xref: /linux/mm/memory.c (revision 040932cdcfca9b0ac55a4f74f194c2e2c8a2527b)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 #include <linux/kallsyms.h>
56 #include <linux/swapops.h>
57 #include <linux/elf.h>
58 
59 #include <asm/io.h>
60 #include <asm/pgalloc.h>
61 #include <asm/uaccess.h>
62 #include <asm/tlb.h>
63 #include <asm/tlbflush.h>
64 #include <asm/pgtable.h>
65 
66 #include "internal.h"
67 
68 #ifndef CONFIG_NEED_MULTIPLE_NODES
69 /* use the per-pgdat data instead for discontigmem - mbligh */
70 unsigned long max_mapnr;
71 struct page *mem_map;
72 
73 EXPORT_SYMBOL(max_mapnr);
74 EXPORT_SYMBOL(mem_map);
75 #endif
76 
77 unsigned long num_physpages;
78 /*
79  * A number of key systems in x86 including ioremap() rely on the assumption
80  * that high_memory defines the upper bound on direct map memory, then end
81  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
82  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
83  * and ZONE_HIGHMEM.
84  */
85 void * high_memory;
86 
87 EXPORT_SYMBOL(num_physpages);
88 EXPORT_SYMBOL(high_memory);
89 
90 /*
91  * Randomize the address space (stacks, mmaps, brk, etc.).
92  *
93  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
94  *   as ancient (libc5 based) binaries can segfault. )
95  */
96 int randomize_va_space __read_mostly =
97 #ifdef CONFIG_COMPAT_BRK
98 					1;
99 #else
100 					2;
101 #endif
102 
103 static int __init disable_randmaps(char *s)
104 {
105 	randomize_va_space = 0;
106 	return 1;
107 }
108 __setup("norandmaps", disable_randmaps);
109 
110 
111 /*
112  * If a p?d_bad entry is found while walking page tables, report
113  * the error, before resetting entry to p?d_none.  Usually (but
114  * very seldom) called out from the p?d_none_or_clear_bad macros.
115  */
116 
117 void pgd_clear_bad(pgd_t *pgd)
118 {
119 	pgd_ERROR(*pgd);
120 	pgd_clear(pgd);
121 }
122 
123 void pud_clear_bad(pud_t *pud)
124 {
125 	pud_ERROR(*pud);
126 	pud_clear(pud);
127 }
128 
129 void pmd_clear_bad(pmd_t *pmd)
130 {
131 	pmd_ERROR(*pmd);
132 	pmd_clear(pmd);
133 }
134 
135 /*
136  * Note: this doesn't free the actual pages themselves. That
137  * has been handled earlier when unmapping all the memory regions.
138  */
139 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
140 			   unsigned long addr)
141 {
142 	pgtable_t token = pmd_pgtable(*pmd);
143 	pmd_clear(pmd);
144 	pte_free_tlb(tlb, token, addr);
145 	tlb->mm->nr_ptes--;
146 }
147 
148 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
149 				unsigned long addr, unsigned long end,
150 				unsigned long floor, unsigned long ceiling)
151 {
152 	pmd_t *pmd;
153 	unsigned long next;
154 	unsigned long start;
155 
156 	start = addr;
157 	pmd = pmd_offset(pud, addr);
158 	do {
159 		next = pmd_addr_end(addr, end);
160 		if (pmd_none_or_clear_bad(pmd))
161 			continue;
162 		free_pte_range(tlb, pmd, addr);
163 	} while (pmd++, addr = next, addr != end);
164 
165 	start &= PUD_MASK;
166 	if (start < floor)
167 		return;
168 	if (ceiling) {
169 		ceiling &= PUD_MASK;
170 		if (!ceiling)
171 			return;
172 	}
173 	if (end - 1 > ceiling - 1)
174 		return;
175 
176 	pmd = pmd_offset(pud, start);
177 	pud_clear(pud);
178 	pmd_free_tlb(tlb, pmd, start);
179 }
180 
181 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
182 				unsigned long addr, unsigned long end,
183 				unsigned long floor, unsigned long ceiling)
184 {
185 	pud_t *pud;
186 	unsigned long next;
187 	unsigned long start;
188 
189 	start = addr;
190 	pud = pud_offset(pgd, addr);
191 	do {
192 		next = pud_addr_end(addr, end);
193 		if (pud_none_or_clear_bad(pud))
194 			continue;
195 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
196 	} while (pud++, addr = next, addr != end);
197 
198 	start &= PGDIR_MASK;
199 	if (start < floor)
200 		return;
201 	if (ceiling) {
202 		ceiling &= PGDIR_MASK;
203 		if (!ceiling)
204 			return;
205 	}
206 	if (end - 1 > ceiling - 1)
207 		return;
208 
209 	pud = pud_offset(pgd, start);
210 	pgd_clear(pgd);
211 	pud_free_tlb(tlb, pud, start);
212 }
213 
214 /*
215  * This function frees user-level page tables of a process.
216  *
217  * Must be called with pagetable lock held.
218  */
219 void free_pgd_range(struct mmu_gather *tlb,
220 			unsigned long addr, unsigned long end,
221 			unsigned long floor, unsigned long ceiling)
222 {
223 	pgd_t *pgd;
224 	unsigned long next;
225 	unsigned long start;
226 
227 	/*
228 	 * The next few lines have given us lots of grief...
229 	 *
230 	 * Why are we testing PMD* at this top level?  Because often
231 	 * there will be no work to do at all, and we'd prefer not to
232 	 * go all the way down to the bottom just to discover that.
233 	 *
234 	 * Why all these "- 1"s?  Because 0 represents both the bottom
235 	 * of the address space and the top of it (using -1 for the
236 	 * top wouldn't help much: the masks would do the wrong thing).
237 	 * The rule is that addr 0 and floor 0 refer to the bottom of
238 	 * the address space, but end 0 and ceiling 0 refer to the top
239 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
240 	 * that end 0 case should be mythical).
241 	 *
242 	 * Wherever addr is brought up or ceiling brought down, we must
243 	 * be careful to reject "the opposite 0" before it confuses the
244 	 * subsequent tests.  But what about where end is brought down
245 	 * by PMD_SIZE below? no, end can't go down to 0 there.
246 	 *
247 	 * Whereas we round start (addr) and ceiling down, by different
248 	 * masks at different levels, in order to test whether a table
249 	 * now has no other vmas using it, so can be freed, we don't
250 	 * bother to round floor or end up - the tests don't need that.
251 	 */
252 
253 	addr &= PMD_MASK;
254 	if (addr < floor) {
255 		addr += PMD_SIZE;
256 		if (!addr)
257 			return;
258 	}
259 	if (ceiling) {
260 		ceiling &= PMD_MASK;
261 		if (!ceiling)
262 			return;
263 	}
264 	if (end - 1 > ceiling - 1)
265 		end -= PMD_SIZE;
266 	if (addr > end - 1)
267 		return;
268 
269 	start = addr;
270 	pgd = pgd_offset(tlb->mm, addr);
271 	do {
272 		next = pgd_addr_end(addr, end);
273 		if (pgd_none_or_clear_bad(pgd))
274 			continue;
275 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
276 	} while (pgd++, addr = next, addr != end);
277 }
278 
279 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
280 		unsigned long floor, unsigned long ceiling)
281 {
282 	while (vma) {
283 		struct vm_area_struct *next = vma->vm_next;
284 		unsigned long addr = vma->vm_start;
285 
286 		/*
287 		 * Hide vma from rmap and vmtruncate before freeing pgtables
288 		 */
289 		anon_vma_unlink(vma);
290 		unlink_file_vma(vma);
291 
292 		if (is_vm_hugetlb_page(vma)) {
293 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
294 				floor, next? next->vm_start: ceiling);
295 		} else {
296 			/*
297 			 * Optimization: gather nearby vmas into one call down
298 			 */
299 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
300 			       && !is_vm_hugetlb_page(next)) {
301 				vma = next;
302 				next = vma->vm_next;
303 				anon_vma_unlink(vma);
304 				unlink_file_vma(vma);
305 			}
306 			free_pgd_range(tlb, addr, vma->vm_end,
307 				floor, next? next->vm_start: ceiling);
308 		}
309 		vma = next;
310 	}
311 }
312 
313 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
314 {
315 	pgtable_t new = pte_alloc_one(mm, address);
316 	if (!new)
317 		return -ENOMEM;
318 
319 	/*
320 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
321 	 * visible before the pte is made visible to other CPUs by being
322 	 * put into page tables.
323 	 *
324 	 * The other side of the story is the pointer chasing in the page
325 	 * table walking code (when walking the page table without locking;
326 	 * ie. most of the time). Fortunately, these data accesses consist
327 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
328 	 * being the notable exception) will already guarantee loads are
329 	 * seen in-order. See the alpha page table accessors for the
330 	 * smp_read_barrier_depends() barriers in page table walking code.
331 	 */
332 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
333 
334 	spin_lock(&mm->page_table_lock);
335 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
336 		mm->nr_ptes++;
337 		pmd_populate(mm, pmd, new);
338 		new = NULL;
339 	}
340 	spin_unlock(&mm->page_table_lock);
341 	if (new)
342 		pte_free(mm, new);
343 	return 0;
344 }
345 
346 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
347 {
348 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
349 	if (!new)
350 		return -ENOMEM;
351 
352 	smp_wmb(); /* See comment in __pte_alloc */
353 
354 	spin_lock(&init_mm.page_table_lock);
355 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
356 		pmd_populate_kernel(&init_mm, pmd, new);
357 		new = NULL;
358 	}
359 	spin_unlock(&init_mm.page_table_lock);
360 	if (new)
361 		pte_free_kernel(&init_mm, new);
362 	return 0;
363 }
364 
365 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
366 {
367 	if (file_rss)
368 		add_mm_counter(mm, file_rss, file_rss);
369 	if (anon_rss)
370 		add_mm_counter(mm, anon_rss, anon_rss);
371 }
372 
373 /*
374  * This function is called to print an error when a bad pte
375  * is found. For example, we might have a PFN-mapped pte in
376  * a region that doesn't allow it.
377  *
378  * The calling function must still handle the error.
379  */
380 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
381 			  pte_t pte, struct page *page)
382 {
383 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
384 	pud_t *pud = pud_offset(pgd, addr);
385 	pmd_t *pmd = pmd_offset(pud, addr);
386 	struct address_space *mapping;
387 	pgoff_t index;
388 	static unsigned long resume;
389 	static unsigned long nr_shown;
390 	static unsigned long nr_unshown;
391 
392 	/*
393 	 * Allow a burst of 60 reports, then keep quiet for that minute;
394 	 * or allow a steady drip of one report per second.
395 	 */
396 	if (nr_shown == 60) {
397 		if (time_before(jiffies, resume)) {
398 			nr_unshown++;
399 			return;
400 		}
401 		if (nr_unshown) {
402 			printk(KERN_ALERT
403 				"BUG: Bad page map: %lu messages suppressed\n",
404 				nr_unshown);
405 			nr_unshown = 0;
406 		}
407 		nr_shown = 0;
408 	}
409 	if (nr_shown++ == 0)
410 		resume = jiffies + 60 * HZ;
411 
412 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
413 	index = linear_page_index(vma, addr);
414 
415 	printk(KERN_ALERT
416 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
417 		current->comm,
418 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
419 	if (page) {
420 		printk(KERN_ALERT
421 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
422 		page, (void *)page->flags, page_count(page),
423 		page_mapcount(page), page->mapping, page->index);
424 	}
425 	printk(KERN_ALERT
426 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
427 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
428 	/*
429 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
430 	 */
431 	if (vma->vm_ops)
432 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
433 				(unsigned long)vma->vm_ops->fault);
434 	if (vma->vm_file && vma->vm_file->f_op)
435 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
436 				(unsigned long)vma->vm_file->f_op->mmap);
437 	dump_stack();
438 	add_taint(TAINT_BAD_PAGE);
439 }
440 
441 static inline int is_cow_mapping(unsigned int flags)
442 {
443 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
444 }
445 
446 /*
447  * vm_normal_page -- This function gets the "struct page" associated with a pte.
448  *
449  * "Special" mappings do not wish to be associated with a "struct page" (either
450  * it doesn't exist, or it exists but they don't want to touch it). In this
451  * case, NULL is returned here. "Normal" mappings do have a struct page.
452  *
453  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
454  * pte bit, in which case this function is trivial. Secondly, an architecture
455  * may not have a spare pte bit, which requires a more complicated scheme,
456  * described below.
457  *
458  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
459  * special mapping (even if there are underlying and valid "struct pages").
460  * COWed pages of a VM_PFNMAP are always normal.
461  *
462  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
463  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
464  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
465  * mapping will always honor the rule
466  *
467  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
468  *
469  * And for normal mappings this is false.
470  *
471  * This restricts such mappings to be a linear translation from virtual address
472  * to pfn. To get around this restriction, we allow arbitrary mappings so long
473  * as the vma is not a COW mapping; in that case, we know that all ptes are
474  * special (because none can have been COWed).
475  *
476  *
477  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
478  *
479  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
480  * page" backing, however the difference is that _all_ pages with a struct
481  * page (that is, those where pfn_valid is true) are refcounted and considered
482  * normal pages by the VM. The disadvantage is that pages are refcounted
483  * (which can be slower and simply not an option for some PFNMAP users). The
484  * advantage is that we don't have to follow the strict linearity rule of
485  * PFNMAP mappings in order to support COWable mappings.
486  *
487  */
488 #ifdef __HAVE_ARCH_PTE_SPECIAL
489 # define HAVE_PTE_SPECIAL 1
490 #else
491 # define HAVE_PTE_SPECIAL 0
492 #endif
493 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
494 				pte_t pte)
495 {
496 	unsigned long pfn = pte_pfn(pte);
497 
498 	if (HAVE_PTE_SPECIAL) {
499 		if (likely(!pte_special(pte)))
500 			goto check_pfn;
501 		if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
502 			print_bad_pte(vma, addr, pte, NULL);
503 		return NULL;
504 	}
505 
506 	/* !HAVE_PTE_SPECIAL case follows: */
507 
508 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
509 		if (vma->vm_flags & VM_MIXEDMAP) {
510 			if (!pfn_valid(pfn))
511 				return NULL;
512 			goto out;
513 		} else {
514 			unsigned long off;
515 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
516 			if (pfn == vma->vm_pgoff + off)
517 				return NULL;
518 			if (!is_cow_mapping(vma->vm_flags))
519 				return NULL;
520 		}
521 	}
522 
523 check_pfn:
524 	if (unlikely(pfn > highest_memmap_pfn)) {
525 		print_bad_pte(vma, addr, pte, NULL);
526 		return NULL;
527 	}
528 
529 	/*
530 	 * NOTE! We still have PageReserved() pages in the page tables.
531 	 * eg. VDSO mappings can cause them to exist.
532 	 */
533 out:
534 	return pfn_to_page(pfn);
535 }
536 
537 /*
538  * copy one vm_area from one task to the other. Assumes the page tables
539  * already present in the new task to be cleared in the whole range
540  * covered by this vma.
541  */
542 
543 static inline void
544 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
545 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
546 		unsigned long addr, int *rss)
547 {
548 	unsigned long vm_flags = vma->vm_flags;
549 	pte_t pte = *src_pte;
550 	struct page *page;
551 
552 	/* pte contains position in swap or file, so copy. */
553 	if (unlikely(!pte_present(pte))) {
554 		if (!pte_file(pte)) {
555 			swp_entry_t entry = pte_to_swp_entry(pte);
556 
557 			swap_duplicate(entry);
558 			/* make sure dst_mm is on swapoff's mmlist. */
559 			if (unlikely(list_empty(&dst_mm->mmlist))) {
560 				spin_lock(&mmlist_lock);
561 				if (list_empty(&dst_mm->mmlist))
562 					list_add(&dst_mm->mmlist,
563 						 &src_mm->mmlist);
564 				spin_unlock(&mmlist_lock);
565 			}
566 			if (is_write_migration_entry(entry) &&
567 					is_cow_mapping(vm_flags)) {
568 				/*
569 				 * COW mappings require pages in both parent
570 				 * and child to be set to read.
571 				 */
572 				make_migration_entry_read(&entry);
573 				pte = swp_entry_to_pte(entry);
574 				set_pte_at(src_mm, addr, src_pte, pte);
575 			}
576 		}
577 		goto out_set_pte;
578 	}
579 
580 	/*
581 	 * If it's a COW mapping, write protect it both
582 	 * in the parent and the child
583 	 */
584 	if (is_cow_mapping(vm_flags)) {
585 		ptep_set_wrprotect(src_mm, addr, src_pte);
586 		pte = pte_wrprotect(pte);
587 	}
588 
589 	/*
590 	 * If it's a shared mapping, mark it clean in
591 	 * the child
592 	 */
593 	if (vm_flags & VM_SHARED)
594 		pte = pte_mkclean(pte);
595 	pte = pte_mkold(pte);
596 
597 	page = vm_normal_page(vma, addr, pte);
598 	if (page) {
599 		get_page(page);
600 		page_dup_rmap(page, vma, addr);
601 		rss[!!PageAnon(page)]++;
602 	}
603 
604 out_set_pte:
605 	set_pte_at(dst_mm, addr, dst_pte, pte);
606 }
607 
608 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
609 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
610 		unsigned long addr, unsigned long end)
611 {
612 	pte_t *src_pte, *dst_pte;
613 	spinlock_t *src_ptl, *dst_ptl;
614 	int progress = 0;
615 	int rss[2];
616 
617 again:
618 	rss[1] = rss[0] = 0;
619 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
620 	if (!dst_pte)
621 		return -ENOMEM;
622 	src_pte = pte_offset_map_nested(src_pmd, addr);
623 	src_ptl = pte_lockptr(src_mm, src_pmd);
624 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
625 	arch_enter_lazy_mmu_mode();
626 
627 	do {
628 		/*
629 		 * We are holding two locks at this point - either of them
630 		 * could generate latencies in another task on another CPU.
631 		 */
632 		if (progress >= 32) {
633 			progress = 0;
634 			if (need_resched() ||
635 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
636 				break;
637 		}
638 		if (pte_none(*src_pte)) {
639 			progress++;
640 			continue;
641 		}
642 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
643 		progress += 8;
644 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
645 
646 	arch_leave_lazy_mmu_mode();
647 	spin_unlock(src_ptl);
648 	pte_unmap_nested(src_pte - 1);
649 	add_mm_rss(dst_mm, rss[0], rss[1]);
650 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
651 	cond_resched();
652 	if (addr != end)
653 		goto again;
654 	return 0;
655 }
656 
657 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
658 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
659 		unsigned long addr, unsigned long end)
660 {
661 	pmd_t *src_pmd, *dst_pmd;
662 	unsigned long next;
663 
664 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
665 	if (!dst_pmd)
666 		return -ENOMEM;
667 	src_pmd = pmd_offset(src_pud, addr);
668 	do {
669 		next = pmd_addr_end(addr, end);
670 		if (pmd_none_or_clear_bad(src_pmd))
671 			continue;
672 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
673 						vma, addr, next))
674 			return -ENOMEM;
675 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
676 	return 0;
677 }
678 
679 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
680 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
681 		unsigned long addr, unsigned long end)
682 {
683 	pud_t *src_pud, *dst_pud;
684 	unsigned long next;
685 
686 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
687 	if (!dst_pud)
688 		return -ENOMEM;
689 	src_pud = pud_offset(src_pgd, addr);
690 	do {
691 		next = pud_addr_end(addr, end);
692 		if (pud_none_or_clear_bad(src_pud))
693 			continue;
694 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
695 						vma, addr, next))
696 			return -ENOMEM;
697 	} while (dst_pud++, src_pud++, addr = next, addr != end);
698 	return 0;
699 }
700 
701 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
702 		struct vm_area_struct *vma)
703 {
704 	pgd_t *src_pgd, *dst_pgd;
705 	unsigned long next;
706 	unsigned long addr = vma->vm_start;
707 	unsigned long end = vma->vm_end;
708 	int ret;
709 
710 	/*
711 	 * Don't copy ptes where a page fault will fill them correctly.
712 	 * Fork becomes much lighter when there are big shared or private
713 	 * readonly mappings. The tradeoff is that copy_page_range is more
714 	 * efficient than faulting.
715 	 */
716 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
717 		if (!vma->anon_vma)
718 			return 0;
719 	}
720 
721 	if (is_vm_hugetlb_page(vma))
722 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
723 
724 	if (unlikely(is_pfn_mapping(vma))) {
725 		/*
726 		 * We do not free on error cases below as remove_vma
727 		 * gets called on error from higher level routine
728 		 */
729 		ret = track_pfn_vma_copy(vma);
730 		if (ret)
731 			return ret;
732 	}
733 
734 	/*
735 	 * We need to invalidate the secondary MMU mappings only when
736 	 * there could be a permission downgrade on the ptes of the
737 	 * parent mm. And a permission downgrade will only happen if
738 	 * is_cow_mapping() returns true.
739 	 */
740 	if (is_cow_mapping(vma->vm_flags))
741 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
742 
743 	ret = 0;
744 	dst_pgd = pgd_offset(dst_mm, addr);
745 	src_pgd = pgd_offset(src_mm, addr);
746 	do {
747 		next = pgd_addr_end(addr, end);
748 		if (pgd_none_or_clear_bad(src_pgd))
749 			continue;
750 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
751 					    vma, addr, next))) {
752 			ret = -ENOMEM;
753 			break;
754 		}
755 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
756 
757 	if (is_cow_mapping(vma->vm_flags))
758 		mmu_notifier_invalidate_range_end(src_mm,
759 						  vma->vm_start, end);
760 	return ret;
761 }
762 
763 static unsigned long zap_pte_range(struct mmu_gather *tlb,
764 				struct vm_area_struct *vma, pmd_t *pmd,
765 				unsigned long addr, unsigned long end,
766 				long *zap_work, struct zap_details *details)
767 {
768 	struct mm_struct *mm = tlb->mm;
769 	pte_t *pte;
770 	spinlock_t *ptl;
771 	int file_rss = 0;
772 	int anon_rss = 0;
773 
774 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
775 	arch_enter_lazy_mmu_mode();
776 	do {
777 		pte_t ptent = *pte;
778 		if (pte_none(ptent)) {
779 			(*zap_work)--;
780 			continue;
781 		}
782 
783 		(*zap_work) -= PAGE_SIZE;
784 
785 		if (pte_present(ptent)) {
786 			struct page *page;
787 
788 			page = vm_normal_page(vma, addr, ptent);
789 			if (unlikely(details) && page) {
790 				/*
791 				 * unmap_shared_mapping_pages() wants to
792 				 * invalidate cache without truncating:
793 				 * unmap shared but keep private pages.
794 				 */
795 				if (details->check_mapping &&
796 				    details->check_mapping != page->mapping)
797 					continue;
798 				/*
799 				 * Each page->index must be checked when
800 				 * invalidating or truncating nonlinear.
801 				 */
802 				if (details->nonlinear_vma &&
803 				    (page->index < details->first_index ||
804 				     page->index > details->last_index))
805 					continue;
806 			}
807 			ptent = ptep_get_and_clear_full(mm, addr, pte,
808 							tlb->fullmm);
809 			tlb_remove_tlb_entry(tlb, pte, addr);
810 			if (unlikely(!page))
811 				continue;
812 			if (unlikely(details) && details->nonlinear_vma
813 			    && linear_page_index(details->nonlinear_vma,
814 						addr) != page->index)
815 				set_pte_at(mm, addr, pte,
816 					   pgoff_to_pte(page->index));
817 			if (PageAnon(page))
818 				anon_rss--;
819 			else {
820 				if (pte_dirty(ptent))
821 					set_page_dirty(page);
822 				if (pte_young(ptent) &&
823 				    likely(!VM_SequentialReadHint(vma)))
824 					mark_page_accessed(page);
825 				file_rss--;
826 			}
827 			page_remove_rmap(page);
828 			if (unlikely(page_mapcount(page) < 0))
829 				print_bad_pte(vma, addr, ptent, page);
830 			tlb_remove_page(tlb, page);
831 			continue;
832 		}
833 		/*
834 		 * If details->check_mapping, we leave swap entries;
835 		 * if details->nonlinear_vma, we leave file entries.
836 		 */
837 		if (unlikely(details))
838 			continue;
839 		if (pte_file(ptent)) {
840 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
841 				print_bad_pte(vma, addr, ptent, NULL);
842 		} else if
843 		  (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
844 			print_bad_pte(vma, addr, ptent, NULL);
845 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
846 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
847 
848 	add_mm_rss(mm, file_rss, anon_rss);
849 	arch_leave_lazy_mmu_mode();
850 	pte_unmap_unlock(pte - 1, ptl);
851 
852 	return addr;
853 }
854 
855 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
856 				struct vm_area_struct *vma, pud_t *pud,
857 				unsigned long addr, unsigned long end,
858 				long *zap_work, struct zap_details *details)
859 {
860 	pmd_t *pmd;
861 	unsigned long next;
862 
863 	pmd = pmd_offset(pud, addr);
864 	do {
865 		next = pmd_addr_end(addr, end);
866 		if (pmd_none_or_clear_bad(pmd)) {
867 			(*zap_work)--;
868 			continue;
869 		}
870 		next = zap_pte_range(tlb, vma, pmd, addr, next,
871 						zap_work, details);
872 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
873 
874 	return addr;
875 }
876 
877 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
878 				struct vm_area_struct *vma, pgd_t *pgd,
879 				unsigned long addr, unsigned long end,
880 				long *zap_work, struct zap_details *details)
881 {
882 	pud_t *pud;
883 	unsigned long next;
884 
885 	pud = pud_offset(pgd, addr);
886 	do {
887 		next = pud_addr_end(addr, end);
888 		if (pud_none_or_clear_bad(pud)) {
889 			(*zap_work)--;
890 			continue;
891 		}
892 		next = zap_pmd_range(tlb, vma, pud, addr, next,
893 						zap_work, details);
894 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
895 
896 	return addr;
897 }
898 
899 static unsigned long unmap_page_range(struct mmu_gather *tlb,
900 				struct vm_area_struct *vma,
901 				unsigned long addr, unsigned long end,
902 				long *zap_work, struct zap_details *details)
903 {
904 	pgd_t *pgd;
905 	unsigned long next;
906 
907 	if (details && !details->check_mapping && !details->nonlinear_vma)
908 		details = NULL;
909 
910 	BUG_ON(addr >= end);
911 	tlb_start_vma(tlb, vma);
912 	pgd = pgd_offset(vma->vm_mm, addr);
913 	do {
914 		next = pgd_addr_end(addr, end);
915 		if (pgd_none_or_clear_bad(pgd)) {
916 			(*zap_work)--;
917 			continue;
918 		}
919 		next = zap_pud_range(tlb, vma, pgd, addr, next,
920 						zap_work, details);
921 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
922 	tlb_end_vma(tlb, vma);
923 
924 	return addr;
925 }
926 
927 #ifdef CONFIG_PREEMPT
928 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
929 #else
930 /* No preempt: go for improved straight-line efficiency */
931 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
932 #endif
933 
934 /**
935  * unmap_vmas - unmap a range of memory covered by a list of vma's
936  * @tlbp: address of the caller's struct mmu_gather
937  * @vma: the starting vma
938  * @start_addr: virtual address at which to start unmapping
939  * @end_addr: virtual address at which to end unmapping
940  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
941  * @details: details of nonlinear truncation or shared cache invalidation
942  *
943  * Returns the end address of the unmapping (restart addr if interrupted).
944  *
945  * Unmap all pages in the vma list.
946  *
947  * We aim to not hold locks for too long (for scheduling latency reasons).
948  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
949  * return the ending mmu_gather to the caller.
950  *
951  * Only addresses between `start' and `end' will be unmapped.
952  *
953  * The VMA list must be sorted in ascending virtual address order.
954  *
955  * unmap_vmas() assumes that the caller will flush the whole unmapped address
956  * range after unmap_vmas() returns.  So the only responsibility here is to
957  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
958  * drops the lock and schedules.
959  */
960 unsigned long unmap_vmas(struct mmu_gather **tlbp,
961 		struct vm_area_struct *vma, unsigned long start_addr,
962 		unsigned long end_addr, unsigned long *nr_accounted,
963 		struct zap_details *details)
964 {
965 	long zap_work = ZAP_BLOCK_SIZE;
966 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
967 	int tlb_start_valid = 0;
968 	unsigned long start = start_addr;
969 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
970 	int fullmm = (*tlbp)->fullmm;
971 	struct mm_struct *mm = vma->vm_mm;
972 
973 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
974 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
975 		unsigned long end;
976 
977 		start = max(vma->vm_start, start_addr);
978 		if (start >= vma->vm_end)
979 			continue;
980 		end = min(vma->vm_end, end_addr);
981 		if (end <= vma->vm_start)
982 			continue;
983 
984 		if (vma->vm_flags & VM_ACCOUNT)
985 			*nr_accounted += (end - start) >> PAGE_SHIFT;
986 
987 		if (unlikely(is_pfn_mapping(vma)))
988 			untrack_pfn_vma(vma, 0, 0);
989 
990 		while (start != end) {
991 			if (!tlb_start_valid) {
992 				tlb_start = start;
993 				tlb_start_valid = 1;
994 			}
995 
996 			if (unlikely(is_vm_hugetlb_page(vma))) {
997 				/*
998 				 * It is undesirable to test vma->vm_file as it
999 				 * should be non-null for valid hugetlb area.
1000 				 * However, vm_file will be NULL in the error
1001 				 * cleanup path of do_mmap_pgoff. When
1002 				 * hugetlbfs ->mmap method fails,
1003 				 * do_mmap_pgoff() nullifies vma->vm_file
1004 				 * before calling this function to clean up.
1005 				 * Since no pte has actually been setup, it is
1006 				 * safe to do nothing in this case.
1007 				 */
1008 				if (vma->vm_file) {
1009 					unmap_hugepage_range(vma, start, end, NULL);
1010 					zap_work -= (end - start) /
1011 					pages_per_huge_page(hstate_vma(vma));
1012 				}
1013 
1014 				start = end;
1015 			} else
1016 				start = unmap_page_range(*tlbp, vma,
1017 						start, end, &zap_work, details);
1018 
1019 			if (zap_work > 0) {
1020 				BUG_ON(start != end);
1021 				break;
1022 			}
1023 
1024 			tlb_finish_mmu(*tlbp, tlb_start, start);
1025 
1026 			if (need_resched() ||
1027 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1028 				if (i_mmap_lock) {
1029 					*tlbp = NULL;
1030 					goto out;
1031 				}
1032 				cond_resched();
1033 			}
1034 
1035 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1036 			tlb_start_valid = 0;
1037 			zap_work = ZAP_BLOCK_SIZE;
1038 		}
1039 	}
1040 out:
1041 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1042 	return start;	/* which is now the end (or restart) address */
1043 }
1044 
1045 /**
1046  * zap_page_range - remove user pages in a given range
1047  * @vma: vm_area_struct holding the applicable pages
1048  * @address: starting address of pages to zap
1049  * @size: number of bytes to zap
1050  * @details: details of nonlinear truncation or shared cache invalidation
1051  */
1052 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1053 		unsigned long size, struct zap_details *details)
1054 {
1055 	struct mm_struct *mm = vma->vm_mm;
1056 	struct mmu_gather *tlb;
1057 	unsigned long end = address + size;
1058 	unsigned long nr_accounted = 0;
1059 
1060 	lru_add_drain();
1061 	tlb = tlb_gather_mmu(mm, 0);
1062 	update_hiwater_rss(mm);
1063 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1064 	if (tlb)
1065 		tlb_finish_mmu(tlb, address, end);
1066 	return end;
1067 }
1068 
1069 /**
1070  * zap_vma_ptes - remove ptes mapping the vma
1071  * @vma: vm_area_struct holding ptes to be zapped
1072  * @address: starting address of pages to zap
1073  * @size: number of bytes to zap
1074  *
1075  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1076  *
1077  * The entire address range must be fully contained within the vma.
1078  *
1079  * Returns 0 if successful.
1080  */
1081 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1082 		unsigned long size)
1083 {
1084 	if (address < vma->vm_start || address + size > vma->vm_end ||
1085 	    		!(vma->vm_flags & VM_PFNMAP))
1086 		return -1;
1087 	zap_page_range(vma, address, size, NULL);
1088 	return 0;
1089 }
1090 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1091 
1092 /*
1093  * Do a quick page-table lookup for a single page.
1094  */
1095 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1096 			unsigned int flags)
1097 {
1098 	pgd_t *pgd;
1099 	pud_t *pud;
1100 	pmd_t *pmd;
1101 	pte_t *ptep, pte;
1102 	spinlock_t *ptl;
1103 	struct page *page;
1104 	struct mm_struct *mm = vma->vm_mm;
1105 
1106 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1107 	if (!IS_ERR(page)) {
1108 		BUG_ON(flags & FOLL_GET);
1109 		goto out;
1110 	}
1111 
1112 	page = NULL;
1113 	pgd = pgd_offset(mm, address);
1114 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1115 		goto no_page_table;
1116 
1117 	pud = pud_offset(pgd, address);
1118 	if (pud_none(*pud))
1119 		goto no_page_table;
1120 	if (pud_huge(*pud)) {
1121 		BUG_ON(flags & FOLL_GET);
1122 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1123 		goto out;
1124 	}
1125 	if (unlikely(pud_bad(*pud)))
1126 		goto no_page_table;
1127 
1128 	pmd = pmd_offset(pud, address);
1129 	if (pmd_none(*pmd))
1130 		goto no_page_table;
1131 	if (pmd_huge(*pmd)) {
1132 		BUG_ON(flags & FOLL_GET);
1133 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1134 		goto out;
1135 	}
1136 	if (unlikely(pmd_bad(*pmd)))
1137 		goto no_page_table;
1138 
1139 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1140 
1141 	pte = *ptep;
1142 	if (!pte_present(pte))
1143 		goto no_page;
1144 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1145 		goto unlock;
1146 	page = vm_normal_page(vma, address, pte);
1147 	if (unlikely(!page))
1148 		goto bad_page;
1149 
1150 	if (flags & FOLL_GET)
1151 		get_page(page);
1152 	if (flags & FOLL_TOUCH) {
1153 		if ((flags & FOLL_WRITE) &&
1154 		    !pte_dirty(pte) && !PageDirty(page))
1155 			set_page_dirty(page);
1156 		/*
1157 		 * pte_mkyoung() would be more correct here, but atomic care
1158 		 * is needed to avoid losing the dirty bit: it is easier to use
1159 		 * mark_page_accessed().
1160 		 */
1161 		mark_page_accessed(page);
1162 	}
1163 unlock:
1164 	pte_unmap_unlock(ptep, ptl);
1165 out:
1166 	return page;
1167 
1168 bad_page:
1169 	pte_unmap_unlock(ptep, ptl);
1170 	return ERR_PTR(-EFAULT);
1171 
1172 no_page:
1173 	pte_unmap_unlock(ptep, ptl);
1174 	if (!pte_none(pte))
1175 		return page;
1176 	/* Fall through to ZERO_PAGE handling */
1177 no_page_table:
1178 	/*
1179 	 * When core dumping an enormous anonymous area that nobody
1180 	 * has touched so far, we don't want to allocate page tables.
1181 	 */
1182 	if (flags & FOLL_ANON) {
1183 		page = ZERO_PAGE(0);
1184 		if (flags & FOLL_GET)
1185 			get_page(page);
1186 		BUG_ON(flags & FOLL_WRITE);
1187 	}
1188 	return page;
1189 }
1190 
1191 /* Can we do the FOLL_ANON optimization? */
1192 static inline int use_zero_page(struct vm_area_struct *vma)
1193 {
1194 	/*
1195 	 * We don't want to optimize FOLL_ANON for make_pages_present()
1196 	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1197 	 * we want to get the page from the page tables to make sure
1198 	 * that we serialize and update with any other user of that
1199 	 * mapping.
1200 	 */
1201 	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1202 		return 0;
1203 	/*
1204 	 * And if we have a fault routine, it's not an anonymous region.
1205 	 */
1206 	return !vma->vm_ops || !vma->vm_ops->fault;
1207 }
1208 
1209 
1210 
1211 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1212 		     unsigned long start, int nr_pages, int flags,
1213 		     struct page **pages, struct vm_area_struct **vmas)
1214 {
1215 	int i;
1216 	unsigned int vm_flags = 0;
1217 	int write = !!(flags & GUP_FLAGS_WRITE);
1218 	int force = !!(flags & GUP_FLAGS_FORCE);
1219 	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1220 	int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
1221 
1222 	if (nr_pages <= 0)
1223 		return 0;
1224 	/*
1225 	 * Require read or write permissions.
1226 	 * If 'force' is set, we only require the "MAY" flags.
1227 	 */
1228 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1229 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1230 	i = 0;
1231 
1232 	do {
1233 		struct vm_area_struct *vma;
1234 		unsigned int foll_flags;
1235 
1236 		vma = find_extend_vma(mm, start);
1237 		if (!vma && in_gate_area(tsk, start)) {
1238 			unsigned long pg = start & PAGE_MASK;
1239 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1240 			pgd_t *pgd;
1241 			pud_t *pud;
1242 			pmd_t *pmd;
1243 			pte_t *pte;
1244 
1245 			/* user gate pages are read-only */
1246 			if (!ignore && write)
1247 				return i ? : -EFAULT;
1248 			if (pg > TASK_SIZE)
1249 				pgd = pgd_offset_k(pg);
1250 			else
1251 				pgd = pgd_offset_gate(mm, pg);
1252 			BUG_ON(pgd_none(*pgd));
1253 			pud = pud_offset(pgd, pg);
1254 			BUG_ON(pud_none(*pud));
1255 			pmd = pmd_offset(pud, pg);
1256 			if (pmd_none(*pmd))
1257 				return i ? : -EFAULT;
1258 			pte = pte_offset_map(pmd, pg);
1259 			if (pte_none(*pte)) {
1260 				pte_unmap(pte);
1261 				return i ? : -EFAULT;
1262 			}
1263 			if (pages) {
1264 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1265 				pages[i] = page;
1266 				if (page)
1267 					get_page(page);
1268 			}
1269 			pte_unmap(pte);
1270 			if (vmas)
1271 				vmas[i] = gate_vma;
1272 			i++;
1273 			start += PAGE_SIZE;
1274 			nr_pages--;
1275 			continue;
1276 		}
1277 
1278 		if (!vma ||
1279 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1280 		    (!ignore && !(vm_flags & vma->vm_flags)))
1281 			return i ? : -EFAULT;
1282 
1283 		if (is_vm_hugetlb_page(vma)) {
1284 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1285 						&start, &nr_pages, i, write);
1286 			continue;
1287 		}
1288 
1289 		foll_flags = FOLL_TOUCH;
1290 		if (pages)
1291 			foll_flags |= FOLL_GET;
1292 		if (!write && use_zero_page(vma))
1293 			foll_flags |= FOLL_ANON;
1294 
1295 		do {
1296 			struct page *page;
1297 
1298 			/*
1299 			 * If we have a pending SIGKILL, don't keep faulting
1300 			 * pages and potentially allocating memory, unless
1301 			 * current is handling munlock--e.g., on exit. In
1302 			 * that case, we are not allocating memory.  Rather,
1303 			 * we're only unlocking already resident/mapped pages.
1304 			 */
1305 			if (unlikely(!ignore_sigkill &&
1306 					fatal_signal_pending(current)))
1307 				return i ? i : -ERESTARTSYS;
1308 
1309 			if (write)
1310 				foll_flags |= FOLL_WRITE;
1311 
1312 			cond_resched();
1313 			while (!(page = follow_page(vma, start, foll_flags))) {
1314 				int ret;
1315 
1316 				ret = handle_mm_fault(mm, vma, start,
1317 					(foll_flags & FOLL_WRITE) ?
1318 					FAULT_FLAG_WRITE : 0);
1319 
1320 				if (ret & VM_FAULT_ERROR) {
1321 					if (ret & VM_FAULT_OOM)
1322 						return i ? i : -ENOMEM;
1323 					else if (ret & VM_FAULT_SIGBUS)
1324 						return i ? i : -EFAULT;
1325 					BUG();
1326 				}
1327 				if (ret & VM_FAULT_MAJOR)
1328 					tsk->maj_flt++;
1329 				else
1330 					tsk->min_flt++;
1331 
1332 				/*
1333 				 * The VM_FAULT_WRITE bit tells us that
1334 				 * do_wp_page has broken COW when necessary,
1335 				 * even if maybe_mkwrite decided not to set
1336 				 * pte_write. We can thus safely do subsequent
1337 				 * page lookups as if they were reads. But only
1338 				 * do so when looping for pte_write is futile:
1339 				 * in some cases userspace may also be wanting
1340 				 * to write to the gotten user page, which a
1341 				 * read fault here might prevent (a readonly
1342 				 * page might get reCOWed by userspace write).
1343 				 */
1344 				if ((ret & VM_FAULT_WRITE) &&
1345 				    !(vma->vm_flags & VM_WRITE))
1346 					foll_flags &= ~FOLL_WRITE;
1347 
1348 				cond_resched();
1349 			}
1350 			if (IS_ERR(page))
1351 				return i ? i : PTR_ERR(page);
1352 			if (pages) {
1353 				pages[i] = page;
1354 
1355 				flush_anon_page(vma, page, start);
1356 				flush_dcache_page(page);
1357 			}
1358 			if (vmas)
1359 				vmas[i] = vma;
1360 			i++;
1361 			start += PAGE_SIZE;
1362 			nr_pages--;
1363 		} while (nr_pages && start < vma->vm_end);
1364 	} while (nr_pages);
1365 	return i;
1366 }
1367 
1368 /**
1369  * get_user_pages() - pin user pages in memory
1370  * @tsk:	task_struct of target task
1371  * @mm:		mm_struct of target mm
1372  * @start:	starting user address
1373  * @nr_pages:	number of pages from start to pin
1374  * @write:	whether pages will be written to by the caller
1375  * @force:	whether to force write access even if user mapping is
1376  *		readonly. This will result in the page being COWed even
1377  *		in MAP_SHARED mappings. You do not want this.
1378  * @pages:	array that receives pointers to the pages pinned.
1379  *		Should be at least nr_pages long. Or NULL, if caller
1380  *		only intends to ensure the pages are faulted in.
1381  * @vmas:	array of pointers to vmas corresponding to each page.
1382  *		Or NULL if the caller does not require them.
1383  *
1384  * Returns number of pages pinned. This may be fewer than the number
1385  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1386  * were pinned, returns -errno. Each page returned must be released
1387  * with a put_page() call when it is finished with. vmas will only
1388  * remain valid while mmap_sem is held.
1389  *
1390  * Must be called with mmap_sem held for read or write.
1391  *
1392  * get_user_pages walks a process's page tables and takes a reference to
1393  * each struct page that each user address corresponds to at a given
1394  * instant. That is, it takes the page that would be accessed if a user
1395  * thread accesses the given user virtual address at that instant.
1396  *
1397  * This does not guarantee that the page exists in the user mappings when
1398  * get_user_pages returns, and there may even be a completely different
1399  * page there in some cases (eg. if mmapped pagecache has been invalidated
1400  * and subsequently re faulted). However it does guarantee that the page
1401  * won't be freed completely. And mostly callers simply care that the page
1402  * contains data that was valid *at some point in time*. Typically, an IO
1403  * or similar operation cannot guarantee anything stronger anyway because
1404  * locks can't be held over the syscall boundary.
1405  *
1406  * If write=0, the page must not be written to. If the page is written to,
1407  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1408  * after the page is finished with, and before put_page is called.
1409  *
1410  * get_user_pages is typically used for fewer-copy IO operations, to get a
1411  * handle on the memory by some means other than accesses via the user virtual
1412  * addresses. The pages may be submitted for DMA to devices or accessed via
1413  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1414  * use the correct cache flushing APIs.
1415  *
1416  * See also get_user_pages_fast, for performance critical applications.
1417  */
1418 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1419 		unsigned long start, int nr_pages, int write, int force,
1420 		struct page **pages, struct vm_area_struct **vmas)
1421 {
1422 	int flags = 0;
1423 
1424 	if (write)
1425 		flags |= GUP_FLAGS_WRITE;
1426 	if (force)
1427 		flags |= GUP_FLAGS_FORCE;
1428 
1429 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1430 }
1431 
1432 EXPORT_SYMBOL(get_user_pages);
1433 
1434 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1435 			spinlock_t **ptl)
1436 {
1437 	pgd_t * pgd = pgd_offset(mm, addr);
1438 	pud_t * pud = pud_alloc(mm, pgd, addr);
1439 	if (pud) {
1440 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1441 		if (pmd)
1442 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1443 	}
1444 	return NULL;
1445 }
1446 
1447 /*
1448  * This is the old fallback for page remapping.
1449  *
1450  * For historical reasons, it only allows reserved pages. Only
1451  * old drivers should use this, and they needed to mark their
1452  * pages reserved for the old functions anyway.
1453  */
1454 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1455 			struct page *page, pgprot_t prot)
1456 {
1457 	struct mm_struct *mm = vma->vm_mm;
1458 	int retval;
1459 	pte_t *pte;
1460 	spinlock_t *ptl;
1461 
1462 	retval = -EINVAL;
1463 	if (PageAnon(page))
1464 		goto out;
1465 	retval = -ENOMEM;
1466 	flush_dcache_page(page);
1467 	pte = get_locked_pte(mm, addr, &ptl);
1468 	if (!pte)
1469 		goto out;
1470 	retval = -EBUSY;
1471 	if (!pte_none(*pte))
1472 		goto out_unlock;
1473 
1474 	/* Ok, finally just insert the thing.. */
1475 	get_page(page);
1476 	inc_mm_counter(mm, file_rss);
1477 	page_add_file_rmap(page);
1478 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1479 
1480 	retval = 0;
1481 	pte_unmap_unlock(pte, ptl);
1482 	return retval;
1483 out_unlock:
1484 	pte_unmap_unlock(pte, ptl);
1485 out:
1486 	return retval;
1487 }
1488 
1489 /**
1490  * vm_insert_page - insert single page into user vma
1491  * @vma: user vma to map to
1492  * @addr: target user address of this page
1493  * @page: source kernel page
1494  *
1495  * This allows drivers to insert individual pages they've allocated
1496  * into a user vma.
1497  *
1498  * The page has to be a nice clean _individual_ kernel allocation.
1499  * If you allocate a compound page, you need to have marked it as
1500  * such (__GFP_COMP), or manually just split the page up yourself
1501  * (see split_page()).
1502  *
1503  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1504  * took an arbitrary page protection parameter. This doesn't allow
1505  * that. Your vma protection will have to be set up correctly, which
1506  * means that if you want a shared writable mapping, you'd better
1507  * ask for a shared writable mapping!
1508  *
1509  * The page does not need to be reserved.
1510  */
1511 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1512 			struct page *page)
1513 {
1514 	if (addr < vma->vm_start || addr >= vma->vm_end)
1515 		return -EFAULT;
1516 	if (!page_count(page))
1517 		return -EINVAL;
1518 	vma->vm_flags |= VM_INSERTPAGE;
1519 	return insert_page(vma, addr, page, vma->vm_page_prot);
1520 }
1521 EXPORT_SYMBOL(vm_insert_page);
1522 
1523 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1524 			unsigned long pfn, pgprot_t prot)
1525 {
1526 	struct mm_struct *mm = vma->vm_mm;
1527 	int retval;
1528 	pte_t *pte, entry;
1529 	spinlock_t *ptl;
1530 
1531 	retval = -ENOMEM;
1532 	pte = get_locked_pte(mm, addr, &ptl);
1533 	if (!pte)
1534 		goto out;
1535 	retval = -EBUSY;
1536 	if (!pte_none(*pte))
1537 		goto out_unlock;
1538 
1539 	/* Ok, finally just insert the thing.. */
1540 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1541 	set_pte_at(mm, addr, pte, entry);
1542 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1543 
1544 	retval = 0;
1545 out_unlock:
1546 	pte_unmap_unlock(pte, ptl);
1547 out:
1548 	return retval;
1549 }
1550 
1551 /**
1552  * vm_insert_pfn - insert single pfn into user vma
1553  * @vma: user vma to map to
1554  * @addr: target user address of this page
1555  * @pfn: source kernel pfn
1556  *
1557  * Similar to vm_inert_page, this allows drivers to insert individual pages
1558  * they've allocated into a user vma. Same comments apply.
1559  *
1560  * This function should only be called from a vm_ops->fault handler, and
1561  * in that case the handler should return NULL.
1562  *
1563  * vma cannot be a COW mapping.
1564  *
1565  * As this is called only for pages that do not currently exist, we
1566  * do not need to flush old virtual caches or the TLB.
1567  */
1568 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1569 			unsigned long pfn)
1570 {
1571 	int ret;
1572 	pgprot_t pgprot = vma->vm_page_prot;
1573 	/*
1574 	 * Technically, architectures with pte_special can avoid all these
1575 	 * restrictions (same for remap_pfn_range).  However we would like
1576 	 * consistency in testing and feature parity among all, so we should
1577 	 * try to keep these invariants in place for everybody.
1578 	 */
1579 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1580 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1581 						(VM_PFNMAP|VM_MIXEDMAP));
1582 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1583 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1584 
1585 	if (addr < vma->vm_start || addr >= vma->vm_end)
1586 		return -EFAULT;
1587 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1588 		return -EINVAL;
1589 
1590 	ret = insert_pfn(vma, addr, pfn, pgprot);
1591 
1592 	if (ret)
1593 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1594 
1595 	return ret;
1596 }
1597 EXPORT_SYMBOL(vm_insert_pfn);
1598 
1599 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1600 			unsigned long pfn)
1601 {
1602 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1603 
1604 	if (addr < vma->vm_start || addr >= vma->vm_end)
1605 		return -EFAULT;
1606 
1607 	/*
1608 	 * If we don't have pte special, then we have to use the pfn_valid()
1609 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1610 	 * refcount the page if pfn_valid is true (hence insert_page rather
1611 	 * than insert_pfn).
1612 	 */
1613 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1614 		struct page *page;
1615 
1616 		page = pfn_to_page(pfn);
1617 		return insert_page(vma, addr, page, vma->vm_page_prot);
1618 	}
1619 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1620 }
1621 EXPORT_SYMBOL(vm_insert_mixed);
1622 
1623 /*
1624  * maps a range of physical memory into the requested pages. the old
1625  * mappings are removed. any references to nonexistent pages results
1626  * in null mappings (currently treated as "copy-on-access")
1627  */
1628 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1629 			unsigned long addr, unsigned long end,
1630 			unsigned long pfn, pgprot_t prot)
1631 {
1632 	pte_t *pte;
1633 	spinlock_t *ptl;
1634 
1635 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1636 	if (!pte)
1637 		return -ENOMEM;
1638 	arch_enter_lazy_mmu_mode();
1639 	do {
1640 		BUG_ON(!pte_none(*pte));
1641 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1642 		pfn++;
1643 	} while (pte++, addr += PAGE_SIZE, addr != end);
1644 	arch_leave_lazy_mmu_mode();
1645 	pte_unmap_unlock(pte - 1, ptl);
1646 	return 0;
1647 }
1648 
1649 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1650 			unsigned long addr, unsigned long end,
1651 			unsigned long pfn, pgprot_t prot)
1652 {
1653 	pmd_t *pmd;
1654 	unsigned long next;
1655 
1656 	pfn -= addr >> PAGE_SHIFT;
1657 	pmd = pmd_alloc(mm, pud, addr);
1658 	if (!pmd)
1659 		return -ENOMEM;
1660 	do {
1661 		next = pmd_addr_end(addr, end);
1662 		if (remap_pte_range(mm, pmd, addr, next,
1663 				pfn + (addr >> PAGE_SHIFT), prot))
1664 			return -ENOMEM;
1665 	} while (pmd++, addr = next, addr != end);
1666 	return 0;
1667 }
1668 
1669 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1670 			unsigned long addr, unsigned long end,
1671 			unsigned long pfn, pgprot_t prot)
1672 {
1673 	pud_t *pud;
1674 	unsigned long next;
1675 
1676 	pfn -= addr >> PAGE_SHIFT;
1677 	pud = pud_alloc(mm, pgd, addr);
1678 	if (!pud)
1679 		return -ENOMEM;
1680 	do {
1681 		next = pud_addr_end(addr, end);
1682 		if (remap_pmd_range(mm, pud, addr, next,
1683 				pfn + (addr >> PAGE_SHIFT), prot))
1684 			return -ENOMEM;
1685 	} while (pud++, addr = next, addr != end);
1686 	return 0;
1687 }
1688 
1689 /**
1690  * remap_pfn_range - remap kernel memory to userspace
1691  * @vma: user vma to map to
1692  * @addr: target user address to start at
1693  * @pfn: physical address of kernel memory
1694  * @size: size of map area
1695  * @prot: page protection flags for this mapping
1696  *
1697  *  Note: this is only safe if the mm semaphore is held when called.
1698  */
1699 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1700 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1701 {
1702 	pgd_t *pgd;
1703 	unsigned long next;
1704 	unsigned long end = addr + PAGE_ALIGN(size);
1705 	struct mm_struct *mm = vma->vm_mm;
1706 	int err;
1707 
1708 	/*
1709 	 * Physically remapped pages are special. Tell the
1710 	 * rest of the world about it:
1711 	 *   VM_IO tells people not to look at these pages
1712 	 *	(accesses can have side effects).
1713 	 *   VM_RESERVED is specified all over the place, because
1714 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1715 	 *	in 2.6 the LRU scan won't even find its pages, so this
1716 	 *	flag means no more than count its pages in reserved_vm,
1717 	 * 	and omit it from core dump, even when VM_IO turned off.
1718 	 *   VM_PFNMAP tells the core MM that the base pages are just
1719 	 *	raw PFN mappings, and do not have a "struct page" associated
1720 	 *	with them.
1721 	 *
1722 	 * There's a horrible special case to handle copy-on-write
1723 	 * behaviour that some programs depend on. We mark the "original"
1724 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1725 	 */
1726 	if (addr == vma->vm_start && end == vma->vm_end) {
1727 		vma->vm_pgoff = pfn;
1728 		vma->vm_flags |= VM_PFN_AT_MMAP;
1729 	} else if (is_cow_mapping(vma->vm_flags))
1730 		return -EINVAL;
1731 
1732 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1733 
1734 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1735 	if (err) {
1736 		/*
1737 		 * To indicate that track_pfn related cleanup is not
1738 		 * needed from higher level routine calling unmap_vmas
1739 		 */
1740 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1741 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
1742 		return -EINVAL;
1743 	}
1744 
1745 	BUG_ON(addr >= end);
1746 	pfn -= addr >> PAGE_SHIFT;
1747 	pgd = pgd_offset(mm, addr);
1748 	flush_cache_range(vma, addr, end);
1749 	do {
1750 		next = pgd_addr_end(addr, end);
1751 		err = remap_pud_range(mm, pgd, addr, next,
1752 				pfn + (addr >> PAGE_SHIFT), prot);
1753 		if (err)
1754 			break;
1755 	} while (pgd++, addr = next, addr != end);
1756 
1757 	if (err)
1758 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1759 
1760 	return err;
1761 }
1762 EXPORT_SYMBOL(remap_pfn_range);
1763 
1764 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1765 				     unsigned long addr, unsigned long end,
1766 				     pte_fn_t fn, void *data)
1767 {
1768 	pte_t *pte;
1769 	int err;
1770 	pgtable_t token;
1771 	spinlock_t *uninitialized_var(ptl);
1772 
1773 	pte = (mm == &init_mm) ?
1774 		pte_alloc_kernel(pmd, addr) :
1775 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1776 	if (!pte)
1777 		return -ENOMEM;
1778 
1779 	BUG_ON(pmd_huge(*pmd));
1780 
1781 	arch_enter_lazy_mmu_mode();
1782 
1783 	token = pmd_pgtable(*pmd);
1784 
1785 	do {
1786 		err = fn(pte, token, addr, data);
1787 		if (err)
1788 			break;
1789 	} while (pte++, addr += PAGE_SIZE, addr != end);
1790 
1791 	arch_leave_lazy_mmu_mode();
1792 
1793 	if (mm != &init_mm)
1794 		pte_unmap_unlock(pte-1, ptl);
1795 	return err;
1796 }
1797 
1798 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1799 				     unsigned long addr, unsigned long end,
1800 				     pte_fn_t fn, void *data)
1801 {
1802 	pmd_t *pmd;
1803 	unsigned long next;
1804 	int err;
1805 
1806 	BUG_ON(pud_huge(*pud));
1807 
1808 	pmd = pmd_alloc(mm, pud, addr);
1809 	if (!pmd)
1810 		return -ENOMEM;
1811 	do {
1812 		next = pmd_addr_end(addr, end);
1813 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1814 		if (err)
1815 			break;
1816 	} while (pmd++, addr = next, addr != end);
1817 	return err;
1818 }
1819 
1820 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1821 				     unsigned long addr, unsigned long end,
1822 				     pte_fn_t fn, void *data)
1823 {
1824 	pud_t *pud;
1825 	unsigned long next;
1826 	int err;
1827 
1828 	pud = pud_alloc(mm, pgd, addr);
1829 	if (!pud)
1830 		return -ENOMEM;
1831 	do {
1832 		next = pud_addr_end(addr, end);
1833 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1834 		if (err)
1835 			break;
1836 	} while (pud++, addr = next, addr != end);
1837 	return err;
1838 }
1839 
1840 /*
1841  * Scan a region of virtual memory, filling in page tables as necessary
1842  * and calling a provided function on each leaf page table.
1843  */
1844 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1845 			unsigned long size, pte_fn_t fn, void *data)
1846 {
1847 	pgd_t *pgd;
1848 	unsigned long next;
1849 	unsigned long start = addr, end = addr + size;
1850 	int err;
1851 
1852 	BUG_ON(addr >= end);
1853 	mmu_notifier_invalidate_range_start(mm, start, end);
1854 	pgd = pgd_offset(mm, addr);
1855 	do {
1856 		next = pgd_addr_end(addr, end);
1857 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1858 		if (err)
1859 			break;
1860 	} while (pgd++, addr = next, addr != end);
1861 	mmu_notifier_invalidate_range_end(mm, start, end);
1862 	return err;
1863 }
1864 EXPORT_SYMBOL_GPL(apply_to_page_range);
1865 
1866 /*
1867  * handle_pte_fault chooses page fault handler according to an entry
1868  * which was read non-atomically.  Before making any commitment, on
1869  * those architectures or configurations (e.g. i386 with PAE) which
1870  * might give a mix of unmatched parts, do_swap_page and do_file_page
1871  * must check under lock before unmapping the pte and proceeding
1872  * (but do_wp_page is only called after already making such a check;
1873  * and do_anonymous_page and do_no_page can safely check later on).
1874  */
1875 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1876 				pte_t *page_table, pte_t orig_pte)
1877 {
1878 	int same = 1;
1879 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1880 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1881 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1882 		spin_lock(ptl);
1883 		same = pte_same(*page_table, orig_pte);
1884 		spin_unlock(ptl);
1885 	}
1886 #endif
1887 	pte_unmap(page_table);
1888 	return same;
1889 }
1890 
1891 /*
1892  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1893  * servicing faults for write access.  In the normal case, do always want
1894  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1895  * that do not have writing enabled, when used by access_process_vm.
1896  */
1897 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1898 {
1899 	if (likely(vma->vm_flags & VM_WRITE))
1900 		pte = pte_mkwrite(pte);
1901 	return pte;
1902 }
1903 
1904 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1905 {
1906 	/*
1907 	 * If the source page was a PFN mapping, we don't have
1908 	 * a "struct page" for it. We do a best-effort copy by
1909 	 * just copying from the original user address. If that
1910 	 * fails, we just zero-fill it. Live with it.
1911 	 */
1912 	if (unlikely(!src)) {
1913 		void *kaddr = kmap_atomic(dst, KM_USER0);
1914 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1915 
1916 		/*
1917 		 * This really shouldn't fail, because the page is there
1918 		 * in the page tables. But it might just be unreadable,
1919 		 * in which case we just give up and fill the result with
1920 		 * zeroes.
1921 		 */
1922 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1923 			memset(kaddr, 0, PAGE_SIZE);
1924 		kunmap_atomic(kaddr, KM_USER0);
1925 		flush_dcache_page(dst);
1926 	} else
1927 		copy_user_highpage(dst, src, va, vma);
1928 }
1929 
1930 /*
1931  * This routine handles present pages, when users try to write
1932  * to a shared page. It is done by copying the page to a new address
1933  * and decrementing the shared-page counter for the old page.
1934  *
1935  * Note that this routine assumes that the protection checks have been
1936  * done by the caller (the low-level page fault routine in most cases).
1937  * Thus we can safely just mark it writable once we've done any necessary
1938  * COW.
1939  *
1940  * We also mark the page dirty at this point even though the page will
1941  * change only once the write actually happens. This avoids a few races,
1942  * and potentially makes it more efficient.
1943  *
1944  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1945  * but allow concurrent faults), with pte both mapped and locked.
1946  * We return with mmap_sem still held, but pte unmapped and unlocked.
1947  */
1948 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1949 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1950 		spinlock_t *ptl, pte_t orig_pte)
1951 {
1952 	struct page *old_page, *new_page;
1953 	pte_t entry;
1954 	int reuse = 0, ret = 0;
1955 	int page_mkwrite = 0;
1956 	struct page *dirty_page = NULL;
1957 
1958 	old_page = vm_normal_page(vma, address, orig_pte);
1959 	if (!old_page) {
1960 		/*
1961 		 * VM_MIXEDMAP !pfn_valid() case
1962 		 *
1963 		 * We should not cow pages in a shared writeable mapping.
1964 		 * Just mark the pages writable as we can't do any dirty
1965 		 * accounting on raw pfn maps.
1966 		 */
1967 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1968 				     (VM_WRITE|VM_SHARED))
1969 			goto reuse;
1970 		goto gotten;
1971 	}
1972 
1973 	/*
1974 	 * Take out anonymous pages first, anonymous shared vmas are
1975 	 * not dirty accountable.
1976 	 */
1977 	if (PageAnon(old_page)) {
1978 		if (!trylock_page(old_page)) {
1979 			page_cache_get(old_page);
1980 			pte_unmap_unlock(page_table, ptl);
1981 			lock_page(old_page);
1982 			page_table = pte_offset_map_lock(mm, pmd, address,
1983 							 &ptl);
1984 			if (!pte_same(*page_table, orig_pte)) {
1985 				unlock_page(old_page);
1986 				page_cache_release(old_page);
1987 				goto unlock;
1988 			}
1989 			page_cache_release(old_page);
1990 		}
1991 		reuse = reuse_swap_page(old_page);
1992 		unlock_page(old_page);
1993 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1994 					(VM_WRITE|VM_SHARED))) {
1995 		/*
1996 		 * Only catch write-faults on shared writable pages,
1997 		 * read-only shared pages can get COWed by
1998 		 * get_user_pages(.write=1, .force=1).
1999 		 */
2000 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2001 			struct vm_fault vmf;
2002 			int tmp;
2003 
2004 			vmf.virtual_address = (void __user *)(address &
2005 								PAGE_MASK);
2006 			vmf.pgoff = old_page->index;
2007 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2008 			vmf.page = old_page;
2009 
2010 			/*
2011 			 * Notify the address space that the page is about to
2012 			 * become writable so that it can prohibit this or wait
2013 			 * for the page to get into an appropriate state.
2014 			 *
2015 			 * We do this without the lock held, so that it can
2016 			 * sleep if it needs to.
2017 			 */
2018 			page_cache_get(old_page);
2019 			pte_unmap_unlock(page_table, ptl);
2020 
2021 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2022 			if (unlikely(tmp &
2023 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2024 				ret = tmp;
2025 				goto unwritable_page;
2026 			}
2027 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2028 				lock_page(old_page);
2029 				if (!old_page->mapping) {
2030 					ret = 0; /* retry the fault */
2031 					unlock_page(old_page);
2032 					goto unwritable_page;
2033 				}
2034 			} else
2035 				VM_BUG_ON(!PageLocked(old_page));
2036 
2037 			/*
2038 			 * Since we dropped the lock we need to revalidate
2039 			 * the PTE as someone else may have changed it.  If
2040 			 * they did, we just return, as we can count on the
2041 			 * MMU to tell us if they didn't also make it writable.
2042 			 */
2043 			page_table = pte_offset_map_lock(mm, pmd, address,
2044 							 &ptl);
2045 			if (!pte_same(*page_table, orig_pte)) {
2046 				unlock_page(old_page);
2047 				page_cache_release(old_page);
2048 				goto unlock;
2049 			}
2050 
2051 			page_mkwrite = 1;
2052 		}
2053 		dirty_page = old_page;
2054 		get_page(dirty_page);
2055 		reuse = 1;
2056 	}
2057 
2058 	if (reuse) {
2059 reuse:
2060 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2061 		entry = pte_mkyoung(orig_pte);
2062 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2063 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2064 			update_mmu_cache(vma, address, entry);
2065 		ret |= VM_FAULT_WRITE;
2066 		goto unlock;
2067 	}
2068 
2069 	/*
2070 	 * Ok, we need to copy. Oh, well..
2071 	 */
2072 	page_cache_get(old_page);
2073 gotten:
2074 	pte_unmap_unlock(page_table, ptl);
2075 
2076 	if (unlikely(anon_vma_prepare(vma)))
2077 		goto oom;
2078 	VM_BUG_ON(old_page == ZERO_PAGE(0));
2079 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2080 	if (!new_page)
2081 		goto oom;
2082 	/*
2083 	 * Don't let another task, with possibly unlocked vma,
2084 	 * keep the mlocked page.
2085 	 */
2086 	if ((vma->vm_flags & VM_LOCKED) && old_page) {
2087 		lock_page(old_page);	/* for LRU manipulation */
2088 		clear_page_mlock(old_page);
2089 		unlock_page(old_page);
2090 	}
2091 	cow_user_page(new_page, old_page, address, vma);
2092 	__SetPageUptodate(new_page);
2093 
2094 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2095 		goto oom_free_new;
2096 
2097 	/*
2098 	 * Re-check the pte - we dropped the lock
2099 	 */
2100 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2101 	if (likely(pte_same(*page_table, orig_pte))) {
2102 		if (old_page) {
2103 			if (!PageAnon(old_page)) {
2104 				dec_mm_counter(mm, file_rss);
2105 				inc_mm_counter(mm, anon_rss);
2106 			}
2107 		} else
2108 			inc_mm_counter(mm, anon_rss);
2109 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2110 		entry = mk_pte(new_page, vma->vm_page_prot);
2111 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2112 		/*
2113 		 * Clear the pte entry and flush it first, before updating the
2114 		 * pte with the new entry. This will avoid a race condition
2115 		 * seen in the presence of one thread doing SMC and another
2116 		 * thread doing COW.
2117 		 */
2118 		ptep_clear_flush_notify(vma, address, page_table);
2119 		page_add_new_anon_rmap(new_page, vma, address);
2120 		set_pte_at(mm, address, page_table, entry);
2121 		update_mmu_cache(vma, address, entry);
2122 		if (old_page) {
2123 			/*
2124 			 * Only after switching the pte to the new page may
2125 			 * we remove the mapcount here. Otherwise another
2126 			 * process may come and find the rmap count decremented
2127 			 * before the pte is switched to the new page, and
2128 			 * "reuse" the old page writing into it while our pte
2129 			 * here still points into it and can be read by other
2130 			 * threads.
2131 			 *
2132 			 * The critical issue is to order this
2133 			 * page_remove_rmap with the ptp_clear_flush above.
2134 			 * Those stores are ordered by (if nothing else,)
2135 			 * the barrier present in the atomic_add_negative
2136 			 * in page_remove_rmap.
2137 			 *
2138 			 * Then the TLB flush in ptep_clear_flush ensures that
2139 			 * no process can access the old page before the
2140 			 * decremented mapcount is visible. And the old page
2141 			 * cannot be reused until after the decremented
2142 			 * mapcount is visible. So transitively, TLBs to
2143 			 * old page will be flushed before it can be reused.
2144 			 */
2145 			page_remove_rmap(old_page);
2146 		}
2147 
2148 		/* Free the old page.. */
2149 		new_page = old_page;
2150 		ret |= VM_FAULT_WRITE;
2151 	} else
2152 		mem_cgroup_uncharge_page(new_page);
2153 
2154 	if (new_page)
2155 		page_cache_release(new_page);
2156 	if (old_page)
2157 		page_cache_release(old_page);
2158 unlock:
2159 	pte_unmap_unlock(page_table, ptl);
2160 	if (dirty_page) {
2161 		/*
2162 		 * Yes, Virginia, this is actually required to prevent a race
2163 		 * with clear_page_dirty_for_io() from clearing the page dirty
2164 		 * bit after it clear all dirty ptes, but before a racing
2165 		 * do_wp_page installs a dirty pte.
2166 		 *
2167 		 * do_no_page is protected similarly.
2168 		 */
2169 		if (!page_mkwrite) {
2170 			wait_on_page_locked(dirty_page);
2171 			set_page_dirty_balance(dirty_page, page_mkwrite);
2172 		}
2173 		put_page(dirty_page);
2174 		if (page_mkwrite) {
2175 			struct address_space *mapping = dirty_page->mapping;
2176 
2177 			set_page_dirty(dirty_page);
2178 			unlock_page(dirty_page);
2179 			page_cache_release(dirty_page);
2180 			if (mapping)	{
2181 				/*
2182 				 * Some device drivers do not set page.mapping
2183 				 * but still dirty their pages
2184 				 */
2185 				balance_dirty_pages_ratelimited(mapping);
2186 			}
2187 		}
2188 
2189 		/* file_update_time outside page_lock */
2190 		if (vma->vm_file)
2191 			file_update_time(vma->vm_file);
2192 	}
2193 	return ret;
2194 oom_free_new:
2195 	page_cache_release(new_page);
2196 oom:
2197 	if (old_page) {
2198 		if (page_mkwrite) {
2199 			unlock_page(old_page);
2200 			page_cache_release(old_page);
2201 		}
2202 		page_cache_release(old_page);
2203 	}
2204 	return VM_FAULT_OOM;
2205 
2206 unwritable_page:
2207 	page_cache_release(old_page);
2208 	return ret;
2209 }
2210 
2211 /*
2212  * Helper functions for unmap_mapping_range().
2213  *
2214  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2215  *
2216  * We have to restart searching the prio_tree whenever we drop the lock,
2217  * since the iterator is only valid while the lock is held, and anyway
2218  * a later vma might be split and reinserted earlier while lock dropped.
2219  *
2220  * The list of nonlinear vmas could be handled more efficiently, using
2221  * a placeholder, but handle it in the same way until a need is shown.
2222  * It is important to search the prio_tree before nonlinear list: a vma
2223  * may become nonlinear and be shifted from prio_tree to nonlinear list
2224  * while the lock is dropped; but never shifted from list to prio_tree.
2225  *
2226  * In order to make forward progress despite restarting the search,
2227  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2228  * quickly skip it next time around.  Since the prio_tree search only
2229  * shows us those vmas affected by unmapping the range in question, we
2230  * can't efficiently keep all vmas in step with mapping->truncate_count:
2231  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2232  * mapping->truncate_count and vma->vm_truncate_count are protected by
2233  * i_mmap_lock.
2234  *
2235  * In order to make forward progress despite repeatedly restarting some
2236  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2237  * and restart from that address when we reach that vma again.  It might
2238  * have been split or merged, shrunk or extended, but never shifted: so
2239  * restart_addr remains valid so long as it remains in the vma's range.
2240  * unmap_mapping_range forces truncate_count to leap over page-aligned
2241  * values so we can save vma's restart_addr in its truncate_count field.
2242  */
2243 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2244 
2245 static void reset_vma_truncate_counts(struct address_space *mapping)
2246 {
2247 	struct vm_area_struct *vma;
2248 	struct prio_tree_iter iter;
2249 
2250 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2251 		vma->vm_truncate_count = 0;
2252 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2253 		vma->vm_truncate_count = 0;
2254 }
2255 
2256 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2257 		unsigned long start_addr, unsigned long end_addr,
2258 		struct zap_details *details)
2259 {
2260 	unsigned long restart_addr;
2261 	int need_break;
2262 
2263 	/*
2264 	 * files that support invalidating or truncating portions of the
2265 	 * file from under mmaped areas must have their ->fault function
2266 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2267 	 * This provides synchronisation against concurrent unmapping here.
2268 	 */
2269 
2270 again:
2271 	restart_addr = vma->vm_truncate_count;
2272 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2273 		start_addr = restart_addr;
2274 		if (start_addr >= end_addr) {
2275 			/* Top of vma has been split off since last time */
2276 			vma->vm_truncate_count = details->truncate_count;
2277 			return 0;
2278 		}
2279 	}
2280 
2281 	restart_addr = zap_page_range(vma, start_addr,
2282 					end_addr - start_addr, details);
2283 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2284 
2285 	if (restart_addr >= end_addr) {
2286 		/* We have now completed this vma: mark it so */
2287 		vma->vm_truncate_count = details->truncate_count;
2288 		if (!need_break)
2289 			return 0;
2290 	} else {
2291 		/* Note restart_addr in vma's truncate_count field */
2292 		vma->vm_truncate_count = restart_addr;
2293 		if (!need_break)
2294 			goto again;
2295 	}
2296 
2297 	spin_unlock(details->i_mmap_lock);
2298 	cond_resched();
2299 	spin_lock(details->i_mmap_lock);
2300 	return -EINTR;
2301 }
2302 
2303 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2304 					    struct zap_details *details)
2305 {
2306 	struct vm_area_struct *vma;
2307 	struct prio_tree_iter iter;
2308 	pgoff_t vba, vea, zba, zea;
2309 
2310 restart:
2311 	vma_prio_tree_foreach(vma, &iter, root,
2312 			details->first_index, details->last_index) {
2313 		/* Skip quickly over those we have already dealt with */
2314 		if (vma->vm_truncate_count == details->truncate_count)
2315 			continue;
2316 
2317 		vba = vma->vm_pgoff;
2318 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2319 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2320 		zba = details->first_index;
2321 		if (zba < vba)
2322 			zba = vba;
2323 		zea = details->last_index;
2324 		if (zea > vea)
2325 			zea = vea;
2326 
2327 		if (unmap_mapping_range_vma(vma,
2328 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2329 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2330 				details) < 0)
2331 			goto restart;
2332 	}
2333 }
2334 
2335 static inline void unmap_mapping_range_list(struct list_head *head,
2336 					    struct zap_details *details)
2337 {
2338 	struct vm_area_struct *vma;
2339 
2340 	/*
2341 	 * In nonlinear VMAs there is no correspondence between virtual address
2342 	 * offset and file offset.  So we must perform an exhaustive search
2343 	 * across *all* the pages in each nonlinear VMA, not just the pages
2344 	 * whose virtual address lies outside the file truncation point.
2345 	 */
2346 restart:
2347 	list_for_each_entry(vma, head, shared.vm_set.list) {
2348 		/* Skip quickly over those we have already dealt with */
2349 		if (vma->vm_truncate_count == details->truncate_count)
2350 			continue;
2351 		details->nonlinear_vma = vma;
2352 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2353 					vma->vm_end, details) < 0)
2354 			goto restart;
2355 	}
2356 }
2357 
2358 /**
2359  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2360  * @mapping: the address space containing mmaps to be unmapped.
2361  * @holebegin: byte in first page to unmap, relative to the start of
2362  * the underlying file.  This will be rounded down to a PAGE_SIZE
2363  * boundary.  Note that this is different from vmtruncate(), which
2364  * must keep the partial page.  In contrast, we must get rid of
2365  * partial pages.
2366  * @holelen: size of prospective hole in bytes.  This will be rounded
2367  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2368  * end of the file.
2369  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2370  * but 0 when invalidating pagecache, don't throw away private data.
2371  */
2372 void unmap_mapping_range(struct address_space *mapping,
2373 		loff_t const holebegin, loff_t const holelen, int even_cows)
2374 {
2375 	struct zap_details details;
2376 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2377 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2378 
2379 	/* Check for overflow. */
2380 	if (sizeof(holelen) > sizeof(hlen)) {
2381 		long long holeend =
2382 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2383 		if (holeend & ~(long long)ULONG_MAX)
2384 			hlen = ULONG_MAX - hba + 1;
2385 	}
2386 
2387 	details.check_mapping = even_cows? NULL: mapping;
2388 	details.nonlinear_vma = NULL;
2389 	details.first_index = hba;
2390 	details.last_index = hba + hlen - 1;
2391 	if (details.last_index < details.first_index)
2392 		details.last_index = ULONG_MAX;
2393 	details.i_mmap_lock = &mapping->i_mmap_lock;
2394 
2395 	spin_lock(&mapping->i_mmap_lock);
2396 
2397 	/* Protect against endless unmapping loops */
2398 	mapping->truncate_count++;
2399 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2400 		if (mapping->truncate_count == 0)
2401 			reset_vma_truncate_counts(mapping);
2402 		mapping->truncate_count++;
2403 	}
2404 	details.truncate_count = mapping->truncate_count;
2405 
2406 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2407 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2408 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2409 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2410 	spin_unlock(&mapping->i_mmap_lock);
2411 }
2412 EXPORT_SYMBOL(unmap_mapping_range);
2413 
2414 /**
2415  * vmtruncate - unmap mappings "freed" by truncate() syscall
2416  * @inode: inode of the file used
2417  * @offset: file offset to start truncating
2418  *
2419  * NOTE! We have to be ready to update the memory sharing
2420  * between the file and the memory map for a potential last
2421  * incomplete page.  Ugly, but necessary.
2422  */
2423 int vmtruncate(struct inode * inode, loff_t offset)
2424 {
2425 	if (inode->i_size < offset) {
2426 		unsigned long limit;
2427 
2428 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2429 		if (limit != RLIM_INFINITY && offset > limit)
2430 			goto out_sig;
2431 		if (offset > inode->i_sb->s_maxbytes)
2432 			goto out_big;
2433 		i_size_write(inode, offset);
2434 	} else {
2435 		struct address_space *mapping = inode->i_mapping;
2436 
2437 		/*
2438 		 * truncation of in-use swapfiles is disallowed - it would
2439 		 * cause subsequent swapout to scribble on the now-freed
2440 		 * blocks.
2441 		 */
2442 		if (IS_SWAPFILE(inode))
2443 			return -ETXTBSY;
2444 		i_size_write(inode, offset);
2445 
2446 		/*
2447 		 * unmap_mapping_range is called twice, first simply for
2448 		 * efficiency so that truncate_inode_pages does fewer
2449 		 * single-page unmaps.  However after this first call, and
2450 		 * before truncate_inode_pages finishes, it is possible for
2451 		 * private pages to be COWed, which remain after
2452 		 * truncate_inode_pages finishes, hence the second
2453 		 * unmap_mapping_range call must be made for correctness.
2454 		 */
2455 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2456 		truncate_inode_pages(mapping, offset);
2457 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2458 	}
2459 
2460 	if (inode->i_op->truncate)
2461 		inode->i_op->truncate(inode);
2462 	return 0;
2463 
2464 out_sig:
2465 	send_sig(SIGXFSZ, current, 0);
2466 out_big:
2467 	return -EFBIG;
2468 }
2469 EXPORT_SYMBOL(vmtruncate);
2470 
2471 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2472 {
2473 	struct address_space *mapping = inode->i_mapping;
2474 
2475 	/*
2476 	 * If the underlying filesystem is not going to provide
2477 	 * a way to truncate a range of blocks (punch a hole) -
2478 	 * we should return failure right now.
2479 	 */
2480 	if (!inode->i_op->truncate_range)
2481 		return -ENOSYS;
2482 
2483 	mutex_lock(&inode->i_mutex);
2484 	down_write(&inode->i_alloc_sem);
2485 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2486 	truncate_inode_pages_range(mapping, offset, end);
2487 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2488 	inode->i_op->truncate_range(inode, offset, end);
2489 	up_write(&inode->i_alloc_sem);
2490 	mutex_unlock(&inode->i_mutex);
2491 
2492 	return 0;
2493 }
2494 
2495 /*
2496  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2497  * but allow concurrent faults), and pte mapped but not yet locked.
2498  * We return with mmap_sem still held, but pte unmapped and unlocked.
2499  */
2500 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2501 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2502 		unsigned int flags, pte_t orig_pte)
2503 {
2504 	spinlock_t *ptl;
2505 	struct page *page;
2506 	swp_entry_t entry;
2507 	pte_t pte;
2508 	struct mem_cgroup *ptr = NULL;
2509 	int ret = 0;
2510 
2511 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2512 		goto out;
2513 
2514 	entry = pte_to_swp_entry(orig_pte);
2515 	if (is_migration_entry(entry)) {
2516 		migration_entry_wait(mm, pmd, address);
2517 		goto out;
2518 	}
2519 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2520 	page = lookup_swap_cache(entry);
2521 	if (!page) {
2522 		grab_swap_token(mm); /* Contend for token _before_ read-in */
2523 		page = swapin_readahead(entry,
2524 					GFP_HIGHUSER_MOVABLE, vma, address);
2525 		if (!page) {
2526 			/*
2527 			 * Back out if somebody else faulted in this pte
2528 			 * while we released the pte lock.
2529 			 */
2530 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2531 			if (likely(pte_same(*page_table, orig_pte)))
2532 				ret = VM_FAULT_OOM;
2533 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2534 			goto unlock;
2535 		}
2536 
2537 		/* Had to read the page from swap area: Major fault */
2538 		ret = VM_FAULT_MAJOR;
2539 		count_vm_event(PGMAJFAULT);
2540 	}
2541 
2542 	lock_page(page);
2543 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2544 
2545 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2546 		ret = VM_FAULT_OOM;
2547 		goto out_page;
2548 	}
2549 
2550 	/*
2551 	 * Back out if somebody else already faulted in this pte.
2552 	 */
2553 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2554 	if (unlikely(!pte_same(*page_table, orig_pte)))
2555 		goto out_nomap;
2556 
2557 	if (unlikely(!PageUptodate(page))) {
2558 		ret = VM_FAULT_SIGBUS;
2559 		goto out_nomap;
2560 	}
2561 
2562 	/*
2563 	 * The page isn't present yet, go ahead with the fault.
2564 	 *
2565 	 * Be careful about the sequence of operations here.
2566 	 * To get its accounting right, reuse_swap_page() must be called
2567 	 * while the page is counted on swap but not yet in mapcount i.e.
2568 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2569 	 * must be called after the swap_free(), or it will never succeed.
2570 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2571 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2572 	 * in page->private. In this case, a record in swap_cgroup  is silently
2573 	 * discarded at swap_free().
2574 	 */
2575 
2576 	inc_mm_counter(mm, anon_rss);
2577 	pte = mk_pte(page, vma->vm_page_prot);
2578 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2579 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2580 		flags &= ~FAULT_FLAG_WRITE;
2581 	}
2582 	flush_icache_page(vma, page);
2583 	set_pte_at(mm, address, page_table, pte);
2584 	page_add_anon_rmap(page, vma, address);
2585 	/* It's better to call commit-charge after rmap is established */
2586 	mem_cgroup_commit_charge_swapin(page, ptr);
2587 
2588 	swap_free(entry);
2589 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2590 		try_to_free_swap(page);
2591 	unlock_page(page);
2592 
2593 	if (flags & FAULT_FLAG_WRITE) {
2594 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2595 		if (ret & VM_FAULT_ERROR)
2596 			ret &= VM_FAULT_ERROR;
2597 		goto out;
2598 	}
2599 
2600 	/* No need to invalidate - it was non-present before */
2601 	update_mmu_cache(vma, address, pte);
2602 unlock:
2603 	pte_unmap_unlock(page_table, ptl);
2604 out:
2605 	return ret;
2606 out_nomap:
2607 	mem_cgroup_cancel_charge_swapin(ptr);
2608 	pte_unmap_unlock(page_table, ptl);
2609 out_page:
2610 	unlock_page(page);
2611 	page_cache_release(page);
2612 	return ret;
2613 }
2614 
2615 /*
2616  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2617  * but allow concurrent faults), and pte mapped but not yet locked.
2618  * We return with mmap_sem still held, but pte unmapped and unlocked.
2619  */
2620 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2621 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2622 		unsigned int flags)
2623 {
2624 	struct page *page;
2625 	spinlock_t *ptl;
2626 	pte_t entry;
2627 
2628 	/* Allocate our own private page. */
2629 	pte_unmap(page_table);
2630 
2631 	if (unlikely(anon_vma_prepare(vma)))
2632 		goto oom;
2633 	page = alloc_zeroed_user_highpage_movable(vma, address);
2634 	if (!page)
2635 		goto oom;
2636 	__SetPageUptodate(page);
2637 
2638 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2639 		goto oom_free_page;
2640 
2641 	entry = mk_pte(page, vma->vm_page_prot);
2642 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2643 
2644 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2645 	if (!pte_none(*page_table))
2646 		goto release;
2647 	inc_mm_counter(mm, anon_rss);
2648 	page_add_new_anon_rmap(page, vma, address);
2649 	set_pte_at(mm, address, page_table, entry);
2650 
2651 	/* No need to invalidate - it was non-present before */
2652 	update_mmu_cache(vma, address, entry);
2653 unlock:
2654 	pte_unmap_unlock(page_table, ptl);
2655 	return 0;
2656 release:
2657 	mem_cgroup_uncharge_page(page);
2658 	page_cache_release(page);
2659 	goto unlock;
2660 oom_free_page:
2661 	page_cache_release(page);
2662 oom:
2663 	return VM_FAULT_OOM;
2664 }
2665 
2666 /*
2667  * __do_fault() tries to create a new page mapping. It aggressively
2668  * tries to share with existing pages, but makes a separate copy if
2669  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2670  * the next page fault.
2671  *
2672  * As this is called only for pages that do not currently exist, we
2673  * do not need to flush old virtual caches or the TLB.
2674  *
2675  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2676  * but allow concurrent faults), and pte neither mapped nor locked.
2677  * We return with mmap_sem still held, but pte unmapped and unlocked.
2678  */
2679 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2680 		unsigned long address, pmd_t *pmd,
2681 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2682 {
2683 	pte_t *page_table;
2684 	spinlock_t *ptl;
2685 	struct page *page;
2686 	pte_t entry;
2687 	int anon = 0;
2688 	int charged = 0;
2689 	struct page *dirty_page = NULL;
2690 	struct vm_fault vmf;
2691 	int ret;
2692 	int page_mkwrite = 0;
2693 
2694 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2695 	vmf.pgoff = pgoff;
2696 	vmf.flags = flags;
2697 	vmf.page = NULL;
2698 
2699 	ret = vma->vm_ops->fault(vma, &vmf);
2700 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2701 		return ret;
2702 
2703 	/*
2704 	 * For consistency in subsequent calls, make the faulted page always
2705 	 * locked.
2706 	 */
2707 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2708 		lock_page(vmf.page);
2709 	else
2710 		VM_BUG_ON(!PageLocked(vmf.page));
2711 
2712 	/*
2713 	 * Should we do an early C-O-W break?
2714 	 */
2715 	page = vmf.page;
2716 	if (flags & FAULT_FLAG_WRITE) {
2717 		if (!(vma->vm_flags & VM_SHARED)) {
2718 			anon = 1;
2719 			if (unlikely(anon_vma_prepare(vma))) {
2720 				ret = VM_FAULT_OOM;
2721 				goto out;
2722 			}
2723 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2724 						vma, address);
2725 			if (!page) {
2726 				ret = VM_FAULT_OOM;
2727 				goto out;
2728 			}
2729 			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2730 				ret = VM_FAULT_OOM;
2731 				page_cache_release(page);
2732 				goto out;
2733 			}
2734 			charged = 1;
2735 			/*
2736 			 * Don't let another task, with possibly unlocked vma,
2737 			 * keep the mlocked page.
2738 			 */
2739 			if (vma->vm_flags & VM_LOCKED)
2740 				clear_page_mlock(vmf.page);
2741 			copy_user_highpage(page, vmf.page, address, vma);
2742 			__SetPageUptodate(page);
2743 		} else {
2744 			/*
2745 			 * If the page will be shareable, see if the backing
2746 			 * address space wants to know that the page is about
2747 			 * to become writable
2748 			 */
2749 			if (vma->vm_ops->page_mkwrite) {
2750 				int tmp;
2751 
2752 				unlock_page(page);
2753 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2754 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2755 				if (unlikely(tmp &
2756 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2757 					ret = tmp;
2758 					goto unwritable_page;
2759 				}
2760 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2761 					lock_page(page);
2762 					if (!page->mapping) {
2763 						ret = 0; /* retry the fault */
2764 						unlock_page(page);
2765 						goto unwritable_page;
2766 					}
2767 				} else
2768 					VM_BUG_ON(!PageLocked(page));
2769 				page_mkwrite = 1;
2770 			}
2771 		}
2772 
2773 	}
2774 
2775 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2776 
2777 	/*
2778 	 * This silly early PAGE_DIRTY setting removes a race
2779 	 * due to the bad i386 page protection. But it's valid
2780 	 * for other architectures too.
2781 	 *
2782 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
2783 	 * an exclusive copy of the page, or this is a shared mapping,
2784 	 * so we can make it writable and dirty to avoid having to
2785 	 * handle that later.
2786 	 */
2787 	/* Only go through if we didn't race with anybody else... */
2788 	if (likely(pte_same(*page_table, orig_pte))) {
2789 		flush_icache_page(vma, page);
2790 		entry = mk_pte(page, vma->vm_page_prot);
2791 		if (flags & FAULT_FLAG_WRITE)
2792 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2793 		if (anon) {
2794 			inc_mm_counter(mm, anon_rss);
2795 			page_add_new_anon_rmap(page, vma, address);
2796 		} else {
2797 			inc_mm_counter(mm, file_rss);
2798 			page_add_file_rmap(page);
2799 			if (flags & FAULT_FLAG_WRITE) {
2800 				dirty_page = page;
2801 				get_page(dirty_page);
2802 			}
2803 		}
2804 		set_pte_at(mm, address, page_table, entry);
2805 
2806 		/* no need to invalidate: a not-present page won't be cached */
2807 		update_mmu_cache(vma, address, entry);
2808 	} else {
2809 		if (charged)
2810 			mem_cgroup_uncharge_page(page);
2811 		if (anon)
2812 			page_cache_release(page);
2813 		else
2814 			anon = 1; /* no anon but release faulted_page */
2815 	}
2816 
2817 	pte_unmap_unlock(page_table, ptl);
2818 
2819 out:
2820 	if (dirty_page) {
2821 		struct address_space *mapping = page->mapping;
2822 
2823 		if (set_page_dirty(dirty_page))
2824 			page_mkwrite = 1;
2825 		unlock_page(dirty_page);
2826 		put_page(dirty_page);
2827 		if (page_mkwrite && mapping) {
2828 			/*
2829 			 * Some device drivers do not set page.mapping but still
2830 			 * dirty their pages
2831 			 */
2832 			balance_dirty_pages_ratelimited(mapping);
2833 		}
2834 
2835 		/* file_update_time outside page_lock */
2836 		if (vma->vm_file)
2837 			file_update_time(vma->vm_file);
2838 	} else {
2839 		unlock_page(vmf.page);
2840 		if (anon)
2841 			page_cache_release(vmf.page);
2842 	}
2843 
2844 	return ret;
2845 
2846 unwritable_page:
2847 	page_cache_release(page);
2848 	return ret;
2849 }
2850 
2851 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2852 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2853 		unsigned int flags, pte_t orig_pte)
2854 {
2855 	pgoff_t pgoff = (((address & PAGE_MASK)
2856 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2857 
2858 	pte_unmap(page_table);
2859 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2860 }
2861 
2862 /*
2863  * Fault of a previously existing named mapping. Repopulate the pte
2864  * from the encoded file_pte if possible. This enables swappable
2865  * nonlinear vmas.
2866  *
2867  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2868  * but allow concurrent faults), and pte mapped but not yet locked.
2869  * We return with mmap_sem still held, but pte unmapped and unlocked.
2870  */
2871 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2872 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2873 		unsigned int flags, pte_t orig_pte)
2874 {
2875 	pgoff_t pgoff;
2876 
2877 	flags |= FAULT_FLAG_NONLINEAR;
2878 
2879 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2880 		return 0;
2881 
2882 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2883 		/*
2884 		 * Page table corrupted: show pte and kill process.
2885 		 */
2886 		print_bad_pte(vma, address, orig_pte, NULL);
2887 		return VM_FAULT_OOM;
2888 	}
2889 
2890 	pgoff = pte_to_pgoff(orig_pte);
2891 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2892 }
2893 
2894 /*
2895  * These routines also need to handle stuff like marking pages dirty
2896  * and/or accessed for architectures that don't do it in hardware (most
2897  * RISC architectures).  The early dirtying is also good on the i386.
2898  *
2899  * There is also a hook called "update_mmu_cache()" that architectures
2900  * with external mmu caches can use to update those (ie the Sparc or
2901  * PowerPC hashed page tables that act as extended TLBs).
2902  *
2903  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2904  * but allow concurrent faults), and pte mapped but not yet locked.
2905  * We return with mmap_sem still held, but pte unmapped and unlocked.
2906  */
2907 static inline int handle_pte_fault(struct mm_struct *mm,
2908 		struct vm_area_struct *vma, unsigned long address,
2909 		pte_t *pte, pmd_t *pmd, unsigned int flags)
2910 {
2911 	pte_t entry;
2912 	spinlock_t *ptl;
2913 
2914 	entry = *pte;
2915 	if (!pte_present(entry)) {
2916 		if (pte_none(entry)) {
2917 			if (vma->vm_ops) {
2918 				if (likely(vma->vm_ops->fault))
2919 					return do_linear_fault(mm, vma, address,
2920 						pte, pmd, flags, entry);
2921 			}
2922 			return do_anonymous_page(mm, vma, address,
2923 						 pte, pmd, flags);
2924 		}
2925 		if (pte_file(entry))
2926 			return do_nonlinear_fault(mm, vma, address,
2927 					pte, pmd, flags, entry);
2928 		return do_swap_page(mm, vma, address,
2929 					pte, pmd, flags, entry);
2930 	}
2931 
2932 	ptl = pte_lockptr(mm, pmd);
2933 	spin_lock(ptl);
2934 	if (unlikely(!pte_same(*pte, entry)))
2935 		goto unlock;
2936 	if (flags & FAULT_FLAG_WRITE) {
2937 		if (!pte_write(entry))
2938 			return do_wp_page(mm, vma, address,
2939 					pte, pmd, ptl, entry);
2940 		entry = pte_mkdirty(entry);
2941 	}
2942 	entry = pte_mkyoung(entry);
2943 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
2944 		update_mmu_cache(vma, address, entry);
2945 	} else {
2946 		/*
2947 		 * This is needed only for protection faults but the arch code
2948 		 * is not yet telling us if this is a protection fault or not.
2949 		 * This still avoids useless tlb flushes for .text page faults
2950 		 * with threads.
2951 		 */
2952 		if (flags & FAULT_FLAG_WRITE)
2953 			flush_tlb_page(vma, address);
2954 	}
2955 unlock:
2956 	pte_unmap_unlock(pte, ptl);
2957 	return 0;
2958 }
2959 
2960 /*
2961  * By the time we get here, we already hold the mm semaphore
2962  */
2963 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2964 		unsigned long address, unsigned int flags)
2965 {
2966 	pgd_t *pgd;
2967 	pud_t *pud;
2968 	pmd_t *pmd;
2969 	pte_t *pte;
2970 
2971 	__set_current_state(TASK_RUNNING);
2972 
2973 	count_vm_event(PGFAULT);
2974 
2975 	if (unlikely(is_vm_hugetlb_page(vma)))
2976 		return hugetlb_fault(mm, vma, address, flags);
2977 
2978 	pgd = pgd_offset(mm, address);
2979 	pud = pud_alloc(mm, pgd, address);
2980 	if (!pud)
2981 		return VM_FAULT_OOM;
2982 	pmd = pmd_alloc(mm, pud, address);
2983 	if (!pmd)
2984 		return VM_FAULT_OOM;
2985 	pte = pte_alloc_map(mm, pmd, address);
2986 	if (!pte)
2987 		return VM_FAULT_OOM;
2988 
2989 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
2990 }
2991 
2992 #ifndef __PAGETABLE_PUD_FOLDED
2993 /*
2994  * Allocate page upper directory.
2995  * We've already handled the fast-path in-line.
2996  */
2997 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2998 {
2999 	pud_t *new = pud_alloc_one(mm, address);
3000 	if (!new)
3001 		return -ENOMEM;
3002 
3003 	smp_wmb(); /* See comment in __pte_alloc */
3004 
3005 	spin_lock(&mm->page_table_lock);
3006 	if (pgd_present(*pgd))		/* Another has populated it */
3007 		pud_free(mm, new);
3008 	else
3009 		pgd_populate(mm, pgd, new);
3010 	spin_unlock(&mm->page_table_lock);
3011 	return 0;
3012 }
3013 #endif /* __PAGETABLE_PUD_FOLDED */
3014 
3015 #ifndef __PAGETABLE_PMD_FOLDED
3016 /*
3017  * Allocate page middle directory.
3018  * We've already handled the fast-path in-line.
3019  */
3020 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3021 {
3022 	pmd_t *new = pmd_alloc_one(mm, address);
3023 	if (!new)
3024 		return -ENOMEM;
3025 
3026 	smp_wmb(); /* See comment in __pte_alloc */
3027 
3028 	spin_lock(&mm->page_table_lock);
3029 #ifndef __ARCH_HAS_4LEVEL_HACK
3030 	if (pud_present(*pud))		/* Another has populated it */
3031 		pmd_free(mm, new);
3032 	else
3033 		pud_populate(mm, pud, new);
3034 #else
3035 	if (pgd_present(*pud))		/* Another has populated it */
3036 		pmd_free(mm, new);
3037 	else
3038 		pgd_populate(mm, pud, new);
3039 #endif /* __ARCH_HAS_4LEVEL_HACK */
3040 	spin_unlock(&mm->page_table_lock);
3041 	return 0;
3042 }
3043 #endif /* __PAGETABLE_PMD_FOLDED */
3044 
3045 int make_pages_present(unsigned long addr, unsigned long end)
3046 {
3047 	int ret, len, write;
3048 	struct vm_area_struct * vma;
3049 
3050 	vma = find_vma(current->mm, addr);
3051 	if (!vma)
3052 		return -ENOMEM;
3053 	write = (vma->vm_flags & VM_WRITE) != 0;
3054 	BUG_ON(addr >= end);
3055 	BUG_ON(end > vma->vm_end);
3056 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3057 	ret = get_user_pages(current, current->mm, addr,
3058 			len, write, 0, NULL, NULL);
3059 	if (ret < 0)
3060 		return ret;
3061 	return ret == len ? 0 : -EFAULT;
3062 }
3063 
3064 #if !defined(__HAVE_ARCH_GATE_AREA)
3065 
3066 #if defined(AT_SYSINFO_EHDR)
3067 static struct vm_area_struct gate_vma;
3068 
3069 static int __init gate_vma_init(void)
3070 {
3071 	gate_vma.vm_mm = NULL;
3072 	gate_vma.vm_start = FIXADDR_USER_START;
3073 	gate_vma.vm_end = FIXADDR_USER_END;
3074 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3075 	gate_vma.vm_page_prot = __P101;
3076 	/*
3077 	 * Make sure the vDSO gets into every core dump.
3078 	 * Dumping its contents makes post-mortem fully interpretable later
3079 	 * without matching up the same kernel and hardware config to see
3080 	 * what PC values meant.
3081 	 */
3082 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3083 	return 0;
3084 }
3085 __initcall(gate_vma_init);
3086 #endif
3087 
3088 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3089 {
3090 #ifdef AT_SYSINFO_EHDR
3091 	return &gate_vma;
3092 #else
3093 	return NULL;
3094 #endif
3095 }
3096 
3097 int in_gate_area_no_task(unsigned long addr)
3098 {
3099 #ifdef AT_SYSINFO_EHDR
3100 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3101 		return 1;
3102 #endif
3103 	return 0;
3104 }
3105 
3106 #endif	/* __HAVE_ARCH_GATE_AREA */
3107 
3108 static int follow_pte(struct mm_struct *mm, unsigned long address,
3109 		pte_t **ptepp, spinlock_t **ptlp)
3110 {
3111 	pgd_t *pgd;
3112 	pud_t *pud;
3113 	pmd_t *pmd;
3114 	pte_t *ptep;
3115 
3116 	pgd = pgd_offset(mm, address);
3117 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3118 		goto out;
3119 
3120 	pud = pud_offset(pgd, address);
3121 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3122 		goto out;
3123 
3124 	pmd = pmd_offset(pud, address);
3125 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3126 		goto out;
3127 
3128 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3129 	if (pmd_huge(*pmd))
3130 		goto out;
3131 
3132 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3133 	if (!ptep)
3134 		goto out;
3135 	if (!pte_present(*ptep))
3136 		goto unlock;
3137 	*ptepp = ptep;
3138 	return 0;
3139 unlock:
3140 	pte_unmap_unlock(ptep, *ptlp);
3141 out:
3142 	return -EINVAL;
3143 }
3144 
3145 /**
3146  * follow_pfn - look up PFN at a user virtual address
3147  * @vma: memory mapping
3148  * @address: user virtual address
3149  * @pfn: location to store found PFN
3150  *
3151  * Only IO mappings and raw PFN mappings are allowed.
3152  *
3153  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3154  */
3155 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3156 	unsigned long *pfn)
3157 {
3158 	int ret = -EINVAL;
3159 	spinlock_t *ptl;
3160 	pte_t *ptep;
3161 
3162 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3163 		return ret;
3164 
3165 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3166 	if (ret)
3167 		return ret;
3168 	*pfn = pte_pfn(*ptep);
3169 	pte_unmap_unlock(ptep, ptl);
3170 	return 0;
3171 }
3172 EXPORT_SYMBOL(follow_pfn);
3173 
3174 #ifdef CONFIG_HAVE_IOREMAP_PROT
3175 int follow_phys(struct vm_area_struct *vma,
3176 		unsigned long address, unsigned int flags,
3177 		unsigned long *prot, resource_size_t *phys)
3178 {
3179 	int ret = -EINVAL;
3180 	pte_t *ptep, pte;
3181 	spinlock_t *ptl;
3182 
3183 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3184 		goto out;
3185 
3186 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3187 		goto out;
3188 	pte = *ptep;
3189 
3190 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3191 		goto unlock;
3192 
3193 	*prot = pgprot_val(pte_pgprot(pte));
3194 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3195 
3196 	ret = 0;
3197 unlock:
3198 	pte_unmap_unlock(ptep, ptl);
3199 out:
3200 	return ret;
3201 }
3202 
3203 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3204 			void *buf, int len, int write)
3205 {
3206 	resource_size_t phys_addr;
3207 	unsigned long prot = 0;
3208 	void __iomem *maddr;
3209 	int offset = addr & (PAGE_SIZE-1);
3210 
3211 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3212 		return -EINVAL;
3213 
3214 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3215 	if (write)
3216 		memcpy_toio(maddr + offset, buf, len);
3217 	else
3218 		memcpy_fromio(buf, maddr + offset, len);
3219 	iounmap(maddr);
3220 
3221 	return len;
3222 }
3223 #endif
3224 
3225 /*
3226  * Access another process' address space.
3227  * Source/target buffer must be kernel space,
3228  * Do not walk the page table directly, use get_user_pages
3229  */
3230 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3231 {
3232 	struct mm_struct *mm;
3233 	struct vm_area_struct *vma;
3234 	void *old_buf = buf;
3235 
3236 	mm = get_task_mm(tsk);
3237 	if (!mm)
3238 		return 0;
3239 
3240 	down_read(&mm->mmap_sem);
3241 	/* ignore errors, just check how much was successfully transferred */
3242 	while (len) {
3243 		int bytes, ret, offset;
3244 		void *maddr;
3245 		struct page *page = NULL;
3246 
3247 		ret = get_user_pages(tsk, mm, addr, 1,
3248 				write, 1, &page, &vma);
3249 		if (ret <= 0) {
3250 			/*
3251 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3252 			 * we can access using slightly different code.
3253 			 */
3254 #ifdef CONFIG_HAVE_IOREMAP_PROT
3255 			vma = find_vma(mm, addr);
3256 			if (!vma)
3257 				break;
3258 			if (vma->vm_ops && vma->vm_ops->access)
3259 				ret = vma->vm_ops->access(vma, addr, buf,
3260 							  len, write);
3261 			if (ret <= 0)
3262 #endif
3263 				break;
3264 			bytes = ret;
3265 		} else {
3266 			bytes = len;
3267 			offset = addr & (PAGE_SIZE-1);
3268 			if (bytes > PAGE_SIZE-offset)
3269 				bytes = PAGE_SIZE-offset;
3270 
3271 			maddr = kmap(page);
3272 			if (write) {
3273 				copy_to_user_page(vma, page, addr,
3274 						  maddr + offset, buf, bytes);
3275 				set_page_dirty_lock(page);
3276 			} else {
3277 				copy_from_user_page(vma, page, addr,
3278 						    buf, maddr + offset, bytes);
3279 			}
3280 			kunmap(page);
3281 			page_cache_release(page);
3282 		}
3283 		len -= bytes;
3284 		buf += bytes;
3285 		addr += bytes;
3286 	}
3287 	up_read(&mm->mmap_sem);
3288 	mmput(mm);
3289 
3290 	return buf - old_buf;
3291 }
3292 
3293 /*
3294  * Print the name of a VMA.
3295  */
3296 void print_vma_addr(char *prefix, unsigned long ip)
3297 {
3298 	struct mm_struct *mm = current->mm;
3299 	struct vm_area_struct *vma;
3300 
3301 	/*
3302 	 * Do not print if we are in atomic
3303 	 * contexts (in exception stacks, etc.):
3304 	 */
3305 	if (preempt_count())
3306 		return;
3307 
3308 	down_read(&mm->mmap_sem);
3309 	vma = find_vma(mm, ip);
3310 	if (vma && vma->vm_file) {
3311 		struct file *f = vma->vm_file;
3312 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3313 		if (buf) {
3314 			char *p, *s;
3315 
3316 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3317 			if (IS_ERR(p))
3318 				p = "?";
3319 			s = strrchr(p, '/');
3320 			if (s)
3321 				p = s+1;
3322 			printk("%s%s[%lx+%lx]", prefix, p,
3323 					vma->vm_start,
3324 					vma->vm_end - vma->vm_start);
3325 			free_page((unsigned long)buf);
3326 		}
3327 	}
3328 	up_read(&current->mm->mmap_sem);
3329 }
3330 
3331 #ifdef CONFIG_PROVE_LOCKING
3332 void might_fault(void)
3333 {
3334 	/*
3335 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3336 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3337 	 * get paged out, therefore we'll never actually fault, and the
3338 	 * below annotations will generate false positives.
3339 	 */
3340 	if (segment_eq(get_fs(), KERNEL_DS))
3341 		return;
3342 
3343 	might_sleep();
3344 	/*
3345 	 * it would be nicer only to annotate paths which are not under
3346 	 * pagefault_disable, however that requires a larger audit and
3347 	 * providing helpers like get_user_atomic.
3348 	 */
3349 	if (!in_atomic() && current->mm)
3350 		might_lock_read(&current->mm->mmap_sem);
3351 }
3352 EXPORT_SYMBOL(might_fault);
3353 #endif
3354