1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8 /*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13 /*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24 /*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32 /*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/kmsan.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/leafops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/shmem_fs.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
79 #include <linux/pgalloc.h>
80 #include <linux/uaccess.h>
81
82 #include <trace/events/kmem.h>
83
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/tlb.h>
87 #include <asm/tlbflush.h>
88
89 #include "pgalloc-track.h"
90 #include "internal.h"
91 #include "swap.h"
92
93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95 #endif
96
97 static vm_fault_t do_fault(struct vm_fault *vmf);
98 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
99 static bool vmf_pte_changed(struct vm_fault *vmf);
100
101 /*
102 * Return true if the original pte was a uffd-wp pte marker (so the pte was
103 * wr-protected).
104 */
vmf_orig_pte_uffd_wp(struct vm_fault * vmf)105 static __always_inline bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
106 {
107 if (!userfaultfd_wp(vmf->vma))
108 return false;
109 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
110 return false;
111
112 return pte_is_uffd_wp_marker(vmf->orig_pte);
113 }
114
115 /*
116 * Randomize the address space (stacks, mmaps, brk, etc.).
117 *
118 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
119 * as ancient (libc5 based) binaries can segfault. )
120 */
121 int randomize_va_space __read_mostly =
122 #ifdef CONFIG_COMPAT_BRK
123 1;
124 #else
125 2;
126 #endif
127
128 static const struct ctl_table mmu_sysctl_table[] = {
129 {
130 .procname = "randomize_va_space",
131 .data = &randomize_va_space,
132 .maxlen = sizeof(int),
133 .mode = 0644,
134 .proc_handler = proc_dointvec,
135 },
136 };
137
init_mm_sysctl(void)138 static int __init init_mm_sysctl(void)
139 {
140 register_sysctl_init("kernel", mmu_sysctl_table);
141 return 0;
142 }
143
144 subsys_initcall(init_mm_sysctl);
145
146 #ifndef arch_wants_old_prefaulted_pte
arch_wants_old_prefaulted_pte(void)147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149 /*
150 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 * some architectures, even if it's performed in hardware. By
152 * default, "false" means prefaulted entries will be 'young'.
153 */
154 return false;
155 }
156 #endif
157
disable_randmaps(char * s)158 static int __init disable_randmaps(char *s)
159 {
160 randomize_va_space = 0;
161 return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167
168 unsigned long highest_memmap_pfn __read_mostly;
169
170 /*
171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 */
init_zero_pfn(void)173 static int __init init_zero_pfn(void)
174 {
175 zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 return 0;
177 }
178 early_initcall(init_zero_pfn);
179
mm_trace_rss_stat(struct mm_struct * mm,int member)180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182 trace_rss_stat(mm, member);
183 }
184
185 /*
186 * Note: this doesn't free the actual pages themselves. That
187 * has been handled earlier when unmapping all the memory regions.
188 */
free_pte_range(struct mmu_gather * tlb,pmd_t * pmd,unsigned long addr)189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 unsigned long addr)
191 {
192 pgtable_t token = pmd_pgtable(*pmd);
193 pmd_clear(pmd);
194 pte_free_tlb(tlb, token, addr);
195 mm_dec_nr_ptes(tlb->mm);
196 }
197
free_pmd_range(struct mmu_gather * tlb,pud_t * pud,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 unsigned long addr, unsigned long end,
200 unsigned long floor, unsigned long ceiling)
201 {
202 pmd_t *pmd;
203 unsigned long next;
204 unsigned long start;
205
206 start = addr;
207 pmd = pmd_offset(pud, addr);
208 do {
209 next = pmd_addr_end(addr, end);
210 if (pmd_none_or_clear_bad(pmd))
211 continue;
212 free_pte_range(tlb, pmd, addr);
213 } while (pmd++, addr = next, addr != end);
214
215 start &= PUD_MASK;
216 if (start < floor)
217 return;
218 if (ceiling) {
219 ceiling &= PUD_MASK;
220 if (!ceiling)
221 return;
222 }
223 if (end - 1 > ceiling - 1)
224 return;
225
226 pmd = pmd_offset(pud, start);
227 pud_clear(pud);
228 pmd_free_tlb(tlb, pmd, start);
229 mm_dec_nr_pmds(tlb->mm);
230 }
231
free_pud_range(struct mmu_gather * tlb,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
235 {
236 pud_t *pud;
237 unsigned long next;
238 unsigned long start;
239
240 start = addr;
241 pud = pud_offset(p4d, addr);
242 do {
243 next = pud_addr_end(addr, end);
244 if (pud_none_or_clear_bad(pud))
245 continue;
246 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 } while (pud++, addr = next, addr != end);
248
249 start &= P4D_MASK;
250 if (start < floor)
251 return;
252 if (ceiling) {
253 ceiling &= P4D_MASK;
254 if (!ceiling)
255 return;
256 }
257 if (end - 1 > ceiling - 1)
258 return;
259
260 pud = pud_offset(p4d, start);
261 p4d_clear(p4d);
262 pud_free_tlb(tlb, pud, start);
263 mm_dec_nr_puds(tlb->mm);
264 }
265
free_p4d_range(struct mmu_gather * tlb,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
269 {
270 p4d_t *p4d;
271 unsigned long next;
272 unsigned long start;
273
274 start = addr;
275 p4d = p4d_offset(pgd, addr);
276 do {
277 next = p4d_addr_end(addr, end);
278 if (p4d_none_or_clear_bad(p4d))
279 continue;
280 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 } while (p4d++, addr = next, addr != end);
282
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
290 }
291 if (end - 1 > ceiling - 1)
292 return;
293
294 p4d = p4d_offset(pgd, start);
295 pgd_clear(pgd);
296 p4d_free_tlb(tlb, p4d, start);
297 }
298
299 /**
300 * free_pgd_range - Unmap and free page tables in the range
301 * @tlb: the mmu_gather containing pending TLB flush info
302 * @addr: virtual address start
303 * @end: virtual address end
304 * @floor: lowest address boundary
305 * @ceiling: highest address boundary
306 *
307 * This function tears down all user-level page tables in the
308 * specified virtual address range [@addr..@end). It is part of
309 * the memory unmap flow.
310 */
free_pgd_range(struct mmu_gather * tlb,unsigned long addr,unsigned long end,unsigned long floor,unsigned long ceiling)311 void free_pgd_range(struct mmu_gather *tlb,
312 unsigned long addr, unsigned long end,
313 unsigned long floor, unsigned long ceiling)
314 {
315 pgd_t *pgd;
316 unsigned long next;
317
318 /*
319 * The next few lines have given us lots of grief...
320 *
321 * Why are we testing PMD* at this top level? Because often
322 * there will be no work to do at all, and we'd prefer not to
323 * go all the way down to the bottom just to discover that.
324 *
325 * Why all these "- 1"s? Because 0 represents both the bottom
326 * of the address space and the top of it (using -1 for the
327 * top wouldn't help much: the masks would do the wrong thing).
328 * The rule is that addr 0 and floor 0 refer to the bottom of
329 * the address space, but end 0 and ceiling 0 refer to the top
330 * Comparisons need to use "end - 1" and "ceiling - 1" (though
331 * that end 0 case should be mythical).
332 *
333 * Wherever addr is brought up or ceiling brought down, we must
334 * be careful to reject "the opposite 0" before it confuses the
335 * subsequent tests. But what about where end is brought down
336 * by PMD_SIZE below? no, end can't go down to 0 there.
337 *
338 * Whereas we round start (addr) and ceiling down, by different
339 * masks at different levels, in order to test whether a table
340 * now has no other vmas using it, so can be freed, we don't
341 * bother to round floor or end up - the tests don't need that.
342 */
343
344 addr &= PMD_MASK;
345 if (addr < floor) {
346 addr += PMD_SIZE;
347 if (!addr)
348 return;
349 }
350 if (ceiling) {
351 ceiling &= PMD_MASK;
352 if (!ceiling)
353 return;
354 }
355 if (end - 1 > ceiling - 1)
356 end -= PMD_SIZE;
357 if (addr > end - 1)
358 return;
359 /*
360 * We add page table cache pages with PAGE_SIZE,
361 * (see pte_free_tlb()), flush the tlb if we need
362 */
363 tlb_change_page_size(tlb, PAGE_SIZE);
364 pgd = pgd_offset(tlb->mm, addr);
365 do {
366 next = pgd_addr_end(addr, end);
367 if (pgd_none_or_clear_bad(pgd))
368 continue;
369 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
370 } while (pgd++, addr = next, addr != end);
371 }
372
373 /**
374 * free_pgtables() - Free a range of page tables
375 * @tlb: The mmu gather
376 * @unmap: The unmap_desc
377 *
378 * Note: pg_start and pg_end are provided to indicate the absolute range of the
379 * page tables that should be removed. This can differ from the vma mappings on
380 * some archs that may have mappings that need to be removed outside the vmas.
381 * Note that the prev->vm_end and next->vm_start are often used.
382 *
383 * The vma_end differs from the pg_end when a dup_mmap() failed and the tree has
384 * unrelated data to the mm_struct being torn down.
385 */
free_pgtables(struct mmu_gather * tlb,struct unmap_desc * unmap)386 void free_pgtables(struct mmu_gather *tlb, struct unmap_desc *unmap)
387 {
388 struct unlink_vma_file_batch vb;
389 struct ma_state *mas = unmap->mas;
390 struct vm_area_struct *vma = unmap->first;
391
392 /*
393 * Note: USER_PGTABLES_CEILING may be passed as the value of pg_end and
394 * may be 0. Underflow is expected in this case. Otherwise the
395 * pagetable end is exclusive. vma_end is exclusive. The last vma
396 * address should never be larger than the pagetable end.
397 */
398 WARN_ON_ONCE(unmap->vma_end - 1 > unmap->pg_end - 1);
399
400 tlb_free_vmas(tlb);
401
402 do {
403 unsigned long addr = vma->vm_start;
404 struct vm_area_struct *next;
405
406 next = mas_find(mas, unmap->tree_end - 1);
407
408 /*
409 * Hide vma from rmap and truncate_pagecache before freeing
410 * pgtables
411 */
412 if (unmap->mm_wr_locked)
413 vma_start_write(vma);
414 unlink_anon_vmas(vma);
415
416 unlink_file_vma_batch_init(&vb);
417 unlink_file_vma_batch_add(&vb, vma);
418
419 /*
420 * Optimization: gather nearby vmas into one call down
421 */
422 while (next && next->vm_start <= vma->vm_end + PMD_SIZE) {
423 vma = next;
424 next = mas_find(mas, unmap->tree_end - 1);
425 if (unmap->mm_wr_locked)
426 vma_start_write(vma);
427 unlink_anon_vmas(vma);
428 unlink_file_vma_batch_add(&vb, vma);
429 }
430 unlink_file_vma_batch_final(&vb);
431
432 free_pgd_range(tlb, addr, vma->vm_end, unmap->pg_start,
433 next ? next->vm_start : unmap->pg_end);
434 vma = next;
435 } while (vma);
436 }
437
pmd_install(struct mm_struct * mm,pmd_t * pmd,pgtable_t * pte)438 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
439 {
440 spinlock_t *ptl = pmd_lock(mm, pmd);
441
442 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
443 mm_inc_nr_ptes(mm);
444 /*
445 * Ensure all pte setup (eg. pte page lock and page clearing) are
446 * visible before the pte is made visible to other CPUs by being
447 * put into page tables.
448 *
449 * The other side of the story is the pointer chasing in the page
450 * table walking code (when walking the page table without locking;
451 * ie. most of the time). Fortunately, these data accesses consist
452 * of a chain of data-dependent loads, meaning most CPUs (alpha
453 * being the notable exception) will already guarantee loads are
454 * seen in-order. See the alpha page table accessors for the
455 * smp_rmb() barriers in page table walking code.
456 */
457 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
458 pmd_populate(mm, pmd, *pte);
459 *pte = NULL;
460 }
461 spin_unlock(ptl);
462 }
463
__pte_alloc(struct mm_struct * mm,pmd_t * pmd)464 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
465 {
466 pgtable_t new = pte_alloc_one(mm);
467 if (!new)
468 return -ENOMEM;
469
470 pmd_install(mm, pmd, &new);
471 if (new)
472 pte_free(mm, new);
473 return 0;
474 }
475
__pte_alloc_kernel(pmd_t * pmd)476 int __pte_alloc_kernel(pmd_t *pmd)
477 {
478 pte_t *new = pte_alloc_one_kernel(&init_mm);
479 if (!new)
480 return -ENOMEM;
481
482 spin_lock(&init_mm.page_table_lock);
483 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
484 smp_wmb(); /* See comment in pmd_install() */
485 pmd_populate_kernel(&init_mm, pmd, new);
486 new = NULL;
487 }
488 spin_unlock(&init_mm.page_table_lock);
489 if (new)
490 pte_free_kernel(&init_mm, new);
491 return 0;
492 }
493
init_rss_vec(int * rss)494 static inline void init_rss_vec(int *rss)
495 {
496 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
497 }
498
add_mm_rss_vec(struct mm_struct * mm,int * rss)499 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
500 {
501 int i;
502
503 for (i = 0; i < NR_MM_COUNTERS; i++)
504 if (rss[i])
505 add_mm_counter(mm, i, rss[i]);
506 }
507
is_bad_page_map_ratelimited(void)508 static bool is_bad_page_map_ratelimited(void)
509 {
510 static unsigned long resume;
511 static unsigned long nr_shown;
512 static unsigned long nr_unshown;
513
514 /*
515 * Allow a burst of 60 reports, then keep quiet for that minute;
516 * or allow a steady drip of one report per second.
517 */
518 if (nr_shown == 60) {
519 if (time_before(jiffies, resume)) {
520 nr_unshown++;
521 return true;
522 }
523 if (nr_unshown) {
524 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525 nr_unshown);
526 nr_unshown = 0;
527 }
528 nr_shown = 0;
529 }
530 if (nr_shown++ == 0)
531 resume = jiffies + 60 * HZ;
532 return false;
533 }
534
__print_bad_page_map_pgtable(struct mm_struct * mm,unsigned long addr)535 static void __print_bad_page_map_pgtable(struct mm_struct *mm, unsigned long addr)
536 {
537 unsigned long long pgdv, p4dv, pudv, pmdv;
538 p4d_t p4d, *p4dp;
539 pud_t pud, *pudp;
540 pmd_t pmd, *pmdp;
541 pgd_t *pgdp;
542
543 /*
544 * Although this looks like a fully lockless pgtable walk, it is not:
545 * see locking requirements for print_bad_page_map().
546 */
547 pgdp = pgd_offset(mm, addr);
548 pgdv = pgd_val(*pgdp);
549
550 if (!pgd_present(*pgdp) || pgd_leaf(*pgdp)) {
551 pr_alert("pgd:%08llx\n", pgdv);
552 return;
553 }
554
555 p4dp = p4d_offset(pgdp, addr);
556 p4d = p4dp_get(p4dp);
557 p4dv = p4d_val(p4d);
558
559 if (!p4d_present(p4d) || p4d_leaf(p4d)) {
560 pr_alert("pgd:%08llx p4d:%08llx\n", pgdv, p4dv);
561 return;
562 }
563
564 pudp = pud_offset(p4dp, addr);
565 pud = pudp_get(pudp);
566 pudv = pud_val(pud);
567
568 if (!pud_present(pud) || pud_leaf(pud)) {
569 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx\n", pgdv, p4dv, pudv);
570 return;
571 }
572
573 pmdp = pmd_offset(pudp, addr);
574 pmd = pmdp_get(pmdp);
575 pmdv = pmd_val(pmd);
576
577 /*
578 * Dumping the PTE would be nice, but it's tricky with CONFIG_HIGHPTE,
579 * because the table should already be mapped by the caller and
580 * doing another map would be bad. print_bad_page_map() should
581 * already take care of printing the PTE.
582 */
583 pr_alert("pgd:%08llx p4d:%08llx pud:%08llx pmd:%08llx\n", pgdv,
584 p4dv, pudv, pmdv);
585 }
586
587 /*
588 * This function is called to print an error when a bad page table entry (e.g.,
589 * corrupted page table entry) is found. For example, we might have a
590 * PFN-mapped pte in a region that doesn't allow it.
591 *
592 * The calling function must still handle the error.
593 *
594 * This function must be called during a proper page table walk, as it will
595 * re-walk the page table to dump information: the caller MUST prevent page
596 * table teardown (by holding mmap, vma or rmap lock) and MUST hold the leaf
597 * page table lock.
598 */
print_bad_page_map(struct vm_area_struct * vma,unsigned long addr,unsigned long long entry,struct page * page,enum pgtable_level level)599 static void print_bad_page_map(struct vm_area_struct *vma,
600 unsigned long addr, unsigned long long entry, struct page *page,
601 enum pgtable_level level)
602 {
603 struct address_space *mapping;
604 pgoff_t index;
605
606 if (is_bad_page_map_ratelimited())
607 return;
608
609 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
610 index = linear_page_index(vma, addr);
611
612 pr_alert("BUG: Bad page map in process %s %s:%08llx", current->comm,
613 pgtable_level_to_str(level), entry);
614 __print_bad_page_map_pgtable(vma->vm_mm, addr);
615 if (page)
616 dump_page(page, "bad page map");
617 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
618 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
619 pr_alert("file:%pD fault:%ps mmap:%ps mmap_prepare: %ps read_folio:%ps\n",
620 vma->vm_file,
621 vma->vm_ops ? vma->vm_ops->fault : NULL,
622 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
623 vma->vm_file ? vma->vm_file->f_op->mmap_prepare : NULL,
624 mapping ? mapping->a_ops->read_folio : NULL);
625 dump_stack();
626 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
627 }
628 #define print_bad_pte(vma, addr, pte, page) \
629 print_bad_page_map(vma, addr, pte_val(pte), page, PGTABLE_LEVEL_PTE)
630
631 /**
632 * __vm_normal_page() - Get the "struct page" associated with a page table entry.
633 * @vma: The VMA mapping the page table entry.
634 * @addr: The address where the page table entry is mapped.
635 * @pfn: The PFN stored in the page table entry.
636 * @special: Whether the page table entry is marked "special".
637 * @level: The page table level for error reporting purposes only.
638 * @entry: The page table entry value for error reporting purposes only.
639 *
640 * "Special" mappings do not wish to be associated with a "struct page" (either
641 * it doesn't exist, or it exists but they don't want to touch it). In this
642 * case, NULL is returned here. "Normal" mappings do have a struct page and
643 * are ordinarily refcounted.
644 *
645 * Page mappings of the shared zero folios are always considered "special", as
646 * they are not ordinarily refcounted: neither the refcount nor the mapcount
647 * of these folios is adjusted when mapping them into user page tables.
648 * Selected page table walkers (such as GUP) can still identify mappings of the
649 * shared zero folios and work with the underlying "struct page".
650 *
651 * There are 2 broad cases. Firstly, an architecture may define a "special"
652 * page table entry bit, such as pte_special(), in which case this function is
653 * trivial. Secondly, an architecture may not have a spare page table
654 * entry bit, which requires a more complicated scheme, described below.
655 *
656 * With CONFIG_FIND_NORMAL_PAGE, we might have the "special" bit set on
657 * page table entries that actually map "normal" pages: however, that page
658 * cannot be looked up through the PFN stored in the page table entry, but
659 * instead will be looked up through vm_ops->find_normal_page(). So far, this
660 * only applies to PTEs.
661 *
662 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
663 * special mapping (even if there are underlying and valid "struct pages").
664 * COWed pages of a VM_PFNMAP are always normal.
665 *
666 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
667 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
668 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
669 * mapping will always honor the rule
670 *
671 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
672 *
673 * And for normal mappings this is false.
674 *
675 * This restricts such mappings to be a linear translation from virtual address
676 * to pfn. To get around this restriction, we allow arbitrary mappings so long
677 * as the vma is not a COW mapping; in that case, we know that all ptes are
678 * special (because none can have been COWed).
679 *
680 *
681 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
682 *
683 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
684 * page" backing, however the difference is that _all_ pages with a struct
685 * page (that is, those where pfn_valid is true, except the shared zero
686 * folios) are refcounted and considered normal pages by the VM.
687 *
688 * The disadvantage is that pages are refcounted (which can be slower and
689 * simply not an option for some PFNMAP users). The advantage is that we
690 * don't have to follow the strict linearity rule of PFNMAP mappings in
691 * order to support COWable mappings.
692 *
693 * Return: Returns the "struct page" if this is a "normal" mapping. Returns
694 * NULL if this is a "special" mapping.
695 */
__vm_normal_page(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,bool special,unsigned long long entry,enum pgtable_level level)696 static inline struct page *__vm_normal_page(struct vm_area_struct *vma,
697 unsigned long addr, unsigned long pfn, bool special,
698 unsigned long long entry, enum pgtable_level level)
699 {
700 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
701 if (unlikely(special)) {
702 #ifdef CONFIG_FIND_NORMAL_PAGE
703 if (vma->vm_ops && vma->vm_ops->find_normal_page)
704 return vma->vm_ops->find_normal_page(vma, addr);
705 #endif /* CONFIG_FIND_NORMAL_PAGE */
706 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
707 return NULL;
708 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn))
709 return NULL;
710
711 print_bad_page_map(vma, addr, entry, NULL, level);
712 return NULL;
713 }
714 /*
715 * With CONFIG_ARCH_HAS_PTE_SPECIAL, any special page table
716 * mappings (incl. shared zero folios) are marked accordingly.
717 */
718 } else {
719 if (unlikely(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) {
720 if (vma->vm_flags & VM_MIXEDMAP) {
721 /* If it has a "struct page", it's "normal". */
722 if (!pfn_valid(pfn))
723 return NULL;
724 } else {
725 unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
726
727 /* Only CoW'ed anon folios are "normal". */
728 if (pfn == vma->vm_pgoff + off)
729 return NULL;
730 if (!is_cow_mapping(vma->vm_flags))
731 return NULL;
732 }
733 }
734
735 if (is_zero_pfn(pfn) || is_huge_zero_pfn(pfn))
736 return NULL;
737 }
738
739 if (unlikely(pfn > highest_memmap_pfn)) {
740 /* Corrupted page table entry. */
741 print_bad_page_map(vma, addr, entry, NULL, level);
742 return NULL;
743 }
744 /*
745 * NOTE! We still have PageReserved() pages in the page tables.
746 * For example, VDSO mappings can cause them to exist.
747 */
748 VM_WARN_ON_ONCE(is_zero_pfn(pfn) || is_huge_zero_pfn(pfn));
749 return pfn_to_page(pfn);
750 }
751
752 /**
753 * vm_normal_page() - Get the "struct page" associated with a PTE
754 * @vma: The VMA mapping the @pte.
755 * @addr: The address where the @pte is mapped.
756 * @pte: The PTE.
757 *
758 * Get the "struct page" associated with a PTE. See __vm_normal_page()
759 * for details on "normal" and "special" mappings.
760 *
761 * Return: Returns the "struct page" if this is a "normal" mapping. Returns
762 * NULL if this is a "special" mapping.
763 */
vm_normal_page(struct vm_area_struct * vma,unsigned long addr,pte_t pte)764 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
765 pte_t pte)
766 {
767 return __vm_normal_page(vma, addr, pte_pfn(pte), pte_special(pte),
768 pte_val(pte), PGTABLE_LEVEL_PTE);
769 }
770
771 /**
772 * vm_normal_folio() - Get the "struct folio" associated with a PTE
773 * @vma: The VMA mapping the @pte.
774 * @addr: The address where the @pte is mapped.
775 * @pte: The PTE.
776 *
777 * Get the "struct folio" associated with a PTE. See __vm_normal_page()
778 * for details on "normal" and "special" mappings.
779 *
780 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns
781 * NULL if this is a "special" mapping.
782 */
vm_normal_folio(struct vm_area_struct * vma,unsigned long addr,pte_t pte)783 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
784 pte_t pte)
785 {
786 struct page *page = vm_normal_page(vma, addr, pte);
787
788 if (page)
789 return page_folio(page);
790 return NULL;
791 }
792
793 #ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
794 /**
795 * vm_normal_page_pmd() - Get the "struct page" associated with a PMD
796 * @vma: The VMA mapping the @pmd.
797 * @addr: The address where the @pmd is mapped.
798 * @pmd: The PMD.
799 *
800 * Get the "struct page" associated with a PTE. See __vm_normal_page()
801 * for details on "normal" and "special" mappings.
802 *
803 * Return: Returns the "struct page" if this is a "normal" mapping. Returns
804 * NULL if this is a "special" mapping.
805 */
vm_normal_page_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)806 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
807 pmd_t pmd)
808 {
809 return __vm_normal_page(vma, addr, pmd_pfn(pmd), pmd_special(pmd),
810 pmd_val(pmd), PGTABLE_LEVEL_PMD);
811 }
812
813 /**
814 * vm_normal_folio_pmd() - Get the "struct folio" associated with a PMD
815 * @vma: The VMA mapping the @pmd.
816 * @addr: The address where the @pmd is mapped.
817 * @pmd: The PMD.
818 *
819 * Get the "struct folio" associated with a PTE. See __vm_normal_page()
820 * for details on "normal" and "special" mappings.
821 *
822 * Return: Returns the "struct folio" if this is a "normal" mapping. Returns
823 * NULL if this is a "special" mapping.
824 */
vm_normal_folio_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t pmd)825 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
826 unsigned long addr, pmd_t pmd)
827 {
828 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
829
830 if (page)
831 return page_folio(page);
832 return NULL;
833 }
834
835 /**
836 * vm_normal_page_pud() - Get the "struct page" associated with a PUD
837 * @vma: The VMA mapping the @pud.
838 * @addr: The address where the @pud is mapped.
839 * @pud: The PUD.
840 *
841 * Get the "struct page" associated with a PUD. See __vm_normal_page()
842 * for details on "normal" and "special" mappings.
843 *
844 * Return: Returns the "struct page" if this is a "normal" mapping. Returns
845 * NULL if this is a "special" mapping.
846 */
vm_normal_page_pud(struct vm_area_struct * vma,unsigned long addr,pud_t pud)847 struct page *vm_normal_page_pud(struct vm_area_struct *vma,
848 unsigned long addr, pud_t pud)
849 {
850 return __vm_normal_page(vma, addr, pud_pfn(pud), pud_special(pud),
851 pud_val(pud), PGTABLE_LEVEL_PUD);
852 }
853 #endif
854
855 /**
856 * restore_exclusive_pte - Restore a device-exclusive entry
857 * @vma: VMA covering @address
858 * @folio: the mapped folio
859 * @page: the mapped folio page
860 * @address: the virtual address
861 * @ptep: pte pointer into the locked page table mapping the folio page
862 * @orig_pte: pte value at @ptep
863 *
864 * Restore a device-exclusive non-swap entry to an ordinary present pte.
865 *
866 * The folio and the page table must be locked, and MMU notifiers must have
867 * been called to invalidate any (exclusive) device mappings.
868 *
869 * Locking the folio makes sure that anybody who just converted the pte to
870 * a device-exclusive entry can map it into the device to make forward
871 * progress without others converting it back until the folio was unlocked.
872 *
873 * If the folio lock ever becomes an issue, we can stop relying on the folio
874 * lock; it might make some scenarios with heavy thrashing less likely to
875 * make forward progress, but these scenarios might not be valid use cases.
876 *
877 * Note that the folio lock does not protect against all cases of concurrent
878 * page table modifications (e.g., MADV_DONTNEED, mprotect), so device drivers
879 * must use MMU notifiers to sync against any concurrent changes.
880 */
restore_exclusive_pte(struct vm_area_struct * vma,struct folio * folio,struct page * page,unsigned long address,pte_t * ptep,pte_t orig_pte)881 static void restore_exclusive_pte(struct vm_area_struct *vma,
882 struct folio *folio, struct page *page, unsigned long address,
883 pte_t *ptep, pte_t orig_pte)
884 {
885 pte_t pte;
886
887 VM_WARN_ON_FOLIO(!folio_test_locked(folio), folio);
888
889 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
890 if (pte_swp_soft_dirty(orig_pte))
891 pte = pte_mksoft_dirty(pte);
892
893 if (pte_swp_uffd_wp(orig_pte))
894 pte = pte_mkuffd_wp(pte);
895
896 if ((vma->vm_flags & VM_WRITE) &&
897 can_change_pte_writable(vma, address, pte)) {
898 if (folio_test_dirty(folio))
899 pte = pte_mkdirty(pte);
900 pte = pte_mkwrite(pte, vma);
901 }
902 set_pte_at(vma->vm_mm, address, ptep, pte);
903
904 /*
905 * No need to invalidate - it was non-present before. However
906 * secondary CPUs may have mappings that need invalidating.
907 */
908 update_mmu_cache(vma, address, ptep);
909 }
910
911 /*
912 * Tries to restore an exclusive pte if the page lock can be acquired without
913 * sleeping.
914 */
try_restore_exclusive_pte(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t orig_pte)915 static int try_restore_exclusive_pte(struct vm_area_struct *vma,
916 unsigned long addr, pte_t *ptep, pte_t orig_pte)
917 {
918 const softleaf_t entry = softleaf_from_pte(orig_pte);
919 struct page *page = softleaf_to_page(entry);
920 struct folio *folio = page_folio(page);
921
922 if (folio_trylock(folio)) {
923 restore_exclusive_pte(vma, folio, page, addr, ptep, orig_pte);
924 folio_unlock(folio);
925 return 0;
926 }
927
928 return -EBUSY;
929 }
930
931 /*
932 * copy one vm_area from one task to the other. Assumes the page tables
933 * already present in the new task to be cleared in the whole range
934 * covered by this vma.
935 */
936
937 static unsigned long
copy_nonpresent_pte(struct mm_struct * dst_mm,struct mm_struct * src_mm,pte_t * dst_pte,pte_t * src_pte,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long addr,int * rss)938 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
939 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
940 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
941 {
942 vm_flags_t vm_flags = dst_vma->vm_flags;
943 pte_t orig_pte = ptep_get(src_pte);
944 softleaf_t entry = softleaf_from_pte(orig_pte);
945 pte_t pte = orig_pte;
946 struct folio *folio;
947 struct page *page;
948
949 if (likely(softleaf_is_swap(entry))) {
950 if (swap_dup_entry_direct(entry) < 0)
951 return -EIO;
952
953 /* make sure dst_mm is on swapoff's mmlist. */
954 if (unlikely(list_empty(&dst_mm->mmlist))) {
955 spin_lock(&mmlist_lock);
956 if (list_empty(&dst_mm->mmlist))
957 list_add(&dst_mm->mmlist,
958 &src_mm->mmlist);
959 spin_unlock(&mmlist_lock);
960 }
961 /* Mark the swap entry as shared. */
962 if (pte_swp_exclusive(orig_pte)) {
963 pte = pte_swp_clear_exclusive(orig_pte);
964 set_pte_at(src_mm, addr, src_pte, pte);
965 }
966 rss[MM_SWAPENTS]++;
967 } else if (softleaf_is_migration(entry)) {
968 folio = softleaf_to_folio(entry);
969
970 rss[mm_counter(folio)]++;
971
972 if (!softleaf_is_migration_read(entry) &&
973 is_cow_mapping(vm_flags)) {
974 /*
975 * COW mappings require pages in both parent and child
976 * to be set to read. A previously exclusive entry is
977 * now shared.
978 */
979 entry = make_readable_migration_entry(
980 swp_offset(entry));
981 pte = softleaf_to_pte(entry);
982 if (pte_swp_soft_dirty(orig_pte))
983 pte = pte_swp_mksoft_dirty(pte);
984 if (pte_swp_uffd_wp(orig_pte))
985 pte = pte_swp_mkuffd_wp(pte);
986 set_pte_at(src_mm, addr, src_pte, pte);
987 }
988 } else if (softleaf_is_device_private(entry)) {
989 page = softleaf_to_page(entry);
990 folio = page_folio(page);
991
992 /*
993 * Update rss count even for unaddressable pages, as
994 * they should treated just like normal pages in this
995 * respect.
996 *
997 * We will likely want to have some new rss counters
998 * for unaddressable pages, at some point. But for now
999 * keep things as they are.
1000 */
1001 folio_get(folio);
1002 rss[mm_counter(folio)]++;
1003 /* Cannot fail as these pages cannot get pinned. */
1004 folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma);
1005
1006 /*
1007 * We do not preserve soft-dirty information, because so
1008 * far, checkpoint/restore is the only feature that
1009 * requires that. And checkpoint/restore does not work
1010 * when a device driver is involved (you cannot easily
1011 * save and restore device driver state).
1012 */
1013 if (softleaf_is_device_private_write(entry) &&
1014 is_cow_mapping(vm_flags)) {
1015 entry = make_readable_device_private_entry(
1016 swp_offset(entry));
1017 pte = swp_entry_to_pte(entry);
1018 if (pte_swp_uffd_wp(orig_pte))
1019 pte = pte_swp_mkuffd_wp(pte);
1020 set_pte_at(src_mm, addr, src_pte, pte);
1021 }
1022 } else if (softleaf_is_device_exclusive(entry)) {
1023 /*
1024 * Make device exclusive entries present by restoring the
1025 * original entry then copying as for a present pte. Device
1026 * exclusive entries currently only support private writable
1027 * (ie. COW) mappings.
1028 */
1029 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
1030 if (try_restore_exclusive_pte(src_vma, addr, src_pte, orig_pte))
1031 return -EBUSY;
1032 return -ENOENT;
1033 } else if (softleaf_is_marker(entry)) {
1034 pte_marker marker = copy_pte_marker(entry, dst_vma);
1035
1036 if (marker)
1037 set_pte_at(dst_mm, addr, dst_pte,
1038 make_pte_marker(marker));
1039 return 0;
1040 }
1041 if (!userfaultfd_wp(dst_vma))
1042 pte = pte_swp_clear_uffd_wp(pte);
1043 set_pte_at(dst_mm, addr, dst_pte, pte);
1044 return 0;
1045 }
1046
1047 /*
1048 * Copy a present and normal page.
1049 *
1050 * NOTE! The usual case is that this isn't required;
1051 * instead, the caller can just increase the page refcount
1052 * and re-use the pte the traditional way.
1053 *
1054 * And if we need a pre-allocated page but don't yet have
1055 * one, return a negative error to let the preallocation
1056 * code know so that it can do so outside the page table
1057 * lock.
1058 */
1059 static inline int
copy_present_page(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,unsigned long addr,int * rss,struct folio ** prealloc,struct page * page)1060 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1061 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
1062 struct folio **prealloc, struct page *page)
1063 {
1064 struct folio *new_folio;
1065 pte_t pte;
1066
1067 new_folio = *prealloc;
1068 if (!new_folio)
1069 return -EAGAIN;
1070
1071 /*
1072 * We have a prealloc page, all good! Take it
1073 * over and copy the page & arm it.
1074 */
1075
1076 if (copy_mc_user_highpage(&new_folio->page, page, addr, src_vma))
1077 return -EHWPOISON;
1078
1079 *prealloc = NULL;
1080 __folio_mark_uptodate(new_folio);
1081 folio_add_new_anon_rmap(new_folio, dst_vma, addr, RMAP_EXCLUSIVE);
1082 folio_add_lru_vma(new_folio, dst_vma);
1083 rss[MM_ANONPAGES]++;
1084
1085 /* All done, just insert the new page copy in the child */
1086 pte = folio_mk_pte(new_folio, dst_vma->vm_page_prot);
1087 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
1088 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
1089 /* Uffd-wp needs to be delivered to dest pte as well */
1090 pte = pte_mkuffd_wp(pte);
1091 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
1092 return 0;
1093 }
1094
__copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int nr)1095 static __always_inline void __copy_present_ptes(struct vm_area_struct *dst_vma,
1096 struct vm_area_struct *src_vma, pte_t *dst_pte, pte_t *src_pte,
1097 pte_t pte, unsigned long addr, int nr)
1098 {
1099 struct mm_struct *src_mm = src_vma->vm_mm;
1100
1101 /* If it's a COW mapping, write protect it both processes. */
1102 if (is_cow_mapping(src_vma->vm_flags) && pte_write(pte)) {
1103 wrprotect_ptes(src_mm, addr, src_pte, nr);
1104 pte = pte_wrprotect(pte);
1105 }
1106
1107 /* If it's a shared mapping, mark it clean in the child. */
1108 if (src_vma->vm_flags & VM_SHARED)
1109 pte = pte_mkclean(pte);
1110 pte = pte_mkold(pte);
1111
1112 if (!userfaultfd_wp(dst_vma))
1113 pte = pte_clear_uffd_wp(pte);
1114
1115 set_ptes(dst_vma->vm_mm, addr, dst_pte, pte, nr);
1116 }
1117
1118 /*
1119 * Copy one present PTE, trying to batch-process subsequent PTEs that map
1120 * consecutive pages of the same folio by copying them as well.
1121 *
1122 * Returns -EAGAIN if one preallocated page is required to copy the next PTE.
1123 * Otherwise, returns the number of copied PTEs (at least 1).
1124 */
1125 static inline int
copy_present_ptes(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pte_t * dst_pte,pte_t * src_pte,pte_t pte,unsigned long addr,int max_nr,int * rss,struct folio ** prealloc)1126 copy_present_ptes(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1127 pte_t *dst_pte, pte_t *src_pte, pte_t pte, unsigned long addr,
1128 int max_nr, int *rss, struct folio **prealloc)
1129 {
1130 fpb_t flags = FPB_MERGE_WRITE;
1131 struct page *page;
1132 struct folio *folio;
1133 int err, nr;
1134
1135 page = vm_normal_page(src_vma, addr, pte);
1136 if (unlikely(!page))
1137 goto copy_pte;
1138
1139 folio = page_folio(page);
1140
1141 /*
1142 * If we likely have to copy, just don't bother with batching. Make
1143 * sure that the common "small folio" case is as fast as possible
1144 * by keeping the batching logic separate.
1145 */
1146 if (unlikely(!*prealloc && folio_test_large(folio) && max_nr != 1)) {
1147 if (!(src_vma->vm_flags & VM_SHARED))
1148 flags |= FPB_RESPECT_DIRTY;
1149 if (vma_soft_dirty_enabled(src_vma))
1150 flags |= FPB_RESPECT_SOFT_DIRTY;
1151
1152 nr = folio_pte_batch_flags(folio, src_vma, src_pte, &pte, max_nr, flags);
1153 folio_ref_add(folio, nr);
1154 if (folio_test_anon(folio)) {
1155 if (unlikely(folio_try_dup_anon_rmap_ptes(folio, page,
1156 nr, dst_vma, src_vma))) {
1157 folio_ref_sub(folio, nr);
1158 return -EAGAIN;
1159 }
1160 rss[MM_ANONPAGES] += nr;
1161 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1162 } else {
1163 folio_dup_file_rmap_ptes(folio, page, nr, dst_vma);
1164 rss[mm_counter_file(folio)] += nr;
1165 }
1166 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte,
1167 addr, nr);
1168 return nr;
1169 }
1170
1171 folio_get(folio);
1172 if (folio_test_anon(folio)) {
1173 /*
1174 * If this page may have been pinned by the parent process,
1175 * copy the page immediately for the child so that we'll always
1176 * guarantee the pinned page won't be randomly replaced in the
1177 * future.
1178 */
1179 if (unlikely(folio_try_dup_anon_rmap_pte(folio, page, dst_vma, src_vma))) {
1180 /* Page may be pinned, we have to copy. */
1181 folio_put(folio);
1182 err = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
1183 addr, rss, prealloc, page);
1184 return err ? err : 1;
1185 }
1186 rss[MM_ANONPAGES]++;
1187 VM_WARN_ON_FOLIO(PageAnonExclusive(page), folio);
1188 } else {
1189 folio_dup_file_rmap_pte(folio, page, dst_vma);
1190 rss[mm_counter_file(folio)]++;
1191 }
1192
1193 copy_pte:
1194 __copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte, pte, addr, 1);
1195 return 1;
1196 }
1197
folio_prealloc(struct mm_struct * src_mm,struct vm_area_struct * vma,unsigned long addr,bool need_zero)1198 static inline struct folio *folio_prealloc(struct mm_struct *src_mm,
1199 struct vm_area_struct *vma, unsigned long addr, bool need_zero)
1200 {
1201 struct folio *new_folio;
1202
1203 if (need_zero)
1204 new_folio = vma_alloc_zeroed_movable_folio(vma, addr);
1205 else
1206 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr);
1207
1208 if (!new_folio)
1209 return NULL;
1210
1211 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1212 folio_put(new_folio);
1213 return NULL;
1214 }
1215 folio_throttle_swaprate(new_folio, GFP_KERNEL);
1216
1217 return new_folio;
1218 }
1219
1220 static int
copy_pte_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pmd_t * dst_pmd,pmd_t * src_pmd,unsigned long addr,unsigned long end)1221 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1222 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1223 unsigned long end)
1224 {
1225 struct mm_struct *dst_mm = dst_vma->vm_mm;
1226 struct mm_struct *src_mm = src_vma->vm_mm;
1227 pte_t *orig_src_pte, *orig_dst_pte;
1228 pte_t *src_pte, *dst_pte;
1229 pmd_t dummy_pmdval;
1230 pte_t ptent;
1231 spinlock_t *src_ptl, *dst_ptl;
1232 int progress, max_nr, ret = 0;
1233 int rss[NR_MM_COUNTERS];
1234 softleaf_t entry = softleaf_mk_none();
1235 struct folio *prealloc = NULL;
1236 int nr;
1237
1238 again:
1239 progress = 0;
1240 init_rss_vec(rss);
1241
1242 /*
1243 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1244 * error handling here, assume that exclusive mmap_lock on dst and src
1245 * protects anon from unexpected THP transitions; with shmem and file
1246 * protected by mmap_lock-less collapse skipping areas with anon_vma
1247 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1248 * can remove such assumptions later, but this is good enough for now.
1249 */
1250 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1251 if (!dst_pte) {
1252 ret = -ENOMEM;
1253 goto out;
1254 }
1255
1256 /*
1257 * We already hold the exclusive mmap_lock, the copy_pte_range() and
1258 * retract_page_tables() are using vma->anon_vma to be exclusive, so
1259 * the PTE page is stable, and there is no need to get pmdval and do
1260 * pmd_same() check.
1261 */
1262 src_pte = pte_offset_map_rw_nolock(src_mm, src_pmd, addr, &dummy_pmdval,
1263 &src_ptl);
1264 if (!src_pte) {
1265 pte_unmap_unlock(dst_pte, dst_ptl);
1266 /* ret == 0 */
1267 goto out;
1268 }
1269 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1270 orig_src_pte = src_pte;
1271 orig_dst_pte = dst_pte;
1272 lazy_mmu_mode_enable();
1273
1274 do {
1275 nr = 1;
1276
1277 /*
1278 * We are holding two locks at this point - either of them
1279 * could generate latencies in another task on another CPU.
1280 */
1281 if (progress >= 32) {
1282 progress = 0;
1283 if (need_resched() ||
1284 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1285 break;
1286 }
1287 ptent = ptep_get(src_pte);
1288 if (pte_none(ptent)) {
1289 progress++;
1290 continue;
1291 }
1292 if (unlikely(!pte_present(ptent))) {
1293 ret = copy_nonpresent_pte(dst_mm, src_mm,
1294 dst_pte, src_pte,
1295 dst_vma, src_vma,
1296 addr, rss);
1297 if (ret == -EIO) {
1298 entry = softleaf_from_pte(ptep_get(src_pte));
1299 break;
1300 } else if (ret == -EBUSY) {
1301 break;
1302 } else if (!ret) {
1303 progress += 8;
1304 continue;
1305 }
1306 ptent = ptep_get(src_pte);
1307 VM_WARN_ON_ONCE(!pte_present(ptent));
1308
1309 /*
1310 * Device exclusive entry restored, continue by copying
1311 * the now present pte.
1312 */
1313 WARN_ON_ONCE(ret != -ENOENT);
1314 }
1315 /* copy_present_ptes() will clear `*prealloc' if consumed */
1316 max_nr = (end - addr) / PAGE_SIZE;
1317 ret = copy_present_ptes(dst_vma, src_vma, dst_pte, src_pte,
1318 ptent, addr, max_nr, rss, &prealloc);
1319 /*
1320 * If we need a pre-allocated page for this pte, drop the
1321 * locks, allocate, and try again.
1322 * If copy failed due to hwpoison in source page, break out.
1323 */
1324 if (unlikely(ret == -EAGAIN || ret == -EHWPOISON))
1325 break;
1326 if (unlikely(prealloc)) {
1327 /*
1328 * pre-alloc page cannot be reused by next time so as
1329 * to strictly follow mempolicy (e.g., alloc_page_vma()
1330 * will allocate page according to address). This
1331 * could only happen if one pinned pte changed.
1332 */
1333 folio_put(prealloc);
1334 prealloc = NULL;
1335 }
1336 nr = ret;
1337 progress += 8 * nr;
1338 } while (dst_pte += nr, src_pte += nr, addr += PAGE_SIZE * nr,
1339 addr != end);
1340
1341 lazy_mmu_mode_disable();
1342 pte_unmap_unlock(orig_src_pte, src_ptl);
1343 add_mm_rss_vec(dst_mm, rss);
1344 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1345 cond_resched();
1346
1347 if (ret == -EIO) {
1348 VM_WARN_ON_ONCE(!entry.val);
1349 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1350 ret = -ENOMEM;
1351 goto out;
1352 }
1353 entry.val = 0;
1354 } else if (ret == -EBUSY || unlikely(ret == -EHWPOISON)) {
1355 goto out;
1356 } else if (ret == -EAGAIN) {
1357 prealloc = folio_prealloc(src_mm, src_vma, addr, false);
1358 if (!prealloc)
1359 return -ENOMEM;
1360 } else if (ret < 0) {
1361 VM_WARN_ON_ONCE(1);
1362 }
1363
1364 /* We've captured and resolved the error. Reset, try again. */
1365 ret = 0;
1366
1367 if (addr != end)
1368 goto again;
1369 out:
1370 if (unlikely(prealloc))
1371 folio_put(prealloc);
1372 return ret;
1373 }
1374
1375 static inline int
copy_pmd_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pud_t * dst_pud,pud_t * src_pud,unsigned long addr,unsigned long end)1376 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1377 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1378 unsigned long end)
1379 {
1380 struct mm_struct *dst_mm = dst_vma->vm_mm;
1381 struct mm_struct *src_mm = src_vma->vm_mm;
1382 pmd_t *src_pmd, *dst_pmd;
1383 unsigned long next;
1384
1385 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1386 if (!dst_pmd)
1387 return -ENOMEM;
1388 src_pmd = pmd_offset(src_pud, addr);
1389 do {
1390 next = pmd_addr_end(addr, end);
1391 if (pmd_is_huge(*src_pmd)) {
1392 int err;
1393
1394 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1395 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1396 addr, dst_vma, src_vma);
1397 if (err == -ENOMEM)
1398 return -ENOMEM;
1399 if (!err)
1400 continue;
1401 /* fall through */
1402 }
1403 if (pmd_none_or_clear_bad(src_pmd))
1404 continue;
1405 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1406 addr, next))
1407 return -ENOMEM;
1408 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1409 return 0;
1410 }
1411
1412 static inline int
copy_pud_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,p4d_t * dst_p4d,p4d_t * src_p4d,unsigned long addr,unsigned long end)1413 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1414 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1415 unsigned long end)
1416 {
1417 struct mm_struct *dst_mm = dst_vma->vm_mm;
1418 struct mm_struct *src_mm = src_vma->vm_mm;
1419 pud_t *src_pud, *dst_pud;
1420 unsigned long next;
1421
1422 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1423 if (!dst_pud)
1424 return -ENOMEM;
1425 src_pud = pud_offset(src_p4d, addr);
1426 do {
1427 next = pud_addr_end(addr, end);
1428 if (pud_trans_huge(*src_pud)) {
1429 int err;
1430
1431 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1432 err = copy_huge_pud(dst_mm, src_mm,
1433 dst_pud, src_pud, addr, src_vma);
1434 if (err == -ENOMEM)
1435 return -ENOMEM;
1436 if (!err)
1437 continue;
1438 /* fall through */
1439 }
1440 if (pud_none_or_clear_bad(src_pud))
1441 continue;
1442 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1443 addr, next))
1444 return -ENOMEM;
1445 } while (dst_pud++, src_pud++, addr = next, addr != end);
1446 return 0;
1447 }
1448
1449 static inline int
copy_p4d_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,pgd_t * dst_pgd,pgd_t * src_pgd,unsigned long addr,unsigned long end)1450 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1451 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1452 unsigned long end)
1453 {
1454 struct mm_struct *dst_mm = dst_vma->vm_mm;
1455 p4d_t *src_p4d, *dst_p4d;
1456 unsigned long next;
1457
1458 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1459 if (!dst_p4d)
1460 return -ENOMEM;
1461 src_p4d = p4d_offset(src_pgd, addr);
1462 do {
1463 next = p4d_addr_end(addr, end);
1464 if (p4d_none_or_clear_bad(src_p4d))
1465 continue;
1466 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1467 addr, next))
1468 return -ENOMEM;
1469 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1470 return 0;
1471 }
1472
1473 /*
1474 * Return true if the vma needs to copy the pgtable during this fork(). Return
1475 * false when we can speed up fork() by allowing lazy page faults later until
1476 * when the child accesses the memory range.
1477 */
1478 static bool
vma_needs_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1479 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1480 {
1481 /*
1482 * We check against dst_vma as while sane VMA flags will have been
1483 * copied, VM_UFFD_WP may be set only on dst_vma.
1484 */
1485 if (dst_vma->vm_flags & VM_COPY_ON_FORK)
1486 return true;
1487 /*
1488 * The presence of an anon_vma indicates an anonymous VMA has page
1489 * tables which naturally cannot be reconstituted on page fault.
1490 */
1491 if (src_vma->anon_vma)
1492 return true;
1493
1494 /*
1495 * Don't copy ptes where a page fault will fill them correctly. Fork
1496 * becomes much lighter when there are big shared or private readonly
1497 * mappings. The tradeoff is that copy_page_range is more efficient
1498 * than faulting.
1499 */
1500 return false;
1501 }
1502
1503 int
copy_page_range(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1504 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1505 {
1506 pgd_t *src_pgd, *dst_pgd;
1507 unsigned long addr = src_vma->vm_start;
1508 unsigned long end = src_vma->vm_end;
1509 struct mm_struct *dst_mm = dst_vma->vm_mm;
1510 struct mm_struct *src_mm = src_vma->vm_mm;
1511 struct mmu_notifier_range range;
1512 unsigned long next;
1513 bool is_cow;
1514 int ret;
1515
1516 if (!vma_needs_copy(dst_vma, src_vma))
1517 return 0;
1518
1519 if (is_vm_hugetlb_page(src_vma))
1520 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1521
1522 /*
1523 * We need to invalidate the secondary MMU mappings only when
1524 * there could be a permission downgrade on the ptes of the
1525 * parent mm. And a permission downgrade will only happen if
1526 * is_cow_mapping() returns true.
1527 */
1528 is_cow = is_cow_mapping(src_vma->vm_flags);
1529
1530 if (is_cow) {
1531 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1532 0, src_mm, addr, end);
1533 mmu_notifier_invalidate_range_start(&range);
1534 /*
1535 * Disabling preemption is not needed for the write side, as
1536 * the read side doesn't spin, but goes to the mmap_lock.
1537 *
1538 * Use the raw variant of the seqcount_t write API to avoid
1539 * lockdep complaining about preemptibility.
1540 */
1541 vma_assert_write_locked(src_vma);
1542 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1543 }
1544
1545 ret = 0;
1546 dst_pgd = pgd_offset(dst_mm, addr);
1547 src_pgd = pgd_offset(src_mm, addr);
1548 do {
1549 next = pgd_addr_end(addr, end);
1550 if (pgd_none_or_clear_bad(src_pgd))
1551 continue;
1552 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1553 addr, next))) {
1554 ret = -ENOMEM;
1555 break;
1556 }
1557 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1558
1559 if (is_cow) {
1560 raw_write_seqcount_end(&src_mm->write_protect_seq);
1561 mmu_notifier_invalidate_range_end(&range);
1562 }
1563 return ret;
1564 }
1565
1566 /* Whether we should zap all COWed (private) pages too */
should_zap_cows(struct zap_details * details)1567 static inline bool should_zap_cows(struct zap_details *details)
1568 {
1569 /* By default, zap all pages */
1570 if (!details || details->reclaim_pt)
1571 return true;
1572
1573 /* Or, we zap COWed pages only if the caller wants to */
1574 return details->even_cows;
1575 }
1576
1577 /* Decides whether we should zap this folio with the folio pointer specified */
should_zap_folio(struct zap_details * details,struct folio * folio)1578 static inline bool should_zap_folio(struct zap_details *details,
1579 struct folio *folio)
1580 {
1581 /* If we can make a decision without *folio.. */
1582 if (should_zap_cows(details))
1583 return true;
1584
1585 /* Otherwise we should only zap non-anon folios */
1586 return !folio_test_anon(folio);
1587 }
1588
zap_drop_markers(struct zap_details * details)1589 static inline bool zap_drop_markers(struct zap_details *details)
1590 {
1591 if (!details)
1592 return false;
1593
1594 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1595 }
1596
1597 /*
1598 * This function makes sure that we'll replace the none pte with an uffd-wp
1599 * swap special pte marker when necessary. Must be with the pgtable lock held.
1600 *
1601 * Returns true if uffd-wp ptes was installed, false otherwise.
1602 */
1603 static inline bool
zap_install_uffd_wp_if_needed(struct vm_area_struct * vma,unsigned long addr,pte_t * pte,int nr,struct zap_details * details,pte_t pteval)1604 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1605 unsigned long addr, pte_t *pte, int nr,
1606 struct zap_details *details, pte_t pteval)
1607 {
1608 bool was_installed = false;
1609
1610 if (!uffd_supports_wp_marker())
1611 return false;
1612
1613 /* Zap on anonymous always means dropping everything */
1614 if (vma_is_anonymous(vma))
1615 return false;
1616
1617 if (zap_drop_markers(details))
1618 return false;
1619
1620 for (;;) {
1621 /* the PFN in the PTE is irrelevant. */
1622 if (pte_install_uffd_wp_if_needed(vma, addr, pte, pteval))
1623 was_installed = true;
1624 if (--nr == 0)
1625 break;
1626 pte++;
1627 addr += PAGE_SIZE;
1628 }
1629
1630 return was_installed;
1631 }
1632
zap_present_folio_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,struct folio * folio,struct page * page,pte_t * pte,pte_t ptent,unsigned int nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1633 static __always_inline void zap_present_folio_ptes(struct mmu_gather *tlb,
1634 struct vm_area_struct *vma, struct folio *folio,
1635 struct page *page, pte_t *pte, pte_t ptent, unsigned int nr,
1636 unsigned long addr, struct zap_details *details, int *rss,
1637 bool *force_flush, bool *force_break, bool *any_skipped)
1638 {
1639 struct mm_struct *mm = tlb->mm;
1640 bool delay_rmap = false;
1641
1642 if (!folio_test_anon(folio)) {
1643 ptent = get_and_clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1644 if (pte_dirty(ptent)) {
1645 folio_mark_dirty(folio);
1646 if (tlb_delay_rmap(tlb)) {
1647 delay_rmap = true;
1648 *force_flush = true;
1649 }
1650 }
1651 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1652 folio_mark_accessed(folio);
1653 rss[mm_counter(folio)] -= nr;
1654 } else {
1655 /* We don't need up-to-date accessed/dirty bits. */
1656 clear_full_ptes(mm, addr, pte, nr, tlb->fullmm);
1657 rss[MM_ANONPAGES] -= nr;
1658 }
1659 /* Checking a single PTE in a batch is sufficient. */
1660 arch_check_zapped_pte(vma, ptent);
1661 tlb_remove_tlb_entries(tlb, pte, nr, addr);
1662 if (unlikely(userfaultfd_pte_wp(vma, ptent)))
1663 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte,
1664 nr, details, ptent);
1665
1666 if (!delay_rmap) {
1667 folio_remove_rmap_ptes(folio, page, nr, vma);
1668
1669 if (unlikely(folio_mapcount(folio) < 0))
1670 print_bad_pte(vma, addr, ptent, page);
1671 }
1672 if (unlikely(__tlb_remove_folio_pages(tlb, page, nr, delay_rmap))) {
1673 *force_flush = true;
1674 *force_break = true;
1675 }
1676 }
1677
1678 /*
1679 * Zap or skip at least one present PTE, trying to batch-process subsequent
1680 * PTEs that map consecutive pages of the same folio.
1681 *
1682 * Returns the number of processed (skipped or zapped) PTEs (at least 1).
1683 */
zap_present_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1684 static inline int zap_present_ptes(struct mmu_gather *tlb,
1685 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1686 unsigned int max_nr, unsigned long addr,
1687 struct zap_details *details, int *rss, bool *force_flush,
1688 bool *force_break, bool *any_skipped)
1689 {
1690 struct mm_struct *mm = tlb->mm;
1691 struct folio *folio;
1692 struct page *page;
1693 int nr;
1694
1695 page = vm_normal_page(vma, addr, ptent);
1696 if (!page) {
1697 /* We don't need up-to-date accessed/dirty bits. */
1698 ptep_get_and_clear_full(mm, addr, pte, tlb->fullmm);
1699 arch_check_zapped_pte(vma, ptent);
1700 tlb_remove_tlb_entry(tlb, pte, addr);
1701 if (userfaultfd_pte_wp(vma, ptent))
1702 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr,
1703 pte, 1, details, ptent);
1704 ksm_might_unmap_zero_page(mm, ptent);
1705 return 1;
1706 }
1707
1708 folio = page_folio(page);
1709 if (unlikely(!should_zap_folio(details, folio))) {
1710 *any_skipped = true;
1711 return 1;
1712 }
1713
1714 /*
1715 * Make sure that the common "small folio" case is as fast as possible
1716 * by keeping the batching logic separate.
1717 */
1718 if (unlikely(folio_test_large(folio) && max_nr != 1)) {
1719 nr = folio_pte_batch(folio, pte, ptent, max_nr);
1720 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, nr,
1721 addr, details, rss, force_flush,
1722 force_break, any_skipped);
1723 return nr;
1724 }
1725 zap_present_folio_ptes(tlb, vma, folio, page, pte, ptent, 1, addr,
1726 details, rss, force_flush, force_break, any_skipped);
1727 return 1;
1728 }
1729
zap_nonpresent_ptes(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,pte_t ptent,unsigned int max_nr,unsigned long addr,struct zap_details * details,int * rss,bool * any_skipped)1730 static inline int zap_nonpresent_ptes(struct mmu_gather *tlb,
1731 struct vm_area_struct *vma, pte_t *pte, pte_t ptent,
1732 unsigned int max_nr, unsigned long addr,
1733 struct zap_details *details, int *rss, bool *any_skipped)
1734 {
1735 softleaf_t entry;
1736 int nr = 1;
1737
1738 *any_skipped = true;
1739 entry = softleaf_from_pte(ptent);
1740 if (softleaf_is_device_private(entry) ||
1741 softleaf_is_device_exclusive(entry)) {
1742 struct page *page = softleaf_to_page(entry);
1743 struct folio *folio = page_folio(page);
1744
1745 if (unlikely(!should_zap_folio(details, folio)))
1746 return 1;
1747 /*
1748 * Both device private/exclusive mappings should only
1749 * work with anonymous page so far, so we don't need to
1750 * consider uffd-wp bit when zap. For more information,
1751 * see zap_install_uffd_wp_if_needed().
1752 */
1753 WARN_ON_ONCE(!vma_is_anonymous(vma));
1754 rss[mm_counter(folio)]--;
1755 folio_remove_rmap_pte(folio, page, vma);
1756 folio_put(folio);
1757 } else if (softleaf_is_swap(entry)) {
1758 /* Genuine swap entries, hence a private anon pages */
1759 if (!should_zap_cows(details))
1760 return 1;
1761
1762 nr = swap_pte_batch(pte, max_nr, ptent);
1763 rss[MM_SWAPENTS] -= nr;
1764 swap_put_entries_direct(entry, nr);
1765 } else if (softleaf_is_migration(entry)) {
1766 struct folio *folio = softleaf_to_folio(entry);
1767
1768 if (!should_zap_folio(details, folio))
1769 return 1;
1770 rss[mm_counter(folio)]--;
1771 } else if (softleaf_is_uffd_wp_marker(entry)) {
1772 /*
1773 * For anon: always drop the marker; for file: only
1774 * drop the marker if explicitly requested.
1775 */
1776 if (!vma_is_anonymous(vma) && !zap_drop_markers(details))
1777 return 1;
1778 } else if (softleaf_is_guard_marker(entry)) {
1779 /*
1780 * Ordinary zapping should not remove guard PTE
1781 * markers. Only do so if we should remove PTE markers
1782 * in general.
1783 */
1784 if (!zap_drop_markers(details))
1785 return 1;
1786 } else if (softleaf_is_hwpoison(entry) ||
1787 softleaf_is_poison_marker(entry)) {
1788 if (!should_zap_cows(details))
1789 return 1;
1790 } else {
1791 /* We should have covered all the swap entry types */
1792 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
1793 WARN_ON_ONCE(1);
1794 }
1795 clear_not_present_full_ptes(vma->vm_mm, addr, pte, nr, tlb->fullmm);
1796 *any_skipped = zap_install_uffd_wp_if_needed(vma, addr, pte, nr, details, ptent);
1797
1798 return nr;
1799 }
1800
do_zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pte_t * pte,unsigned long addr,unsigned long end,struct zap_details * details,int * rss,bool * force_flush,bool * force_break,bool * any_skipped)1801 static inline int do_zap_pte_range(struct mmu_gather *tlb,
1802 struct vm_area_struct *vma, pte_t *pte,
1803 unsigned long addr, unsigned long end,
1804 struct zap_details *details, int *rss,
1805 bool *force_flush, bool *force_break,
1806 bool *any_skipped)
1807 {
1808 pte_t ptent = ptep_get(pte);
1809 int max_nr = (end - addr) / PAGE_SIZE;
1810 int nr = 0;
1811
1812 /* Skip all consecutive none ptes */
1813 if (pte_none(ptent)) {
1814 for (nr = 1; nr < max_nr; nr++) {
1815 ptent = ptep_get(pte + nr);
1816 if (!pte_none(ptent))
1817 break;
1818 }
1819 max_nr -= nr;
1820 if (!max_nr)
1821 return nr;
1822 pte += nr;
1823 addr += nr * PAGE_SIZE;
1824 }
1825
1826 if (pte_present(ptent))
1827 nr += zap_present_ptes(tlb, vma, pte, ptent, max_nr, addr,
1828 details, rss, force_flush, force_break,
1829 any_skipped);
1830 else
1831 nr += zap_nonpresent_ptes(tlb, vma, pte, ptent, max_nr, addr,
1832 details, rss, any_skipped);
1833
1834 return nr;
1835 }
1836
pte_table_reclaim_possible(unsigned long start,unsigned long end,struct zap_details * details)1837 static bool pte_table_reclaim_possible(unsigned long start, unsigned long end,
1838 struct zap_details *details)
1839 {
1840 if (!IS_ENABLED(CONFIG_PT_RECLAIM))
1841 return false;
1842 /* Only zap if we are allowed to and cover the full page table. */
1843 return details && details->reclaim_pt && (end - start >= PMD_SIZE);
1844 }
1845
zap_empty_pte_table(struct mm_struct * mm,pmd_t * pmd,spinlock_t * ptl,pmd_t * pmdval)1846 static bool zap_empty_pte_table(struct mm_struct *mm, pmd_t *pmd,
1847 spinlock_t *ptl, pmd_t *pmdval)
1848 {
1849 spinlock_t *pml = pmd_lockptr(mm, pmd);
1850
1851 if (ptl != pml && !spin_trylock(pml))
1852 return false;
1853
1854 *pmdval = pmdp_get(pmd);
1855 pmd_clear(pmd);
1856 if (ptl != pml)
1857 spin_unlock(pml);
1858 return true;
1859 }
1860
zap_pte_table_if_empty(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,pmd_t * pmdval)1861 static bool zap_pte_table_if_empty(struct mm_struct *mm, pmd_t *pmd,
1862 unsigned long addr, pmd_t *pmdval)
1863 {
1864 spinlock_t *pml, *ptl = NULL;
1865 pte_t *start_pte, *pte;
1866 int i;
1867
1868 pml = pmd_lock(mm, pmd);
1869 start_pte = pte_offset_map_rw_nolock(mm, pmd, addr, pmdval, &ptl);
1870 if (!start_pte)
1871 goto out_ptl;
1872 if (ptl != pml)
1873 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1874
1875 for (i = 0, pte = start_pte; i < PTRS_PER_PTE; i++, pte++) {
1876 if (!pte_none(ptep_get(pte)))
1877 goto out_ptl;
1878 }
1879 pte_unmap(start_pte);
1880
1881 pmd_clear(pmd);
1882
1883 if (ptl != pml)
1884 spin_unlock(ptl);
1885 spin_unlock(pml);
1886 return true;
1887 out_ptl:
1888 if (start_pte)
1889 pte_unmap_unlock(start_pte, ptl);
1890 if (ptl != pml)
1891 spin_unlock(pml);
1892 return false;
1893 }
1894
zap_pte_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,struct zap_details * details)1895 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1896 struct vm_area_struct *vma, pmd_t *pmd,
1897 unsigned long addr, unsigned long end,
1898 struct zap_details *details)
1899 {
1900 bool can_reclaim_pt = pte_table_reclaim_possible(addr, end, details);
1901 bool force_flush = false, force_break = false;
1902 struct mm_struct *mm = tlb->mm;
1903 int rss[NR_MM_COUNTERS];
1904 spinlock_t *ptl;
1905 pte_t *start_pte;
1906 pte_t *pte;
1907 pmd_t pmdval;
1908 unsigned long start = addr;
1909 bool direct_reclaim = true;
1910 int nr;
1911
1912 retry:
1913 tlb_change_page_size(tlb, PAGE_SIZE);
1914 init_rss_vec(rss);
1915 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1916 if (!pte)
1917 return addr;
1918
1919 flush_tlb_batched_pending(mm);
1920 lazy_mmu_mode_enable();
1921 do {
1922 bool any_skipped = false;
1923
1924 if (need_resched()) {
1925 direct_reclaim = false;
1926 break;
1927 }
1928
1929 nr = do_zap_pte_range(tlb, vma, pte, addr, end, details, rss,
1930 &force_flush, &force_break, &any_skipped);
1931 if (any_skipped)
1932 can_reclaim_pt = false;
1933 if (unlikely(force_break)) {
1934 addr += nr * PAGE_SIZE;
1935 direct_reclaim = false;
1936 break;
1937 }
1938 } while (pte += nr, addr += PAGE_SIZE * nr, addr != end);
1939
1940 /*
1941 * Fast path: try to hold the pmd lock and unmap the PTE page.
1942 *
1943 * If the pte lock was released midway (retry case), or if the attempt
1944 * to hold the pmd lock failed, then we need to recheck all pte entries
1945 * to ensure they are still none, thereby preventing the pte entries
1946 * from being repopulated by another thread.
1947 */
1948 if (can_reclaim_pt && direct_reclaim && addr == end)
1949 direct_reclaim = zap_empty_pte_table(mm, pmd, ptl, &pmdval);
1950
1951 add_mm_rss_vec(mm, rss);
1952 lazy_mmu_mode_disable();
1953
1954 /* Do the actual TLB flush before dropping ptl */
1955 if (force_flush) {
1956 tlb_flush_mmu_tlbonly(tlb);
1957 tlb_flush_rmaps(tlb, vma);
1958 }
1959 pte_unmap_unlock(start_pte, ptl);
1960
1961 /*
1962 * If we forced a TLB flush (either due to running out of
1963 * batch buffers or because we needed to flush dirty TLB
1964 * entries before releasing the ptl), free the batched
1965 * memory too. Come back again if we didn't do everything.
1966 */
1967 if (force_flush)
1968 tlb_flush_mmu(tlb);
1969
1970 if (addr != end) {
1971 cond_resched();
1972 force_flush = false;
1973 force_break = false;
1974 goto retry;
1975 }
1976
1977 if (can_reclaim_pt) {
1978 if (direct_reclaim || zap_pte_table_if_empty(mm, pmd, start, &pmdval)) {
1979 pte_free_tlb(tlb, pmd_pgtable(pmdval), addr);
1980 mm_dec_nr_ptes(mm);
1981 }
1982 }
1983
1984 return addr;
1985 }
1986
zap_pmd_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,struct zap_details * details)1987 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1988 struct vm_area_struct *vma, pud_t *pud,
1989 unsigned long addr, unsigned long end,
1990 struct zap_details *details)
1991 {
1992 pmd_t *pmd;
1993 unsigned long next;
1994
1995 pmd = pmd_offset(pud, addr);
1996 do {
1997 next = pmd_addr_end(addr, end);
1998 if (pmd_is_huge(*pmd)) {
1999 if (next - addr != HPAGE_PMD_SIZE)
2000 __split_huge_pmd(vma, pmd, addr, false);
2001 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
2002 addr = next;
2003 continue;
2004 }
2005 /* fall through */
2006 } else if (details && details->single_folio &&
2007 folio_test_pmd_mappable(details->single_folio) &&
2008 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
2009 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
2010 /*
2011 * Take and drop THP pmd lock so that we cannot return
2012 * prematurely, while zap_huge_pmd() has cleared *pmd,
2013 * but not yet decremented compound_mapcount().
2014 */
2015 spin_unlock(ptl);
2016 }
2017 if (pmd_none(*pmd)) {
2018 addr = next;
2019 continue;
2020 }
2021 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
2022 if (addr != next)
2023 pmd--;
2024 } while (pmd++, cond_resched(), addr != end);
2025
2026 return addr;
2027 }
2028
zap_pud_range(struct mmu_gather * tlb,struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,struct zap_details * details)2029 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
2030 struct vm_area_struct *vma, p4d_t *p4d,
2031 unsigned long addr, unsigned long end,
2032 struct zap_details *details)
2033 {
2034 pud_t *pud;
2035 unsigned long next;
2036
2037 pud = pud_offset(p4d, addr);
2038 do {
2039 next = pud_addr_end(addr, end);
2040 if (pud_trans_huge(*pud)) {
2041 if (next - addr != HPAGE_PUD_SIZE)
2042 split_huge_pud(vma, pud, addr);
2043 else if (zap_huge_pud(tlb, vma, pud, addr))
2044 goto next;
2045 /* fall through */
2046 }
2047 if (pud_none_or_clear_bad(pud))
2048 continue;
2049 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
2050 next:
2051 cond_resched();
2052 } while (pud++, addr = next, addr != end);
2053
2054 return addr;
2055 }
2056
zap_p4d_range(struct mmu_gather * tlb,struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,struct zap_details * details)2057 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
2058 struct vm_area_struct *vma, pgd_t *pgd,
2059 unsigned long addr, unsigned long end,
2060 struct zap_details *details)
2061 {
2062 p4d_t *p4d;
2063 unsigned long next;
2064
2065 p4d = p4d_offset(pgd, addr);
2066 do {
2067 next = p4d_addr_end(addr, end);
2068 if (p4d_none_or_clear_bad(p4d))
2069 continue;
2070 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
2071 } while (p4d++, addr = next, addr != end);
2072
2073 return addr;
2074 }
2075
unmap_page_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long addr,unsigned long end,struct zap_details * details)2076 void unmap_page_range(struct mmu_gather *tlb,
2077 struct vm_area_struct *vma,
2078 unsigned long addr, unsigned long end,
2079 struct zap_details *details)
2080 {
2081 pgd_t *pgd;
2082 unsigned long next;
2083
2084 BUG_ON(addr >= end);
2085 tlb_start_vma(tlb, vma);
2086 pgd = pgd_offset(vma->vm_mm, addr);
2087 do {
2088 next = pgd_addr_end(addr, end);
2089 if (pgd_none_or_clear_bad(pgd))
2090 continue;
2091 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
2092 } while (pgd++, addr = next, addr != end);
2093 tlb_end_vma(tlb, vma);
2094 }
2095
2096
unmap_single_vma(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)2097 static void unmap_single_vma(struct mmu_gather *tlb,
2098 struct vm_area_struct *vma, unsigned long start_addr,
2099 unsigned long end_addr, struct zap_details *details)
2100 {
2101 unsigned long start = max(vma->vm_start, start_addr);
2102 unsigned long end;
2103
2104 if (start >= vma->vm_end)
2105 return;
2106 end = min(vma->vm_end, end_addr);
2107 if (end <= vma->vm_start)
2108 return;
2109
2110 if (vma->vm_file)
2111 uprobe_munmap(vma, start, end);
2112
2113 if (start != end) {
2114 if (unlikely(is_vm_hugetlb_page(vma))) {
2115 /*
2116 * It is undesirable to test vma->vm_file as it
2117 * should be non-null for valid hugetlb area.
2118 * However, vm_file will be NULL in the error
2119 * cleanup path of mmap_region. When
2120 * hugetlbfs ->mmap method fails,
2121 * mmap_region() nullifies vma->vm_file
2122 * before calling this function to clean up.
2123 * Since no pte has actually been setup, it is
2124 * safe to do nothing in this case.
2125 */
2126 if (vma->vm_file) {
2127 zap_flags_t zap_flags = details ?
2128 details->zap_flags : 0;
2129 __unmap_hugepage_range(tlb, vma, start, end,
2130 NULL, zap_flags);
2131 }
2132 } else
2133 unmap_page_range(tlb, vma, start, end, details);
2134 }
2135 }
2136
2137 /**
2138 * unmap_vmas - unmap a range of memory covered by a list of vma's
2139 * @tlb: address of the caller's struct mmu_gather
2140 * @unmap: The unmap_desc
2141 *
2142 * Unmap all pages in the vma list.
2143 *
2144 * Only addresses between `start' and `end' will be unmapped.
2145 *
2146 * The VMA list must be sorted in ascending virtual address order.
2147 *
2148 * unmap_vmas() assumes that the caller will flush the whole unmapped address
2149 * range after unmap_vmas() returns. So the only responsibility here is to
2150 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
2151 * drops the lock and schedules.
2152 */
unmap_vmas(struct mmu_gather * tlb,struct unmap_desc * unmap)2153 void unmap_vmas(struct mmu_gather *tlb, struct unmap_desc *unmap)
2154 {
2155 struct vm_area_struct *vma;
2156 struct mmu_notifier_range range;
2157 struct zap_details details = {
2158 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
2159 /* Careful - we need to zap private pages too! */
2160 .even_cows = true,
2161 };
2162
2163 vma = unmap->first;
2164 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
2165 unmap->vma_start, unmap->vma_end);
2166 mmu_notifier_invalidate_range_start(&range);
2167 do {
2168 unsigned long start = unmap->vma_start;
2169 unsigned long end = unmap->vma_end;
2170 hugetlb_zap_begin(vma, &start, &end);
2171 unmap_single_vma(tlb, vma, start, end, &details);
2172 hugetlb_zap_end(vma, &details);
2173 vma = mas_find(unmap->mas, unmap->tree_end - 1);
2174 } while (vma);
2175 mmu_notifier_invalidate_range_end(&range);
2176 }
2177
2178 /**
2179 * zap_page_range_single_batched - remove user pages in a given range
2180 * @tlb: pointer to the caller's struct mmu_gather
2181 * @vma: vm_area_struct holding the applicable pages
2182 * @address: starting address of pages to remove
2183 * @size: number of bytes to remove
2184 * @details: details of shared cache invalidation
2185 *
2186 * @tlb shouldn't be NULL. The range must fit into one VMA. If @vma is for
2187 * hugetlb, @tlb is flushed and re-initialized by this function.
2188 */
zap_page_range_single_batched(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)2189 void zap_page_range_single_batched(struct mmu_gather *tlb,
2190 struct vm_area_struct *vma, unsigned long address,
2191 unsigned long size, struct zap_details *details)
2192 {
2193 const unsigned long end = address + size;
2194 struct mmu_notifier_range range;
2195
2196 VM_WARN_ON_ONCE(!tlb || tlb->mm != vma->vm_mm);
2197
2198 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
2199 address, end);
2200 hugetlb_zap_begin(vma, &range.start, &range.end);
2201 update_hiwater_rss(vma->vm_mm);
2202 mmu_notifier_invalidate_range_start(&range);
2203 /*
2204 * unmap 'address-end' not 'range.start-range.end' as range
2205 * could have been expanded for hugetlb pmd sharing.
2206 */
2207 unmap_single_vma(tlb, vma, address, end, details);
2208 mmu_notifier_invalidate_range_end(&range);
2209 if (is_vm_hugetlb_page(vma)) {
2210 /*
2211 * flush tlb and free resources before hugetlb_zap_end(), to
2212 * avoid concurrent page faults' allocation failure.
2213 */
2214 tlb_finish_mmu(tlb);
2215 hugetlb_zap_end(vma, details);
2216 tlb_gather_mmu(tlb, vma->vm_mm);
2217 }
2218 }
2219
2220 /**
2221 * zap_page_range_single - remove user pages in a given range
2222 * @vma: vm_area_struct holding the applicable pages
2223 * @address: starting address of pages to zap
2224 * @size: number of bytes to zap
2225 * @details: details of shared cache invalidation
2226 *
2227 * The range must fit into one VMA.
2228 */
zap_page_range_single(struct vm_area_struct * vma,unsigned long address,unsigned long size,struct zap_details * details)2229 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2230 unsigned long size, struct zap_details *details)
2231 {
2232 struct mmu_gather tlb;
2233
2234 tlb_gather_mmu(&tlb, vma->vm_mm);
2235 zap_page_range_single_batched(&tlb, vma, address, size, details);
2236 tlb_finish_mmu(&tlb);
2237 }
2238
2239 /**
2240 * zap_vma_ptes - remove ptes mapping the vma
2241 * @vma: vm_area_struct holding ptes to be zapped
2242 * @address: starting address of pages to zap
2243 * @size: number of bytes to zap
2244 *
2245 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
2246 *
2247 * The entire address range must be fully contained within the vma.
2248 *
2249 */
zap_vma_ptes(struct vm_area_struct * vma,unsigned long address,unsigned long size)2250 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2251 unsigned long size)
2252 {
2253 if (!range_in_vma(vma, address, address + size) ||
2254 !(vma->vm_flags & VM_PFNMAP))
2255 return;
2256
2257 zap_page_range_single(vma, address, size, NULL);
2258 }
2259 EXPORT_SYMBOL_GPL(zap_vma_ptes);
2260
walk_to_pmd(struct mm_struct * mm,unsigned long addr)2261 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
2262 {
2263 pgd_t *pgd;
2264 p4d_t *p4d;
2265 pud_t *pud;
2266 pmd_t *pmd;
2267
2268 pgd = pgd_offset(mm, addr);
2269 p4d = p4d_alloc(mm, pgd, addr);
2270 if (!p4d)
2271 return NULL;
2272 pud = pud_alloc(mm, p4d, addr);
2273 if (!pud)
2274 return NULL;
2275 pmd = pmd_alloc(mm, pud, addr);
2276 if (!pmd)
2277 return NULL;
2278
2279 VM_BUG_ON(pmd_trans_huge(*pmd));
2280 return pmd;
2281 }
2282
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2283 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2284 spinlock_t **ptl)
2285 {
2286 pmd_t *pmd = walk_to_pmd(mm, addr);
2287
2288 if (!pmd)
2289 return NULL;
2290 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2291 }
2292
vm_mixed_zeropage_allowed(struct vm_area_struct * vma)2293 static bool vm_mixed_zeropage_allowed(struct vm_area_struct *vma)
2294 {
2295 VM_WARN_ON_ONCE(vma->vm_flags & VM_PFNMAP);
2296 /*
2297 * Whoever wants to forbid the zeropage after some zeropages
2298 * might already have been mapped has to scan the page tables and
2299 * bail out on any zeropages. Zeropages in COW mappings can
2300 * be unshared using FAULT_FLAG_UNSHARE faults.
2301 */
2302 if (mm_forbids_zeropage(vma->vm_mm))
2303 return false;
2304 /* zeropages in COW mappings are common and unproblematic. */
2305 if (is_cow_mapping(vma->vm_flags))
2306 return true;
2307 /* Mappings that do not allow for writable PTEs are unproblematic. */
2308 if (!(vma->vm_flags & (VM_WRITE | VM_MAYWRITE)))
2309 return true;
2310 /*
2311 * Why not allow any VMA that has vm_ops->pfn_mkwrite? GUP could
2312 * find the shared zeropage and longterm-pin it, which would
2313 * be problematic as soon as the zeropage gets replaced by a different
2314 * page due to vma->vm_ops->pfn_mkwrite, because what's mapped would
2315 * now differ to what GUP looked up. FSDAX is incompatible to
2316 * FOLL_LONGTERM and VM_IO is incompatible to GUP completely (see
2317 * check_vma_flags).
2318 */
2319 return vma->vm_ops && vma->vm_ops->pfn_mkwrite &&
2320 (vma_is_fsdax(vma) || vma->vm_flags & VM_IO);
2321 }
2322
validate_page_before_insert(struct vm_area_struct * vma,struct page * page)2323 static int validate_page_before_insert(struct vm_area_struct *vma,
2324 struct page *page)
2325 {
2326 struct folio *folio = page_folio(page);
2327
2328 if (!folio_ref_count(folio))
2329 return -EINVAL;
2330 if (unlikely(is_zero_folio(folio))) {
2331 if (!vm_mixed_zeropage_allowed(vma))
2332 return -EINVAL;
2333 return 0;
2334 }
2335 if (folio_test_anon(folio) || page_has_type(page))
2336 return -EINVAL;
2337 flush_dcache_folio(folio);
2338 return 0;
2339 }
2340
insert_page_into_pte_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot,bool mkwrite)2341 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
2342 unsigned long addr, struct page *page,
2343 pgprot_t prot, bool mkwrite)
2344 {
2345 struct folio *folio = page_folio(page);
2346 pte_t pteval = ptep_get(pte);
2347
2348 if (!pte_none(pteval)) {
2349 if (!mkwrite)
2350 return -EBUSY;
2351
2352 /* see insert_pfn(). */
2353 if (pte_pfn(pteval) != page_to_pfn(page)) {
2354 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(pteval)));
2355 return -EFAULT;
2356 }
2357 pteval = maybe_mkwrite(pteval, vma);
2358 pteval = pte_mkyoung(pteval);
2359 if (ptep_set_access_flags(vma, addr, pte, pteval, 1))
2360 update_mmu_cache(vma, addr, pte);
2361 return 0;
2362 }
2363
2364 /* Ok, finally just insert the thing.. */
2365 pteval = mk_pte(page, prot);
2366 if (unlikely(is_zero_folio(folio))) {
2367 pteval = pte_mkspecial(pteval);
2368 } else {
2369 folio_get(folio);
2370 pteval = mk_pte(page, prot);
2371 if (mkwrite) {
2372 pteval = pte_mkyoung(pteval);
2373 pteval = maybe_mkwrite(pte_mkdirty(pteval), vma);
2374 }
2375 inc_mm_counter(vma->vm_mm, mm_counter_file(folio));
2376 folio_add_file_rmap_pte(folio, page, vma);
2377 }
2378 set_pte_at(vma->vm_mm, addr, pte, pteval);
2379 return 0;
2380 }
2381
insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page,pgprot_t prot,bool mkwrite)2382 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2383 struct page *page, pgprot_t prot, bool mkwrite)
2384 {
2385 int retval;
2386 pte_t *pte;
2387 spinlock_t *ptl;
2388
2389 retval = validate_page_before_insert(vma, page);
2390 if (retval)
2391 goto out;
2392 retval = -ENOMEM;
2393 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
2394 if (!pte)
2395 goto out;
2396 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot,
2397 mkwrite);
2398 pte_unmap_unlock(pte, ptl);
2399 out:
2400 return retval;
2401 }
2402
insert_page_in_batch_locked(struct vm_area_struct * vma,pte_t * pte,unsigned long addr,struct page * page,pgprot_t prot)2403 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
2404 unsigned long addr, struct page *page, pgprot_t prot)
2405 {
2406 int err;
2407
2408 err = validate_page_before_insert(vma, page);
2409 if (err)
2410 return err;
2411 return insert_page_into_pte_locked(vma, pte, addr, page, prot, false);
2412 }
2413
2414 /* insert_pages() amortizes the cost of spinlock operations
2415 * when inserting pages in a loop.
2416 */
insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num,pgprot_t prot)2417 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
2418 struct page **pages, unsigned long *num, pgprot_t prot)
2419 {
2420 pmd_t *pmd = NULL;
2421 pte_t *start_pte, *pte;
2422 spinlock_t *pte_lock;
2423 struct mm_struct *const mm = vma->vm_mm;
2424 unsigned long curr_page_idx = 0;
2425 unsigned long remaining_pages_total = *num;
2426 unsigned long pages_to_write_in_pmd;
2427 int ret;
2428 more:
2429 ret = -EFAULT;
2430 pmd = walk_to_pmd(mm, addr);
2431 if (!pmd)
2432 goto out;
2433
2434 pages_to_write_in_pmd = min_t(unsigned long,
2435 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
2436
2437 /* Allocate the PTE if necessary; takes PMD lock once only. */
2438 ret = -ENOMEM;
2439 if (pte_alloc(mm, pmd))
2440 goto out;
2441
2442 while (pages_to_write_in_pmd) {
2443 int pte_idx = 0;
2444 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
2445
2446 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
2447 if (!start_pte) {
2448 ret = -EFAULT;
2449 goto out;
2450 }
2451 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
2452 int err = insert_page_in_batch_locked(vma, pte,
2453 addr, pages[curr_page_idx], prot);
2454 if (unlikely(err)) {
2455 pte_unmap_unlock(start_pte, pte_lock);
2456 ret = err;
2457 remaining_pages_total -= pte_idx;
2458 goto out;
2459 }
2460 addr += PAGE_SIZE;
2461 ++curr_page_idx;
2462 }
2463 pte_unmap_unlock(start_pte, pte_lock);
2464 pages_to_write_in_pmd -= batch_size;
2465 remaining_pages_total -= batch_size;
2466 }
2467 if (remaining_pages_total)
2468 goto more;
2469 ret = 0;
2470 out:
2471 *num = remaining_pages_total;
2472 return ret;
2473 }
2474
2475 /**
2476 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
2477 * @vma: user vma to map to
2478 * @addr: target start user address of these pages
2479 * @pages: source kernel pages
2480 * @num: in: number of pages to map. out: number of pages that were *not*
2481 * mapped. (0 means all pages were successfully mapped).
2482 *
2483 * Preferred over vm_insert_page() when inserting multiple pages.
2484 *
2485 * In case of error, we may have mapped a subset of the provided
2486 * pages. It is the caller's responsibility to account for this case.
2487 *
2488 * The same restrictions apply as in vm_insert_page().
2489 */
vm_insert_pages(struct vm_area_struct * vma,unsigned long addr,struct page ** pages,unsigned long * num)2490 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2491 struct page **pages, unsigned long *num)
2492 {
2493 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
2494
2495 if (addr < vma->vm_start || end_addr >= vma->vm_end)
2496 return -EFAULT;
2497 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2498 BUG_ON(mmap_read_trylock(vma->vm_mm));
2499 BUG_ON(vma->vm_flags & VM_PFNMAP);
2500 vm_flags_set(vma, VM_MIXEDMAP);
2501 }
2502 /* Defer page refcount checking till we're about to map that page. */
2503 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
2504 }
2505 EXPORT_SYMBOL(vm_insert_pages);
2506
2507 /**
2508 * vm_insert_page - insert single page into user vma
2509 * @vma: user vma to map to
2510 * @addr: target user address of this page
2511 * @page: source kernel page
2512 *
2513 * This allows drivers to insert individual pages they've allocated
2514 * into a user vma. The zeropage is supported in some VMAs,
2515 * see vm_mixed_zeropage_allowed().
2516 *
2517 * The page has to be a nice clean _individual_ kernel allocation.
2518 * If you allocate a compound page, you need to have marked it as
2519 * such (__GFP_COMP), or manually just split the page up yourself
2520 * (see split_page()).
2521 *
2522 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2523 * took an arbitrary page protection parameter. This doesn't allow
2524 * that. Your vma protection will have to be set up correctly, which
2525 * means that if you want a shared writable mapping, you'd better
2526 * ask for a shared writable mapping!
2527 *
2528 * The page does not need to be reserved.
2529 *
2530 * Usually this function is called from f_op->mmap() handler
2531 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2532 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2533 * function from other places, for example from page-fault handler.
2534 *
2535 * Return: %0 on success, negative error code otherwise.
2536 */
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2537 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2538 struct page *page)
2539 {
2540 if (addr < vma->vm_start || addr >= vma->vm_end)
2541 return -EFAULT;
2542 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2543 BUG_ON(mmap_read_trylock(vma->vm_mm));
2544 BUG_ON(vma->vm_flags & VM_PFNMAP);
2545 vm_flags_set(vma, VM_MIXEDMAP);
2546 }
2547 return insert_page(vma, addr, page, vma->vm_page_prot, false);
2548 }
2549 EXPORT_SYMBOL(vm_insert_page);
2550
2551 /*
2552 * __vm_map_pages - maps range of kernel pages into user vma
2553 * @vma: user vma to map to
2554 * @pages: pointer to array of source kernel pages
2555 * @num: number of pages in page array
2556 * @offset: user's requested vm_pgoff
2557 *
2558 * This allows drivers to map range of kernel pages into a user vma.
2559 * The zeropage is supported in some VMAs, see
2560 * vm_mixed_zeropage_allowed().
2561 *
2562 * Return: 0 on success and error code otherwise.
2563 */
__vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num,unsigned long offset)2564 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2565 unsigned long num, unsigned long offset)
2566 {
2567 unsigned long count = vma_pages(vma);
2568 unsigned long uaddr = vma->vm_start;
2569
2570 /* Fail if the user requested offset is beyond the end of the object */
2571 if (offset >= num)
2572 return -ENXIO;
2573
2574 /* Fail if the user requested size exceeds available object size */
2575 if (count > num - offset)
2576 return -ENXIO;
2577
2578 return vm_insert_pages(vma, uaddr, pages + offset, &count);
2579 }
2580
2581 /**
2582 * vm_map_pages - maps range of kernel pages starts with non zero offset
2583 * @vma: user vma to map to
2584 * @pages: pointer to array of source kernel pages
2585 * @num: number of pages in page array
2586 *
2587 * Maps an object consisting of @num pages, catering for the user's
2588 * requested vm_pgoff
2589 *
2590 * If we fail to insert any page into the vma, the function will return
2591 * immediately leaving any previously inserted pages present. Callers
2592 * from the mmap handler may immediately return the error as their caller
2593 * will destroy the vma, removing any successfully inserted pages. Other
2594 * callers should make their own arrangements for calling unmap_region().
2595 *
2596 * Context: Process context. Called by mmap handlers.
2597 * Return: 0 on success and error code otherwise.
2598 */
vm_map_pages(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2599 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2600 unsigned long num)
2601 {
2602 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2603 }
2604 EXPORT_SYMBOL(vm_map_pages);
2605
2606 /**
2607 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2608 * @vma: user vma to map to
2609 * @pages: pointer to array of source kernel pages
2610 * @num: number of pages in page array
2611 *
2612 * Similar to vm_map_pages(), except that it explicitly sets the offset
2613 * to 0. This function is intended for the drivers that did not consider
2614 * vm_pgoff.
2615 *
2616 * Context: Process context. Called by mmap handlers.
2617 * Return: 0 on success and error code otherwise.
2618 */
vm_map_pages_zero(struct vm_area_struct * vma,struct page ** pages,unsigned long num)2619 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2620 unsigned long num)
2621 {
2622 return __vm_map_pages(vma, pages, num, 0);
2623 }
2624 EXPORT_SYMBOL(vm_map_pages_zero);
2625
insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t prot,bool mkwrite)2626 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2627 unsigned long pfn, pgprot_t prot, bool mkwrite)
2628 {
2629 struct mm_struct *mm = vma->vm_mm;
2630 pte_t *pte, entry;
2631 spinlock_t *ptl;
2632
2633 pte = get_locked_pte(mm, addr, &ptl);
2634 if (!pte)
2635 return VM_FAULT_OOM;
2636 entry = ptep_get(pte);
2637 if (!pte_none(entry)) {
2638 if (mkwrite) {
2639 /*
2640 * For read faults on private mappings the PFN passed
2641 * in may not match the PFN we have mapped if the
2642 * mapped PFN is a writeable COW page. In the mkwrite
2643 * case we are creating a writable PTE for a shared
2644 * mapping and we expect the PFNs to match. If they
2645 * don't match, we are likely racing with block
2646 * allocation and mapping invalidation so just skip the
2647 * update.
2648 */
2649 if (pte_pfn(entry) != pfn) {
2650 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2651 goto out_unlock;
2652 }
2653 entry = pte_mkyoung(entry);
2654 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2655 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2656 update_mmu_cache(vma, addr, pte);
2657 }
2658 goto out_unlock;
2659 }
2660
2661 /* Ok, finally just insert the thing.. */
2662 entry = pte_mkspecial(pfn_pte(pfn, prot));
2663
2664 if (mkwrite) {
2665 entry = pte_mkyoung(entry);
2666 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2667 }
2668
2669 set_pte_at(mm, addr, pte, entry);
2670 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2671
2672 out_unlock:
2673 pte_unmap_unlock(pte, ptl);
2674 return VM_FAULT_NOPAGE;
2675 }
2676
2677 /**
2678 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2679 * @vma: user vma to map to
2680 * @addr: target user address of this page
2681 * @pfn: source kernel pfn
2682 * @pgprot: pgprot flags for the inserted page
2683 *
2684 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2685 * to override pgprot on a per-page basis.
2686 *
2687 * This only makes sense for IO mappings, and it makes no sense for
2688 * COW mappings. In general, using multiple vmas is preferable;
2689 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2690 * impractical.
2691 *
2692 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2693 * caching- and encryption bits different than those of @vma->vm_page_prot,
2694 * because the caching- or encryption mode may not be known at mmap() time.
2695 *
2696 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2697 * to set caching and encryption bits for those vmas (except for COW pages).
2698 * This is ensured by core vm only modifying these page table entries using
2699 * functions that don't touch caching- or encryption bits, using pte_modify()
2700 * if needed. (See for example mprotect()).
2701 *
2702 * Also when new page-table entries are created, this is only done using the
2703 * fault() callback, and never using the value of vma->vm_page_prot,
2704 * except for page-table entries that point to anonymous pages as the result
2705 * of COW.
2706 *
2707 * Context: Process context. May allocate using %GFP_KERNEL.
2708 * Return: vm_fault_t value.
2709 */
vmf_insert_pfn_prot(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,pgprot_t pgprot)2710 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2711 unsigned long pfn, pgprot_t pgprot)
2712 {
2713 /*
2714 * Technically, architectures with pte_special can avoid all these
2715 * restrictions (same for remap_pfn_range). However we would like
2716 * consistency in testing and feature parity among all, so we should
2717 * try to keep these invariants in place for everybody.
2718 */
2719 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2720 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2721 (VM_PFNMAP|VM_MIXEDMAP));
2722 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2723 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2724
2725 if (addr < vma->vm_start || addr >= vma->vm_end)
2726 return VM_FAULT_SIGBUS;
2727
2728 if (!pfn_modify_allowed(pfn, pgprot))
2729 return VM_FAULT_SIGBUS;
2730
2731 pfnmap_setup_cachemode_pfn(pfn, &pgprot);
2732
2733 return insert_pfn(vma, addr, pfn, pgprot, false);
2734 }
2735 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2736
2737 /**
2738 * vmf_insert_pfn - insert single pfn into user vma
2739 * @vma: user vma to map to
2740 * @addr: target user address of this page
2741 * @pfn: source kernel pfn
2742 *
2743 * Similar to vm_insert_page, this allows drivers to insert individual pages
2744 * they've allocated into a user vma. Same comments apply.
2745 *
2746 * This function should only be called from a vm_ops->fault handler, and
2747 * in that case the handler should return the result of this function.
2748 *
2749 * vma cannot be a COW mapping.
2750 *
2751 * As this is called only for pages that do not currently exist, we
2752 * do not need to flush old virtual caches or the TLB.
2753 *
2754 * Context: Process context. May allocate using %GFP_KERNEL.
2755 * Return: vm_fault_t value.
2756 */
vmf_insert_pfn(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2757 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2758 unsigned long pfn)
2759 {
2760 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2761 }
2762 EXPORT_SYMBOL(vmf_insert_pfn);
2763
vm_mixed_ok(struct vm_area_struct * vma,unsigned long pfn,bool mkwrite)2764 static bool vm_mixed_ok(struct vm_area_struct *vma, unsigned long pfn,
2765 bool mkwrite)
2766 {
2767 if (unlikely(is_zero_pfn(pfn)) &&
2768 (mkwrite || !vm_mixed_zeropage_allowed(vma)))
2769 return false;
2770 /* these checks mirror the abort conditions in vm_normal_page */
2771 if (vma->vm_flags & VM_MIXEDMAP)
2772 return true;
2773 if (is_zero_pfn(pfn))
2774 return true;
2775 return false;
2776 }
2777
__vm_insert_mixed(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,bool mkwrite)2778 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2779 unsigned long addr, unsigned long pfn, bool mkwrite)
2780 {
2781 pgprot_t pgprot = vma->vm_page_prot;
2782 int err;
2783
2784 if (!vm_mixed_ok(vma, pfn, mkwrite))
2785 return VM_FAULT_SIGBUS;
2786
2787 if (addr < vma->vm_start || addr >= vma->vm_end)
2788 return VM_FAULT_SIGBUS;
2789
2790 pfnmap_setup_cachemode_pfn(pfn, &pgprot);
2791
2792 if (!pfn_modify_allowed(pfn, pgprot))
2793 return VM_FAULT_SIGBUS;
2794
2795 /*
2796 * If we don't have pte special, then we have to use the pfn_valid()
2797 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2798 * refcount the page if pfn_valid is true (hence insert_page rather
2799 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2800 * without pte special, it would there be refcounted as a normal page.
2801 */
2802 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pfn_valid(pfn)) {
2803 struct page *page;
2804
2805 /*
2806 * At this point we are committed to insert_page()
2807 * regardless of whether the caller specified flags that
2808 * result in pfn_t_has_page() == false.
2809 */
2810 page = pfn_to_page(pfn);
2811 err = insert_page(vma, addr, page, pgprot, mkwrite);
2812 } else {
2813 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2814 }
2815
2816 if (err == -ENOMEM)
2817 return VM_FAULT_OOM;
2818 if (err < 0 && err != -EBUSY)
2819 return VM_FAULT_SIGBUS;
2820
2821 return VM_FAULT_NOPAGE;
2822 }
2823
vmf_insert_page_mkwrite(struct vm_fault * vmf,struct page * page,bool write)2824 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
2825 bool write)
2826 {
2827 pgprot_t pgprot = vmf->vma->vm_page_prot;
2828 unsigned long addr = vmf->address;
2829 int err;
2830
2831 if (addr < vmf->vma->vm_start || addr >= vmf->vma->vm_end)
2832 return VM_FAULT_SIGBUS;
2833
2834 err = insert_page(vmf->vma, addr, page, pgprot, write);
2835 if (err == -ENOMEM)
2836 return VM_FAULT_OOM;
2837 if (err < 0 && err != -EBUSY)
2838 return VM_FAULT_SIGBUS;
2839
2840 return VM_FAULT_NOPAGE;
2841 }
2842 EXPORT_SYMBOL_GPL(vmf_insert_page_mkwrite);
2843
vmf_insert_mixed(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2844 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2845 unsigned long pfn)
2846 {
2847 return __vm_insert_mixed(vma, addr, pfn, false);
2848 }
2849 EXPORT_SYMBOL(vmf_insert_mixed);
2850
2851 /*
2852 * If the insertion of PTE failed because someone else already added a
2853 * different entry in the mean time, we treat that as success as we assume
2854 * the same entry was actually inserted.
2855 */
vmf_insert_mixed_mkwrite(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn)2856 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2857 unsigned long addr, unsigned long pfn)
2858 {
2859 return __vm_insert_mixed(vma, addr, pfn, true);
2860 }
2861
2862 /*
2863 * maps a range of physical memory into the requested pages. the old
2864 * mappings are removed. any references to nonexistent pages results
2865 * in null mappings (currently treated as "copy-on-access")
2866 */
remap_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2867 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2868 unsigned long addr, unsigned long end,
2869 unsigned long pfn, pgprot_t prot)
2870 {
2871 pte_t *pte, *mapped_pte;
2872 spinlock_t *ptl;
2873 int err = 0;
2874
2875 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2876 if (!pte)
2877 return -ENOMEM;
2878 lazy_mmu_mode_enable();
2879 do {
2880 BUG_ON(!pte_none(ptep_get(pte)));
2881 if (!pfn_modify_allowed(pfn, prot)) {
2882 err = -EACCES;
2883 break;
2884 }
2885 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2886 pfn++;
2887 } while (pte++, addr += PAGE_SIZE, addr != end);
2888 lazy_mmu_mode_disable();
2889 pte_unmap_unlock(mapped_pte, ptl);
2890 return err;
2891 }
2892
remap_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2893 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2894 unsigned long addr, unsigned long end,
2895 unsigned long pfn, pgprot_t prot)
2896 {
2897 pmd_t *pmd;
2898 unsigned long next;
2899 int err;
2900
2901 pfn -= addr >> PAGE_SHIFT;
2902 pmd = pmd_alloc(mm, pud, addr);
2903 if (!pmd)
2904 return -ENOMEM;
2905 VM_BUG_ON(pmd_trans_huge(*pmd));
2906 do {
2907 next = pmd_addr_end(addr, end);
2908 err = remap_pte_range(mm, pmd, addr, next,
2909 pfn + (addr >> PAGE_SHIFT), prot);
2910 if (err)
2911 return err;
2912 } while (pmd++, addr = next, addr != end);
2913 return 0;
2914 }
2915
remap_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2916 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2917 unsigned long addr, unsigned long end,
2918 unsigned long pfn, pgprot_t prot)
2919 {
2920 pud_t *pud;
2921 unsigned long next;
2922 int err;
2923
2924 pfn -= addr >> PAGE_SHIFT;
2925 pud = pud_alloc(mm, p4d, addr);
2926 if (!pud)
2927 return -ENOMEM;
2928 do {
2929 next = pud_addr_end(addr, end);
2930 err = remap_pmd_range(mm, pud, addr, next,
2931 pfn + (addr >> PAGE_SHIFT), prot);
2932 if (err)
2933 return err;
2934 } while (pud++, addr = next, addr != end);
2935 return 0;
2936 }
2937
remap_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned long pfn,pgprot_t prot)2938 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2939 unsigned long addr, unsigned long end,
2940 unsigned long pfn, pgprot_t prot)
2941 {
2942 p4d_t *p4d;
2943 unsigned long next;
2944 int err;
2945
2946 pfn -= addr >> PAGE_SHIFT;
2947 p4d = p4d_alloc(mm, pgd, addr);
2948 if (!p4d)
2949 return -ENOMEM;
2950 do {
2951 next = p4d_addr_end(addr, end);
2952 err = remap_pud_range(mm, p4d, addr, next,
2953 pfn + (addr >> PAGE_SHIFT), prot);
2954 if (err)
2955 return err;
2956 } while (p4d++, addr = next, addr != end);
2957 return 0;
2958 }
2959
get_remap_pgoff(bool is_cow,unsigned long addr,unsigned long end,unsigned long vm_start,unsigned long vm_end,unsigned long pfn,pgoff_t * vm_pgoff_p)2960 static int get_remap_pgoff(bool is_cow, unsigned long addr,
2961 unsigned long end, unsigned long vm_start, unsigned long vm_end,
2962 unsigned long pfn, pgoff_t *vm_pgoff_p)
2963 {
2964 /*
2965 * There's a horrible special case to handle copy-on-write
2966 * behaviour that some programs depend on. We mark the "original"
2967 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2968 * See vm_normal_page() for details.
2969 */
2970 if (is_cow) {
2971 if (addr != vm_start || end != vm_end)
2972 return -EINVAL;
2973 *vm_pgoff_p = pfn;
2974 }
2975
2976 return 0;
2977 }
2978
remap_pfn_range_internal(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2979 static int remap_pfn_range_internal(struct vm_area_struct *vma, unsigned long addr,
2980 unsigned long pfn, unsigned long size, pgprot_t prot)
2981 {
2982 pgd_t *pgd;
2983 unsigned long next;
2984 unsigned long end = addr + PAGE_ALIGN(size);
2985 struct mm_struct *mm = vma->vm_mm;
2986 int err;
2987
2988 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2989 return -EINVAL;
2990
2991 VM_WARN_ON_ONCE(!vma_test_all_flags_mask(vma, VMA_REMAP_FLAGS));
2992
2993 BUG_ON(addr >= end);
2994 pfn -= addr >> PAGE_SHIFT;
2995 pgd = pgd_offset(mm, addr);
2996 flush_cache_range(vma, addr, end);
2997 do {
2998 next = pgd_addr_end(addr, end);
2999 err = remap_p4d_range(mm, pgd, addr, next,
3000 pfn + (addr >> PAGE_SHIFT), prot);
3001 if (err)
3002 return err;
3003 } while (pgd++, addr = next, addr != end);
3004
3005 return 0;
3006 }
3007
3008 /*
3009 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
3010 * must have pre-validated the caching bits of the pgprot_t.
3011 */
remap_pfn_range_notrack(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3012 static int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3013 unsigned long pfn, unsigned long size, pgprot_t prot)
3014 {
3015 int error = remap_pfn_range_internal(vma, addr, pfn, size, prot);
3016
3017 if (!error)
3018 return 0;
3019
3020 /*
3021 * A partial pfn range mapping is dangerous: it does not
3022 * maintain page reference counts, and callers may free
3023 * pages due to the error. So zap it early.
3024 */
3025 zap_page_range_single(vma, addr, size, NULL);
3026 return error;
3027 }
3028
3029 #ifdef __HAVE_PFNMAP_TRACKING
pfnmap_track_ctx_alloc(unsigned long pfn,unsigned long size,pgprot_t * prot)3030 static inline struct pfnmap_track_ctx *pfnmap_track_ctx_alloc(unsigned long pfn,
3031 unsigned long size, pgprot_t *prot)
3032 {
3033 struct pfnmap_track_ctx *ctx;
3034
3035 if (pfnmap_track(pfn, size, prot))
3036 return ERR_PTR(-EINVAL);
3037
3038 ctx = kmalloc_obj(*ctx, GFP_KERNEL);
3039 if (unlikely(!ctx)) {
3040 pfnmap_untrack(pfn, size);
3041 return ERR_PTR(-ENOMEM);
3042 }
3043
3044 ctx->pfn = pfn;
3045 ctx->size = size;
3046 kref_init(&ctx->kref);
3047 return ctx;
3048 }
3049
pfnmap_track_ctx_release(struct kref * ref)3050 void pfnmap_track_ctx_release(struct kref *ref)
3051 {
3052 struct pfnmap_track_ctx *ctx = container_of(ref, struct pfnmap_track_ctx, kref);
3053
3054 pfnmap_untrack(ctx->pfn, ctx->size);
3055 kfree(ctx);
3056 }
3057
remap_pfn_range_track(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3058 static int remap_pfn_range_track(struct vm_area_struct *vma, unsigned long addr,
3059 unsigned long pfn, unsigned long size, pgprot_t prot)
3060 {
3061 struct pfnmap_track_ctx *ctx = NULL;
3062 int err;
3063
3064 size = PAGE_ALIGN(size);
3065
3066 /*
3067 * If we cover the full VMA, we'll perform actual tracking, and
3068 * remember to untrack when the last reference to our tracking
3069 * context from a VMA goes away. We'll keep tracking the whole pfn
3070 * range even during VMA splits and partial unmapping.
3071 *
3072 * If we only cover parts of the VMA, we'll only setup the cachemode
3073 * in the pgprot for the pfn range.
3074 */
3075 if (addr == vma->vm_start && addr + size == vma->vm_end) {
3076 if (vma->pfnmap_track_ctx)
3077 return -EINVAL;
3078 ctx = pfnmap_track_ctx_alloc(pfn, size, &prot);
3079 if (IS_ERR(ctx))
3080 return PTR_ERR(ctx);
3081 } else if (pfnmap_setup_cachemode(pfn, size, &prot)) {
3082 return -EINVAL;
3083 }
3084
3085 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
3086 if (ctx) {
3087 if (err)
3088 kref_put(&ctx->kref, pfnmap_track_ctx_release);
3089 else
3090 vma->pfnmap_track_ctx = ctx;
3091 }
3092 return err;
3093 }
3094
do_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3095 static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3096 unsigned long pfn, unsigned long size, pgprot_t prot)
3097 {
3098 return remap_pfn_range_track(vma, addr, pfn, size, prot);
3099 }
3100 #else
do_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3101 static int do_remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3102 unsigned long pfn, unsigned long size, pgprot_t prot)
3103 {
3104 return remap_pfn_range_notrack(vma, addr, pfn, size, prot);
3105 }
3106 #endif
3107
remap_pfn_range_prepare(struct vm_area_desc * desc,unsigned long pfn)3108 void remap_pfn_range_prepare(struct vm_area_desc *desc, unsigned long pfn)
3109 {
3110 /*
3111 * We set addr=VMA start, end=VMA end here, so this won't fail, but we
3112 * check it again on complete and will fail there if specified addr is
3113 * invalid.
3114 */
3115 get_remap_pgoff(vma_desc_is_cow_mapping(desc), desc->start, desc->end,
3116 desc->start, desc->end, pfn, &desc->pgoff);
3117 vma_desc_set_flags_mask(desc, VMA_REMAP_FLAGS);
3118 }
3119
remap_pfn_range_prepare_vma(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size)3120 static int remap_pfn_range_prepare_vma(struct vm_area_struct *vma, unsigned long addr,
3121 unsigned long pfn, unsigned long size)
3122 {
3123 unsigned long end = addr + PAGE_ALIGN(size);
3124 int err;
3125
3126 err = get_remap_pgoff(is_cow_mapping(vma->vm_flags), addr, end,
3127 vma->vm_start, vma->vm_end, pfn, &vma->vm_pgoff);
3128 if (err)
3129 return err;
3130
3131 vma_set_flags_mask(vma, VMA_REMAP_FLAGS);
3132 return 0;
3133 }
3134
3135 /**
3136 * remap_pfn_range - remap kernel memory to userspace
3137 * @vma: user vma to map to
3138 * @addr: target page aligned user address to start at
3139 * @pfn: page frame number of kernel physical memory address
3140 * @size: size of mapping area
3141 * @prot: page protection flags for this mapping
3142 *
3143 * Note: this is only safe if the mm semaphore is held when called.
3144 *
3145 * Return: %0 on success, negative error code otherwise.
3146 */
remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3147 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
3148 unsigned long pfn, unsigned long size, pgprot_t prot)
3149 {
3150 int err;
3151
3152 err = remap_pfn_range_prepare_vma(vma, addr, pfn, size);
3153 if (err)
3154 return err;
3155
3156 return do_remap_pfn_range(vma, addr, pfn, size, prot);
3157 }
3158 EXPORT_SYMBOL(remap_pfn_range);
3159
remap_pfn_range_complete(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3160 int remap_pfn_range_complete(struct vm_area_struct *vma, unsigned long addr,
3161 unsigned long pfn, unsigned long size, pgprot_t prot)
3162 {
3163 return do_remap_pfn_range(vma, addr, pfn, size, prot);
3164 }
3165
3166 /**
3167 * vm_iomap_memory - remap memory to userspace
3168 * @vma: user vma to map to
3169 * @start: start of the physical memory to be mapped
3170 * @len: size of area
3171 *
3172 * This is a simplified io_remap_pfn_range() for common driver use. The
3173 * driver just needs to give us the physical memory range to be mapped,
3174 * we'll figure out the rest from the vma information.
3175 *
3176 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
3177 * whatever write-combining details or similar.
3178 *
3179 * Return: %0 on success, negative error code otherwise.
3180 */
vm_iomap_memory(struct vm_area_struct * vma,phys_addr_t start,unsigned long len)3181 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
3182 {
3183 unsigned long vm_len, pfn, pages;
3184
3185 /* Check that the physical memory area passed in looks valid */
3186 if (start + len < start)
3187 return -EINVAL;
3188 /*
3189 * You *really* shouldn't map things that aren't page-aligned,
3190 * but we've historically allowed it because IO memory might
3191 * just have smaller alignment.
3192 */
3193 len += start & ~PAGE_MASK;
3194 pfn = start >> PAGE_SHIFT;
3195 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
3196 if (pfn + pages < pfn)
3197 return -EINVAL;
3198
3199 /* We start the mapping 'vm_pgoff' pages into the area */
3200 if (vma->vm_pgoff > pages)
3201 return -EINVAL;
3202 pfn += vma->vm_pgoff;
3203 pages -= vma->vm_pgoff;
3204
3205 /* Can we fit all of the mapping? */
3206 vm_len = vma->vm_end - vma->vm_start;
3207 if (vm_len >> PAGE_SHIFT > pages)
3208 return -EINVAL;
3209
3210 /* Ok, let it rip */
3211 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
3212 }
3213 EXPORT_SYMBOL(vm_iomap_memory);
3214
apply_to_pte_range(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3215 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
3216 unsigned long addr, unsigned long end,
3217 pte_fn_t fn, void *data, bool create,
3218 pgtbl_mod_mask *mask)
3219 {
3220 pte_t *pte, *mapped_pte;
3221 int err = 0;
3222 spinlock_t *ptl;
3223
3224 if (create) {
3225 mapped_pte = pte = (mm == &init_mm) ?
3226 pte_alloc_kernel_track(pmd, addr, mask) :
3227 pte_alloc_map_lock(mm, pmd, addr, &ptl);
3228 if (!pte)
3229 return -ENOMEM;
3230 } else {
3231 mapped_pte = pte = (mm == &init_mm) ?
3232 pte_offset_kernel(pmd, addr) :
3233 pte_offset_map_lock(mm, pmd, addr, &ptl);
3234 if (!pte)
3235 return -EINVAL;
3236 }
3237
3238 lazy_mmu_mode_enable();
3239
3240 if (fn) {
3241 do {
3242 if (create || !pte_none(ptep_get(pte))) {
3243 err = fn(pte, addr, data);
3244 if (err)
3245 break;
3246 }
3247 } while (pte++, addr += PAGE_SIZE, addr != end);
3248 }
3249 *mask |= PGTBL_PTE_MODIFIED;
3250
3251 lazy_mmu_mode_disable();
3252
3253 if (mm != &init_mm)
3254 pte_unmap_unlock(mapped_pte, ptl);
3255 return err;
3256 }
3257
apply_to_pmd_range(struct mm_struct * mm,pud_t * pud,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3258 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
3259 unsigned long addr, unsigned long end,
3260 pte_fn_t fn, void *data, bool create,
3261 pgtbl_mod_mask *mask)
3262 {
3263 pmd_t *pmd;
3264 unsigned long next;
3265 int err = 0;
3266
3267 BUG_ON(pud_leaf(*pud));
3268
3269 if (create) {
3270 pmd = pmd_alloc_track(mm, pud, addr, mask);
3271 if (!pmd)
3272 return -ENOMEM;
3273 } else {
3274 pmd = pmd_offset(pud, addr);
3275 }
3276 do {
3277 next = pmd_addr_end(addr, end);
3278 if (pmd_none(*pmd) && !create)
3279 continue;
3280 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
3281 return -EINVAL;
3282 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
3283 if (!create)
3284 continue;
3285 pmd_clear_bad(pmd);
3286 }
3287 err = apply_to_pte_range(mm, pmd, addr, next,
3288 fn, data, create, mask);
3289 if (err)
3290 break;
3291 } while (pmd++, addr = next, addr != end);
3292
3293 return err;
3294 }
3295
apply_to_pud_range(struct mm_struct * mm,p4d_t * p4d,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3296 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
3297 unsigned long addr, unsigned long end,
3298 pte_fn_t fn, void *data, bool create,
3299 pgtbl_mod_mask *mask)
3300 {
3301 pud_t *pud;
3302 unsigned long next;
3303 int err = 0;
3304
3305 if (create) {
3306 pud = pud_alloc_track(mm, p4d, addr, mask);
3307 if (!pud)
3308 return -ENOMEM;
3309 } else {
3310 pud = pud_offset(p4d, addr);
3311 }
3312 do {
3313 next = pud_addr_end(addr, end);
3314 if (pud_none(*pud) && !create)
3315 continue;
3316 if (WARN_ON_ONCE(pud_leaf(*pud)))
3317 return -EINVAL;
3318 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
3319 if (!create)
3320 continue;
3321 pud_clear_bad(pud);
3322 }
3323 err = apply_to_pmd_range(mm, pud, addr, next,
3324 fn, data, create, mask);
3325 if (err)
3326 break;
3327 } while (pud++, addr = next, addr != end);
3328
3329 return err;
3330 }
3331
apply_to_p4d_range(struct mm_struct * mm,pgd_t * pgd,unsigned long addr,unsigned long end,pte_fn_t fn,void * data,bool create,pgtbl_mod_mask * mask)3332 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
3333 unsigned long addr, unsigned long end,
3334 pte_fn_t fn, void *data, bool create,
3335 pgtbl_mod_mask *mask)
3336 {
3337 p4d_t *p4d;
3338 unsigned long next;
3339 int err = 0;
3340
3341 if (create) {
3342 p4d = p4d_alloc_track(mm, pgd, addr, mask);
3343 if (!p4d)
3344 return -ENOMEM;
3345 } else {
3346 p4d = p4d_offset(pgd, addr);
3347 }
3348 do {
3349 next = p4d_addr_end(addr, end);
3350 if (p4d_none(*p4d) && !create)
3351 continue;
3352 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
3353 return -EINVAL;
3354 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
3355 if (!create)
3356 continue;
3357 p4d_clear_bad(p4d);
3358 }
3359 err = apply_to_pud_range(mm, p4d, addr, next,
3360 fn, data, create, mask);
3361 if (err)
3362 break;
3363 } while (p4d++, addr = next, addr != end);
3364
3365 return err;
3366 }
3367
__apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data,bool create)3368 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3369 unsigned long size, pte_fn_t fn,
3370 void *data, bool create)
3371 {
3372 pgd_t *pgd;
3373 unsigned long start = addr, next;
3374 unsigned long end = addr + size;
3375 pgtbl_mod_mask mask = 0;
3376 int err = 0;
3377
3378 if (WARN_ON(addr >= end))
3379 return -EINVAL;
3380
3381 pgd = pgd_offset(mm, addr);
3382 do {
3383 next = pgd_addr_end(addr, end);
3384 if (pgd_none(*pgd) && !create)
3385 continue;
3386 if (WARN_ON_ONCE(pgd_leaf(*pgd))) {
3387 err = -EINVAL;
3388 break;
3389 }
3390 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
3391 if (!create)
3392 continue;
3393 pgd_clear_bad(pgd);
3394 }
3395 err = apply_to_p4d_range(mm, pgd, addr, next,
3396 fn, data, create, &mask);
3397 if (err)
3398 break;
3399 } while (pgd++, addr = next, addr != end);
3400
3401 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
3402 arch_sync_kernel_mappings(start, start + size);
3403
3404 return err;
3405 }
3406
3407 /*
3408 * Scan a region of virtual memory, filling in page tables as necessary
3409 * and calling a provided function on each leaf page table.
3410 */
apply_to_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3411 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
3412 unsigned long size, pte_fn_t fn, void *data)
3413 {
3414 return __apply_to_page_range(mm, addr, size, fn, data, true);
3415 }
3416 EXPORT_SYMBOL_GPL(apply_to_page_range);
3417
3418 /*
3419 * Scan a region of virtual memory, calling a provided function on
3420 * each leaf page table where it exists.
3421 *
3422 * Unlike apply_to_page_range, this does _not_ fill in page tables
3423 * where they are absent.
3424 */
apply_to_existing_page_range(struct mm_struct * mm,unsigned long addr,unsigned long size,pte_fn_t fn,void * data)3425 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
3426 unsigned long size, pte_fn_t fn, void *data)
3427 {
3428 return __apply_to_page_range(mm, addr, size, fn, data, false);
3429 }
3430
3431 /*
3432 * handle_pte_fault chooses page fault handler according to an entry which was
3433 * read non-atomically. Before making any commitment, on those architectures
3434 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
3435 * parts, do_swap_page must check under lock before unmapping the pte and
3436 * proceeding (but do_wp_page is only called after already making such a check;
3437 * and do_anonymous_page can safely check later on).
3438 */
pte_unmap_same(struct vm_fault * vmf)3439 static inline int pte_unmap_same(struct vm_fault *vmf)
3440 {
3441 int same = 1;
3442 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
3443 if (sizeof(pte_t) > sizeof(unsigned long)) {
3444 spin_lock(vmf->ptl);
3445 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
3446 spin_unlock(vmf->ptl);
3447 }
3448 #endif
3449 pte_unmap(vmf->pte);
3450 vmf->pte = NULL;
3451 return same;
3452 }
3453
3454 /*
3455 * Return:
3456 * 0: copied succeeded
3457 * -EHWPOISON: copy failed due to hwpoison in source page
3458 * -EAGAIN: copied failed (some other reason)
3459 */
__wp_page_copy_user(struct page * dst,struct page * src,struct vm_fault * vmf)3460 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
3461 struct vm_fault *vmf)
3462 {
3463 int ret;
3464 void *kaddr;
3465 void __user *uaddr;
3466 struct vm_area_struct *vma = vmf->vma;
3467 struct mm_struct *mm = vma->vm_mm;
3468 unsigned long addr = vmf->address;
3469
3470 if (likely(src)) {
3471 if (copy_mc_user_highpage(dst, src, addr, vma))
3472 return -EHWPOISON;
3473 return 0;
3474 }
3475
3476 /*
3477 * If the source page was a PFN mapping, we don't have
3478 * a "struct page" for it. We do a best-effort copy by
3479 * just copying from the original user address. If that
3480 * fails, we just zero-fill it. Live with it.
3481 */
3482 kaddr = kmap_local_page(dst);
3483 pagefault_disable();
3484 uaddr = (void __user *)(addr & PAGE_MASK);
3485
3486 /*
3487 * On architectures with software "accessed" bits, we would
3488 * take a double page fault, so mark it accessed here.
3489 */
3490 vmf->pte = NULL;
3491 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
3492 pte_t entry;
3493
3494 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3495 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3496 /*
3497 * Other thread has already handled the fault
3498 * and update local tlb only
3499 */
3500 if (vmf->pte)
3501 update_mmu_tlb(vma, addr, vmf->pte);
3502 ret = -EAGAIN;
3503 goto pte_unlock;
3504 }
3505
3506 entry = pte_mkyoung(vmf->orig_pte);
3507 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
3508 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
3509 }
3510
3511 /*
3512 * This really shouldn't fail, because the page is there
3513 * in the page tables. But it might just be unreadable,
3514 * in which case we just give up and fill the result with
3515 * zeroes.
3516 */
3517 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3518 if (vmf->pte)
3519 goto warn;
3520
3521 /* Re-validate under PTL if the page is still mapped */
3522 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
3523 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3524 /* The PTE changed under us, update local tlb */
3525 if (vmf->pte)
3526 update_mmu_tlb(vma, addr, vmf->pte);
3527 ret = -EAGAIN;
3528 goto pte_unlock;
3529 }
3530
3531 /*
3532 * The same page can be mapped back since last copy attempt.
3533 * Try to copy again under PTL.
3534 */
3535 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3536 /*
3537 * Give a warn in case there can be some obscure
3538 * use-case
3539 */
3540 warn:
3541 WARN_ON_ONCE(1);
3542 clear_page(kaddr);
3543 }
3544 }
3545
3546 ret = 0;
3547
3548 pte_unlock:
3549 if (vmf->pte)
3550 pte_unmap_unlock(vmf->pte, vmf->ptl);
3551 pagefault_enable();
3552 kunmap_local(kaddr);
3553 flush_dcache_page(dst);
3554
3555 return ret;
3556 }
3557
__get_fault_gfp_mask(struct vm_area_struct * vma)3558 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
3559 {
3560 struct file *vm_file = vma->vm_file;
3561
3562 if (vm_file)
3563 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
3564
3565 /*
3566 * Special mappings (e.g. VDSO) do not have any file so fake
3567 * a default GFP_KERNEL for them.
3568 */
3569 return GFP_KERNEL;
3570 }
3571
3572 /*
3573 * Notify the address space that the page is about to become writable so that
3574 * it can prohibit this or wait for the page to get into an appropriate state.
3575 *
3576 * We do this without the lock held, so that it can sleep if it needs to.
3577 */
do_page_mkwrite(struct vm_fault * vmf,struct folio * folio)3578 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
3579 {
3580 vm_fault_t ret;
3581 unsigned int old_flags = vmf->flags;
3582
3583 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3584
3585 if (vmf->vma->vm_file &&
3586 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
3587 return VM_FAULT_SIGBUS;
3588
3589 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
3590 /* Restore original flags so that caller is not surprised */
3591 vmf->flags = old_flags;
3592 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
3593 return ret;
3594 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3595 folio_lock(folio);
3596 if (!folio->mapping) {
3597 folio_unlock(folio);
3598 return 0; /* retry */
3599 }
3600 ret |= VM_FAULT_LOCKED;
3601 } else
3602 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3603 return ret;
3604 }
3605
3606 /*
3607 * Handle dirtying of a page in shared file mapping on a write fault.
3608 *
3609 * The function expects the page to be locked and unlocks it.
3610 */
fault_dirty_shared_page(struct vm_fault * vmf)3611 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3612 {
3613 struct vm_area_struct *vma = vmf->vma;
3614 struct address_space *mapping;
3615 struct folio *folio = page_folio(vmf->page);
3616 bool dirtied;
3617 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3618
3619 dirtied = folio_mark_dirty(folio);
3620 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
3621 /*
3622 * Take a local copy of the address_space - folio.mapping may be zeroed
3623 * by truncate after folio_unlock(). The address_space itself remains
3624 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
3625 * release semantics to prevent the compiler from undoing this copying.
3626 */
3627 mapping = folio_raw_mapping(folio);
3628 folio_unlock(folio);
3629
3630 if (!page_mkwrite)
3631 file_update_time(vma->vm_file);
3632
3633 /*
3634 * Throttle page dirtying rate down to writeback speed.
3635 *
3636 * mapping may be NULL here because some device drivers do not
3637 * set page.mapping but still dirty their pages
3638 *
3639 * Drop the mmap_lock before waiting on IO, if we can. The file
3640 * is pinning the mapping, as per above.
3641 */
3642 if ((dirtied || page_mkwrite) && mapping) {
3643 struct file *fpin;
3644
3645 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3646 balance_dirty_pages_ratelimited(mapping);
3647 if (fpin) {
3648 fput(fpin);
3649 return VM_FAULT_COMPLETED;
3650 }
3651 }
3652
3653 return 0;
3654 }
3655
3656 /*
3657 * Handle write page faults for pages that can be reused in the current vma
3658 *
3659 * This can happen either due to the mapping being with the VM_SHARED flag,
3660 * or due to us being the last reference standing to the page. In either
3661 * case, all we need to do here is to mark the page as writable and update
3662 * any related book-keeping.
3663 */
wp_page_reuse(struct vm_fault * vmf,struct folio * folio)3664 static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
3665 __releases(vmf->ptl)
3666 {
3667 struct vm_area_struct *vma = vmf->vma;
3668 pte_t entry;
3669
3670 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3671 VM_WARN_ON(is_zero_pfn(pte_pfn(vmf->orig_pte)));
3672
3673 if (folio) {
3674 VM_BUG_ON(folio_test_anon(folio) &&
3675 !PageAnonExclusive(vmf->page));
3676 /*
3677 * Clear the folio's cpupid information as the existing
3678 * information potentially belongs to a now completely
3679 * unrelated process.
3680 */
3681 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3682 }
3683
3684 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3685 entry = pte_mkyoung(vmf->orig_pte);
3686 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3687 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3688 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3689 pte_unmap_unlock(vmf->pte, vmf->ptl);
3690 count_vm_event(PGREUSE);
3691 }
3692
3693 /*
3694 * We could add a bitflag somewhere, but for now, we know that all
3695 * vm_ops that have a ->map_pages have been audited and don't need
3696 * the mmap_lock to be held.
3697 */
vmf_can_call_fault(const struct vm_fault * vmf)3698 static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3699 {
3700 struct vm_area_struct *vma = vmf->vma;
3701
3702 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3703 return 0;
3704 vma_end_read(vma);
3705 return VM_FAULT_RETRY;
3706 }
3707
3708 /**
3709 * __vmf_anon_prepare - Prepare to handle an anonymous fault.
3710 * @vmf: The vm_fault descriptor passed from the fault handler.
3711 *
3712 * When preparing to insert an anonymous page into a VMA from a
3713 * fault handler, call this function rather than anon_vma_prepare().
3714 * If this vma does not already have an associated anon_vma and we are
3715 * only protected by the per-VMA lock, the caller must retry with the
3716 * mmap_lock held. __anon_vma_prepare() will look at adjacent VMAs to
3717 * determine if this VMA can share its anon_vma, and that's not safe to
3718 * do with only the per-VMA lock held for this VMA.
3719 *
3720 * Return: 0 if fault handling can proceed. Any other value should be
3721 * returned to the caller.
3722 */
__vmf_anon_prepare(struct vm_fault * vmf)3723 vm_fault_t __vmf_anon_prepare(struct vm_fault *vmf)
3724 {
3725 struct vm_area_struct *vma = vmf->vma;
3726 vm_fault_t ret = 0;
3727
3728 if (likely(vma->anon_vma))
3729 return 0;
3730 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3731 if (!mmap_read_trylock(vma->vm_mm))
3732 return VM_FAULT_RETRY;
3733 }
3734 if (__anon_vma_prepare(vma))
3735 ret = VM_FAULT_OOM;
3736 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
3737 mmap_read_unlock(vma->vm_mm);
3738 return ret;
3739 }
3740
3741 /*
3742 * Handle the case of a page which we actually need to copy to a new page,
3743 * either due to COW or unsharing.
3744 *
3745 * Called with mmap_lock locked and the old page referenced, but
3746 * without the ptl held.
3747 *
3748 * High level logic flow:
3749 *
3750 * - Allocate a page, copy the content of the old page to the new one.
3751 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3752 * - Take the PTL. If the pte changed, bail out and release the allocated page
3753 * - If the pte is still the way we remember it, update the page table and all
3754 * relevant references. This includes dropping the reference the page-table
3755 * held to the old page, as well as updating the rmap.
3756 * - In any case, unlock the PTL and drop the reference we took to the old page.
3757 */
wp_page_copy(struct vm_fault * vmf)3758 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3759 {
3760 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3761 struct vm_area_struct *vma = vmf->vma;
3762 struct mm_struct *mm = vma->vm_mm;
3763 struct folio *old_folio = NULL;
3764 struct folio *new_folio = NULL;
3765 pte_t entry;
3766 int page_copied = 0;
3767 struct mmu_notifier_range range;
3768 vm_fault_t ret;
3769 bool pfn_is_zero;
3770
3771 delayacct_wpcopy_start();
3772
3773 if (vmf->page)
3774 old_folio = page_folio(vmf->page);
3775 ret = vmf_anon_prepare(vmf);
3776 if (unlikely(ret))
3777 goto out;
3778
3779 pfn_is_zero = is_zero_pfn(pte_pfn(vmf->orig_pte));
3780 new_folio = folio_prealloc(mm, vma, vmf->address, pfn_is_zero);
3781 if (!new_folio)
3782 goto oom;
3783
3784 if (!pfn_is_zero) {
3785 int err;
3786
3787 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3788 if (err) {
3789 /*
3790 * COW failed, if the fault was solved by other,
3791 * it's fine. If not, userspace would re-fault on
3792 * the same address and we will handle the fault
3793 * from the second attempt.
3794 * The -EHWPOISON case will not be retried.
3795 */
3796 folio_put(new_folio);
3797 if (old_folio)
3798 folio_put(old_folio);
3799
3800 delayacct_wpcopy_end();
3801 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3802 }
3803 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3804 }
3805
3806 __folio_mark_uptodate(new_folio);
3807
3808 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3809 vmf->address & PAGE_MASK,
3810 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3811 mmu_notifier_invalidate_range_start(&range);
3812
3813 /*
3814 * Re-check the pte - we dropped the lock
3815 */
3816 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3817 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3818 if (old_folio) {
3819 if (!folio_test_anon(old_folio)) {
3820 dec_mm_counter(mm, mm_counter_file(old_folio));
3821 inc_mm_counter(mm, MM_ANONPAGES);
3822 }
3823 } else {
3824 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3825 inc_mm_counter(mm, MM_ANONPAGES);
3826 }
3827 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3828 entry = folio_mk_pte(new_folio, vma->vm_page_prot);
3829 entry = pte_sw_mkyoung(entry);
3830 if (unlikely(unshare)) {
3831 if (pte_soft_dirty(vmf->orig_pte))
3832 entry = pte_mksoft_dirty(entry);
3833 if (pte_uffd_wp(vmf->orig_pte))
3834 entry = pte_mkuffd_wp(entry);
3835 } else {
3836 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3837 }
3838
3839 /*
3840 * Clear the pte entry and flush it first, before updating the
3841 * pte with the new entry, to keep TLBs on different CPUs in
3842 * sync. This code used to set the new PTE then flush TLBs, but
3843 * that left a window where the new PTE could be loaded into
3844 * some TLBs while the old PTE remains in others.
3845 */
3846 ptep_clear_flush(vma, vmf->address, vmf->pte);
3847 folio_add_new_anon_rmap(new_folio, vma, vmf->address, RMAP_EXCLUSIVE);
3848 folio_add_lru_vma(new_folio, vma);
3849 BUG_ON(unshare && pte_write(entry));
3850 set_pte_at(mm, vmf->address, vmf->pte, entry);
3851 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
3852 if (old_folio) {
3853 /*
3854 * Only after switching the pte to the new page may
3855 * we remove the mapcount here. Otherwise another
3856 * process may come and find the rmap count decremented
3857 * before the pte is switched to the new page, and
3858 * "reuse" the old page writing into it while our pte
3859 * here still points into it and can be read by other
3860 * threads.
3861 *
3862 * The critical issue is to order this
3863 * folio_remove_rmap_pte() with the ptp_clear_flush
3864 * above. Those stores are ordered by (if nothing else,)
3865 * the barrier present in the atomic_add_negative
3866 * in folio_remove_rmap_pte();
3867 *
3868 * Then the TLB flush in ptep_clear_flush ensures that
3869 * no process can access the old page before the
3870 * decremented mapcount is visible. And the old page
3871 * cannot be reused until after the decremented
3872 * mapcount is visible. So transitively, TLBs to
3873 * old page will be flushed before it can be reused.
3874 */
3875 folio_remove_rmap_pte(old_folio, vmf->page, vma);
3876 }
3877
3878 /* Free the old page.. */
3879 new_folio = old_folio;
3880 page_copied = 1;
3881 pte_unmap_unlock(vmf->pte, vmf->ptl);
3882 } else if (vmf->pte) {
3883 update_mmu_tlb(vma, vmf->address, vmf->pte);
3884 pte_unmap_unlock(vmf->pte, vmf->ptl);
3885 }
3886
3887 mmu_notifier_invalidate_range_end(&range);
3888
3889 if (new_folio)
3890 folio_put(new_folio);
3891 if (old_folio) {
3892 if (page_copied)
3893 free_swap_cache(old_folio);
3894 folio_put(old_folio);
3895 }
3896
3897 delayacct_wpcopy_end();
3898 return 0;
3899 oom:
3900 ret = VM_FAULT_OOM;
3901 out:
3902 if (old_folio)
3903 folio_put(old_folio);
3904
3905 delayacct_wpcopy_end();
3906 return ret;
3907 }
3908
3909 /**
3910 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3911 * writeable once the page is prepared
3912 *
3913 * @vmf: structure describing the fault
3914 * @folio: the folio of vmf->page
3915 *
3916 * This function handles all that is needed to finish a write page fault in a
3917 * shared mapping due to PTE being read-only once the mapped page is prepared.
3918 * It handles locking of PTE and modifying it.
3919 *
3920 * The function expects the page to be locked or other protection against
3921 * concurrent faults / writeback (such as DAX radix tree locks).
3922 *
3923 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3924 * we acquired PTE lock.
3925 */
finish_mkwrite_fault(struct vm_fault * vmf,struct folio * folio)3926 static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
3927 {
3928 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3929 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3930 &vmf->ptl);
3931 if (!vmf->pte)
3932 return VM_FAULT_NOPAGE;
3933 /*
3934 * We might have raced with another page fault while we released the
3935 * pte_offset_map_lock.
3936 */
3937 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3938 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3939 pte_unmap_unlock(vmf->pte, vmf->ptl);
3940 return VM_FAULT_NOPAGE;
3941 }
3942 wp_page_reuse(vmf, folio);
3943 return 0;
3944 }
3945
3946 /*
3947 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3948 * mapping
3949 */
wp_pfn_shared(struct vm_fault * vmf)3950 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3951 {
3952 struct vm_area_struct *vma = vmf->vma;
3953
3954 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3955 vm_fault_t ret;
3956
3957 pte_unmap_unlock(vmf->pte, vmf->ptl);
3958 ret = vmf_can_call_fault(vmf);
3959 if (ret)
3960 return ret;
3961
3962 vmf->flags |= FAULT_FLAG_MKWRITE;
3963 ret = vma->vm_ops->pfn_mkwrite(vmf);
3964 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3965 return ret;
3966 return finish_mkwrite_fault(vmf, NULL);
3967 }
3968 wp_page_reuse(vmf, NULL);
3969 return 0;
3970 }
3971
wp_page_shared(struct vm_fault * vmf,struct folio * folio)3972 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3973 __releases(vmf->ptl)
3974 {
3975 struct vm_area_struct *vma = vmf->vma;
3976 vm_fault_t ret = 0;
3977
3978 folio_get(folio);
3979
3980 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3981 vm_fault_t tmp;
3982
3983 pte_unmap_unlock(vmf->pte, vmf->ptl);
3984 tmp = vmf_can_call_fault(vmf);
3985 if (tmp) {
3986 folio_put(folio);
3987 return tmp;
3988 }
3989
3990 tmp = do_page_mkwrite(vmf, folio);
3991 if (unlikely(!tmp || (tmp &
3992 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3993 folio_put(folio);
3994 return tmp;
3995 }
3996 tmp = finish_mkwrite_fault(vmf, folio);
3997 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3998 folio_unlock(folio);
3999 folio_put(folio);
4000 return tmp;
4001 }
4002 } else {
4003 wp_page_reuse(vmf, folio);
4004 folio_lock(folio);
4005 }
4006 ret |= fault_dirty_shared_page(vmf);
4007 folio_put(folio);
4008
4009 return ret;
4010 }
4011
4012 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
__wp_can_reuse_large_anon_folio(struct folio * folio,struct vm_area_struct * vma)4013 static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
4014 struct vm_area_struct *vma)
4015 {
4016 bool exclusive = false;
4017
4018 /* Let's just free up a large folio if only a single page is mapped. */
4019 if (folio_large_mapcount(folio) <= 1)
4020 return false;
4021
4022 /*
4023 * The assumption for anonymous folios is that each page can only get
4024 * mapped once into each MM. The only exception are KSM folios, which
4025 * are always small.
4026 *
4027 * Each taken mapcount must be paired with exactly one taken reference,
4028 * whereby the refcount must be incremented before the mapcount when
4029 * mapping a page, and the refcount must be decremented after the
4030 * mapcount when unmapping a page.
4031 *
4032 * If all folio references are from mappings, and all mappings are in
4033 * the page tables of this MM, then this folio is exclusive to this MM.
4034 */
4035 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
4036 return false;
4037
4038 VM_WARN_ON_ONCE(folio_test_ksm(folio));
4039
4040 if (unlikely(folio_test_swapcache(folio))) {
4041 /*
4042 * Note: freeing up the swapcache will fail if some PTEs are
4043 * still swap entries.
4044 */
4045 if (!folio_trylock(folio))
4046 return false;
4047 folio_free_swap(folio);
4048 folio_unlock(folio);
4049 }
4050
4051 if (folio_large_mapcount(folio) != folio_ref_count(folio))
4052 return false;
4053
4054 /* Stabilize the mapcount vs. refcount and recheck. */
4055 folio_lock_large_mapcount(folio);
4056 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_ref_count(folio), folio);
4057
4058 if (test_bit(FOLIO_MM_IDS_SHARED_BITNUM, &folio->_mm_ids))
4059 goto unlock;
4060 if (folio_large_mapcount(folio) != folio_ref_count(folio))
4061 goto unlock;
4062
4063 VM_WARN_ON_ONCE_FOLIO(folio_large_mapcount(folio) > folio_nr_pages(folio), folio);
4064 VM_WARN_ON_ONCE_FOLIO(folio_entire_mapcount(folio), folio);
4065 VM_WARN_ON_ONCE(folio_mm_id(folio, 0) != vma->vm_mm->mm_id &&
4066 folio_mm_id(folio, 1) != vma->vm_mm->mm_id);
4067
4068 /*
4069 * Do we need the folio lock? Likely not. If there would have been
4070 * references from page migration/swapout, we would have detected
4071 * an additional folio reference and never ended up here.
4072 */
4073 exclusive = true;
4074 unlock:
4075 folio_unlock_large_mapcount(folio);
4076 return exclusive;
4077 }
4078 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
__wp_can_reuse_large_anon_folio(struct folio * folio,struct vm_area_struct * vma)4079 static bool __wp_can_reuse_large_anon_folio(struct folio *folio,
4080 struct vm_area_struct *vma)
4081 {
4082 BUILD_BUG();
4083 }
4084 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4085
wp_can_reuse_anon_folio(struct folio * folio,struct vm_area_struct * vma)4086 static bool wp_can_reuse_anon_folio(struct folio *folio,
4087 struct vm_area_struct *vma)
4088 {
4089 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && folio_test_large(folio))
4090 return __wp_can_reuse_large_anon_folio(folio, vma);
4091
4092 /*
4093 * We have to verify under folio lock: these early checks are
4094 * just an optimization to avoid locking the folio and freeing
4095 * the swapcache if there is little hope that we can reuse.
4096 *
4097 * KSM doesn't necessarily raise the folio refcount.
4098 */
4099 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
4100 return false;
4101 if (!folio_test_lru(folio))
4102 /*
4103 * We cannot easily detect+handle references from
4104 * remote LRU caches or references to LRU folios.
4105 */
4106 lru_add_drain();
4107 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
4108 return false;
4109 if (!folio_trylock(folio))
4110 return false;
4111 if (folio_test_swapcache(folio))
4112 folio_free_swap(folio);
4113 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
4114 folio_unlock(folio);
4115 return false;
4116 }
4117 /*
4118 * Ok, we've got the only folio reference from our mapping
4119 * and the folio is locked, it's dark out, and we're wearing
4120 * sunglasses. Hit it.
4121 */
4122 folio_move_anon_rmap(folio, vma);
4123 folio_unlock(folio);
4124 return true;
4125 }
4126
4127 /*
4128 * This routine handles present pages, when
4129 * * users try to write to a shared page (FAULT_FLAG_WRITE)
4130 * * GUP wants to take a R/O pin on a possibly shared anonymous page
4131 * (FAULT_FLAG_UNSHARE)
4132 *
4133 * It is done by copying the page to a new address and decrementing the
4134 * shared-page counter for the old page.
4135 *
4136 * Note that this routine assumes that the protection checks have been
4137 * done by the caller (the low-level page fault routine in most cases).
4138 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
4139 * done any necessary COW.
4140 *
4141 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
4142 * though the page will change only once the write actually happens. This
4143 * avoids a few races, and potentially makes it more efficient.
4144 *
4145 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4146 * but allow concurrent faults), with pte both mapped and locked.
4147 * We return with mmap_lock still held, but pte unmapped and unlocked.
4148 */
do_wp_page(struct vm_fault * vmf)4149 static vm_fault_t do_wp_page(struct vm_fault *vmf)
4150 __releases(vmf->ptl)
4151 {
4152 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4153 struct vm_area_struct *vma = vmf->vma;
4154 struct folio *folio = NULL;
4155 pte_t pte;
4156
4157 if (likely(!unshare)) {
4158 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
4159 if (!userfaultfd_wp_async(vma)) {
4160 pte_unmap_unlock(vmf->pte, vmf->ptl);
4161 return handle_userfault(vmf, VM_UFFD_WP);
4162 }
4163
4164 /*
4165 * Nothing needed (cache flush, TLB invalidations,
4166 * etc.) because we're only removing the uffd-wp bit,
4167 * which is completely invisible to the user.
4168 */
4169 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
4170
4171 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4172 /*
4173 * Update this to be prepared for following up CoW
4174 * handling
4175 */
4176 vmf->orig_pte = pte;
4177 }
4178
4179 /*
4180 * Userfaultfd write-protect can defer flushes. Ensure the TLB
4181 * is flushed in this case before copying.
4182 */
4183 if (unlikely(userfaultfd_wp(vmf->vma) &&
4184 mm_tlb_flush_pending(vmf->vma->vm_mm)))
4185 flush_tlb_page(vmf->vma, vmf->address);
4186 }
4187
4188 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
4189
4190 if (vmf->page)
4191 folio = page_folio(vmf->page);
4192
4193 /*
4194 * Shared mapping: we are guaranteed to have VM_WRITE and
4195 * FAULT_FLAG_WRITE set at this point.
4196 */
4197 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4198 /*
4199 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
4200 * VM_PFNMAP VMA. FS DAX also wants ops->pfn_mkwrite called.
4201 *
4202 * We should not cow pages in a shared writeable mapping.
4203 * Just mark the pages writable and/or call ops->pfn_mkwrite.
4204 */
4205 if (!vmf->page || is_fsdax_page(vmf->page)) {
4206 vmf->page = NULL;
4207 return wp_pfn_shared(vmf);
4208 }
4209 return wp_page_shared(vmf, folio);
4210 }
4211
4212 /*
4213 * Private mapping: create an exclusive anonymous page copy if reuse
4214 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
4215 *
4216 * If we encounter a page that is marked exclusive, we must reuse
4217 * the page without further checks.
4218 */
4219 if (folio && folio_test_anon(folio) &&
4220 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
4221 if (!PageAnonExclusive(vmf->page))
4222 SetPageAnonExclusive(vmf->page);
4223 if (unlikely(unshare)) {
4224 pte_unmap_unlock(vmf->pte, vmf->ptl);
4225 return 0;
4226 }
4227 wp_page_reuse(vmf, folio);
4228 return 0;
4229 }
4230 /*
4231 * Ok, we need to copy. Oh, well..
4232 */
4233 if (folio)
4234 folio_get(folio);
4235
4236 pte_unmap_unlock(vmf->pte, vmf->ptl);
4237 #ifdef CONFIG_KSM
4238 if (folio && folio_test_ksm(folio))
4239 count_vm_event(COW_KSM);
4240 #endif
4241 return wp_page_copy(vmf);
4242 }
4243
unmap_mapping_range_vma(struct vm_area_struct * vma,unsigned long start_addr,unsigned long end_addr,struct zap_details * details)4244 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
4245 unsigned long start_addr, unsigned long end_addr,
4246 struct zap_details *details)
4247 {
4248 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
4249 }
4250
unmap_mapping_range_tree(struct rb_root_cached * root,pgoff_t first_index,pgoff_t last_index,struct zap_details * details)4251 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
4252 pgoff_t first_index,
4253 pgoff_t last_index,
4254 struct zap_details *details)
4255 {
4256 struct vm_area_struct *vma;
4257 pgoff_t vba, vea, zba, zea;
4258
4259 vma_interval_tree_foreach(vma, root, first_index, last_index) {
4260 vba = vma->vm_pgoff;
4261 vea = vba + vma_pages(vma) - 1;
4262 zba = max(first_index, vba);
4263 zea = min(last_index, vea);
4264
4265 unmap_mapping_range_vma(vma,
4266 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
4267 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
4268 details);
4269 }
4270 }
4271
4272 /**
4273 * unmap_mapping_folio() - Unmap single folio from processes.
4274 * @folio: The locked folio to be unmapped.
4275 *
4276 * Unmap this folio from any userspace process which still has it mmaped.
4277 * Typically, for efficiency, the range of nearby pages has already been
4278 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
4279 * truncation or invalidation holds the lock on a folio, it may find that
4280 * the page has been remapped again: and then uses unmap_mapping_folio()
4281 * to unmap it finally.
4282 */
unmap_mapping_folio(struct folio * folio)4283 void unmap_mapping_folio(struct folio *folio)
4284 {
4285 struct address_space *mapping = folio->mapping;
4286 struct zap_details details = { };
4287 pgoff_t first_index;
4288 pgoff_t last_index;
4289
4290 VM_BUG_ON(!folio_test_locked(folio));
4291
4292 first_index = folio->index;
4293 last_index = folio_next_index(folio) - 1;
4294
4295 details.even_cows = false;
4296 details.single_folio = folio;
4297 details.zap_flags = ZAP_FLAG_DROP_MARKER;
4298
4299 i_mmap_lock_read(mapping);
4300 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
4301 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
4302 last_index, &details);
4303 i_mmap_unlock_read(mapping);
4304 }
4305
4306 /**
4307 * unmap_mapping_pages() - Unmap pages from processes.
4308 * @mapping: The address space containing pages to be unmapped.
4309 * @start: Index of first page to be unmapped.
4310 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
4311 * @even_cows: Whether to unmap even private COWed pages.
4312 *
4313 * Unmap the pages in this address space from any userspace process which
4314 * has them mmaped. Generally, you want to remove COWed pages as well when
4315 * a file is being truncated, but not when invalidating pages from the page
4316 * cache.
4317 */
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)4318 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
4319 pgoff_t nr, bool even_cows)
4320 {
4321 struct zap_details details = { };
4322 pgoff_t first_index = start;
4323 pgoff_t last_index = start + nr - 1;
4324
4325 details.even_cows = even_cows;
4326 if (last_index < first_index)
4327 last_index = ULONG_MAX;
4328
4329 i_mmap_lock_read(mapping);
4330 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
4331 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
4332 last_index, &details);
4333 i_mmap_unlock_read(mapping);
4334 }
4335 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
4336
4337 /**
4338 * unmap_mapping_range - unmap the portion of all mmaps in the specified
4339 * address_space corresponding to the specified byte range in the underlying
4340 * file.
4341 *
4342 * @mapping: the address space containing mmaps to be unmapped.
4343 * @holebegin: byte in first page to unmap, relative to the start of
4344 * the underlying file. This will be rounded down to a PAGE_SIZE
4345 * boundary. Note that this is different from truncate_pagecache(), which
4346 * must keep the partial page. In contrast, we must get rid of
4347 * partial pages.
4348 * @holelen: size of prospective hole in bytes. This will be rounded
4349 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
4350 * end of the file.
4351 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
4352 * but 0 when invalidating pagecache, don't throw away private data.
4353 */
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)4354 void unmap_mapping_range(struct address_space *mapping,
4355 loff_t const holebegin, loff_t const holelen, int even_cows)
4356 {
4357 pgoff_t hba = (pgoff_t)(holebegin) >> PAGE_SHIFT;
4358 pgoff_t hlen = ((pgoff_t)(holelen) + PAGE_SIZE - 1) >> PAGE_SHIFT;
4359
4360 /* Check for overflow. */
4361 if (sizeof(holelen) > sizeof(hlen)) {
4362 long long holeend =
4363 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
4364 if (holeend & ~(long long)ULONG_MAX)
4365 hlen = ULONG_MAX - hba + 1;
4366 }
4367
4368 unmap_mapping_pages(mapping, hba, hlen, even_cows);
4369 }
4370 EXPORT_SYMBOL(unmap_mapping_range);
4371
4372 /*
4373 * Restore a potential device exclusive pte to a working pte entry
4374 */
remove_device_exclusive_entry(struct vm_fault * vmf)4375 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
4376 {
4377 struct folio *folio = page_folio(vmf->page);
4378 struct vm_area_struct *vma = vmf->vma;
4379 struct mmu_notifier_range range;
4380 vm_fault_t ret;
4381
4382 /*
4383 * We need a reference to lock the folio because we don't hold
4384 * the PTL so a racing thread can remove the device-exclusive
4385 * entry and unmap it. If the folio is free the entry must
4386 * have been removed already. If it happens to have already
4387 * been re-allocated after being freed all we do is lock and
4388 * unlock it.
4389 */
4390 if (!folio_try_get(folio))
4391 return 0;
4392
4393 ret = folio_lock_or_retry(folio, vmf);
4394 if (ret) {
4395 folio_put(folio);
4396 return ret;
4397 }
4398 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_CLEAR, 0,
4399 vma->vm_mm, vmf->address & PAGE_MASK,
4400 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
4401 mmu_notifier_invalidate_range_start(&range);
4402
4403 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4404 &vmf->ptl);
4405 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4406 restore_exclusive_pte(vma, folio, vmf->page, vmf->address,
4407 vmf->pte, vmf->orig_pte);
4408
4409 if (vmf->pte)
4410 pte_unmap_unlock(vmf->pte, vmf->ptl);
4411 folio_unlock(folio);
4412 folio_put(folio);
4413
4414 mmu_notifier_invalidate_range_end(&range);
4415 return 0;
4416 }
4417
4418 /*
4419 * Check if we should call folio_free_swap to free the swap cache.
4420 * folio_free_swap only frees the swap cache to release the slot if swap
4421 * count is zero, so we don't need to check the swap count here.
4422 */
should_try_to_free_swap(struct swap_info_struct * si,struct folio * folio,struct vm_area_struct * vma,unsigned int extra_refs,unsigned int fault_flags)4423 static inline bool should_try_to_free_swap(struct swap_info_struct *si,
4424 struct folio *folio,
4425 struct vm_area_struct *vma,
4426 unsigned int extra_refs,
4427 unsigned int fault_flags)
4428 {
4429 if (!folio_test_swapcache(folio))
4430 return false;
4431 /*
4432 * Always try to free swap cache for SWP_SYNCHRONOUS_IO devices. Swap
4433 * cache can help save some IO or memory overhead, but these devices
4434 * are fast, and meanwhile, swap cache pinning the slot deferring the
4435 * release of metadata or fragmentation is a more critical issue.
4436 */
4437 if (data_race(si->flags & SWP_SYNCHRONOUS_IO))
4438 return true;
4439 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
4440 folio_test_mlocked(folio))
4441 return true;
4442 /*
4443 * If we want to map a page that's in the swapcache writable, we
4444 * have to detect via the refcount if we're really the exclusive
4445 * user. Try freeing the swapcache to get rid of the swapcache
4446 * reference only in case it's likely that we'll be the exclusive user.
4447 */
4448 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
4449 folio_ref_count(folio) == (extra_refs + folio_nr_pages(folio));
4450 }
4451
pte_marker_clear(struct vm_fault * vmf)4452 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
4453 {
4454 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4455 vmf->address, &vmf->ptl);
4456 if (!vmf->pte)
4457 return 0;
4458 /*
4459 * Be careful so that we will only recover a special uffd-wp pte into a
4460 * none pte. Otherwise it means the pte could have changed, so retry.
4461 *
4462 * This should also cover the case where e.g. the pte changed
4463 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
4464 * So pte_is_marker() check is not enough to safely drop the pte.
4465 */
4466 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
4467 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
4468 pte_unmap_unlock(vmf->pte, vmf->ptl);
4469 return 0;
4470 }
4471
do_pte_missing(struct vm_fault * vmf)4472 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
4473 {
4474 if (vma_is_anonymous(vmf->vma))
4475 return do_anonymous_page(vmf);
4476 else
4477 return do_fault(vmf);
4478 }
4479
4480 /*
4481 * This is actually a page-missing access, but with uffd-wp special pte
4482 * installed. It means this pte was wr-protected before being unmapped.
4483 */
pte_marker_handle_uffd_wp(struct vm_fault * vmf)4484 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
4485 {
4486 /*
4487 * Just in case there're leftover special ptes even after the region
4488 * got unregistered - we can simply clear them.
4489 */
4490 if (unlikely(!userfaultfd_wp(vmf->vma)))
4491 return pte_marker_clear(vmf);
4492
4493 return do_pte_missing(vmf);
4494 }
4495
handle_pte_marker(struct vm_fault * vmf)4496 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
4497 {
4498 const softleaf_t entry = softleaf_from_pte(vmf->orig_pte);
4499 const pte_marker marker = softleaf_to_marker(entry);
4500
4501 /*
4502 * PTE markers should never be empty. If anything weird happened,
4503 * the best thing to do is to kill the process along with its mm.
4504 */
4505 if (WARN_ON_ONCE(!marker))
4506 return VM_FAULT_SIGBUS;
4507
4508 /* Higher priority than uffd-wp when data corrupted */
4509 if (marker & PTE_MARKER_POISONED)
4510 return VM_FAULT_HWPOISON;
4511
4512 /* Hitting a guard page is always a fatal condition. */
4513 if (marker & PTE_MARKER_GUARD)
4514 return VM_FAULT_SIGSEGV;
4515
4516 if (softleaf_is_uffd_wp_marker(entry))
4517 return pte_marker_handle_uffd_wp(vmf);
4518
4519 /* This is an unknown pte marker */
4520 return VM_FAULT_SIGBUS;
4521 }
4522
__alloc_swap_folio(struct vm_fault * vmf)4523 static struct folio *__alloc_swap_folio(struct vm_fault *vmf)
4524 {
4525 struct vm_area_struct *vma = vmf->vma;
4526 struct folio *folio;
4527 softleaf_t entry;
4528
4529 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, vmf->address);
4530 if (!folio)
4531 return NULL;
4532
4533 entry = softleaf_from_pte(vmf->orig_pte);
4534 if (mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4535 GFP_KERNEL, entry)) {
4536 folio_put(folio);
4537 return NULL;
4538 }
4539
4540 return folio;
4541 }
4542
4543 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4544 /*
4545 * Check if the PTEs within a range are contiguous swap entries
4546 * and have consistent swapcache, zeromap.
4547 */
can_swapin_thp(struct vm_fault * vmf,pte_t * ptep,int nr_pages)4548 static bool can_swapin_thp(struct vm_fault *vmf, pte_t *ptep, int nr_pages)
4549 {
4550 unsigned long addr;
4551 softleaf_t entry;
4552 int idx;
4553 pte_t pte;
4554
4555 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
4556 idx = (vmf->address - addr) / PAGE_SIZE;
4557 pte = ptep_get(ptep);
4558
4559 if (!pte_same(pte, pte_move_swp_offset(vmf->orig_pte, -idx)))
4560 return false;
4561 entry = softleaf_from_pte(pte);
4562 if (swap_pte_batch(ptep, nr_pages, pte) != nr_pages)
4563 return false;
4564
4565 /*
4566 * swap_read_folio() can't handle the case a large folio is hybridly
4567 * from different backends. And they are likely corner cases. Similar
4568 * things might be added once zswap support large folios.
4569 */
4570 if (unlikely(swap_zeromap_batch(entry, nr_pages, NULL) != nr_pages))
4571 return false;
4572 if (unlikely(non_swapcache_batch(entry, nr_pages) != nr_pages))
4573 return false;
4574
4575 return true;
4576 }
4577
thp_swap_suitable_orders(pgoff_t swp_offset,unsigned long addr,unsigned long orders)4578 static inline unsigned long thp_swap_suitable_orders(pgoff_t swp_offset,
4579 unsigned long addr,
4580 unsigned long orders)
4581 {
4582 int order, nr;
4583
4584 order = highest_order(orders);
4585
4586 /*
4587 * To swap in a THP with nr pages, we require that its first swap_offset
4588 * is aligned with that number, as it was when the THP was swapped out.
4589 * This helps filter out most invalid entries.
4590 */
4591 while (orders) {
4592 nr = 1 << order;
4593 if ((addr >> PAGE_SHIFT) % nr == swp_offset % nr)
4594 break;
4595 order = next_order(&orders, order);
4596 }
4597
4598 return orders;
4599 }
4600
alloc_swap_folio(struct vm_fault * vmf)4601 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4602 {
4603 struct vm_area_struct *vma = vmf->vma;
4604 unsigned long orders;
4605 struct folio *folio;
4606 unsigned long addr;
4607 softleaf_t entry;
4608 spinlock_t *ptl;
4609 pte_t *pte;
4610 gfp_t gfp;
4611 int order;
4612
4613 /*
4614 * If uffd is active for the vma we need per-page fault fidelity to
4615 * maintain the uffd semantics.
4616 */
4617 if (unlikely(userfaultfd_armed(vma)))
4618 goto fallback;
4619
4620 /*
4621 * A large swapped out folio could be partially or fully in zswap. We
4622 * lack handling for such cases, so fallback to swapping in order-0
4623 * folio.
4624 */
4625 if (!zswap_never_enabled())
4626 goto fallback;
4627
4628 entry = softleaf_from_pte(vmf->orig_pte);
4629 /*
4630 * Get a list of all the (large) orders below PMD_ORDER that are enabled
4631 * and suitable for swapping THP.
4632 */
4633 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT,
4634 BIT(PMD_ORDER) - 1);
4635 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
4636 orders = thp_swap_suitable_orders(swp_offset(entry),
4637 vmf->address, orders);
4638
4639 if (!orders)
4640 goto fallback;
4641
4642 pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4643 vmf->address & PMD_MASK, &ptl);
4644 if (unlikely(!pte))
4645 goto fallback;
4646
4647 /*
4648 * For do_swap_page, find the highest order where the aligned range is
4649 * completely swap entries with contiguous swap offsets.
4650 */
4651 order = highest_order(orders);
4652 while (orders) {
4653 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4654 if (can_swapin_thp(vmf, pte + pte_index(addr), 1 << order))
4655 break;
4656 order = next_order(&orders, order);
4657 }
4658
4659 pte_unmap_unlock(pte, ptl);
4660
4661 /* Try allocating the highest of the remaining orders. */
4662 gfp = vma_thp_gfp_mask(vma);
4663 while (orders) {
4664 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
4665 folio = vma_alloc_folio(gfp, order, vma, addr);
4666 if (folio) {
4667 if (!mem_cgroup_swapin_charge_folio(folio, vma->vm_mm,
4668 gfp, entry))
4669 return folio;
4670 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK_CHARGE);
4671 folio_put(folio);
4672 }
4673 count_mthp_stat(order, MTHP_STAT_SWPIN_FALLBACK);
4674 order = next_order(&orders, order);
4675 }
4676
4677 fallback:
4678 return __alloc_swap_folio(vmf);
4679 }
4680 #else /* !CONFIG_TRANSPARENT_HUGEPAGE */
alloc_swap_folio(struct vm_fault * vmf)4681 static struct folio *alloc_swap_folio(struct vm_fault *vmf)
4682 {
4683 return __alloc_swap_folio(vmf);
4684 }
4685 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4686
4687 /* Sanity check that a folio is fully exclusive */
check_swap_exclusive(struct folio * folio,swp_entry_t entry,unsigned int nr_pages)4688 static void check_swap_exclusive(struct folio *folio, swp_entry_t entry,
4689 unsigned int nr_pages)
4690 {
4691 /* Called under PT locked and folio locked, the swap count is stable */
4692 do {
4693 VM_WARN_ON_ONCE_FOLIO(__swap_count(entry) != 1, folio);
4694 entry.val++;
4695 } while (--nr_pages);
4696 }
4697
4698 /*
4699 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4700 * but allow concurrent faults), and pte mapped but not yet locked.
4701 * We return with pte unmapped and unlocked.
4702 *
4703 * We return with the mmap_lock locked or unlocked in the same cases
4704 * as does filemap_fault().
4705 */
do_swap_page(struct vm_fault * vmf)4706 vm_fault_t do_swap_page(struct vm_fault *vmf)
4707 {
4708 struct vm_area_struct *vma = vmf->vma;
4709 struct folio *swapcache = NULL, *folio;
4710 struct page *page;
4711 struct swap_info_struct *si = NULL;
4712 rmap_t rmap_flags = RMAP_NONE;
4713 bool exclusive = false;
4714 softleaf_t entry;
4715 pte_t pte;
4716 vm_fault_t ret = 0;
4717 int nr_pages;
4718 unsigned long page_idx;
4719 unsigned long address;
4720 pte_t *ptep;
4721
4722 if (!pte_unmap_same(vmf))
4723 goto out;
4724
4725 entry = softleaf_from_pte(vmf->orig_pte);
4726 if (unlikely(!softleaf_is_swap(entry))) {
4727 if (softleaf_is_migration(entry)) {
4728 migration_entry_wait(vma->vm_mm, vmf->pmd,
4729 vmf->address);
4730 } else if (softleaf_is_device_exclusive(entry)) {
4731 vmf->page = softleaf_to_page(entry);
4732 ret = remove_device_exclusive_entry(vmf);
4733 } else if (softleaf_is_device_private(entry)) {
4734 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4735 /*
4736 * migrate_to_ram is not yet ready to operate
4737 * under VMA lock.
4738 */
4739 vma_end_read(vma);
4740 ret = VM_FAULT_RETRY;
4741 goto out;
4742 }
4743
4744 vmf->page = softleaf_to_page(entry);
4745 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4746 vmf->address, &vmf->ptl);
4747 if (unlikely(!vmf->pte ||
4748 !pte_same(ptep_get(vmf->pte),
4749 vmf->orig_pte)))
4750 goto unlock;
4751
4752 /*
4753 * Get a page reference while we know the page can't be
4754 * freed.
4755 */
4756 if (trylock_page(vmf->page)) {
4757 struct dev_pagemap *pgmap;
4758
4759 get_page(vmf->page);
4760 pte_unmap_unlock(vmf->pte, vmf->ptl);
4761 pgmap = page_pgmap(vmf->page);
4762 ret = pgmap->ops->migrate_to_ram(vmf);
4763 unlock_page(vmf->page);
4764 put_page(vmf->page);
4765 } else {
4766 pte_unmap_unlock(vmf->pte, vmf->ptl);
4767 }
4768 } else if (softleaf_is_hwpoison(entry)) {
4769 ret = VM_FAULT_HWPOISON;
4770 } else if (softleaf_is_marker(entry)) {
4771 ret = handle_pte_marker(vmf);
4772 } else {
4773 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
4774 ret = VM_FAULT_SIGBUS;
4775 }
4776 goto out;
4777 }
4778
4779 /* Prevent swapoff from happening to us. */
4780 si = get_swap_device(entry);
4781 if (unlikely(!si))
4782 goto out;
4783
4784 folio = swap_cache_get_folio(entry);
4785 if (folio)
4786 swap_update_readahead(folio, vma, vmf->address);
4787 if (!folio) {
4788 if (data_race(si->flags & SWP_SYNCHRONOUS_IO)) {
4789 folio = alloc_swap_folio(vmf);
4790 if (folio) {
4791 /*
4792 * folio is charged, so swapin can only fail due
4793 * to raced swapin and return NULL.
4794 */
4795 swapcache = swapin_folio(entry, folio);
4796 if (swapcache != folio)
4797 folio_put(folio);
4798 folio = swapcache;
4799 }
4800 } else {
4801 folio = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vmf);
4802 }
4803
4804 if (!folio) {
4805 /*
4806 * Back out if somebody else faulted in this pte
4807 * while we released the pte lock.
4808 */
4809 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4810 vmf->address, &vmf->ptl);
4811 if (likely(vmf->pte &&
4812 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4813 ret = VM_FAULT_OOM;
4814 goto unlock;
4815 }
4816
4817 /* Had to read the page from swap area: Major fault */
4818 ret = VM_FAULT_MAJOR;
4819 count_vm_event(PGMAJFAULT);
4820 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
4821 }
4822
4823 swapcache = folio;
4824 ret |= folio_lock_or_retry(folio, vmf);
4825 if (ret & VM_FAULT_RETRY)
4826 goto out_release;
4827
4828 page = folio_file_page(folio, swp_offset(entry));
4829 /*
4830 * Make sure folio_free_swap() or swapoff did not release the
4831 * swapcache from under us. The page pin, and pte_same test
4832 * below, are not enough to exclude that. Even if it is still
4833 * swapcache, we need to check that the page's swap has not
4834 * changed.
4835 */
4836 if (unlikely(!folio_matches_swap_entry(folio, entry)))
4837 goto out_page;
4838
4839 if (unlikely(PageHWPoison(page))) {
4840 /*
4841 * hwpoisoned dirty swapcache pages are kept for killing
4842 * owner processes (which may be unknown at hwpoison time)
4843 */
4844 ret = VM_FAULT_HWPOISON;
4845 goto out_page;
4846 }
4847
4848 /*
4849 * KSM sometimes has to copy on read faults, for example, if
4850 * folio->index of non-ksm folios would be nonlinear inside the
4851 * anon VMA -- the ksm flag is lost on actual swapout.
4852 */
4853 folio = ksm_might_need_to_copy(folio, vma, vmf->address);
4854 if (unlikely(!folio)) {
4855 ret = VM_FAULT_OOM;
4856 folio = swapcache;
4857 goto out_page;
4858 } else if (unlikely(folio == ERR_PTR(-EHWPOISON))) {
4859 ret = VM_FAULT_HWPOISON;
4860 folio = swapcache;
4861 goto out_page;
4862 } else if (folio != swapcache)
4863 page = folio_page(folio, 0);
4864
4865 /*
4866 * If we want to map a page that's in the swapcache writable, we
4867 * have to detect via the refcount if we're really the exclusive
4868 * owner. Try removing the extra reference from the local LRU
4869 * caches if required.
4870 */
4871 if ((vmf->flags & FAULT_FLAG_WRITE) &&
4872 !folio_test_ksm(folio) && !folio_test_lru(folio))
4873 lru_add_drain();
4874
4875 folio_throttle_swaprate(folio, GFP_KERNEL);
4876
4877 /*
4878 * Back out if somebody else already faulted in this pte.
4879 */
4880 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4881 &vmf->ptl);
4882 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
4883 goto out_nomap;
4884
4885 if (unlikely(!folio_test_uptodate(folio))) {
4886 ret = VM_FAULT_SIGBUS;
4887 goto out_nomap;
4888 }
4889
4890 nr_pages = 1;
4891 page_idx = 0;
4892 address = vmf->address;
4893 ptep = vmf->pte;
4894 if (folio_test_large(folio) && folio_test_swapcache(folio)) {
4895 int nr = folio_nr_pages(folio);
4896 unsigned long idx = folio_page_idx(folio, page);
4897 unsigned long folio_start = address - idx * PAGE_SIZE;
4898 unsigned long folio_end = folio_start + nr * PAGE_SIZE;
4899 pte_t *folio_ptep;
4900 pte_t folio_pte;
4901
4902 if (unlikely(folio_start < max(address & PMD_MASK, vma->vm_start)))
4903 goto check_folio;
4904 if (unlikely(folio_end > pmd_addr_end(address, vma->vm_end)))
4905 goto check_folio;
4906
4907 folio_ptep = vmf->pte - idx;
4908 folio_pte = ptep_get(folio_ptep);
4909 if (!pte_same(folio_pte, pte_move_swp_offset(vmf->orig_pte, -idx)) ||
4910 swap_pte_batch(folio_ptep, nr, folio_pte) != nr)
4911 goto check_folio;
4912
4913 page_idx = idx;
4914 address = folio_start;
4915 ptep = folio_ptep;
4916 nr_pages = nr;
4917 entry = folio->swap;
4918 page = &folio->page;
4919 }
4920
4921 check_folio:
4922 /*
4923 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
4924 * must never point at an anonymous page in the swapcache that is
4925 * PG_anon_exclusive. Sanity check that this holds and especially, that
4926 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
4927 * check after taking the PT lock and making sure that nobody
4928 * concurrently faulted in this page and set PG_anon_exclusive.
4929 */
4930 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
4931 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
4932
4933 /*
4934 * If a large folio already belongs to anon mapping, then we
4935 * can just go on and map it partially.
4936 * If not, with the large swapin check above failing, the page table
4937 * have changed, so sub pages might got charged to the wrong cgroup,
4938 * or even should be shmem. So we have to free it and fallback.
4939 * Nothing should have touched it, both anon and shmem checks if a
4940 * large folio is fully appliable before use.
4941 *
4942 * This will be removed once we unify folio allocation in the swap cache
4943 * layer, where allocation of a folio stabilizes the swap entries.
4944 */
4945 if (!folio_test_anon(folio) && folio_test_large(folio) &&
4946 nr_pages != folio_nr_pages(folio)) {
4947 if (!WARN_ON_ONCE(folio_test_dirty(folio)))
4948 swap_cache_del_folio(folio);
4949 goto out_nomap;
4950 }
4951
4952 /*
4953 * Check under PT lock (to protect against concurrent fork() sharing
4954 * the swap entry concurrently) for certainly exclusive pages.
4955 */
4956 if (!folio_test_ksm(folio)) {
4957 /*
4958 * The can_swapin_thp check above ensures all PTE have
4959 * same exclusiveness. Checking just one PTE is fine.
4960 */
4961 exclusive = pte_swp_exclusive(vmf->orig_pte);
4962 if (exclusive)
4963 check_swap_exclusive(folio, entry, nr_pages);
4964 if (folio != swapcache) {
4965 /*
4966 * We have a fresh page that is not exposed to the
4967 * swapcache -> certainly exclusive.
4968 */
4969 exclusive = true;
4970 } else if (exclusive && folio_test_writeback(folio) &&
4971 data_race(si->flags & SWP_STABLE_WRITES)) {
4972 /*
4973 * This is tricky: not all swap backends support
4974 * concurrent page modifications while under writeback.
4975 *
4976 * So if we stumble over such a page in the swapcache
4977 * we must not set the page exclusive, otherwise we can
4978 * map it writable without further checks and modify it
4979 * while still under writeback.
4980 *
4981 * For these problematic swap backends, simply drop the
4982 * exclusive marker: this is perfectly fine as we start
4983 * writeback only if we fully unmapped the page and
4984 * there are no unexpected references on the page after
4985 * unmapping succeeded. After fully unmapped, no
4986 * further GUP references (FOLL_GET and FOLL_PIN) can
4987 * appear, so dropping the exclusive marker and mapping
4988 * it only R/O is fine.
4989 */
4990 exclusive = false;
4991 }
4992 }
4993
4994 /*
4995 * Some architectures may have to restore extra metadata to the page
4996 * when reading from swap. This metadata may be indexed by swap entry
4997 * so this must be called before folio_put_swap().
4998 */
4999 arch_swap_restore(folio_swap(entry, folio), folio);
5000
5001 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
5002 add_mm_counter(vma->vm_mm, MM_SWAPENTS, -nr_pages);
5003 pte = mk_pte(page, vma->vm_page_prot);
5004 if (pte_swp_soft_dirty(vmf->orig_pte))
5005 pte = pte_mksoft_dirty(pte);
5006 if (pte_swp_uffd_wp(vmf->orig_pte))
5007 pte = pte_mkuffd_wp(pte);
5008
5009 /*
5010 * Same logic as in do_wp_page(); however, optimize for pages that are
5011 * certainly not shared either because we just allocated them without
5012 * exposing them to the swapcache or because the swap entry indicates
5013 * exclusivity.
5014 */
5015 if (!folio_test_ksm(folio) &&
5016 (exclusive || folio_ref_count(folio) == 1)) {
5017 if ((vma->vm_flags & VM_WRITE) && !userfaultfd_pte_wp(vma, pte) &&
5018 !pte_needs_soft_dirty_wp(vma, pte)) {
5019 pte = pte_mkwrite(pte, vma);
5020 if (vmf->flags & FAULT_FLAG_WRITE) {
5021 pte = pte_mkdirty(pte);
5022 vmf->flags &= ~FAULT_FLAG_WRITE;
5023 }
5024 }
5025 rmap_flags |= RMAP_EXCLUSIVE;
5026 }
5027 folio_ref_add(folio, nr_pages - 1);
5028 flush_icache_pages(vma, page, nr_pages);
5029 vmf->orig_pte = pte_advance_pfn(pte, page_idx);
5030
5031 /* ksm created a completely new copy */
5032 if (unlikely(folio != swapcache)) {
5033 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
5034 folio_add_lru_vma(folio, vma);
5035 folio_put_swap(swapcache, NULL);
5036 } else if (!folio_test_anon(folio)) {
5037 /*
5038 * We currently only expect !anon folios that are fully
5039 * mappable. See the comment after can_swapin_thp above.
5040 */
5041 VM_WARN_ON_ONCE_FOLIO(folio_nr_pages(folio) != nr_pages, folio);
5042 VM_WARN_ON_ONCE_FOLIO(folio_mapped(folio), folio);
5043 folio_add_new_anon_rmap(folio, vma, address, rmap_flags);
5044 folio_put_swap(folio, NULL);
5045 } else {
5046 VM_WARN_ON_ONCE(nr_pages != 1 && nr_pages != folio_nr_pages(folio));
5047 folio_add_anon_rmap_ptes(folio, page, nr_pages, vma, address,
5048 rmap_flags);
5049 folio_put_swap(folio, nr_pages == 1 ? page : NULL);
5050 }
5051
5052 VM_BUG_ON(!folio_test_anon(folio) ||
5053 (pte_write(pte) && !PageAnonExclusive(page)));
5054 set_ptes(vma->vm_mm, address, ptep, pte, nr_pages);
5055 arch_do_swap_page_nr(vma->vm_mm, vma, address,
5056 pte, pte, nr_pages);
5057
5058 /*
5059 * Remove the swap entry and conditionally try to free up the swapcache.
5060 * Do it after mapping, so raced page faults will likely see the folio
5061 * in swap cache and wait on the folio lock.
5062 */
5063 if (should_try_to_free_swap(si, folio, vma, nr_pages, vmf->flags))
5064 folio_free_swap(folio);
5065
5066 folio_unlock(folio);
5067 if (unlikely(folio != swapcache)) {
5068 /*
5069 * Hold the lock to avoid the swap entry to be reused
5070 * until we take the PT lock for the pte_same() check
5071 * (to avoid false positives from pte_same). For
5072 * further safety release the lock after the folio_put_swap
5073 * so that the swap count won't change under a
5074 * parallel locked swapcache.
5075 */
5076 folio_unlock(swapcache);
5077 folio_put(swapcache);
5078 }
5079
5080 if (vmf->flags & FAULT_FLAG_WRITE) {
5081 ret |= do_wp_page(vmf);
5082 if (ret & VM_FAULT_ERROR)
5083 ret &= VM_FAULT_ERROR;
5084 goto out;
5085 }
5086
5087 /* No need to invalidate - it was non-present before */
5088 update_mmu_cache_range(vmf, vma, address, ptep, nr_pages);
5089 unlock:
5090 if (vmf->pte)
5091 pte_unmap_unlock(vmf->pte, vmf->ptl);
5092 out:
5093 if (si)
5094 put_swap_device(si);
5095 return ret;
5096 out_nomap:
5097 if (vmf->pte)
5098 pte_unmap_unlock(vmf->pte, vmf->ptl);
5099 out_page:
5100 if (folio_test_swapcache(folio))
5101 folio_free_swap(folio);
5102 folio_unlock(folio);
5103 out_release:
5104 folio_put(folio);
5105 if (folio != swapcache) {
5106 folio_unlock(swapcache);
5107 folio_put(swapcache);
5108 }
5109 if (si)
5110 put_swap_device(si);
5111 return ret;
5112 }
5113
pte_range_none(pte_t * pte,int nr_pages)5114 static bool pte_range_none(pte_t *pte, int nr_pages)
5115 {
5116 int i;
5117
5118 for (i = 0; i < nr_pages; i++) {
5119 if (!pte_none(ptep_get_lockless(pte + i)))
5120 return false;
5121 }
5122
5123 return true;
5124 }
5125
alloc_anon_folio(struct vm_fault * vmf)5126 static struct folio *alloc_anon_folio(struct vm_fault *vmf)
5127 {
5128 struct vm_area_struct *vma = vmf->vma;
5129 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5130 unsigned long orders;
5131 struct folio *folio;
5132 unsigned long addr;
5133 pte_t *pte;
5134 gfp_t gfp;
5135 int order;
5136
5137 /*
5138 * If uffd is active for the vma we need per-page fault fidelity to
5139 * maintain the uffd semantics.
5140 */
5141 if (unlikely(userfaultfd_armed(vma)))
5142 goto fallback;
5143
5144 /*
5145 * Get a list of all the (large) orders below PMD_ORDER that are enabled
5146 * for this vma. Then filter out the orders that can't be allocated over
5147 * the faulting address and still be fully contained in the vma.
5148 */
5149 orders = thp_vma_allowable_orders(vma, vma->vm_flags, TVA_PAGEFAULT,
5150 BIT(PMD_ORDER) - 1);
5151 orders = thp_vma_suitable_orders(vma, vmf->address, orders);
5152
5153 if (!orders)
5154 goto fallback;
5155
5156 pte = pte_offset_map(vmf->pmd, vmf->address & PMD_MASK);
5157 if (!pte)
5158 return ERR_PTR(-EAGAIN);
5159
5160 /*
5161 * Find the highest order where the aligned range is completely
5162 * pte_none(). Note that all remaining orders will be completely
5163 * pte_none().
5164 */
5165 order = highest_order(orders);
5166 while (orders) {
5167 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
5168 if (pte_range_none(pte + pte_index(addr), 1 << order))
5169 break;
5170 order = next_order(&orders, order);
5171 }
5172
5173 pte_unmap(pte);
5174
5175 if (!orders)
5176 goto fallback;
5177
5178 /* Try allocating the highest of the remaining orders. */
5179 gfp = vma_thp_gfp_mask(vma);
5180 while (orders) {
5181 addr = ALIGN_DOWN(vmf->address, PAGE_SIZE << order);
5182 folio = vma_alloc_folio(gfp, order, vma, addr);
5183 if (folio) {
5184 if (mem_cgroup_charge(folio, vma->vm_mm, gfp)) {
5185 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE);
5186 folio_put(folio);
5187 goto next;
5188 }
5189 folio_throttle_swaprate(folio, gfp);
5190 /*
5191 * When a folio is not zeroed during allocation
5192 * (__GFP_ZERO not used) or user folios require special
5193 * handling, folio_zero_user() is used to make sure
5194 * that the page corresponding to the faulting address
5195 * will be hot in the cache after zeroing.
5196 */
5197 if (user_alloc_needs_zeroing())
5198 folio_zero_user(folio, vmf->address);
5199 return folio;
5200 }
5201 next:
5202 count_mthp_stat(order, MTHP_STAT_ANON_FAULT_FALLBACK);
5203 order = next_order(&orders, order);
5204 }
5205
5206 fallback:
5207 #endif
5208 return folio_prealloc(vma->vm_mm, vma, vmf->address, true);
5209 }
5210
5211 /*
5212 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5213 * but allow concurrent faults), and pte mapped but not yet locked.
5214 * We return with mmap_lock still held, but pte unmapped and unlocked.
5215 */
do_anonymous_page(struct vm_fault * vmf)5216 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
5217 {
5218 struct vm_area_struct *vma = vmf->vma;
5219 unsigned long addr = vmf->address;
5220 struct folio *folio;
5221 vm_fault_t ret = 0;
5222 int nr_pages = 1;
5223 pte_t entry;
5224
5225 /* File mapping without ->vm_ops ? */
5226 if (vma->vm_flags & VM_SHARED)
5227 return VM_FAULT_SIGBUS;
5228
5229 /*
5230 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
5231 * be distinguished from a transient failure of pte_offset_map().
5232 */
5233 if (pte_alloc(vma->vm_mm, vmf->pmd))
5234 return VM_FAULT_OOM;
5235
5236 /* Use the zero-page for reads */
5237 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
5238 !mm_forbids_zeropage(vma->vm_mm)) {
5239 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
5240 vma->vm_page_prot));
5241 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5242 vmf->address, &vmf->ptl);
5243 if (!vmf->pte)
5244 goto unlock;
5245 if (vmf_pte_changed(vmf)) {
5246 update_mmu_tlb(vma, vmf->address, vmf->pte);
5247 goto unlock;
5248 }
5249 ret = check_stable_address_space(vma->vm_mm);
5250 if (ret)
5251 goto unlock;
5252 /* Deliver the page fault to userland, check inside PT lock */
5253 if (userfaultfd_missing(vma)) {
5254 pte_unmap_unlock(vmf->pte, vmf->ptl);
5255 return handle_userfault(vmf, VM_UFFD_MISSING);
5256 }
5257 goto setpte;
5258 }
5259
5260 /* Allocate our own private page. */
5261 ret = vmf_anon_prepare(vmf);
5262 if (ret)
5263 return ret;
5264 /* Returns NULL on OOM or ERR_PTR(-EAGAIN) if we must retry the fault */
5265 folio = alloc_anon_folio(vmf);
5266 if (IS_ERR(folio))
5267 return 0;
5268 if (!folio)
5269 goto oom;
5270
5271 nr_pages = folio_nr_pages(folio);
5272 addr = ALIGN_DOWN(vmf->address, nr_pages * PAGE_SIZE);
5273
5274 /*
5275 * The memory barrier inside __folio_mark_uptodate makes sure that
5276 * preceding stores to the page contents become visible before
5277 * the set_pte_at() write.
5278 */
5279 __folio_mark_uptodate(folio);
5280
5281 entry = folio_mk_pte(folio, vma->vm_page_prot);
5282 entry = pte_sw_mkyoung(entry);
5283 if (vma->vm_flags & VM_WRITE)
5284 entry = pte_mkwrite(pte_mkdirty(entry), vma);
5285
5286 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
5287 if (!vmf->pte)
5288 goto release;
5289 if (nr_pages == 1 && vmf_pte_changed(vmf)) {
5290 update_mmu_tlb(vma, addr, vmf->pte);
5291 goto release;
5292 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5293 update_mmu_tlb_range(vma, addr, vmf->pte, nr_pages);
5294 goto release;
5295 }
5296
5297 ret = check_stable_address_space(vma->vm_mm);
5298 if (ret)
5299 goto release;
5300
5301 /* Deliver the page fault to userland, check inside PT lock */
5302 if (userfaultfd_missing(vma)) {
5303 pte_unmap_unlock(vmf->pte, vmf->ptl);
5304 folio_put(folio);
5305 return handle_userfault(vmf, VM_UFFD_MISSING);
5306 }
5307
5308 folio_ref_add(folio, nr_pages - 1);
5309 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr_pages);
5310 count_mthp_stat(folio_order(folio), MTHP_STAT_ANON_FAULT_ALLOC);
5311 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5312 folio_add_lru_vma(folio, vma);
5313 setpte:
5314 if (vmf_orig_pte_uffd_wp(vmf))
5315 entry = pte_mkuffd_wp(entry);
5316 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr_pages);
5317
5318 /* No need to invalidate - it was non-present before */
5319 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr_pages);
5320 unlock:
5321 if (vmf->pte)
5322 pte_unmap_unlock(vmf->pte, vmf->ptl);
5323 return ret;
5324 release:
5325 folio_put(folio);
5326 goto unlock;
5327 oom:
5328 return VM_FAULT_OOM;
5329 }
5330
5331 /*
5332 * The mmap_lock must have been held on entry, and may have been
5333 * released depending on flags and vma->vm_ops->fault() return value.
5334 * See filemap_fault() and __lock_page_retry().
5335 */
__do_fault(struct vm_fault * vmf)5336 static vm_fault_t __do_fault(struct vm_fault *vmf)
5337 {
5338 struct vm_area_struct *vma = vmf->vma;
5339 struct folio *folio;
5340 vm_fault_t ret;
5341
5342 /*
5343 * Preallocate pte before we take page_lock because this might lead to
5344 * deadlocks for memcg reclaim which waits for pages under writeback:
5345 * lock_page(A)
5346 * SetPageWriteback(A)
5347 * unlock_page(A)
5348 * lock_page(B)
5349 * lock_page(B)
5350 * pte_alloc_one
5351 * shrink_folio_list
5352 * wait_on_page_writeback(A)
5353 * SetPageWriteback(B)
5354 * unlock_page(B)
5355 * # flush A, B to clear the writeback
5356 */
5357 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
5358 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5359 if (!vmf->prealloc_pte)
5360 return VM_FAULT_OOM;
5361 }
5362
5363 ret = vma->vm_ops->fault(vmf);
5364 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
5365 VM_FAULT_DONE_COW)))
5366 return ret;
5367
5368 folio = page_folio(vmf->page);
5369 if (unlikely(PageHWPoison(vmf->page))) {
5370 vm_fault_t poisonret = VM_FAULT_HWPOISON;
5371 if (ret & VM_FAULT_LOCKED) {
5372 if (page_mapped(vmf->page))
5373 unmap_mapping_folio(folio);
5374 /* Retry if a clean folio was removed from the cache. */
5375 if (mapping_evict_folio(folio->mapping, folio))
5376 poisonret = VM_FAULT_NOPAGE;
5377 folio_unlock(folio);
5378 }
5379 folio_put(folio);
5380 vmf->page = NULL;
5381 return poisonret;
5382 }
5383
5384 if (unlikely(!(ret & VM_FAULT_LOCKED)))
5385 folio_lock(folio);
5386 else
5387 VM_BUG_ON_PAGE(!folio_test_locked(folio), vmf->page);
5388
5389 return ret;
5390 }
5391
5392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
deposit_prealloc_pte(struct vm_fault * vmf)5393 static void deposit_prealloc_pte(struct vm_fault *vmf)
5394 {
5395 struct vm_area_struct *vma = vmf->vma;
5396
5397 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
5398 /*
5399 * We are going to consume the prealloc table,
5400 * count that as nr_ptes.
5401 */
5402 mm_inc_nr_ptes(vma->vm_mm);
5403 vmf->prealloc_pte = NULL;
5404 }
5405
do_set_pmd(struct vm_fault * vmf,struct folio * folio,struct page * page)5406 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
5407 {
5408 struct vm_area_struct *vma = vmf->vma;
5409 bool write = vmf->flags & FAULT_FLAG_WRITE;
5410 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
5411 pmd_t entry;
5412 vm_fault_t ret = VM_FAULT_FALLBACK;
5413
5414 /*
5415 * It is too late to allocate a small folio, we already have a large
5416 * folio in the pagecache: especially s390 KVM cannot tolerate any
5417 * PMD mappings, but PTE-mapped THP are fine. So let's simply refuse any
5418 * PMD mappings if THPs are disabled. As we already have a THP,
5419 * behave as if we are forcing a collapse.
5420 */
5421 if (thp_disabled_by_hw() || vma_thp_disabled(vma, vma->vm_flags,
5422 /* forced_collapse=*/ true))
5423 return ret;
5424
5425 if (!thp_vma_suitable_order(vma, haddr, PMD_ORDER))
5426 return ret;
5427
5428 if (folio_order(folio) != HPAGE_PMD_ORDER)
5429 return ret;
5430 page = &folio->page;
5431
5432 /*
5433 * Just backoff if any subpage of a THP is corrupted otherwise
5434 * the corrupted page may mapped by PMD silently to escape the
5435 * check. This kind of THP just can be PTE mapped. Access to
5436 * the corrupted subpage should trigger SIGBUS as expected.
5437 */
5438 if (unlikely(folio_test_has_hwpoisoned(folio)))
5439 return ret;
5440
5441 /*
5442 * Archs like ppc64 need additional space to store information
5443 * related to pte entry. Use the preallocated table for that.
5444 */
5445 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
5446 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
5447 if (!vmf->prealloc_pte)
5448 return VM_FAULT_OOM;
5449 }
5450
5451 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
5452 if (unlikely(!pmd_none(*vmf->pmd)))
5453 goto out;
5454
5455 flush_icache_pages(vma, page, HPAGE_PMD_NR);
5456
5457 entry = folio_mk_pmd(folio, vma->vm_page_prot);
5458 if (write)
5459 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
5460
5461 add_mm_counter(vma->vm_mm, mm_counter_file(folio), HPAGE_PMD_NR);
5462 folio_add_file_rmap_pmd(folio, page, vma);
5463
5464 /*
5465 * deposit and withdraw with pmd lock held
5466 */
5467 if (arch_needs_pgtable_deposit())
5468 deposit_prealloc_pte(vmf);
5469
5470 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
5471
5472 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
5473
5474 /* fault is handled */
5475 ret = 0;
5476 count_vm_event(THP_FILE_MAPPED);
5477 out:
5478 spin_unlock(vmf->ptl);
5479 return ret;
5480 }
5481 #else
do_set_pmd(struct vm_fault * vmf,struct folio * folio,struct page * page)5482 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct folio *folio, struct page *page)
5483 {
5484 return VM_FAULT_FALLBACK;
5485 }
5486 #endif
5487
5488 /**
5489 * set_pte_range - Set a range of PTEs to point to pages in a folio.
5490 * @vmf: Fault description.
5491 * @folio: The folio that contains @page.
5492 * @page: The first page to create a PTE for.
5493 * @nr: The number of PTEs to create.
5494 * @addr: The first address to create a PTE for.
5495 */
set_pte_range(struct vm_fault * vmf,struct folio * folio,struct page * page,unsigned int nr,unsigned long addr)5496 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
5497 struct page *page, unsigned int nr, unsigned long addr)
5498 {
5499 struct vm_area_struct *vma = vmf->vma;
5500 bool write = vmf->flags & FAULT_FLAG_WRITE;
5501 bool prefault = !in_range(vmf->address, addr, nr * PAGE_SIZE);
5502 pte_t entry;
5503
5504 flush_icache_pages(vma, page, nr);
5505 entry = mk_pte(page, vma->vm_page_prot);
5506
5507 if (prefault && arch_wants_old_prefaulted_pte())
5508 entry = pte_mkold(entry);
5509 else
5510 entry = pte_sw_mkyoung(entry);
5511
5512 if (write)
5513 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
5514 else if (pte_write(entry) && folio_test_dirty(folio))
5515 entry = pte_mkdirty(entry);
5516 if (unlikely(vmf_orig_pte_uffd_wp(vmf)))
5517 entry = pte_mkuffd_wp(entry);
5518 /* copy-on-write page */
5519 if (write && !(vma->vm_flags & VM_SHARED)) {
5520 VM_BUG_ON_FOLIO(nr != 1, folio);
5521 folio_add_new_anon_rmap(folio, vma, addr, RMAP_EXCLUSIVE);
5522 folio_add_lru_vma(folio, vma);
5523 } else {
5524 folio_add_file_rmap_ptes(folio, page, nr, vma);
5525 }
5526 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
5527
5528 /* no need to invalidate: a not-present page won't be cached */
5529 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
5530 }
5531
vmf_pte_changed(struct vm_fault * vmf)5532 static bool vmf_pte_changed(struct vm_fault *vmf)
5533 {
5534 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
5535 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
5536
5537 return !pte_none(ptep_get(vmf->pte));
5538 }
5539
5540 /**
5541 * finish_fault - finish page fault once we have prepared the page to fault
5542 *
5543 * @vmf: structure describing the fault
5544 *
5545 * This function handles all that is needed to finish a page fault once the
5546 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
5547 * given page, adds reverse page mapping, handles memcg charges and LRU
5548 * addition.
5549 *
5550 * The function expects the page to be locked and on success it consumes a
5551 * reference of a page being mapped (for the PTE which maps it).
5552 *
5553 * Return: %0 on success, %VM_FAULT_ code in case of error.
5554 */
finish_fault(struct vm_fault * vmf)5555 vm_fault_t finish_fault(struct vm_fault *vmf)
5556 {
5557 struct vm_area_struct *vma = vmf->vma;
5558 struct page *page;
5559 struct folio *folio;
5560 vm_fault_t ret;
5561 bool is_cow = (vmf->flags & FAULT_FLAG_WRITE) &&
5562 !(vma->vm_flags & VM_SHARED);
5563 int type, nr_pages;
5564 unsigned long addr;
5565 bool needs_fallback = false;
5566
5567 fallback:
5568 addr = vmf->address;
5569
5570 /* Did we COW the page? */
5571 if (is_cow)
5572 page = vmf->cow_page;
5573 else
5574 page = vmf->page;
5575
5576 folio = page_folio(page);
5577 /*
5578 * check even for read faults because we might have lost our CoWed
5579 * page
5580 */
5581 if (!(vma->vm_flags & VM_SHARED)) {
5582 ret = check_stable_address_space(vma->vm_mm);
5583 if (ret)
5584 return ret;
5585 }
5586
5587 if (!needs_fallback && vma->vm_file) {
5588 struct address_space *mapping = vma->vm_file->f_mapping;
5589 pgoff_t file_end;
5590
5591 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
5592
5593 /*
5594 * Do not allow to map with PTEs beyond i_size and with PMD
5595 * across i_size to preserve SIGBUS semantics.
5596 *
5597 * Make an exception for shmem/tmpfs that for long time
5598 * intentionally mapped with PMDs across i_size.
5599 */
5600 needs_fallback = !shmem_mapping(mapping) &&
5601 file_end < folio_next_index(folio);
5602 }
5603
5604 if (pmd_none(*vmf->pmd)) {
5605 if (!needs_fallback && folio_test_pmd_mappable(folio)) {
5606 ret = do_set_pmd(vmf, folio, page);
5607 if (ret != VM_FAULT_FALLBACK)
5608 return ret;
5609 }
5610
5611 if (vmf->prealloc_pte)
5612 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
5613 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
5614 return VM_FAULT_OOM;
5615 }
5616
5617 nr_pages = folio_nr_pages(folio);
5618
5619 /* Using per-page fault to maintain the uffd semantics */
5620 if (unlikely(userfaultfd_armed(vma)) || unlikely(needs_fallback)) {
5621 nr_pages = 1;
5622 } else if (nr_pages > 1) {
5623 pgoff_t idx = folio_page_idx(folio, page);
5624 /* The page offset of vmf->address within the VMA. */
5625 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5626 /* The index of the entry in the pagetable for fault page. */
5627 pgoff_t pte_off = pte_index(vmf->address);
5628
5629 /*
5630 * Fallback to per-page fault in case the folio size in page
5631 * cache beyond the VMA limits and PMD pagetable limits.
5632 */
5633 if (unlikely(vma_off < idx ||
5634 vma_off + (nr_pages - idx) > vma_pages(vma) ||
5635 pte_off < idx ||
5636 pte_off + (nr_pages - idx) > PTRS_PER_PTE)) {
5637 nr_pages = 1;
5638 } else {
5639 /* Now we can set mappings for the whole large folio. */
5640 addr = vmf->address - idx * PAGE_SIZE;
5641 page = &folio->page;
5642 }
5643 }
5644
5645 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
5646 addr, &vmf->ptl);
5647 if (!vmf->pte)
5648 return VM_FAULT_NOPAGE;
5649
5650 /* Re-check under ptl */
5651 if (nr_pages == 1 && unlikely(vmf_pte_changed(vmf))) {
5652 update_mmu_tlb(vma, addr, vmf->pte);
5653 ret = VM_FAULT_NOPAGE;
5654 goto unlock;
5655 } else if (nr_pages > 1 && !pte_range_none(vmf->pte, nr_pages)) {
5656 needs_fallback = true;
5657 pte_unmap_unlock(vmf->pte, vmf->ptl);
5658 goto fallback;
5659 }
5660
5661 folio_ref_add(folio, nr_pages - 1);
5662 set_pte_range(vmf, folio, page, nr_pages, addr);
5663 type = is_cow ? MM_ANONPAGES : mm_counter_file(folio);
5664 add_mm_counter(vma->vm_mm, type, nr_pages);
5665 ret = 0;
5666
5667 unlock:
5668 pte_unmap_unlock(vmf->pte, vmf->ptl);
5669 return ret;
5670 }
5671
5672 static unsigned long fault_around_pages __read_mostly =
5673 65536 >> PAGE_SHIFT;
5674
5675 #ifdef CONFIG_DEBUG_FS
fault_around_bytes_get(void * data,u64 * val)5676 static int fault_around_bytes_get(void *data, u64 *val)
5677 {
5678 *val = fault_around_pages << PAGE_SHIFT;
5679 return 0;
5680 }
5681
5682 /*
5683 * fault_around_bytes must be rounded down to the nearest page order as it's
5684 * what do_fault_around() expects to see.
5685 */
fault_around_bytes_set(void * data,u64 val)5686 static int fault_around_bytes_set(void *data, u64 val)
5687 {
5688 if (val / PAGE_SIZE > PTRS_PER_PTE)
5689 return -EINVAL;
5690
5691 /*
5692 * The minimum value is 1 page, however this results in no fault-around
5693 * at all. See should_fault_around().
5694 */
5695 val = max(val, PAGE_SIZE);
5696 fault_around_pages = rounddown_pow_of_two(val) >> PAGE_SHIFT;
5697
5698 return 0;
5699 }
5700 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
5701 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
5702
fault_around_debugfs(void)5703 static int __init fault_around_debugfs(void)
5704 {
5705 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
5706 &fault_around_bytes_fops);
5707 return 0;
5708 }
5709 late_initcall(fault_around_debugfs);
5710 #endif
5711
5712 /*
5713 * do_fault_around() tries to map few pages around the fault address. The hope
5714 * is that the pages will be needed soon and this will lower the number of
5715 * faults to handle.
5716 *
5717 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
5718 * not ready to be mapped: not up-to-date, locked, etc.
5719 *
5720 * This function doesn't cross VMA or page table boundaries, in order to call
5721 * map_pages() and acquire a PTE lock only once.
5722 *
5723 * fault_around_pages defines how many pages we'll try to map.
5724 * do_fault_around() expects it to be set to a power of two less than or equal
5725 * to PTRS_PER_PTE.
5726 *
5727 * The virtual address of the area that we map is naturally aligned to
5728 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
5729 * (and therefore to page order). This way it's easier to guarantee
5730 * that we don't cross page table boundaries.
5731 */
do_fault_around(struct vm_fault * vmf)5732 static vm_fault_t do_fault_around(struct vm_fault *vmf)
5733 {
5734 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
5735 pgoff_t pte_off = pte_index(vmf->address);
5736 /* The page offset of vmf->address within the VMA. */
5737 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
5738 pgoff_t from_pte, to_pte;
5739 vm_fault_t ret;
5740
5741 /* The PTE offset of the start address, clamped to the VMA. */
5742 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
5743 pte_off - min(pte_off, vma_off));
5744
5745 /* The PTE offset of the end address, clamped to the VMA and PTE. */
5746 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
5747 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
5748
5749 if (pmd_none(*vmf->pmd)) {
5750 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
5751 if (!vmf->prealloc_pte)
5752 return VM_FAULT_OOM;
5753 }
5754
5755 rcu_read_lock();
5756 ret = vmf->vma->vm_ops->map_pages(vmf,
5757 vmf->pgoff + from_pte - pte_off,
5758 vmf->pgoff + to_pte - pte_off);
5759 rcu_read_unlock();
5760
5761 return ret;
5762 }
5763
5764 /* Return true if we should do read fault-around, false otherwise */
should_fault_around(struct vm_fault * vmf)5765 static inline bool should_fault_around(struct vm_fault *vmf)
5766 {
5767 /* No ->map_pages? No way to fault around... */
5768 if (!vmf->vma->vm_ops->map_pages)
5769 return false;
5770
5771 if (uffd_disable_fault_around(vmf->vma))
5772 return false;
5773
5774 /* A single page implies no faulting 'around' at all. */
5775 return fault_around_pages > 1;
5776 }
5777
do_read_fault(struct vm_fault * vmf)5778 static vm_fault_t do_read_fault(struct vm_fault *vmf)
5779 {
5780 vm_fault_t ret = 0;
5781 struct folio *folio;
5782
5783 /*
5784 * Let's call ->map_pages() first and use ->fault() as fallback
5785 * if page by the offset is not ready to be mapped (cold cache or
5786 * something).
5787 */
5788 if (should_fault_around(vmf)) {
5789 ret = do_fault_around(vmf);
5790 if (ret)
5791 return ret;
5792 }
5793
5794 ret = vmf_can_call_fault(vmf);
5795 if (ret)
5796 return ret;
5797
5798 ret = __do_fault(vmf);
5799 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5800 return ret;
5801
5802 ret |= finish_fault(vmf);
5803 folio = page_folio(vmf->page);
5804 folio_unlock(folio);
5805 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5806 folio_put(folio);
5807 return ret;
5808 }
5809
do_cow_fault(struct vm_fault * vmf)5810 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
5811 {
5812 struct vm_area_struct *vma = vmf->vma;
5813 struct folio *folio;
5814 vm_fault_t ret;
5815
5816 ret = vmf_can_call_fault(vmf);
5817 if (!ret)
5818 ret = vmf_anon_prepare(vmf);
5819 if (ret)
5820 return ret;
5821
5822 folio = folio_prealloc(vma->vm_mm, vma, vmf->address, false);
5823 if (!folio)
5824 return VM_FAULT_OOM;
5825
5826 vmf->cow_page = &folio->page;
5827
5828 ret = __do_fault(vmf);
5829 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5830 goto uncharge_out;
5831 if (ret & VM_FAULT_DONE_COW)
5832 return ret;
5833
5834 if (copy_mc_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma)) {
5835 ret = VM_FAULT_HWPOISON;
5836 goto unlock;
5837 }
5838 __folio_mark_uptodate(folio);
5839
5840 ret |= finish_fault(vmf);
5841 unlock:
5842 unlock_page(vmf->page);
5843 put_page(vmf->page);
5844 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5845 goto uncharge_out;
5846 return ret;
5847 uncharge_out:
5848 folio_put(folio);
5849 return ret;
5850 }
5851
do_shared_fault(struct vm_fault * vmf)5852 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
5853 {
5854 struct vm_area_struct *vma = vmf->vma;
5855 vm_fault_t ret, tmp;
5856 struct folio *folio;
5857
5858 ret = vmf_can_call_fault(vmf);
5859 if (ret)
5860 return ret;
5861
5862 ret = __do_fault(vmf);
5863 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
5864 return ret;
5865
5866 folio = page_folio(vmf->page);
5867
5868 /*
5869 * Check if the backing address space wants to know that the page is
5870 * about to become writable
5871 */
5872 if (vma->vm_ops->page_mkwrite) {
5873 folio_unlock(folio);
5874 tmp = do_page_mkwrite(vmf, folio);
5875 if (unlikely(!tmp ||
5876 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5877 folio_put(folio);
5878 return tmp;
5879 }
5880 }
5881
5882 ret |= finish_fault(vmf);
5883 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
5884 VM_FAULT_RETRY))) {
5885 folio_unlock(folio);
5886 folio_put(folio);
5887 return ret;
5888 }
5889
5890 ret |= fault_dirty_shared_page(vmf);
5891 return ret;
5892 }
5893
5894 /*
5895 * We enter with non-exclusive mmap_lock (to exclude vma changes,
5896 * but allow concurrent faults).
5897 * The mmap_lock may have been released depending on flags and our
5898 * return value. See filemap_fault() and __folio_lock_or_retry().
5899 * If mmap_lock is released, vma may become invalid (for example
5900 * by other thread calling munmap()).
5901 */
do_fault(struct vm_fault * vmf)5902 static vm_fault_t do_fault(struct vm_fault *vmf)
5903 {
5904 struct vm_area_struct *vma = vmf->vma;
5905 struct mm_struct *vm_mm = vma->vm_mm;
5906 vm_fault_t ret;
5907
5908 /*
5909 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
5910 */
5911 if (!vma->vm_ops->fault) {
5912 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
5913 vmf->address, &vmf->ptl);
5914 if (unlikely(!vmf->pte))
5915 ret = VM_FAULT_SIGBUS;
5916 else {
5917 /*
5918 * Make sure this is not a temporary clearing of pte
5919 * by holding ptl and checking again. A R/M/W update
5920 * of pte involves: take ptl, clearing the pte so that
5921 * we don't have concurrent modification by hardware
5922 * followed by an update.
5923 */
5924 if (unlikely(pte_none(ptep_get(vmf->pte))))
5925 ret = VM_FAULT_SIGBUS;
5926 else
5927 ret = VM_FAULT_NOPAGE;
5928
5929 pte_unmap_unlock(vmf->pte, vmf->ptl);
5930 }
5931 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
5932 ret = do_read_fault(vmf);
5933 else if (!(vma->vm_flags & VM_SHARED))
5934 ret = do_cow_fault(vmf);
5935 else
5936 ret = do_shared_fault(vmf);
5937
5938 /* preallocated pagetable is unused: free it */
5939 if (vmf->prealloc_pte) {
5940 pte_free(vm_mm, vmf->prealloc_pte);
5941 vmf->prealloc_pte = NULL;
5942 }
5943 return ret;
5944 }
5945
numa_migrate_check(struct folio * folio,struct vm_fault * vmf,unsigned long addr,int * flags,bool writable,int * last_cpupid)5946 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
5947 unsigned long addr, int *flags,
5948 bool writable, int *last_cpupid)
5949 {
5950 struct vm_area_struct *vma = vmf->vma;
5951
5952 /*
5953 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
5954 * much anyway since they can be in shared cache state. This misses
5955 * the case where a mapping is writable but the process never writes
5956 * to it but pte_write gets cleared during protection updates and
5957 * pte_dirty has unpredictable behaviour between PTE scan updates,
5958 * background writeback, dirty balancing and application behaviour.
5959 */
5960 if (!writable)
5961 *flags |= TNF_NO_GROUP;
5962
5963 /*
5964 * Flag if the folio is shared between multiple address spaces. This
5965 * is later used when determining whether to group tasks together
5966 */
5967 if (folio_maybe_mapped_shared(folio) && (vma->vm_flags & VM_SHARED))
5968 *flags |= TNF_SHARED;
5969 /*
5970 * For memory tiering mode, cpupid of slow memory page is used
5971 * to record page access time. So use default value.
5972 */
5973 if (folio_use_access_time(folio))
5974 *last_cpupid = (-1 & LAST_CPUPID_MASK);
5975 else
5976 *last_cpupid = folio_last_cpupid(folio);
5977
5978 /* Record the current PID accessing VMA */
5979 vma_set_access_pid_bit(vma);
5980
5981 count_vm_numa_event(NUMA_HINT_FAULTS);
5982 #ifdef CONFIG_NUMA_BALANCING
5983 count_memcg_folio_events(folio, NUMA_HINT_FAULTS, 1);
5984 #endif
5985 if (folio_nid(folio) == numa_node_id()) {
5986 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
5987 *flags |= TNF_FAULT_LOCAL;
5988 }
5989
5990 return mpol_misplaced(folio, vmf, addr);
5991 }
5992
numa_rebuild_single_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,unsigned long fault_addr,pte_t * fault_pte,bool writable)5993 static void numa_rebuild_single_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
5994 unsigned long fault_addr, pte_t *fault_pte,
5995 bool writable)
5996 {
5997 pte_t pte, old_pte;
5998
5999 old_pte = ptep_modify_prot_start(vma, fault_addr, fault_pte);
6000 pte = pte_modify(old_pte, vma->vm_page_prot);
6001 pte = pte_mkyoung(pte);
6002 if (writable)
6003 pte = pte_mkwrite(pte, vma);
6004 ptep_modify_prot_commit(vma, fault_addr, fault_pte, old_pte, pte);
6005 update_mmu_cache_range(vmf, vma, fault_addr, fault_pte, 1);
6006 }
6007
numa_rebuild_large_mapping(struct vm_fault * vmf,struct vm_area_struct * vma,struct folio * folio,pte_t fault_pte,bool ignore_writable,bool pte_write_upgrade)6008 static void numa_rebuild_large_mapping(struct vm_fault *vmf, struct vm_area_struct *vma,
6009 struct folio *folio, pte_t fault_pte,
6010 bool ignore_writable, bool pte_write_upgrade)
6011 {
6012 int nr = pte_pfn(fault_pte) - folio_pfn(folio);
6013 unsigned long start, end, addr = vmf->address;
6014 unsigned long addr_start = addr - (nr << PAGE_SHIFT);
6015 unsigned long pt_start = ALIGN_DOWN(addr, PMD_SIZE);
6016 pte_t *start_ptep;
6017
6018 /* Stay within the VMA and within the page table. */
6019 start = max3(addr_start, pt_start, vma->vm_start);
6020 end = min3(addr_start + folio_size(folio), pt_start + PMD_SIZE,
6021 vma->vm_end);
6022 start_ptep = vmf->pte - ((addr - start) >> PAGE_SHIFT);
6023
6024 /* Restore all PTEs' mapping of the large folio */
6025 for (addr = start; addr != end; start_ptep++, addr += PAGE_SIZE) {
6026 pte_t ptent = ptep_get(start_ptep);
6027 bool writable = false;
6028
6029 if (!pte_present(ptent) || !pte_protnone(ptent))
6030 continue;
6031
6032 if (pfn_folio(pte_pfn(ptent)) != folio)
6033 continue;
6034
6035 if (!ignore_writable) {
6036 ptent = pte_modify(ptent, vma->vm_page_prot);
6037 writable = pte_write(ptent);
6038 if (!writable && pte_write_upgrade &&
6039 can_change_pte_writable(vma, addr, ptent))
6040 writable = true;
6041 }
6042
6043 numa_rebuild_single_mapping(vmf, vma, addr, start_ptep, writable);
6044 }
6045 }
6046
do_numa_page(struct vm_fault * vmf)6047 static vm_fault_t do_numa_page(struct vm_fault *vmf)
6048 {
6049 struct vm_area_struct *vma = vmf->vma;
6050 struct folio *folio = NULL;
6051 int nid = NUMA_NO_NODE;
6052 bool writable = false, ignore_writable = false;
6053 bool pte_write_upgrade = vma_wants_manual_pte_write_upgrade(vma);
6054 int last_cpupid;
6055 int target_nid;
6056 pte_t pte, old_pte;
6057 int flags = 0, nr_pages;
6058
6059 /*
6060 * The pte cannot be used safely until we verify, while holding the page
6061 * table lock, that its contents have not changed during fault handling.
6062 */
6063 spin_lock(vmf->ptl);
6064 /* Read the live PTE from the page tables: */
6065 old_pte = ptep_get(vmf->pte);
6066
6067 if (unlikely(!pte_same(old_pte, vmf->orig_pte))) {
6068 pte_unmap_unlock(vmf->pte, vmf->ptl);
6069 return 0;
6070 }
6071
6072 pte = pte_modify(old_pte, vma->vm_page_prot);
6073
6074 /*
6075 * Detect now whether the PTE could be writable; this information
6076 * is only valid while holding the PT lock.
6077 */
6078 writable = pte_write(pte);
6079 if (!writable && pte_write_upgrade &&
6080 can_change_pte_writable(vma, vmf->address, pte))
6081 writable = true;
6082
6083 folio = vm_normal_folio(vma, vmf->address, pte);
6084 if (!folio || folio_is_zone_device(folio))
6085 goto out_map;
6086
6087 nid = folio_nid(folio);
6088 nr_pages = folio_nr_pages(folio);
6089
6090 target_nid = numa_migrate_check(folio, vmf, vmf->address, &flags,
6091 writable, &last_cpupid);
6092 if (target_nid == NUMA_NO_NODE)
6093 goto out_map;
6094 if (migrate_misplaced_folio_prepare(folio, vma, target_nid)) {
6095 flags |= TNF_MIGRATE_FAIL;
6096 goto out_map;
6097 }
6098 /* The folio is isolated and isolation code holds a folio reference. */
6099 pte_unmap_unlock(vmf->pte, vmf->ptl);
6100 writable = false;
6101 ignore_writable = true;
6102
6103 /* Migrate to the requested node */
6104 if (!migrate_misplaced_folio(folio, target_nid)) {
6105 nid = target_nid;
6106 flags |= TNF_MIGRATED;
6107 task_numa_fault(last_cpupid, nid, nr_pages, flags);
6108 return 0;
6109 }
6110
6111 flags |= TNF_MIGRATE_FAIL;
6112 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
6113 vmf->address, &vmf->ptl);
6114 if (unlikely(!vmf->pte))
6115 return 0;
6116 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
6117 pte_unmap_unlock(vmf->pte, vmf->ptl);
6118 return 0;
6119 }
6120 out_map:
6121 /*
6122 * Make it present again, depending on how arch implements
6123 * non-accessible ptes, some can allow access by kernel mode.
6124 */
6125 if (folio && folio_test_large(folio))
6126 numa_rebuild_large_mapping(vmf, vma, folio, pte, ignore_writable,
6127 pte_write_upgrade);
6128 else
6129 numa_rebuild_single_mapping(vmf, vma, vmf->address, vmf->pte,
6130 writable);
6131 pte_unmap_unlock(vmf->pte, vmf->ptl);
6132
6133 if (nid != NUMA_NO_NODE)
6134 task_numa_fault(last_cpupid, nid, nr_pages, flags);
6135 return 0;
6136 }
6137
create_huge_pmd(struct vm_fault * vmf)6138 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
6139 {
6140 struct vm_area_struct *vma = vmf->vma;
6141 if (vma_is_anonymous(vma))
6142 return do_huge_pmd_anonymous_page(vmf);
6143 if (vma->vm_ops->huge_fault)
6144 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
6145 return VM_FAULT_FALLBACK;
6146 }
6147
6148 /* `inline' is required to avoid gcc 4.1.2 build error */
wp_huge_pmd(struct vm_fault * vmf)6149 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
6150 {
6151 struct vm_area_struct *vma = vmf->vma;
6152 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
6153 vm_fault_t ret;
6154
6155 if (vma_is_anonymous(vma)) {
6156 if (likely(!unshare) &&
6157 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
6158 if (userfaultfd_wp_async(vmf->vma))
6159 goto split;
6160 return handle_userfault(vmf, VM_UFFD_WP);
6161 }
6162 return do_huge_pmd_wp_page(vmf);
6163 }
6164
6165 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
6166 if (vma->vm_ops->huge_fault) {
6167 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
6168 if (!(ret & VM_FAULT_FALLBACK))
6169 return ret;
6170 }
6171 }
6172
6173 split:
6174 /* COW or write-notify handled on pte level: split pmd. */
6175 __split_huge_pmd(vma, vmf->pmd, vmf->address, false);
6176
6177 return VM_FAULT_FALLBACK;
6178 }
6179
create_huge_pud(struct vm_fault * vmf)6180 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
6181 {
6182 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
6183 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
6184 struct vm_area_struct *vma = vmf->vma;
6185 /* No support for anonymous transparent PUD pages yet */
6186 if (vma_is_anonymous(vma))
6187 return VM_FAULT_FALLBACK;
6188 if (vma->vm_ops->huge_fault)
6189 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
6190 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
6191 return VM_FAULT_FALLBACK;
6192 }
6193
wp_huge_pud(struct vm_fault * vmf,pud_t orig_pud)6194 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
6195 {
6196 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
6197 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
6198 struct vm_area_struct *vma = vmf->vma;
6199 vm_fault_t ret;
6200
6201 /* No support for anonymous transparent PUD pages yet */
6202 if (vma_is_anonymous(vma))
6203 goto split;
6204 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
6205 if (vma->vm_ops->huge_fault) {
6206 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
6207 if (!(ret & VM_FAULT_FALLBACK))
6208 return ret;
6209 }
6210 }
6211 split:
6212 /* COW or write-notify not handled on PUD level: split pud.*/
6213 __split_huge_pud(vma, vmf->pud, vmf->address);
6214 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
6215 return VM_FAULT_FALLBACK;
6216 }
6217
6218 /*
6219 * The page faults may be spurious because of the racy access to the
6220 * page table. For example, a non-populated virtual page is accessed
6221 * on 2 CPUs simultaneously, thus the page faults are triggered on
6222 * both CPUs. However, it's possible that one CPU (say CPU A) cannot
6223 * find the reason for the page fault if the other CPU (say CPU B) has
6224 * changed the page table before the PTE is checked on CPU A. Most of
6225 * the time, the spurious page faults can be ignored safely. However,
6226 * if the page fault is for the write access, it's possible that a
6227 * stale read-only TLB entry exists in the local CPU and needs to be
6228 * flushed on some architectures. This is called the spurious page
6229 * fault fixing.
6230 *
6231 * Note: flush_tlb_fix_spurious_fault() is defined as flush_tlb_page()
6232 * by default and used as such on most architectures, while
6233 * flush_tlb_fix_spurious_fault_pmd() is defined as NOP by default and
6234 * used as such on most architectures.
6235 */
fix_spurious_fault(struct vm_fault * vmf,enum pgtable_level ptlevel)6236 static void fix_spurious_fault(struct vm_fault *vmf,
6237 enum pgtable_level ptlevel)
6238 {
6239 /* Skip spurious TLB flush for retried page fault */
6240 if (vmf->flags & FAULT_FLAG_TRIED)
6241 return;
6242 /*
6243 * This is needed only for protection faults but the arch code
6244 * is not yet telling us if this is a protection fault or not.
6245 * This still avoids useless tlb flushes for .text page faults
6246 * with threads.
6247 */
6248 if (vmf->flags & FAULT_FLAG_WRITE) {
6249 if (ptlevel == PGTABLE_LEVEL_PTE)
6250 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
6251 vmf->pte);
6252 else
6253 flush_tlb_fix_spurious_fault_pmd(vmf->vma, vmf->address,
6254 vmf->pmd);
6255 }
6256 }
6257 /*
6258 * These routines also need to handle stuff like marking pages dirty
6259 * and/or accessed for architectures that don't do it in hardware (most
6260 * RISC architectures). The early dirtying is also good on the i386.
6261 *
6262 * There is also a hook called "update_mmu_cache()" that architectures
6263 * with external mmu caches can use to update those (ie the Sparc or
6264 * PowerPC hashed page tables that act as extended TLBs).
6265 *
6266 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
6267 * concurrent faults).
6268 *
6269 * The mmap_lock may have been released depending on flags and our return value.
6270 * See filemap_fault() and __folio_lock_or_retry().
6271 */
handle_pte_fault(struct vm_fault * vmf)6272 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
6273 {
6274 pte_t entry;
6275
6276 if (unlikely(pmd_none(*vmf->pmd))) {
6277 /*
6278 * Leave __pte_alloc() until later: because vm_ops->fault may
6279 * want to allocate huge page, and if we expose page table
6280 * for an instant, it will be difficult to retract from
6281 * concurrent faults and from rmap lookups.
6282 */
6283 vmf->pte = NULL;
6284 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
6285 } else {
6286 pmd_t dummy_pmdval;
6287
6288 /*
6289 * A regular pmd is established and it can't morph into a huge
6290 * pmd by anon khugepaged, since that takes mmap_lock in write
6291 * mode; but shmem or file collapse to THP could still morph
6292 * it into a huge pmd: just retry later if so.
6293 *
6294 * Use the maywrite version to indicate that vmf->pte may be
6295 * modified, but since we will use pte_same() to detect the
6296 * change of the !pte_none() entry, there is no need to recheck
6297 * the pmdval. Here we choose to pass a dummy variable instead
6298 * of NULL, which helps new user think about why this place is
6299 * special.
6300 */
6301 vmf->pte = pte_offset_map_rw_nolock(vmf->vma->vm_mm, vmf->pmd,
6302 vmf->address, &dummy_pmdval,
6303 &vmf->ptl);
6304 if (unlikely(!vmf->pte))
6305 return 0;
6306 vmf->orig_pte = ptep_get_lockless(vmf->pte);
6307 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
6308
6309 if (pte_none(vmf->orig_pte)) {
6310 pte_unmap(vmf->pte);
6311 vmf->pte = NULL;
6312 }
6313 }
6314
6315 if (!vmf->pte)
6316 return do_pte_missing(vmf);
6317
6318 if (!pte_present(vmf->orig_pte))
6319 return do_swap_page(vmf);
6320
6321 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
6322 return do_numa_page(vmf);
6323
6324 spin_lock(vmf->ptl);
6325 entry = vmf->orig_pte;
6326 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
6327 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
6328 goto unlock;
6329 }
6330 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6331 if (!pte_write(entry))
6332 return do_wp_page(vmf);
6333 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
6334 entry = pte_mkdirty(entry);
6335 }
6336 entry = pte_mkyoung(entry);
6337 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
6338 vmf->flags & FAULT_FLAG_WRITE))
6339 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
6340 vmf->pte, 1);
6341 else
6342 fix_spurious_fault(vmf, PGTABLE_LEVEL_PTE);
6343 unlock:
6344 pte_unmap_unlock(vmf->pte, vmf->ptl);
6345 return 0;
6346 }
6347
6348 /*
6349 * On entry, we hold either the VMA lock or the mmap_lock
6350 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
6351 * the result, the mmap_lock is not held on exit. See filemap_fault()
6352 * and __folio_lock_or_retry().
6353 */
__handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags)6354 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
6355 unsigned long address, unsigned int flags)
6356 {
6357 struct vm_fault vmf = {
6358 .vma = vma,
6359 .address = address & PAGE_MASK,
6360 .real_address = address,
6361 .flags = flags,
6362 .pgoff = linear_page_index(vma, address),
6363 .gfp_mask = __get_fault_gfp_mask(vma),
6364 };
6365 struct mm_struct *mm = vma->vm_mm;
6366 vm_flags_t vm_flags = vma->vm_flags;
6367 pgd_t *pgd;
6368 p4d_t *p4d;
6369 vm_fault_t ret;
6370
6371 pgd = pgd_offset(mm, address);
6372 p4d = p4d_alloc(mm, pgd, address);
6373 if (!p4d)
6374 return VM_FAULT_OOM;
6375
6376 vmf.pud = pud_alloc(mm, p4d, address);
6377 if (!vmf.pud)
6378 return VM_FAULT_OOM;
6379 retry_pud:
6380 if (pud_none(*vmf.pud) &&
6381 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PUD_ORDER)) {
6382 ret = create_huge_pud(&vmf);
6383 if (!(ret & VM_FAULT_FALLBACK))
6384 return ret;
6385 } else {
6386 pud_t orig_pud = *vmf.pud;
6387
6388 barrier();
6389 if (pud_trans_huge(orig_pud)) {
6390
6391 /*
6392 * TODO once we support anonymous PUDs: NUMA case and
6393 * FAULT_FLAG_UNSHARE handling.
6394 */
6395 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
6396 ret = wp_huge_pud(&vmf, orig_pud);
6397 if (!(ret & VM_FAULT_FALLBACK))
6398 return ret;
6399 } else {
6400 huge_pud_set_accessed(&vmf, orig_pud);
6401 return 0;
6402 }
6403 }
6404 }
6405
6406 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
6407 if (!vmf.pmd)
6408 return VM_FAULT_OOM;
6409
6410 /* Huge pud page fault raced with pmd_alloc? */
6411 if (pud_trans_unstable(vmf.pud))
6412 goto retry_pud;
6413
6414 if (pmd_none(*vmf.pmd) &&
6415 thp_vma_allowable_order(vma, vm_flags, TVA_PAGEFAULT, PMD_ORDER)) {
6416 ret = create_huge_pmd(&vmf);
6417 if (ret & VM_FAULT_FALLBACK)
6418 goto fallback;
6419 else
6420 return ret;
6421 }
6422
6423 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
6424 if (pmd_none(vmf.orig_pmd))
6425 goto fallback;
6426
6427 if (unlikely(!pmd_present(vmf.orig_pmd))) {
6428 if (pmd_is_device_private_entry(vmf.orig_pmd))
6429 return do_huge_pmd_device_private(&vmf);
6430
6431 if (pmd_is_migration_entry(vmf.orig_pmd))
6432 pmd_migration_entry_wait(mm, vmf.pmd);
6433 return 0;
6434 }
6435 if (pmd_trans_huge(vmf.orig_pmd)) {
6436 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
6437 return do_huge_pmd_numa_page(&vmf);
6438
6439 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6440 !pmd_write(vmf.orig_pmd)) {
6441 ret = wp_huge_pmd(&vmf);
6442 if (!(ret & VM_FAULT_FALLBACK))
6443 return ret;
6444 } else {
6445 vmf.ptl = pmd_lock(mm, vmf.pmd);
6446 if (!huge_pmd_set_accessed(&vmf))
6447 fix_spurious_fault(&vmf, PGTABLE_LEVEL_PMD);
6448 spin_unlock(vmf.ptl);
6449 return 0;
6450 }
6451 }
6452
6453 fallback:
6454 return handle_pte_fault(&vmf);
6455 }
6456
6457 /**
6458 * mm_account_fault - Do page fault accounting
6459 * @mm: mm from which memcg should be extracted. It can be NULL.
6460 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
6461 * of perf event counters, but we'll still do the per-task accounting to
6462 * the task who triggered this page fault.
6463 * @address: the faulted address.
6464 * @flags: the fault flags.
6465 * @ret: the fault retcode.
6466 *
6467 * This will take care of most of the page fault accounting. Meanwhile, it
6468 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
6469 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
6470 * still be in per-arch page fault handlers at the entry of page fault.
6471 */
mm_account_fault(struct mm_struct * mm,struct pt_regs * regs,unsigned long address,unsigned int flags,vm_fault_t ret)6472 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
6473 unsigned long address, unsigned int flags,
6474 vm_fault_t ret)
6475 {
6476 bool major;
6477
6478 /* Incomplete faults will be accounted upon completion. */
6479 if (ret & VM_FAULT_RETRY)
6480 return;
6481
6482 /*
6483 * To preserve the behavior of older kernels, PGFAULT counters record
6484 * both successful and failed faults, as opposed to perf counters,
6485 * which ignore failed cases.
6486 */
6487 count_vm_event(PGFAULT);
6488 count_memcg_event_mm(mm, PGFAULT);
6489
6490 /*
6491 * Do not account for unsuccessful faults (e.g. when the address wasn't
6492 * valid). That includes arch_vma_access_permitted() failing before
6493 * reaching here. So this is not a "this many hardware page faults"
6494 * counter. We should use the hw profiling for that.
6495 */
6496 if (ret & VM_FAULT_ERROR)
6497 return;
6498
6499 /*
6500 * We define the fault as a major fault when the final successful fault
6501 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
6502 * handle it immediately previously).
6503 */
6504 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
6505
6506 if (major)
6507 current->maj_flt++;
6508 else
6509 current->min_flt++;
6510
6511 /*
6512 * If the fault is done for GUP, regs will be NULL. We only do the
6513 * accounting for the per thread fault counters who triggered the
6514 * fault, and we skip the perf event updates.
6515 */
6516 if (!regs)
6517 return;
6518
6519 if (major)
6520 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
6521 else
6522 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
6523 }
6524
6525 #ifdef CONFIG_LRU_GEN
lru_gen_enter_fault(struct vm_area_struct * vma)6526 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6527 {
6528 /* the LRU algorithm only applies to accesses with recency */
6529 current->in_lru_fault = vma_has_recency(vma);
6530 }
6531
lru_gen_exit_fault(void)6532 static void lru_gen_exit_fault(void)
6533 {
6534 current->in_lru_fault = false;
6535 }
6536 #else
lru_gen_enter_fault(struct vm_area_struct * vma)6537 static void lru_gen_enter_fault(struct vm_area_struct *vma)
6538 {
6539 }
6540
lru_gen_exit_fault(void)6541 static void lru_gen_exit_fault(void)
6542 {
6543 }
6544 #endif /* CONFIG_LRU_GEN */
6545
sanitize_fault_flags(struct vm_area_struct * vma,unsigned int * flags)6546 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
6547 unsigned int *flags)
6548 {
6549 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
6550 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
6551 return VM_FAULT_SIGSEGV;
6552 /*
6553 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
6554 * just treat it like an ordinary read-fault otherwise.
6555 */
6556 if (!is_cow_mapping(vma->vm_flags))
6557 *flags &= ~FAULT_FLAG_UNSHARE;
6558 } else if (*flags & FAULT_FLAG_WRITE) {
6559 /* Write faults on read-only mappings are impossible ... */
6560 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
6561 return VM_FAULT_SIGSEGV;
6562 /* ... and FOLL_FORCE only applies to COW mappings. */
6563 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
6564 !is_cow_mapping(vma->vm_flags)))
6565 return VM_FAULT_SIGSEGV;
6566 }
6567 #ifdef CONFIG_PER_VMA_LOCK
6568 /*
6569 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
6570 * the assumption that lock is dropped on VM_FAULT_RETRY.
6571 */
6572 if (WARN_ON_ONCE((*flags &
6573 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
6574 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
6575 return VM_FAULT_SIGSEGV;
6576 #endif
6577
6578 return 0;
6579 }
6580
6581 /*
6582 * By the time we get here, we already hold either the VMA lock or the
6583 * mmap_lock (FAULT_FLAG_VMA_LOCK tells you which).
6584 *
6585 * The mmap_lock may have been released depending on flags and our
6586 * return value. See filemap_fault() and __folio_lock_or_retry().
6587 */
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)6588 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
6589 unsigned int flags, struct pt_regs *regs)
6590 {
6591 /* If the fault handler drops the mmap_lock, vma may be freed */
6592 struct mm_struct *mm = vma->vm_mm;
6593 vm_fault_t ret;
6594 bool is_droppable;
6595
6596 __set_current_state(TASK_RUNNING);
6597
6598 ret = sanitize_fault_flags(vma, &flags);
6599 if (ret)
6600 goto out;
6601
6602 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
6603 flags & FAULT_FLAG_INSTRUCTION,
6604 flags & FAULT_FLAG_REMOTE)) {
6605 ret = VM_FAULT_SIGSEGV;
6606 goto out;
6607 }
6608
6609 is_droppable = !!(vma->vm_flags & VM_DROPPABLE);
6610
6611 /*
6612 * Enable the memcg OOM handling for faults triggered in user
6613 * space. Kernel faults are handled more gracefully.
6614 */
6615 if (flags & FAULT_FLAG_USER)
6616 mem_cgroup_enter_user_fault();
6617
6618 lru_gen_enter_fault(vma);
6619
6620 if (unlikely(is_vm_hugetlb_page(vma)))
6621 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
6622 else
6623 ret = __handle_mm_fault(vma, address, flags);
6624
6625 /*
6626 * Warning: It is no longer safe to dereference vma-> after this point,
6627 * because mmap_lock might have been dropped by __handle_mm_fault(), so
6628 * vma might be destroyed from underneath us.
6629 */
6630
6631 lru_gen_exit_fault();
6632
6633 /* If the mapping is droppable, then errors due to OOM aren't fatal. */
6634 if (is_droppable)
6635 ret &= ~VM_FAULT_OOM;
6636
6637 if (flags & FAULT_FLAG_USER) {
6638 mem_cgroup_exit_user_fault();
6639 /*
6640 * The task may have entered a memcg OOM situation but
6641 * if the allocation error was handled gracefully (no
6642 * VM_FAULT_OOM), there is no need to kill anything.
6643 * Just clean up the OOM state peacefully.
6644 */
6645 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
6646 mem_cgroup_oom_synchronize(false);
6647 }
6648 out:
6649 mm_account_fault(mm, regs, address, flags, ret);
6650
6651 return ret;
6652 }
6653 EXPORT_SYMBOL_GPL(handle_mm_fault);
6654
6655 #ifndef __PAGETABLE_P4D_FOLDED
6656 /*
6657 * Allocate p4d page table.
6658 * We've already handled the fast-path in-line.
6659 */
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)6660 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
6661 {
6662 p4d_t *new = p4d_alloc_one(mm, address);
6663 if (!new)
6664 return -ENOMEM;
6665
6666 spin_lock(&mm->page_table_lock);
6667 if (pgd_present(*pgd)) { /* Another has populated it */
6668 p4d_free(mm, new);
6669 } else {
6670 smp_wmb(); /* See comment in pmd_install() */
6671 pgd_populate(mm, pgd, new);
6672 }
6673 spin_unlock(&mm->page_table_lock);
6674 return 0;
6675 }
6676 #endif /* __PAGETABLE_P4D_FOLDED */
6677
6678 #ifndef __PAGETABLE_PUD_FOLDED
6679 /*
6680 * Allocate page upper directory.
6681 * We've already handled the fast-path in-line.
6682 */
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)6683 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
6684 {
6685 pud_t *new = pud_alloc_one(mm, address);
6686 if (!new)
6687 return -ENOMEM;
6688
6689 spin_lock(&mm->page_table_lock);
6690 if (!p4d_present(*p4d)) {
6691 mm_inc_nr_puds(mm);
6692 smp_wmb(); /* See comment in pmd_install() */
6693 p4d_populate(mm, p4d, new);
6694 } else /* Another has populated it */
6695 pud_free(mm, new);
6696 spin_unlock(&mm->page_table_lock);
6697 return 0;
6698 }
6699 #endif /* __PAGETABLE_PUD_FOLDED */
6700
6701 #ifndef __PAGETABLE_PMD_FOLDED
6702 /*
6703 * Allocate page middle directory.
6704 * We've already handled the fast-path in-line.
6705 */
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)6706 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
6707 {
6708 spinlock_t *ptl;
6709 pmd_t *new = pmd_alloc_one(mm, address);
6710 if (!new)
6711 return -ENOMEM;
6712
6713 ptl = pud_lock(mm, pud);
6714 if (!pud_present(*pud)) {
6715 mm_inc_nr_pmds(mm);
6716 smp_wmb(); /* See comment in pmd_install() */
6717 pud_populate(mm, pud, new);
6718 } else { /* Another has populated it */
6719 pmd_free(mm, new);
6720 }
6721 spin_unlock(ptl);
6722 return 0;
6723 }
6724 #endif /* __PAGETABLE_PMD_FOLDED */
6725
pfnmap_args_setup(struct follow_pfnmap_args * args,spinlock_t * lock,pte_t * ptep,pgprot_t pgprot,unsigned long pfn_base,unsigned long addr_mask,bool writable,bool special)6726 static inline void pfnmap_args_setup(struct follow_pfnmap_args *args,
6727 spinlock_t *lock, pte_t *ptep,
6728 pgprot_t pgprot, unsigned long pfn_base,
6729 unsigned long addr_mask, bool writable,
6730 bool special)
6731 {
6732 args->lock = lock;
6733 args->ptep = ptep;
6734 args->pfn = pfn_base + ((args->address & ~addr_mask) >> PAGE_SHIFT);
6735 args->addr_mask = addr_mask;
6736 args->pgprot = pgprot;
6737 args->writable = writable;
6738 args->special = special;
6739 }
6740
pfnmap_lockdep_assert(struct vm_area_struct * vma)6741 static inline void pfnmap_lockdep_assert(struct vm_area_struct *vma)
6742 {
6743 #ifdef CONFIG_LOCKDEP
6744 struct file *file = vma->vm_file;
6745 struct address_space *mapping = file ? file->f_mapping : NULL;
6746
6747 if (mapping)
6748 lockdep_assert(lockdep_is_held(&mapping->i_mmap_rwsem) ||
6749 lockdep_is_held(&vma->vm_mm->mmap_lock));
6750 else
6751 lockdep_assert(lockdep_is_held(&vma->vm_mm->mmap_lock));
6752 #endif
6753 }
6754
6755 /**
6756 * follow_pfnmap_start() - Look up a pfn mapping at a user virtual address
6757 * @args: Pointer to struct @follow_pfnmap_args
6758 *
6759 * The caller needs to setup args->vma and args->address to point to the
6760 * virtual address as the target of such lookup. On a successful return,
6761 * the results will be put into other output fields.
6762 *
6763 * After the caller finished using the fields, the caller must invoke
6764 * another follow_pfnmap_end() to proper releases the locks and resources
6765 * of such look up request.
6766 *
6767 * During the start() and end() calls, the results in @args will be valid
6768 * as proper locks will be held. After the end() is called, all the fields
6769 * in @follow_pfnmap_args will be invalid to be further accessed. Further
6770 * use of such information after end() may require proper synchronizations
6771 * by the caller with page table updates, otherwise it can create a
6772 * security bug.
6773 *
6774 * If the PTE maps a refcounted page, callers are responsible to protect
6775 * against invalidation with MMU notifiers; otherwise access to the PFN at
6776 * a later point in time can trigger use-after-free.
6777 *
6778 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
6779 * should be taken for read, and the mmap semaphore cannot be released
6780 * before the end() is invoked.
6781 *
6782 * This function must not be used to modify PTE content.
6783 *
6784 * Return: zero on success, negative otherwise.
6785 */
follow_pfnmap_start(struct follow_pfnmap_args * args)6786 int follow_pfnmap_start(struct follow_pfnmap_args *args)
6787 {
6788 struct vm_area_struct *vma = args->vma;
6789 unsigned long address = args->address;
6790 struct mm_struct *mm = vma->vm_mm;
6791 spinlock_t *lock;
6792 pgd_t *pgdp;
6793 p4d_t *p4dp, p4d;
6794 pud_t *pudp, pud;
6795 pmd_t *pmdp, pmd;
6796 pte_t *ptep, pte;
6797
6798 pfnmap_lockdep_assert(vma);
6799
6800 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
6801 goto out;
6802
6803 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
6804 goto out;
6805 retry:
6806 pgdp = pgd_offset(mm, address);
6807 if (pgd_none(*pgdp) || unlikely(pgd_bad(*pgdp)))
6808 goto out;
6809
6810 p4dp = p4d_offset(pgdp, address);
6811 p4d = p4dp_get(p4dp);
6812 if (p4d_none(p4d) || unlikely(p4d_bad(p4d)))
6813 goto out;
6814
6815 pudp = pud_offset(p4dp, address);
6816 pud = pudp_get(pudp);
6817 if (pud_none(pud))
6818 goto out;
6819 if (pud_leaf(pud)) {
6820 lock = pud_lock(mm, pudp);
6821 if (!unlikely(pud_leaf(pud))) {
6822 spin_unlock(lock);
6823 goto retry;
6824 }
6825 pfnmap_args_setup(args, lock, NULL, pud_pgprot(pud),
6826 pud_pfn(pud), PUD_MASK, pud_write(pud),
6827 pud_special(pud));
6828 return 0;
6829 }
6830
6831 pmdp = pmd_offset(pudp, address);
6832 pmd = pmdp_get_lockless(pmdp);
6833 if (pmd_leaf(pmd)) {
6834 lock = pmd_lock(mm, pmdp);
6835 if (!unlikely(pmd_leaf(pmd))) {
6836 spin_unlock(lock);
6837 goto retry;
6838 }
6839 pfnmap_args_setup(args, lock, NULL, pmd_pgprot(pmd),
6840 pmd_pfn(pmd), PMD_MASK, pmd_write(pmd),
6841 pmd_special(pmd));
6842 return 0;
6843 }
6844
6845 ptep = pte_offset_map_lock(mm, pmdp, address, &lock);
6846 if (!ptep)
6847 goto out;
6848 pte = ptep_get(ptep);
6849 if (!pte_present(pte))
6850 goto unlock;
6851 pfnmap_args_setup(args, lock, ptep, pte_pgprot(pte),
6852 pte_pfn(pte), PAGE_MASK, pte_write(pte),
6853 pte_special(pte));
6854 return 0;
6855 unlock:
6856 pte_unmap_unlock(ptep, lock);
6857 out:
6858 return -EINVAL;
6859 }
6860 EXPORT_SYMBOL_GPL(follow_pfnmap_start);
6861
6862 /**
6863 * follow_pfnmap_end(): End a follow_pfnmap_start() process
6864 * @args: Pointer to struct @follow_pfnmap_args
6865 *
6866 * Must be used in pair of follow_pfnmap_start(). See the start() function
6867 * above for more information.
6868 */
follow_pfnmap_end(struct follow_pfnmap_args * args)6869 void follow_pfnmap_end(struct follow_pfnmap_args *args)
6870 {
6871 if (args->lock)
6872 spin_unlock(args->lock);
6873 if (args->ptep)
6874 pte_unmap(args->ptep);
6875 }
6876 EXPORT_SYMBOL_GPL(follow_pfnmap_end);
6877
6878 #ifdef CONFIG_HAVE_IOREMAP_PROT
6879 /**
6880 * generic_access_phys - generic implementation for iomem mmap access
6881 * @vma: the vma to access
6882 * @addr: userspace address, not relative offset within @vma
6883 * @buf: buffer to read/write
6884 * @len: length of transfer
6885 * @write: set to FOLL_WRITE when writing, otherwise reading
6886 *
6887 * This is a generic implementation for &vm_operations_struct.access for an
6888 * iomem mapping. This callback is used by access_process_vm() when the @vma is
6889 * not page based.
6890 */
generic_access_phys(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)6891 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
6892 void *buf, int len, int write)
6893 {
6894 resource_size_t phys_addr;
6895 pgprot_t prot = __pgprot(0);
6896 void __iomem *maddr;
6897 int offset = offset_in_page(addr);
6898 int ret = -EINVAL;
6899 bool writable;
6900 struct follow_pfnmap_args args = { .vma = vma, .address = addr };
6901
6902 retry:
6903 if (follow_pfnmap_start(&args))
6904 return -EINVAL;
6905 prot = args.pgprot;
6906 phys_addr = (resource_size_t)args.pfn << PAGE_SHIFT;
6907 writable = args.writable;
6908 follow_pfnmap_end(&args);
6909
6910 if ((write & FOLL_WRITE) && !writable)
6911 return -EINVAL;
6912
6913 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
6914 if (!maddr)
6915 return -ENOMEM;
6916
6917 if (follow_pfnmap_start(&args))
6918 goto out_unmap;
6919
6920 if ((pgprot_val(prot) != pgprot_val(args.pgprot)) ||
6921 (phys_addr != (args.pfn << PAGE_SHIFT)) ||
6922 (writable != args.writable)) {
6923 follow_pfnmap_end(&args);
6924 iounmap(maddr);
6925 goto retry;
6926 }
6927
6928 if (write)
6929 memcpy_toio(maddr + offset, buf, len);
6930 else
6931 memcpy_fromio(buf, maddr + offset, len);
6932 ret = len;
6933 follow_pfnmap_end(&args);
6934 out_unmap:
6935 iounmap(maddr);
6936
6937 return ret;
6938 }
6939 EXPORT_SYMBOL_GPL(generic_access_phys);
6940 #endif
6941
6942 /*
6943 * Access another process' address space as given in mm.
6944 */
__access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)6945 static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
6946 void *buf, int len, unsigned int gup_flags)
6947 {
6948 void *old_buf = buf;
6949 int write = gup_flags & FOLL_WRITE;
6950
6951 if (mmap_read_lock_killable(mm))
6952 return 0;
6953
6954 /* Untag the address before looking up the VMA */
6955 addr = untagged_addr_remote(mm, addr);
6956
6957 /* Avoid triggering the temporary warning in __get_user_pages */
6958 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
6959 return 0;
6960
6961 /* ignore errors, just check how much was successfully transferred */
6962 while (len) {
6963 int bytes, offset;
6964 void *maddr;
6965 struct folio *folio;
6966 struct vm_area_struct *vma = NULL;
6967 struct page *page = get_user_page_vma_remote(mm, addr,
6968 gup_flags, &vma);
6969
6970 if (IS_ERR(page)) {
6971 /* We might need to expand the stack to access it */
6972 vma = vma_lookup(mm, addr);
6973 if (!vma) {
6974 vma = expand_stack(mm, addr);
6975
6976 /* mmap_lock was dropped on failure */
6977 if (!vma)
6978 return buf - old_buf;
6979
6980 /* Try again if stack expansion worked */
6981 continue;
6982 }
6983
6984 /*
6985 * Check if this is a VM_IO | VM_PFNMAP VMA, which
6986 * we can access using slightly different code.
6987 */
6988 bytes = 0;
6989 #ifdef CONFIG_HAVE_IOREMAP_PROT
6990 if (vma->vm_ops && vma->vm_ops->access)
6991 bytes = vma->vm_ops->access(vma, addr, buf,
6992 len, write);
6993 #endif
6994 if (bytes <= 0)
6995 break;
6996 } else {
6997 folio = page_folio(page);
6998 bytes = len;
6999 offset = addr & (PAGE_SIZE-1);
7000 if (bytes > PAGE_SIZE-offset)
7001 bytes = PAGE_SIZE-offset;
7002
7003 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE);
7004 if (write) {
7005 copy_to_user_page(vma, page, addr,
7006 maddr + offset, buf, bytes);
7007 folio_mark_dirty_lock(folio);
7008 } else {
7009 copy_from_user_page(vma, page, addr,
7010 buf, maddr + offset, bytes);
7011 }
7012 folio_release_kmap(folio, maddr);
7013 }
7014 len -= bytes;
7015 buf += bytes;
7016 addr += bytes;
7017 }
7018 mmap_read_unlock(mm);
7019
7020 return buf - old_buf;
7021 }
7022
7023 /**
7024 * access_remote_vm - access another process' address space
7025 * @mm: the mm_struct of the target address space
7026 * @addr: start address to access
7027 * @buf: source or destination buffer
7028 * @len: number of bytes to transfer
7029 * @gup_flags: flags modifying lookup behaviour
7030 *
7031 * The caller must hold a reference on @mm.
7032 *
7033 * Return: number of bytes copied from source to destination.
7034 */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)7035 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
7036 void *buf, int len, unsigned int gup_flags)
7037 {
7038 return __access_remote_vm(mm, addr, buf, len, gup_flags);
7039 }
7040
7041 /*
7042 * Access another process' address space.
7043 * Source/target buffer must be kernel space,
7044 * Do not walk the page table directly, use get_user_pages
7045 */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)7046 int access_process_vm(struct task_struct *tsk, unsigned long addr,
7047 void *buf, int len, unsigned int gup_flags)
7048 {
7049 struct mm_struct *mm;
7050 int ret;
7051
7052 mm = get_task_mm(tsk);
7053 if (!mm)
7054 return 0;
7055
7056 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
7057
7058 mmput(mm);
7059
7060 return ret;
7061 }
7062 EXPORT_SYMBOL_GPL(access_process_vm);
7063
7064 #ifdef CONFIG_BPF_SYSCALL
7065 /*
7066 * Copy a string from another process's address space as given in mm.
7067 * If there is any error return -EFAULT.
7068 */
__copy_remote_vm_str(struct mm_struct * mm,unsigned long addr,void * buf,int len,unsigned int gup_flags)7069 static int __copy_remote_vm_str(struct mm_struct *mm, unsigned long addr,
7070 void *buf, int len, unsigned int gup_flags)
7071 {
7072 void *old_buf = buf;
7073 int err = 0;
7074
7075 *(char *)buf = '\0';
7076
7077 if (mmap_read_lock_killable(mm))
7078 return -EFAULT;
7079
7080 addr = untagged_addr_remote(mm, addr);
7081
7082 /* Avoid triggering the temporary warning in __get_user_pages */
7083 if (!vma_lookup(mm, addr)) {
7084 err = -EFAULT;
7085 goto out;
7086 }
7087
7088 while (len) {
7089 int bytes, offset, retval;
7090 void *maddr;
7091 struct folio *folio;
7092 struct page *page;
7093 struct vm_area_struct *vma = NULL;
7094
7095 page = get_user_page_vma_remote(mm, addr, gup_flags, &vma);
7096 if (IS_ERR(page)) {
7097 /*
7098 * Treat as a total failure for now until we decide how
7099 * to handle the CONFIG_HAVE_IOREMAP_PROT case and
7100 * stack expansion.
7101 */
7102 *(char *)buf = '\0';
7103 err = -EFAULT;
7104 goto out;
7105 }
7106
7107 folio = page_folio(page);
7108 bytes = len;
7109 offset = addr & (PAGE_SIZE - 1);
7110 if (bytes > PAGE_SIZE - offset)
7111 bytes = PAGE_SIZE - offset;
7112
7113 maddr = kmap_local_folio(folio, folio_page_idx(folio, page) * PAGE_SIZE);
7114 retval = strscpy(buf, maddr + offset, bytes);
7115 if (retval >= 0) {
7116 /* Found the end of the string */
7117 buf += retval;
7118 folio_release_kmap(folio, maddr);
7119 break;
7120 }
7121
7122 buf += bytes - 1;
7123 /*
7124 * Because strscpy always NUL terminates we need to
7125 * copy the last byte in the page if we are going to
7126 * load more pages
7127 */
7128 if (bytes != len) {
7129 addr += bytes - 1;
7130 copy_from_user_page(vma, page, addr, buf, maddr + (PAGE_SIZE - 1), 1);
7131 buf += 1;
7132 addr += 1;
7133 }
7134 len -= bytes;
7135
7136 folio_release_kmap(folio, maddr);
7137 }
7138
7139 out:
7140 mmap_read_unlock(mm);
7141 if (err)
7142 return err;
7143 return buf - old_buf;
7144 }
7145
7146 /**
7147 * copy_remote_vm_str - copy a string from another process's address space.
7148 * @tsk: the task of the target address space
7149 * @addr: start address to read from
7150 * @buf: destination buffer
7151 * @len: number of bytes to copy
7152 * @gup_flags: flags modifying lookup behaviour
7153 *
7154 * The caller must hold a reference on @mm.
7155 *
7156 * Return: number of bytes copied from @addr (source) to @buf (destination);
7157 * not including the trailing NUL. Always guaranteed to leave NUL-terminated
7158 * buffer. On any error, return -EFAULT.
7159 */
copy_remote_vm_str(struct task_struct * tsk,unsigned long addr,void * buf,int len,unsigned int gup_flags)7160 int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
7161 void *buf, int len, unsigned int gup_flags)
7162 {
7163 struct mm_struct *mm;
7164 int ret;
7165
7166 if (unlikely(len == 0))
7167 return 0;
7168
7169 mm = get_task_mm(tsk);
7170 if (!mm) {
7171 *(char *)buf = '\0';
7172 return -EFAULT;
7173 }
7174
7175 ret = __copy_remote_vm_str(mm, addr, buf, len, gup_flags);
7176
7177 mmput(mm);
7178
7179 return ret;
7180 }
7181 EXPORT_SYMBOL_GPL(copy_remote_vm_str);
7182 #endif /* CONFIG_BPF_SYSCALL */
7183
7184 /*
7185 * Print the name of a VMA.
7186 */
print_vma_addr(char * prefix,unsigned long ip)7187 void print_vma_addr(char *prefix, unsigned long ip)
7188 {
7189 struct mm_struct *mm = current->mm;
7190 struct vm_area_struct *vma;
7191
7192 /*
7193 * we might be running from an atomic context so we cannot sleep
7194 */
7195 if (!mmap_read_trylock(mm))
7196 return;
7197
7198 vma = vma_lookup(mm, ip);
7199 if (vma && vma->vm_file) {
7200 struct file *f = vma->vm_file;
7201 ip -= vma->vm_start;
7202 ip += vma->vm_pgoff << PAGE_SHIFT;
7203 printk("%s%pD[%lx,%lx+%lx]", prefix, f, ip,
7204 vma->vm_start,
7205 vma->vm_end - vma->vm_start);
7206 }
7207 mmap_read_unlock(mm);
7208 }
7209
7210 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
__might_fault(const char * file,int line)7211 void __might_fault(const char *file, int line)
7212 {
7213 if (pagefault_disabled())
7214 return;
7215 __might_sleep(file, line);
7216 if (current->mm)
7217 might_lock_read(¤t->mm->mmap_lock);
7218 }
7219 EXPORT_SYMBOL(__might_fault);
7220 #endif
7221
7222 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
7223 /*
7224 * Process all subpages of the specified huge page with the specified
7225 * operation. The target subpage will be processed last to keep its
7226 * cache lines hot.
7227 */
process_huge_page(unsigned long addr_hint,unsigned int nr_pages,int (* process_subpage)(unsigned long addr,int idx,void * arg),void * arg)7228 static inline int process_huge_page(
7229 unsigned long addr_hint, unsigned int nr_pages,
7230 int (*process_subpage)(unsigned long addr, int idx, void *arg),
7231 void *arg)
7232 {
7233 int i, n, base, l, ret;
7234 unsigned long addr = addr_hint &
7235 ~(((unsigned long)nr_pages << PAGE_SHIFT) - 1);
7236
7237 /* Process target subpage last to keep its cache lines hot */
7238 might_sleep();
7239 n = (addr_hint - addr) / PAGE_SIZE;
7240 if (2 * n <= nr_pages) {
7241 /* If target subpage in first half of huge page */
7242 base = 0;
7243 l = n;
7244 /* Process subpages at the end of huge page */
7245 for (i = nr_pages - 1; i >= 2 * n; i--) {
7246 cond_resched();
7247 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
7248 if (ret)
7249 return ret;
7250 }
7251 } else {
7252 /* If target subpage in second half of huge page */
7253 base = nr_pages - 2 * (nr_pages - n);
7254 l = nr_pages - n;
7255 /* Process subpages at the begin of huge page */
7256 for (i = 0; i < base; i++) {
7257 cond_resched();
7258 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
7259 if (ret)
7260 return ret;
7261 }
7262 }
7263 /*
7264 * Process remaining subpages in left-right-left-right pattern
7265 * towards the target subpage
7266 */
7267 for (i = 0; i < l; i++) {
7268 int left_idx = base + i;
7269 int right_idx = base + 2 * l - 1 - i;
7270
7271 cond_resched();
7272 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
7273 if (ret)
7274 return ret;
7275 cond_resched();
7276 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
7277 if (ret)
7278 return ret;
7279 }
7280 return 0;
7281 }
7282
clear_contig_highpages(struct page * page,unsigned long addr,unsigned int nr_pages)7283 static void clear_contig_highpages(struct page *page, unsigned long addr,
7284 unsigned int nr_pages)
7285 {
7286 unsigned int i, count;
7287 /*
7288 * When clearing we want to operate on the largest extent possible to
7289 * allow for architecture specific extent based optimizations.
7290 *
7291 * However, since clear_user_highpages() (and primitives clear_user_pages(),
7292 * clear_pages()), do not call cond_resched(), limit the unit size when
7293 * running under non-preemptible scheduling models.
7294 */
7295 const unsigned int unit = preempt_model_preemptible() ?
7296 nr_pages : PROCESS_PAGES_NON_PREEMPT_BATCH;
7297
7298 might_sleep();
7299
7300 for (i = 0; i < nr_pages; i += count) {
7301 cond_resched();
7302
7303 count = min(unit, nr_pages - i);
7304 clear_user_highpages(page + i, addr + i * PAGE_SIZE, count);
7305 }
7306 }
7307
7308 /*
7309 * When zeroing a folio, we want to differentiate between pages in the
7310 * vicinity of the faulting address where we have spatial and temporal
7311 * locality, and those far away where we don't.
7312 *
7313 * Use a radius of 2 for determining the local neighbourhood.
7314 */
7315 #define FOLIO_ZERO_LOCALITY_RADIUS 2
7316
7317 /**
7318 * folio_zero_user - Zero a folio which will be mapped to userspace.
7319 * @folio: The folio to zero.
7320 * @addr_hint: The address accessed by the user or the base address.
7321 */
folio_zero_user(struct folio * folio,unsigned long addr_hint)7322 void folio_zero_user(struct folio *folio, unsigned long addr_hint)
7323 {
7324 const unsigned long base_addr = ALIGN_DOWN(addr_hint, folio_size(folio));
7325 const long fault_idx = (addr_hint - base_addr) / PAGE_SIZE;
7326 const struct range pg = DEFINE_RANGE(0, folio_nr_pages(folio) - 1);
7327 const long radius = FOLIO_ZERO_LOCALITY_RADIUS;
7328 struct range r[3];
7329 int i;
7330
7331 /*
7332 * Faulting page and its immediate neighbourhood. Will be cleared at the
7333 * end to keep its cachelines hot.
7334 */
7335 r[2] = DEFINE_RANGE(fault_idx - radius < (long)pg.start ? pg.start : fault_idx - radius,
7336 fault_idx + radius > (long)pg.end ? pg.end : fault_idx + radius);
7337
7338
7339 /* Region to the left of the fault */
7340 r[1] = DEFINE_RANGE(pg.start, r[2].start - 1);
7341
7342 /* Region to the right of the fault: always valid for the common fault_idx=0 case. */
7343 r[0] = DEFINE_RANGE(r[2].end + 1, pg.end);
7344
7345 for (i = 0; i < ARRAY_SIZE(r); i++) {
7346 const unsigned long addr = base_addr + r[i].start * PAGE_SIZE;
7347 const long nr_pages = (long)range_len(&r[i]);
7348 struct page *page = folio_page(folio, r[i].start);
7349
7350 if (nr_pages > 0)
7351 clear_contig_highpages(page, addr, nr_pages);
7352 }
7353 }
7354
copy_user_gigantic_page(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma,unsigned int nr_pages)7355 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
7356 unsigned long addr_hint,
7357 struct vm_area_struct *vma,
7358 unsigned int nr_pages)
7359 {
7360 unsigned long addr = ALIGN_DOWN(addr_hint, folio_size(dst));
7361 struct page *dst_page;
7362 struct page *src_page;
7363 int i;
7364
7365 for (i = 0; i < nr_pages; i++) {
7366 dst_page = folio_page(dst, i);
7367 src_page = folio_page(src, i);
7368
7369 cond_resched();
7370 if (copy_mc_user_highpage(dst_page, src_page,
7371 addr + i*PAGE_SIZE, vma))
7372 return -EHWPOISON;
7373 }
7374 return 0;
7375 }
7376
7377 struct copy_subpage_arg {
7378 struct folio *dst;
7379 struct folio *src;
7380 struct vm_area_struct *vma;
7381 };
7382
copy_subpage(unsigned long addr,int idx,void * arg)7383 static int copy_subpage(unsigned long addr, int idx, void *arg)
7384 {
7385 struct copy_subpage_arg *copy_arg = arg;
7386 struct page *dst = folio_page(copy_arg->dst, idx);
7387 struct page *src = folio_page(copy_arg->src, idx);
7388
7389 if (copy_mc_user_highpage(dst, src, addr, copy_arg->vma))
7390 return -EHWPOISON;
7391 return 0;
7392 }
7393
copy_user_large_folio(struct folio * dst,struct folio * src,unsigned long addr_hint,struct vm_area_struct * vma)7394 int copy_user_large_folio(struct folio *dst, struct folio *src,
7395 unsigned long addr_hint, struct vm_area_struct *vma)
7396 {
7397 unsigned int nr_pages = folio_nr_pages(dst);
7398 struct copy_subpage_arg arg = {
7399 .dst = dst,
7400 .src = src,
7401 .vma = vma,
7402 };
7403
7404 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES))
7405 return copy_user_gigantic_page(dst, src, addr_hint, vma, nr_pages);
7406
7407 return process_huge_page(addr_hint, nr_pages, copy_subpage, &arg);
7408 }
7409
copy_folio_from_user(struct folio * dst_folio,const void __user * usr_src,bool allow_pagefault)7410 long copy_folio_from_user(struct folio *dst_folio,
7411 const void __user *usr_src,
7412 bool allow_pagefault)
7413 {
7414 void *kaddr;
7415 unsigned long i, rc = 0;
7416 unsigned int nr_pages = folio_nr_pages(dst_folio);
7417 unsigned long ret_val = nr_pages * PAGE_SIZE;
7418 struct page *subpage;
7419
7420 for (i = 0; i < nr_pages; i++) {
7421 subpage = folio_page(dst_folio, i);
7422 kaddr = kmap_local_page(subpage);
7423 if (!allow_pagefault)
7424 pagefault_disable();
7425 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
7426 if (!allow_pagefault)
7427 pagefault_enable();
7428 kunmap_local(kaddr);
7429
7430 ret_val -= (PAGE_SIZE - rc);
7431 if (rc)
7432 break;
7433
7434 flush_dcache_page(subpage);
7435
7436 cond_resched();
7437 }
7438 return ret_val;
7439 }
7440 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
7441
7442 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) && ALLOC_SPLIT_PTLOCKS
7443
7444 static struct kmem_cache *page_ptl_cachep;
7445
ptlock_cache_init(void)7446 void __init ptlock_cache_init(void)
7447 {
7448 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
7449 SLAB_PANIC, NULL);
7450 }
7451
ptlock_alloc(struct ptdesc * ptdesc)7452 bool ptlock_alloc(struct ptdesc *ptdesc)
7453 {
7454 spinlock_t *ptl;
7455
7456 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
7457 if (!ptl)
7458 return false;
7459 ptdesc->ptl = ptl;
7460 return true;
7461 }
7462
ptlock_free(struct ptdesc * ptdesc)7463 void ptlock_free(struct ptdesc *ptdesc)
7464 {
7465 if (ptdesc->ptl)
7466 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
7467 }
7468 #endif
7469
vma_pgtable_walk_begin(struct vm_area_struct * vma)7470 void vma_pgtable_walk_begin(struct vm_area_struct *vma)
7471 {
7472 if (is_vm_hugetlb_page(vma))
7473 hugetlb_vma_lock_read(vma);
7474 }
7475
vma_pgtable_walk_end(struct vm_area_struct * vma)7476 void vma_pgtable_walk_end(struct vm_area_struct *vma)
7477 {
7478 if (is_vm_hugetlb_page(vma))
7479 hugetlb_vma_unlock_read(vma);
7480 }
7481