1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/memremap.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/export.h> 56 #include <linux/delayacct.h> 57 #include <linux/init.h> 58 #include <linux/pfn_t.h> 59 #include <linux/writeback.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 73 #include <asm/io.h> 74 #include <asm/mmu_context.h> 75 #include <asm/pgalloc.h> 76 #include <linux/uaccess.h> 77 #include <asm/tlb.h> 78 #include <asm/tlbflush.h> 79 #include <asm/pgtable.h> 80 81 #include "internal.h" 82 83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 85 #endif 86 87 #ifndef CONFIG_NEED_MULTIPLE_NODES 88 /* use the per-pgdat data instead for discontigmem - mbligh */ 89 unsigned long max_mapnr; 90 EXPORT_SYMBOL(max_mapnr); 91 92 struct page *mem_map; 93 EXPORT_SYMBOL(mem_map); 94 #endif 95 96 /* 97 * A number of key systems in x86 including ioremap() rely on the assumption 98 * that high_memory defines the upper bound on direct map memory, then end 99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 101 * and ZONE_HIGHMEM. 102 */ 103 void *high_memory; 104 EXPORT_SYMBOL(high_memory); 105 106 /* 107 * Randomize the address space (stacks, mmaps, brk, etc.). 108 * 109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 110 * as ancient (libc5 based) binaries can segfault. ) 111 */ 112 int randomize_va_space __read_mostly = 113 #ifdef CONFIG_COMPAT_BRK 114 1; 115 #else 116 2; 117 #endif 118 119 static int __init disable_randmaps(char *s) 120 { 121 randomize_va_space = 0; 122 return 1; 123 } 124 __setup("norandmaps", disable_randmaps); 125 126 unsigned long zero_pfn __read_mostly; 127 EXPORT_SYMBOL(zero_pfn); 128 129 unsigned long highest_memmap_pfn __read_mostly; 130 131 /* 132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 133 */ 134 static int __init init_zero_pfn(void) 135 { 136 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 137 return 0; 138 } 139 core_initcall(init_zero_pfn); 140 141 142 #if defined(SPLIT_RSS_COUNTING) 143 144 void sync_mm_rss(struct mm_struct *mm) 145 { 146 int i; 147 148 for (i = 0; i < NR_MM_COUNTERS; i++) { 149 if (current->rss_stat.count[i]) { 150 add_mm_counter(mm, i, current->rss_stat.count[i]); 151 current->rss_stat.count[i] = 0; 152 } 153 } 154 current->rss_stat.events = 0; 155 } 156 157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 158 { 159 struct task_struct *task = current; 160 161 if (likely(task->mm == mm)) 162 task->rss_stat.count[member] += val; 163 else 164 add_mm_counter(mm, member, val); 165 } 166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 168 169 /* sync counter once per 64 page faults */ 170 #define TASK_RSS_EVENTS_THRESH (64) 171 static void check_sync_rss_stat(struct task_struct *task) 172 { 173 if (unlikely(task != current)) 174 return; 175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 176 sync_mm_rss(task->mm); 177 } 178 #else /* SPLIT_RSS_COUNTING */ 179 180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 182 183 static void check_sync_rss_stat(struct task_struct *task) 184 { 185 } 186 187 #endif /* SPLIT_RSS_COUNTING */ 188 189 /* 190 * Note: this doesn't free the actual pages themselves. That 191 * has been handled earlier when unmapping all the memory regions. 192 */ 193 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 194 unsigned long addr) 195 { 196 pgtable_t token = pmd_pgtable(*pmd); 197 pmd_clear(pmd); 198 pte_free_tlb(tlb, token, addr); 199 mm_dec_nr_ptes(tlb->mm); 200 } 201 202 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 203 unsigned long addr, unsigned long end, 204 unsigned long floor, unsigned long ceiling) 205 { 206 pmd_t *pmd; 207 unsigned long next; 208 unsigned long start; 209 210 start = addr; 211 pmd = pmd_offset(pud, addr); 212 do { 213 next = pmd_addr_end(addr, end); 214 if (pmd_none_or_clear_bad(pmd)) 215 continue; 216 free_pte_range(tlb, pmd, addr); 217 } while (pmd++, addr = next, addr != end); 218 219 start &= PUD_MASK; 220 if (start < floor) 221 return; 222 if (ceiling) { 223 ceiling &= PUD_MASK; 224 if (!ceiling) 225 return; 226 } 227 if (end - 1 > ceiling - 1) 228 return; 229 230 pmd = pmd_offset(pud, start); 231 pud_clear(pud); 232 pmd_free_tlb(tlb, pmd, start); 233 mm_dec_nr_pmds(tlb->mm); 234 } 235 236 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 237 unsigned long addr, unsigned long end, 238 unsigned long floor, unsigned long ceiling) 239 { 240 pud_t *pud; 241 unsigned long next; 242 unsigned long start; 243 244 start = addr; 245 pud = pud_offset(p4d, addr); 246 do { 247 next = pud_addr_end(addr, end); 248 if (pud_none_or_clear_bad(pud)) 249 continue; 250 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 251 } while (pud++, addr = next, addr != end); 252 253 start &= P4D_MASK; 254 if (start < floor) 255 return; 256 if (ceiling) { 257 ceiling &= P4D_MASK; 258 if (!ceiling) 259 return; 260 } 261 if (end - 1 > ceiling - 1) 262 return; 263 264 pud = pud_offset(p4d, start); 265 p4d_clear(p4d); 266 pud_free_tlb(tlb, pud, start); 267 mm_dec_nr_puds(tlb->mm); 268 } 269 270 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 271 unsigned long addr, unsigned long end, 272 unsigned long floor, unsigned long ceiling) 273 { 274 p4d_t *p4d; 275 unsigned long next; 276 unsigned long start; 277 278 start = addr; 279 p4d = p4d_offset(pgd, addr); 280 do { 281 next = p4d_addr_end(addr, end); 282 if (p4d_none_or_clear_bad(p4d)) 283 continue; 284 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 285 } while (p4d++, addr = next, addr != end); 286 287 start &= PGDIR_MASK; 288 if (start < floor) 289 return; 290 if (ceiling) { 291 ceiling &= PGDIR_MASK; 292 if (!ceiling) 293 return; 294 } 295 if (end - 1 > ceiling - 1) 296 return; 297 298 p4d = p4d_offset(pgd, start); 299 pgd_clear(pgd); 300 p4d_free_tlb(tlb, p4d, start); 301 } 302 303 /* 304 * This function frees user-level page tables of a process. 305 */ 306 void free_pgd_range(struct mmu_gather *tlb, 307 unsigned long addr, unsigned long end, 308 unsigned long floor, unsigned long ceiling) 309 { 310 pgd_t *pgd; 311 unsigned long next; 312 313 /* 314 * The next few lines have given us lots of grief... 315 * 316 * Why are we testing PMD* at this top level? Because often 317 * there will be no work to do at all, and we'd prefer not to 318 * go all the way down to the bottom just to discover that. 319 * 320 * Why all these "- 1"s? Because 0 represents both the bottom 321 * of the address space and the top of it (using -1 for the 322 * top wouldn't help much: the masks would do the wrong thing). 323 * The rule is that addr 0 and floor 0 refer to the bottom of 324 * the address space, but end 0 and ceiling 0 refer to the top 325 * Comparisons need to use "end - 1" and "ceiling - 1" (though 326 * that end 0 case should be mythical). 327 * 328 * Wherever addr is brought up or ceiling brought down, we must 329 * be careful to reject "the opposite 0" before it confuses the 330 * subsequent tests. But what about where end is brought down 331 * by PMD_SIZE below? no, end can't go down to 0 there. 332 * 333 * Whereas we round start (addr) and ceiling down, by different 334 * masks at different levels, in order to test whether a table 335 * now has no other vmas using it, so can be freed, we don't 336 * bother to round floor or end up - the tests don't need that. 337 */ 338 339 addr &= PMD_MASK; 340 if (addr < floor) { 341 addr += PMD_SIZE; 342 if (!addr) 343 return; 344 } 345 if (ceiling) { 346 ceiling &= PMD_MASK; 347 if (!ceiling) 348 return; 349 } 350 if (end - 1 > ceiling - 1) 351 end -= PMD_SIZE; 352 if (addr > end - 1) 353 return; 354 /* 355 * We add page table cache pages with PAGE_SIZE, 356 * (see pte_free_tlb()), flush the tlb if we need 357 */ 358 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 359 pgd = pgd_offset(tlb->mm, addr); 360 do { 361 next = pgd_addr_end(addr, end); 362 if (pgd_none_or_clear_bad(pgd)) 363 continue; 364 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 365 } while (pgd++, addr = next, addr != end); 366 } 367 368 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 369 unsigned long floor, unsigned long ceiling) 370 { 371 while (vma) { 372 struct vm_area_struct *next = vma->vm_next; 373 unsigned long addr = vma->vm_start; 374 375 /* 376 * Hide vma from rmap and truncate_pagecache before freeing 377 * pgtables 378 */ 379 unlink_anon_vmas(vma); 380 unlink_file_vma(vma); 381 382 if (is_vm_hugetlb_page(vma)) { 383 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 384 floor, next ? next->vm_start : ceiling); 385 } else { 386 /* 387 * Optimization: gather nearby vmas into one call down 388 */ 389 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 390 && !is_vm_hugetlb_page(next)) { 391 vma = next; 392 next = vma->vm_next; 393 unlink_anon_vmas(vma); 394 unlink_file_vma(vma); 395 } 396 free_pgd_range(tlb, addr, vma->vm_end, 397 floor, next ? next->vm_start : ceiling); 398 } 399 vma = next; 400 } 401 } 402 403 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 404 { 405 spinlock_t *ptl; 406 pgtable_t new = pte_alloc_one(mm, address); 407 if (!new) 408 return -ENOMEM; 409 410 /* 411 * Ensure all pte setup (eg. pte page lock and page clearing) are 412 * visible before the pte is made visible to other CPUs by being 413 * put into page tables. 414 * 415 * The other side of the story is the pointer chasing in the page 416 * table walking code (when walking the page table without locking; 417 * ie. most of the time). Fortunately, these data accesses consist 418 * of a chain of data-dependent loads, meaning most CPUs (alpha 419 * being the notable exception) will already guarantee loads are 420 * seen in-order. See the alpha page table accessors for the 421 * smp_read_barrier_depends() barriers in page table walking code. 422 */ 423 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 424 425 ptl = pmd_lock(mm, pmd); 426 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 427 mm_inc_nr_ptes(mm); 428 pmd_populate(mm, pmd, new); 429 new = NULL; 430 } 431 spin_unlock(ptl); 432 if (new) 433 pte_free(mm, new); 434 return 0; 435 } 436 437 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 438 { 439 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 440 if (!new) 441 return -ENOMEM; 442 443 smp_wmb(); /* See comment in __pte_alloc */ 444 445 spin_lock(&init_mm.page_table_lock); 446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 447 pmd_populate_kernel(&init_mm, pmd, new); 448 new = NULL; 449 } 450 spin_unlock(&init_mm.page_table_lock); 451 if (new) 452 pte_free_kernel(&init_mm, new); 453 return 0; 454 } 455 456 static inline void init_rss_vec(int *rss) 457 { 458 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 459 } 460 461 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 462 { 463 int i; 464 465 if (current->mm == mm) 466 sync_mm_rss(mm); 467 for (i = 0; i < NR_MM_COUNTERS; i++) 468 if (rss[i]) 469 add_mm_counter(mm, i, rss[i]); 470 } 471 472 /* 473 * This function is called to print an error when a bad pte 474 * is found. For example, we might have a PFN-mapped pte in 475 * a region that doesn't allow it. 476 * 477 * The calling function must still handle the error. 478 */ 479 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 480 pte_t pte, struct page *page) 481 { 482 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 483 p4d_t *p4d = p4d_offset(pgd, addr); 484 pud_t *pud = pud_offset(p4d, addr); 485 pmd_t *pmd = pmd_offset(pud, addr); 486 struct address_space *mapping; 487 pgoff_t index; 488 static unsigned long resume; 489 static unsigned long nr_shown; 490 static unsigned long nr_unshown; 491 492 /* 493 * Allow a burst of 60 reports, then keep quiet for that minute; 494 * or allow a steady drip of one report per second. 495 */ 496 if (nr_shown == 60) { 497 if (time_before(jiffies, resume)) { 498 nr_unshown++; 499 return; 500 } 501 if (nr_unshown) { 502 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 503 nr_unshown); 504 nr_unshown = 0; 505 } 506 nr_shown = 0; 507 } 508 if (nr_shown++ == 0) 509 resume = jiffies + 60 * HZ; 510 511 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 512 index = linear_page_index(vma, addr); 513 514 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 515 current->comm, 516 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 517 if (page) 518 dump_page(page, "bad pte"); 519 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 520 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 521 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 522 vma->vm_file, 523 vma->vm_ops ? vma->vm_ops->fault : NULL, 524 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 525 mapping ? mapping->a_ops->readpage : NULL); 526 dump_stack(); 527 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 528 } 529 530 /* 531 * vm_normal_page -- This function gets the "struct page" associated with a pte. 532 * 533 * "Special" mappings do not wish to be associated with a "struct page" (either 534 * it doesn't exist, or it exists but they don't want to touch it). In this 535 * case, NULL is returned here. "Normal" mappings do have a struct page. 536 * 537 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 538 * pte bit, in which case this function is trivial. Secondly, an architecture 539 * may not have a spare pte bit, which requires a more complicated scheme, 540 * described below. 541 * 542 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 543 * special mapping (even if there are underlying and valid "struct pages"). 544 * COWed pages of a VM_PFNMAP are always normal. 545 * 546 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 547 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 548 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 549 * mapping will always honor the rule 550 * 551 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 552 * 553 * And for normal mappings this is false. 554 * 555 * This restricts such mappings to be a linear translation from virtual address 556 * to pfn. To get around this restriction, we allow arbitrary mappings so long 557 * as the vma is not a COW mapping; in that case, we know that all ptes are 558 * special (because none can have been COWed). 559 * 560 * 561 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 562 * 563 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 564 * page" backing, however the difference is that _all_ pages with a struct 565 * page (that is, those where pfn_valid is true) are refcounted and considered 566 * normal pages by the VM. The disadvantage is that pages are refcounted 567 * (which can be slower and simply not an option for some PFNMAP users). The 568 * advantage is that we don't have to follow the strict linearity rule of 569 * PFNMAP mappings in order to support COWable mappings. 570 * 571 */ 572 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 573 pte_t pte, bool with_public_device) 574 { 575 unsigned long pfn = pte_pfn(pte); 576 577 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 578 if (likely(!pte_special(pte))) 579 goto check_pfn; 580 if (vma->vm_ops && vma->vm_ops->find_special_page) 581 return vma->vm_ops->find_special_page(vma, addr); 582 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 583 return NULL; 584 if (is_zero_pfn(pfn)) 585 return NULL; 586 587 /* 588 * Device public pages are special pages (they are ZONE_DEVICE 589 * pages but different from persistent memory). They behave 590 * allmost like normal pages. The difference is that they are 591 * not on the lru and thus should never be involve with any- 592 * thing that involve lru manipulation (mlock, numa balancing, 593 * ...). 594 * 595 * This is why we still want to return NULL for such page from 596 * vm_normal_page() so that we do not have to special case all 597 * call site of vm_normal_page(). 598 */ 599 if (likely(pfn <= highest_memmap_pfn)) { 600 struct page *page = pfn_to_page(pfn); 601 602 if (is_device_public_page(page)) { 603 if (with_public_device) 604 return page; 605 return NULL; 606 } 607 } 608 609 if (pte_devmap(pte)) 610 return NULL; 611 612 print_bad_pte(vma, addr, pte, NULL); 613 return NULL; 614 } 615 616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 617 618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 619 if (vma->vm_flags & VM_MIXEDMAP) { 620 if (!pfn_valid(pfn)) 621 return NULL; 622 goto out; 623 } else { 624 unsigned long off; 625 off = (addr - vma->vm_start) >> PAGE_SHIFT; 626 if (pfn == vma->vm_pgoff + off) 627 return NULL; 628 if (!is_cow_mapping(vma->vm_flags)) 629 return NULL; 630 } 631 } 632 633 if (is_zero_pfn(pfn)) 634 return NULL; 635 636 check_pfn: 637 if (unlikely(pfn > highest_memmap_pfn)) { 638 print_bad_pte(vma, addr, pte, NULL); 639 return NULL; 640 } 641 642 /* 643 * NOTE! We still have PageReserved() pages in the page tables. 644 * eg. VDSO mappings can cause them to exist. 645 */ 646 out: 647 return pfn_to_page(pfn); 648 } 649 650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 652 pmd_t pmd) 653 { 654 unsigned long pfn = pmd_pfn(pmd); 655 656 /* 657 * There is no pmd_special() but there may be special pmds, e.g. 658 * in a direct-access (dax) mapping, so let's just replicate the 659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 660 */ 661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 662 if (vma->vm_flags & VM_MIXEDMAP) { 663 if (!pfn_valid(pfn)) 664 return NULL; 665 goto out; 666 } else { 667 unsigned long off; 668 off = (addr - vma->vm_start) >> PAGE_SHIFT; 669 if (pfn == vma->vm_pgoff + off) 670 return NULL; 671 if (!is_cow_mapping(vma->vm_flags)) 672 return NULL; 673 } 674 } 675 676 if (pmd_devmap(pmd)) 677 return NULL; 678 if (is_zero_pfn(pfn)) 679 return NULL; 680 if (unlikely(pfn > highest_memmap_pfn)) 681 return NULL; 682 683 /* 684 * NOTE! We still have PageReserved() pages in the page tables. 685 * eg. VDSO mappings can cause them to exist. 686 */ 687 out: 688 return pfn_to_page(pfn); 689 } 690 #endif 691 692 /* 693 * copy one vm_area from one task to the other. Assumes the page tables 694 * already present in the new task to be cleared in the whole range 695 * covered by this vma. 696 */ 697 698 static inline unsigned long 699 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 701 unsigned long addr, int *rss) 702 { 703 unsigned long vm_flags = vma->vm_flags; 704 pte_t pte = *src_pte; 705 struct page *page; 706 707 /* pte contains position in swap or file, so copy. */ 708 if (unlikely(!pte_present(pte))) { 709 swp_entry_t entry = pte_to_swp_entry(pte); 710 711 if (likely(!non_swap_entry(entry))) { 712 if (swap_duplicate(entry) < 0) 713 return entry.val; 714 715 /* make sure dst_mm is on swapoff's mmlist. */ 716 if (unlikely(list_empty(&dst_mm->mmlist))) { 717 spin_lock(&mmlist_lock); 718 if (list_empty(&dst_mm->mmlist)) 719 list_add(&dst_mm->mmlist, 720 &src_mm->mmlist); 721 spin_unlock(&mmlist_lock); 722 } 723 rss[MM_SWAPENTS]++; 724 } else if (is_migration_entry(entry)) { 725 page = migration_entry_to_page(entry); 726 727 rss[mm_counter(page)]++; 728 729 if (is_write_migration_entry(entry) && 730 is_cow_mapping(vm_flags)) { 731 /* 732 * COW mappings require pages in both 733 * parent and child to be set to read. 734 */ 735 make_migration_entry_read(&entry); 736 pte = swp_entry_to_pte(entry); 737 if (pte_swp_soft_dirty(*src_pte)) 738 pte = pte_swp_mksoft_dirty(pte); 739 set_pte_at(src_mm, addr, src_pte, pte); 740 } 741 } else if (is_device_private_entry(entry)) { 742 page = device_private_entry_to_page(entry); 743 744 /* 745 * Update rss count even for unaddressable pages, as 746 * they should treated just like normal pages in this 747 * respect. 748 * 749 * We will likely want to have some new rss counters 750 * for unaddressable pages, at some point. But for now 751 * keep things as they are. 752 */ 753 get_page(page); 754 rss[mm_counter(page)]++; 755 page_dup_rmap(page, false); 756 757 /* 758 * We do not preserve soft-dirty information, because so 759 * far, checkpoint/restore is the only feature that 760 * requires that. And checkpoint/restore does not work 761 * when a device driver is involved (you cannot easily 762 * save and restore device driver state). 763 */ 764 if (is_write_device_private_entry(entry) && 765 is_cow_mapping(vm_flags)) { 766 make_device_private_entry_read(&entry); 767 pte = swp_entry_to_pte(entry); 768 set_pte_at(src_mm, addr, src_pte, pte); 769 } 770 } 771 goto out_set_pte; 772 } 773 774 /* 775 * If it's a COW mapping, write protect it both 776 * in the parent and the child 777 */ 778 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 779 ptep_set_wrprotect(src_mm, addr, src_pte); 780 pte = pte_wrprotect(pte); 781 } 782 783 /* 784 * If it's a shared mapping, mark it clean in 785 * the child 786 */ 787 if (vm_flags & VM_SHARED) 788 pte = pte_mkclean(pte); 789 pte = pte_mkold(pte); 790 791 page = vm_normal_page(vma, addr, pte); 792 if (page) { 793 get_page(page); 794 page_dup_rmap(page, false); 795 rss[mm_counter(page)]++; 796 } else if (pte_devmap(pte)) { 797 page = pte_page(pte); 798 799 /* 800 * Cache coherent device memory behave like regular page and 801 * not like persistent memory page. For more informations see 802 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 803 */ 804 if (is_device_public_page(page)) { 805 get_page(page); 806 page_dup_rmap(page, false); 807 rss[mm_counter(page)]++; 808 } 809 } 810 811 out_set_pte: 812 set_pte_at(dst_mm, addr, dst_pte, pte); 813 return 0; 814 } 815 816 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 817 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 818 unsigned long addr, unsigned long end) 819 { 820 pte_t *orig_src_pte, *orig_dst_pte; 821 pte_t *src_pte, *dst_pte; 822 spinlock_t *src_ptl, *dst_ptl; 823 int progress = 0; 824 int rss[NR_MM_COUNTERS]; 825 swp_entry_t entry = (swp_entry_t){0}; 826 827 again: 828 init_rss_vec(rss); 829 830 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 831 if (!dst_pte) 832 return -ENOMEM; 833 src_pte = pte_offset_map(src_pmd, addr); 834 src_ptl = pte_lockptr(src_mm, src_pmd); 835 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 836 orig_src_pte = src_pte; 837 orig_dst_pte = dst_pte; 838 arch_enter_lazy_mmu_mode(); 839 840 do { 841 /* 842 * We are holding two locks at this point - either of them 843 * could generate latencies in another task on another CPU. 844 */ 845 if (progress >= 32) { 846 progress = 0; 847 if (need_resched() || 848 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 849 break; 850 } 851 if (pte_none(*src_pte)) { 852 progress++; 853 continue; 854 } 855 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 856 vma, addr, rss); 857 if (entry.val) 858 break; 859 progress += 8; 860 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 861 862 arch_leave_lazy_mmu_mode(); 863 spin_unlock(src_ptl); 864 pte_unmap(orig_src_pte); 865 add_mm_rss_vec(dst_mm, rss); 866 pte_unmap_unlock(orig_dst_pte, dst_ptl); 867 cond_resched(); 868 869 if (entry.val) { 870 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 871 return -ENOMEM; 872 progress = 0; 873 } 874 if (addr != end) 875 goto again; 876 return 0; 877 } 878 879 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 880 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 881 unsigned long addr, unsigned long end) 882 { 883 pmd_t *src_pmd, *dst_pmd; 884 unsigned long next; 885 886 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 887 if (!dst_pmd) 888 return -ENOMEM; 889 src_pmd = pmd_offset(src_pud, addr); 890 do { 891 next = pmd_addr_end(addr, end); 892 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 893 || pmd_devmap(*src_pmd)) { 894 int err; 895 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 896 err = copy_huge_pmd(dst_mm, src_mm, 897 dst_pmd, src_pmd, addr, vma); 898 if (err == -ENOMEM) 899 return -ENOMEM; 900 if (!err) 901 continue; 902 /* fall through */ 903 } 904 if (pmd_none_or_clear_bad(src_pmd)) 905 continue; 906 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 907 vma, addr, next)) 908 return -ENOMEM; 909 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 910 return 0; 911 } 912 913 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 914 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 915 unsigned long addr, unsigned long end) 916 { 917 pud_t *src_pud, *dst_pud; 918 unsigned long next; 919 920 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 921 if (!dst_pud) 922 return -ENOMEM; 923 src_pud = pud_offset(src_p4d, addr); 924 do { 925 next = pud_addr_end(addr, end); 926 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 927 int err; 928 929 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 930 err = copy_huge_pud(dst_mm, src_mm, 931 dst_pud, src_pud, addr, vma); 932 if (err == -ENOMEM) 933 return -ENOMEM; 934 if (!err) 935 continue; 936 /* fall through */ 937 } 938 if (pud_none_or_clear_bad(src_pud)) 939 continue; 940 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 941 vma, addr, next)) 942 return -ENOMEM; 943 } while (dst_pud++, src_pud++, addr = next, addr != end); 944 return 0; 945 } 946 947 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 948 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 949 unsigned long addr, unsigned long end) 950 { 951 p4d_t *src_p4d, *dst_p4d; 952 unsigned long next; 953 954 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 955 if (!dst_p4d) 956 return -ENOMEM; 957 src_p4d = p4d_offset(src_pgd, addr); 958 do { 959 next = p4d_addr_end(addr, end); 960 if (p4d_none_or_clear_bad(src_p4d)) 961 continue; 962 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 963 vma, addr, next)) 964 return -ENOMEM; 965 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 966 return 0; 967 } 968 969 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 970 struct vm_area_struct *vma) 971 { 972 pgd_t *src_pgd, *dst_pgd; 973 unsigned long next; 974 unsigned long addr = vma->vm_start; 975 unsigned long end = vma->vm_end; 976 unsigned long mmun_start; /* For mmu_notifiers */ 977 unsigned long mmun_end; /* For mmu_notifiers */ 978 bool is_cow; 979 int ret; 980 981 /* 982 * Don't copy ptes where a page fault will fill them correctly. 983 * Fork becomes much lighter when there are big shared or private 984 * readonly mappings. The tradeoff is that copy_page_range is more 985 * efficient than faulting. 986 */ 987 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 988 !vma->anon_vma) 989 return 0; 990 991 if (is_vm_hugetlb_page(vma)) 992 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 993 994 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 995 /* 996 * We do not free on error cases below as remove_vma 997 * gets called on error from higher level routine 998 */ 999 ret = track_pfn_copy(vma); 1000 if (ret) 1001 return ret; 1002 } 1003 1004 /* 1005 * We need to invalidate the secondary MMU mappings only when 1006 * there could be a permission downgrade on the ptes of the 1007 * parent mm. And a permission downgrade will only happen if 1008 * is_cow_mapping() returns true. 1009 */ 1010 is_cow = is_cow_mapping(vma->vm_flags); 1011 mmun_start = addr; 1012 mmun_end = end; 1013 if (is_cow) 1014 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1015 mmun_end); 1016 1017 ret = 0; 1018 dst_pgd = pgd_offset(dst_mm, addr); 1019 src_pgd = pgd_offset(src_mm, addr); 1020 do { 1021 next = pgd_addr_end(addr, end); 1022 if (pgd_none_or_clear_bad(src_pgd)) 1023 continue; 1024 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1025 vma, addr, next))) { 1026 ret = -ENOMEM; 1027 break; 1028 } 1029 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1030 1031 if (is_cow) 1032 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1033 return ret; 1034 } 1035 1036 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1037 struct vm_area_struct *vma, pmd_t *pmd, 1038 unsigned long addr, unsigned long end, 1039 struct zap_details *details) 1040 { 1041 struct mm_struct *mm = tlb->mm; 1042 int force_flush = 0; 1043 int rss[NR_MM_COUNTERS]; 1044 spinlock_t *ptl; 1045 pte_t *start_pte; 1046 pte_t *pte; 1047 swp_entry_t entry; 1048 1049 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1050 again: 1051 init_rss_vec(rss); 1052 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1053 pte = start_pte; 1054 flush_tlb_batched_pending(mm); 1055 arch_enter_lazy_mmu_mode(); 1056 do { 1057 pte_t ptent = *pte; 1058 if (pte_none(ptent)) 1059 continue; 1060 1061 if (pte_present(ptent)) { 1062 struct page *page; 1063 1064 page = _vm_normal_page(vma, addr, ptent, true); 1065 if (unlikely(details) && page) { 1066 /* 1067 * unmap_shared_mapping_pages() wants to 1068 * invalidate cache without truncating: 1069 * unmap shared but keep private pages. 1070 */ 1071 if (details->check_mapping && 1072 details->check_mapping != page_rmapping(page)) 1073 continue; 1074 } 1075 ptent = ptep_get_and_clear_full(mm, addr, pte, 1076 tlb->fullmm); 1077 tlb_remove_tlb_entry(tlb, pte, addr); 1078 if (unlikely(!page)) 1079 continue; 1080 1081 if (!PageAnon(page)) { 1082 if (pte_dirty(ptent)) { 1083 force_flush = 1; 1084 set_page_dirty(page); 1085 } 1086 if (pte_young(ptent) && 1087 likely(!(vma->vm_flags & VM_SEQ_READ))) 1088 mark_page_accessed(page); 1089 } 1090 rss[mm_counter(page)]--; 1091 page_remove_rmap(page, false); 1092 if (unlikely(page_mapcount(page) < 0)) 1093 print_bad_pte(vma, addr, ptent, page); 1094 if (unlikely(__tlb_remove_page(tlb, page))) { 1095 force_flush = 1; 1096 addr += PAGE_SIZE; 1097 break; 1098 } 1099 continue; 1100 } 1101 1102 entry = pte_to_swp_entry(ptent); 1103 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1104 struct page *page = device_private_entry_to_page(entry); 1105 1106 if (unlikely(details && details->check_mapping)) { 1107 /* 1108 * unmap_shared_mapping_pages() wants to 1109 * invalidate cache without truncating: 1110 * unmap shared but keep private pages. 1111 */ 1112 if (details->check_mapping != 1113 page_rmapping(page)) 1114 continue; 1115 } 1116 1117 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1118 rss[mm_counter(page)]--; 1119 page_remove_rmap(page, false); 1120 put_page(page); 1121 continue; 1122 } 1123 1124 /* If details->check_mapping, we leave swap entries. */ 1125 if (unlikely(details)) 1126 continue; 1127 1128 entry = pte_to_swp_entry(ptent); 1129 if (!non_swap_entry(entry)) 1130 rss[MM_SWAPENTS]--; 1131 else if (is_migration_entry(entry)) { 1132 struct page *page; 1133 1134 page = migration_entry_to_page(entry); 1135 rss[mm_counter(page)]--; 1136 } 1137 if (unlikely(!free_swap_and_cache(entry))) 1138 print_bad_pte(vma, addr, ptent, NULL); 1139 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1140 } while (pte++, addr += PAGE_SIZE, addr != end); 1141 1142 add_mm_rss_vec(mm, rss); 1143 arch_leave_lazy_mmu_mode(); 1144 1145 /* Do the actual TLB flush before dropping ptl */ 1146 if (force_flush) 1147 tlb_flush_mmu_tlbonly(tlb); 1148 pte_unmap_unlock(start_pte, ptl); 1149 1150 /* 1151 * If we forced a TLB flush (either due to running out of 1152 * batch buffers or because we needed to flush dirty TLB 1153 * entries before releasing the ptl), free the batched 1154 * memory too. Restart if we didn't do everything. 1155 */ 1156 if (force_flush) { 1157 force_flush = 0; 1158 tlb_flush_mmu_free(tlb); 1159 if (addr != end) 1160 goto again; 1161 } 1162 1163 return addr; 1164 } 1165 1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1167 struct vm_area_struct *vma, pud_t *pud, 1168 unsigned long addr, unsigned long end, 1169 struct zap_details *details) 1170 { 1171 pmd_t *pmd; 1172 unsigned long next; 1173 1174 pmd = pmd_offset(pud, addr); 1175 do { 1176 next = pmd_addr_end(addr, end); 1177 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1178 if (next - addr != HPAGE_PMD_SIZE) 1179 __split_huge_pmd(vma, pmd, addr, false, NULL); 1180 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1181 goto next; 1182 /* fall through */ 1183 } 1184 /* 1185 * Here there can be other concurrent MADV_DONTNEED or 1186 * trans huge page faults running, and if the pmd is 1187 * none or trans huge it can change under us. This is 1188 * because MADV_DONTNEED holds the mmap_sem in read 1189 * mode. 1190 */ 1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1192 goto next; 1193 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1194 next: 1195 cond_resched(); 1196 } while (pmd++, addr = next, addr != end); 1197 1198 return addr; 1199 } 1200 1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1202 struct vm_area_struct *vma, p4d_t *p4d, 1203 unsigned long addr, unsigned long end, 1204 struct zap_details *details) 1205 { 1206 pud_t *pud; 1207 unsigned long next; 1208 1209 pud = pud_offset(p4d, addr); 1210 do { 1211 next = pud_addr_end(addr, end); 1212 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1213 if (next - addr != HPAGE_PUD_SIZE) { 1214 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1215 split_huge_pud(vma, pud, addr); 1216 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1217 goto next; 1218 /* fall through */ 1219 } 1220 if (pud_none_or_clear_bad(pud)) 1221 continue; 1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1223 next: 1224 cond_resched(); 1225 } while (pud++, addr = next, addr != end); 1226 1227 return addr; 1228 } 1229 1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1231 struct vm_area_struct *vma, pgd_t *pgd, 1232 unsigned long addr, unsigned long end, 1233 struct zap_details *details) 1234 { 1235 p4d_t *p4d; 1236 unsigned long next; 1237 1238 p4d = p4d_offset(pgd, addr); 1239 do { 1240 next = p4d_addr_end(addr, end); 1241 if (p4d_none_or_clear_bad(p4d)) 1242 continue; 1243 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1244 } while (p4d++, addr = next, addr != end); 1245 1246 return addr; 1247 } 1248 1249 void unmap_page_range(struct mmu_gather *tlb, 1250 struct vm_area_struct *vma, 1251 unsigned long addr, unsigned long end, 1252 struct zap_details *details) 1253 { 1254 pgd_t *pgd; 1255 unsigned long next; 1256 1257 BUG_ON(addr >= end); 1258 tlb_start_vma(tlb, vma); 1259 pgd = pgd_offset(vma->vm_mm, addr); 1260 do { 1261 next = pgd_addr_end(addr, end); 1262 if (pgd_none_or_clear_bad(pgd)) 1263 continue; 1264 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1265 } while (pgd++, addr = next, addr != end); 1266 tlb_end_vma(tlb, vma); 1267 } 1268 1269 1270 static void unmap_single_vma(struct mmu_gather *tlb, 1271 struct vm_area_struct *vma, unsigned long start_addr, 1272 unsigned long end_addr, 1273 struct zap_details *details) 1274 { 1275 unsigned long start = max(vma->vm_start, start_addr); 1276 unsigned long end; 1277 1278 if (start >= vma->vm_end) 1279 return; 1280 end = min(vma->vm_end, end_addr); 1281 if (end <= vma->vm_start) 1282 return; 1283 1284 if (vma->vm_file) 1285 uprobe_munmap(vma, start, end); 1286 1287 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1288 untrack_pfn(vma, 0, 0); 1289 1290 if (start != end) { 1291 if (unlikely(is_vm_hugetlb_page(vma))) { 1292 /* 1293 * It is undesirable to test vma->vm_file as it 1294 * should be non-null for valid hugetlb area. 1295 * However, vm_file will be NULL in the error 1296 * cleanup path of mmap_region. When 1297 * hugetlbfs ->mmap method fails, 1298 * mmap_region() nullifies vma->vm_file 1299 * before calling this function to clean up. 1300 * Since no pte has actually been setup, it is 1301 * safe to do nothing in this case. 1302 */ 1303 if (vma->vm_file) { 1304 i_mmap_lock_write(vma->vm_file->f_mapping); 1305 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1306 i_mmap_unlock_write(vma->vm_file->f_mapping); 1307 } 1308 } else 1309 unmap_page_range(tlb, vma, start, end, details); 1310 } 1311 } 1312 1313 /** 1314 * unmap_vmas - unmap a range of memory covered by a list of vma's 1315 * @tlb: address of the caller's struct mmu_gather 1316 * @vma: the starting vma 1317 * @start_addr: virtual address at which to start unmapping 1318 * @end_addr: virtual address at which to end unmapping 1319 * 1320 * Unmap all pages in the vma list. 1321 * 1322 * Only addresses between `start' and `end' will be unmapped. 1323 * 1324 * The VMA list must be sorted in ascending virtual address order. 1325 * 1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1327 * range after unmap_vmas() returns. So the only responsibility here is to 1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1329 * drops the lock and schedules. 1330 */ 1331 void unmap_vmas(struct mmu_gather *tlb, 1332 struct vm_area_struct *vma, unsigned long start_addr, 1333 unsigned long end_addr) 1334 { 1335 struct mm_struct *mm = vma->vm_mm; 1336 1337 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1338 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1339 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1340 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1341 } 1342 1343 /** 1344 * zap_page_range - remove user pages in a given range 1345 * @vma: vm_area_struct holding the applicable pages 1346 * @start: starting address of pages to zap 1347 * @size: number of bytes to zap 1348 * 1349 * Caller must protect the VMA list 1350 */ 1351 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1352 unsigned long size) 1353 { 1354 struct mm_struct *mm = vma->vm_mm; 1355 struct mmu_gather tlb; 1356 unsigned long end = start + size; 1357 1358 lru_add_drain(); 1359 tlb_gather_mmu(&tlb, mm, start, end); 1360 update_hiwater_rss(mm); 1361 mmu_notifier_invalidate_range_start(mm, start, end); 1362 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1363 unmap_single_vma(&tlb, vma, start, end, NULL); 1364 mmu_notifier_invalidate_range_end(mm, start, end); 1365 tlb_finish_mmu(&tlb, start, end); 1366 } 1367 1368 /** 1369 * zap_page_range_single - remove user pages in a given range 1370 * @vma: vm_area_struct holding the applicable pages 1371 * @address: starting address of pages to zap 1372 * @size: number of bytes to zap 1373 * @details: details of shared cache invalidation 1374 * 1375 * The range must fit into one VMA. 1376 */ 1377 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1378 unsigned long size, struct zap_details *details) 1379 { 1380 struct mm_struct *mm = vma->vm_mm; 1381 struct mmu_gather tlb; 1382 unsigned long end = address + size; 1383 1384 lru_add_drain(); 1385 tlb_gather_mmu(&tlb, mm, address, end); 1386 update_hiwater_rss(mm); 1387 mmu_notifier_invalidate_range_start(mm, address, end); 1388 unmap_single_vma(&tlb, vma, address, end, details); 1389 mmu_notifier_invalidate_range_end(mm, address, end); 1390 tlb_finish_mmu(&tlb, address, end); 1391 } 1392 1393 /** 1394 * zap_vma_ptes - remove ptes mapping the vma 1395 * @vma: vm_area_struct holding ptes to be zapped 1396 * @address: starting address of pages to zap 1397 * @size: number of bytes to zap 1398 * 1399 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1400 * 1401 * The entire address range must be fully contained within the vma. 1402 * 1403 */ 1404 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1405 unsigned long size) 1406 { 1407 if (address < vma->vm_start || address + size > vma->vm_end || 1408 !(vma->vm_flags & VM_PFNMAP)) 1409 return; 1410 1411 zap_page_range_single(vma, address, size, NULL); 1412 } 1413 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1414 1415 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1416 spinlock_t **ptl) 1417 { 1418 pgd_t *pgd; 1419 p4d_t *p4d; 1420 pud_t *pud; 1421 pmd_t *pmd; 1422 1423 pgd = pgd_offset(mm, addr); 1424 p4d = p4d_alloc(mm, pgd, addr); 1425 if (!p4d) 1426 return NULL; 1427 pud = pud_alloc(mm, p4d, addr); 1428 if (!pud) 1429 return NULL; 1430 pmd = pmd_alloc(mm, pud, addr); 1431 if (!pmd) 1432 return NULL; 1433 1434 VM_BUG_ON(pmd_trans_huge(*pmd)); 1435 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1436 } 1437 1438 /* 1439 * This is the old fallback for page remapping. 1440 * 1441 * For historical reasons, it only allows reserved pages. Only 1442 * old drivers should use this, and they needed to mark their 1443 * pages reserved for the old functions anyway. 1444 */ 1445 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1446 struct page *page, pgprot_t prot) 1447 { 1448 struct mm_struct *mm = vma->vm_mm; 1449 int retval; 1450 pte_t *pte; 1451 spinlock_t *ptl; 1452 1453 retval = -EINVAL; 1454 if (PageAnon(page)) 1455 goto out; 1456 retval = -ENOMEM; 1457 flush_dcache_page(page); 1458 pte = get_locked_pte(mm, addr, &ptl); 1459 if (!pte) 1460 goto out; 1461 retval = -EBUSY; 1462 if (!pte_none(*pte)) 1463 goto out_unlock; 1464 1465 /* Ok, finally just insert the thing.. */ 1466 get_page(page); 1467 inc_mm_counter_fast(mm, mm_counter_file(page)); 1468 page_add_file_rmap(page, false); 1469 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1470 1471 retval = 0; 1472 pte_unmap_unlock(pte, ptl); 1473 return retval; 1474 out_unlock: 1475 pte_unmap_unlock(pte, ptl); 1476 out: 1477 return retval; 1478 } 1479 1480 /** 1481 * vm_insert_page - insert single page into user vma 1482 * @vma: user vma to map to 1483 * @addr: target user address of this page 1484 * @page: source kernel page 1485 * 1486 * This allows drivers to insert individual pages they've allocated 1487 * into a user vma. 1488 * 1489 * The page has to be a nice clean _individual_ kernel allocation. 1490 * If you allocate a compound page, you need to have marked it as 1491 * such (__GFP_COMP), or manually just split the page up yourself 1492 * (see split_page()). 1493 * 1494 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1495 * took an arbitrary page protection parameter. This doesn't allow 1496 * that. Your vma protection will have to be set up correctly, which 1497 * means that if you want a shared writable mapping, you'd better 1498 * ask for a shared writable mapping! 1499 * 1500 * The page does not need to be reserved. 1501 * 1502 * Usually this function is called from f_op->mmap() handler 1503 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1504 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1505 * function from other places, for example from page-fault handler. 1506 */ 1507 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1508 struct page *page) 1509 { 1510 if (addr < vma->vm_start || addr >= vma->vm_end) 1511 return -EFAULT; 1512 if (!page_count(page)) 1513 return -EINVAL; 1514 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1515 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1516 BUG_ON(vma->vm_flags & VM_PFNMAP); 1517 vma->vm_flags |= VM_MIXEDMAP; 1518 } 1519 return insert_page(vma, addr, page, vma->vm_page_prot); 1520 } 1521 EXPORT_SYMBOL(vm_insert_page); 1522 1523 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1524 pfn_t pfn, pgprot_t prot, bool mkwrite) 1525 { 1526 struct mm_struct *mm = vma->vm_mm; 1527 int retval; 1528 pte_t *pte, entry; 1529 spinlock_t *ptl; 1530 1531 retval = -ENOMEM; 1532 pte = get_locked_pte(mm, addr, &ptl); 1533 if (!pte) 1534 goto out; 1535 retval = -EBUSY; 1536 if (!pte_none(*pte)) { 1537 if (mkwrite) { 1538 /* 1539 * For read faults on private mappings the PFN passed 1540 * in may not match the PFN we have mapped if the 1541 * mapped PFN is a writeable COW page. In the mkwrite 1542 * case we are creating a writable PTE for a shared 1543 * mapping and we expect the PFNs to match. 1544 */ 1545 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn))) 1546 goto out_unlock; 1547 entry = *pte; 1548 goto out_mkwrite; 1549 } else 1550 goto out_unlock; 1551 } 1552 1553 /* Ok, finally just insert the thing.. */ 1554 if (pfn_t_devmap(pfn)) 1555 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1556 else 1557 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1558 1559 out_mkwrite: 1560 if (mkwrite) { 1561 entry = pte_mkyoung(entry); 1562 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1563 } 1564 1565 set_pte_at(mm, addr, pte, entry); 1566 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1567 1568 retval = 0; 1569 out_unlock: 1570 pte_unmap_unlock(pte, ptl); 1571 out: 1572 return retval; 1573 } 1574 1575 /** 1576 * vm_insert_pfn - insert single pfn into user vma 1577 * @vma: user vma to map to 1578 * @addr: target user address of this page 1579 * @pfn: source kernel pfn 1580 * 1581 * Similar to vm_insert_page, this allows drivers to insert individual pages 1582 * they've allocated into a user vma. Same comments apply. 1583 * 1584 * This function should only be called from a vm_ops->fault handler, and 1585 * in that case the handler should return NULL. 1586 * 1587 * vma cannot be a COW mapping. 1588 * 1589 * As this is called only for pages that do not currently exist, we 1590 * do not need to flush old virtual caches or the TLB. 1591 */ 1592 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1593 unsigned long pfn) 1594 { 1595 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1596 } 1597 EXPORT_SYMBOL(vm_insert_pfn); 1598 1599 /** 1600 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1601 * @vma: user vma to map to 1602 * @addr: target user address of this page 1603 * @pfn: source kernel pfn 1604 * @pgprot: pgprot flags for the inserted page 1605 * 1606 * This is exactly like vm_insert_pfn, except that it allows drivers to 1607 * to override pgprot on a per-page basis. 1608 * 1609 * This only makes sense for IO mappings, and it makes no sense for 1610 * cow mappings. In general, using multiple vmas is preferable; 1611 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1612 * impractical. 1613 */ 1614 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1615 unsigned long pfn, pgprot_t pgprot) 1616 { 1617 int ret; 1618 /* 1619 * Technically, architectures with pte_special can avoid all these 1620 * restrictions (same for remap_pfn_range). However we would like 1621 * consistency in testing and feature parity among all, so we should 1622 * try to keep these invariants in place for everybody. 1623 */ 1624 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1625 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1626 (VM_PFNMAP|VM_MIXEDMAP)); 1627 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1628 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1629 1630 if (addr < vma->vm_start || addr >= vma->vm_end) 1631 return -EFAULT; 1632 1633 if (!pfn_modify_allowed(pfn, pgprot)) 1634 return -EACCES; 1635 1636 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1637 1638 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1639 false); 1640 1641 return ret; 1642 } 1643 EXPORT_SYMBOL(vm_insert_pfn_prot); 1644 1645 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1646 { 1647 /* these checks mirror the abort conditions in vm_normal_page */ 1648 if (vma->vm_flags & VM_MIXEDMAP) 1649 return true; 1650 if (pfn_t_devmap(pfn)) 1651 return true; 1652 if (pfn_t_special(pfn)) 1653 return true; 1654 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1655 return true; 1656 return false; 1657 } 1658 1659 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1660 pfn_t pfn, bool mkwrite) 1661 { 1662 pgprot_t pgprot = vma->vm_page_prot; 1663 1664 BUG_ON(!vm_mixed_ok(vma, pfn)); 1665 1666 if (addr < vma->vm_start || addr >= vma->vm_end) 1667 return -EFAULT; 1668 1669 track_pfn_insert(vma, &pgprot, pfn); 1670 1671 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1672 return -EACCES; 1673 1674 /* 1675 * If we don't have pte special, then we have to use the pfn_valid() 1676 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1677 * refcount the page if pfn_valid is true (hence insert_page rather 1678 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1679 * without pte special, it would there be refcounted as a normal page. 1680 */ 1681 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1682 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1683 struct page *page; 1684 1685 /* 1686 * At this point we are committed to insert_page() 1687 * regardless of whether the caller specified flags that 1688 * result in pfn_t_has_page() == false. 1689 */ 1690 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1691 return insert_page(vma, addr, page, pgprot); 1692 } 1693 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1694 } 1695 1696 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1697 pfn_t pfn) 1698 { 1699 return __vm_insert_mixed(vma, addr, pfn, false); 1700 1701 } 1702 EXPORT_SYMBOL(vm_insert_mixed); 1703 1704 /* 1705 * If the insertion of PTE failed because someone else already added a 1706 * different entry in the mean time, we treat that as success as we assume 1707 * the same entry was actually inserted. 1708 */ 1709 1710 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1711 unsigned long addr, pfn_t pfn) 1712 { 1713 int err; 1714 1715 err = __vm_insert_mixed(vma, addr, pfn, true); 1716 if (err == -ENOMEM) 1717 return VM_FAULT_OOM; 1718 if (err < 0 && err != -EBUSY) 1719 return VM_FAULT_SIGBUS; 1720 return VM_FAULT_NOPAGE; 1721 } 1722 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1723 1724 /* 1725 * maps a range of physical memory into the requested pages. the old 1726 * mappings are removed. any references to nonexistent pages results 1727 * in null mappings (currently treated as "copy-on-access") 1728 */ 1729 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1730 unsigned long addr, unsigned long end, 1731 unsigned long pfn, pgprot_t prot) 1732 { 1733 pte_t *pte; 1734 spinlock_t *ptl; 1735 int err = 0; 1736 1737 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1738 if (!pte) 1739 return -ENOMEM; 1740 arch_enter_lazy_mmu_mode(); 1741 do { 1742 BUG_ON(!pte_none(*pte)); 1743 if (!pfn_modify_allowed(pfn, prot)) { 1744 err = -EACCES; 1745 break; 1746 } 1747 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1748 pfn++; 1749 } while (pte++, addr += PAGE_SIZE, addr != end); 1750 arch_leave_lazy_mmu_mode(); 1751 pte_unmap_unlock(pte - 1, ptl); 1752 return err; 1753 } 1754 1755 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1756 unsigned long addr, unsigned long end, 1757 unsigned long pfn, pgprot_t prot) 1758 { 1759 pmd_t *pmd; 1760 unsigned long next; 1761 int err; 1762 1763 pfn -= addr >> PAGE_SHIFT; 1764 pmd = pmd_alloc(mm, pud, addr); 1765 if (!pmd) 1766 return -ENOMEM; 1767 VM_BUG_ON(pmd_trans_huge(*pmd)); 1768 do { 1769 next = pmd_addr_end(addr, end); 1770 err = remap_pte_range(mm, pmd, addr, next, 1771 pfn + (addr >> PAGE_SHIFT), prot); 1772 if (err) 1773 return err; 1774 } while (pmd++, addr = next, addr != end); 1775 return 0; 1776 } 1777 1778 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 1779 unsigned long addr, unsigned long end, 1780 unsigned long pfn, pgprot_t prot) 1781 { 1782 pud_t *pud; 1783 unsigned long next; 1784 int err; 1785 1786 pfn -= addr >> PAGE_SHIFT; 1787 pud = pud_alloc(mm, p4d, addr); 1788 if (!pud) 1789 return -ENOMEM; 1790 do { 1791 next = pud_addr_end(addr, end); 1792 err = remap_pmd_range(mm, pud, addr, next, 1793 pfn + (addr >> PAGE_SHIFT), prot); 1794 if (err) 1795 return err; 1796 } while (pud++, addr = next, addr != end); 1797 return 0; 1798 } 1799 1800 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 1801 unsigned long addr, unsigned long end, 1802 unsigned long pfn, pgprot_t prot) 1803 { 1804 p4d_t *p4d; 1805 unsigned long next; 1806 int err; 1807 1808 pfn -= addr >> PAGE_SHIFT; 1809 p4d = p4d_alloc(mm, pgd, addr); 1810 if (!p4d) 1811 return -ENOMEM; 1812 do { 1813 next = p4d_addr_end(addr, end); 1814 err = remap_pud_range(mm, p4d, addr, next, 1815 pfn + (addr >> PAGE_SHIFT), prot); 1816 if (err) 1817 return err; 1818 } while (p4d++, addr = next, addr != end); 1819 return 0; 1820 } 1821 1822 /** 1823 * remap_pfn_range - remap kernel memory to userspace 1824 * @vma: user vma to map to 1825 * @addr: target user address to start at 1826 * @pfn: physical address of kernel memory 1827 * @size: size of map area 1828 * @prot: page protection flags for this mapping 1829 * 1830 * Note: this is only safe if the mm semaphore is held when called. 1831 */ 1832 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1833 unsigned long pfn, unsigned long size, pgprot_t prot) 1834 { 1835 pgd_t *pgd; 1836 unsigned long next; 1837 unsigned long end = addr + PAGE_ALIGN(size); 1838 struct mm_struct *mm = vma->vm_mm; 1839 unsigned long remap_pfn = pfn; 1840 int err; 1841 1842 /* 1843 * Physically remapped pages are special. Tell the 1844 * rest of the world about it: 1845 * VM_IO tells people not to look at these pages 1846 * (accesses can have side effects). 1847 * VM_PFNMAP tells the core MM that the base pages are just 1848 * raw PFN mappings, and do not have a "struct page" associated 1849 * with them. 1850 * VM_DONTEXPAND 1851 * Disable vma merging and expanding with mremap(). 1852 * VM_DONTDUMP 1853 * Omit vma from core dump, even when VM_IO turned off. 1854 * 1855 * There's a horrible special case to handle copy-on-write 1856 * behaviour that some programs depend on. We mark the "original" 1857 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1858 * See vm_normal_page() for details. 1859 */ 1860 if (is_cow_mapping(vma->vm_flags)) { 1861 if (addr != vma->vm_start || end != vma->vm_end) 1862 return -EINVAL; 1863 vma->vm_pgoff = pfn; 1864 } 1865 1866 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1867 if (err) 1868 return -EINVAL; 1869 1870 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1871 1872 BUG_ON(addr >= end); 1873 pfn -= addr >> PAGE_SHIFT; 1874 pgd = pgd_offset(mm, addr); 1875 flush_cache_range(vma, addr, end); 1876 do { 1877 next = pgd_addr_end(addr, end); 1878 err = remap_p4d_range(mm, pgd, addr, next, 1879 pfn + (addr >> PAGE_SHIFT), prot); 1880 if (err) 1881 break; 1882 } while (pgd++, addr = next, addr != end); 1883 1884 if (err) 1885 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1886 1887 return err; 1888 } 1889 EXPORT_SYMBOL(remap_pfn_range); 1890 1891 /** 1892 * vm_iomap_memory - remap memory to userspace 1893 * @vma: user vma to map to 1894 * @start: start of area 1895 * @len: size of area 1896 * 1897 * This is a simplified io_remap_pfn_range() for common driver use. The 1898 * driver just needs to give us the physical memory range to be mapped, 1899 * we'll figure out the rest from the vma information. 1900 * 1901 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1902 * whatever write-combining details or similar. 1903 */ 1904 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1905 { 1906 unsigned long vm_len, pfn, pages; 1907 1908 /* Check that the physical memory area passed in looks valid */ 1909 if (start + len < start) 1910 return -EINVAL; 1911 /* 1912 * You *really* shouldn't map things that aren't page-aligned, 1913 * but we've historically allowed it because IO memory might 1914 * just have smaller alignment. 1915 */ 1916 len += start & ~PAGE_MASK; 1917 pfn = start >> PAGE_SHIFT; 1918 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1919 if (pfn + pages < pfn) 1920 return -EINVAL; 1921 1922 /* We start the mapping 'vm_pgoff' pages into the area */ 1923 if (vma->vm_pgoff > pages) 1924 return -EINVAL; 1925 pfn += vma->vm_pgoff; 1926 pages -= vma->vm_pgoff; 1927 1928 /* Can we fit all of the mapping? */ 1929 vm_len = vma->vm_end - vma->vm_start; 1930 if (vm_len >> PAGE_SHIFT > pages) 1931 return -EINVAL; 1932 1933 /* Ok, let it rip */ 1934 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1935 } 1936 EXPORT_SYMBOL(vm_iomap_memory); 1937 1938 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1939 unsigned long addr, unsigned long end, 1940 pte_fn_t fn, void *data) 1941 { 1942 pte_t *pte; 1943 int err; 1944 pgtable_t token; 1945 spinlock_t *uninitialized_var(ptl); 1946 1947 pte = (mm == &init_mm) ? 1948 pte_alloc_kernel(pmd, addr) : 1949 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1950 if (!pte) 1951 return -ENOMEM; 1952 1953 BUG_ON(pmd_huge(*pmd)); 1954 1955 arch_enter_lazy_mmu_mode(); 1956 1957 token = pmd_pgtable(*pmd); 1958 1959 do { 1960 err = fn(pte++, token, addr, data); 1961 if (err) 1962 break; 1963 } while (addr += PAGE_SIZE, addr != end); 1964 1965 arch_leave_lazy_mmu_mode(); 1966 1967 if (mm != &init_mm) 1968 pte_unmap_unlock(pte-1, ptl); 1969 return err; 1970 } 1971 1972 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1973 unsigned long addr, unsigned long end, 1974 pte_fn_t fn, void *data) 1975 { 1976 pmd_t *pmd; 1977 unsigned long next; 1978 int err; 1979 1980 BUG_ON(pud_huge(*pud)); 1981 1982 pmd = pmd_alloc(mm, pud, addr); 1983 if (!pmd) 1984 return -ENOMEM; 1985 do { 1986 next = pmd_addr_end(addr, end); 1987 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1988 if (err) 1989 break; 1990 } while (pmd++, addr = next, addr != end); 1991 return err; 1992 } 1993 1994 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 1995 unsigned long addr, unsigned long end, 1996 pte_fn_t fn, void *data) 1997 { 1998 pud_t *pud; 1999 unsigned long next; 2000 int err; 2001 2002 pud = pud_alloc(mm, p4d, addr); 2003 if (!pud) 2004 return -ENOMEM; 2005 do { 2006 next = pud_addr_end(addr, end); 2007 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2008 if (err) 2009 break; 2010 } while (pud++, addr = next, addr != end); 2011 return err; 2012 } 2013 2014 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2015 unsigned long addr, unsigned long end, 2016 pte_fn_t fn, void *data) 2017 { 2018 p4d_t *p4d; 2019 unsigned long next; 2020 int err; 2021 2022 p4d = p4d_alloc(mm, pgd, addr); 2023 if (!p4d) 2024 return -ENOMEM; 2025 do { 2026 next = p4d_addr_end(addr, end); 2027 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2028 if (err) 2029 break; 2030 } while (p4d++, addr = next, addr != end); 2031 return err; 2032 } 2033 2034 /* 2035 * Scan a region of virtual memory, filling in page tables as necessary 2036 * and calling a provided function on each leaf page table. 2037 */ 2038 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2039 unsigned long size, pte_fn_t fn, void *data) 2040 { 2041 pgd_t *pgd; 2042 unsigned long next; 2043 unsigned long end = addr + size; 2044 int err; 2045 2046 if (WARN_ON(addr >= end)) 2047 return -EINVAL; 2048 2049 pgd = pgd_offset(mm, addr); 2050 do { 2051 next = pgd_addr_end(addr, end); 2052 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2053 if (err) 2054 break; 2055 } while (pgd++, addr = next, addr != end); 2056 2057 return err; 2058 } 2059 EXPORT_SYMBOL_GPL(apply_to_page_range); 2060 2061 /* 2062 * handle_pte_fault chooses page fault handler according to an entry which was 2063 * read non-atomically. Before making any commitment, on those architectures 2064 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2065 * parts, do_swap_page must check under lock before unmapping the pte and 2066 * proceeding (but do_wp_page is only called after already making such a check; 2067 * and do_anonymous_page can safely check later on). 2068 */ 2069 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2070 pte_t *page_table, pte_t orig_pte) 2071 { 2072 int same = 1; 2073 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2074 if (sizeof(pte_t) > sizeof(unsigned long)) { 2075 spinlock_t *ptl = pte_lockptr(mm, pmd); 2076 spin_lock(ptl); 2077 same = pte_same(*page_table, orig_pte); 2078 spin_unlock(ptl); 2079 } 2080 #endif 2081 pte_unmap(page_table); 2082 return same; 2083 } 2084 2085 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2086 { 2087 debug_dma_assert_idle(src); 2088 2089 /* 2090 * If the source page was a PFN mapping, we don't have 2091 * a "struct page" for it. We do a best-effort copy by 2092 * just copying from the original user address. If that 2093 * fails, we just zero-fill it. Live with it. 2094 */ 2095 if (unlikely(!src)) { 2096 void *kaddr = kmap_atomic(dst); 2097 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2098 2099 /* 2100 * This really shouldn't fail, because the page is there 2101 * in the page tables. But it might just be unreadable, 2102 * in which case we just give up and fill the result with 2103 * zeroes. 2104 */ 2105 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2106 clear_page(kaddr); 2107 kunmap_atomic(kaddr); 2108 flush_dcache_page(dst); 2109 } else 2110 copy_user_highpage(dst, src, va, vma); 2111 } 2112 2113 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2114 { 2115 struct file *vm_file = vma->vm_file; 2116 2117 if (vm_file) 2118 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2119 2120 /* 2121 * Special mappings (e.g. VDSO) do not have any file so fake 2122 * a default GFP_KERNEL for them. 2123 */ 2124 return GFP_KERNEL; 2125 } 2126 2127 /* 2128 * Notify the address space that the page is about to become writable so that 2129 * it can prohibit this or wait for the page to get into an appropriate state. 2130 * 2131 * We do this without the lock held, so that it can sleep if it needs to. 2132 */ 2133 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2134 { 2135 vm_fault_t ret; 2136 struct page *page = vmf->page; 2137 unsigned int old_flags = vmf->flags; 2138 2139 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2140 2141 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2142 /* Restore original flags so that caller is not surprised */ 2143 vmf->flags = old_flags; 2144 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2145 return ret; 2146 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2147 lock_page(page); 2148 if (!page->mapping) { 2149 unlock_page(page); 2150 return 0; /* retry */ 2151 } 2152 ret |= VM_FAULT_LOCKED; 2153 } else 2154 VM_BUG_ON_PAGE(!PageLocked(page), page); 2155 return ret; 2156 } 2157 2158 /* 2159 * Handle dirtying of a page in shared file mapping on a write fault. 2160 * 2161 * The function expects the page to be locked and unlocks it. 2162 */ 2163 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2164 struct page *page) 2165 { 2166 struct address_space *mapping; 2167 bool dirtied; 2168 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2169 2170 dirtied = set_page_dirty(page); 2171 VM_BUG_ON_PAGE(PageAnon(page), page); 2172 /* 2173 * Take a local copy of the address_space - page.mapping may be zeroed 2174 * by truncate after unlock_page(). The address_space itself remains 2175 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2176 * release semantics to prevent the compiler from undoing this copying. 2177 */ 2178 mapping = page_rmapping(page); 2179 unlock_page(page); 2180 2181 if ((dirtied || page_mkwrite) && mapping) { 2182 /* 2183 * Some device drivers do not set page.mapping 2184 * but still dirty their pages 2185 */ 2186 balance_dirty_pages_ratelimited(mapping); 2187 } 2188 2189 if (!page_mkwrite) 2190 file_update_time(vma->vm_file); 2191 } 2192 2193 /* 2194 * Handle write page faults for pages that can be reused in the current vma 2195 * 2196 * This can happen either due to the mapping being with the VM_SHARED flag, 2197 * or due to us being the last reference standing to the page. In either 2198 * case, all we need to do here is to mark the page as writable and update 2199 * any related book-keeping. 2200 */ 2201 static inline void wp_page_reuse(struct vm_fault *vmf) 2202 __releases(vmf->ptl) 2203 { 2204 struct vm_area_struct *vma = vmf->vma; 2205 struct page *page = vmf->page; 2206 pte_t entry; 2207 /* 2208 * Clear the pages cpupid information as the existing 2209 * information potentially belongs to a now completely 2210 * unrelated process. 2211 */ 2212 if (page) 2213 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2214 2215 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2216 entry = pte_mkyoung(vmf->orig_pte); 2217 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2218 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2219 update_mmu_cache(vma, vmf->address, vmf->pte); 2220 pte_unmap_unlock(vmf->pte, vmf->ptl); 2221 } 2222 2223 /* 2224 * Handle the case of a page which we actually need to copy to a new page. 2225 * 2226 * Called with mmap_sem locked and the old page referenced, but 2227 * without the ptl held. 2228 * 2229 * High level logic flow: 2230 * 2231 * - Allocate a page, copy the content of the old page to the new one. 2232 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2233 * - Take the PTL. If the pte changed, bail out and release the allocated page 2234 * - If the pte is still the way we remember it, update the page table and all 2235 * relevant references. This includes dropping the reference the page-table 2236 * held to the old page, as well as updating the rmap. 2237 * - In any case, unlock the PTL and drop the reference we took to the old page. 2238 */ 2239 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2240 { 2241 struct vm_area_struct *vma = vmf->vma; 2242 struct mm_struct *mm = vma->vm_mm; 2243 struct page *old_page = vmf->page; 2244 struct page *new_page = NULL; 2245 pte_t entry; 2246 int page_copied = 0; 2247 const unsigned long mmun_start = vmf->address & PAGE_MASK; 2248 const unsigned long mmun_end = mmun_start + PAGE_SIZE; 2249 struct mem_cgroup *memcg; 2250 2251 if (unlikely(anon_vma_prepare(vma))) 2252 goto oom; 2253 2254 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2255 new_page = alloc_zeroed_user_highpage_movable(vma, 2256 vmf->address); 2257 if (!new_page) 2258 goto oom; 2259 } else { 2260 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2261 vmf->address); 2262 if (!new_page) 2263 goto oom; 2264 cow_user_page(new_page, old_page, vmf->address, vma); 2265 } 2266 2267 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2268 goto oom_free_new; 2269 2270 __SetPageUptodate(new_page); 2271 2272 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2273 2274 /* 2275 * Re-check the pte - we dropped the lock 2276 */ 2277 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2278 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2279 if (old_page) { 2280 if (!PageAnon(old_page)) { 2281 dec_mm_counter_fast(mm, 2282 mm_counter_file(old_page)); 2283 inc_mm_counter_fast(mm, MM_ANONPAGES); 2284 } 2285 } else { 2286 inc_mm_counter_fast(mm, MM_ANONPAGES); 2287 } 2288 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2289 entry = mk_pte(new_page, vma->vm_page_prot); 2290 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2291 /* 2292 * Clear the pte entry and flush it first, before updating the 2293 * pte with the new entry. This will avoid a race condition 2294 * seen in the presence of one thread doing SMC and another 2295 * thread doing COW. 2296 */ 2297 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2298 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2299 mem_cgroup_commit_charge(new_page, memcg, false, false); 2300 lru_cache_add_active_or_unevictable(new_page, vma); 2301 /* 2302 * We call the notify macro here because, when using secondary 2303 * mmu page tables (such as kvm shadow page tables), we want the 2304 * new page to be mapped directly into the secondary page table. 2305 */ 2306 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2307 update_mmu_cache(vma, vmf->address, vmf->pte); 2308 if (old_page) { 2309 /* 2310 * Only after switching the pte to the new page may 2311 * we remove the mapcount here. Otherwise another 2312 * process may come and find the rmap count decremented 2313 * before the pte is switched to the new page, and 2314 * "reuse" the old page writing into it while our pte 2315 * here still points into it and can be read by other 2316 * threads. 2317 * 2318 * The critical issue is to order this 2319 * page_remove_rmap with the ptp_clear_flush above. 2320 * Those stores are ordered by (if nothing else,) 2321 * the barrier present in the atomic_add_negative 2322 * in page_remove_rmap. 2323 * 2324 * Then the TLB flush in ptep_clear_flush ensures that 2325 * no process can access the old page before the 2326 * decremented mapcount is visible. And the old page 2327 * cannot be reused until after the decremented 2328 * mapcount is visible. So transitively, TLBs to 2329 * old page will be flushed before it can be reused. 2330 */ 2331 page_remove_rmap(old_page, false); 2332 } 2333 2334 /* Free the old page.. */ 2335 new_page = old_page; 2336 page_copied = 1; 2337 } else { 2338 mem_cgroup_cancel_charge(new_page, memcg, false); 2339 } 2340 2341 if (new_page) 2342 put_page(new_page); 2343 2344 pte_unmap_unlock(vmf->pte, vmf->ptl); 2345 /* 2346 * No need to double call mmu_notifier->invalidate_range() callback as 2347 * the above ptep_clear_flush_notify() did already call it. 2348 */ 2349 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end); 2350 if (old_page) { 2351 /* 2352 * Don't let another task, with possibly unlocked vma, 2353 * keep the mlocked page. 2354 */ 2355 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2356 lock_page(old_page); /* LRU manipulation */ 2357 if (PageMlocked(old_page)) 2358 munlock_vma_page(old_page); 2359 unlock_page(old_page); 2360 } 2361 put_page(old_page); 2362 } 2363 return page_copied ? VM_FAULT_WRITE : 0; 2364 oom_free_new: 2365 put_page(new_page); 2366 oom: 2367 if (old_page) 2368 put_page(old_page); 2369 return VM_FAULT_OOM; 2370 } 2371 2372 /** 2373 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2374 * writeable once the page is prepared 2375 * 2376 * @vmf: structure describing the fault 2377 * 2378 * This function handles all that is needed to finish a write page fault in a 2379 * shared mapping due to PTE being read-only once the mapped page is prepared. 2380 * It handles locking of PTE and modifying it. The function returns 2381 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE 2382 * lock. 2383 * 2384 * The function expects the page to be locked or other protection against 2385 * concurrent faults / writeback (such as DAX radix tree locks). 2386 */ 2387 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2388 { 2389 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2390 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2391 &vmf->ptl); 2392 /* 2393 * We might have raced with another page fault while we released the 2394 * pte_offset_map_lock. 2395 */ 2396 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2397 pte_unmap_unlock(vmf->pte, vmf->ptl); 2398 return VM_FAULT_NOPAGE; 2399 } 2400 wp_page_reuse(vmf); 2401 return 0; 2402 } 2403 2404 /* 2405 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2406 * mapping 2407 */ 2408 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2409 { 2410 struct vm_area_struct *vma = vmf->vma; 2411 2412 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2413 vm_fault_t ret; 2414 2415 pte_unmap_unlock(vmf->pte, vmf->ptl); 2416 vmf->flags |= FAULT_FLAG_MKWRITE; 2417 ret = vma->vm_ops->pfn_mkwrite(vmf); 2418 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2419 return ret; 2420 return finish_mkwrite_fault(vmf); 2421 } 2422 wp_page_reuse(vmf); 2423 return VM_FAULT_WRITE; 2424 } 2425 2426 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2427 __releases(vmf->ptl) 2428 { 2429 struct vm_area_struct *vma = vmf->vma; 2430 2431 get_page(vmf->page); 2432 2433 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2434 vm_fault_t tmp; 2435 2436 pte_unmap_unlock(vmf->pte, vmf->ptl); 2437 tmp = do_page_mkwrite(vmf); 2438 if (unlikely(!tmp || (tmp & 2439 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2440 put_page(vmf->page); 2441 return tmp; 2442 } 2443 tmp = finish_mkwrite_fault(vmf); 2444 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2445 unlock_page(vmf->page); 2446 put_page(vmf->page); 2447 return tmp; 2448 } 2449 } else { 2450 wp_page_reuse(vmf); 2451 lock_page(vmf->page); 2452 } 2453 fault_dirty_shared_page(vma, vmf->page); 2454 put_page(vmf->page); 2455 2456 return VM_FAULT_WRITE; 2457 } 2458 2459 /* 2460 * This routine handles present pages, when users try to write 2461 * to a shared page. It is done by copying the page to a new address 2462 * and decrementing the shared-page counter for the old page. 2463 * 2464 * Note that this routine assumes that the protection checks have been 2465 * done by the caller (the low-level page fault routine in most cases). 2466 * Thus we can safely just mark it writable once we've done any necessary 2467 * COW. 2468 * 2469 * We also mark the page dirty at this point even though the page will 2470 * change only once the write actually happens. This avoids a few races, 2471 * and potentially makes it more efficient. 2472 * 2473 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2474 * but allow concurrent faults), with pte both mapped and locked. 2475 * We return with mmap_sem still held, but pte unmapped and unlocked. 2476 */ 2477 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2478 __releases(vmf->ptl) 2479 { 2480 struct vm_area_struct *vma = vmf->vma; 2481 2482 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2483 if (!vmf->page) { 2484 /* 2485 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2486 * VM_PFNMAP VMA. 2487 * 2488 * We should not cow pages in a shared writeable mapping. 2489 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2490 */ 2491 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2492 (VM_WRITE|VM_SHARED)) 2493 return wp_pfn_shared(vmf); 2494 2495 pte_unmap_unlock(vmf->pte, vmf->ptl); 2496 return wp_page_copy(vmf); 2497 } 2498 2499 /* 2500 * Take out anonymous pages first, anonymous shared vmas are 2501 * not dirty accountable. 2502 */ 2503 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { 2504 int total_map_swapcount; 2505 if (!trylock_page(vmf->page)) { 2506 get_page(vmf->page); 2507 pte_unmap_unlock(vmf->pte, vmf->ptl); 2508 lock_page(vmf->page); 2509 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2510 vmf->address, &vmf->ptl); 2511 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2512 unlock_page(vmf->page); 2513 pte_unmap_unlock(vmf->pte, vmf->ptl); 2514 put_page(vmf->page); 2515 return 0; 2516 } 2517 put_page(vmf->page); 2518 } 2519 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2520 if (total_map_swapcount == 1) { 2521 /* 2522 * The page is all ours. Move it to 2523 * our anon_vma so the rmap code will 2524 * not search our parent or siblings. 2525 * Protected against the rmap code by 2526 * the page lock. 2527 */ 2528 page_move_anon_rmap(vmf->page, vma); 2529 } 2530 unlock_page(vmf->page); 2531 wp_page_reuse(vmf); 2532 return VM_FAULT_WRITE; 2533 } 2534 unlock_page(vmf->page); 2535 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2536 (VM_WRITE|VM_SHARED))) { 2537 return wp_page_shared(vmf); 2538 } 2539 2540 /* 2541 * Ok, we need to copy. Oh, well.. 2542 */ 2543 get_page(vmf->page); 2544 2545 pte_unmap_unlock(vmf->pte, vmf->ptl); 2546 return wp_page_copy(vmf); 2547 } 2548 2549 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2550 unsigned long start_addr, unsigned long end_addr, 2551 struct zap_details *details) 2552 { 2553 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2554 } 2555 2556 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2557 struct zap_details *details) 2558 { 2559 struct vm_area_struct *vma; 2560 pgoff_t vba, vea, zba, zea; 2561 2562 vma_interval_tree_foreach(vma, root, 2563 details->first_index, details->last_index) { 2564 2565 vba = vma->vm_pgoff; 2566 vea = vba + vma_pages(vma) - 1; 2567 zba = details->first_index; 2568 if (zba < vba) 2569 zba = vba; 2570 zea = details->last_index; 2571 if (zea > vea) 2572 zea = vea; 2573 2574 unmap_mapping_range_vma(vma, 2575 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2576 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2577 details); 2578 } 2579 } 2580 2581 /** 2582 * unmap_mapping_pages() - Unmap pages from processes. 2583 * @mapping: The address space containing pages to be unmapped. 2584 * @start: Index of first page to be unmapped. 2585 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2586 * @even_cows: Whether to unmap even private COWed pages. 2587 * 2588 * Unmap the pages in this address space from any userspace process which 2589 * has them mmaped. Generally, you want to remove COWed pages as well when 2590 * a file is being truncated, but not when invalidating pages from the page 2591 * cache. 2592 */ 2593 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2594 pgoff_t nr, bool even_cows) 2595 { 2596 struct zap_details details = { }; 2597 2598 details.check_mapping = even_cows ? NULL : mapping; 2599 details.first_index = start; 2600 details.last_index = start + nr - 1; 2601 if (details.last_index < details.first_index) 2602 details.last_index = ULONG_MAX; 2603 2604 i_mmap_lock_write(mapping); 2605 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2606 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2607 i_mmap_unlock_write(mapping); 2608 } 2609 2610 /** 2611 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2612 * address_space corresponding to the specified byte range in the underlying 2613 * file. 2614 * 2615 * @mapping: the address space containing mmaps to be unmapped. 2616 * @holebegin: byte in first page to unmap, relative to the start of 2617 * the underlying file. This will be rounded down to a PAGE_SIZE 2618 * boundary. Note that this is different from truncate_pagecache(), which 2619 * must keep the partial page. In contrast, we must get rid of 2620 * partial pages. 2621 * @holelen: size of prospective hole in bytes. This will be rounded 2622 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2623 * end of the file. 2624 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2625 * but 0 when invalidating pagecache, don't throw away private data. 2626 */ 2627 void unmap_mapping_range(struct address_space *mapping, 2628 loff_t const holebegin, loff_t const holelen, int even_cows) 2629 { 2630 pgoff_t hba = holebegin >> PAGE_SHIFT; 2631 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2632 2633 /* Check for overflow. */ 2634 if (sizeof(holelen) > sizeof(hlen)) { 2635 long long holeend = 2636 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2637 if (holeend & ~(long long)ULONG_MAX) 2638 hlen = ULONG_MAX - hba + 1; 2639 } 2640 2641 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2642 } 2643 EXPORT_SYMBOL(unmap_mapping_range); 2644 2645 /* 2646 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2647 * but allow concurrent faults), and pte mapped but not yet locked. 2648 * We return with pte unmapped and unlocked. 2649 * 2650 * We return with the mmap_sem locked or unlocked in the same cases 2651 * as does filemap_fault(). 2652 */ 2653 vm_fault_t do_swap_page(struct vm_fault *vmf) 2654 { 2655 struct vm_area_struct *vma = vmf->vma; 2656 struct page *page = NULL, *swapcache; 2657 struct mem_cgroup *memcg; 2658 swp_entry_t entry; 2659 pte_t pte; 2660 int locked; 2661 int exclusive = 0; 2662 vm_fault_t ret = 0; 2663 2664 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2665 goto out; 2666 2667 entry = pte_to_swp_entry(vmf->orig_pte); 2668 if (unlikely(non_swap_entry(entry))) { 2669 if (is_migration_entry(entry)) { 2670 migration_entry_wait(vma->vm_mm, vmf->pmd, 2671 vmf->address); 2672 } else if (is_device_private_entry(entry)) { 2673 /* 2674 * For un-addressable device memory we call the pgmap 2675 * fault handler callback. The callback must migrate 2676 * the page back to some CPU accessible page. 2677 */ 2678 ret = device_private_entry_fault(vma, vmf->address, entry, 2679 vmf->flags, vmf->pmd); 2680 } else if (is_hwpoison_entry(entry)) { 2681 ret = VM_FAULT_HWPOISON; 2682 } else { 2683 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2684 ret = VM_FAULT_SIGBUS; 2685 } 2686 goto out; 2687 } 2688 2689 2690 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2691 page = lookup_swap_cache(entry, vma, vmf->address); 2692 swapcache = page; 2693 2694 if (!page) { 2695 struct swap_info_struct *si = swp_swap_info(entry); 2696 2697 if (si->flags & SWP_SYNCHRONOUS_IO && 2698 __swap_count(si, entry) == 1) { 2699 /* skip swapcache */ 2700 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2701 vmf->address); 2702 if (page) { 2703 __SetPageLocked(page); 2704 __SetPageSwapBacked(page); 2705 set_page_private(page, entry.val); 2706 lru_cache_add_anon(page); 2707 swap_readpage(page, true); 2708 } 2709 } else { 2710 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2711 vmf); 2712 swapcache = page; 2713 } 2714 2715 if (!page) { 2716 /* 2717 * Back out if somebody else faulted in this pte 2718 * while we released the pte lock. 2719 */ 2720 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2721 vmf->address, &vmf->ptl); 2722 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2723 ret = VM_FAULT_OOM; 2724 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2725 goto unlock; 2726 } 2727 2728 /* Had to read the page from swap area: Major fault */ 2729 ret = VM_FAULT_MAJOR; 2730 count_vm_event(PGMAJFAULT); 2731 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2732 } else if (PageHWPoison(page)) { 2733 /* 2734 * hwpoisoned dirty swapcache pages are kept for killing 2735 * owner processes (which may be unknown at hwpoison time) 2736 */ 2737 ret = VM_FAULT_HWPOISON; 2738 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2739 goto out_release; 2740 } 2741 2742 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2743 2744 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2745 if (!locked) { 2746 ret |= VM_FAULT_RETRY; 2747 goto out_release; 2748 } 2749 2750 /* 2751 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2752 * release the swapcache from under us. The page pin, and pte_same 2753 * test below, are not enough to exclude that. Even if it is still 2754 * swapcache, we need to check that the page's swap has not changed. 2755 */ 2756 if (unlikely((!PageSwapCache(page) || 2757 page_private(page) != entry.val)) && swapcache) 2758 goto out_page; 2759 2760 page = ksm_might_need_to_copy(page, vma, vmf->address); 2761 if (unlikely(!page)) { 2762 ret = VM_FAULT_OOM; 2763 page = swapcache; 2764 goto out_page; 2765 } 2766 2767 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 2768 &memcg, false)) { 2769 ret = VM_FAULT_OOM; 2770 goto out_page; 2771 } 2772 2773 /* 2774 * Back out if somebody else already faulted in this pte. 2775 */ 2776 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2777 &vmf->ptl); 2778 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2779 goto out_nomap; 2780 2781 if (unlikely(!PageUptodate(page))) { 2782 ret = VM_FAULT_SIGBUS; 2783 goto out_nomap; 2784 } 2785 2786 /* 2787 * The page isn't present yet, go ahead with the fault. 2788 * 2789 * Be careful about the sequence of operations here. 2790 * To get its accounting right, reuse_swap_page() must be called 2791 * while the page is counted on swap but not yet in mapcount i.e. 2792 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2793 * must be called after the swap_free(), or it will never succeed. 2794 */ 2795 2796 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2797 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2798 pte = mk_pte(page, vma->vm_page_prot); 2799 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2800 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2801 vmf->flags &= ~FAULT_FLAG_WRITE; 2802 ret |= VM_FAULT_WRITE; 2803 exclusive = RMAP_EXCLUSIVE; 2804 } 2805 flush_icache_page(vma, page); 2806 if (pte_swp_soft_dirty(vmf->orig_pte)) 2807 pte = pte_mksoft_dirty(pte); 2808 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2809 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 2810 vmf->orig_pte = pte; 2811 2812 /* ksm created a completely new copy */ 2813 if (unlikely(page != swapcache && swapcache)) { 2814 page_add_new_anon_rmap(page, vma, vmf->address, false); 2815 mem_cgroup_commit_charge(page, memcg, false, false); 2816 lru_cache_add_active_or_unevictable(page, vma); 2817 } else { 2818 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 2819 mem_cgroup_commit_charge(page, memcg, true, false); 2820 activate_page(page); 2821 } 2822 2823 swap_free(entry); 2824 if (mem_cgroup_swap_full(page) || 2825 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2826 try_to_free_swap(page); 2827 unlock_page(page); 2828 if (page != swapcache && swapcache) { 2829 /* 2830 * Hold the lock to avoid the swap entry to be reused 2831 * until we take the PT lock for the pte_same() check 2832 * (to avoid false positives from pte_same). For 2833 * further safety release the lock after the swap_free 2834 * so that the swap count won't change under a 2835 * parallel locked swapcache. 2836 */ 2837 unlock_page(swapcache); 2838 put_page(swapcache); 2839 } 2840 2841 if (vmf->flags & FAULT_FLAG_WRITE) { 2842 ret |= do_wp_page(vmf); 2843 if (ret & VM_FAULT_ERROR) 2844 ret &= VM_FAULT_ERROR; 2845 goto out; 2846 } 2847 2848 /* No need to invalidate - it was non-present before */ 2849 update_mmu_cache(vma, vmf->address, vmf->pte); 2850 unlock: 2851 pte_unmap_unlock(vmf->pte, vmf->ptl); 2852 out: 2853 return ret; 2854 out_nomap: 2855 mem_cgroup_cancel_charge(page, memcg, false); 2856 pte_unmap_unlock(vmf->pte, vmf->ptl); 2857 out_page: 2858 unlock_page(page); 2859 out_release: 2860 put_page(page); 2861 if (page != swapcache && swapcache) { 2862 unlock_page(swapcache); 2863 put_page(swapcache); 2864 } 2865 return ret; 2866 } 2867 2868 /* 2869 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2870 * but allow concurrent faults), and pte mapped but not yet locked. 2871 * We return with mmap_sem still held, but pte unmapped and unlocked. 2872 */ 2873 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 2874 { 2875 struct vm_area_struct *vma = vmf->vma; 2876 struct mem_cgroup *memcg; 2877 struct page *page; 2878 vm_fault_t ret = 0; 2879 pte_t entry; 2880 2881 /* File mapping without ->vm_ops ? */ 2882 if (vma->vm_flags & VM_SHARED) 2883 return VM_FAULT_SIGBUS; 2884 2885 /* 2886 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2887 * pte_offset_map() on pmds where a huge pmd might be created 2888 * from a different thread. 2889 * 2890 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2891 * parallel threads are excluded by other means. 2892 * 2893 * Here we only have down_read(mmap_sem). 2894 */ 2895 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address)) 2896 return VM_FAULT_OOM; 2897 2898 /* See the comment in pte_alloc_one_map() */ 2899 if (unlikely(pmd_trans_unstable(vmf->pmd))) 2900 return 0; 2901 2902 /* Use the zero-page for reads */ 2903 if (!(vmf->flags & FAULT_FLAG_WRITE) && 2904 !mm_forbids_zeropage(vma->vm_mm)) { 2905 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 2906 vma->vm_page_prot)); 2907 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2908 vmf->address, &vmf->ptl); 2909 if (!pte_none(*vmf->pte)) 2910 goto unlock; 2911 ret = check_stable_address_space(vma->vm_mm); 2912 if (ret) 2913 goto unlock; 2914 /* Deliver the page fault to userland, check inside PT lock */ 2915 if (userfaultfd_missing(vma)) { 2916 pte_unmap_unlock(vmf->pte, vmf->ptl); 2917 return handle_userfault(vmf, VM_UFFD_MISSING); 2918 } 2919 goto setpte; 2920 } 2921 2922 /* Allocate our own private page. */ 2923 if (unlikely(anon_vma_prepare(vma))) 2924 goto oom; 2925 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 2926 if (!page) 2927 goto oom; 2928 2929 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 2930 false)) 2931 goto oom_free_page; 2932 2933 /* 2934 * The memory barrier inside __SetPageUptodate makes sure that 2935 * preceeding stores to the page contents become visible before 2936 * the set_pte_at() write. 2937 */ 2938 __SetPageUptodate(page); 2939 2940 entry = mk_pte(page, vma->vm_page_prot); 2941 if (vma->vm_flags & VM_WRITE) 2942 entry = pte_mkwrite(pte_mkdirty(entry)); 2943 2944 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2945 &vmf->ptl); 2946 if (!pte_none(*vmf->pte)) 2947 goto release; 2948 2949 ret = check_stable_address_space(vma->vm_mm); 2950 if (ret) 2951 goto release; 2952 2953 /* Deliver the page fault to userland, check inside PT lock */ 2954 if (userfaultfd_missing(vma)) { 2955 pte_unmap_unlock(vmf->pte, vmf->ptl); 2956 mem_cgroup_cancel_charge(page, memcg, false); 2957 put_page(page); 2958 return handle_userfault(vmf, VM_UFFD_MISSING); 2959 } 2960 2961 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2962 page_add_new_anon_rmap(page, vma, vmf->address, false); 2963 mem_cgroup_commit_charge(page, memcg, false, false); 2964 lru_cache_add_active_or_unevictable(page, vma); 2965 setpte: 2966 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 2967 2968 /* No need to invalidate - it was non-present before */ 2969 update_mmu_cache(vma, vmf->address, vmf->pte); 2970 unlock: 2971 pte_unmap_unlock(vmf->pte, vmf->ptl); 2972 return ret; 2973 release: 2974 mem_cgroup_cancel_charge(page, memcg, false); 2975 put_page(page); 2976 goto unlock; 2977 oom_free_page: 2978 put_page(page); 2979 oom: 2980 return VM_FAULT_OOM; 2981 } 2982 2983 /* 2984 * The mmap_sem must have been held on entry, and may have been 2985 * released depending on flags and vma->vm_ops->fault() return value. 2986 * See filemap_fault() and __lock_page_retry(). 2987 */ 2988 static vm_fault_t __do_fault(struct vm_fault *vmf) 2989 { 2990 struct vm_area_struct *vma = vmf->vma; 2991 vm_fault_t ret; 2992 2993 ret = vma->vm_ops->fault(vmf); 2994 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 2995 VM_FAULT_DONE_COW))) 2996 return ret; 2997 2998 if (unlikely(PageHWPoison(vmf->page))) { 2999 if (ret & VM_FAULT_LOCKED) 3000 unlock_page(vmf->page); 3001 put_page(vmf->page); 3002 vmf->page = NULL; 3003 return VM_FAULT_HWPOISON; 3004 } 3005 3006 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3007 lock_page(vmf->page); 3008 else 3009 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3010 3011 return ret; 3012 } 3013 3014 /* 3015 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3016 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3017 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3018 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3019 */ 3020 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3021 { 3022 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3023 } 3024 3025 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3026 { 3027 struct vm_area_struct *vma = vmf->vma; 3028 3029 if (!pmd_none(*vmf->pmd)) 3030 goto map_pte; 3031 if (vmf->prealloc_pte) { 3032 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3033 if (unlikely(!pmd_none(*vmf->pmd))) { 3034 spin_unlock(vmf->ptl); 3035 goto map_pte; 3036 } 3037 3038 mm_inc_nr_ptes(vma->vm_mm); 3039 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3040 spin_unlock(vmf->ptl); 3041 vmf->prealloc_pte = NULL; 3042 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) { 3043 return VM_FAULT_OOM; 3044 } 3045 map_pte: 3046 /* 3047 * If a huge pmd materialized under us just retry later. Use 3048 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3049 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3050 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3051 * running immediately after a huge pmd fault in a different thread of 3052 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3053 * All we have to ensure is that it is a regular pmd that we can walk 3054 * with pte_offset_map() and we can do that through an atomic read in 3055 * C, which is what pmd_trans_unstable() provides. 3056 */ 3057 if (pmd_devmap_trans_unstable(vmf->pmd)) 3058 return VM_FAULT_NOPAGE; 3059 3060 /* 3061 * At this point we know that our vmf->pmd points to a page of ptes 3062 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3063 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3064 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3065 * be valid and we will re-check to make sure the vmf->pte isn't 3066 * pte_none() under vmf->ptl protection when we return to 3067 * alloc_set_pte(). 3068 */ 3069 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3070 &vmf->ptl); 3071 return 0; 3072 } 3073 3074 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3075 3076 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3077 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3078 unsigned long haddr) 3079 { 3080 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3081 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3082 return false; 3083 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3084 return false; 3085 return true; 3086 } 3087 3088 static void deposit_prealloc_pte(struct vm_fault *vmf) 3089 { 3090 struct vm_area_struct *vma = vmf->vma; 3091 3092 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3093 /* 3094 * We are going to consume the prealloc table, 3095 * count that as nr_ptes. 3096 */ 3097 mm_inc_nr_ptes(vma->vm_mm); 3098 vmf->prealloc_pte = NULL; 3099 } 3100 3101 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3102 { 3103 struct vm_area_struct *vma = vmf->vma; 3104 bool write = vmf->flags & FAULT_FLAG_WRITE; 3105 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3106 pmd_t entry; 3107 int i; 3108 vm_fault_t ret; 3109 3110 if (!transhuge_vma_suitable(vma, haddr)) 3111 return VM_FAULT_FALLBACK; 3112 3113 ret = VM_FAULT_FALLBACK; 3114 page = compound_head(page); 3115 3116 /* 3117 * Archs like ppc64 need additonal space to store information 3118 * related to pte entry. Use the preallocated table for that. 3119 */ 3120 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3121 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address); 3122 if (!vmf->prealloc_pte) 3123 return VM_FAULT_OOM; 3124 smp_wmb(); /* See comment in __pte_alloc() */ 3125 } 3126 3127 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3128 if (unlikely(!pmd_none(*vmf->pmd))) 3129 goto out; 3130 3131 for (i = 0; i < HPAGE_PMD_NR; i++) 3132 flush_icache_page(vma, page + i); 3133 3134 entry = mk_huge_pmd(page, vma->vm_page_prot); 3135 if (write) 3136 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3137 3138 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3139 page_add_file_rmap(page, true); 3140 /* 3141 * deposit and withdraw with pmd lock held 3142 */ 3143 if (arch_needs_pgtable_deposit()) 3144 deposit_prealloc_pte(vmf); 3145 3146 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3147 3148 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3149 3150 /* fault is handled */ 3151 ret = 0; 3152 count_vm_event(THP_FILE_MAPPED); 3153 out: 3154 spin_unlock(vmf->ptl); 3155 return ret; 3156 } 3157 #else 3158 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3159 { 3160 BUILD_BUG(); 3161 return 0; 3162 } 3163 #endif 3164 3165 /** 3166 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3167 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3168 * 3169 * @vmf: fault environment 3170 * @memcg: memcg to charge page (only for private mappings) 3171 * @page: page to map 3172 * 3173 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3174 * return. 3175 * 3176 * Target users are page handler itself and implementations of 3177 * vm_ops->map_pages. 3178 */ 3179 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3180 struct page *page) 3181 { 3182 struct vm_area_struct *vma = vmf->vma; 3183 bool write = vmf->flags & FAULT_FLAG_WRITE; 3184 pte_t entry; 3185 vm_fault_t ret; 3186 3187 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3188 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3189 /* THP on COW? */ 3190 VM_BUG_ON_PAGE(memcg, page); 3191 3192 ret = do_set_pmd(vmf, page); 3193 if (ret != VM_FAULT_FALLBACK) 3194 return ret; 3195 } 3196 3197 if (!vmf->pte) { 3198 ret = pte_alloc_one_map(vmf); 3199 if (ret) 3200 return ret; 3201 } 3202 3203 /* Re-check under ptl */ 3204 if (unlikely(!pte_none(*vmf->pte))) 3205 return VM_FAULT_NOPAGE; 3206 3207 flush_icache_page(vma, page); 3208 entry = mk_pte(page, vma->vm_page_prot); 3209 if (write) 3210 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3211 /* copy-on-write page */ 3212 if (write && !(vma->vm_flags & VM_SHARED)) { 3213 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3214 page_add_new_anon_rmap(page, vma, vmf->address, false); 3215 mem_cgroup_commit_charge(page, memcg, false, false); 3216 lru_cache_add_active_or_unevictable(page, vma); 3217 } else { 3218 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3219 page_add_file_rmap(page, false); 3220 } 3221 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3222 3223 /* no need to invalidate: a not-present page won't be cached */ 3224 update_mmu_cache(vma, vmf->address, vmf->pte); 3225 3226 return 0; 3227 } 3228 3229 3230 /** 3231 * finish_fault - finish page fault once we have prepared the page to fault 3232 * 3233 * @vmf: structure describing the fault 3234 * 3235 * This function handles all that is needed to finish a page fault once the 3236 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3237 * given page, adds reverse page mapping, handles memcg charges and LRU 3238 * addition. The function returns 0 on success, VM_FAULT_ code in case of 3239 * error. 3240 * 3241 * The function expects the page to be locked and on success it consumes a 3242 * reference of a page being mapped (for the PTE which maps it). 3243 */ 3244 vm_fault_t finish_fault(struct vm_fault *vmf) 3245 { 3246 struct page *page; 3247 vm_fault_t ret = 0; 3248 3249 /* Did we COW the page? */ 3250 if ((vmf->flags & FAULT_FLAG_WRITE) && 3251 !(vmf->vma->vm_flags & VM_SHARED)) 3252 page = vmf->cow_page; 3253 else 3254 page = vmf->page; 3255 3256 /* 3257 * check even for read faults because we might have lost our CoWed 3258 * page 3259 */ 3260 if (!(vmf->vma->vm_flags & VM_SHARED)) 3261 ret = check_stable_address_space(vmf->vma->vm_mm); 3262 if (!ret) 3263 ret = alloc_set_pte(vmf, vmf->memcg, page); 3264 if (vmf->pte) 3265 pte_unmap_unlock(vmf->pte, vmf->ptl); 3266 return ret; 3267 } 3268 3269 static unsigned long fault_around_bytes __read_mostly = 3270 rounddown_pow_of_two(65536); 3271 3272 #ifdef CONFIG_DEBUG_FS 3273 static int fault_around_bytes_get(void *data, u64 *val) 3274 { 3275 *val = fault_around_bytes; 3276 return 0; 3277 } 3278 3279 /* 3280 * fault_around_bytes must be rounded down to the nearest page order as it's 3281 * what do_fault_around() expects to see. 3282 */ 3283 static int fault_around_bytes_set(void *data, u64 val) 3284 { 3285 if (val / PAGE_SIZE > PTRS_PER_PTE) 3286 return -EINVAL; 3287 if (val > PAGE_SIZE) 3288 fault_around_bytes = rounddown_pow_of_two(val); 3289 else 3290 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3291 return 0; 3292 } 3293 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3294 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3295 3296 static int __init fault_around_debugfs(void) 3297 { 3298 void *ret; 3299 3300 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3301 &fault_around_bytes_fops); 3302 if (!ret) 3303 pr_warn("Failed to create fault_around_bytes in debugfs"); 3304 return 0; 3305 } 3306 late_initcall(fault_around_debugfs); 3307 #endif 3308 3309 /* 3310 * do_fault_around() tries to map few pages around the fault address. The hope 3311 * is that the pages will be needed soon and this will lower the number of 3312 * faults to handle. 3313 * 3314 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3315 * not ready to be mapped: not up-to-date, locked, etc. 3316 * 3317 * This function is called with the page table lock taken. In the split ptlock 3318 * case the page table lock only protects only those entries which belong to 3319 * the page table corresponding to the fault address. 3320 * 3321 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3322 * only once. 3323 * 3324 * fault_around_bytes defines how many bytes we'll try to map. 3325 * do_fault_around() expects it to be set to a power of two less than or equal 3326 * to PTRS_PER_PTE. 3327 * 3328 * The virtual address of the area that we map is naturally aligned to 3329 * fault_around_bytes rounded down to the machine page size 3330 * (and therefore to page order). This way it's easier to guarantee 3331 * that we don't cross page table boundaries. 3332 */ 3333 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3334 { 3335 unsigned long address = vmf->address, nr_pages, mask; 3336 pgoff_t start_pgoff = vmf->pgoff; 3337 pgoff_t end_pgoff; 3338 int off; 3339 vm_fault_t ret = 0; 3340 3341 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3342 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3343 3344 vmf->address = max(address & mask, vmf->vma->vm_start); 3345 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3346 start_pgoff -= off; 3347 3348 /* 3349 * end_pgoff is either the end of the page table, the end of 3350 * the vma or nr_pages from start_pgoff, depending what is nearest. 3351 */ 3352 end_pgoff = start_pgoff - 3353 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3354 PTRS_PER_PTE - 1; 3355 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3356 start_pgoff + nr_pages - 1); 3357 3358 if (pmd_none(*vmf->pmd)) { 3359 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm, 3360 vmf->address); 3361 if (!vmf->prealloc_pte) 3362 goto out; 3363 smp_wmb(); /* See comment in __pte_alloc() */ 3364 } 3365 3366 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3367 3368 /* Huge page is mapped? Page fault is solved */ 3369 if (pmd_trans_huge(*vmf->pmd)) { 3370 ret = VM_FAULT_NOPAGE; 3371 goto out; 3372 } 3373 3374 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3375 if (!vmf->pte) 3376 goto out; 3377 3378 /* check if the page fault is solved */ 3379 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3380 if (!pte_none(*vmf->pte)) 3381 ret = VM_FAULT_NOPAGE; 3382 pte_unmap_unlock(vmf->pte, vmf->ptl); 3383 out: 3384 vmf->address = address; 3385 vmf->pte = NULL; 3386 return ret; 3387 } 3388 3389 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3390 { 3391 struct vm_area_struct *vma = vmf->vma; 3392 vm_fault_t ret = 0; 3393 3394 /* 3395 * Let's call ->map_pages() first and use ->fault() as fallback 3396 * if page by the offset is not ready to be mapped (cold cache or 3397 * something). 3398 */ 3399 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3400 ret = do_fault_around(vmf); 3401 if (ret) 3402 return ret; 3403 } 3404 3405 ret = __do_fault(vmf); 3406 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3407 return ret; 3408 3409 ret |= finish_fault(vmf); 3410 unlock_page(vmf->page); 3411 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3412 put_page(vmf->page); 3413 return ret; 3414 } 3415 3416 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3417 { 3418 struct vm_area_struct *vma = vmf->vma; 3419 vm_fault_t ret; 3420 3421 if (unlikely(anon_vma_prepare(vma))) 3422 return VM_FAULT_OOM; 3423 3424 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3425 if (!vmf->cow_page) 3426 return VM_FAULT_OOM; 3427 3428 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3429 &vmf->memcg, false)) { 3430 put_page(vmf->cow_page); 3431 return VM_FAULT_OOM; 3432 } 3433 3434 ret = __do_fault(vmf); 3435 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3436 goto uncharge_out; 3437 if (ret & VM_FAULT_DONE_COW) 3438 return ret; 3439 3440 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3441 __SetPageUptodate(vmf->cow_page); 3442 3443 ret |= finish_fault(vmf); 3444 unlock_page(vmf->page); 3445 put_page(vmf->page); 3446 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3447 goto uncharge_out; 3448 return ret; 3449 uncharge_out: 3450 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3451 put_page(vmf->cow_page); 3452 return ret; 3453 } 3454 3455 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3456 { 3457 struct vm_area_struct *vma = vmf->vma; 3458 vm_fault_t ret, tmp; 3459 3460 ret = __do_fault(vmf); 3461 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3462 return ret; 3463 3464 /* 3465 * Check if the backing address space wants to know that the page is 3466 * about to become writable 3467 */ 3468 if (vma->vm_ops->page_mkwrite) { 3469 unlock_page(vmf->page); 3470 tmp = do_page_mkwrite(vmf); 3471 if (unlikely(!tmp || 3472 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3473 put_page(vmf->page); 3474 return tmp; 3475 } 3476 } 3477 3478 ret |= finish_fault(vmf); 3479 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3480 VM_FAULT_RETRY))) { 3481 unlock_page(vmf->page); 3482 put_page(vmf->page); 3483 return ret; 3484 } 3485 3486 fault_dirty_shared_page(vma, vmf->page); 3487 return ret; 3488 } 3489 3490 /* 3491 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3492 * but allow concurrent faults). 3493 * The mmap_sem may have been released depending on flags and our 3494 * return value. See filemap_fault() and __lock_page_or_retry(). 3495 */ 3496 static vm_fault_t do_fault(struct vm_fault *vmf) 3497 { 3498 struct vm_area_struct *vma = vmf->vma; 3499 vm_fault_t ret; 3500 3501 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3502 if (!vma->vm_ops->fault) 3503 ret = VM_FAULT_SIGBUS; 3504 else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3505 ret = do_read_fault(vmf); 3506 else if (!(vma->vm_flags & VM_SHARED)) 3507 ret = do_cow_fault(vmf); 3508 else 3509 ret = do_shared_fault(vmf); 3510 3511 /* preallocated pagetable is unused: free it */ 3512 if (vmf->prealloc_pte) { 3513 pte_free(vma->vm_mm, vmf->prealloc_pte); 3514 vmf->prealloc_pte = NULL; 3515 } 3516 return ret; 3517 } 3518 3519 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3520 unsigned long addr, int page_nid, 3521 int *flags) 3522 { 3523 get_page(page); 3524 3525 count_vm_numa_event(NUMA_HINT_FAULTS); 3526 if (page_nid == numa_node_id()) { 3527 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3528 *flags |= TNF_FAULT_LOCAL; 3529 } 3530 3531 return mpol_misplaced(page, vma, addr); 3532 } 3533 3534 static vm_fault_t do_numa_page(struct vm_fault *vmf) 3535 { 3536 struct vm_area_struct *vma = vmf->vma; 3537 struct page *page = NULL; 3538 int page_nid = -1; 3539 int last_cpupid; 3540 int target_nid; 3541 bool migrated = false; 3542 pte_t pte; 3543 bool was_writable = pte_savedwrite(vmf->orig_pte); 3544 int flags = 0; 3545 3546 /* 3547 * The "pte" at this point cannot be used safely without 3548 * validation through pte_unmap_same(). It's of NUMA type but 3549 * the pfn may be screwed if the read is non atomic. 3550 */ 3551 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3552 spin_lock(vmf->ptl); 3553 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3554 pte_unmap_unlock(vmf->pte, vmf->ptl); 3555 goto out; 3556 } 3557 3558 /* 3559 * Make it present again, Depending on how arch implementes non 3560 * accessible ptes, some can allow access by kernel mode. 3561 */ 3562 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte); 3563 pte = pte_modify(pte, vma->vm_page_prot); 3564 pte = pte_mkyoung(pte); 3565 if (was_writable) 3566 pte = pte_mkwrite(pte); 3567 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte); 3568 update_mmu_cache(vma, vmf->address, vmf->pte); 3569 3570 page = vm_normal_page(vma, vmf->address, pte); 3571 if (!page) { 3572 pte_unmap_unlock(vmf->pte, vmf->ptl); 3573 return 0; 3574 } 3575 3576 /* TODO: handle PTE-mapped THP */ 3577 if (PageCompound(page)) { 3578 pte_unmap_unlock(vmf->pte, vmf->ptl); 3579 return 0; 3580 } 3581 3582 /* 3583 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3584 * much anyway since they can be in shared cache state. This misses 3585 * the case where a mapping is writable but the process never writes 3586 * to it but pte_write gets cleared during protection updates and 3587 * pte_dirty has unpredictable behaviour between PTE scan updates, 3588 * background writeback, dirty balancing and application behaviour. 3589 */ 3590 if (!pte_write(pte)) 3591 flags |= TNF_NO_GROUP; 3592 3593 /* 3594 * Flag if the page is shared between multiple address spaces. This 3595 * is later used when determining whether to group tasks together 3596 */ 3597 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3598 flags |= TNF_SHARED; 3599 3600 last_cpupid = page_cpupid_last(page); 3601 page_nid = page_to_nid(page); 3602 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3603 &flags); 3604 pte_unmap_unlock(vmf->pte, vmf->ptl); 3605 if (target_nid == -1) { 3606 put_page(page); 3607 goto out; 3608 } 3609 3610 /* Migrate to the requested node */ 3611 migrated = migrate_misplaced_page(page, vma, target_nid); 3612 if (migrated) { 3613 page_nid = target_nid; 3614 flags |= TNF_MIGRATED; 3615 } else 3616 flags |= TNF_MIGRATE_FAIL; 3617 3618 out: 3619 if (page_nid != -1) 3620 task_numa_fault(last_cpupid, page_nid, 1, flags); 3621 return 0; 3622 } 3623 3624 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 3625 { 3626 if (vma_is_anonymous(vmf->vma)) 3627 return do_huge_pmd_anonymous_page(vmf); 3628 if (vmf->vma->vm_ops->huge_fault) 3629 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3630 return VM_FAULT_FALLBACK; 3631 } 3632 3633 /* `inline' is required to avoid gcc 4.1.2 build error */ 3634 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3635 { 3636 if (vma_is_anonymous(vmf->vma)) 3637 return do_huge_pmd_wp_page(vmf, orig_pmd); 3638 if (vmf->vma->vm_ops->huge_fault) 3639 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3640 3641 /* COW handled on pte level: split pmd */ 3642 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3643 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3644 3645 return VM_FAULT_FALLBACK; 3646 } 3647 3648 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3649 { 3650 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3651 } 3652 3653 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 3654 { 3655 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3656 /* No support for anonymous transparent PUD pages yet */ 3657 if (vma_is_anonymous(vmf->vma)) 3658 return VM_FAULT_FALLBACK; 3659 if (vmf->vma->vm_ops->huge_fault) 3660 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3661 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3662 return VM_FAULT_FALLBACK; 3663 } 3664 3665 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3666 { 3667 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3668 /* No support for anonymous transparent PUD pages yet */ 3669 if (vma_is_anonymous(vmf->vma)) 3670 return VM_FAULT_FALLBACK; 3671 if (vmf->vma->vm_ops->huge_fault) 3672 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3673 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3674 return VM_FAULT_FALLBACK; 3675 } 3676 3677 /* 3678 * These routines also need to handle stuff like marking pages dirty 3679 * and/or accessed for architectures that don't do it in hardware (most 3680 * RISC architectures). The early dirtying is also good on the i386. 3681 * 3682 * There is also a hook called "update_mmu_cache()" that architectures 3683 * with external mmu caches can use to update those (ie the Sparc or 3684 * PowerPC hashed page tables that act as extended TLBs). 3685 * 3686 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3687 * concurrent faults). 3688 * 3689 * The mmap_sem may have been released depending on flags and our return value. 3690 * See filemap_fault() and __lock_page_or_retry(). 3691 */ 3692 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 3693 { 3694 pte_t entry; 3695 3696 if (unlikely(pmd_none(*vmf->pmd))) { 3697 /* 3698 * Leave __pte_alloc() until later: because vm_ops->fault may 3699 * want to allocate huge page, and if we expose page table 3700 * for an instant, it will be difficult to retract from 3701 * concurrent faults and from rmap lookups. 3702 */ 3703 vmf->pte = NULL; 3704 } else { 3705 /* See comment in pte_alloc_one_map() */ 3706 if (pmd_devmap_trans_unstable(vmf->pmd)) 3707 return 0; 3708 /* 3709 * A regular pmd is established and it can't morph into a huge 3710 * pmd from under us anymore at this point because we hold the 3711 * mmap_sem read mode and khugepaged takes it in write mode. 3712 * So now it's safe to run pte_offset_map(). 3713 */ 3714 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3715 vmf->orig_pte = *vmf->pte; 3716 3717 /* 3718 * some architectures can have larger ptes than wordsize, 3719 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3720 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3721 * accesses. The code below just needs a consistent view 3722 * for the ifs and we later double check anyway with the 3723 * ptl lock held. So here a barrier will do. 3724 */ 3725 barrier(); 3726 if (pte_none(vmf->orig_pte)) { 3727 pte_unmap(vmf->pte); 3728 vmf->pte = NULL; 3729 } 3730 } 3731 3732 if (!vmf->pte) { 3733 if (vma_is_anonymous(vmf->vma)) 3734 return do_anonymous_page(vmf); 3735 else 3736 return do_fault(vmf); 3737 } 3738 3739 if (!pte_present(vmf->orig_pte)) 3740 return do_swap_page(vmf); 3741 3742 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3743 return do_numa_page(vmf); 3744 3745 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3746 spin_lock(vmf->ptl); 3747 entry = vmf->orig_pte; 3748 if (unlikely(!pte_same(*vmf->pte, entry))) 3749 goto unlock; 3750 if (vmf->flags & FAULT_FLAG_WRITE) { 3751 if (!pte_write(entry)) 3752 return do_wp_page(vmf); 3753 entry = pte_mkdirty(entry); 3754 } 3755 entry = pte_mkyoung(entry); 3756 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3757 vmf->flags & FAULT_FLAG_WRITE)) { 3758 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3759 } else { 3760 /* 3761 * This is needed only for protection faults but the arch code 3762 * is not yet telling us if this is a protection fault or not. 3763 * This still avoids useless tlb flushes for .text page faults 3764 * with threads. 3765 */ 3766 if (vmf->flags & FAULT_FLAG_WRITE) 3767 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 3768 } 3769 unlock: 3770 pte_unmap_unlock(vmf->pte, vmf->ptl); 3771 return 0; 3772 } 3773 3774 /* 3775 * By the time we get here, we already hold the mm semaphore 3776 * 3777 * The mmap_sem may have been released depending on flags and our 3778 * return value. See filemap_fault() and __lock_page_or_retry(). 3779 */ 3780 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 3781 unsigned long address, unsigned int flags) 3782 { 3783 struct vm_fault vmf = { 3784 .vma = vma, 3785 .address = address & PAGE_MASK, 3786 .flags = flags, 3787 .pgoff = linear_page_index(vma, address), 3788 .gfp_mask = __get_fault_gfp_mask(vma), 3789 }; 3790 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3791 struct mm_struct *mm = vma->vm_mm; 3792 pgd_t *pgd; 3793 p4d_t *p4d; 3794 vm_fault_t ret; 3795 3796 pgd = pgd_offset(mm, address); 3797 p4d = p4d_alloc(mm, pgd, address); 3798 if (!p4d) 3799 return VM_FAULT_OOM; 3800 3801 vmf.pud = pud_alloc(mm, p4d, address); 3802 if (!vmf.pud) 3803 return VM_FAULT_OOM; 3804 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) { 3805 ret = create_huge_pud(&vmf); 3806 if (!(ret & VM_FAULT_FALLBACK)) 3807 return ret; 3808 } else { 3809 pud_t orig_pud = *vmf.pud; 3810 3811 barrier(); 3812 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 3813 3814 /* NUMA case for anonymous PUDs would go here */ 3815 3816 if (dirty && !pud_write(orig_pud)) { 3817 ret = wp_huge_pud(&vmf, orig_pud); 3818 if (!(ret & VM_FAULT_FALLBACK)) 3819 return ret; 3820 } else { 3821 huge_pud_set_accessed(&vmf, orig_pud); 3822 return 0; 3823 } 3824 } 3825 } 3826 3827 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 3828 if (!vmf.pmd) 3829 return VM_FAULT_OOM; 3830 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { 3831 ret = create_huge_pmd(&vmf); 3832 if (!(ret & VM_FAULT_FALLBACK)) 3833 return ret; 3834 } else { 3835 pmd_t orig_pmd = *vmf.pmd; 3836 3837 barrier(); 3838 if (unlikely(is_swap_pmd(orig_pmd))) { 3839 VM_BUG_ON(thp_migration_supported() && 3840 !is_pmd_migration_entry(orig_pmd)); 3841 if (is_pmd_migration_entry(orig_pmd)) 3842 pmd_migration_entry_wait(mm, vmf.pmd); 3843 return 0; 3844 } 3845 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3846 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 3847 return do_huge_pmd_numa_page(&vmf, orig_pmd); 3848 3849 if (dirty && !pmd_write(orig_pmd)) { 3850 ret = wp_huge_pmd(&vmf, orig_pmd); 3851 if (!(ret & VM_FAULT_FALLBACK)) 3852 return ret; 3853 } else { 3854 huge_pmd_set_accessed(&vmf, orig_pmd); 3855 return 0; 3856 } 3857 } 3858 } 3859 3860 return handle_pte_fault(&vmf); 3861 } 3862 3863 /* 3864 * By the time we get here, we already hold the mm semaphore 3865 * 3866 * The mmap_sem may have been released depending on flags and our 3867 * return value. See filemap_fault() and __lock_page_or_retry(). 3868 */ 3869 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3870 unsigned int flags) 3871 { 3872 vm_fault_t ret; 3873 3874 __set_current_state(TASK_RUNNING); 3875 3876 count_vm_event(PGFAULT); 3877 count_memcg_event_mm(vma->vm_mm, PGFAULT); 3878 3879 /* do counter updates before entering really critical section. */ 3880 check_sync_rss_stat(current); 3881 3882 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 3883 flags & FAULT_FLAG_INSTRUCTION, 3884 flags & FAULT_FLAG_REMOTE)) 3885 return VM_FAULT_SIGSEGV; 3886 3887 /* 3888 * Enable the memcg OOM handling for faults triggered in user 3889 * space. Kernel faults are handled more gracefully. 3890 */ 3891 if (flags & FAULT_FLAG_USER) 3892 mem_cgroup_enter_user_fault(); 3893 3894 if (unlikely(is_vm_hugetlb_page(vma))) 3895 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 3896 else 3897 ret = __handle_mm_fault(vma, address, flags); 3898 3899 if (flags & FAULT_FLAG_USER) { 3900 mem_cgroup_exit_user_fault(); 3901 /* 3902 * The task may have entered a memcg OOM situation but 3903 * if the allocation error was handled gracefully (no 3904 * VM_FAULT_OOM), there is no need to kill anything. 3905 * Just clean up the OOM state peacefully. 3906 */ 3907 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3908 mem_cgroup_oom_synchronize(false); 3909 } 3910 3911 return ret; 3912 } 3913 EXPORT_SYMBOL_GPL(handle_mm_fault); 3914 3915 #ifndef __PAGETABLE_P4D_FOLDED 3916 /* 3917 * Allocate p4d page table. 3918 * We've already handled the fast-path in-line. 3919 */ 3920 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3921 { 3922 p4d_t *new = p4d_alloc_one(mm, address); 3923 if (!new) 3924 return -ENOMEM; 3925 3926 smp_wmb(); /* See comment in __pte_alloc */ 3927 3928 spin_lock(&mm->page_table_lock); 3929 if (pgd_present(*pgd)) /* Another has populated it */ 3930 p4d_free(mm, new); 3931 else 3932 pgd_populate(mm, pgd, new); 3933 spin_unlock(&mm->page_table_lock); 3934 return 0; 3935 } 3936 #endif /* __PAGETABLE_P4D_FOLDED */ 3937 3938 #ifndef __PAGETABLE_PUD_FOLDED 3939 /* 3940 * Allocate page upper directory. 3941 * We've already handled the fast-path in-line. 3942 */ 3943 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 3944 { 3945 pud_t *new = pud_alloc_one(mm, address); 3946 if (!new) 3947 return -ENOMEM; 3948 3949 smp_wmb(); /* See comment in __pte_alloc */ 3950 3951 spin_lock(&mm->page_table_lock); 3952 #ifndef __ARCH_HAS_5LEVEL_HACK 3953 if (!p4d_present(*p4d)) { 3954 mm_inc_nr_puds(mm); 3955 p4d_populate(mm, p4d, new); 3956 } else /* Another has populated it */ 3957 pud_free(mm, new); 3958 #else 3959 if (!pgd_present(*p4d)) { 3960 mm_inc_nr_puds(mm); 3961 pgd_populate(mm, p4d, new); 3962 } else /* Another has populated it */ 3963 pud_free(mm, new); 3964 #endif /* __ARCH_HAS_5LEVEL_HACK */ 3965 spin_unlock(&mm->page_table_lock); 3966 return 0; 3967 } 3968 #endif /* __PAGETABLE_PUD_FOLDED */ 3969 3970 #ifndef __PAGETABLE_PMD_FOLDED 3971 /* 3972 * Allocate page middle directory. 3973 * We've already handled the fast-path in-line. 3974 */ 3975 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3976 { 3977 spinlock_t *ptl; 3978 pmd_t *new = pmd_alloc_one(mm, address); 3979 if (!new) 3980 return -ENOMEM; 3981 3982 smp_wmb(); /* See comment in __pte_alloc */ 3983 3984 ptl = pud_lock(mm, pud); 3985 #ifndef __ARCH_HAS_4LEVEL_HACK 3986 if (!pud_present(*pud)) { 3987 mm_inc_nr_pmds(mm); 3988 pud_populate(mm, pud, new); 3989 } else /* Another has populated it */ 3990 pmd_free(mm, new); 3991 #else 3992 if (!pgd_present(*pud)) { 3993 mm_inc_nr_pmds(mm); 3994 pgd_populate(mm, pud, new); 3995 } else /* Another has populated it */ 3996 pmd_free(mm, new); 3997 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3998 spin_unlock(ptl); 3999 return 0; 4000 } 4001 #endif /* __PAGETABLE_PMD_FOLDED */ 4002 4003 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4004 unsigned long *start, unsigned long *end, 4005 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4006 { 4007 pgd_t *pgd; 4008 p4d_t *p4d; 4009 pud_t *pud; 4010 pmd_t *pmd; 4011 pte_t *ptep; 4012 4013 pgd = pgd_offset(mm, address); 4014 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4015 goto out; 4016 4017 p4d = p4d_offset(pgd, address); 4018 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4019 goto out; 4020 4021 pud = pud_offset(p4d, address); 4022 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4023 goto out; 4024 4025 pmd = pmd_offset(pud, address); 4026 VM_BUG_ON(pmd_trans_huge(*pmd)); 4027 4028 if (pmd_huge(*pmd)) { 4029 if (!pmdpp) 4030 goto out; 4031 4032 if (start && end) { 4033 *start = address & PMD_MASK; 4034 *end = *start + PMD_SIZE; 4035 mmu_notifier_invalidate_range_start(mm, *start, *end); 4036 } 4037 *ptlp = pmd_lock(mm, pmd); 4038 if (pmd_huge(*pmd)) { 4039 *pmdpp = pmd; 4040 return 0; 4041 } 4042 spin_unlock(*ptlp); 4043 if (start && end) 4044 mmu_notifier_invalidate_range_end(mm, *start, *end); 4045 } 4046 4047 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4048 goto out; 4049 4050 if (start && end) { 4051 *start = address & PAGE_MASK; 4052 *end = *start + PAGE_SIZE; 4053 mmu_notifier_invalidate_range_start(mm, *start, *end); 4054 } 4055 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4056 if (!pte_present(*ptep)) 4057 goto unlock; 4058 *ptepp = ptep; 4059 return 0; 4060 unlock: 4061 pte_unmap_unlock(ptep, *ptlp); 4062 if (start && end) 4063 mmu_notifier_invalidate_range_end(mm, *start, *end); 4064 out: 4065 return -EINVAL; 4066 } 4067 4068 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4069 pte_t **ptepp, spinlock_t **ptlp) 4070 { 4071 int res; 4072 4073 /* (void) is needed to make gcc happy */ 4074 (void) __cond_lock(*ptlp, 4075 !(res = __follow_pte_pmd(mm, address, NULL, NULL, 4076 ptepp, NULL, ptlp))); 4077 return res; 4078 } 4079 4080 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4081 unsigned long *start, unsigned long *end, 4082 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4083 { 4084 int res; 4085 4086 /* (void) is needed to make gcc happy */ 4087 (void) __cond_lock(*ptlp, 4088 !(res = __follow_pte_pmd(mm, address, start, end, 4089 ptepp, pmdpp, ptlp))); 4090 return res; 4091 } 4092 EXPORT_SYMBOL(follow_pte_pmd); 4093 4094 /** 4095 * follow_pfn - look up PFN at a user virtual address 4096 * @vma: memory mapping 4097 * @address: user virtual address 4098 * @pfn: location to store found PFN 4099 * 4100 * Only IO mappings and raw PFN mappings are allowed. 4101 * 4102 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4103 */ 4104 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4105 unsigned long *pfn) 4106 { 4107 int ret = -EINVAL; 4108 spinlock_t *ptl; 4109 pte_t *ptep; 4110 4111 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4112 return ret; 4113 4114 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4115 if (ret) 4116 return ret; 4117 *pfn = pte_pfn(*ptep); 4118 pte_unmap_unlock(ptep, ptl); 4119 return 0; 4120 } 4121 EXPORT_SYMBOL(follow_pfn); 4122 4123 #ifdef CONFIG_HAVE_IOREMAP_PROT 4124 int follow_phys(struct vm_area_struct *vma, 4125 unsigned long address, unsigned int flags, 4126 unsigned long *prot, resource_size_t *phys) 4127 { 4128 int ret = -EINVAL; 4129 pte_t *ptep, pte; 4130 spinlock_t *ptl; 4131 4132 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4133 goto out; 4134 4135 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4136 goto out; 4137 pte = *ptep; 4138 4139 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4140 goto unlock; 4141 4142 *prot = pgprot_val(pte_pgprot(pte)); 4143 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4144 4145 ret = 0; 4146 unlock: 4147 pte_unmap_unlock(ptep, ptl); 4148 out: 4149 return ret; 4150 } 4151 4152 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4153 void *buf, int len, int write) 4154 { 4155 resource_size_t phys_addr; 4156 unsigned long prot = 0; 4157 void __iomem *maddr; 4158 int offset = addr & (PAGE_SIZE-1); 4159 4160 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4161 return -EINVAL; 4162 4163 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4164 if (!maddr) 4165 return -ENOMEM; 4166 4167 if (write) 4168 memcpy_toio(maddr + offset, buf, len); 4169 else 4170 memcpy_fromio(buf, maddr + offset, len); 4171 iounmap(maddr); 4172 4173 return len; 4174 } 4175 EXPORT_SYMBOL_GPL(generic_access_phys); 4176 #endif 4177 4178 /* 4179 * Access another process' address space as given in mm. If non-NULL, use the 4180 * given task for page fault accounting. 4181 */ 4182 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4183 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4184 { 4185 struct vm_area_struct *vma; 4186 void *old_buf = buf; 4187 int write = gup_flags & FOLL_WRITE; 4188 4189 down_read(&mm->mmap_sem); 4190 /* ignore errors, just check how much was successfully transferred */ 4191 while (len) { 4192 int bytes, ret, offset; 4193 void *maddr; 4194 struct page *page = NULL; 4195 4196 ret = get_user_pages_remote(tsk, mm, addr, 1, 4197 gup_flags, &page, &vma, NULL); 4198 if (ret <= 0) { 4199 #ifndef CONFIG_HAVE_IOREMAP_PROT 4200 break; 4201 #else 4202 /* 4203 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4204 * we can access using slightly different code. 4205 */ 4206 vma = find_vma(mm, addr); 4207 if (!vma || vma->vm_start > addr) 4208 break; 4209 if (vma->vm_ops && vma->vm_ops->access) 4210 ret = vma->vm_ops->access(vma, addr, buf, 4211 len, write); 4212 if (ret <= 0) 4213 break; 4214 bytes = ret; 4215 #endif 4216 } else { 4217 bytes = len; 4218 offset = addr & (PAGE_SIZE-1); 4219 if (bytes > PAGE_SIZE-offset) 4220 bytes = PAGE_SIZE-offset; 4221 4222 maddr = kmap(page); 4223 if (write) { 4224 copy_to_user_page(vma, page, addr, 4225 maddr + offset, buf, bytes); 4226 set_page_dirty_lock(page); 4227 } else { 4228 copy_from_user_page(vma, page, addr, 4229 buf, maddr + offset, bytes); 4230 } 4231 kunmap(page); 4232 put_page(page); 4233 } 4234 len -= bytes; 4235 buf += bytes; 4236 addr += bytes; 4237 } 4238 up_read(&mm->mmap_sem); 4239 4240 return buf - old_buf; 4241 } 4242 4243 /** 4244 * access_remote_vm - access another process' address space 4245 * @mm: the mm_struct of the target address space 4246 * @addr: start address to access 4247 * @buf: source or destination buffer 4248 * @len: number of bytes to transfer 4249 * @gup_flags: flags modifying lookup behaviour 4250 * 4251 * The caller must hold a reference on @mm. 4252 */ 4253 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4254 void *buf, int len, unsigned int gup_flags) 4255 { 4256 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4257 } 4258 4259 /* 4260 * Access another process' address space. 4261 * Source/target buffer must be kernel space, 4262 * Do not walk the page table directly, use get_user_pages 4263 */ 4264 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4265 void *buf, int len, unsigned int gup_flags) 4266 { 4267 struct mm_struct *mm; 4268 int ret; 4269 4270 mm = get_task_mm(tsk); 4271 if (!mm) 4272 return 0; 4273 4274 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4275 4276 mmput(mm); 4277 4278 return ret; 4279 } 4280 EXPORT_SYMBOL_GPL(access_process_vm); 4281 4282 /* 4283 * Print the name of a VMA. 4284 */ 4285 void print_vma_addr(char *prefix, unsigned long ip) 4286 { 4287 struct mm_struct *mm = current->mm; 4288 struct vm_area_struct *vma; 4289 4290 /* 4291 * we might be running from an atomic context so we cannot sleep 4292 */ 4293 if (!down_read_trylock(&mm->mmap_sem)) 4294 return; 4295 4296 vma = find_vma(mm, ip); 4297 if (vma && vma->vm_file) { 4298 struct file *f = vma->vm_file; 4299 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4300 if (buf) { 4301 char *p; 4302 4303 p = file_path(f, buf, PAGE_SIZE); 4304 if (IS_ERR(p)) 4305 p = "?"; 4306 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4307 vma->vm_start, 4308 vma->vm_end - vma->vm_start); 4309 free_page((unsigned long)buf); 4310 } 4311 } 4312 up_read(&mm->mmap_sem); 4313 } 4314 4315 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4316 void __might_fault(const char *file, int line) 4317 { 4318 /* 4319 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4320 * holding the mmap_sem, this is safe because kernel memory doesn't 4321 * get paged out, therefore we'll never actually fault, and the 4322 * below annotations will generate false positives. 4323 */ 4324 if (uaccess_kernel()) 4325 return; 4326 if (pagefault_disabled()) 4327 return; 4328 __might_sleep(file, line, 0); 4329 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4330 if (current->mm) 4331 might_lock_read(¤t->mm->mmap_sem); 4332 #endif 4333 } 4334 EXPORT_SYMBOL(__might_fault); 4335 #endif 4336 4337 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4338 /* 4339 * Process all subpages of the specified huge page with the specified 4340 * operation. The target subpage will be processed last to keep its 4341 * cache lines hot. 4342 */ 4343 static inline void process_huge_page( 4344 unsigned long addr_hint, unsigned int pages_per_huge_page, 4345 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4346 void *arg) 4347 { 4348 int i, n, base, l; 4349 unsigned long addr = addr_hint & 4350 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4351 4352 /* Process target subpage last to keep its cache lines hot */ 4353 might_sleep(); 4354 n = (addr_hint - addr) / PAGE_SIZE; 4355 if (2 * n <= pages_per_huge_page) { 4356 /* If target subpage in first half of huge page */ 4357 base = 0; 4358 l = n; 4359 /* Process subpages at the end of huge page */ 4360 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4361 cond_resched(); 4362 process_subpage(addr + i * PAGE_SIZE, i, arg); 4363 } 4364 } else { 4365 /* If target subpage in second half of huge page */ 4366 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4367 l = pages_per_huge_page - n; 4368 /* Process subpages at the begin of huge page */ 4369 for (i = 0; i < base; i++) { 4370 cond_resched(); 4371 process_subpage(addr + i * PAGE_SIZE, i, arg); 4372 } 4373 } 4374 /* 4375 * Process remaining subpages in left-right-left-right pattern 4376 * towards the target subpage 4377 */ 4378 for (i = 0; i < l; i++) { 4379 int left_idx = base + i; 4380 int right_idx = base + 2 * l - 1 - i; 4381 4382 cond_resched(); 4383 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4384 cond_resched(); 4385 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4386 } 4387 } 4388 4389 static void clear_gigantic_page(struct page *page, 4390 unsigned long addr, 4391 unsigned int pages_per_huge_page) 4392 { 4393 int i; 4394 struct page *p = page; 4395 4396 might_sleep(); 4397 for (i = 0; i < pages_per_huge_page; 4398 i++, p = mem_map_next(p, page, i)) { 4399 cond_resched(); 4400 clear_user_highpage(p, addr + i * PAGE_SIZE); 4401 } 4402 } 4403 4404 static void clear_subpage(unsigned long addr, int idx, void *arg) 4405 { 4406 struct page *page = arg; 4407 4408 clear_user_highpage(page + idx, addr); 4409 } 4410 4411 void clear_huge_page(struct page *page, 4412 unsigned long addr_hint, unsigned int pages_per_huge_page) 4413 { 4414 unsigned long addr = addr_hint & 4415 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4416 4417 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4418 clear_gigantic_page(page, addr, pages_per_huge_page); 4419 return; 4420 } 4421 4422 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4423 } 4424 4425 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4426 unsigned long addr, 4427 struct vm_area_struct *vma, 4428 unsigned int pages_per_huge_page) 4429 { 4430 int i; 4431 struct page *dst_base = dst; 4432 struct page *src_base = src; 4433 4434 for (i = 0; i < pages_per_huge_page; ) { 4435 cond_resched(); 4436 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4437 4438 i++; 4439 dst = mem_map_next(dst, dst_base, i); 4440 src = mem_map_next(src, src_base, i); 4441 } 4442 } 4443 4444 struct copy_subpage_arg { 4445 struct page *dst; 4446 struct page *src; 4447 struct vm_area_struct *vma; 4448 }; 4449 4450 static void copy_subpage(unsigned long addr, int idx, void *arg) 4451 { 4452 struct copy_subpage_arg *copy_arg = arg; 4453 4454 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4455 addr, copy_arg->vma); 4456 } 4457 4458 void copy_user_huge_page(struct page *dst, struct page *src, 4459 unsigned long addr_hint, struct vm_area_struct *vma, 4460 unsigned int pages_per_huge_page) 4461 { 4462 unsigned long addr = addr_hint & 4463 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4464 struct copy_subpage_arg arg = { 4465 .dst = dst, 4466 .src = src, 4467 .vma = vma, 4468 }; 4469 4470 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4471 copy_user_gigantic_page(dst, src, addr, vma, 4472 pages_per_huge_page); 4473 return; 4474 } 4475 4476 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4477 } 4478 4479 long copy_huge_page_from_user(struct page *dst_page, 4480 const void __user *usr_src, 4481 unsigned int pages_per_huge_page, 4482 bool allow_pagefault) 4483 { 4484 void *src = (void *)usr_src; 4485 void *page_kaddr; 4486 unsigned long i, rc = 0; 4487 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4488 4489 for (i = 0; i < pages_per_huge_page; i++) { 4490 if (allow_pagefault) 4491 page_kaddr = kmap(dst_page + i); 4492 else 4493 page_kaddr = kmap_atomic(dst_page + i); 4494 rc = copy_from_user(page_kaddr, 4495 (const void __user *)(src + i * PAGE_SIZE), 4496 PAGE_SIZE); 4497 if (allow_pagefault) 4498 kunmap(dst_page + i); 4499 else 4500 kunmap_atomic(page_kaddr); 4501 4502 ret_val -= (PAGE_SIZE - rc); 4503 if (rc) 4504 break; 4505 4506 cond_resched(); 4507 } 4508 return ret_val; 4509 } 4510 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4511 4512 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4513 4514 static struct kmem_cache *page_ptl_cachep; 4515 4516 void __init ptlock_cache_init(void) 4517 { 4518 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4519 SLAB_PANIC, NULL); 4520 } 4521 4522 bool ptlock_alloc(struct page *page) 4523 { 4524 spinlock_t *ptl; 4525 4526 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4527 if (!ptl) 4528 return false; 4529 page->ptl = ptl; 4530 return true; 4531 } 4532 4533 void ptlock_free(struct page *page) 4534 { 4535 kmem_cache_free(page_ptl_cachep, page->ptl); 4536 } 4537 #endif 4538