigned long addr, pte_t *pte, int nr, 1475 struct zap_details *details, pte_t pteval) 1476 { 1477 bool was_installed = false; 1478 1479 #ifdef CONFIG_PTE_MARKER_UFFD_WP 1480 /* Zap on anonymous always means dropping everything */ 1481 if (vma_is_anonymous(vma)) 1482 return false; 1483 1484 if (zap_drop_markers(details)) 1485 return false; 1486 1487 for (;;) { 1488 /* the PFN in the PTE is irrelevant. */ 1489 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval)) 1490 was_installed = true; 1491 if (--nr == 0) 1492 break; 1493 pte++; 1494 addr += PAGE_SIZE; 1495 } 1496 #endif 1497 return was_installed; 1498 } 1499 1500 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb, 1501 struct vm_area_struct *vma, struct folio *folio, 1502 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr, 1503 unsigned long addr, struct zap_details *details, int *rss, 1504 bool *force_flush, bool *force_break, bool *any_skipped) 1505 { 1506 struct mm_struct *mm = tlb->mm; 1507 bool delay_rmap = false; 1508 1509 if (!folio_test_anon(folio)) { 1510 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1511 if (pte_dirty(ptent)) { 1512 folio_mark_dirty(folio); 1513 if (tlb_delay_rmap(tlb)) { 1514 delay_rmap = true; 1515 *force_flush = true; 1516 } 1517 } 1518 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1519 folio_mark_accessed(folio); 1520 rss[mm_counter(folio)] -= nr; 1521 } else { 1522 /* We don't need up-to-date accessed/dirty bits. */ 1523 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm); 1524 rss[MM_ANONPAGES] -= nr; 1525 } 1526 /* Checking a single PTE in a batch is sufficient. */ 1527 arch_check_zapped_pte(vma, ptent); 1528 tlb_remove_tlb_entries(tlb, pte, nr, addr); 1529 if (unlikely(userfaultfd_pte_wp(vma, ptent))) 1530 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, 1531 nr, details, ptent); 1532 1533 if (!delay_rmap) { 1534 folio_remove_rmap_ptes(folio, page, nr, vma); 1535 1536 if (unlikely(folio_mapcount(folio) < 0)) 1537 print_bad_pte(vma, addr, ptent, page); 1538 } 1539 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) { 1540 *force_flush = true; 1541 *force_break = true; 1542 } 1543 } 1544 1545 /* 1546 * Zap or skip at least one present PTE, trying to batch-process subsequent 1547 * PTEs that map consecutive pages of the same folio. 1548 * 1549 * Returns the number of processed (skipped or zapped) PTEs (at least 1). 1550 */ 1551 static inline int zap_present_ptes(struct mmu_gather *tlb, 1552 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1553 unsigned int max_nr, unsigned long addr, 1554 struct zap_details *details, int *rss, bool *force_flush, 1555 bool *force_break, bool *any_skipped) 1556 { 1557 const fpb_t fpb_flags = FPB_IGNORE_DIRTY | FPB_IGNORE_SOFT_DIRTY; 1558 struct mm_struct *mm = tlb->mm; 1559 struct folio *folio; 1560 struct page *page; 1561 int nr; 1562 1563 page = vm_normal_page(vma, addr, ptent); 1564 if (!page) { 1565 /* We don't need up-to-date accessed/dirty bits. */ 1566 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm); 1567 arch_check_zapped_pte(vma, ptent); 1568 tlb_remove_tlb_entry(tlb, pte, addr); 1569 if (userfaultfd_pte_wp(vma, ptent)) 1570 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, 1571 pte, 1, details, ptent); 1572 ksm_might_unmap_zero_page(mm, ptent); 1573 return 1; 1574 } 1575 1576 folio = page_folio(page); 1577 if (unlikely(!should_zap_folio(details, folio))) { 1578 *any_skipped = true; 1579 return 1; 1580 } 1581 1582 /* 1583 * Make sure that the common "small folio" case is as fast as possible 1584 * by keeping the batching logic separate. 1585 */ 1586 if (unlikely(folio_test_large(folio) && max_nr != 1)) { 1587 nr = folio_pte_batch(folio, addr, pte, ptent, max_nr, fpb_flags, 1588 NULL, NULL, NULL); 1589 1590 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr, 1591 addr, details, rss, force_flush, 1592 force_break, any_skipped); 1593 return nr; 1594 } 1595 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr, 1596 details, rss, force_flush, force_break, any_skipped); 1597 return 1; 1598 } 1599 1600 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb, 1601 struct vm_area_struct *vma, pte_t *pte, pte_t ptent, 1602 unsigned int max_nr, unsigned long addr, 1603 struct zap_details *details, int *rss, bool *any_skipped) 1604 { 1605 swp_entry_t entry; 1606 int nr = 1; 1607 1608 *any_skipped = true; 1609 entry = pte_to_swp_entry(ptent); 1610 if (is_device_private_entry(entry) || 1611 is_device_exclusive_entry(entry)) { 1612 struct page *page = pfn_swap_entry_to_page(entry); 1613 struct folio *folio = page_folio(page); 1614 1615 if (unlikely(!should_zap_folio(details, folio))) 1616 return 1; 1617 /* 1618 * Both device private/exclusive mappings should only 1619 * work with anonymous page so far, so we don't need to 1620 * consider uffd-wp bit when zap. For more information, 1621 * see zap_install_uffd_wp_if_needed(). 1622 */ 1623 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1624 rss[mm_counter(folio)]--; 1625 folio_remove_rmap_pte(folio, page, vma); 1626 folio_put(folio); 1627 } else if (!non_swap_entry(entry)) { 1628 /* Genuine swap entries, hence a private anon pages */ 1629 if (!should_zap_cows(details)) 1630 return 1; 1631 1632 nr = swap_pte_batch(pte, max_nr, ptent); 1633 rss[MM_SWAPENTS] -= nr; 1634 free_swap_and_cache_nr(entry, nr); 1635 } else if (is_migration_entry(entry)) { 1636 struct folio *folio = pfn_swap_entry_folio(entry); 1637 1638 if (!should_zap_folio(details, folio)) 1639 return 1; 1640 rss[mm_counter(folio)]--; 1641 } else if (pte_marker_entry_uffd_wp(entry)) { 1642 /* 1643 * For anon: always drop the marker; for file: only 1644 * drop the marker if explicitly requested. 1645 */ 1646 if (!vma_is_anonymous(vma) && !zap_drop_markers(details)) 1647 return 1; 1648 } else if (is_guard_swp_entry(entry)) { 1649 /* 1650 * Ordinary zapping should not remove guard PTE 1651 * markers. Only do so if we should remove PTE markers 1652 * in general. 1653 */ 1654 if (!zap_drop_markers(details)) 1655 return 1; 1656 } else if (is_hwpoison_entry(entry) || is_poisoned_swp_entry(entry)) { 1657 if (!should_zap_cows(details)) 1658 return 1; 1659 } else { 1660 /* We should have covered all the swap entry types */ 1661 pr_alert("unrecognized swap entry 0x%lx\n", entry.val); 1662 WARN_ON_ONCE(1); 1663 } 1664 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm); 1665 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent); 1666 1667 return nr; 1668 } 1669 1670 static inline int do_zap_pte_range(struct mmu_gather *tlb, 1671 struct vm_area_struct *vma, pte_t *pte, 1672 unsigned long addr, unsigned long end, 1673 struct zap_details *details, int *rss, 1674 bool *force_flush, bool *force_break, 1675 bool *any_skipped) 1676 { 1677 pte_t ptent = ptep_get(pte); 1678 int max_nr = (end - addr) / PAGE_SIZE; 1679 int nr = 0; 1680 1681 /* Skip all consecutive none ptes */ 1682 if (pte_none(ptent)) { 1683 for (nr = 1; nr < max_nr; nr++) { 1684 ptent = ptep_get(pte + nr); 1685 if (!pte_none(ptent)) 1686 break; 1687 } 1688 max_nr -= nr; 1689 if (!max_nr) 1690 return nr; 1691 pte += nr; 1692 addr += nr * PAGE_SIZE; 1693 } 1694 1695 if (pte_present(ptent)) 1696 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr, 1697 details, rss, force_flush, force_break, 1698 any_skipped); 1699 else 1700 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr, 1701 details, rss, any_skipped); 1702 1703 return nr; 1704 } 1705 1706 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1707 struct vm_area_struct *vma, pmd_t *pmd, 1708 unsigned long addr, unsigned long end, 1709 struct zap_details *details) 1710 { 1711 bool force_flush = false, force_break = false; 1712 struct mm_struct *mm = tlb->mm; 1713 int rss[NR_MM_COUNTERS]; 1714 spinlock_t *ptl; 1715 pte_t *start_pte; 1716 pte_t *pte; 1717 pmd_t pmdval; 1718 unsigned long start = addr; 1719 bool can_reclaim_pt = reclaim_pt_is_enabled(start, end, details); 1720 bool direct_reclaim = true; 1721 int nr; 1722 1723 retry: 1724 tlb_change_page_size(tlb, PAGE_SIZE); 1725 init_rss_vec(rss); 1726 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1727 if (!pte) 1728 return addr; 1729 1730 flush_tlb_batched_pending(mm); 1731 arch_enter_lazy_mmu_mode(); 1732 do { 1733 bool any_skipped = false; 1734 1735 if (need_resched()) { 1736 direct_reclaim = false; 1737 break; 1738 } 1739 1740 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss, 1741 &force_flush, &force_break, &any_skipped); 1742 if (any_skipped) 1743 can_reclaim_pt = false; 1744 if (unlikely(force_break)) { 1745 addr += nr * PAGE_SIZE; 1746 direct_reclaim = false; 1747 break; 1748 } 1749 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end); 1750 1751 /* 1752 * Fast path: try to hold the pmd lock and unmap the PTE page. 1753 * 1754 * If the pte lock was released midway (retry case), or if the attempt 1755 * to hold the pmd lock failed, then we need to recheck all pte entries 1756 * to ensure they are still none, thereby preventing the pte entries 1757 * from being repopulated by another thread. 1758 */ 1759 if (can_reclaim_pt && direct_reclaim && addr == end) 1760 direct_reclaim = try_get_and_clear_pmd(mm, pmd, &pmdval); 1761 1762 add_mm_rss_vec(mm, rss); 1763 arch_leave_lazy_mmu_mode(); 1764 1765 /* Do the actual TLB flush before dropping ptl */ 1766 if (force_flush) { 1767 tlb_flush_mmu_tlbonly(tlb); 1768 tlb_flush_rmaps(tlb, vma); 1769 } 1770 pte_unmap_unlock(start_pte, ptl); 1771 1772 /* 1773 * If we forced a TLB flush (either due to running out of 1774 * batch buffers or because we needed to flush dirty TLB 1775 * entries before releasing the ptl), free the batched 1776 * memory too. Come back again if we didn't do everything. 1777 */ 1778 if (force_flush) 1779 tlb_flush_mmu(tlb); 1780 1781 if (addr != end) { 1782 cond_resched(); 1783 force_flush = false; 1784 force_break = false; 1785 goto retry; 1786 } 1787 1788 if (can_reclaim_pt) { 1789 if (direct_reclaim) 1790 free_pte(mm, start, tlb, pmdval); 1791 else 1792 try_to_free_pte(mm, pmd, start, tlb); 1793 } 1794 1795 return addr; 1796 } 1797 1798 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1799 struct vm_area_struct *vma, pud_t *pud, 1800 unsigned long addr, unsigned long end, 1801 struct zap_details *details) 1802 { 1803 pmd_t *pmd; 1804 unsigned long next; 1805 1806 pmd = pmd_offset(pud, addr); 1807 do { 1808 next = pmd_addr_end(addr, end); 1809 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1810 if (next - addr != HPAGE_PMD_SIZE) 1811 __split_huge_pmd(vma, pmd, addr, false, NULL); 1812 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1813 addr = next; 1814 continue; 1815 } 1816 /* fall through */ 1817 } else if (details && details->single_folio && 1818 folio_test_pmd_mappable(details->single_folio) && 1819 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1820 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1821 /* 1822 * Take and drop THP pmd lock so that we cannot return 1823 * prematurely, while zap_huge_pmd() has cleared *pmd, 1824 * but not yet decremented compound_mapcount(). 1825 */ 1826 spin_unlock(ptl); 1827 } 1828 if (pmd_none(*pmd)) { 1829 addr = next; 1830 continue; 1831 } 1832 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1833 if (addr != next) 1834 pmd--; 1835 } while (pmd++, cond_resched(), addr != end); 1836 1837 return addr; 1838 } 1839 1840 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1841 struct vm_area_struct *vma, p4d_t *p4d, 1842 unsigned long addr, unsigned long end, 1843 struct zap_details *details) 1844 { 1845 pud_t *pud; 1846 unsigned long next; 1847 1848 pud = pud_offset(p4d, addr); 1849 do { 1850 next = pud_addr_end(addr, end); 1851 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1852 if (next - addr != HPAGE_PUD_SIZE) { 1853 mmap_assert_locked(tlb->mm); 1854 split_huge_pud(vma, pud, addr); 1855 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1856 goto next; 1857 /* fall through */ 1858 } 1859 if (pud_none_or_clear_bad(pud)) 1860 continue; 1861 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1862 next: 1863 cond_resched(); 1864 } while (pud++, addr = next, addr != end); 1865 1866 return addr; 1867 } 1868 1869 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1870 struct vm_area_struct *vma, pgd_t *pgd, 1871 unsigned long addr, unsigned long end, 1872 struct zap_details *details) 1873 { 1874 p4d_t *p4d; 1875 unsigned long next; 1876 1877 p4d = p4d_offset(pgd, addr); 1878 do { 1879 next = p4d_addr_end(addr, end); 1880 if (p4d_none_or_clear_bad(p4d)) 1881 continue; 1882 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1883 } while (p4d++, addr = next, addr != end); 1884 1885 return addr; 1886 } 1887 1888 void unmap_page_range(struct mmu_gather *tlb, 1889 struct vm_area_struct *vma, 1890 unsigned long addr, unsigned long end, 1891 struct zap_details *details) 1892 { 1893 pgd_t *pgd; 1894 unsigned long next; 1895 1896 BUG_ON(addr >= end); 1897 tlb_start_vma(tlb, vma); 1898 pgd = pgd_offset(vma->vm_mm, addr); 1899 do { 1900 next = pgd_addr_end(addr, end); 1901 if (pgd_none_or_clear_bad(pgd)) 1902 continue; 1903 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1904 } while (pgd++, addr = next, addr != end); 1905 tlb_end_vma(tlb, vma); 1906 } 1907 1908 1909 static void unmap_single_vma(struct mmu_gather *tlb, 1910 struct vm_area_struct *vma, unsigned long start_addr, 1911 unsigned long end_addr, 1912 struct zap_details *details, bool mm_wr_locked) 1913 { 1914 unsigned long start = max(vma->vm_start, start_addr); 1915 unsigned long end; 1916 1917 if (start >= vma->vm_end) 1918 return; 1919 end = min(vma->vm_end, end_addr); 1920 if (end <= vma->vm_start) 1921 return; 1922 1923 if (vma->vm_file) 1924 uprobe_munmap(vma, start, end); 1925 1926 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1927 untrack_pfn(vma, 0, 0, mm_wr_locked); 1928 1929 if (start != end) { 1930 if (unlikely(is_vm_hugetlb_page(vma))) { 1931 /* 1932 * It is undesirable to test vma->vm_file as it 1933 * should be non-null for valid hugetlb area. 1934 * However, vm_file will be NULL in the error 1935 * cleanup path of mmap_region. When 1936 * hugetlbfs ->mmap method fails, 1937 * mmap_region() nullifies vma->vm_file 1938 * before calling this function to clean up. 1939 * Since no pte has actually been setup, it is 1940 * safe to do nothing in this case. 1941 */ 1942 if (vma->vm_file) { 1943 zap_flags_t zap_flags = details ? 1944 details->zap_flags : 0; 1945 __unmap_hugepage_range(tlb, vma, start, end, 1946 NULL, zap_flags); 1947 } 1948 } else 1949 unmap_page_range(tlb, vma, start, end, details); 1950 } 1951 } 1952 1953 /** 1954 * unmap_vmas - unmap a range of memory covered by a list of vma's 1955 * @tlb: address of the caller's struct mmu_gather 1956 * @mas: the maple state 1957 * @vma: the starting vma 1958 * @start_addr: virtual address at which to start unmapping 1959 * @end_addr: virtual address at which to end unmapping 1960 * @tree_end: The maximum index to check 1961 * @mm_wr_locked: lock flag 1962 * 1963 * Unmap all pages in the vma list. 1964 * 1965 * Only addresses between `start' and `end' will be unmapped. 1966 * 1967 * The VMA list must be sorted in ascending virtual address order. 1968 * 1969 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1970 * range after unmap_vmas() returns. So the only responsibility here is to 1971 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1972 * drops the lock and schedules. 1973 */ 1974 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1975 struct vm_area_struct *vma, unsigned long start_addr, 1976 unsigned long end_addr, unsigned long tree_end, 1977 bool mm_wr_locked) 1978 { 1979 struct mmu_notifier_range range; 1980 struct zap_details details = { 1981 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1982 /* Careful - we need to zap private pages too! */ 1983 .even_cows = true, 1984 }; 1985 1986 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1987 start_addr, end_addr); 1988 mmu_notifier_invalidate_range_start(&range); 1989 do { 1990 unsigned long start = start_addr; 1991 unsigned long end = end_addr; 1992 hugetlb_zap_begin(vma, &start, &end); 1993 unmap_single_vma(tlb, vma, start, end, &details, 1994 mm_wr_locked); 1995 hugetlb_zap_end(vma, &details); 1996 vma = mas_find(mas, tree_end - 1); 1997 } while (vma && likely(!xa_is_zero(vma))); 1998 mmu_notifier_invalidate_range_end(&range); 1999 } 2000 2001 /** 2002 * zap_page_range_single - remove user pages in a given range 2003 * @vma: vm_area_struct holding the applicable pages 2004 * @address: starting address of pages to zap 2005 * @size: number of bytes to zap 2006 * @details: details of shared cache invalidation 2007 * 2008 * The range must fit into one VMA. 2009 */ 2010 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2011 unsigned long size, struct zap_details *details) 2012 { 2013 const unsigned long end = address + size; 2014 struct mmu_notifier_range range; 2015 struct mmu_gather tlb; 2016 2017 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 2018 address, end); 2019 hugetlb_zap_begin(vma, &range.start, &range.end); 2020 tlb_gather_mmu(&tlb, vma->vm_mm); 2021 update_hiwater_rss(vma->vm_mm); 2022 mmu_notifier_invalidate_range_start(&range); 2023 /* 2024 * unmap 'address-end' not 'range.start-range.end' as range 2025 * could have been expanded for hugetlb pmd sharing. 2026 */ 2027 unmap_single_vma(&tlb, vma, address, end, details, false); 2028 mmu_notifier_invalidate_range_end(&range); 2029 tlb_finish_mmu(&tlb); 2030 hugetlb_zap_end(vma, details); 2031 } 2032 2033 /** 2034 * zap_vma_ptes - remove ptes mapping the vma 2035 * @vma: vm_area_struct holding ptes to be zapped 2036 * @address: starting address of pages to zap 2037 * @size: number of bytes to zap 2038 * 2039 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 2040 * 2041 * The entire address range must be fully contained within the vma. 2042 * 2043 */ 2044 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2045 unsigned long size) 2046 { 2047 if (!range_in_vma(vma, address, address + size) || 2048 !(vma->vm_flags & VM_PFNMAP)) 2049 return; 2050 2051 zap_page_range_single(vma, address, size, NULL); 2052 } 2053 EXPORT_SYMBOL_GPL(zap_vma_ptes); 2054 2055 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 2056 { 2057 pgd_t *pgd; 2058 p4d_t *p4d; 2059 pud_t *pud; 2060 pmd_t *pmd; 2061 2062 pgd = pgd_offset(mm, addr); 2063 p4d = p4d_alloc(mm, pgd, addr); 2064 if (!p4d) 2065 return NULL; 2066 pud = pud_alloc(mm, p4d, addr); 2067 if (!pud) 2068 return NULL; 2069 pmd = pmd_alloc(mm, pud, addr); 2070 if (!pmd) 2071 return NULL; 2072 2073 VM_BUG_ON(pmd_trans_huge(*pmd)); 2074 return pmd; 2075 } 2076 2077 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2078 spinlock_t **ptl) 2079 { 2080 pmd_t *pmd = walk_to_pmd(mm, addr); 2081 2082 if (!pmd) 2083 return NULL; 2084 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2085 } 2086 2087 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma) 2088 { 2089 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP); 2090 /* 2091 * Whoever wants to forbid the zeropage after some zeropages 2092 * might already have been mapped has to scan the page tables and 2093 * bail out on any zeropages. Zeropages in COW mappings can 2094 * be unshared using FAULT_FLAG_UNSHARE faults. 2095 */ 2096 if (mm_forbids_zeropage(vma->vm_mm)) 2097 return false; 2098 /* zeropages in COW mappings are common and unproblematic. */ 2099 if (is_cow_mapping(vma->vm_flags)) 2100 return true; 2101 /* Mappings that do not allow for writable PTEs are unproblematic. */ 2102 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE))) 2103 return true; 2104 /* 2105 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could 2106 * find the shared zeropage and longterm-pin it, which would 2107 * be problematic as soon as the zeropage gets replaced by a different 2108 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would 2109 * now differ to what GUP looked up. FSDAX is incompatible to 2110 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see 2111 * check_vma_flags). 2112 */ 2113 return vma->vm_ops && vma->vm_ops->pfn_mkwrite && 2114 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO); 2115 } 2116 2117 static int validate_page_before_insert(struct vm_area_struct *vma, 2118 struct page *page) 2119 { 2120 struct folio *folio = page_folio(page); 2121 2122 if (!folio_ref_count(folio)) 2123 return -EINVAL; 2124 if (unlikely(is_zero_folio(folio))) { 2125 if (!vm_mixed_zeropage_allowed(vma)) 2126 return -EINVAL; 2127 return 0; 2128 } 2129 if (folio_test_anon(folio) || folio_test_slab(folio) || 2130 page_has_type(page)) 2131 return -EINVAL; 2132 flush_dcache_folio(folio); 2133 return 0; 2134 } 2135 2136 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 2137 unsigned long addr, struct page *page, 2138 pgprot_t prot, bool mkwrite) 2139 { 2140 struct folio *folio = page_folio(page); 2141 pte_t pteval = ptep_get(pte); 2142 2143 if (!pte_none(pteval)) { 2144 if (!mkwrite) 2145 return -EBUSY; 2146 2147 /* see insert_pfn(). */ 2148 if (pte_pfn(pteval) != page_to_pfn(page)) { 2149 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval))); 2150 return -EFAULT; 2151 } 2152 pteval = maybe_mkwrite(pteval, vma); 2153 pteval = pte_mkyoung(pteval); 2154 if (ptep_set_access_flags(vma, addr, pte, pteval, 1)) 2155 update_mmu_cache(vma, addr, pte); 2156 return 0; 2157 } 2158 2159 /* Ok, finally just insert the thing.. */ 2160 pteval = mk_pte(page, prot); 2161 if (unlikely(is_zero_folio(folio))) { 2162 pteval = pte_mkspecial(pteval); 2163 } else { 2164 folio_get(folio); 2165 pteval = mk_pte(page, prot); 2166 if (mkwrite) { 2167 pteval = pte_mkyoung(pteval); 2168 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma); 2169 } 2170 inc_mm_counter(vma->vm_mm, mm_counter_file(folio)); 2171 folio_add_file_rmap_pte(folio, page, vma); 2172 } 2173 set_pte_at(vma->vm_mm, addr, pte, pteval); 2174 return 0; 2175 } 2176 2177 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2178 struct page *page, pgprot_t prot, bool mkwrite) 2179 { 2180 int retval; 2181 pte_t *pte; 2182 spinlock_t *ptl; 2183 2184 retval = validate_page_before_insert(vma, page); 2185 if (retval) 2186 goto out; 2187 retval = -ENOMEM; 2188 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 2189 if (!pte) 2190 goto out; 2191 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot, 2192 mkwrite); 2193 pte_unmap_unlock(pte, ptl); 2194 out: 2195 return retval; 2196 } 2197 2198 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 2199 unsigned long addr, struct page *page, pgprot_t prot) 2200 { 2201 int err; 2202 2203 err = validate_page_before_insert(vma, page); 2204 if (err) 2205 return err; 2206 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false); 2207 } 2208 2209 /* insert_pages() amortizes the cost of spinlock operations 2210 * when inserting pages in a loop. 2211 */ 2212 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 2213 struct page **pages, unsigned long *num, pgprot_t prot) 2214 { 2215 pmd_t *pmd = NULL; 2216 pte_t *start_pte, *pte; 2217 spinlock_t *pte_lock; 2218 struct mm_struct *const mm = vma->vm_mm; 2219 unsigned long curr_page_idx = 0; 2220 unsigned long remaining_pages_total = *num; 2221 unsigned long pages_to_write_in_pmd; 2222 int ret; 2223 more: 2224 ret = -EFAULT; 2225 pmd = walk_to_pmd(mm, addr); 2226 if (!pmd) 2227 goto out; 2228 2229 pages_to_write_in_pmd = min_t(unsigned long, 2230 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 2231 2232 /* Allocate the PTE if necessary; takes PMD lock once only. */ 2233 ret = -ENOMEM; 2234 if (pte_alloc(mm, pmd)) 2235 goto out; 2236 2237 while (pages_to_write_in_pmd) { 2238 int pte_idx = 0; 2239 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 2240 2241 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 2242 if (!start_pte) { 2243 ret = -EFAULT; 2244 goto out; 2245 } 2246 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 2247 int err = insert_page_in_batch_locked(vma, pte, 2248 addr, pages[curr_page_idx], prot); 2249 if (unlikely(err)) { 2250 pte_unmap_unlock(start_pte, pte_lock); 2251 ret = err; 2252 remaining_pages_total -= pte_idx; 2253 goto out; 2254 } 2255 addr += PAGE_SIZE; 2256 ++curr_page_idx; 2257 } 2258 pte_unmap_unlock(start_pte, pte_lock); 2259 pages_to_write_in_pmd -= batch_size; 2260 remaining_pages_total -= batch_size; 2261 } 2262 if (remaining_pages_total) 2263 goto more; 2264 ret = 0; 2265 out: 2266 *num = remaining_pages_total; 2267 return ret; 2268 } 2269 2270 /** 2271 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 2272 * @vma: user vma to map to 2273 * @addr: target start user address of these pages 2274 * @pages: source kernel pages 2275 * @num: in: number of pages to map. out: number of pages that were *not* 2276 * mapped. (0 means all pages were successfully mapped). 2277 * 2278 * Preferred over vm_insert_page() when inserting multiple pages. 2279 * 2280 * In case of error, we may have mapped a subset of the provided 2281 * pages. It is the caller's responsibility to account for this case. 2282 * 2283 * The same restrictions apply as in vm_insert_page(). 2284 */ 2285 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2286 struct page **pages, unsigned long *num) 2287 { 2288 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 2289 2290 if (addr < vma->vm_start || end_addr >= vma->vm_end) 2291 return -EFAULT; 2292 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2293 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2294 BUG_ON(vma->vm_flags & VM_PFNMAP); 2295 vm_flags_set(vma, VM_MIXEDMAP); 2296 } 2297 /* Defer page refcount checking till we're about to map that page. */ 2298 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 2299 } 2300 EXPORT_SYMBOL(vm_insert_pages); 2301 2302 /** 2303 * vm_insert_page - insert single page into user vma 2304 * @vma: user vma to map to 2305 * @addr: target user address of this page 2306 * @page: source kernel page 2307 * 2308 * This allows drivers to insert individual pages they've allocated 2309 * into a user vma. The zeropage is supported in some VMAs, 2310 * see vm_mixed_zeropage_allowed(). 2311 * 2312 * The page has to be a nice clean _individual_ kernel allocation. 2313 * If you allocate a compound page, you need to have marked it as 2314 * such (__GFP_COMP), or manually just split the page up yourself 2315 * (see split_page()). 2316 * 2317 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2318 * took an arbitrary page protection parameter. This doesn't allow 2319 * that. Your vma protection will have to be set up correctly, which 2320 * means that if you want a shared writable mapping, you'd better 2321 * ask for a shared writable mapping! 2322 * 2323 * The page does not need to be reserved. 2324 * 2325 * Usually this function is called from f_op->mmap() handler 2326 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2327 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2328 * function from other places, for example from page-fault handler. 2329 * 2330 * Return: %0 on success, negative error code otherwise. 2331 */ 2332 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2333 struct page *page) 2334 { 2335 if (addr < vma->vm_start || addr >= vma->vm_end) 2336 return -EFAULT; 2337 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2338 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2339 BUG_ON(vma->vm_flags & VM_PFNMAP); 2340 vm_flags_set(vma, VM_MIXEDMAP); 2341 } 2342 return insert_page(vma, addr, page, vma->vm_page_prot, false); 2343 } 2344 EXPORT_SYMBOL(vm_insert_page); 2345 2346 /* 2347 * __vm_map_pages - maps range of kernel pages into user vma 2348 * @vma: user vma to map to 2349 * @pages: pointer to array of source kernel pages 2350 * @num: number of pages in page array 2351 * @offset: user's requested vm_pgoff 2352 * 2353 * This allows drivers to map range of kernel pages into a user vma. 2354 * The zeropage is supported in some VMAs, see 2355 * vm_mixed_zeropage_allowed(). 2356 * 2357 * Return: 0 on success and error code otherwise. 2358 */ 2359 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2360 unsigned long num, unsigned long offset) 2361 { 2362 unsigned long count = vma_pages(vma); 2363 unsigned long uaddr = vma->vm_start; 2364 int ret, i; 2365 2366 /* Fail if the user requested offset is beyond the end of the object */ 2367 if (offset >= num) 2368 return -ENXIO; 2369 2370 /* Fail if the user requested size exceeds available object size */ 2371 if (count > num - offset) 2372 return -ENXIO; 2373 2374 for (i = 0; i < count; i++) { 2375 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2376 if (ret < 0) 2377 return ret; 2378 uaddr += PAGE_SIZE; 2379 } 2380 2381 return 0; 2382 } 2383 2384 /** 2385 * vm_map_pages - maps range of kernel pages starts with non zero offset 2386 * @vma: user vma to map to 2387 * @pages: pointer to array of source kernel pages 2388 * @num: number of pages in page array 2389 * 2390 * Maps an object consisting of @num pages, catering for the user's 2391 * requested vm_pgoff 2392 * 2393 * If we fail to insert any page into the vma, the function will return 2394 * immediately leaving any previously inserted pages present. Callers 2395 * from the mmap handler may immediately return the error as their caller 2396 * will destroy the vma, removing any successfully inserted pages. Other 2397 * callers should make their own arrangements for calling unmap_region(). 2398 * 2399 * Context: Process context. Called by mmap handlers. 2400 * Return: 0 on success and error code otherwise. 2401 */ 2402 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2403 unsigned long num) 2404 { 2405 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2406 } 2407 EXPORT_SYMBOL(vm_map_pages); 2408 2409 /** 2410 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2411 * @vma: user vma to map to 2412 * @pages: pointer to array of source kernel pages 2413 * @num: number of pages in page array 2414 * 2415 * Similar to vm_map_pages(), except that it explicitly sets the offset 2416 * to 0. This function is intended for the drivers that did not consider 2417 * vm_pgoff. 2418 * 2419 * Context: Process context. Called by mmap handlers. 2420 * Return: 0 on success and error code otherwise. 2421 */ 2422 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2423 unsigned long num) 2424 { 2425 return __vm_map_pages(vma, pages, num, 0); 2426 } 2427 EXPORT_SYMBOL(vm_map_pages_zero); 2428 2429 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2430 pfn_t pfn, pgprot_t prot, bool mkwrite) 2431 { 2432 struct mm_struct *mm = vma->vm_mm; 2433 pte_t *pte, entry; 2434 spinlock_t *ptl; 2435 2436 pte = get_locked_pte(mm, addr, &ptl); 2437 if (!pte) 2438 return VM_FAULT_OOM; 2439 entry = ptep_get(pte); 2440 if (!pte_none(entry)) { 2441 if (mkwrite) { 2442 /* 2443 * For read faults on private mappings the PFN passed 2444 * in may not match the PFN we have mapped if the 2445 * mapped PFN is a writeable COW page. In the mkwrite 2446 * case we are creating a writable PTE for a shared 2447 * mapping and we expect the PFNs to match. If they 2448 * don't match, we are likely racing with block 2449 * allocation and mapping invalidation so just skip the 2450 * update. 2451 */ 2452 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2453 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2454 goto out_unlock; 2455 } 2456 entry = pte_mkyoung(entry); 2457 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2458 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2459 update_mmu_cache(vma, addr, pte); 2460 } 2461 goto out_unlock; 2462 } 2463 2464 /* Ok, finally just insert the thing.. */ 2465 if (pfn_t_devmap(pfn)) 2466 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2467 else 2468 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2469 2470 if (mkwrite) { 2471 entry = pte_mkyoung(entry); 2472 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2473 } 2474 2475 set_pte_at(mm, addr, pte, entry); 2476 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2477 2478 out_unlock: 2479 pte_unmap_unlock(pte, ptl); 2480 return VM_FAULT_NOPAGE; 2481 } 2482 2483 /** 2484 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2485 * @vma: user vma to map to 2486 * @addr: target user address of this page 2487 * @pfn: source kernel pfn 2488 * @pgprot: pgprot flags for the inserted page 2489 * 2490 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2491 * to override pgprot on a per-page basis. 2492 * 2493 * This only makes sense for IO mappings, and it makes no sense for 2494 * COW mappings. In general, using multiple vmas is preferable; 2495 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2496 * impractical. 2497 * 2498 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2499 * caching- and encryption bits different than those of @vma->vm_page_prot, 2500 * because the caching- or encryption mode may not be known at mmap() time. 2501 * 2502 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2503 * to set caching and encryption bits for those vmas (except for COW pages). 2504 * This is ensured by core vm only modifying these page table entries using 2505 * functions that don't touch caching- or encryption bits, using pte_modify() 2506 * if needed. (See for example mprotect()). 2507 * 2508 * Also when new page-table entries are created, this is only done using the 2509 * fault() callback, and never using the value of vma->vm_page_prot, 2510 * except for page-table entries that point to anonymous pages as the result 2511 * of COW. 2512 * 2513 * Context: Process context. May allocate using %GFP_KERNEL. 2514 * Return: vm_fault_t value. 2515 */ 2516 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2517 unsigned long pfn, pgprot_t pgprot) 2518 { 2519 /* 2520 * Technically, architectures with pte_special can avoid all these 2521 * restrictions (same for remap_pfn_range). However we would like 2522 * consistency in testing and feature parity among all, so we should 2523 * try to keep these invariants in place for everybody. 2524 */ 2525 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2526 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2527 (VM_PFNMAP|VM_MIXEDMAP)); 2528 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2529 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2530 2531 if (addr < vma->vm_start || addr >= vma->vm_end) 2532 return VM_FAULT_SIGBUS; 2533 2534 if (!pfn_modify_allowed(pfn, pgprot)) 2535 return VM_FAULT_SIGBUS; 2536 2537 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2538 2539 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2540 false); 2541 } 2542 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2543 2544 /** 2545 * vmf_insert_pfn - insert single pfn into user vma 2546 * @vma: user vma to map to 2547 * @addr: target user address of this page 2548 * @pfn: source kernel pfn 2549 * 2550 * Similar to vm_insert_page, this allows drivers to insert individual pages 2551 * they've allocated into a user vma. Same comments apply. 2552 * 2553 * This function should only be called from a vm_ops->fault handler, and 2554 * in that case the handler should return the result of this function. 2555 * 2556 * vma cannot be a COW mapping. 2557 * 2558 * As this is called only for pages that do not currently exist, we 2559 * do not need to flush old virtual caches or the TLB. 2560 * 2561 * Context: Process context. May allocate using %GFP_KERNEL. 2562 * Return: vm_fault_t value. 2563 */ 2564 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2565 unsigned long pfn) 2566 { 2567 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2568 } 2569 EXPORT_SYMBOL(vmf_insert_pfn); 2570 2571 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn, bool mkwrite) 2572 { 2573 if (unlikely(is_zero_pfn(pfn_t_to_pfn(pfn))) && 2574 (mkwrite || !vm_mixed_zeropage_allowed(vma))) 2575 return false; 2576 /* these checks mirror the abort conditions in vm_normal_page */ 2577 if (vma->vm_flags & VM_MIXEDMAP) 2578 return true; 2579 if (pfn_t_devmap(pfn)) 2580 return true; 2581 if (pfn_t_special(pfn)) 2582 return true; 2583 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2584 return true; 2585 return false; 2586 } 2587 2588 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2589 unsigned long addr, pfn_t pfn, bool mkwrite) 2590 { 2591 pgprot_t pgprot = vma->vm_page_prot; 2592 int err; 2593 2594 if (!vm_mixed_ok(vma, pfn, mkwrite)) 2595 return VM_FAULT_SIGBUS; 2596 2597 if (addr < vma->vm_start || addr >= vma->vm_end) 2598 return VM_FAULT_SIGBUS; 2599 2600 track_pfn_insert(vma, &pgprot, pfn); 2601 2602 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2603 return VM_FAULT_SIGBUS; 2604 2605 /* 2606 * If we don't have pte special, then we have to use the pfn_valid() 2607 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2608 * refcount the page if pfn_valid is true (hence insert_page rather 2609 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2610 * without pte special, it would there be refcounted as a normal page. 2611 */ 2612 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2613 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2614 struct page *page; 2615 2616 /* 2617 * At this point we are committed to insert_page() 2618 * regardless of whether the caller specified flags that 2619 * result in pfn_t_has_page() == false. 2620 */ 2621 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2622 err = insert_page(vma, addr, page, pgprot, mkwrite); 2623 } else { 2624 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2625 } 2626 2627 if (err == -ENOMEM) 2628 return VM_FAULT_OOM; 2629 if (err < 0 && err != -EBUSY) 2630 return VM_FAULT_SIGBUS; 2631 2632 return VM_FAULT_NOPAGE; 2633 } 2634 2635 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 2636 bool write) 2637 { 2638 pgprot_t pgprot = vmf->vma->vm_page_prot; 2639 unsigned long addr = vmf->address; 2640 int err; 2641 2642 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end) 2643 return VM_FAULT_SIGBUS; 2644 2645 err = insert_page(vmf->vma, addr, page, pgprot, write); 2646 if (err == -ENOMEM) 2647 return VM_FAULT_OOM; 2648 if (err < 0 && err != -EBUSY) 2649 return VM_FAULT_SIGBUS; 2650 2651 return VM_FAULT_NOPAGE; 2652 } 2653 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite); 2654 2655 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2656 pfn_t pfn) 2657 { 2658 return __vm_insert_mixed(vma, addr, pfn, false); 2659 } 2660 EXPORT_SYMBOL(vmf_insert_mixed); 2661 2662 /* 2663 * If the insertion of PTE failed because someone else already added a 2664 * different entry in the mean time, we treat that as success as we assume 2665 * the same entry was actually inserted. 2666 */ 2667 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2668 unsigned long addr, pfn_t pfn) 2669 { 2670 return __vm_insert_mixed(vma, addr, pfn, true); 2671 } 2672 2673 /* 2674 * maps a range of physical memory into the requested pages. the old 2675 * mappings are removed. any references to nonexistent pages results 2676 * in null mappings (currently treated as "copy-on-access") 2677 */ 2678 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2679 unsigned long addr, unsigned long end, 2680 unsigned long pfn, pgprot_t prot) 2681 { 2682 pte_t *pte, *mapped_pte; 2683 spinlock_t *ptl; 2684 int err = 0; 2685 2686 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2687 if (!pte) 2688 return -ENOMEM; 2689 arch_enter_lazy_mmu_mode(); 2690 do { 2691 BUG_ON(!pte_none(ptep_get(pte))); 2692 if (!pfn_modify_allowed(pfn, prot)) { 2693 err = -EACCES; 2694 break; 2695 } 2696 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2697 pfn++; 2698 } while (pte++, addr += PAGE_SIZE, addr != end); 2699 arch_leave_lazy_mmu_mode(); 2700 pte_unmap_unlock(mapped_pte, ptl); 2701 return err; 2702 } 2703 2704 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2705 unsigned long addr, unsigned long end, 2706 unsigned long pfn, pgprot_t prot) 2707 { 2708 pmd_t *pmd; 2709 unsigned long next; 2710 int err; 2711 2712 pfn -= addr >> PAGE_SHIFT; 2713 pmd = pmd_alloc(mm, pud, addr); 2714 if (!pmd) 2715 return -ENOMEM; 2716 VM_BUG_ON(pmd_trans_huge(*pmd)); 2717 do { 2718 next = pmd_addr_end(addr, end); 2719 err = remap_pte_range(mm, pmd, addr, next, 2720 pfn + (addr >> PAGE_SHIFT), prot); 2721 if (err) 2722 return err; 2723 } while (pmd++, addr = next, addr != end); 2724 return 0; 2725 } 2726 2727 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2728 unsigned long addr, unsigned long end, 2729 unsigned long pfn, pgprot_t prot) 2730 { 2731 pud_t *pud; 2732 unsigned long next; 2733 int err; 2734 2735 pfn -= addr >> PAGE_SHIFT; 2736 pud = pud_alloc(mm, p4d, addr); 2737 if (!pud) 2738 return -ENOMEM; 2739 do { 2740 next = pud_addr_end(addr, end); 2741 err = remap_pmd_range(mm, pud, addr, next, 2742 pfn + (addr >> PAGE_SHIFT), prot); 2743 if (err) 2744 return err; 2745 } while (pud++, addr = next, addr != end); 2746 return 0; 2747 } 2748 2749 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2750 unsigned long addr, unsigned long end, 2751 unsigned long pfn, pgprot_t prot) 2752 { 2753 p4d_t *p4d; 2754 unsigned long next; 2755 int err; 2756 2757 pfn -= addr >> PAGE_SHIFT; 2758 p4d = p4d_alloc(mm, pgd, addr); 2759 if (!p4d) 2760 return -ENOMEM; 2761 do { 2762 next = p4d_addr_end(addr, end); 2763 err = remap_pud_range(mm, p4d, addr, next, 2764 pfn + (addr >> PAGE_SHIFT), prot); 2765 if (err) 2766 return err; 2767 } while (p4d++, addr = next, addr != end); 2768 return 0; 2769 } 2770 2771 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr, 2772 unsigned long pfn, unsigned long size, pgprot_t prot) 2773 { 2774 pgd_t *pgd; 2775 unsigned long next; 2776 unsigned long end = addr + PAGE_ALIGN(size); 2777 struct mm_struct *mm = vma->vm_mm; 2778 int err; 2779 2780 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2781 return -EINVAL; 2782 2783 /* 2784 * Physically remapped pages are special. Tell the 2785 * rest of the world about it: 2786 * VM_IO tells people not to look at these pages 2787 * (accesses can have side effects). 2788 * VM_PFNMAP tells the core MM that the base pages are just 2789 * raw PFN mappings, and do not have a "struct page" associated 2790 * with them. 2791 * VM_DONTEXPAND 2792 * Disable vma merging and expanding with mremap(). 2793 * VM_DONTDUMP 2794 * Omit vma from core dump, even when VM_IO turned off. 2795 * 2796 * There's a horrible special case to handle copy-on-write 2797 * behaviour that some programs depend on. We mark the "original" 2798 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2799 * See vm_normal_page() for details. 2800 */ 2801 if (is_cow_mapping(vma->vm_flags)) { 2802 if (addr != vma->vm_start || end != vma->vm_end) 2803 return -EINVAL; 2804 vma->vm_pgoff = pfn; 2805 } 2806 2807 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2808 2809 BUG_ON(addr >= end); 2810 pfn -= addr >> PAGE_SHIFT; 2811 pgd = pgd_offset(mm, addr); 2812 flush_cache_range(vma, addr, end); 2813 do { 2814 next = pgd_addr_end(addr, end); 2815 err = remap_p4d_range(mm, pgd, addr, next, 2816 pfn + (addr >> PAGE_SHIFT), prot); 2817 if (err) 2818 return err; 2819 } while (pgd++, addr = next, addr != end); 2820 2821 return 0; 2822 } 2823 2824 /* 2825 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2826 * must have pre-validated the caching bits of the pgprot_t. 2827 */ 2828 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2829 unsigned long pfn, unsigned long size, pgprot_t prot) 2830 { 2831 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot); 2832 2833 if (!error) 2834 return 0; 2835 2836 /* 2837 * A partial pfn range mapping is dangerous: it does not 2838 * maintain page reference counts, and callers may free 2839 * pages due to the error. So zap it early. 2840 */ 2841 zap_page_range_single(vma, addr, size, NULL); 2842 return error; 2843 } 2844 2845 /** 2846 * remap_pfn_range - remap kernel memory to userspace 2847 * @vma: user vma to map to 2848 * @addr: target page aligned user address to start at 2849 * @pfn: page frame number of kernel physical memory address 2850 * @size: size of mapping area 2851 * @prot: page protection flags for this mapping 2852 * 2853 * Note: this is only safe if the mm semaphore is held when called. 2854 * 2855 * Return: %0 on success, negative error code otherwise. 2856 */ 2857 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2858 unsigned long pfn, unsigned long size, pgprot_t prot) 2859 { 2860 int err; 2861 2862 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2863 if (err) 2864 return -EINVAL; 2865 2866 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2867 if (err) 2868 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2869 return err; 2870 } 2871 EXPORT_SYMBOL(remap_pfn_range); 2872 2873 /** 2874 * vm_iomap_memory - remap memory to userspace 2875 * @vma: user vma to map to 2876 * @start: start of the physical memory to be mapped 2877 * @len: size of area 2878 * 2879 * This is a simplified io_remap_pfn_range() for common driver use. The 2880 * driver just needs to give us the physical memory range to be mapped, 2881 * we'll figure out the rest from the vma information. 2882 * 2883 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2884 * whatever write-combining details or similar. 2885 * 2886 * Return: %0 on success, negative error code otherwise. 2887 */ 2888 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2889 { 2890 unsigned long vm_len, pfn, pages; 2891 2892 /* Check that the physical memory area passed in looks valid */ 2893 if (start + len < start) 2894 return -EINVAL; 2895 /* 2896 * You *really* shouldn't map things that aren't page-aligned, 2897 * but we've historically allowed it because IO memory might 2898 * just have smaller alignment. 2899 */ 2900 len += start & ~PAGE_MASK; 2901 pfn = start >> PAGE_SHIFT; 2902 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2903 if (pfn + pages < pfn) 2904 return -EINVAL; 2905 2906 /* We start the mapping 'vm_pgoff' pages into the area */ 2907 if (vma->vm_pgoff > pages) 2908 return -EINVAL; 2909 pfn += vma->vm_pgoff; 2910 pages -= vma->vm_pgoff; 2911 2912 /* Can we fit all of the mapping? */ 2913 vm_len = vma->vm_end - vma->vm_start; 2914 if (vm_len >> PAGE_SHIFT > pages) 2915 return -EINVAL; 2916 2917 /* Ok, let it rip */ 2918 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2919 } 2920 EXPORT_SYMBOL(vm_iomap_memory); 2921 2922 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2923 unsigned long addr, unsigned long end, 2924 pte_fn_t fn, void *data, bool create, 2925 pgtbl_mod_mask *mask) 2926 { 2927 pte_t *pte, *mapped_pte; 2928 int err = 0; 2929 spinlock_t *ptl; 2930 2931 if (create) { 2932 mapped_pte = pte = (mm == &init_mm) ? 2933 pte_alloc_kernel_track(pmd, addr, mask) : 2934 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2935 if (!pte) 2936 return -ENOMEM; 2937 } else { 2938 mapped_pte = pte = (mm == &init_mm) ? 2939 pte_offset_kernel(pmd, addr) : 2940 pte_offset_map_lock(mm, pmd, addr, &ptl); 2941 if (!pte) 2942 return -EINVAL; 2943 } 2944 2945 arch_enter_lazy_mmu_mode(); 2946 2947 if (fn) { 2948 do { 2949 if (create || !pte_none(ptep_get(pte))) { 2950 err = fn(pte, addr, data); 2951 if (err) 2952 break; 2953 } 2954 } while (pte++, addr += PAGE_SIZE, addr != end); 2955 } 2956 *mask |= PGTBL_PTE_MODIFIED; 2957 2958 arch_leave_lazy_mmu_mode(); 2959 2960 if (mm != &init_mm) 2961 pte_unmap_unlock(mapped_pte, ptl); 2962 return err; 2963 } 2964 2965 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2966 unsigned long addr, unsigned long end, 2967 pte_fn_t fn, void *data, bool create, 2968 pgtbl_mod_mask *mask) 2969 { 2970 pmd_t *pmd; 2971 unsigned long next; 2972 int err = 0; 2973 2974 BUG_ON(pud_leaf(*pud)); 2975 2976 if (create) { 2977 pmd = pmd_alloc_track(mm, pud, addr, mask); 2978 if (!pmd) 2979 return -ENOMEM; 2980 } else { 2981 pmd = pmd_offset(pud, addr); 2982 } 2983 do { 2984 next = pmd_addr_end(addr, end); 2985 if (pmd_none(*pmd) && !create) 2986 continue; 2987 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2988 return -EINVAL; 2989 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2990 if (!create) 2991 continue; 2992 pmd_clear_bad(pmd); 2993 } 2994 err = apply_to_pte_range(mm, pmd, addr, next, 2995 fn, data, create, mask); 2996 if (err) 2997 break; 2998 } while (pmd++, addr = next, addr != end); 2999 3000 return err; 3001 } 3002 3003 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 3004 unsigned long addr, unsigned long end, 3005 pte_fn_t fn, void *data, bool create, 3006 pgtbl_mod_mask *mask) 3007 { 3008 pud_t *pud; 3009 unsigned long next; 3010 int err = 0; 3011 3012 if (create) { 3013 pud = pud_alloc_track(mm, p4d, addr, mask); 3014 if (!pud) 3015 return -ENOMEM; 3016 } else { 3017 pud = pud_offset(p4d, addr); 3018 } 3019 do { 3020 next = pud_addr_end(addr, end); 3021 if (pud_none(*pud) && !create) 3022 continue; 3023 if (WARN_ON_ONCE(pud_leaf(*pud))) 3024 return -EINVAL; 3025 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 3026 if (!create) 3027 continue; 3028 pud_clear_bad(pud); 3029 } 3030 err = apply_to_pmd_range(mm, pud, addr, next, 3031 fn, data, create, mask); 3032 if (err) 3033 break; 3034 } while (pud++, addr = next, addr != end); 3035 3036 return err; 3037 } 3038 3039 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 3040 unsigned long addr, unsigned long end, 3041 pte_fn_t fn, void *data, bool create, 3042 pgtbl_mod_mask *mask) 3043 { 3044 p4d_t *p4d; 3045 unsigned long next; 3046 int err = 0; 3047 3048 if (create) { 3049 p4d = p4d_alloc_track(mm, pgd, addr, mask); 3050 if (!p4d) 3051 return -ENOMEM; 3052 } else { 3053 p4d = p4d_offset(pgd, addr); 3054 } 3055 do { 3056 next = p4d_addr_end(addr, end); 3057 if (p4d_none(*p4d) && !create) 3058 continue; 3059 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 3060 return -EINVAL; 3061 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 3062 if (!create) 3063 continue; 3064 p4d_clear_bad(p4d); 3065 } 3066 err = apply_to_pud_range(mm, p4d, addr, next, 3067 fn, data, create, mask); 3068 if (err) 3069 break; 3070 } while (p4d++, addr = next, addr != end); 3071 3072 return err; 3073 } 3074 3075 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3076 unsigned long size, pte_fn_t fn, 3077 void *data, bool create) 3078 { 3079 pgd_t *pgd; 3080 unsigned long start = addr, next; 3081 unsigned long end = addr + size; 3082 pgtbl_mod_mask mask = 0; 3083 int err = 0; 3084 3085 if (WARN_ON(addr >= end)) 3086 return -EINVAL; 3087 3088 pgd = pgd_offset(mm, addr); 3089 do { 3090 next = pgd_addr_end(addr, end); 3091 if (pgd_none(*pgd) && !create) 3092 continue; 3093 if (WARN_ON_ONCE(pgd_leaf(*pgd))) { 3094 err = -EINVAL; 3095 break; 3096 } 3097 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 3098 if (!create) 3099 continue; 3100 pgd_clear_bad(pgd); 3101 } 3102 err = apply_to_p4d_range(mm, pgd, addr, next, 3103 fn, data, create, &mask); 3104 if (err) 3105 break; 3106 } while (pgd++, addr = next, addr != end); 3107 3108 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 3109 arch_sync_kernel_mappings(start, start + size); 3110 3111 return err; 3112 } 3113 3114 /* 3115 * Scan a region of virtual memory, filling in page tables as necessary 3116 * and calling a provided function on each leaf page table. 3117 */ 3118 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 3119 unsigned long size, pte_fn_t fn, void *data) 3120 { 3121 return __apply_to_page_range(mm, addr, size, fn, data, true); 3122 } 3123 EXPORT_SYMBOL_GPL(apply_to_page_range); 3124 3125 /* 3126 * Scan a region of virtual memory, calling a provided function on 3127 * each leaf page table where it exists. 3128 * 3129 * Unlike apply_to_page_range, this does _not_ fill in page tables 3130 * where they are absent. 3131 */ 3132 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 3133 unsigned long size, pte_fn_t fn, void *data) 3134 { 3135 return __apply_to_page_range(mm, addr, size, fn, data, false); 3136 } 3137 3138 /* 3139 * handle_pte_fault chooses page fault handler according to an entry which was 3140 * read non-atomically. Before making any commitment, on those architectures 3141 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 3142 * parts, do_swap_page must check under lock before unmapping the pte and 3143 * proceeding (but do_wp_page is only called after already making such a check; 3144 * and do_anonymous_page can safely check later on). 3145 */ 3146 static inline int pte_unmap_same(struct vm_fault *vmf) 3147 { 3148 int same = 1; 3149 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 3150 if (sizeof(pte_t) > sizeof(unsigned long)) { 3151 spin_lock(vmf->ptl); 3152 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 3153 spin_unlock(vmf->ptl); 3154 } 3155 #endif 3156 pte_unmap(vmf->pte); 3157 vmf->pte = NULL; 3158 return same; 3159 } 3160 3161 /* 3162 * Return: 3163 * 0: copied succeeded 3164 * -EHWPOISON: copy failed due to hwpoison in source page 3165 * -EAGAIN: copied failed (some other reason) 3166 */ 3167 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 3168 struct vm_fault *vmf) 3169 { 3170 int ret; 3171 void *kaddr; 3172 void __user *uaddr; 3173 struct vm_area_struct *vma = vmf->vma; 3174 struct mm_struct *mm = vma->vm_mm; 3175 unsigned long addr = vmf->address; 3176 3177 if (likely(src)) { 3178 if (copy_mc_user_highpage(dst, src, addr, vma)) 3179 return -EHWPOISON; 3180 return 0; 3181 } 3182 3183 /* 3184 * If the source page was a PFN mapping, we don't have 3185 * a "struct page" for it. We do a best-effort copy by 3186 * just copying from the original user address. If that 3187 * fails, we just zero-fill it. Live with it. 3188 */ 3189 kaddr = kmap_local_page(dst); 3190 pagefault_disable(); 3191 uaddr = (void __user *)(addr & PAGE_MASK); 3192 3193 /* 3194 * On architectures with software "accessed" bits, we would 3195 * take a double page fault, so mark it accessed here. 3196 */ 3197 vmf->pte = NULL; 3198 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 3199 pte_t entry; 3200 3201 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3202 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3203 /* 3204 * Other thread has already handled the fault 3205 * and update local tlb only 3206 */ 3207 if (vmf->pte) 3208 update_mmu_tlb(vma, addr, vmf->pte); 3209 ret = -EAGAIN; 3210 goto pte_unlock; 3211 } 3212 3213 entry = pte_mkyoung(vmf->orig_pte); 3214 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 3215 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1); 3216 } 3217 3218 /* 3219 * This really shouldn't fail, because the page is there 3220 * in the page tables. But it might just be unreadable, 3221 * in which case we just give up and fill the result with 3222 * zeroes. 3223 */ 3224 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3225 if (vmf->pte) 3226 goto warn; 3227 3228 /* Re-validate under PTL if the page is still mapped */ 3229 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 3230 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3231 /* The PTE changed under us, update local tlb */ 3232 if (vmf->pte) 3233 update_mmu_tlb(vma, addr, vmf->pte); 3234 ret = -EAGAIN; 3235 goto pte_unlock; 3236 } 3237 3238 /* 3239 * The same page can be mapped back since last copy attempt. 3240 * Try to copy again under PTL. 3241 */ 3242 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 3243 /* 3244 * Give a warn in case there can be some obscure 3245 * use-case 3246 */ 3247 warn: 3248 WARN_ON_ONCE(1); 3249 clear_page(kaddr); 3250 } 3251 } 3252 3253 ret = 0; 3254 3255 pte_unlock: 3256 if (vmf->pte) 3257 pte_unmap_unlock(vmf->pte, vmf->ptl); 3258 pagefault_enable(); 3259 kunmap_local(kaddr); 3260 flush_dcache_page(dst); 3261 3262 return ret; 3263 } 3264 3265 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 3266 { 3267 struct file *vm_file = vma->vm_file; 3268 3269 if (vm_file) 3270 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 3271 3272 /* 3273 * Special mappings (e.g. VDSO) do not have any file so fake 3274 * a default GFP_KERNEL for them. 3275 */ 3276 return GFP_KERNEL; 3277 } 3278 3279 /* 3280 * Notify the address space that the page is about to become writable so that 3281 * it can prohibit this or wait for the page to get into an appropriate state. 3282 * 3283 * We do this without the lock held, so that it can sleep if it needs to. 3284 */ 3285 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 3286 { 3287 vm_fault_t ret; 3288 unsigned int old_flags = vmf->flags; 3289 3290 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3291 3292 if (vmf->vma->vm_file && 3293 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 3294 return VM_FAULT_SIGBUS; 3295 3296 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 3297 /* Restore original flags so that caller is not surprised */ 3298 vmf->flags = old_flags; 3299 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 3300 return ret; 3301 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 3302 folio_lock(folio); 3303 if (!folio->mapping) { 3304 folio_unlock(folio); 3305 return 0; /* retry */ 3306 } 3307 ret |= VM_FAULT_LOCKED; 3308 } else 3309 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 3310 return ret; 3311 } 3312 3313 /* 3314 * Handle dirtying of a page in shared file mapping on a write fault. 3315 * 3316 * The function expects the page to be locked and unlocks it. 3317 */ 3318 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 3319 { 3320 struct vm_area_struct *vma = vmf->vma; 3321 struct address_space *mapping; 3322 struct folio *folio = page_folio(vmf->page); 3323 bool dirtied; 3324 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 3325 3326 dirtied = folio_mark_dirty(folio); 3327 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 3328 /* 3329 * Take a local copy of the address_space - folio.mapping may be zeroed 3330 * by truncate after folio_unlock(). The address_space itself remains 3331 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 3332 * release semantics to prevent the compiler from undoing this copying. 3333 */ 3334 mapping = folio_raw_mapping(folio); 3335 folio_unlock(folio); 3336 3337 if (!page_mkwrite) 3338 file_update_time(vma->vm_file); 3339 3340 /* 3341 * Throttle page dirtying rate down to writeback speed. 3342 * 3343 * mapping may be NULL here because some device drivers do not 3344 * set page.mapping but still dirty their pages 3345 * 3346 * Drop the mmap_lock before waiting on IO, if we can. The file 3347 * is pinning the mapping, as per above. 3348 */ 3349 if ((dirtied || page_mkwrite) && mapping) { 3350 struct file *fpin; 3351 3352 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3353 balance_dirty_pages_ratelimited(mapping); 3354 if (fpin) { 3355 fput(fpin); 3356 return VM_FAULT_COMPLETED; 3357 } 3358 } 3359 3360 return 0; 3361 } 3362 3363 /* 3364 * Handle write page faults for pages that can be reused in the current vma 3365 * 3366 * This can happen either due to the mapping being with the VM_SHARED flag, 3367 * or due to us being the last reference standing to the page. In either 3368 * case, all we need to do here is to mark the page as writable and update 3369 * any related book-keeping. 3370 */ 3371 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio) 3372 __releases(vmf->ptl) 3373 { 3374 struct vm_area_struct *vma = vmf->vma; 3375 pte_t entry; 3376 3377 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3378 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte))); 3379 3380 if (folio) { 3381 VM_BUG_ON(folio_test_anon(folio) && 3382 !PageAnonExclusive(vmf->page)); 3383 /* 3384 * Clear the folio's cpupid information as the existing 3385 * information potentially belongs to a now completely 3386 * unrelated process. 3387 */ 3388 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1); 3389 } 3390 3391 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3392 entry = pte_mkyoung(vmf->orig_pte); 3393 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3394 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3395 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3396 pte_unmap_unlock(vmf->pte, vmf->ptl); 3397 count_vm_event(PGREUSE); 3398 } 3399 3400 /* 3401 * We could add a bitflag somewhere, but for now, we know that all 3402 * vm_ops that have a ->map_pages have been audited and don't need 3403 * the mmap_lock to be held. 3404 */ 3405 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf) 3406 { 3407 struct vm_area_struct *vma = vmf->vma; 3408 3409 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK)) 3410 return 0; 3411 vma_end_read(vma); 3412 return VM_FAULT_RETRY; 3413 } 3414 3415 /** 3416 * __vmf_anon_prepare - Prepare to handle an anonymous fault. 3417 * @vmf: The vm_fault descriptor passed from the fault handler. 3418 * 3419 * When preparing to insert an anonymous page into a VMA from a 3420 * fault handler, call this function rather than anon_vma_prepare(). 3421 * If this vma does not already have an associated anon_vma and we are 3422 * only protected by the per-VMA lock, the caller must retry with the 3423 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to 3424 * determine if this VMA can share its anon_vma, and that's not safe to 3425 * do with only the per-VMA lock held for this VMA. 3426 * 3427 * Return: 0 if fault handling can proceed. Any other value should be 3428 * returned to the caller. 3429 */ 3430 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf) 3431 { 3432 struct vm_area_struct *vma = vmf->vma; 3433 vm_fault_t ret = 0; 3434 3435 if (likely(vma->anon_vma)) 3436 return 0; 3437 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3438 if (!mmap_read_trylock(vma->vm_mm)) 3439 return VM_FAULT_RETRY; 3440 } 3441 if (__anon_vma_prepare(vma)) 3442 ret = VM_FAULT_OOM; 3443 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 3444 mmap_read_unlock(vma->vm_mm); 3445 return ret; 3446 } 3447 3448 /* 3449 * Handle the case of a page which we actually need to copy to a new page, 3450 * either due to COW or unsharing. 3451 * 3452 * Called with mmap_lock locked and the old page referenced, but 3453 * without the ptl held. 3454 * 3455 * High level logic flow: 3456 * 3457 * - Allocate a page, copy the content of the old page to the new one. 3458 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3459 * - Take the PTL. If the pte changed, bail out and release the allocated page 3460 * - If the pte is still the way we remember it, update the page table and all 3461 * relevant references. This includes dropping the reference the page-table 3462 * held to the old page, as well as updating the rmap. 3463 * - In any case, unlock the PTL and drop the reference we took to the old page. 3464 */ 3465 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3466 { 3467 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3468 struct vm_area_struct *vma = vmf->vma; 3469 struct mm_struct *mm = vma->vm_mm; 3470 struct folio *old_folio = NULL; 3471 struct folio *new_folio = NULL; 3472 pte_t entry; 3473 int page_copied = 0; 3474 struct mmu_notifier_range range; 3475 vm_fault_t ret; 3476 bool pfn_is_zero; 3477 3478 delayacct_wpcopy_start(); 3479 3480 if (vmf->page) 3481 old_folio = page_folio(vmf->page); 3482 ret = vmf_anon_prepare(vmf); 3483 if (unlikely(ret)) 3484 goto out; 3485 3486 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte)); 3487 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero); 3488 if (!new_folio) 3489 goto oom; 3490 3491 if (!pfn_is_zero) { 3492 int err; 3493 3494 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3495 if (err) { 3496 /* 3497 * COW failed, if the fault was solved by other, 3498 * it's fine. If not, userspace would re-fault on 3499 * the same address and we will handle the fault 3500 * from the second attempt. 3501 * The -EHWPOISON case will not be retried. 3502 */ 3503 folio_put(new_folio); 3504 if (old_folio) 3505 folio_put(old_folio); 3506 3507 delayacct_wpcopy_end(); 3508 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3509 } 3510 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3511 } 3512 3513 __folio_mark_uptodate(new_folio); 3514 3515 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3516 vmf->address & PAGE_MASK, 3517 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3518 mmu_notifier_invalidate_range_start(&range); 3519 3520 /* 3521 * Re-check the pte - we dropped the lock 3522 */ 3523 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3524 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3525 if (old_folio) { 3526 if (!folio_test_anon(old_folio)) { 3527 dec_mm_counter(mm, mm_counter_file(old_folio)); 3528 inc_mm_counter(mm, MM_ANONPAGES); 3529 } 3530 } else { 3531 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3532 inc_mm_counter(mm, MM_ANONPAGES); 3533 } 3534 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3535 entry = folio_mk_pte(new_folio, vma->vm_page_prot); 3536 entry = pte_sw_mkyoung(entry); 3537 if (unlikely(unshare)) { 3538 if (pte_soft_dirty(vmf->orig_pte)) 3539 entry = pte_mksoft_dirty(entry); 3540 if (pte_uffd_wp(vmf->orig_pte)) 3541 entry = pte_mkuffd_wp(entry); 3542 } else { 3543 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3544 } 3545 3546 /* 3547 * Clear the pte entry and flush it first, before updating the 3548 * pte with the new entry, to keep TLBs on different CPUs in 3549 * sync. This code used to set the new PTE then flush TLBs, but 3550 * that left a window where the new PTE could be loaded into 3551 * some TLBs while the old PTE remains in others. 3552 */ 3553 ptep_clear_flush(vma, vmf->address, vmf->pte); 3554 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE); 3555 folio_add_lru_vma(new_folio, vma); 3556 BUG_ON(unshare && pte_write(entry)); 3557 set_pte_at(mm, vmf->address, vmf->pte, entry); 3558 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1); 3559 if (old_folio) { 3560 /* 3561 * Only after switching the pte to the new page may 3562 * we remove the mapcount here. Otherwise another 3563 * process may come and find the rmap count decremented 3564 * before the pte is switched to the new page, and 3565 * "reuse" the old page writing into it while our pte 3566 * here still points into it and can be read by other 3567 * threads. 3568 * 3569 * The critical issue is to order this 3570 * folio_remove_rmap_pte() with the ptp_clear_flush 3571 * above. Those stores are ordered by (if nothing else,) 3572 * the barrier present in the atomic_add_negative 3573 * in folio_remove_rmap_pte(); 3574 * 3575 * Then the TLB flush in ptep_clear_flush ensures that 3576 * no process can access the old page before the 3577 * decremented mapcount is visible. And the old page 3578 * cannot be reused until after the decremented 3579 * mapcount is visible. So transitively, TLBs to 3580 * old page will be flushed before it can be reused. 3581 */ 3582 folio_remove_rmap_pte(old_folio, vmf->page, vma); 3583 } 3584 3585 /* Free the old page.. */ 3586 new_folio = old_folio; 3587 page_copied = 1; 3588 pte_unmap_unlock(vmf->pte, vmf->ptl); 3589 } else if (vmf->pte) { 3590 update_mmu_tlb(vma, vmf->address, vmf->pte); 3591 pte_unmap_unlock(vmf->pte, vmf->ptl); 3592 } 3593 3594 mmu_notifier_invalidate_range_end(&range); 3595 3596 if (new_folio) 3597 folio_put(new_folio); 3598 if (old_folio) { 3599 if (page_copied) 3600 free_swap_cache(old_folio); 3601 folio_put(old_folio); 3602 } 3603 3604 delayacct_wpcopy_end(); 3605 return 0; 3606 oom: 3607 ret = VM_FAULT_OOM; 3608 out: 3609 if (old_folio) 3610 folio_put(old_folio); 3611 3612 delayacct_wpcopy_end(); 3613 return ret; 3614 } 3615 3616 /** 3617 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3618 * writeable once the page is prepared 3619 * 3620 * @vmf: structure describing the fault 3621 * @folio: the folio of vmf->page 3622 * 3623 * This function handles all that is needed to finish a write page fault in a 3624 * shared mapping due to PTE being read-only once the mapped page is prepared. 3625 * It handles locking of PTE and modifying it. 3626 * 3627 * The function expects the page to be locked or other protection against 3628 * concurrent faults / writeback (such as DAX radix tree locks). 3629 * 3630 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3631 * we acquired PTE lock. 3632 */ 3633 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio) 3634 { 3635 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3636 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3637 &vmf->ptl); 3638 if (!vmf->pte) 3639 return VM_FAULT_NOPAGE; 3640 /* 3641 * We might have raced with another page fault while we released the 3642 * pte_offset_map_lock. 3643 */ 3644 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3645 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3646 pte_unmap_unlock(vmf->pte, vmf->ptl); 3647 return VM_FAULT_NOPAGE; 3648 } 3649 wp_page_reuse(vmf, folio); 3650 return 0; 3651 } 3652 3653 /* 3654 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3655 * mapping 3656 */ 3657 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3658 { 3659 struct vm_area_struct *vma = vmf->vma; 3660 3661 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3662 vm_fault_t ret; 3663 3664 pte_unmap_unlock(vmf->pte, vmf->ptl); 3665 ret = vmf_can_call_fault(vmf); 3666 if (ret) 3667 return ret; 3668 3669 vmf->flags |= FAULT_FLAG_MKWRITE; 3670 ret = vma->vm_ops->pfn_mkwrite(vmf); 3671 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3672 return ret; 3673 return finish_mkwrite_fault(vmf, NULL); 3674 } 3675 wp_page_reuse(vmf, NULL); 3676 return 0; 3677 } 3678 3679 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3680 __releases(vmf->ptl) 3681 { 3682 struct vm_area_struct *vma = vmf->vma; 3683 vm_fault_t ret = 0; 3684 3685 folio_get(folio); 3686 3687 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3688 vm_fault_t tmp; 3689 3690 pte_unmap_unlock(vmf->pte, vmf->ptl); 3691 tmp = vmf_can_call_fault(vmf); 3692 if (tmp) { 3693 folio_put(folio); 3694 return tmp; 3695 } 3696 3697 tmp = do_page_mkwrite(vmf, folio); 3698 if (unlikely(!tmp || (tmp & 3699 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3700 folio_put(folio); 3701 return tmp; 3702 } 3703 tmp = finish_mkwrite_fault(vmf, folio); 3704 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3705 folio_unlock(folio); 3706 folio_put(folio); 3707 return tmp; 3708 } 3709 } else { 3710 wp_page_reuse(vmf, folio); 3711 folio_lock(folio); 3712 } 3713 ret |= fault_dirty_shared_page(vmf); 3714 folio_put(folio); 3715 3716 return ret; 3717 } 3718 3719 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3720 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3721 struct vm_area_struct *vma) 3722 { 3723 bool exclusive = false; 3724 3725 /* Let's just free up a large folio if only a single page is mapped. */ 3726 if (folio_large_mapcount(folio) <= 1) 3727 return false; 3728 3729 /* 3730 * The assumption for anonymous folios is that each page can only get 3731 * mapped once into each MM. The only exception are KSM folios, which 3732 * are always small. 3733 * 3734 * Each taken mapcount must be paired with exactly one taken reference, 3735 * whereby the refcount must be incremented before the mapcount when 3736 * mapping a page, and the refcount must be decremented after the 3737 * mapcount when unmapping a page. 3738 * 3739 * If all folio references are from mappings, and all mappings are in 3740 * the page tables of this MM, then this folio is exclusive to this MM. 3741 */ 3742 if (folio_test_large_maybe_mapped_shared(folio)) 3743 return false; 3744 3745 VM_WARN_ON_ONCE(folio_test_ksm(folio)); 3746 3747 if (unlikely(folio_test_swapcache(folio))) { 3748 /* 3749 * Note: freeing up the swapcache will fail if some PTEs are 3750 * still swap entries. 3751 */ 3752 if (!folio_trylock(folio)) 3753 return false; 3754 folio_free_swap(folio); 3755 folio_unlock(folio); 3756 } 3757 3758 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3759 return false; 3760 3761 /* Stabilize the mapcount vs. refcount and recheck. */ 3762 folio_lock_large_mapcount(folio); 3763 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio); 3764 3765 if (folio_test_large_maybe_mapped_shared(folio)) 3766 goto unlock; 3767 if (folio_large_mapcount(folio) != folio_ref_count(folio)) 3768 goto unlock; 3769 3770 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio); 3771 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio); 3772 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id && 3773 folio_mm_id(folio, 1) != vma->vm_mm->mm_id); 3774 3775 /* 3776 * Do we need the folio lock? Likely not. If there would have been 3777 * references from page migration/swapout, we would have detected 3778 * an additional folio reference and never ended up here. 3779 */ 3780 exclusive = true; 3781 unlock: 3782 folio_unlock_large_mapcount(folio); 3783 return exclusive; 3784 } 3785 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 3786 static bool __wp_can_reuse_large_anon_folio(struct folio *folio, 3787 struct vm_area_struct *vma) 3788 { 3789 BUILD_BUG(); 3790 } 3791 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3792 3793 static bool wp_can_reuse_anon_folio(struct folio *folio, 3794 struct vm_area_struct *vma) 3795 { 3796 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio)) 3797 return __wp_can_reuse_large_anon_folio(folio, vma); 3798 3799 /* 3800 * We have to verify under folio lock: these early checks are 3801 * just an optimization to avoid locking the folio and freeing 3802 * the swapcache if there is little hope that we can reuse. 3803 * 3804 * KSM doesn't necessarily raise the folio refcount. 3805 */ 3806 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3807 return false; 3808 if (!folio_test_lru(folio)) 3809 /* 3810 * We cannot easily detect+handle references from 3811 * remote LRU caches or references to LRU folios. 3812 */ 3813 lru_add_drain(); 3814 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3815 return false; 3816 if (!folio_trylock(folio)) 3817 return false; 3818 if (folio_test_swapcache(folio)) 3819 folio_free_swap(folio); 3820 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3821 folio_unlock(folio); 3822 return false; 3823 } 3824 /* 3825 * Ok, we've got the only folio reference from our mapping 3826 * and the folio is locked, it's dark out, and we're wearing 3827 * sunglasses. Hit it. 3828 */ 3829 folio_move_anon_rmap(folio, vma); 3830 folio_unlock(folio); 3831 return true; 3832 } 3833 3834 /* 3835 * This routine handles present pages, when 3836 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3837 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3838 * (FAULT_FLAG_UNSHARE) 3839 * 3840 * It is done by copying the page to a new address and decrementing the 3841 * shared-page counter for the old page. 3842 * 3843 * Note that this routine assumes that the protection checks have been 3844 * done by the caller (the low-level page fault routine in most cases). 3845 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3846 * done any necessary COW. 3847 * 3848 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3849 * though the page will change only once the write actually happens. This 3850 * avoids a few races, and potentially makes it more efficient. 3851 * 3852 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3853 * but allow concurrent faults), with pte both mapped and locked. 3854 * We return with mmap_lock still held, but pte unmapped and unlocked. 3855 */ 3856 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3857 __releases(vmf->ptl) 3858 { 3859 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3860 struct vm_area_struct *vma = vmf->vma; 3861 struct folio *folio = NULL; 3862 pte_t pte; 3863 3864 if (likely(!unshare)) { 3865 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3866 if (!userfaultfd_wp_async(vma)) { 3867 pte_unmap_unlock(vmf->pte, vmf->ptl); 3868 return handle_userfault(vmf, VM_UFFD_WP); 3869 } 3870 3871 /* 3872 * Nothing needed (cache flush, TLB invalidations, 3873 * etc.) because we're only removing the uffd-wp bit, 3874 * which is completely invisible to the user. 3875 */ 3876 pte = pte_clear_uffd_wp(ptep_get(vmf->pte)); 3877 3878 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3879 /* 3880 * Update this to be prepared for following up CoW 3881 * handling 3882 */ 3883 vmf->orig_pte = pte; 3884 } 3885 3886 /* 3887 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3888 * is flushed in this case before copying. 3889 */ 3890 if (unlikely(userfaultfd_wp(vmf->vma) && 3891 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3892 flush_tlb_page(vmf->vma, vmf->address); 3893 } 3894 3895 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3896 3897 if (vmf->page) 3898 folio = page_folio(vmf->page); 3899 3900 /* 3901 * Shared mapping: we are guaranteed to have VM_WRITE and 3902 * FAULT_FLAG_WRITE set at this point. 3903 */ 3904 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3905 /* 3906 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3907 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called. 3908 * 3909 * We should not cow pages in a shared writeable mapping. 3910 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3911 */ 3912 if (!vmf->page || is_fsdax_page(vmf->page)) { 3913 vmf->page = NULL; 3914 return wp_pfn_shared(vmf); 3915 } 3916 return wp_page_shared(vmf, folio); 3917 } 3918 3919 /* 3920 * Private mapping: create an exclusive anonymous page copy if reuse 3921 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3922 * 3923 * If we encounter a page that is marked exclusive, we must reuse 3924 * the page without further checks. 3925 */ 3926 if (folio && folio_test_anon(folio) && 3927 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) { 3928 if (!PageAnonExclusive(vmf->page)) 3929 SetPageAnonExclusive(vmf->page); 3930 if (unlikely(unshare)) { 3931 pte_unmap_unlock(vmf->pte, vmf->ptl); 3932 return 0; 3933 } 3934 wp_page_reuse(vmf, folio); 3935 return 0; 3936 } 3937 /* 3938 * Ok, we need to copy. Oh, well.. 3939 */ 3940 if (folio) 3941 folio_get(folio); 3942 3943 pte_unmap_unlock(vmf->pte, vmf->ptl); 3944 #ifdef CONFIG_KSM 3945 if (folio && folio_test_ksm(folio)) 3946 count_vm_event(COW_KSM); 3947 #endif 3948 return wp_page_copy(vmf); 3949 } 3950 3951 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3952 unsigned long start_addr, unsigned long end_addr, 3953 struct zap_details *details) 3954 { 3955 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3956 } 3957 3958 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3959 pgoff_t first_index, 3960 pgoff_t last_index, 3961 struct zap_details *details) 3962 { 3963 struct vm_area_struct *vma; 3964 pgoff_t vba, vea, zba, zea; 3965 3966 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3967 vba = vma->vm_pgoff; 3968 vea = vba + vma_pages(vma) - 1; 3969 zba = max(first_index, vba); 3970 zea = min(last_index, vea); 3971 3972 unmap_mapping_range_vma(vma, 3973 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3974 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3975 details); 3976 } 3977 } 3978 3979 /** 3980 * unmap_mapping_folio() - Unmap single folio from processes. 3981 * @folio: The locked folio to be unmapped. 3982 * 3983 * Unmap this folio from any userspace process which still has it mmaped. 3984 * Typically, for efficiency, the range of nearby pages has already been 3985 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3986 * truncation or invalidation holds the lock on a folio, it may find that 3987 * the page has been remapped again: and then uses unmap_mapping_folio() 3988 * to unmap it finally. 3989 */ 3990 void unmap_mapping_folio(struct folio *folio) 3991 { 3992 struct address_space *mapping = folio->mapping; 3993 struct zap_details details = { }; 3994 pgoff_t first_index; 3995 pgoff_t last_index; 3996 3997 VM_BUG_ON(!folio_test_locked(folio)); 3998 3999 first_index = folio->index; 4000 last_index = folio_next_index(folio) - 1; 4001 4002 details.even_cows = false; 4003 details.single_folio = folio; 4004 details.zap_flags = ZAP_FLAG_DROP_MARKER; 4005 4006 i_mmap_lock_read(mapping); 4007 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4008 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4009 last_index, &details); 4010 i_mmap_unlock_read(mapping); 4011 } 4012 4013 /** 4014 * unmap_mapping_pages() - Unmap pages from processes. 4015 * @mapping: The address space containing pages to be unmapped. 4016 * @start: Index of first page to be unmapped. 4017 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 4018 * @even_cows: Whether to unmap even private COWed pages. 4019 * 4020 * Unmap the pages in this address space from any userspace process which 4021 * has them mmaped. Generally, you want to remove COWed pages as well when 4022 * a file is being truncated, but not when invalidating pages from the page 4023 * cache. 4024 */ 4025 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 4026 pgoff_t nr, bool even_cows) 4027 { 4028 struct zap_details details = { }; 4029 pgoff_t first_index = start; 4030 pgoff_t last_index = start + nr - 1; 4031 4032 details.even_cows = even_cows; 4033 if (last_index < first_index) 4034 last_index = ULONG_MAX; 4035 4036 i_mmap_lock_read(mapping); 4037 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 4038 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 4039 last_index, &details); 4040 i_mmap_unlock_read(mapping); 4041 } 4042 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 4043 4044 /** 4045 * unmap_mapping_range - unmap the portion of all mmaps in the specified 4046 * address_space corresponding to the specified byte range in the underlying 4047 * file. 4048 * 4049 * @mapping: the address space containing mmaps to be unmapped. 4050 * @holebegin: byte in first page to unmap, relative to the start of 4051 * the underlying file. This will be rounded down to a PAGE_SIZE 4052 * boundary. Note that this is different from truncate_pagecache(), which 4053 * must keep the partial page. In contrast, we must get rid of 4054 * partial pages. 4055 * @holelen: size of prospective hole in bytes. This will be rounded 4056 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 4057 * end of the file. 4058 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 4059 * but 0 when invalidating pagecache, don't throw away private data. 4060 */ 4061 void unmap_mapping_range(struct address_space *mapping, 4062 loff_t const holebegin, loff_t const holelen, int even_cows) 4063 { 4064 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT; 4065 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT; 4066 4067 /* Check for overflow. */ 4068 if (sizeof(holelen) > sizeof(hlen)) { 4069 long long holeend = 4070 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 4071 if (holeend & ~(long long)ULONG_MAX) 4072 hlen = ULONG_MAX - hba + 1; 4073 } 4074 4075 unmap_mapping_pages(mapping, hba, hlen, even_cows); 4076 } 4077 EXPORT_SYMBOL(unmap_mapping_range); 4078 4079 /* 4080 * Restore a potential device exclusive pte to a working pte entry 4081 */ 4082 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 4083 { 4084 struct folio *folio = page_folio(vmf->page); 4085 struct vm_area_struct *vma = vmf->vma; 4086 struct mmu_notifier_range range; 4087 vm_fault_t ret; 4088 4089 /* 4090 * We need a reference to lock the folio because we don't hold 4091 * the PTL so a racing thread can remove the device-exclusive 4092 * entry and unmap it. If the folio is free the entry must 4093 * have been removed already. If it happens to have already 4094 * been re-allocated after being freed all we do is lock and 4095 * unlock it. 4096 */ 4097 if (!folio_try_get(folio)) 4098 return 0; 4099 4100 ret = folio_lock_or_retry(folio, vmf); 4101 if (ret) { 4102 folio_put(folio); 4103 return ret; 4104 } 4105 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0, 4106 vma->vm_mm, vmf->address & PAGE_MASK, 4107 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 4108 mmu_notifier_invalidate_range_start(&range); 4109 4110 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4111 &vmf->ptl); 4112 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4113 restore_exclusive_pte(vma, folio, vmf->page, vmf->address, 4114 vmf->pte, vmf->orig_pte); 4115 4116 if (vmf->pte) 4117 pte_unmap_unlock(vmf->pte, vmf->ptl); 4118 folio_unlock(folio); 4119 folio_put(folio); 4120 4121 mmu_notifier_invalidate_range_end(&range); 4122 return 0; 4123 } 4124 4125 static inline bool should_try_to_free_swap(struct folio *folio, 4126 struct vm_area_struct *vma, 4127 unsigned int fault_flags) 4128 { 4129 if (!folio_test_swapcache(folio)) 4130 return false; 4131 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 4132 folio_test_mlocked(folio)) 4133 return true; 4134 /* 4135 * If we want to map a page that's in the swapcache writable, we 4136 * have to detect via the refcount if we're really the exclusive 4137 * user. Try freeing the swapcache to get rid of the swapcache 4138 * reference only in case it's likely that we'll be the exlusive user. 4139 */ 4140 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 4141 folio_ref_count(folio) == (1 + folio_nr_pages(folio)); 4142 } 4143 4144 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 4145 { 4146 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4147 vmf->address, &vmf->ptl); 4148 if (!vmf->pte) 4149 return 0; 4150 /* 4151 * Be careful so that we will only recover a special uffd-wp pte into a 4152 * none pte. Otherwise it means the pte could have changed, so retry. 4153 * 4154 * This should also cover the case where e.g. the pte changed 4155 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 4156 * So is_pte_marker() check is not enough to safely drop the pte. 4157 */ 4158 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 4159 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 4160 pte_unmap_unlock(vmf->pte, vmf->ptl); 4161 return 0; 4162 } 4163 4164 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 4165 { 4166 if (vma_is_anonymous(vmf->vma)) 4167 return do_anonymous_page(vmf); 4168 else 4169 return do_fault(vmf); 4170 } 4171 4172 /* 4173 * This is actually a page-missing access, but with uffd-wp special pte 4174 * installed. It means this pte was wr-protected before being unmapped. 4175 */ 4176 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 4177 { 4178 /* 4179 * Just in case there're leftover special ptes even after the region 4180 * got unregistered - we can simply clear them. 4181 */ 4182 if (unlikely(!userfaultfd_wp(vmf->vma))) 4183 return pte_marker_clear(vmf); 4184 4185 return do_pte_missing(vmf); 4186 } 4187 4188 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 4189 { 4190 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 4191 unsigned long marker = pte_marker_get(entry); 4192 4193 /* 4194 * PTE markers should never be empty. If anything weird happened, 4195 * the best thing to do is to kill the process along with its mm. 4196 */ 4197 if (WARN_ON_ONCE(!marker)) 4198 return VM_FAULT_SIGBUS; 4199 4200 /* Higher priority than uffd-wp when data corrupted */ 4201 if (marker & PTE_MARKER_POISONED) 4202 return VM_FAULT_HWPOISON; 4203 4204 /* Hitting a guard page is always a fatal condition. */ 4205 if (marker & PTE_MARKER_GUARD) 4206 return VM_FAULT_SIGSEGV; 4207 4208 if (pte_marker_entry_uffd_wp(entry)) 4209 return pte_marker_handle_uffd_wp(vmf); 4210 4211 /* This is an unknown pte marker */ 4212 return VM_FAULT_SIGBUS; 4213 } 4214 4215 static struct folio *__alloc_swap_folio(struct vm_fault *vmf) 4216 { 4217 struct vm_area_struct *vma = vmf->vma; 4218 struct folio *folio; 4219 swp_entry_t entry; 4220 4221 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address); 4222 if (!folio) 4223 return NULL; 4224 4225 entry = pte_to_swp_entry(vmf->orig_pte); 4226 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4227 GFP_KERNEL, entry)) { 4228 folio_put(folio); 4229 return NULL; 4230 } 4231 4232 return folio; 4233 } 4234 4235 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4236 static inline int non_swapcache_batch(swp_entry_t entry, int max_nr) 4237 { 4238 struct swap_info_struct *si = swp_swap_info(entry); 4239 pgoff_t offset = swp_offset(entry); 4240 int i; 4241 4242 /* 4243 * While allocating a large folio and doing swap_read_folio, which is 4244 * the case the being faulted pte doesn't have swapcache. We need to 4245 * ensure all PTEs have no cache as well, otherwise, we might go to 4246 * swap devices while the content is in swapcache. 4247 */ 4248 for (i = 0; i < max_nr; i++) { 4249 if ((si->swap_map[offset + i] & SWAP_HAS_CACHE)) 4250 return i; 4251 } 4252 4253 return i; 4254 } 4255 4256 /* 4257 * Check if the PTEs within a range are contiguous swap entries 4258 * and have consistent swapcache, zeromap. 4259 */ 4260 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages) 4261 { 4262 unsigned long addr; 4263 swp_entry_t entry; 4264 int idx; 4265 pte_t pte; 4266 4267 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 4268 idx = (vmf->address - addr) / PAGE_SIZE; 4269 pte = ptep_get(ptep); 4270 4271 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx))) 4272 return false; 4273 entry = pte_to_swp_entry(pte); 4274 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages) 4275 return false; 4276 4277 /* 4278 * swap_read_folio() can't handle the case a large folio is hybridly 4279 * from different backends. And they are likely corner cases. Similar 4280 * things might be added once zswap support large folios. 4281 */ 4282 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages)) 4283 return false; 4284 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages)) 4285 return false; 4286 4287 return true; 4288 } 4289 4290 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset, 4291 unsigned long addr, 4292 unsigned long orders) 4293 { 4294 int order, nr; 4295 4296 order = highest_order(orders); 4297 4298 /* 4299 * To swap in a THP with nr pages, we require that its first swap_offset 4300 * is aligned with that number, as it was when the THP was swapped out. 4301 * This helps filter out most invalid entries. 4302 */ 4303 while (orders) { 4304 nr = 1 << order; 4305 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr) 4306 break; 4307 order = next_order(&orders, order); 4308 } 4309 4310 return orders; 4311 } 4312 4313 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4314 { 4315 struct vm_area_struct *vma = vmf->vma; 4316 unsigned long orders; 4317 struct folio *folio; 4318 unsigned long addr; 4319 swp_entry_t entry; 4320 spinlock_t *ptl; 4321 pte_t *pte; 4322 gfp_t gfp; 4323 int order; 4324 4325 /* 4326 * If uffd is active for the vma we need per-page fault fidelity to 4327 * maintain the uffd semantics. 4328 */ 4329 if (unlikely(userfaultfd_armed(vma))) 4330 goto fallback; 4331 4332 /* 4333 * A large swapped out folio could be partially or fully in zswap. We 4334 * lack handling for such cases, so fallback to swapping in order-0 4335 * folio. 4336 */ 4337 if (!zswap_never_enabled()) 4338 goto fallback; 4339 4340 entry = pte_to_swp_entry(vmf->orig_pte); 4341 /* 4342 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4343 * and suitable for swapping THP. 4344 */ 4345 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4346 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4347 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4348 orders = thp_swap_suitable_orders(swp_offset(entry), 4349 vmf->address, orders); 4350 4351 if (!orders) 4352 goto fallback; 4353 4354 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4355 vmf->address & PMD_MASK, &ptl); 4356 if (unlikely(!pte)) 4357 goto fallback; 4358 4359 /* 4360 * For do_swap_page, find the highest order where the aligned range is 4361 * completely swap entries with contiguous swap offsets. 4362 */ 4363 order = highest_order(orders); 4364 while (orders) { 4365 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4366 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order)) 4367 break; 4368 order = next_order(&orders, order); 4369 } 4370 4371 pte_unmap_unlock(pte, ptl); 4372 4373 /* Try allocating the highest of the remaining orders. */ 4374 gfp = vma_thp_gfp_mask(vma); 4375 while (orders) { 4376 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4377 folio = vma_alloc_folio(gfp, order, vma, addr); 4378 if (folio) { 4379 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm, 4380 gfp, entry)) 4381 return folio; 4382 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE); 4383 folio_put(folio); 4384 } 4385 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK); 4386 order = next_order(&orders, order); 4387 } 4388 4389 fallback: 4390 return __alloc_swap_folio(vmf); 4391 } 4392 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */ 4393 static struct folio *alloc_swap_folio(struct vm_fault *vmf) 4394 { 4395 return __alloc_swap_folio(vmf); 4396 } 4397 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4398 4399 static DECLARE_WAIT_QUEUE_HEAD(swapcache_wq); 4400 4401 /* 4402 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4403 * but allow concurrent faults), and pte mapped but not yet locked. 4404 * We return with pte unmapped and unlocked. 4405 * 4406 * We return with the mmap_lock locked or unlocked in the same cases 4407 * as does filemap_fault(). 4408 */ 4409 vm_fault_t do_swap_page(struct vm_fault *vmf) 4410 { 4411 struct vm_area_struct *vma = vmf->vma; 4412 struct folio *swapcache, *folio = NULL; 4413 DECLARE_WAITQUEUE(wait, current); 4414 struct page *page; 4415 struct swap_info_struct *si = NULL; 4416 rmap_t rmap_flags = RMAP_NONE; 4417 bool need_clear_cache = false; 4418 bool exclusive = false; 4419 swp_entry_t entry; 4420 pte_t pte; 4421 vm_fault_t ret = 0; 4422 void *shadow = NULL; 4423 int nr_pages; 4424 unsigned long page_idx; 4425 unsigned long address; 4426 pte_t *ptep; 4427 4428 if (!pte_unmap_same(vmf)) 4429 goto out; 4430 4431 entry = pte_to_swp_entry(vmf->orig_pte); 4432 if (unlikely(non_swap_entry(entry))) { 4433 if (is_migration_entry(entry)) { 4434 migration_entry_wait(vma->vm_mm, vmf->pmd, 4435 vmf->address); 4436 } else if (is_device_exclusive_entry(entry)) { 4437 vmf->page = pfn_swap_entry_to_page(entry); 4438 ret = remove_device_exclusive_entry(vmf); 4439 } else if (is_device_private_entry(entry)) { 4440 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4441 /* 4442 * migrate_to_ram is not yet ready to operate 4443 * under VMA lock. 4444 */ 4445 vma_end_read(vma); 4446 ret = VM_FAULT_RETRY; 4447 goto out; 4448 } 4449 4450 vmf->page = pfn_swap_entry_to_page(entry); 4451 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4452 vmf->address, &vmf->ptl); 4453 if (unlikely(!vmf->pte || 4454 !pte_same(ptep_get(vmf->pte), 4455 vmf->orig_pte))) 4456 goto unlock; 4457 4458 /* 4459 * Get a page reference while we know the page can't be 4460 * freed. 4461 */ 4462 if (trylock_page(vmf->page)) { 4463 struct dev_pagemap *pgmap; 4464 4465 get_page(vmf->page); 4466 pte_unmap_unlock(vmf->pte, vmf->ptl); 4467 pgmap = page_pgmap(vmf->page); 4468 ret = pgmap->ops->migrate_to_ram(vmf); 4469 unlock_page(vmf->page); 4470 put_page(vmf->page); 4471 } else { 4472 pte_unmap_unlock(vmf->pte, vmf->ptl); 4473 } 4474 } else if (is_hwpoison_entry(entry)) { 4475 ret = VM_FAULT_HWPOISON; 4476 } else if (is_pte_marker_entry(entry)) { 4477 ret = handle_pte_marker(vmf); 4478 } else { 4479 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 4480 ret = VM_FAULT_SIGBUS; 4481 } 4482 goto out; 4483 } 4484 4485 /* Prevent swapoff from happening to us. */ 4486 si = get_swap_device(entry); 4487 if (unlikely(!si)) 4488 goto out; 4489 4490 folio = swap_cache_get_folio(entry, vma, vmf->address); 4491 if (folio) 4492 page = folio_file_page(folio, swp_offset(entry)); 4493 swapcache = folio; 4494 4495 if (!folio) { 4496 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 4497 __swap_count(entry) == 1) { 4498 /* skip swapcache */ 4499 folio = alloc_swap_folio(vmf); 4500 if (folio) { 4501 __folio_set_locked(folio); 4502 __folio_set_swapbacked(folio); 4503 4504 nr_pages = folio_nr_pages(folio); 4505 if (folio_test_large(folio)) 4506 entry.val = ALIGN_DOWN(entry.val, nr_pages); 4507 /* 4508 * Prevent parallel swapin from proceeding with 4509 * the cache flag. Otherwise, another thread 4510 * may finish swapin first, free the entry, and 4511 * swapout reusing the same entry. It's 4512 * undetectable as pte_same() returns true due 4513 * to entry reuse. 4514 */ 4515 if (swapcache_prepare(entry, nr_pages)) { 4516 /* 4517 * Relax a bit to prevent rapid 4518 * repeated page faults. 4519 */ 4520 add_wait_queue(&swapcache_wq, &wait); 4521 schedule_timeout_uninterruptible(1); 4522 remove_wait_queue(&swapcache_wq, &wait); 4523 goto out_page; 4524 } 4525 need_clear_cache = true; 4526 4527 memcg1_swapin(entry, nr_pages); 4528 4529 shadow = get_shadow_from_swap_cache(entry); 4530 if (shadow) 4531 workingset_refault(folio, shadow); 4532 4533 folio_add_lru(folio); 4534 4535 /* To provide entry to swap_read_folio() */ 4536 folio->swap = entry; 4537 swap_read_folio(folio, NULL); 4538 folio->private = NULL; 4539 } 4540 } else { 4541 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 4542 vmf); 4543 swapcache = folio; 4544 } 4545 4546 if (!folio) { 4547 /* 4548 * Back out if somebody else faulted in this pte 4549 * while we released the pte lock. 4550 */ 4551 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4552 vmf->address, &vmf->ptl); 4553 if (likely(vmf->pte && 4554 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4555 ret = VM_FAULT_OOM; 4556 goto unlock; 4557 } 4558 4559 /* Had to read the page from swap area: Major fault */ 4560 ret = VM_FAULT_MAJOR; 4561 count_vm_event(PGMAJFAULT); 4562 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 4563 page = folio_file_page(folio, swp_offset(entry)); 4564 } else if (PageHWPoison(page)) { 4565 /* 4566 * hwpoisoned dirty swapcache pages are kept for killing 4567 * owner processes (which may be unknown at hwpoison time) 4568 */ 4569 ret = VM_FAULT_HWPOISON; 4570 goto out_release; 4571 } 4572 4573 ret |= folio_lock_or_retry(folio, vmf); 4574 if (ret & VM_FAULT_RETRY) 4575 goto out_release; 4576 4577 if (swapcache) { 4578 /* 4579 * Make sure folio_free_swap() or swapoff did not release the 4580 * swapcache from under us. The page pin, and pte_same test 4581 * below, are not enough to exclude that. Even if it is still 4582 * swapcache, we need to check that the page's swap has not 4583 * changed. 4584 */ 4585 if (unlikely(!folio_test_swapcache(folio) || 4586 page_swap_entry(page).val != entry.val)) 4587 goto out_page; 4588 4589 /* 4590 * KSM sometimes has to copy on read faults, for example, if 4591 * page->index of !PageKSM() pages would be nonlinear inside the 4592 * anon VMA -- PageKSM() is lost on actual swapout. 4593 */ 4594 folio = ksm_might_need_to_copy(folio, vma, vmf->address); 4595 if (unlikely(!folio)) { 4596 ret = VM_FAULT_OOM; 4597 folio = swapcache; 4598 goto out_page; 4599 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) { 4600 ret = VM_FAULT_HWPOISON; 4601 folio = swapcache; 4602 goto out_page; 4603 } 4604 if (folio != swapcache) 4605 page = folio_page(folio, 0); 4606 4607 /* 4608 * If we want to map a page that's in the swapcache writable, we 4609 * have to detect via the refcount if we're really the exclusive 4610 * owner. Try removing the extra reference from the local LRU 4611 * caches if required. 4612 */ 4613 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 4614 !folio_test_ksm(folio) && !folio_test_lru(folio)) 4615 lru_add_drain(); 4616 } 4617 4618 folio_throttle_swaprate(folio, GFP_KERNEL); 4619 4620 /* 4621 * Back out if somebody else already faulted in this pte. 4622 */ 4623 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4624 &vmf->ptl); 4625 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 4626 goto out_nomap; 4627 4628 if (unlikely(!folio_test_uptodate(folio))) { 4629 ret = VM_FAULT_SIGBUS; 4630 goto out_nomap; 4631 } 4632 4633 /* allocated large folios for SWP_SYNCHRONOUS_IO */ 4634 if (folio_test_large(folio) && !folio_test_swapcache(folio)) { 4635 unsigned long nr = folio_nr_pages(folio); 4636 unsigned long folio_start = ALIGN_DOWN(vmf->address, nr * PAGE_SIZE); 4637 unsigned long idx = (vmf->address - folio_start) / PAGE_SIZE; 4638 pte_t *folio_ptep = vmf->pte - idx; 4639 pte_t folio_pte = ptep_get(folio_ptep); 4640 4641 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4642 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4643 goto out_nomap; 4644 4645 page_idx = idx; 4646 address = folio_start; 4647 ptep = folio_ptep; 4648 goto check_folio; 4649 } 4650 4651 nr_pages = 1; 4652 page_idx = 0; 4653 address = vmf->address; 4654 ptep = vmf->pte; 4655 if (folio_test_large(folio) && folio_test_swapcache(folio)) { 4656 int nr = folio_nr_pages(folio); 4657 unsigned long idx = folio_page_idx(folio, page); 4658 unsigned long folio_start = address - idx * PAGE_SIZE; 4659 unsigned long folio_end = folio_start + nr * PAGE_SIZE; 4660 pte_t *folio_ptep; 4661 pte_t folio_pte; 4662 4663 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start))) 4664 goto check_folio; 4665 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end))) 4666 goto check_folio; 4667 4668 folio_ptep = vmf->pte - idx; 4669 folio_pte = ptep_get(folio_ptep); 4670 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) || 4671 swap_pte_batch(folio_ptep, nr, folio_pte) != nr) 4672 goto check_folio; 4673 4674 page_idx = idx; 4675 address = folio_start; 4676 ptep = folio_ptep; 4677 nr_pages = nr; 4678 entry = folio->swap; 4679 page = &folio->page; 4680 } 4681 4682 check_folio: 4683 /* 4684 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 4685 * must never point at an anonymous page in the swapcache that is 4686 * PG_anon_exclusive. Sanity check that this holds and especially, that 4687 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 4688 * check after taking the PT lock and making sure that nobody 4689 * concurrently faulted in this page and set PG_anon_exclusive. 4690 */ 4691 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 4692 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 4693 4694 /* 4695 * Check under PT lock (to protect against concurrent fork() sharing 4696 * the swap entry concurrently) for certainly exclusive pages. 4697 */ 4698 if (!folio_test_ksm(folio)) { 4699 exclusive = pte_swp_exclusive(vmf->orig_pte); 4700 if (folio != swapcache) { 4701 /* 4702 * We have a fresh page that is not exposed to the 4703 * swapcache -> certainly exclusive. 4704 */ 4705 exclusive = true; 4706 } else if (exclusive && folio_test_writeback(folio) && 4707 data_race(si->flags & SWP_STABLE_WRITES)) { 4708 /* 4709 * This is tricky: not all swap backends support 4710 * concurrent page modifications while under writeback. 4711 * 4712 * So if we stumble over such a page in the swapcache 4713 * we must not set the page exclusive, otherwise we can 4714 * map it writable without further checks and modify it 4715 * while still under writeback. 4716 * 4717 * For these problematic swap backends, simply drop the 4718 * exclusive marker: this is perfectly fine as we start 4719 * writeback only if we fully unmapped the page and 4720 * there are no unexpected references on the page after 4721 * unmapping succeeded. After fully unmapped, no 4722 * further GUP references (FOLL_GET and FOLL_PIN) can 4723 * appear, so dropping the exclusive marker and mapping 4724 * it only R/O is fine. 4725 */ 4726 exclusive = false; 4727 } 4728 } 4729 4730 /* 4731 * Some architectures may have to restore extra metadata to the page 4732 * when reading from swap. This metadata may be indexed by swap entry 4733 * so this must be called before swap_free(). 4734 */ 4735 arch_swap_restore(folio_swap(entry, folio), folio); 4736 4737 /* 4738 * Remove the swap entry and conditionally try to free up the swapcache. 4739 * We're already holding a reference on the page but haven't mapped it 4740 * yet. 4741 */ 4742 swap_free_nr(entry, nr_pages); 4743 if (should_try_to_free_swap(folio, vma, vmf->flags)) 4744 folio_free_swap(folio); 4745 4746 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 4747 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages); 4748 pte = mk_pte(page, vma->vm_page_prot); 4749 if (pte_swp_soft_dirty(vmf->orig_pte)) 4750 pte = pte_mksoft_dirty(pte); 4751 if (pte_swp_uffd_wp(vmf->orig_pte)) 4752 pte = pte_mkuffd_wp(pte); 4753 4754 /* 4755 * Same logic as in do_wp_page(); however, optimize for pages that are 4756 * certainly not shared either because we just allocated them without 4757 * exposing them to the swapcache or because the swap entry indicates 4758 * exclusivity. 4759 */ 4760 if (!folio_test_ksm(folio) && 4761 (exclusive || folio_ref_count(folio) == 1)) { 4762 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) && 4763 !pte_needs_soft_dirty_wp(vma, pte)) { 4764 pte = pte_mkwrite(pte, vma); 4765 if (vmf->flags & FAULT_FLAG_WRITE) { 4766 pte = pte_mkdirty(pte); 4767 vmf->flags &= ~FAULT_FLAG_WRITE; 4768 } 4769 } 4770 rmap_flags |= RMAP_EXCLUSIVE; 4771 } 4772 folio_ref_add(folio, nr_pages - 1); 4773 flush_icache_pages(vma, page, nr_pages); 4774 vmf->orig_pte = pte_advance_pfn(pte, page_idx); 4775 4776 /* ksm created a completely new copy */ 4777 if (unlikely(folio != swapcache && swapcache)) { 4778 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 4779 folio_add_lru_vma(folio, vma); 4780 } else if (!folio_test_anon(folio)) { 4781 /* 4782 * We currently only expect small !anon folios which are either 4783 * fully exclusive or fully shared, or new allocated large 4784 * folios which are fully exclusive. If we ever get large 4785 * folios within swapcache here, we have to be careful. 4786 */ 4787 VM_WARN_ON_ONCE(folio_test_large(folio) && folio_test_swapcache(folio)); 4788 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio); 4789 folio_add_new_anon_rmap(folio, vma, address, rmap_flags); 4790 } else { 4791 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address, 4792 rmap_flags); 4793 } 4794 4795 VM_BUG_ON(!folio_test_anon(folio) || 4796 (pte_write(pte) && !PageAnonExclusive(page))); 4797 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages); 4798 arch_do_swap_page_nr(vma->vm_mm, vma, address, 4799 pte, pte, nr_pages); 4800 4801 folio_unlock(folio); 4802 if (folio != swapcache && swapcache) { 4803 /* 4804 * Hold the lock to avoid the swap entry to be reused 4805 * until we take the PT lock for the pte_same() check 4806 * (to avoid false positives from pte_same). For 4807 * further safety release the lock after the swap_free 4808 * so that the swap count won't change under a 4809 * parallel locked swapcache. 4810 */ 4811 folio_unlock(swapcache); 4812 folio_put(swapcache); 4813 } 4814 4815 if (vmf->flags & FAULT_FLAG_WRITE) { 4816 ret |= do_wp_page(vmf); 4817 if (ret & VM_FAULT_ERROR) 4818 ret &= VM_FAULT_ERROR; 4819 goto out; 4820 } 4821 4822 /* No need to invalidate - it was non-present before */ 4823 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages); 4824 unlock: 4825 if (vmf->pte) 4826 pte_unmap_unlock(vmf->pte, vmf->ptl); 4827 out: 4828 /* Clear the swap cache pin for direct swapin after PTL unlock */ 4829 if (need_clear_cache) { 4830 swapcache_clear(si, entry, nr_pages); 4831 if (waitqueue_active(&swapcache_wq)) 4832 wake_up(&swapcache_wq); 4833 } 4834 if (si) 4835 put_swap_device(si); 4836 return ret; 4837 out_nomap: 4838 if (vmf->pte) 4839 pte_unmap_unlock(vmf->pte, vmf->ptl); 4840 out_page: 4841 folio_unlock(folio); 4842 out_release: 4843 folio_put(folio); 4844 if (folio != swapcache && swapcache) { 4845 folio_unlock(swapcache); 4846 folio_put(swapcache); 4847 } 4848 if (need_clear_cache) { 4849 swapcache_clear(si, entry, nr_pages); 4850 if (waitqueue_active(&swapcache_wq)) 4851 wake_up(&swapcache_wq); 4852 } 4853 if (si) 4854 put_swap_device(si); 4855 return ret; 4856 } 4857 4858 static bool pte_range_none(pte_t *pte, int nr_pages) 4859 { 4860 int i; 4861 4862 for (i = 0; i < nr_pages; i++) { 4863 if (!pte_none(ptep_get_lockless(pte + i))) 4864 return false; 4865 } 4866 4867 return true; 4868 } 4869 4870 static struct folio *alloc_anon_folio(struct vm_fault *vmf) 4871 { 4872 struct vm_area_struct *vma = vmf->vma; 4873 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4874 unsigned long orders; 4875 struct folio *folio; 4876 unsigned long addr; 4877 pte_t *pte; 4878 gfp_t gfp; 4879 int order; 4880 4881 /* 4882 * If uffd is active for the vma we need per-page fault fidelity to 4883 * maintain the uffd semantics. 4884 */ 4885 if (unlikely(userfaultfd_armed(vma))) 4886 goto fallback; 4887 4888 /* 4889 * Get a list of all the (large) orders below PMD_ORDER that are enabled 4890 * for this vma. Then filter out the orders that can't be allocated over 4891 * the faulting address and still be fully contained in the vma. 4892 */ 4893 orders = thp_vma_allowable_orders(vma, vma->vm_flags, 4894 TVA_IN_PF | TVA_ENFORCE_SYSFS, BIT(PMD_ORDER) - 1); 4895 orders = thp_vma_suitable_orders(vma, vmf->address, orders); 4896 4897 if (!orders) 4898 goto fallback; 4899 4900 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK); 4901 if (!pte) 4902 return ERR_PTR(-EAGAIN); 4903 4904 /* 4905 * Find the highest order where the aligned range is completely 4906 * pte_none(). Note that all remaining orders will be completely 4907 * pte_none(). 4908 */ 4909 order = highest_order(orders); 4910 while (orders) { 4911 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4912 if (pte_range_none(pte + pte_index(addr), 1 << order)) 4913 break; 4914 order = next_order(&orders, order); 4915 } 4916 4917 pte_unmap(pte); 4918 4919 if (!orders) 4920 goto fallback; 4921 4922 /* Try allocating the highest of the remaining orders. */ 4923 gfp = vma_thp_gfp_mask(vma); 4924 while (orders) { 4925 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order); 4926 folio = vma_alloc_folio(gfp, order, vma, addr); 4927 if (folio) { 4928 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) { 4929 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE); 4930 folio_put(folio); 4931 goto next; 4932 } 4933 folio_throttle_swaprate(folio, gfp); 4934 /* 4935 * When a folio is not zeroed during allocation 4936 * (__GFP_ZERO not used) or user folios require special 4937 * handling, folio_zero_user() is used to make sure 4938 * that the page corresponding to the faulting address 4939 * will be hot in the cache after zeroing. 4940 */ 4941 if (user_alloc_needs_zeroing()) 4942 folio_zero_user(folio, vmf->address); 4943 return folio; 4944 } 4945 next: 4946 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK); 4947 order = next_order(&orders, order); 4948 } 4949 4950 fallback: 4951 #endif 4952 return folio_prealloc(vma->vm_mm, vma, vmf->address, true); 4953 } 4954 4955 /* 4956 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4957 * but allow concurrent faults), and pte mapped but not yet locked. 4958 * We return with mmap_lock still held, but pte unmapped and unlocked. 4959 */ 4960 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4961 { 4962 struct vm_area_struct *vma = vmf->vma; 4963 unsigned long addr = vmf->address; 4964 struct folio *folio; 4965 vm_fault_t ret = 0; 4966 int nr_pages = 1; 4967 pte_t entry; 4968 4969 /* File mapping without ->vm_ops ? */ 4970 if (vma->vm_flags & VM_SHARED) 4971 return VM_FAULT_SIGBUS; 4972 4973 /* 4974 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4975 * be distinguished from a transient failure of pte_offset_map(). 4976 */ 4977 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4978 return VM_FAULT_OOM; 4979 4980 /* Use the zero-page for reads */ 4981 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4982 !mm_forbids_zeropage(vma->vm_mm)) { 4983 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4984 vma->vm_page_prot)); 4985 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4986 vmf->address, &vmf->ptl); 4987 if (!vmf->pte) 4988 goto unlock; 4989 if (vmf_pte_changed(vmf)) { 4990 update_mmu_tlb(vma, vmf->address, vmf->pte); 4991 goto unlock; 4992 } 4993 ret = check_stable_address_space(vma->vm_mm); 4994 if (ret) 4995 goto unlock; 4996 /* Deliver the page fault to userland, check inside PT lock */ 4997 if (userfaultfd_missing(vma)) { 4998 pte_unmap_unlock(vmf->pte, vmf->ptl); 4999 return handle_userfault(vmf, VM_UFFD_MISSING); 5000 } 5001 goto setpte; 5002 } 5003 5004 /* Allocate our own private page. */ 5005 ret = vmf_anon_prepare(vmf); 5006 if (ret) 5007 return ret; 5008 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */ 5009 folio = alloc_anon_folio(vmf); 5010 if (IS_ERR(folio)) 5011 return 0; 5012 if (!folio) 5013 goto oom; 5014 5015 nr_pages = folio_nr_pages(folio); 5016 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE); 5017 5018 /* 5019 * The memory barrier inside __folio_mark_uptodate makes sure that 5020 * preceding stores to the page contents become visible before 5021 * the set_pte_at() write. 5022 */ 5023 __folio_mark_uptodate(folio); 5024 5025 entry = folio_mk_pte(folio, vma->vm_page_prot); 5026 entry = pte_sw_mkyoung(entry); 5027 if (vma->vm_flags & VM_WRITE) 5028 entry = pte_mkwrite(pte_mkdirty(entry), vma); 5029 5030 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 5031 if (!vmf->pte) 5032 goto release; 5033 if (nr_pages == 1 && vmf_pte_changed(vmf)) { 5034 update_mmu_tlb(vma, addr, vmf->pte); 5035 goto release; 5036 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5037 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages); 5038 goto release; 5039 } 5040 5041 ret = check_stable_address_space(vma->vm_mm); 5042 if (ret) 5043 goto release; 5044 5045 /* Deliver the page fault to userland, check inside PT lock */ 5046 if (userfaultfd_missing(vma)) { 5047 pte_unmap_unlock(vmf->pte, vmf->ptl); 5048 folio_put(folio); 5049 return handle_userfault(vmf, VM_UFFD_MISSING); 5050 } 5051 5052 folio_ref_add(folio, nr_pages - 1); 5053 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages); 5054 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC); 5055 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5056 folio_add_lru_vma(folio, vma); 5057 setpte: 5058 if (vmf_orig_pte_uffd_wp(vmf)) 5059 entry = pte_mkuffd_wp(entry); 5060 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages); 5061 5062 /* No need to invalidate - it was non-present before */ 5063 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages); 5064 unlock: 5065 if (vmf->pte) 5066 pte_unmap_unlock(vmf->pte, vmf->ptl); 5067 return ret; 5068 release: 5069 folio_put(folio); 5070 goto unlock; 5071 oom: 5072 return VM_FAULT_OOM; 5073 } 5074 5075 /* 5076 * The mmap_lock must have been held on entry, and may have been 5077 * released depending on flags and vma->vm_ops->fault() return value. 5078 * See filemap_fault() and __lock_page_retry(). 5079 */ 5080 static vm_fault_t __do_fault(struct vm_fault *vmf) 5081 { 5082 struct vm_area_struct *vma = vmf->vma; 5083 struct folio *folio; 5084 vm_fault_t ret; 5085 5086 /* 5087 * Preallocate pte before we take page_lock because this might lead to 5088 * deadlocks for memcg reclaim which waits for pages under writeback: 5089 * lock_page(A) 5090 * SetPageWriteback(A) 5091 * unlock_page(A) 5092 * lock_page(B) 5093 * lock_page(B) 5094 * pte_alloc_one 5095 * shrink_folio_list 5096 * wait_on_page_writeback(A) 5097 * SetPageWriteback(B) 5098 * unlock_page(B) 5099 * # flush A, B to clear the writeback 5100 */ 5101 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 5102 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5103 if (!vmf->prealloc_pte) 5104 return VM_FAULT_OOM; 5105 } 5106 5107 ret = vma->vm_ops->fault(vmf); 5108 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 5109 VM_FAULT_DONE_COW))) 5110 return ret; 5111 5112 folio = page_folio(vmf->page); 5113 if (unlikely(PageHWPoison(vmf->page))) { 5114 vm_fault_t poisonret = VM_FAULT_HWPOISON; 5115 if (ret & VM_FAULT_LOCKED) { 5116 if (page_mapped(vmf->page)) 5117 unmap_mapping_folio(folio); 5118 /* Retry if a clean folio was removed from the cache. */ 5119 if (mapping_evict_folio(folio->mapping, folio)) 5120 poisonret = VM_FAULT_NOPAGE; 5121 folio_unlock(folio); 5122 } 5123 folio_put(folio); 5124 vmf->page = NULL; 5125 return poisonret; 5126 } 5127 5128 if (unlikely(!(ret & VM_FAULT_LOCKED))) 5129 folio_lock(folio); 5130 else 5131 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page); 5132 5133 return ret; 5134 } 5135 5136 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5137 static void deposit_prealloc_pte(struct vm_fault *vmf) 5138 { 5139 struct vm_area_struct *vma = vmf->vma; 5140 5141 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 5142 /* 5143 * We are going to consume the prealloc table, 5144 * count that as nr_ptes. 5145 */ 5146 mm_inc_nr_ptes(vma->vm_mm); 5147 vmf->prealloc_pte = NULL; 5148 } 5149 5150 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 5151 { 5152 struct folio *folio = page_folio(page); 5153 struct vm_area_struct *vma = vmf->vma; 5154 bool write = vmf->flags & FAULT_FLAG_WRITE; 5155 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 5156 pmd_t entry; 5157 vm_fault_t ret = VM_FAULT_FALLBACK; 5158 5159 /* 5160 * It is too late to allocate a small folio, we already have a large 5161 * folio in the pagecache: especially s390 KVM cannot tolerate any 5162 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any 5163 * PMD mappings if THPs are disabled. 5164 */ 5165 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags)) 5166 return ret; 5167 5168 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER)) 5169 return ret; 5170 5171 if (folio_order(folio) != HPAGE_PMD_ORDER) 5172 return ret; 5173 page = &folio->page; 5174 5175 /* 5176 * Just backoff if any subpage of a THP is corrupted otherwise 5177 * the corrupted page may mapped by PMD silently to escape the 5178 * check. This kind of THP just can be PTE mapped. Access to 5179 * the corrupted subpage should trigger SIGBUS as expected. 5180 */ 5181 if (unlikely(folio_test_has_hwpoisoned(folio))) 5182 return ret; 5183 5184 /* 5185 * Archs like ppc64 need additional space to store information 5186 * related to pte entry. Use the preallocated table for that. 5187 */ 5188 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 5189 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 5190 if (!vmf->prealloc_pte) 5191 return VM_FAULT_OOM; 5192 } 5193 5194 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 5195 if (unlikely(!pmd_none(*vmf->pmd))) 5196 goto out; 5197 5198 flush_icache_pages(vma, page, HPAGE_PMD_NR); 5199 5200 entry = folio_mk_pmd(folio, vma->vm_page_prot); 5201 if (write) 5202 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 5203 5204 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR); 5205 folio_add_file_rmap_pmd(folio, page, vma); 5206 5207 /* 5208 * deposit and withdraw with pmd lock held 5209 */ 5210 if (arch_needs_pgtable_deposit()) 5211 deposit_prealloc_pte(vmf); 5212 5213 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 5214 5215 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 5216 5217 /* fault is handled */ 5218 ret = 0; 5219 count_vm_event(THP_FILE_MAPPED); 5220 out: 5221 spin_unlock(vmf->ptl); 5222 return ret; 5223 } 5224 #else 5225 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 5226 { 5227 return VM_FAULT_FALLBACK; 5228 } 5229 #endif 5230 5231 /** 5232 * set_pte_range - Set a range of PTEs to point to pages in a folio. 5233 * @vmf: Fault decription. 5234 * @folio: The folio that contains @page. 5235 * @page: The first page to create a PTE for. 5236 * @nr: The number of PTEs to create. 5237 * @addr: The first address to create a PTE for. 5238 */ 5239 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 5240 struct page *page, unsigned int nr, unsigned long addr) 5241 { 5242 struct vm_area_struct *vma = vmf->vma; 5243 bool write = vmf->flags & FAULT_FLAG_WRITE; 5244 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE); 5245 pte_t entry; 5246 5247 flush_icache_pages(vma, page, nr); 5248 entry = mk_pte(page, vma->vm_page_prot); 5249 5250 if (prefault && arch_wants_old_prefaulted_pte()) 5251 entry = pte_mkold(entry); 5252 else 5253 entry = pte_sw_mkyoung(entry); 5254 5255 if (write) 5256 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 5257 else if (pte_write(entry) && folio_test_dirty(folio)) 5258 entry = pte_mkdirty(entry); 5259 if (unlikely(vmf_orig_pte_uffd_wp(vmf))) 5260 entry = pte_mkuffd_wp(entry); 5261 /* copy-on-write page */ 5262 if (write && !(vma->vm_flags & VM_SHARED)) { 5263 VM_BUG_ON_FOLIO(nr != 1, folio); 5264 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE); 5265 folio_add_lru_vma(folio, vma); 5266 } else { 5267 folio_add_file_rmap_ptes(folio, page, nr, vma); 5268 } 5269 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr); 5270 5271 /* no need to invalidate: a not-present page won't be cached */ 5272 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr); 5273 } 5274 5275 static bool vmf_pte_changed(struct vm_fault *vmf) 5276 { 5277 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 5278 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 5279 5280 return !pte_none(ptep_get(vmf->pte)); 5281 } 5282 5283 /** 5284 * finish_fault - finish page fault once we have prepared the page to fault 5285 * 5286 * @vmf: structure describing the fault 5287 * 5288 * This function handles all that is needed to finish a page fault once the 5289 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 5290 * given page, adds reverse page mapping, handles memcg charges and LRU 5291 * addition. 5292 * 5293 * The function expects the page to be locked and on success it consumes a 5294 * reference of a page being mapped (for the PTE which maps it). 5295 * 5296 * Return: %0 on success, %VM_FAULT_ code in case of error. 5297 */ 5298 vm_fault_t finish_fault(struct vm_fault *vmf) 5299 { 5300 struct vm_area_struct *vma = vmf->vma; 5301 struct page *page; 5302 struct folio *folio; 5303 vm_fault_t ret; 5304 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) && 5305 !(vma->vm_flags & VM_SHARED); 5306 int type, nr_pages; 5307 unsigned long addr; 5308 bool needs_fallback = false; 5309 5310 fallback: 5311 addr = vmf->address; 5312 5313 /* Did we COW the page? */ 5314 if (is_cow) 5315 page = vmf->cow_page; 5316 else 5317 page = vmf->page; 5318 5319 /* 5320 * check even for read faults because we might have lost our CoWed 5321 * page 5322 */ 5323 if (!(vma->vm_flags & VM_SHARED)) { 5324 ret = check_stable_address_space(vma->vm_mm); 5325 if (ret) 5326 return ret; 5327 } 5328 5329 if (pmd_none(*vmf->pmd)) { 5330 if (PageTransCompound(page)) { 5331 ret = do_set_pmd(vmf, page); 5332 if (ret != VM_FAULT_FALLBACK) 5333 return ret; 5334 } 5335 5336 if (vmf->prealloc_pte) 5337 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 5338 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 5339 return VM_FAULT_OOM; 5340 } 5341 5342 folio = page_folio(page); 5343 nr_pages = folio_nr_pages(folio); 5344 5345 /* 5346 * Using per-page fault to maintain the uffd semantics, and same 5347 * approach also applies to non-anonymous-shmem faults to avoid 5348 * inflating the RSS of the process. 5349 */ 5350 if (!vma_is_anon_shmem(vma) || unlikely(userfaultfd_armed(vma)) || 5351 unlikely(needs_fallback)) { 5352 nr_pages = 1; 5353 } else if (nr_pages > 1) { 5354 pgoff_t idx = folio_page_idx(folio, page); 5355 /* The page offset of vmf->address within the VMA. */ 5356 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5357 /* The index of the entry in the pagetable for fault page. */ 5358 pgoff_t pte_off = pte_index(vmf->address); 5359 5360 /* 5361 * Fallback to per-page fault in case the folio size in page 5362 * cache beyond the VMA limits and PMD pagetable limits. 5363 */ 5364 if (unlikely(vma_off < idx || 5365 vma_off + (nr_pages - idx) > vma_pages(vma) || 5366 pte_off < idx || 5367 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) { 5368 nr_pages = 1; 5369 } else { 5370 /* Now we can set mappings for the whole large folio. */ 5371 addr = vmf->address - idx * PAGE_SIZE; 5372 page = &folio->page; 5373 } 5374 } 5375 5376 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5377 addr, &vmf->ptl); 5378 if (!vmf->pte) 5379 return VM_FAULT_NOPAGE; 5380 5381 /* Re-check under ptl */ 5382 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) { 5383 update_mmu_tlb(vma, addr, vmf->pte); 5384 ret = VM_FAULT_NOPAGE; 5385 goto unlock; 5386 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) { 5387 needs_fallback = true; 5388 pte_unmap_unlock(vmf->pte, vmf->ptl); 5389 goto fallback; 5390 } 5391 5392 folio_ref_add(folio, nr_pages - 1); 5393 set_pte_range(vmf, folio, page, nr_pages, addr); 5394 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio); 5395 add_mm_counter(vma->vm_mm, type, nr_pages); 5396 ret = 0; 5397 5398 unlock: 5399 pte_unmap_unlock(vmf->pte, vmf->ptl); 5400 return ret; 5401 } 5402 5403 static unsigned long fault_around_pages __read_mostly = 5404 65536 >> PAGE_SHIFT; 5405 5406 #ifdef CONFIG_DEBUG_FS 5407 static int fault_around_bytes_get(void *data, u64 *val) 5408 { 5409 *val = fault_around_pages << PAGE_SHIFT; 5410 return 0; 5411 } 5412 5413 /* 5414 * fault_around_bytes must be rounded down to the nearest page order as it's 5415 * what do_fault_around() expects to see. 5416 */ 5417 static int fault_around_bytes_set(void *data, u64 val) 5418 { 5419 if (val / PAGE_SIZE > PTRS_PER_PTE) 5420 return -EINVAL; 5421 5422 /* 5423 * The minimum value is 1 page, however this results in no fault-around 5424 * at all. See should_fault_around(). 5425 */ 5426 val = max(val, PAGE_SIZE); 5427 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT; 5428 5429 return 0; 5430 } 5431 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 5432 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 5433 5434 static int __init fault_around_debugfs(void) 5435 { 5436 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 5437 &fault_around_bytes_fops); 5438 return 0; 5439 } 5440 late_initcall(fault_around_debugfs); 5441 #endif 5442 5443 /* 5444 * do_fault_around() tries to map few pages around the fault address. The hope 5445 * is that the pages will be needed soon and this will lower the number of 5446 * faults to handle. 5447 * 5448 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 5449 * not ready to be mapped: not up-to-date, locked, etc. 5450 * 5451 * This function doesn't cross VMA or page table boundaries, in order to call 5452 * map_pages() and acquire a PTE lock only once. 5453 * 5454 * fault_around_pages defines how many pages we'll try to map. 5455 * do_fault_around() expects it to be set to a power of two less than or equal 5456 * to PTRS_PER_PTE. 5457 * 5458 * The virtual address of the area that we map is naturally aligned to 5459 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 5460 * (and therefore to page order). This way it's easier to guarantee 5461 * that we don't cross page table boundaries. 5462 */ 5463 static vm_fault_t do_fault_around(struct vm_fault *vmf) 5464 { 5465 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 5466 pgoff_t pte_off = pte_index(vmf->address); 5467 /* The page offset of vmf->address within the VMA. */ 5468 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 5469 pgoff_t from_pte, to_pte; 5470 vm_fault_t ret; 5471 5472 /* The PTE offset of the start address, clamped to the VMA. */ 5473 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 5474 pte_off - min(pte_off, vma_off)); 5475 5476 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 5477 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 5478 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 5479 5480 if (pmd_none(*vmf->pmd)) { 5481 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 5482 if (!vmf->prealloc_pte) 5483 return VM_FAULT_OOM; 5484 } 5485 5486 rcu_read_lock(); 5487 ret = vmf->vma->vm_ops->map_pages(vmf, 5488 vmf->pgoff + from_pte - pte_off, 5489 vmf->pgoff + to_pte - pte_off); 5490 rcu_read_unlock(); 5491 5492 return ret; 5493 } 5494 5495 /* Return true if we should do read fault-around, false otherwise */ 5496 static inline bool should_fault_around(struct vm_fault *vmf) 5497 { 5498 /* No ->map_pages? No way to fault around... */ 5499 if (!vmf->vma->vm_ops->map_pages) 5500 return false; 5501 5502 if (uffd_disable_fault_around(vmf->vma)) 5503 return false; 5504 5505 /* A single page implies no faulting 'around' at all. */ 5506 return fault_around_pages > 1; 5507 } 5508 5509 static vm_fault_t do_read_fault(struct vm_fault *vmf) 5510 { 5511 vm_fault_t ret = 0; 5512 struct folio *folio; 5513 5514 /* 5515 * Let's call ->map_pages() first and use ->fault() as fallback 5516 * if page by the offset is not ready to be mapped (cold cache or 5517 * something). 5518 */ 5519 if (should_fault_around(vmf)) { 5520 ret = do_fault_around(vmf); 5521 if (ret) 5522 return ret; 5523 } 5524 5525 ret = vmf_can_call_fault(vmf); 5526 if (ret) 5527 return ret; 5528 5529 ret = __do_fault(vmf); 5530 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5531 return ret; 5532 5533 ret |= finish_fault(vmf); 5534 folio = page_folio(vmf->page); 5535 folio_unlock(folio); 5536 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5537 folio_put(folio); 5538 return ret; 5539 } 5540 5541 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 5542 { 5543 struct vm_area_struct *vma = vmf->vma; 5544 struct folio *folio; 5545 vm_fault_t ret; 5546 5547 ret = vmf_can_call_fault(vmf); 5548 if (!ret) 5549 ret = vmf_anon_prepare(vmf); 5550 if (ret) 5551 return ret; 5552 5553 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false); 5554 if (!folio) 5555 return VM_FAULT_OOM; 5556 5557 vmf->cow_page = &folio->page; 5558 5559 ret = __do_fault(vmf); 5560 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5561 goto uncharge_out; 5562 if (ret & VM_FAULT_DONE_COW) 5563 return ret; 5564 5565 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) { 5566 ret = VM_FAULT_HWPOISON; 5567 goto unlock; 5568 } 5569 __folio_mark_uptodate(folio); 5570 5571 ret |= finish_fault(vmf); 5572 unlock: 5573 unlock_page(vmf->page); 5574 put_page(vmf->page); 5575 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5576 goto uncharge_out; 5577 return ret; 5578 uncharge_out: 5579 folio_put(folio); 5580 return ret; 5581 } 5582 5583 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 5584 { 5585 struct vm_area_struct *vma = vmf->vma; 5586 vm_fault_t ret, tmp; 5587 struct folio *folio; 5588 5589 ret = vmf_can_call_fault(vmf); 5590 if (ret) 5591 return ret; 5592 5593 ret = __do_fault(vmf); 5594 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 5595 return ret; 5596 5597 folio = page_folio(vmf->page); 5598 5599 /* 5600 * Check if the backing address space wants to know that the page is 5601 * about to become writable 5602 */ 5603 if (vma->vm_ops->page_mkwrite) { 5604 folio_unlock(folio); 5605 tmp = do_page_mkwrite(vmf, folio); 5606 if (unlikely(!tmp || 5607 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 5608 folio_put(folio); 5609 return tmp; 5610 } 5611 } 5612 5613 ret |= finish_fault(vmf); 5614 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 5615 VM_FAULT_RETRY))) { 5616 folio_unlock(folio); 5617 folio_put(folio); 5618 return ret; 5619 } 5620 5621 ret |= fault_dirty_shared_page(vmf); 5622 return ret; 5623 } 5624 5625 /* 5626 * We enter with non-exclusive mmap_lock (to exclude vma changes, 5627 * but allow concurrent faults). 5628 * The mmap_lock may have been released depending on flags and our 5629 * return value. See filemap_fault() and __folio_lock_or_retry(). 5630 * If mmap_lock is released, vma may become invalid (for example 5631 * by other thread calling munmap()). 5632 */ 5633 static vm_fault_t do_fault(struct vm_fault *vmf) 5634 { 5635 struct vm_area_struct *vma = vmf->vma; 5636 struct mm_struct *vm_mm = vma->vm_mm; 5637 vm_fault_t ret; 5638 5639 /* 5640 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 5641 */ 5642 if (!vma->vm_ops->fault) { 5643 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 5644 vmf->address, &vmf->ptl); 5645 if (unlikely(!vmf->pte)) 5646 ret = VM_FAULT_SIGBUS; 5647 else { 5648 /* 5649 * Make sure this is not a temporary clearing of pte 5650 * by holding ptl and checking again. A R/M/W update 5651 * of pte involves: take ptl, clearing the pte so that 5652 * we don't have concurrent modification by hardware 5653 * followed by an update. 5654 */ 5655 if (unlikely(pte_none(ptep_get(vmf->pte)))) 5656 ret = VM_FAULT_SIGBUS; 5657 else 5658 ret = VM_FAULT_NOPAGE; 5659 5660 pte_unmap_unlock(vmf->pte, vmf->ptl); 5661 } 5662 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 5663 ret = do_read_fault(vmf); 5664 else if (!(vma->vm_flags & VM_SHARED)) 5665 ret = do_cow_fault(vmf); 5666 else 5667 ret = do_shared_fault(vmf); 5668 5669 /* preallocated pagetable is unused: free it */ 5670 if (vmf->prealloc_pte) { 5671 pte_free(vm_mm, vmf->prealloc_pte); 5672 vmf->prealloc_pte = NULL; 5673 } 5674 return ret; 5675 } 5676 5677 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf, 5678 unsigned long addr, int *flags, 5679 bool writable, int *last_cpupid) 5680 { 5681 struct vm_area_struct *vma = vmf->vma; 5682 5683 /* 5684 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 5685 * much anyway since they can be in shared cache state. This misses 5686 * the case where a mapping is writable but the process never writes 5687 * to it but pte_write gets cleared during protection updates and 5688 * pte_dirty has unpredictable behaviour between PTE scan updates, 5689 * background writeback, dirty balancing and application behaviour. 5690 */ 5691 if (!writable) 5692 *flags |= TNF_NO_GROUP; 5693 5694 /* 5695 * Flag if the folio is shared between multiple address spaces. This 5696 * is later used when determining whether to group tasks together 5697 */ 5698 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED)) 5699 *flags |= TNF_SHARED; 5700 /* 5701 * For memory tiering mode, cpupid of slow memory page is used 5702 * to record page access time. So use default value. 5703 */ 5704 if (folio_use_access_time(folio)) 5705 *last_cpupid = (-1 & LAST_CPUPID_MASK); 5706 else 5707 *last_cpupid = folio_last_cpupid(folio); 5708 5709 /* Record the current PID acceesing VMA */ 5710 vma_set_access_pid_bit(vma); 5711 5712 count_vm_numa_event(NUMA_HINT_FAULTS); 5713 #ifdef CONFIG_NUMA_BALANCING 5714 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1); 5715 #endif 5716 if (folio_nid(folio) == numa_node_id()) { 5717 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 5718 *flags |= TNF_FAULT_LOCAL; 5719 } 5720 5721 return mpol_misplaced(folio, vmf, addr); 5722 } 5723 5724 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5725 unsigned long fault_addr, pte_t *fault_pte, 5726 bool writable) 5727 { 5728 pte_t pte, old_pte; 5729 5730 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte); 5731 pte = pte_modify(old_pte, vma->vm_page_prot); 5732 pte = pte_mkyoung(pte); 5733 if (writable) 5734 pte = pte_mkwrite(pte, vma); 5735 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte); 5736 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1); 5737 } 5738 5739 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma, 5740 struct folio *folio, pte_t fault_pte, 5741 bool ignore_writable, bool pte_write_upgrade) 5742 { 5743 int nr = pte_pfn(fault_pte) - folio_pfn(folio); 5744 unsigned long start, end, addr = vmf->address; 5745 unsigned long addr_start = addr - (nr << PAGE_SHIFT); 5746 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE); 5747 pte_t *start_ptep; 5748 5749 /* Stay within the VMA and within the page table. */ 5750 start = max3(addr_start, pt_start, vma->vm_start); 5751 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE, 5752 vma->vm_end); 5753 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT); 5754 5755 /* Restore all PTEs' mapping of the large folio */ 5756 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) { 5757 pte_t ptent = ptep_get(start_ptep); 5758 bool writable = false; 5759 5760 if (!pte_present(ptent) || !pte_protnone(ptent)) 5761 continue; 5762 5763 if (pfn_folio(pte_pfn(ptent)) != folio) 5764 continue; 5765 5766 if (!ignore_writable) { 5767 ptent = pte_modify(ptent, vma->vm_page_prot); 5768 writable = pte_write(ptent); 5769 if (!writable && pte_write_upgrade && 5770 can_change_pte_writable(vma, addr, ptent)) 5771 writable = true; 5772 } 5773 5774 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable); 5775 } 5776 } 5777 5778 static vm_fault_t do_numa_page(struct vm_fault *vmf) 5779 { 5780 struct vm_area_struct *vma = vmf->vma; 5781 struct folio *folio = NULL; 5782 int nid = NUMA_NO_NODE; 5783 bool writable = false, ignore_writable = false; 5784 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma); 5785 int last_cpupid; 5786 int target_nid; 5787 pte_t pte, old_pte; 5788 int flags = 0, nr_pages; 5789 5790 /* 5791 * The pte cannot be used safely until we verify, while holding the page 5792 * table lock, that its contents have not changed during fault handling. 5793 */ 5794 spin_lock(vmf->ptl); 5795 /* Read the live PTE from the page tables: */ 5796 old_pte = ptep_get(vmf->pte); 5797 5798 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) { 5799 pte_unmap_unlock(vmf->pte, vmf->ptl); 5800 return 0; 5801 } 5802 5803 pte = pte_modify(old_pte, vma->vm_page_prot); 5804 5805 /* 5806 * Detect now whether the PTE could be writable; this information 5807 * is only valid while holding the PT lock. 5808 */ 5809 writable = pte_write(pte); 5810 if (!writable && pte_write_upgrade && 5811 can_change_pte_writable(vma, vmf->address, pte)) 5812 writable = true; 5813 5814 folio = vm_normal_folio(vma, vmf->address, pte); 5815 if (!folio || folio_is_zone_device(folio)) 5816 goto out_map; 5817 5818 nid = folio_nid(folio); 5819 nr_pages = folio_nr_pages(folio); 5820 5821 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags, 5822 writable, &last_cpupid); 5823 if (target_nid == NUMA_NO_NODE) 5824 goto out_map; 5825 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) { 5826 flags |= TNF_MIGRATE_FAIL; 5827 goto out_map; 5828 } 5829 /* The folio is isolated and isolation code holds a folio reference. */ 5830 pte_unmap_unlock(vmf->pte, vmf->ptl); 5831 writable = false; 5832 ignore_writable = true; 5833 5834 /* Migrate to the requested node */ 5835 if (!migrate_misplaced_folio(folio, target_nid)) { 5836 nid = target_nid; 5837 flags |= TNF_MIGRATED; 5838 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5839 return 0; 5840 } 5841 5842 flags |= TNF_MIGRATE_FAIL; 5843 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 5844 vmf->address, &vmf->ptl); 5845 if (unlikely(!vmf->pte)) 5846 return 0; 5847 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 5848 pte_unmap_unlock(vmf->pte, vmf->ptl); 5849 return 0; 5850 } 5851 out_map: 5852 /* 5853 * Make it present again, depending on how arch implements 5854 * non-accessible ptes, some can allow access by kernel mode. 5855 */ 5856 if (folio && folio_test_large(folio)) 5857 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable, 5858 pte_write_upgrade); 5859 else 5860 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte, 5861 writable); 5862 pte_unmap_unlock(vmf->pte, vmf->ptl); 5863 5864 if (nid != NUMA_NO_NODE) 5865 task_numa_fault(last_cpupid, nid, nr_pages, flags); 5866 return 0; 5867 } 5868 5869 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 5870 { 5871 struct vm_area_struct *vma = vmf->vma; 5872 if (vma_is_anonymous(vma)) 5873 return do_huge_pmd_anonymous_page(vmf); 5874 if (vma->vm_ops->huge_fault) 5875 return vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5876 return VM_FAULT_FALLBACK; 5877 } 5878 5879 /* `inline' is required to avoid gcc 4.1.2 build error */ 5880 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 5881 { 5882 struct vm_area_struct *vma = vmf->vma; 5883 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 5884 vm_fault_t ret; 5885 5886 if (vma_is_anonymous(vma)) { 5887 if (likely(!unshare) && 5888 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) { 5889 if (userfaultfd_wp_async(vmf->vma)) 5890 goto split; 5891 return handle_userfault(vmf, VM_UFFD_WP); 5892 } 5893 return do_huge_pmd_wp_page(vmf); 5894 } 5895 5896 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5897 if (vma->vm_ops->huge_fault) { 5898 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER); 5899 if (!(ret & VM_FAULT_FALLBACK)) 5900 return ret; 5901 } 5902 } 5903 5904 split: 5905 /* COW or write-notify handled on pte level: split pmd. */ 5906 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 5907 5908 return VM_FAULT_FALLBACK; 5909 } 5910 5911 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 5912 { 5913 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5914 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5915 struct vm_area_struct *vma = vmf->vma; 5916 /* No support for anonymous transparent PUD pages yet */ 5917 if (vma_is_anonymous(vma)) 5918 return VM_FAULT_FALLBACK; 5919 if (vma->vm_ops->huge_fault) 5920 return vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5921 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 5922 return VM_FAULT_FALLBACK; 5923 } 5924 5925 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 5926 { 5927 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 5928 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 5929 struct vm_area_struct *vma = vmf->vma; 5930 vm_fault_t ret; 5931 5932 /* No support for anonymous transparent PUD pages yet */ 5933 if (vma_is_anonymous(vma)) 5934 goto split; 5935 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 5936 if (vma->vm_ops->huge_fault) { 5937 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER); 5938 if (!(ret & VM_FAULT_FALLBACK)) 5939 return ret; 5940 } 5941 } 5942 split: 5943 /* COW or write-notify not handled on PUD level: split pud.*/ 5944 __split_huge_pud(vma, vmf->pud, vmf->address); 5945 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 5946 return VM_FAULT_FALLBACK; 5947 } 5948 5949 /* 5950 * These routines also need to handle stuff like marking pages dirty 5951 * and/or accessed for architectures that don't do it in hardware (most 5952 * RISC architectures). The early dirtying is also good on the i386. 5953 * 5954 * There is also a hook called "update_mmu_cache()" that architectures 5955 * with external mmu caches can use to update those (ie the Sparc or 5956 * PowerPC hashed page tables that act as extended TLBs). 5957 * 5958 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 5959 * concurrent faults). 5960 * 5961 * The mmap_lock may have been released depending on flags and our return value. 5962 * See filemap_fault() and __folio_lock_or_retry(). 5963 */ 5964 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 5965 { 5966 pte_t entry; 5967 5968 if (unlikely(pmd_none(*vmf->pmd))) { 5969 /* 5970 * Leave __pte_alloc() until later: because vm_ops->fault may 5971 * want to allocate huge page, and if we expose page table 5972 * for an instant, it will be difficult to retract from 5973 * concurrent faults and from rmap lookups. 5974 */ 5975 vmf->pte = NULL; 5976 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 5977 } else { 5978 pmd_t dummy_pmdval; 5979 5980 /* 5981 * A regular pmd is established and it can't morph into a huge 5982 * pmd by anon khugepaged, since that takes mmap_lock in write 5983 * mode; but shmem or file collapse to THP could still morph 5984 * it into a huge pmd: just retry later if so. 5985 * 5986 * Use the maywrite version to indicate that vmf->pte may be 5987 * modified, but since we will use pte_same() to detect the 5988 * change of the !pte_none() entry, there is no need to recheck 5989 * the pmdval. Here we chooes to pass a dummy variable instead 5990 * of NULL, which helps new user think about why this place is 5991 * special. 5992 */ 5993 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd, 5994 vmf->address, &dummy_pmdval, 5995 &vmf->ptl); 5996 if (unlikely(!vmf->pte)) 5997 return 0; 5998 vmf->orig_pte = ptep_get_lockless(vmf->pte); 5999 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 6000 6001 if (pte_none(vmf->orig_pte)) { 6002 pte_unmap(vmf->pte); 6003 vmf->pte = NULL; 6004 } 6005 } 6006 6007 if (!vmf->pte) 6008 return do_pte_missing(vmf); 6009 6010 if (!pte_present(vmf->orig_pte)) 6011 return do_swap_page(vmf); 6012 6013 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 6014 return do_numa_page(vmf); 6015 6016 spin_lock(vmf->ptl); 6017 entry = vmf->orig_pte; 6018 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 6019 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 6020 goto unlock; 6021 } 6022 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 6023 if (!pte_write(entry)) 6024 return do_wp_page(vmf); 6025 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 6026 entry = pte_mkdirty(entry); 6027 } 6028 entry = pte_mkyoung(entry); 6029 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 6030 vmf->flags & FAULT_FLAG_WRITE)) { 6031 update_mmu_cache_range(vmf, vmf->vma, vmf->address, 6032 vmf->pte, 1); 6033 } else { 6034 /* Skip spurious TLB flush for retried page fault */ 6035 if (vmf->flags & FAULT_FLAG_TRIED) 6036 goto unlock; 6037 /* 6038 * This is needed only for protection faults but the arch code 6039 * is not yet telling us if this is a protection fault or not. 6040 * This still avoids useless tlb flushes for .text page faults 6041 * with threads. 6042 */ 6043 if (vmf->flags & FAULT_FLAG_WRITE) 6044 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 6045 vmf->pte); 6046 } 6047 unlock: 6048 pte_unmap_unlock(vmf->pte, vmf->ptl); 6049 return 0; 6050 } 6051 6052 /* 6053 * On entry, we hold either the VMA lock or the mmap_lock 6054 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 6055 * the result, the mmap_lock is not held on exit. See filemap_fault() 6056 * and __folio_lock_or_retry(). 6057 */ 6058 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 6059 unsigned long address, unsigned int flags) 6060 { 6061 struct vm_fault vmf = { 6062 .vma = vma, 6063 .address = address & PAGE_MASK, 6064 .real_address = address, 6065 .flags = flags, 6066 .pgoff = linear_page_index(vma, address), 6067 .gfp_mask = __get_fault_gfp_mask(vma), 6068 }; 6069 struct mm_struct *mm = vma->vm_mm; 6070 unsigned long vm_flags = vma->vm_flags; 6071 pgd_t *pgd; 6072 p4d_t *p4d; 6073 vm_fault_t ret; 6074 6075 pgd = pgd_offset(mm, address); 6076 p4d = p4d_alloc(mm, pgd, address); 6077 if (!p4d) 6078 return VM_FAULT_OOM; 6079 6080 vmf.pud = pud_alloc(mm, p4d, address); 6081 if (!vmf.pud) 6082 return VM_FAULT_OOM; 6083 retry_pud: 6084 if (pud_none(*vmf.pud) && 6085 thp_vma_allowable_order(vma, vm_flags, 6086 TVA_IN_PF | TVA_ENFORCE_SYSFS, PUD_ORDER)) { 6087 ret = create_huge_pud(&vmf); 6088 if (!(ret & VM_FAULT_FALLBACK)) 6089 return ret; 6090 } else { 6091 pud_t orig_pud = *vmf.pud; 6092 6093 barrier(); 6094 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 6095 6096 /* 6097 * TODO once we support anonymous PUDs: NUMA case and 6098 * FAULT_FLAG_UNSHARE handling. 6099 */ 6100 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 6101 ret = wp_huge_pud(&vmf, orig_pud); 6102 if (!(ret & VM_FAULT_FALLBACK)) 6103 return ret; 6104 } else { 6105 huge_pud_set_accessed(&vmf, orig_pud); 6106 return 0; 6107 } 6108 } 6109 } 6110 6111 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 6112 if (!vmf.pmd) 6113 return VM_FAULT_OOM; 6114 6115 /* Huge pud page fault raced with pmd_alloc? */ 6116 if (pud_trans_unstable(vmf.pud)) 6117 goto retry_pud; 6118 6119 if (pmd_none(*vmf.pmd) && 6120 thp_vma_allowable_order(vma, vm_flags, 6121 TVA_IN_PF | TVA_ENFORCE_SYSFS, PMD_ORDER)) { 6122 ret = create_huge_pmd(&vmf); 6123 if (!(ret & VM_FAULT_FALLBACK)) 6124 return ret; 6125 } else { 6126 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 6127 6128 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 6129 VM_BUG_ON(thp_migration_supported() && 6130 !is_pmd_migration_entry(vmf.orig_pmd)); 6131 if (is_pmd_migration_entry(vmf.orig_pmd)) 6132 pmd_migration_entry_wait(mm, vmf.pmd); 6133 return 0; 6134 } 6135 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 6136 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 6137 return do_huge_pmd_numa_page(&vmf); 6138 6139 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 6140 !pmd_write(vmf.orig_pmd)) { 6141 ret = wp_huge_pmd(&vmf); 6142 if (!(ret & VM_FAULT_FALLBACK)) 6143 return ret; 6144 } else { 6145 huge_pmd_set_accessed(&vmf); 6146 return 0; 6147 } 6148 } 6149 } 6150 6151 return handle_pte_fault(&vmf); 6152 } 6153 6154 /** 6155 * mm_account_fault - Do page fault accounting 6156 * @mm: mm from which memcg should be extracted. It can be NULL. 6157 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 6158 * of perf event counters, but we'll still do the per-task accounting to 6159 * the task who triggered this page fault. 6160 * @address: the faulted address. 6161 * @flags: the fault flags. 6162 * @ret: the fault retcode. 6163 * 6164 * This will take care of most of the page fault accounting. Meanwhile, it 6165 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 6166 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 6167 * still be in per-arch page fault handlers at the entry of page fault. 6168 */ 6169 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 6170 unsigned long address, unsigned int flags, 6171 vm_fault_t ret) 6172 { 6173 bool major; 6174 6175 /* Incomplete faults will be accounted upon completion. */ 6176 if (ret & VM_FAULT_RETRY) 6177 return; 6178 6179 /* 6180 * To preserve the behavior of older kernels, PGFAULT counters record 6181 * both successful and failed faults, as opposed to perf counters, 6182 * which ignore failed cases. 6183 */ 6184 count_vm_event(PGFAULT); 6185 count_memcg_event_mm(mm, PGFAULT); 6186 6187 /* 6188 * Do not account for unsuccessful faults (e.g. when the address wasn't 6189 * valid). That includes arch_vma_access_permitted() failing before 6190 * reaching here. So this is not a "this many hardware page faults" 6191 * counter. We should use the hw profiling for that. 6192 */ 6193 if (ret & VM_FAULT_ERROR) 6194 return; 6195 6196 /* 6197 * We define the fault as a major fault when the final successful fault 6198 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 6199 * handle it immediately previously). 6200 */ 6201 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 6202 6203 if (major) 6204 current->maj_flt++; 6205 else 6206 current->min_flt++; 6207 6208 /* 6209 * If the fault is done for GUP, regs will be NULL. We only do the 6210 * accounting for the per thread fault counters who triggered the 6211 * fault, and we skip the perf event updates. 6212 */ 6213 if (!regs) 6214 return; 6215 6216 if (major) 6217 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 6218 else 6219 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 6220 } 6221 6222 #ifdef CONFIG_LRU_GEN 6223 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6224 { 6225 /* the LRU algorithm only applies to accesses with recency */ 6226 current->in_lru_fault = vma_has_recency(vma); 6227 } 6228 6229 static void lru_gen_exit_fault(void) 6230 { 6231 current->in_lru_fault = false; 6232 } 6233 #else 6234 static void lru_gen_enter_fault(struct vm_area_struct *vma) 6235 { 6236 } 6237 6238 static void lru_gen_exit_fault(void) 6239 { 6240 } 6241 #endif /* CONFIG_LRU_GEN */ 6242 6243 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 6244 unsigned int *flags) 6245 { 6246 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 6247 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 6248 return VM_FAULT_SIGSEGV; 6249 /* 6250 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 6251 * just treat it like an ordinary read-fault otherwise. 6252 */ 6253 if (!is_cow_mapping(vma->vm_flags)) 6254 *flags &= ~FAULT_FLAG_UNSHARE; 6255 } else if (*flags & FAULT_FLAG_WRITE) { 6256 /* Write faults on read-only mappings are impossible ... */ 6257 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 6258 return VM_FAULT_SIGSEGV; 6259 /* ... and FOLL_FORCE only applies to COW mappings. */ 6260 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 6261 !is_cow_mapping(vma->vm_flags))) 6262 return VM_FAULT_SIGSEGV; 6263 } 6264 #ifdef CONFIG_PER_VMA_LOCK 6265 /* 6266 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of 6267 * the assumption that lock is dropped on VM_FAULT_RETRY. 6268 */ 6269 if (WARN_ON_ONCE((*flags & 6270 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) == 6271 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT))) 6272 return VM_FAULT_SIGSEGV; 6273 #endif 6274 6275 return 0; 6276 } 6277 6278 /* 6279 * By the time we get here, we already hold either the VMA lock or the 6280 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which). 6281 * 6282 * The mmap_lock may have been released depending on flags and our 6283 * return value. See filemap_fault() and __folio_lock_or_retry(). 6284 */ 6285 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 6286 unsigned int flags, struct pt_regs *regs) 6287 { 6288 /* If the fault handler drops the mmap_lock, vma may be freed */ 6289 struct mm_struct *mm = vma->vm_mm; 6290 vm_fault_t ret; 6291 bool is_droppable; 6292 6293 __set_current_state(TASK_RUNNING); 6294 6295 ret = sanitize_fault_flags(vma, &flags); 6296 if (ret) 6297 goto out; 6298 6299 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 6300 flags & FAULT_FLAG_INSTRUCTION, 6301 flags & FAULT_FLAG_REMOTE)) { 6302 ret = VM_FAULT_SIGSEGV; 6303 goto out; 6304 } 6305 6306 is_droppable = !!(vma->vm_flags & VM_DROPPABLE); 6307 6308 /* 6309 * Enable the memcg OOM handling for faults triggered in user 6310 * space. Kernel faults are handled more gracefully. 6311 */ 6312 if (flags & FAULT_FLAG_USER) 6313 mem_cgroup_enter_user_fault(); 6314 6315 lru_gen_enter_fault(vma); 6316 6317 if (unlikely(is_vm_hugetlb_page(vma))) 6318 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 6319 else 6320 ret = __handle_mm_fault(vma, address, flags); 6321 6322 /* 6323 * Warning: It is no longer safe to dereference vma-> after this point, 6324 * because mmap_lock might have been dropped by __handle_mm_fault(), so 6325 * vma might be destroyed from underneath us. 6326 */ 6327 6328 lru_gen_exit_fault(); 6329 6330 /* If the mapping is droppable, then errors due to OOM aren't fatal. */ 6331 if (is_droppable) 6332 ret &= ~VM_FAULT_OOM; 6333 6334 if (flags & FAULT_FLAG_USER) { 6335 mem_cgroup_exit_user_fault(); 6336 /* 6337 * The task may have entered a memcg OOM situation but 6338 * if the allocation error was handled gracefully (no 6339 * VM_FAULT_OOM), there is no need to kill anything. 6340 * Just clean up the OOM state peacefully. 6341 */ 6342 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 6343 mem_cgroup_oom_synchronize(false); 6344 } 6345 out: 6346 mm_account_fault(mm, regs, address, flags, ret); 6347 6348 return ret; 6349 } 6350 EXPORT_SYMBOL_GPL(handle_mm_fault); 6351 6352 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 6353 #include <linux/extable.h> 6354 6355 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6356 { 6357 if (likely(mmap_read_trylock(mm))) 6358 return true; 6359 6360 if (regs && !user_mode(regs)) { 6361 unsigned long ip = exception_ip(regs); 6362 if (!search_exception_tables(ip)) 6363 return false; 6364 } 6365 6366 return !mmap_read_lock_killable(mm); 6367 } 6368 6369 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 6370 { 6371 /* 6372 * We don't have this operation yet. 6373 * 6374 * It should be easy enough to do: it's basically a 6375 * atomic_long_try_cmpxchg_acquire() 6376 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 6377 * it also needs the proper lockdep magic etc. 6378 */ 6379 return false; 6380 } 6381 6382 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 6383 { 6384 mmap_read_unlock(mm); 6385 if (regs && !user_mode(regs)) { 6386 unsigned long ip = exception_ip(regs); 6387 if (!search_exception_tables(ip)) 6388 return false; 6389 } 6390 return !mmap_write_lock_killable(mm); 6391 } 6392 6393 /* 6394 * Helper for page fault handling. 6395 * 6396 * This is kind of equivalent to "mmap_read_lock()" followed 6397 * by "find_extend_vma()", except it's a lot more careful about 6398 * the locking (and will drop the lock on failure). 6399 * 6400 * For example, if we have a kernel bug that causes a page 6401 * fault, we don't want to just use mmap_read_lock() to get 6402 * the mm lock, because that would deadlock if the bug were 6403 * to happen while we're holding the mm lock for writing. 6404 * 6405 * So this checks the exception tables on kernel faults in 6406 * order to only do this all for instructions that are actually 6407 * expected to fault. 6408 * 6409 * We can also actually take the mm lock for writing if we 6410 * need to extend the vma, which helps the VM layer a lot. 6411 */ 6412 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 6413 unsigned long addr, struct pt_regs *regs) 6414 { 6415 struct vm_area_struct *vma; 6416 6417 if (!get_mmap_lock_carefully(mm, regs)) 6418 return NULL; 6419 6420 vma = find_vma(mm, addr); 6421 if (likely(vma && (vma->vm_start <= addr))) 6422 return vma; 6423 6424 /* 6425 * Well, dang. We might still be successful, but only 6426 * if we can extend a vma to do so. 6427 */ 6428 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 6429 mmap_read_unlock(mm); 6430 return NULL; 6431 } 6432 6433 /* 6434 * We can try to upgrade the mmap lock atomically, 6435 * in which case we can continue to use the vma 6436 * we already looked up. 6437 * 6438 * Otherwise we'll have to drop the mmap lock and 6439 * re-take it, and also look up the vma again, 6440 * re-checking it. 6441 */ 6442 if (!mmap_upgrade_trylock(mm)) { 6443 if (!upgrade_mmap_lock_carefully(mm, regs)) 6444 return NULL; 6445 6446 vma = find_vma(mm, addr); 6447 if (!vma) 6448 goto fail; 6449 if (vma->vm_start <= addr) 6450 goto success; 6451 if (!(vma->vm_flags & VM_GROWSDOWN)) 6452 goto fail; 6453 } 6454 6455 if (expand_stack_locked(vma, addr)) 6456 goto fail; 6457 6458 success: 6459 mmap_write_downgrade(mm); 6460 return vma; 6461 6462 fail: 6463 mmap_write_unlock(mm); 6464 return NULL; 6465 } 6466 #endif 6467 6468 #ifdef CONFIG_PER_VMA_LOCK 6469 static inline bool __vma_enter_locked(struct vm_area_struct *vma, bool detaching) 6470 { 6471 unsigned int tgt_refcnt = VMA_LOCK_OFFSET; 6472 6473 /* Additional refcnt if the vma is attached. */ 6474 if (!detaching) 6475 tgt_refcnt++; 6476 6477 /* 6478 * If vma is detached then only vma_mark_attached() can raise the 6479 * vm_refcnt. mmap_write_lock prevents racing with vma_mark_attached(). 6480 */ 6481 if (!refcount_add_not_zero(VMA_LOCK_OFFSET, &vma->vm_refcnt)) 6482 return false; 6483 6484 rwsem_acquire(&vma->vmlock_dep_map, 0, 0, _RET_IP_); 6485 rcuwait_wait_event(&vma->vm_mm->vma_writer_wait, 6486 refcount_read(&vma->vm_refcnt) == tgt_refcnt, 6487 TASK_UNINTERRUPTIBLE); 6488 lock_acquired(&vma->vmlock_dep_map, _RET_IP_); 6489 6490 return true; 6491 } 6492 6493 static inline void __vma_exit_locked(struct vm_area_struct *vma, bool *detached) 6494 { 6495 *detached = refcount_sub_and_test(VMA_LOCK_OFFSET, &vma->vm_refcnt); 6496 rwsem_release(&vma->vmlock_dep_map, _RET_IP_); 6497 } 6498 6499 void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq) 6500 { 6501 bool locked; 6502 6503 /* 6504 * __vma_enter_locked() returns false immediately if the vma is not 6505 * attached, otherwise it waits until refcnt is indicating that vma 6506 * is attached with no readers. 6507 */ 6508 locked = __vma_enter_locked(vma, false); 6509 6510 /* 6511 * We should use WRITE_ONCE() here because we can have concurrent reads 6512 * from the early lockless pessimistic check in vma_start_read(). 6513 * We don't really care about the correctness of that early check, but 6514 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 6515 */ 6516 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 6517 6518 if (locked) { 6519 bool detached; 6520 6521 __vma_exit_locked(vma, &detached); 6522 WARN_ON_ONCE(detached); /* vma should remain attached */ 6523 } 6524 } 6525 EXPORT_SYMBOL_GPL(__vma_start_write); 6526 6527 void vma_mark_detached(struct vm_area_struct *vma) 6528 { 6529 vma_assert_write_locked(vma); 6530 vma_assert_attached(vma); 6531 6532 /* 6533 * We are the only writer, so no need to use vma_refcount_put(). 6534 * The condition below is unlikely because the vma has been already 6535 * write-locked and readers can increment vm_refcnt only temporarily 6536 * before they check vm_lock_seq, realize the vma is locked and drop 6537 * back the vm_refcnt. That is a narrow window for observing a raised 6538 * vm_refcnt. 6539 */ 6540 if (unlikely(!refcount_dec_and_test(&vma->vm_refcnt))) { 6541 /* Wait until vma is detached with no readers. */ 6542 if (__vma_enter_locked(vma, true)) { 6543 bool detached; 6544 6545 __vma_exit_locked(vma, &detached); 6546 WARN_ON_ONCE(!detached); 6547 } 6548 } 6549 } 6550 6551 /* 6552 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 6553 * stable and not isolated. If the VMA is not found or is being modified the 6554 * function returns NULL. 6555 */ 6556 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 6557 unsigned long address) 6558 { 6559 MA_STATE(mas, &mm->mm_mt, address, address); 6560 struct vm_area_struct *vma; 6561 6562 rcu_read_lock(); 6563 retry: 6564 vma = mas_walk(&mas); 6565 if (!vma) 6566 goto inval; 6567 6568 vma = vma_start_read(mm, vma); 6569 if (IS_ERR_OR_NULL(vma)) { 6570 /* Check if the VMA got isolated after we found it */ 6571 if (PTR_ERR(vma) == -EAGAIN) { 6572 count_vm_vma_lock_event(VMA_LOCK_MISS); 6573 /* The area was replaced with another one */ 6574 goto retry; 6575 } 6576 6577 /* Failed to lock the VMA */ 6578 goto inval; 6579 } 6580 /* 6581 * At this point, we have a stable reference to a VMA: The VMA is 6582 * locked and we know it hasn't already been isolated. 6583 * From here on, we can access the VMA without worrying about which 6584 * fields are accessible for RCU readers. 6585 */ 6586 6587 /* Check if the vma we locked is the right one. */ 6588 if (unlikely(vma->vm_mm != mm || 6589 address < vma->vm_start || address >= vma->vm_end)) 6590 goto inval_end_read; 6591 6592 rcu_read_unlock(); 6593 return vma; 6594 6595 inval_end_read: 6596 vma_end_read(vma); 6597 inval: 6598 rcu_read_unlock(); 6599 count_vm_vma_lock_event(VMA_LOCK_ABORT); 6600 return NULL; 6601 } 6602 #endif /* CONFIG_PER_VMA_LOCK */ 6603 6604 #ifndef __PAGETABLE_P4D_FOLDED 6605 /* 6606 * Allocate p4d page table. 6607 * We've already handled the fast-path in-line. 6608 */ 6609 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 6610 { 6611 p4d_t *new = p4d_alloc_one(mm, address); 6612 if (!new) 6613 return -ENOMEM; 6614 6615 spin_lock(&mm->page_table_lock); 6616 if (pgd_present(*pgd)) { /* Another has populated it */ 6617 p4d_free(mm, new); 6618 } else { 6619 smp_wmb(); /* See comment in pmd_install() */ 6620 pgd_populate(mm, pgd, new); 6621 } 6622 spin_unlock(&mm->page_table_lock); 6623 return 0; 6624 } 6625 #endif /* __PAGETABLE_P4D_FOLDED */ 6626 6627 #ifndef __PAGETABLE_PUD_FOLDED 6628 /* 6629 * Allocate page upper directory. 6630 * We've already handled the fast-path in-line. 6631 */ 6632 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 6633 { 6634 pud_t *new = pud_alloc_one(mm, address); 6635 if (!new) 6636 return -ENOMEM; 6637 6638 spin_lock(&mm->page_table_lock); 6639 if (!p4d_present(*p4d)) { 6640 mm_inc_nr_puds(mm); 6641 smp_wmb(); /* See comment in pmd_install() */ 6642 p4d_populate(mm, p4d, new); 6643 } else /* Another has populated it */ 6644 pud_free(mm, new); 6645 spin_unlock(&mm->page_table_lock); 6646 return 0; 6647 } 6648 #endif /* __PAGETABLE_PUD_FOLDED */ 6649 6650 #ifndef __PAGETABLE_PMD_FOLDED 6651 /* 6652 * Allocate page middle directory. 6653 * We've already handled the fast-path in-line. 6654 */ 6655 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 6656 { 6657 spinlock_t *ptl; 6658 pmd_t *new = pmd_alloc_one(mm, address); 6659 if (!new) 6660 return -ENOMEM; 6661 6662 ptl = pud_lock(mm, pud); 6663 if (!pud_present(*pud)) { 6664 mm_inc_nr_pmds(mm); 6665 smp_wmb(); /* See comment in pmd_install() */ 6666 pud_populate(mm, pud, new); 6667 } else { /* Another has populated it */ 6668 pmd_free(mm, new); 6669 } 6670 spin_unlock(ptl); 6671 return 0; 6672 } 6673 #endif /* __PAGETABLE_PMD_FOLDED */ 6674 6675 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args, 6676 spinlock_t *lock, pte_t *ptep, 6677 pgprot_t pgprot, unsigned long pfn_base, 6678 unsigned long addr_mask, bool writable, 6679 bool special) 6680 { 6681 args->lock = lock; 6682 args->ptep = ptep; 6683 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT); 6684 args->addr_mask = addr_mask; 6685 args->pgprot = pgprot; 6686 args->writable = writable; 6687 args->special = special; 6688 } 6689 6690 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma) 6691 { 6692 #ifdef CONFIG_LOCKDEP 6693 struct file *file = vma->vm_file; 6694 struct address_space *mapping = file ? file->f_mapping : NULL; 6695 6696 if (mapping) 6697 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) || 6698 lockdep_is_held(&vma->vm_mm->mmap_lock)); 6699 else 6700 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock)); 6701 #endif 6702 } 6703 6704 /** 6705 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address 6706 * @args: Pointer to struct @follow_pfnmap_args 6707 * 6708 * The caller needs to setup args->vma and args->address to point to the 6709 * virtual address as the target of such lookup. On a successful return, 6710 * the results will be put into other output fields. 6711 * 6712 * After the caller finished using the fields, the caller must invoke 6713 * another follow_pfnmap_end() to proper releases the locks and resources 6714 * of such look up request. 6715 * 6716 * During the start() and end() calls, the results in @args will be valid 6717 * as proper locks will be held. After the end() is called, all the fields 6718 * in @follow_pfnmap_args will be invalid to be further accessed. Further 6719 * use of such information after end() may require proper synchronizations 6720 * by the caller with page table updates, otherwise it can create a 6721 * security bug. 6722 * 6723 * If the PTE maps a refcounted page, callers are responsible to protect 6724 * against invalidation with MMU notifiers; otherwise access to the PFN at 6725 * a later point in time can trigger use-after-free. 6726 * 6727 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 6728 * should be taken for read, and the mmap semaphore cannot be released 6729 * before the end() is invoked. 6730 * 6731 * This function must not be used to modify PTE content. 6732 * 6733 * Return: zero on success, negative otherwise. 6734 */ 6735 int follow_pfnmap_start(struct follow_pfnmap_args *args) 6736 { 6737 struct vm_area_struct *vma = args->vma; 6738 unsigned long address = args->address; 6739 struct mm_struct *mm = vma->vm_mm; 6740 spinlock_t *lock; 6741 pgd_t *pgdp; 6742 p4d_t *p4dp, p4d; 6743 pud_t *pudp, pud; 6744 pmd_t *pmdp, pmd; 6745 pte_t *ptep, pte; 6746 6747 pfnmap_lockdep_assert(vma); 6748 6749 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 6750 goto out; 6751 6752 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 6753 goto out; 6754 retry: 6755 pgdp = pgd_offset(mm, address); 6756 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp))) 6757 goto out; 6758 6759 p4dp = p4d_offset(pgdp, address); 6760 p4d = READ_ONCE(*p4dp); 6761 if (p4d_none(p4d) || unlikely(p4d_bad(p4d))) 6762 goto out; 6763 6764 pudp = pud_offset(p4dp, address); 6765 pud = READ_ONCE(*pudp); 6766 if (pud_none(pud)) 6767 goto out; 6768 if (pud_leaf(pud)) { 6769 lock = pud_lock(mm, pudp); 6770 if (!unlikely(pud_leaf(pud))) { 6771 spin_unlock(lock); 6772 goto retry; 6773 } 6774 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud), 6775 pud_pfn(pud), PUD_MASK, pud_write(pud), 6776 pud_special(pud)); 6777 return 0; 6778 } 6779 6780 pmdp = pmd_offset(pudp, address); 6781 pmd = pmdp_get_lockless(pmdp); 6782 if (pmd_leaf(pmd)) { 6783 lock = pmd_lock(mm, pmdp); 6784 if (!unlikely(pmd_leaf(pmd))) { 6785 spin_unlock(lock); 6786 goto retry; 6787 } 6788 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd), 6789 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd), 6790 pmd_special(pmd)); 6791 return 0; 6792 } 6793 6794 ptep = pte_offset_map_lock(mm, pmdp, address, &lock); 6795 if (!ptep) 6796 goto out; 6797 pte = ptep_get(ptep); 6798 if (!pte_present(pte)) 6799 goto unlock; 6800 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte), 6801 pte_pfn(pte), PAGE_MASK, pte_write(pte), 6802 pte_special(pte)); 6803 return 0; 6804 unlock: 6805 pte_unmap_unlock(ptep, lock); 6806 out: 6807 return -EINVAL; 6808 } 6809 EXPORT_SYMBOL_GPL(follow_pfnmap_start); 6810 6811 /** 6812 * follow_pfnmap_end(): End a follow_pfnmap_start() process 6813 * @args: Pointer to struct @follow_pfnmap_args 6814 * 6815 * Must be used in pair of follow_pfnmap_start(). See the start() function 6816 * above for more information. 6817 */ 6818 void follow_pfnmap_end(struct follow_pfnmap_args *args) 6819 { 6820 if (args->lock) 6821 spin_unlock(args->lock); 6822 if (args->ptep) 6823 pte_unmap(args->ptep); 6824 } 6825 EXPORT_SYMBOL_GPL(follow_pfnmap_end); 6826 6827 #ifdef CONFIG_HAVE_IOREMAP_PROT 6828 /** 6829 * generic_access_phys - generic implementation for iomem mmap access 6830 * @vma: the vma to access 6831 * @addr: userspace address, not relative offset within @vma 6832 * @buf: buffer to read/write 6833 * @len: length of transfer 6834 * @write: set to FOLL_WRITE when writing, otherwise reading 6835 * 6836 * This is a generic implementation for &vm_operations_struct.access for an 6837 * iomem mapping. This callback is used by access_process_vm() when the @vma is 6838 * not page based. 6839 */ 6840 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 6841 void *buf, int len, int write) 6842 { 6843 resource_size_t phys_addr; 6844 pgprot_t prot = __pgprot(0); 6845 void __iomem *maddr; 6846 int offset = offset_in_page(addr); 6847 int ret = -EINVAL; 6848 bool writable; 6849 struct follow_pfnmap_args args = { .vma = vma, .address = addr }; 6850 6851 retry: 6852 if (follow_pfnmap_start(&args)) 6853 return -EINVAL; 6854 prot = args.pgprot; 6855 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT; 6856 writable = args.writable; 6857 follow_pfnmap_end(&args); 6858 6859 if ((write & FOLL_WRITE) && !writable) 6860 return -EINVAL; 6861 6862 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 6863 if (!maddr) 6864 return -ENOMEM; 6865 6866 if (follow_pfnmap_start(&args)) 6867 goto out_unmap; 6868 6869 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) || 6870 (phys_addr != (args.pfn << PAGE_SHIFT)) || 6871 (writable != args.writable)) { 6872 follow_pfnmap_end(&args); 6873 iounmap(maddr); 6874 goto retry; 6875 } 6876 6877 if (write) 6878 memcpy_toio(maddr + offset, buf, len); 6879 else 6880 memcpy_fromio(buf, maddr + offset, len); 6881 ret = len; 6882 follow_pfnmap_end(&args); 6883 out_unmap: 6884 iounmap(maddr); 6885 6886 return ret; 6887 } 6888 EXPORT_SYMBOL_GPL(generic_access_phys); 6889 #endif 6890 6891 /* 6892 * Access another process' address space as given in mm. 6893 */ 6894 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 6895 void *buf, int len, unsigned int gup_flags) 6896 { 6897 void *old_buf = buf; 6898 int write = gup_flags & FOLL_WRITE; 6899 6900 if (mmap_read_lock_killable(mm)) 6901 return 0; 6902 6903 /* Untag the address before looking up the VMA */ 6904 addr = untagged_addr_remote(mm, addr); 6905 6906 /* Avoid triggering the temporary warning in __get_user_pages */ 6907 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 6908 return 0; 6909 6910 /* ignore errors, just check how much was successfully transferred */ 6911 while (len) { 6912 int bytes, offset; 6913 void *maddr; 6914 struct vm_area_struct *vma = NULL; 6915 struct page *page = get_user_page_vma_remote(mm, addr, 6916 gup_flags, &vma); 6917 6918 if (IS_ERR(page)) { 6919 /* We might need to expand the stack to access it */ 6920 vma = vma_lookup(mm, addr); 6921 if (!vma) { 6922 vma = expand_stack(mm, addr); 6923 6924 /* mmap_lock was dropped on failure */ 6925 if (!vma) 6926 return buf - old_buf; 6927 6928 /* Try again if stack expansion worked */ 6929 continue; 6930 } 6931 6932 /* 6933 * Check if this is a VM_IO | VM_PFNMAP VMA, which 6934 * we can access using slightly different code. 6935 */ 6936 bytes = 0; 6937 #ifdef CONFIG_HAVE_IOREMAP_PROT 6938 if (vma->vm_ops && vma->vm_ops->access) 6939 bytes = vma->vm_ops->access(vma, addr, buf, 6940 len, write); 6941 #endif 6942 if (bytes <= 0) 6943 break; 6944 } else { 6945 bytes = len; 6946 offset = addr & (PAGE_SIZE-1); 6947 if (bytes > PAGE_SIZE-offset) 6948 bytes = PAGE_SIZE-offset; 6949 6950 maddr = kmap_local_page(page); 6951 if (write) { 6952 copy_to_user_page(vma, page, addr, 6953 maddr + offset, buf, bytes); 6954 set_page_dirty_lock(page); 6955 } else { 6956 copy_from_user_page(vma, page, addr, 6957 buf, maddr + offset, bytes); 6958 } 6959 unmap_and_put_page(page, maddr); 6960 } 6961 len -= bytes; 6962 buf += bytes; 6963 addr += bytes; 6964 } 6965 mmap_read_unlock(mm); 6966 6967 return buf - old_buf; 6968 } 6969 6970 /** 6971 * access_remote_vm - access another process' address space 6972 * @mm: the mm_struct of the target address space 6973 * @addr: start address to access 6974 * @buf: source or destination buffer 6975 * @len: number of bytes to transfer 6976 * @gup_flags: flags modifying lookup behaviour 6977 * 6978 * The caller must hold a reference on @mm. 6979 * 6980 * Return: number of bytes copied from source to destination. 6981 */ 6982 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 6983 void *buf, int len, unsigned int gup_flags) 6984 { 6985 return __access_remote_vm(mm, addr, buf, len, gup_flags); 6986 } 6987 6988 /* 6989 * Access another process' address space. 6990 * Source/target buffer must be kernel space, 6991 * Do not walk the page table directly, use get_user_pages 6992 */ 6993 int access_process_vm(struct task_struct *tsk, unsigned long addr, 6994 void *buf, int len, unsigned int gup_flags) 6995 { 6996 struct mm_struct *mm; 6997 int ret; 6998 6999 mm = get_task_mm(tsk); 7000 if (!mm) 7001 return 0; 7002 7003 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 7004 7005 mmput(mm); 7006 7007 return ret; 7008 } 7009 EXPORT_SYMBOL_GPL(access_process_vm); 7010 7011 #ifdef CONFIG_BPF_SYSCALL 7012 /* 7013 * Copy a string from another process's address space as given in mm. 7014 * If there is any error return -EFAULT. 7015 */ 7016 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr, 7017 void *buf, int len, unsigned int gup_flags) 7018 { 7019 void *old_buf = buf; 7020 int err = 0; 7021 7022 *(char *)buf = '\0'; 7023 7024 if (mmap_read_lock_killable(mm)) 7025 return -EFAULT; 7026 7027 addr = untagged_addr_remote(mm, addr); 7028 7029 /* Avoid triggering the temporary warning in __get_user_pages */ 7030 if (!vma_lookup(mm, addr)) { 7031 err = -EFAULT; 7032 goto out; 7033 } 7034 7035 while (len) { 7036 int bytes, offset, retval; 7037 void *maddr; 7038 struct page *page; 7039 struct vm_area_struct *vma = NULL; 7040 7041 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma); 7042 if (IS_ERR(page)) { 7043 /* 7044 * Treat as a total failure for now until we decide how 7045 * to handle the CONFIG_HAVE_IOREMAP_PROT case and 7046 * stack expansion. 7047 */ 7048 *(char *)buf = '\0'; 7049 err = -EFAULT; 7050 goto out; 7051 } 7052 7053 bytes = len; 7054 offset = addr & (PAGE_SIZE - 1); 7055 if (bytes > PAGE_SIZE - offset) 7056 bytes = PAGE_SIZE - offset; 7057 7058 maddr = kmap_local_page(page); 7059 retval = strscpy(buf, maddr + offset, bytes); 7060 if (retval >= 0) { 7061 /* Found the end of the string */ 7062 buf += retval; 7063 unmap_and_put_page(page, maddr); 7064 break; 7065 } 7066 7067 buf += bytes - 1; 7068 /* 7069 * Because strscpy always NUL terminates we need to 7070 * copy the last byte in the page if we are going to 7071 * load more pages 7072 */ 7073 if (bytes != len) { 7074 addr += bytes - 1; 7075 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1); 7076 buf += 1; 7077 addr += 1; 7078 } 7079 len -= bytes; 7080 7081 unmap_and_put_page(page, maddr); 7082 } 7083 7084 out: 7085 mmap_read_unlock(mm); 7086 if (err) 7087 return err; 7088 return buf - old_buf; 7089 } 7090 7091 /** 7092 * copy_remote_vm_str - copy a string from another process's address space. 7093 * @tsk: the task of the target address space 7094 * @addr: start address to read from 7095 * @buf: destination buffer 7096 * @len: number of bytes to copy 7097 * @gup_flags: flags modifying lookup behaviour 7098 * 7099 * The caller must hold a reference on @mm. 7100 * 7101 * Return: number of bytes copied from @addr (source) to @buf (destination); 7102 * not including the trailing NUL. Always guaranteed to leave NUL-terminated 7103 * buffer. On any error, return -EFAULT. 7104 */ 7105 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 7106 void *buf, int len, unsigned int gup_flags) 7107 { 7108 struct mm_struct *mm; 7109 int ret; 7110 7111 if (unlikely(len == 0)) 7112 return 0; 7113 7114 mm = get_task_mm(tsk); 7115 if (!mm) { 7116 *(char *)buf = '\0'; 7117 return -EFAULT; 7118 } 7119 7120 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags); 7121 7122 mmput(mm); 7123 7124 return ret; 7125 } 7126 EXPORT_SYMBOL_GPL(copy_remote_vm_str); 7127 #endif /* CONFIG_BPF_SYSCALL */ 7128 7129 /* 7130 * Print the name of a VMA. 7131 */ 7132 void print_vma_addr(char *prefix, unsigned long ip) 7133 { 7134 struct mm_struct *mm = current->mm; 7135 struct vm_area_struct *vma; 7136 7137 /* 7138 * we might be running from an atomic context so we cannot sleep 7139 */ 7140 if (!mmap_read_trylock(mm)) 7141 return; 7142 7143 vma = vma_lookup(mm, ip); 7144 if (vma && vma->vm_file) { 7145 struct file *f = vma->vm_file; 7146 ip -= vma->vm_start; 7147 ip += vma->vm_pgoff << PAGE_SHIFT; 7148 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip, 7149 vma->vm_start, 7150 vma->vm_end - vma->vm_start); 7151 } 7152 mmap_read_unlock(mm); 7153 } 7154 7155 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 7156 void __might_fault(const char *file, int line) 7157 { 7158 if (pagefault_disabled()) 7159 return; 7160 __might_sleep(file, line); 7161 if (current->mm) 7162 might_lock_read(¤t->mm->mmap_lock); 7163 } 7164 EXPORT_SYMBOL(__might_fault); 7165 #endif 7166 7167 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 7168 /* 7169 * Process all subpages of the specified huge page with the specified 7170 * operation. The target subpage will be processed last to keep its 7171 * cache lines hot. 7172 */ 7173 static inline int process_huge_page( 7174 unsigned long addr_hint, unsigned int nr_pages, 7175 int (*process_subpage)(unsigned long addr, int idx, void *arg), 7176 void *arg) 7177 { 7178 int i, n, base, l, ret; 7179 unsigned long addr = addr_hint & 7180 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1); 7181 7182 /* Process target subpage last to keep its cache lines hot */ 7183 might_sleep(); 7184 n = (addr_hint - addr) / PAGE_SIZE; 7185 if (2 * n <= nr_pages) { 7186 /* If target subpage in first half of huge page */ 7187 base = 0; 7188 l = n; 7189 /* Process subpages at the end of huge page */ 7190 for (i = nr_pages - 1; i >= 2 * n; i--) { 7191 cond_resched(); 7192 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7193 if (ret) 7194 return ret; 7195 } 7196 } else { 7197 /* If target subpage in second half of huge page */ 7198 base = nr_pages - 2 * (nr_pages - n); 7199 l = nr_pages - n; 7200 /* Process subpages at the begin of huge page */ 7201 for (i = 0; i < base; i++) { 7202 cond_resched(); 7203 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 7204 if (ret) 7205 return ret; 7206 } 7207 } 7208 /* 7209 * Process remaining subpages in left-right-left-right pattern 7210 * towards the target subpage 7211 */ 7212 for (i = 0; i < l; i++) { 7213 int left_idx = base + i; 7214 int right_idx = base + 2 * l - 1 - i; 7215 7216 cond_resched(); 7217 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 7218 if (ret) 7219 return ret; 7220 cond_resched(); 7221 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 7222 if (ret) 7223 return ret; 7224 } 7225 return 0; 7226 } 7227 7228 static void clear_gigantic_page(struct folio *folio, unsigned long addr_hint, 7229 unsigned int nr_pages) 7230 { 7231 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(folio)); 7232 int i; 7233 7234 might_sleep(); 7235 for (i = 0; i < nr_pages; i++) { 7236 cond_resched(); 7237 clear_user_highpage(folio_page(folio, i), addr + i * PAGE_SIZE); 7238 } 7239 } 7240 7241 static int clear_subpage(unsigned long addr, int idx, void *arg) 7242 { 7243 struct folio *folio = arg; 7244 7245 clear_user_highpage(folio_page(folio, idx), addr); 7246 return 0; 7247 } 7248 7249 /** 7250 * folio_zero_user - Zero a folio which will be mapped to userspace. 7251 * @folio: The folio to zero. 7252 * @addr_hint: The address will be accessed or the base address if uncelar. 7253 */ 7254 void folio_zero_user(struct folio *folio, unsigned long addr_hint) 7255 { 7256 unsigned int nr_pages = folio_nr_pages(folio); 7257 7258 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7259 clear_gigantic_page(folio, addr_hint, nr_pages); 7260 else 7261 process_huge_page(addr_hint, nr_pages, clear_subpage, folio); 7262 } 7263 7264 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 7265 unsigned long addr_hint, 7266 struct vm_area_struct *vma, 7267 unsigned int nr_pages) 7268 { 7269 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst)); 7270 struct page *dst_page; 7271 struct page *src_page; 7272 int i; 7273 7274 for (i = 0; i < nr_pages; i++) { 7275 dst_page = folio_page(dst, i); 7276 src_page = folio_page(src, i); 7277 7278 cond_resched(); 7279 if (copy_mc_user_highpage(dst_page, src_page, 7280 addr + i*PAGE_SIZE, vma)) 7281 return -EHWPOISON; 7282 } 7283 return 0; 7284 } 7285 7286 struct copy_subpage_arg { 7287 struct folio *dst; 7288 struct folio *src; 7289 struct vm_area_struct *vma; 7290 }; 7291 7292 static int copy_subpage(unsigned long addr, int idx, void *arg) 7293 { 7294 struct copy_subpage_arg *copy_arg = arg; 7295 struct page *dst = folio_page(copy_arg->dst, idx); 7296 struct page *src = folio_page(copy_arg->src, idx); 7297 7298 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma)) 7299 return -EHWPOISON; 7300 return 0; 7301 } 7302 7303 int copy_user_large_folio(struct folio *dst, struct folio *src, 7304 unsigned long addr_hint, struct vm_area_struct *vma) 7305 { 7306 unsigned int nr_pages = folio_nr_pages(dst); 7307 struct copy_subpage_arg arg = { 7308 .dst = dst, 7309 .src = src, 7310 .vma = vma, 7311 }; 7312 7313 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) 7314 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages); 7315 7316 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg); 7317 } 7318 7319 long copy_folio_from_user(struct folio *dst_folio, 7320 const void __user *usr_src, 7321 bool allow_pagefault) 7322 { 7323 void *kaddr; 7324 unsigned long i, rc = 0; 7325 unsigned int nr_pages = folio_nr_pages(dst_folio); 7326 unsigned long ret_val = nr_pages * PAGE_SIZE; 7327 struct page *subpage; 7328 7329 for (i = 0; i < nr_pages; i++) { 7330 subpage = folio_page(dst_folio, i); 7331 kaddr = kmap_local_page(subpage); 7332 if (!allow_pagefault) 7333 pagefault_disable(); 7334 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 7335 if (!allow_pagefault) 7336 pagefault_enable(); 7337 kunmap_local(kaddr); 7338 7339 ret_val -= (PAGE_SIZE - rc); 7340 if (rc) 7341 break; 7342 7343 flush_dcache_page(subpage); 7344 7345 cond_resched(); 7346 } 7347 return ret_val; 7348 } 7349 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 7350 7351 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS 7352 7353 static struct kmem_cache *page_ptl_cachep; 7354 7355 void __init ptlock_cache_init(void) 7356 { 7357 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 7358 SLAB_PANIC, NULL); 7359 } 7360 7361 bool ptlock_alloc(struct ptdesc *ptdesc) 7362 { 7363 spinlock_t *ptl; 7364 7365 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 7366 if (!ptl) 7367 return false; 7368 ptdesc->ptl = ptl; 7369 return true; 7370 } 7371 7372 void ptlock_free(struct ptdesc *ptdesc) 7373 { 7374 if (ptdesc->ptl) 7375 kmem_cache_free(page_ptl_cachep, ptdesc->ptl); 7376 } 7377 #endif 7378 7379 void vma_pgtable_walk_begin(struct vm_area_struct *vma) 7380 { 7381 if (is_vm_hugetlb_page(vma)) 7382 hugetlb_vma_lock_read(vma); 7383 } 7384 7385 void vma_pgtable_walk_end(struct vm_area_struct *vma) 7386 { 7387 if (is_vm_hugetlb_page(vma)) 7388 hugetlb_vma_unlock_read(vma); 7389 } 7390