1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/slab.h> 3 #include <linux/lockdep.h> 4 #include <linux/sysfs.h> 5 #include <linux/kobject.h> 6 #include <linux/memory.h> 7 #include <linux/memory-tiers.h> 8 9 #include "internal.h" 10 11 struct memory_tier { 12 /* hierarchy of memory tiers */ 13 struct list_head list; 14 /* list of all memory types part of this tier */ 15 struct list_head memory_types; 16 /* 17 * start value of abstract distance. memory tier maps 18 * an abstract distance range, 19 * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE 20 */ 21 int adistance_start; 22 struct device dev; 23 /* All the nodes that are part of all the lower memory tiers. */ 24 nodemask_t lower_tier_mask; 25 }; 26 27 struct demotion_nodes { 28 nodemask_t preferred; 29 }; 30 31 struct node_memory_type_map { 32 struct memory_dev_type *memtype; 33 int map_count; 34 }; 35 36 static DEFINE_MUTEX(memory_tier_lock); 37 static LIST_HEAD(memory_tiers); 38 static struct node_memory_type_map node_memory_types[MAX_NUMNODES]; 39 static struct memory_dev_type *default_dram_type; 40 41 static struct bus_type memory_tier_subsys = { 42 .name = "memory_tiering", 43 .dev_name = "memory_tier", 44 }; 45 46 #ifdef CONFIG_MIGRATION 47 static int top_tier_adistance; 48 /* 49 * node_demotion[] examples: 50 * 51 * Example 1: 52 * 53 * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes. 54 * 55 * node distances: 56 * node 0 1 2 3 57 * 0 10 20 30 40 58 * 1 20 10 40 30 59 * 2 30 40 10 40 60 * 3 40 30 40 10 61 * 62 * memory_tiers0 = 0-1 63 * memory_tiers1 = 2-3 64 * 65 * node_demotion[0].preferred = 2 66 * node_demotion[1].preferred = 3 67 * node_demotion[2].preferred = <empty> 68 * node_demotion[3].preferred = <empty> 69 * 70 * Example 2: 71 * 72 * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node. 73 * 74 * node distances: 75 * node 0 1 2 76 * 0 10 20 30 77 * 1 20 10 30 78 * 2 30 30 10 79 * 80 * memory_tiers0 = 0-2 81 * 82 * node_demotion[0].preferred = <empty> 83 * node_demotion[1].preferred = <empty> 84 * node_demotion[2].preferred = <empty> 85 * 86 * Example 3: 87 * 88 * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node. 89 * 90 * node distances: 91 * node 0 1 2 92 * 0 10 20 30 93 * 1 20 10 40 94 * 2 30 40 10 95 * 96 * memory_tiers0 = 1 97 * memory_tiers1 = 0 98 * memory_tiers2 = 2 99 * 100 * node_demotion[0].preferred = 2 101 * node_demotion[1].preferred = 0 102 * node_demotion[2].preferred = <empty> 103 * 104 */ 105 static struct demotion_nodes *node_demotion __read_mostly; 106 #endif /* CONFIG_MIGRATION */ 107 108 static inline struct memory_tier *to_memory_tier(struct device *device) 109 { 110 return container_of(device, struct memory_tier, dev); 111 } 112 113 static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier) 114 { 115 nodemask_t nodes = NODE_MASK_NONE; 116 struct memory_dev_type *memtype; 117 118 list_for_each_entry(memtype, &memtier->memory_types, tier_sibiling) 119 nodes_or(nodes, nodes, memtype->nodes); 120 121 return nodes; 122 } 123 124 static void memory_tier_device_release(struct device *dev) 125 { 126 struct memory_tier *tier = to_memory_tier(dev); 127 /* 128 * synchronize_rcu in clear_node_memory_tier makes sure 129 * we don't have rcu access to this memory tier. 130 */ 131 kfree(tier); 132 } 133 134 static ssize_t nodes_show(struct device *dev, 135 struct device_attribute *attr, char *buf) 136 { 137 int ret; 138 nodemask_t nmask; 139 140 mutex_lock(&memory_tier_lock); 141 nmask = get_memtier_nodemask(to_memory_tier(dev)); 142 ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask)); 143 mutex_unlock(&memory_tier_lock); 144 return ret; 145 } 146 static DEVICE_ATTR_RO(nodes); 147 148 static struct attribute *memtier_dev_attrs[] = { 149 &dev_attr_nodes.attr, 150 NULL 151 }; 152 153 static const struct attribute_group memtier_dev_group = { 154 .attrs = memtier_dev_attrs, 155 }; 156 157 static const struct attribute_group *memtier_dev_groups[] = { 158 &memtier_dev_group, 159 NULL 160 }; 161 162 static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype) 163 { 164 int ret; 165 bool found_slot = false; 166 struct memory_tier *memtier, *new_memtier; 167 int adistance = memtype->adistance; 168 unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE; 169 170 lockdep_assert_held_once(&memory_tier_lock); 171 172 adistance = round_down(adistance, memtier_adistance_chunk_size); 173 /* 174 * If the memtype is already part of a memory tier, 175 * just return that. 176 */ 177 if (!list_empty(&memtype->tier_sibiling)) { 178 list_for_each_entry(memtier, &memory_tiers, list) { 179 if (adistance == memtier->adistance_start) 180 return memtier; 181 } 182 WARN_ON(1); 183 return ERR_PTR(-EINVAL); 184 } 185 186 list_for_each_entry(memtier, &memory_tiers, list) { 187 if (adistance == memtier->adistance_start) { 188 goto link_memtype; 189 } else if (adistance < memtier->adistance_start) { 190 found_slot = true; 191 break; 192 } 193 } 194 195 new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL); 196 if (!new_memtier) 197 return ERR_PTR(-ENOMEM); 198 199 new_memtier->adistance_start = adistance; 200 INIT_LIST_HEAD(&new_memtier->list); 201 INIT_LIST_HEAD(&new_memtier->memory_types); 202 if (found_slot) 203 list_add_tail(&new_memtier->list, &memtier->list); 204 else 205 list_add_tail(&new_memtier->list, &memory_tiers); 206 207 new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS; 208 new_memtier->dev.bus = &memory_tier_subsys; 209 new_memtier->dev.release = memory_tier_device_release; 210 new_memtier->dev.groups = memtier_dev_groups; 211 212 ret = device_register(&new_memtier->dev); 213 if (ret) { 214 list_del(&memtier->list); 215 put_device(&memtier->dev); 216 return ERR_PTR(ret); 217 } 218 memtier = new_memtier; 219 220 link_memtype: 221 list_add(&memtype->tier_sibiling, &memtier->memory_types); 222 return memtier; 223 } 224 225 static struct memory_tier *__node_get_memory_tier(int node) 226 { 227 pg_data_t *pgdat; 228 229 pgdat = NODE_DATA(node); 230 if (!pgdat) 231 return NULL; 232 /* 233 * Since we hold memory_tier_lock, we can avoid 234 * RCU read locks when accessing the details. No 235 * parallel updates are possible here. 236 */ 237 return rcu_dereference_check(pgdat->memtier, 238 lockdep_is_held(&memory_tier_lock)); 239 } 240 241 #ifdef CONFIG_MIGRATION 242 bool node_is_toptier(int node) 243 { 244 bool toptier; 245 pg_data_t *pgdat; 246 struct memory_tier *memtier; 247 248 pgdat = NODE_DATA(node); 249 if (!pgdat) 250 return false; 251 252 rcu_read_lock(); 253 memtier = rcu_dereference(pgdat->memtier); 254 if (!memtier) { 255 toptier = true; 256 goto out; 257 } 258 if (memtier->adistance_start <= top_tier_adistance) 259 toptier = true; 260 else 261 toptier = false; 262 out: 263 rcu_read_unlock(); 264 return toptier; 265 } 266 267 void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets) 268 { 269 struct memory_tier *memtier; 270 271 /* 272 * pg_data_t.memtier updates includes a synchronize_rcu() 273 * which ensures that we either find NULL or a valid memtier 274 * in NODE_DATA. protect the access via rcu_read_lock(); 275 */ 276 rcu_read_lock(); 277 memtier = rcu_dereference(pgdat->memtier); 278 if (memtier) 279 *targets = memtier->lower_tier_mask; 280 else 281 *targets = NODE_MASK_NONE; 282 rcu_read_unlock(); 283 } 284 285 /** 286 * next_demotion_node() - Get the next node in the demotion path 287 * @node: The starting node to lookup the next node 288 * 289 * Return: node id for next memory node in the demotion path hierarchy 290 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep 291 * @node online or guarantee that it *continues* to be the next demotion 292 * target. 293 */ 294 int next_demotion_node(int node) 295 { 296 struct demotion_nodes *nd; 297 int target; 298 299 if (!node_demotion) 300 return NUMA_NO_NODE; 301 302 nd = &node_demotion[node]; 303 304 /* 305 * node_demotion[] is updated without excluding this 306 * function from running. 307 * 308 * Make sure to use RCU over entire code blocks if 309 * node_demotion[] reads need to be consistent. 310 */ 311 rcu_read_lock(); 312 /* 313 * If there are multiple target nodes, just select one 314 * target node randomly. 315 * 316 * In addition, we can also use round-robin to select 317 * target node, but we should introduce another variable 318 * for node_demotion[] to record last selected target node, 319 * that may cause cache ping-pong due to the changing of 320 * last target node. Or introducing per-cpu data to avoid 321 * caching issue, which seems more complicated. So selecting 322 * target node randomly seems better until now. 323 */ 324 target = node_random(&nd->preferred); 325 rcu_read_unlock(); 326 327 return target; 328 } 329 330 static void disable_all_demotion_targets(void) 331 { 332 struct memory_tier *memtier; 333 int node; 334 335 for_each_node_state(node, N_MEMORY) { 336 node_demotion[node].preferred = NODE_MASK_NONE; 337 /* 338 * We are holding memory_tier_lock, it is safe 339 * to access pgda->memtier. 340 */ 341 memtier = __node_get_memory_tier(node); 342 if (memtier) 343 memtier->lower_tier_mask = NODE_MASK_NONE; 344 } 345 /* 346 * Ensure that the "disable" is visible across the system. 347 * Readers will see either a combination of before+disable 348 * state or disable+after. They will never see before and 349 * after state together. 350 */ 351 synchronize_rcu(); 352 } 353 354 /* 355 * Find an automatic demotion target for all memory 356 * nodes. Failing here is OK. It might just indicate 357 * being at the end of a chain. 358 */ 359 static void establish_demotion_targets(void) 360 { 361 struct memory_tier *memtier; 362 struct demotion_nodes *nd; 363 int target = NUMA_NO_NODE, node; 364 int distance, best_distance; 365 nodemask_t tier_nodes, lower_tier; 366 367 lockdep_assert_held_once(&memory_tier_lock); 368 369 if (!node_demotion || !IS_ENABLED(CONFIG_MIGRATION)) 370 return; 371 372 disable_all_demotion_targets(); 373 374 for_each_node_state(node, N_MEMORY) { 375 best_distance = -1; 376 nd = &node_demotion[node]; 377 378 memtier = __node_get_memory_tier(node); 379 if (!memtier || list_is_last(&memtier->list, &memory_tiers)) 380 continue; 381 /* 382 * Get the lower memtier to find the demotion node list. 383 */ 384 memtier = list_next_entry(memtier, list); 385 tier_nodes = get_memtier_nodemask(memtier); 386 /* 387 * find_next_best_node, use 'used' nodemask as a skip list. 388 * Add all memory nodes except the selected memory tier 389 * nodelist to skip list so that we find the best node from the 390 * memtier nodelist. 391 */ 392 nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes); 393 394 /* 395 * Find all the nodes in the memory tier node list of same best distance. 396 * add them to the preferred mask. We randomly select between nodes 397 * in the preferred mask when allocating pages during demotion. 398 */ 399 do { 400 target = find_next_best_node(node, &tier_nodes); 401 if (target == NUMA_NO_NODE) 402 break; 403 404 distance = node_distance(node, target); 405 if (distance == best_distance || best_distance == -1) { 406 best_distance = distance; 407 node_set(target, nd->preferred); 408 } else { 409 break; 410 } 411 } while (1); 412 } 413 /* 414 * Promotion is allowed from a memory tier to higher 415 * memory tier only if the memory tier doesn't include 416 * compute. We want to skip promotion from a memory tier, 417 * if any node that is part of the memory tier have CPUs. 418 * Once we detect such a memory tier, we consider that tier 419 * as top tiper from which promotion is not allowed. 420 */ 421 list_for_each_entry_reverse(memtier, &memory_tiers, list) { 422 tier_nodes = get_memtier_nodemask(memtier); 423 nodes_and(tier_nodes, node_states[N_CPU], tier_nodes); 424 if (!nodes_empty(tier_nodes)) { 425 /* 426 * abstract distance below the max value of this memtier 427 * is considered toptier. 428 */ 429 top_tier_adistance = memtier->adistance_start + 430 MEMTIER_CHUNK_SIZE - 1; 431 break; 432 } 433 } 434 /* 435 * Now build the lower_tier mask for each node collecting node mask from 436 * all memory tier below it. This allows us to fallback demotion page 437 * allocation to a set of nodes that is closer the above selected 438 * perferred node. 439 */ 440 lower_tier = node_states[N_MEMORY]; 441 list_for_each_entry(memtier, &memory_tiers, list) { 442 /* 443 * Keep removing current tier from lower_tier nodes, 444 * This will remove all nodes in current and above 445 * memory tier from the lower_tier mask. 446 */ 447 tier_nodes = get_memtier_nodemask(memtier); 448 nodes_andnot(lower_tier, lower_tier, tier_nodes); 449 memtier->lower_tier_mask = lower_tier; 450 } 451 } 452 453 #else 454 static inline void disable_all_demotion_targets(void) {} 455 static inline void establish_demotion_targets(void) {} 456 #endif /* CONFIG_MIGRATION */ 457 458 static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype) 459 { 460 if (!node_memory_types[node].memtype) 461 node_memory_types[node].memtype = memtype; 462 /* 463 * for each device getting added in the same NUMA node 464 * with this specific memtype, bump the map count. We 465 * Only take memtype device reference once, so that 466 * changing a node memtype can be done by droping the 467 * only reference count taken here. 468 */ 469 470 if (node_memory_types[node].memtype == memtype) { 471 if (!node_memory_types[node].map_count++) 472 kref_get(&memtype->kref); 473 } 474 } 475 476 static struct memory_tier *set_node_memory_tier(int node) 477 { 478 struct memory_tier *memtier; 479 struct memory_dev_type *memtype; 480 pg_data_t *pgdat = NODE_DATA(node); 481 482 483 lockdep_assert_held_once(&memory_tier_lock); 484 485 if (!node_state(node, N_MEMORY)) 486 return ERR_PTR(-EINVAL); 487 488 __init_node_memory_type(node, default_dram_type); 489 490 memtype = node_memory_types[node].memtype; 491 node_set(node, memtype->nodes); 492 memtier = find_create_memory_tier(memtype); 493 if (!IS_ERR(memtier)) 494 rcu_assign_pointer(pgdat->memtier, memtier); 495 return memtier; 496 } 497 498 static void destroy_memory_tier(struct memory_tier *memtier) 499 { 500 list_del(&memtier->list); 501 device_unregister(&memtier->dev); 502 } 503 504 static bool clear_node_memory_tier(int node) 505 { 506 bool cleared = false; 507 pg_data_t *pgdat; 508 struct memory_tier *memtier; 509 510 pgdat = NODE_DATA(node); 511 if (!pgdat) 512 return false; 513 514 /* 515 * Make sure that anybody looking at NODE_DATA who finds 516 * a valid memtier finds memory_dev_types with nodes still 517 * linked to the memtier. We achieve this by waiting for 518 * rcu read section to finish using synchronize_rcu. 519 * This also enables us to free the destroyed memory tier 520 * with kfree instead of kfree_rcu 521 */ 522 memtier = __node_get_memory_tier(node); 523 if (memtier) { 524 struct memory_dev_type *memtype; 525 526 rcu_assign_pointer(pgdat->memtier, NULL); 527 synchronize_rcu(); 528 memtype = node_memory_types[node].memtype; 529 node_clear(node, memtype->nodes); 530 if (nodes_empty(memtype->nodes)) { 531 list_del_init(&memtype->tier_sibiling); 532 if (list_empty(&memtier->memory_types)) 533 destroy_memory_tier(memtier); 534 } 535 cleared = true; 536 } 537 return cleared; 538 } 539 540 static void release_memtype(struct kref *kref) 541 { 542 struct memory_dev_type *memtype; 543 544 memtype = container_of(kref, struct memory_dev_type, kref); 545 kfree(memtype); 546 } 547 548 struct memory_dev_type *alloc_memory_type(int adistance) 549 { 550 struct memory_dev_type *memtype; 551 552 memtype = kmalloc(sizeof(*memtype), GFP_KERNEL); 553 if (!memtype) 554 return ERR_PTR(-ENOMEM); 555 556 memtype->adistance = adistance; 557 INIT_LIST_HEAD(&memtype->tier_sibiling); 558 memtype->nodes = NODE_MASK_NONE; 559 kref_init(&memtype->kref); 560 return memtype; 561 } 562 EXPORT_SYMBOL_GPL(alloc_memory_type); 563 564 void destroy_memory_type(struct memory_dev_type *memtype) 565 { 566 kref_put(&memtype->kref, release_memtype); 567 } 568 EXPORT_SYMBOL_GPL(destroy_memory_type); 569 570 void init_node_memory_type(int node, struct memory_dev_type *memtype) 571 { 572 573 mutex_lock(&memory_tier_lock); 574 __init_node_memory_type(node, memtype); 575 mutex_unlock(&memory_tier_lock); 576 } 577 EXPORT_SYMBOL_GPL(init_node_memory_type); 578 579 void clear_node_memory_type(int node, struct memory_dev_type *memtype) 580 { 581 mutex_lock(&memory_tier_lock); 582 if (node_memory_types[node].memtype == memtype) 583 node_memory_types[node].map_count--; 584 /* 585 * If we umapped all the attached devices to this node, 586 * clear the node memory type. 587 */ 588 if (!node_memory_types[node].map_count) { 589 node_memory_types[node].memtype = NULL; 590 kref_put(&memtype->kref, release_memtype); 591 } 592 mutex_unlock(&memory_tier_lock); 593 } 594 EXPORT_SYMBOL_GPL(clear_node_memory_type); 595 596 static int __meminit memtier_hotplug_callback(struct notifier_block *self, 597 unsigned long action, void *_arg) 598 { 599 struct memory_tier *memtier; 600 struct memory_notify *arg = _arg; 601 602 /* 603 * Only update the node migration order when a node is 604 * changing status, like online->offline. 605 */ 606 if (arg->status_change_nid < 0) 607 return notifier_from_errno(0); 608 609 switch (action) { 610 case MEM_OFFLINE: 611 mutex_lock(&memory_tier_lock); 612 if (clear_node_memory_tier(arg->status_change_nid)) 613 establish_demotion_targets(); 614 mutex_unlock(&memory_tier_lock); 615 break; 616 case MEM_ONLINE: 617 mutex_lock(&memory_tier_lock); 618 memtier = set_node_memory_tier(arg->status_change_nid); 619 if (!IS_ERR(memtier)) 620 establish_demotion_targets(); 621 mutex_unlock(&memory_tier_lock); 622 break; 623 } 624 625 return notifier_from_errno(0); 626 } 627 628 static int __init memory_tier_init(void) 629 { 630 int ret, node; 631 struct memory_tier *memtier; 632 633 ret = subsys_virtual_register(&memory_tier_subsys, NULL); 634 if (ret) 635 panic("%s() failed to register memory tier subsystem\n", __func__); 636 637 #ifdef CONFIG_MIGRATION 638 node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes), 639 GFP_KERNEL); 640 WARN_ON(!node_demotion); 641 #endif 642 mutex_lock(&memory_tier_lock); 643 /* 644 * For now we can have 4 faster memory tiers with smaller adistance 645 * than default DRAM tier. 646 */ 647 default_dram_type = alloc_memory_type(MEMTIER_ADISTANCE_DRAM); 648 if (!default_dram_type) 649 panic("%s() failed to allocate default DRAM tier\n", __func__); 650 651 /* 652 * Look at all the existing N_MEMORY nodes and add them to 653 * default memory tier or to a tier if we already have memory 654 * types assigned. 655 */ 656 for_each_node_state(node, N_MEMORY) { 657 memtier = set_node_memory_tier(node); 658 if (IS_ERR(memtier)) 659 /* 660 * Continue with memtiers we are able to setup 661 */ 662 break; 663 } 664 establish_demotion_targets(); 665 mutex_unlock(&memory_tier_lock); 666 667 hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRIO); 668 return 0; 669 } 670 subsys_initcall(memory_tier_init); 671 672 bool numa_demotion_enabled = false; 673 674 #ifdef CONFIG_MIGRATION 675 #ifdef CONFIG_SYSFS 676 static ssize_t numa_demotion_enabled_show(struct kobject *kobj, 677 struct kobj_attribute *attr, char *buf) 678 { 679 return sysfs_emit(buf, "%s\n", 680 numa_demotion_enabled ? "true" : "false"); 681 } 682 683 static ssize_t numa_demotion_enabled_store(struct kobject *kobj, 684 struct kobj_attribute *attr, 685 const char *buf, size_t count) 686 { 687 ssize_t ret; 688 689 ret = kstrtobool(buf, &numa_demotion_enabled); 690 if (ret) 691 return ret; 692 693 return count; 694 } 695 696 static struct kobj_attribute numa_demotion_enabled_attr = 697 __ATTR(demotion_enabled, 0644, numa_demotion_enabled_show, 698 numa_demotion_enabled_store); 699 700 static struct attribute *numa_attrs[] = { 701 &numa_demotion_enabled_attr.attr, 702 NULL, 703 }; 704 705 static const struct attribute_group numa_attr_group = { 706 .attrs = numa_attrs, 707 }; 708 709 static int __init numa_init_sysfs(void) 710 { 711 int err; 712 struct kobject *numa_kobj; 713 714 numa_kobj = kobject_create_and_add("numa", mm_kobj); 715 if (!numa_kobj) { 716 pr_err("failed to create numa kobject\n"); 717 return -ENOMEM; 718 } 719 err = sysfs_create_group(numa_kobj, &numa_attr_group); 720 if (err) { 721 pr_err("failed to register numa group\n"); 722 goto delete_obj; 723 } 724 return 0; 725 726 delete_obj: 727 kobject_put(numa_kobj); 728 return err; 729 } 730 subsys_initcall(numa_init_sysfs); 731 #endif /* CONFIG_SYSFS */ 732 #endif 733