1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/slab.h> 3 #include <linux/lockdep.h> 4 #include <linux/sysfs.h> 5 #include <linux/kobject.h> 6 #include <linux/memory.h> 7 #include <linux/memory-tiers.h> 8 #include <linux/notifier.h> 9 10 #include "internal.h" 11 12 struct memory_tier { 13 /* hierarchy of memory tiers */ 14 struct list_head list; 15 /* list of all memory types part of this tier */ 16 struct list_head memory_types; 17 /* 18 * start value of abstract distance. memory tier maps 19 * an abstract distance range, 20 * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE 21 */ 22 int adistance_start; 23 struct device dev; 24 /* All the nodes that are part of all the lower memory tiers. */ 25 nodemask_t lower_tier_mask; 26 }; 27 28 struct demotion_nodes { 29 nodemask_t preferred; 30 }; 31 32 struct node_memory_type_map { 33 struct memory_dev_type *memtype; 34 int map_count; 35 }; 36 37 static DEFINE_MUTEX(memory_tier_lock); 38 static LIST_HEAD(memory_tiers); 39 static struct node_memory_type_map node_memory_types[MAX_NUMNODES]; 40 struct memory_dev_type *default_dram_type; 41 42 static struct bus_type memory_tier_subsys = { 43 .name = "memory_tiering", 44 .dev_name = "memory_tier", 45 }; 46 47 #ifdef CONFIG_MIGRATION 48 static int top_tier_adistance; 49 /* 50 * node_demotion[] examples: 51 * 52 * Example 1: 53 * 54 * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes. 55 * 56 * node distances: 57 * node 0 1 2 3 58 * 0 10 20 30 40 59 * 1 20 10 40 30 60 * 2 30 40 10 40 61 * 3 40 30 40 10 62 * 63 * memory_tiers0 = 0-1 64 * memory_tiers1 = 2-3 65 * 66 * node_demotion[0].preferred = 2 67 * node_demotion[1].preferred = 3 68 * node_demotion[2].preferred = <empty> 69 * node_demotion[3].preferred = <empty> 70 * 71 * Example 2: 72 * 73 * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node. 74 * 75 * node distances: 76 * node 0 1 2 77 * 0 10 20 30 78 * 1 20 10 30 79 * 2 30 30 10 80 * 81 * memory_tiers0 = 0-2 82 * 83 * node_demotion[0].preferred = <empty> 84 * node_demotion[1].preferred = <empty> 85 * node_demotion[2].preferred = <empty> 86 * 87 * Example 3: 88 * 89 * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node. 90 * 91 * node distances: 92 * node 0 1 2 93 * 0 10 20 30 94 * 1 20 10 40 95 * 2 30 40 10 96 * 97 * memory_tiers0 = 1 98 * memory_tiers1 = 0 99 * memory_tiers2 = 2 100 * 101 * node_demotion[0].preferred = 2 102 * node_demotion[1].preferred = 0 103 * node_demotion[2].preferred = <empty> 104 * 105 */ 106 static struct demotion_nodes *node_demotion __read_mostly; 107 #endif /* CONFIG_MIGRATION */ 108 109 static BLOCKING_NOTIFIER_HEAD(mt_adistance_algorithms); 110 111 static bool default_dram_perf_error; 112 static struct access_coordinate default_dram_perf; 113 static int default_dram_perf_ref_nid = NUMA_NO_NODE; 114 static const char *default_dram_perf_ref_source; 115 116 static inline struct memory_tier *to_memory_tier(struct device *device) 117 { 118 return container_of(device, struct memory_tier, dev); 119 } 120 121 static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier) 122 { 123 nodemask_t nodes = NODE_MASK_NONE; 124 struct memory_dev_type *memtype; 125 126 list_for_each_entry(memtype, &memtier->memory_types, tier_sibling) 127 nodes_or(nodes, nodes, memtype->nodes); 128 129 return nodes; 130 } 131 132 static void memory_tier_device_release(struct device *dev) 133 { 134 struct memory_tier *tier = to_memory_tier(dev); 135 /* 136 * synchronize_rcu in clear_node_memory_tier makes sure 137 * we don't have rcu access to this memory tier. 138 */ 139 kfree(tier); 140 } 141 142 static ssize_t nodelist_show(struct device *dev, 143 struct device_attribute *attr, char *buf) 144 { 145 int ret; 146 nodemask_t nmask; 147 148 mutex_lock(&memory_tier_lock); 149 nmask = get_memtier_nodemask(to_memory_tier(dev)); 150 ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask)); 151 mutex_unlock(&memory_tier_lock); 152 return ret; 153 } 154 static DEVICE_ATTR_RO(nodelist); 155 156 static struct attribute *memtier_dev_attrs[] = { 157 &dev_attr_nodelist.attr, 158 NULL 159 }; 160 161 static const struct attribute_group memtier_dev_group = { 162 .attrs = memtier_dev_attrs, 163 }; 164 165 static const struct attribute_group *memtier_dev_groups[] = { 166 &memtier_dev_group, 167 NULL 168 }; 169 170 static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype) 171 { 172 int ret; 173 bool found_slot = false; 174 struct memory_tier *memtier, *new_memtier; 175 int adistance = memtype->adistance; 176 unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE; 177 178 lockdep_assert_held_once(&memory_tier_lock); 179 180 adistance = round_down(adistance, memtier_adistance_chunk_size); 181 /* 182 * If the memtype is already part of a memory tier, 183 * just return that. 184 */ 185 if (!list_empty(&memtype->tier_sibling)) { 186 list_for_each_entry(memtier, &memory_tiers, list) { 187 if (adistance == memtier->adistance_start) 188 return memtier; 189 } 190 WARN_ON(1); 191 return ERR_PTR(-EINVAL); 192 } 193 194 list_for_each_entry(memtier, &memory_tiers, list) { 195 if (adistance == memtier->adistance_start) { 196 goto link_memtype; 197 } else if (adistance < memtier->adistance_start) { 198 found_slot = true; 199 break; 200 } 201 } 202 203 new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL); 204 if (!new_memtier) 205 return ERR_PTR(-ENOMEM); 206 207 new_memtier->adistance_start = adistance; 208 INIT_LIST_HEAD(&new_memtier->list); 209 INIT_LIST_HEAD(&new_memtier->memory_types); 210 if (found_slot) 211 list_add_tail(&new_memtier->list, &memtier->list); 212 else 213 list_add_tail(&new_memtier->list, &memory_tiers); 214 215 new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS; 216 new_memtier->dev.bus = &memory_tier_subsys; 217 new_memtier->dev.release = memory_tier_device_release; 218 new_memtier->dev.groups = memtier_dev_groups; 219 220 ret = device_register(&new_memtier->dev); 221 if (ret) { 222 list_del(&new_memtier->list); 223 put_device(&new_memtier->dev); 224 return ERR_PTR(ret); 225 } 226 memtier = new_memtier; 227 228 link_memtype: 229 list_add(&memtype->tier_sibling, &memtier->memory_types); 230 return memtier; 231 } 232 233 static struct memory_tier *__node_get_memory_tier(int node) 234 { 235 pg_data_t *pgdat; 236 237 pgdat = NODE_DATA(node); 238 if (!pgdat) 239 return NULL; 240 /* 241 * Since we hold memory_tier_lock, we can avoid 242 * RCU read locks when accessing the details. No 243 * parallel updates are possible here. 244 */ 245 return rcu_dereference_check(pgdat->memtier, 246 lockdep_is_held(&memory_tier_lock)); 247 } 248 249 #ifdef CONFIG_MIGRATION 250 bool node_is_toptier(int node) 251 { 252 bool toptier; 253 pg_data_t *pgdat; 254 struct memory_tier *memtier; 255 256 pgdat = NODE_DATA(node); 257 if (!pgdat) 258 return false; 259 260 rcu_read_lock(); 261 memtier = rcu_dereference(pgdat->memtier); 262 if (!memtier) { 263 toptier = true; 264 goto out; 265 } 266 if (memtier->adistance_start <= top_tier_adistance) 267 toptier = true; 268 else 269 toptier = false; 270 out: 271 rcu_read_unlock(); 272 return toptier; 273 } 274 275 void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets) 276 { 277 struct memory_tier *memtier; 278 279 /* 280 * pg_data_t.memtier updates includes a synchronize_rcu() 281 * which ensures that we either find NULL or a valid memtier 282 * in NODE_DATA. protect the access via rcu_read_lock(); 283 */ 284 rcu_read_lock(); 285 memtier = rcu_dereference(pgdat->memtier); 286 if (memtier) 287 *targets = memtier->lower_tier_mask; 288 else 289 *targets = NODE_MASK_NONE; 290 rcu_read_unlock(); 291 } 292 293 /** 294 * next_demotion_node() - Get the next node in the demotion path 295 * @node: The starting node to lookup the next node 296 * 297 * Return: node id for next memory node in the demotion path hierarchy 298 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep 299 * @node online or guarantee that it *continues* to be the next demotion 300 * target. 301 */ 302 int next_demotion_node(int node) 303 { 304 struct demotion_nodes *nd; 305 int target; 306 307 if (!node_demotion) 308 return NUMA_NO_NODE; 309 310 nd = &node_demotion[node]; 311 312 /* 313 * node_demotion[] is updated without excluding this 314 * function from running. 315 * 316 * Make sure to use RCU over entire code blocks if 317 * node_demotion[] reads need to be consistent. 318 */ 319 rcu_read_lock(); 320 /* 321 * If there are multiple target nodes, just select one 322 * target node randomly. 323 * 324 * In addition, we can also use round-robin to select 325 * target node, but we should introduce another variable 326 * for node_demotion[] to record last selected target node, 327 * that may cause cache ping-pong due to the changing of 328 * last target node. Or introducing per-cpu data to avoid 329 * caching issue, which seems more complicated. So selecting 330 * target node randomly seems better until now. 331 */ 332 target = node_random(&nd->preferred); 333 rcu_read_unlock(); 334 335 return target; 336 } 337 338 static void disable_all_demotion_targets(void) 339 { 340 struct memory_tier *memtier; 341 int node; 342 343 for_each_node_state(node, N_MEMORY) { 344 node_demotion[node].preferred = NODE_MASK_NONE; 345 /* 346 * We are holding memory_tier_lock, it is safe 347 * to access pgda->memtier. 348 */ 349 memtier = __node_get_memory_tier(node); 350 if (memtier) 351 memtier->lower_tier_mask = NODE_MASK_NONE; 352 } 353 /* 354 * Ensure that the "disable" is visible across the system. 355 * Readers will see either a combination of before+disable 356 * state or disable+after. They will never see before and 357 * after state together. 358 */ 359 synchronize_rcu(); 360 } 361 362 /* 363 * Find an automatic demotion target for all memory 364 * nodes. Failing here is OK. It might just indicate 365 * being at the end of a chain. 366 */ 367 static void establish_demotion_targets(void) 368 { 369 struct memory_tier *memtier; 370 struct demotion_nodes *nd; 371 int target = NUMA_NO_NODE, node; 372 int distance, best_distance; 373 nodemask_t tier_nodes, lower_tier; 374 375 lockdep_assert_held_once(&memory_tier_lock); 376 377 if (!node_demotion) 378 return; 379 380 disable_all_demotion_targets(); 381 382 for_each_node_state(node, N_MEMORY) { 383 best_distance = -1; 384 nd = &node_demotion[node]; 385 386 memtier = __node_get_memory_tier(node); 387 if (!memtier || list_is_last(&memtier->list, &memory_tiers)) 388 continue; 389 /* 390 * Get the lower memtier to find the demotion node list. 391 */ 392 memtier = list_next_entry(memtier, list); 393 tier_nodes = get_memtier_nodemask(memtier); 394 /* 395 * find_next_best_node, use 'used' nodemask as a skip list. 396 * Add all memory nodes except the selected memory tier 397 * nodelist to skip list so that we find the best node from the 398 * memtier nodelist. 399 */ 400 nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes); 401 402 /* 403 * Find all the nodes in the memory tier node list of same best distance. 404 * add them to the preferred mask. We randomly select between nodes 405 * in the preferred mask when allocating pages during demotion. 406 */ 407 do { 408 target = find_next_best_node(node, &tier_nodes); 409 if (target == NUMA_NO_NODE) 410 break; 411 412 distance = node_distance(node, target); 413 if (distance == best_distance || best_distance == -1) { 414 best_distance = distance; 415 node_set(target, nd->preferred); 416 } else { 417 break; 418 } 419 } while (1); 420 } 421 /* 422 * Promotion is allowed from a memory tier to higher 423 * memory tier only if the memory tier doesn't include 424 * compute. We want to skip promotion from a memory tier, 425 * if any node that is part of the memory tier have CPUs. 426 * Once we detect such a memory tier, we consider that tier 427 * as top tiper from which promotion is not allowed. 428 */ 429 list_for_each_entry_reverse(memtier, &memory_tiers, list) { 430 tier_nodes = get_memtier_nodemask(memtier); 431 nodes_and(tier_nodes, node_states[N_CPU], tier_nodes); 432 if (!nodes_empty(tier_nodes)) { 433 /* 434 * abstract distance below the max value of this memtier 435 * is considered toptier. 436 */ 437 top_tier_adistance = memtier->adistance_start + 438 MEMTIER_CHUNK_SIZE - 1; 439 break; 440 } 441 } 442 /* 443 * Now build the lower_tier mask for each node collecting node mask from 444 * all memory tier below it. This allows us to fallback demotion page 445 * allocation to a set of nodes that is closer the above selected 446 * perferred node. 447 */ 448 lower_tier = node_states[N_MEMORY]; 449 list_for_each_entry(memtier, &memory_tiers, list) { 450 /* 451 * Keep removing current tier from lower_tier nodes, 452 * This will remove all nodes in current and above 453 * memory tier from the lower_tier mask. 454 */ 455 tier_nodes = get_memtier_nodemask(memtier); 456 nodes_andnot(lower_tier, lower_tier, tier_nodes); 457 memtier->lower_tier_mask = lower_tier; 458 } 459 } 460 461 #else 462 static inline void establish_demotion_targets(void) {} 463 #endif /* CONFIG_MIGRATION */ 464 465 static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype) 466 { 467 if (!node_memory_types[node].memtype) 468 node_memory_types[node].memtype = memtype; 469 /* 470 * for each device getting added in the same NUMA node 471 * with this specific memtype, bump the map count. We 472 * Only take memtype device reference once, so that 473 * changing a node memtype can be done by droping the 474 * only reference count taken here. 475 */ 476 477 if (node_memory_types[node].memtype == memtype) { 478 if (!node_memory_types[node].map_count++) 479 kref_get(&memtype->kref); 480 } 481 } 482 483 static struct memory_tier *set_node_memory_tier(int node) 484 { 485 struct memory_tier *memtier; 486 struct memory_dev_type *memtype; 487 pg_data_t *pgdat = NODE_DATA(node); 488 489 490 lockdep_assert_held_once(&memory_tier_lock); 491 492 if (!node_state(node, N_MEMORY)) 493 return ERR_PTR(-EINVAL); 494 495 __init_node_memory_type(node, default_dram_type); 496 497 memtype = node_memory_types[node].memtype; 498 node_set(node, memtype->nodes); 499 memtier = find_create_memory_tier(memtype); 500 if (!IS_ERR(memtier)) 501 rcu_assign_pointer(pgdat->memtier, memtier); 502 return memtier; 503 } 504 505 static void destroy_memory_tier(struct memory_tier *memtier) 506 { 507 list_del(&memtier->list); 508 device_unregister(&memtier->dev); 509 } 510 511 static bool clear_node_memory_tier(int node) 512 { 513 bool cleared = false; 514 pg_data_t *pgdat; 515 struct memory_tier *memtier; 516 517 pgdat = NODE_DATA(node); 518 if (!pgdat) 519 return false; 520 521 /* 522 * Make sure that anybody looking at NODE_DATA who finds 523 * a valid memtier finds memory_dev_types with nodes still 524 * linked to the memtier. We achieve this by waiting for 525 * rcu read section to finish using synchronize_rcu. 526 * This also enables us to free the destroyed memory tier 527 * with kfree instead of kfree_rcu 528 */ 529 memtier = __node_get_memory_tier(node); 530 if (memtier) { 531 struct memory_dev_type *memtype; 532 533 rcu_assign_pointer(pgdat->memtier, NULL); 534 synchronize_rcu(); 535 memtype = node_memory_types[node].memtype; 536 node_clear(node, memtype->nodes); 537 if (nodes_empty(memtype->nodes)) { 538 list_del_init(&memtype->tier_sibling); 539 if (list_empty(&memtier->memory_types)) 540 destroy_memory_tier(memtier); 541 } 542 cleared = true; 543 } 544 return cleared; 545 } 546 547 static void release_memtype(struct kref *kref) 548 { 549 struct memory_dev_type *memtype; 550 551 memtype = container_of(kref, struct memory_dev_type, kref); 552 kfree(memtype); 553 } 554 555 struct memory_dev_type *alloc_memory_type(int adistance) 556 { 557 struct memory_dev_type *memtype; 558 559 memtype = kmalloc(sizeof(*memtype), GFP_KERNEL); 560 if (!memtype) 561 return ERR_PTR(-ENOMEM); 562 563 memtype->adistance = adistance; 564 INIT_LIST_HEAD(&memtype->tier_sibling); 565 memtype->nodes = NODE_MASK_NONE; 566 kref_init(&memtype->kref); 567 return memtype; 568 } 569 EXPORT_SYMBOL_GPL(alloc_memory_type); 570 571 void put_memory_type(struct memory_dev_type *memtype) 572 { 573 kref_put(&memtype->kref, release_memtype); 574 } 575 EXPORT_SYMBOL_GPL(put_memory_type); 576 577 void init_node_memory_type(int node, struct memory_dev_type *memtype) 578 { 579 580 mutex_lock(&memory_tier_lock); 581 __init_node_memory_type(node, memtype); 582 mutex_unlock(&memory_tier_lock); 583 } 584 EXPORT_SYMBOL_GPL(init_node_memory_type); 585 586 void clear_node_memory_type(int node, struct memory_dev_type *memtype) 587 { 588 mutex_lock(&memory_tier_lock); 589 if (node_memory_types[node].memtype == memtype || !memtype) 590 node_memory_types[node].map_count--; 591 /* 592 * If we umapped all the attached devices to this node, 593 * clear the node memory type. 594 */ 595 if (!node_memory_types[node].map_count) { 596 memtype = node_memory_types[node].memtype; 597 node_memory_types[node].memtype = NULL; 598 put_memory_type(memtype); 599 } 600 mutex_unlock(&memory_tier_lock); 601 } 602 EXPORT_SYMBOL_GPL(clear_node_memory_type); 603 604 static void dump_hmem_attrs(struct access_coordinate *coord, const char *prefix) 605 { 606 pr_info( 607 "%sread_latency: %u, write_latency: %u, read_bandwidth: %u, write_bandwidth: %u\n", 608 prefix, coord->read_latency, coord->write_latency, 609 coord->read_bandwidth, coord->write_bandwidth); 610 } 611 612 int mt_set_default_dram_perf(int nid, struct access_coordinate *perf, 613 const char *source) 614 { 615 int rc = 0; 616 617 mutex_lock(&memory_tier_lock); 618 if (default_dram_perf_error) { 619 rc = -EIO; 620 goto out; 621 } 622 623 if (perf->read_latency + perf->write_latency == 0 || 624 perf->read_bandwidth + perf->write_bandwidth == 0) { 625 rc = -EINVAL; 626 goto out; 627 } 628 629 if (default_dram_perf_ref_nid == NUMA_NO_NODE) { 630 default_dram_perf = *perf; 631 default_dram_perf_ref_nid = nid; 632 default_dram_perf_ref_source = kstrdup(source, GFP_KERNEL); 633 goto out; 634 } 635 636 /* 637 * The performance of all default DRAM nodes is expected to be 638 * same (that is, the variation is less than 10%). And it 639 * will be used as base to calculate the abstract distance of 640 * other memory nodes. 641 */ 642 if (abs(perf->read_latency - default_dram_perf.read_latency) * 10 > 643 default_dram_perf.read_latency || 644 abs(perf->write_latency - default_dram_perf.write_latency) * 10 > 645 default_dram_perf.write_latency || 646 abs(perf->read_bandwidth - default_dram_perf.read_bandwidth) * 10 > 647 default_dram_perf.read_bandwidth || 648 abs(perf->write_bandwidth - default_dram_perf.write_bandwidth) * 10 > 649 default_dram_perf.write_bandwidth) { 650 pr_info( 651 "memory-tiers: the performance of DRAM node %d mismatches that of the reference\n" 652 "DRAM node %d.\n", nid, default_dram_perf_ref_nid); 653 pr_info(" performance of reference DRAM node %d:\n", 654 default_dram_perf_ref_nid); 655 dump_hmem_attrs(&default_dram_perf, " "); 656 pr_info(" performance of DRAM node %d:\n", nid); 657 dump_hmem_attrs(perf, " "); 658 pr_info( 659 " disable default DRAM node performance based abstract distance algorithm.\n"); 660 default_dram_perf_error = true; 661 rc = -EINVAL; 662 } 663 664 out: 665 mutex_unlock(&memory_tier_lock); 666 return rc; 667 } 668 669 int mt_perf_to_adistance(struct access_coordinate *perf, int *adist) 670 { 671 if (default_dram_perf_error) 672 return -EIO; 673 674 if (default_dram_perf_ref_nid == NUMA_NO_NODE) 675 return -ENOENT; 676 677 if (perf->read_latency + perf->write_latency == 0 || 678 perf->read_bandwidth + perf->write_bandwidth == 0) 679 return -EINVAL; 680 681 mutex_lock(&memory_tier_lock); 682 /* 683 * The abstract distance of a memory node is in direct proportion to 684 * its memory latency (read + write) and inversely proportional to its 685 * memory bandwidth (read + write). The abstract distance, memory 686 * latency, and memory bandwidth of the default DRAM nodes are used as 687 * the base. 688 */ 689 *adist = MEMTIER_ADISTANCE_DRAM * 690 (perf->read_latency + perf->write_latency) / 691 (default_dram_perf.read_latency + default_dram_perf.write_latency) * 692 (default_dram_perf.read_bandwidth + default_dram_perf.write_bandwidth) / 693 (perf->read_bandwidth + perf->write_bandwidth); 694 mutex_unlock(&memory_tier_lock); 695 696 return 0; 697 } 698 EXPORT_SYMBOL_GPL(mt_perf_to_adistance); 699 700 /** 701 * register_mt_adistance_algorithm() - Register memory tiering abstract distance algorithm 702 * @nb: The notifier block which describe the algorithm 703 * 704 * Return: 0 on success, errno on error. 705 * 706 * Every memory tiering abstract distance algorithm provider needs to 707 * register the algorithm with register_mt_adistance_algorithm(). To 708 * calculate the abstract distance for a specified memory node, the 709 * notifier function will be called unless some high priority 710 * algorithm has provided result. The prototype of the notifier 711 * function is as follows, 712 * 713 * int (*algorithm_notifier)(struct notifier_block *nb, 714 * unsigned long nid, void *data); 715 * 716 * Where "nid" specifies the memory node, "data" is the pointer to the 717 * returned abstract distance (that is, "int *adist"). If the 718 * algorithm provides the result, NOTIFY_STOP should be returned. 719 * Otherwise, return_value & %NOTIFY_STOP_MASK == 0 to allow the next 720 * algorithm in the chain to provide the result. 721 */ 722 int register_mt_adistance_algorithm(struct notifier_block *nb) 723 { 724 return blocking_notifier_chain_register(&mt_adistance_algorithms, nb); 725 } 726 EXPORT_SYMBOL_GPL(register_mt_adistance_algorithm); 727 728 /** 729 * unregister_mt_adistance_algorithm() - Unregister memory tiering abstract distance algorithm 730 * @nb: the notifier block which describe the algorithm 731 * 732 * Return: 0 on success, errno on error. 733 */ 734 int unregister_mt_adistance_algorithm(struct notifier_block *nb) 735 { 736 return blocking_notifier_chain_unregister(&mt_adistance_algorithms, nb); 737 } 738 EXPORT_SYMBOL_GPL(unregister_mt_adistance_algorithm); 739 740 /** 741 * mt_calc_adistance() - Calculate abstract distance with registered algorithms 742 * @node: the node to calculate abstract distance for 743 * @adist: the returned abstract distance 744 * 745 * Return: if return_value & %NOTIFY_STOP_MASK != 0, then some 746 * abstract distance algorithm provides the result, and return it via 747 * @adist. Otherwise, no algorithm can provide the result and @adist 748 * will be kept as it is. 749 */ 750 int mt_calc_adistance(int node, int *adist) 751 { 752 return blocking_notifier_call_chain(&mt_adistance_algorithms, node, adist); 753 } 754 EXPORT_SYMBOL_GPL(mt_calc_adistance); 755 756 static int __meminit memtier_hotplug_callback(struct notifier_block *self, 757 unsigned long action, void *_arg) 758 { 759 struct memory_tier *memtier; 760 struct memory_notify *arg = _arg; 761 762 /* 763 * Only update the node migration order when a node is 764 * changing status, like online->offline. 765 */ 766 if (arg->status_change_nid < 0) 767 return notifier_from_errno(0); 768 769 switch (action) { 770 case MEM_OFFLINE: 771 mutex_lock(&memory_tier_lock); 772 if (clear_node_memory_tier(arg->status_change_nid)) 773 establish_demotion_targets(); 774 mutex_unlock(&memory_tier_lock); 775 break; 776 case MEM_ONLINE: 777 mutex_lock(&memory_tier_lock); 778 memtier = set_node_memory_tier(arg->status_change_nid); 779 if (!IS_ERR(memtier)) 780 establish_demotion_targets(); 781 mutex_unlock(&memory_tier_lock); 782 break; 783 } 784 785 return notifier_from_errno(0); 786 } 787 788 static int __init memory_tier_init(void) 789 { 790 int ret, node; 791 struct memory_tier *memtier; 792 793 ret = subsys_virtual_register(&memory_tier_subsys, NULL); 794 if (ret) 795 panic("%s() failed to register memory tier subsystem\n", __func__); 796 797 #ifdef CONFIG_MIGRATION 798 node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes), 799 GFP_KERNEL); 800 WARN_ON(!node_demotion); 801 #endif 802 mutex_lock(&memory_tier_lock); 803 /* 804 * For now we can have 4 faster memory tiers with smaller adistance 805 * than default DRAM tier. 806 */ 807 default_dram_type = alloc_memory_type(MEMTIER_ADISTANCE_DRAM); 808 if (IS_ERR(default_dram_type)) 809 panic("%s() failed to allocate default DRAM tier\n", __func__); 810 811 /* 812 * Look at all the existing N_MEMORY nodes and add them to 813 * default memory tier or to a tier if we already have memory 814 * types assigned. 815 */ 816 for_each_node_state(node, N_MEMORY) { 817 memtier = set_node_memory_tier(node); 818 if (IS_ERR(memtier)) 819 /* 820 * Continue with memtiers we are able to setup 821 */ 822 break; 823 } 824 establish_demotion_targets(); 825 mutex_unlock(&memory_tier_lock); 826 827 hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI); 828 return 0; 829 } 830 subsys_initcall(memory_tier_init); 831 832 bool numa_demotion_enabled = false; 833 834 #ifdef CONFIG_MIGRATION 835 #ifdef CONFIG_SYSFS 836 static ssize_t demotion_enabled_show(struct kobject *kobj, 837 struct kobj_attribute *attr, char *buf) 838 { 839 return sysfs_emit(buf, "%s\n", 840 numa_demotion_enabled ? "true" : "false"); 841 } 842 843 static ssize_t demotion_enabled_store(struct kobject *kobj, 844 struct kobj_attribute *attr, 845 const char *buf, size_t count) 846 { 847 ssize_t ret; 848 849 ret = kstrtobool(buf, &numa_demotion_enabled); 850 if (ret) 851 return ret; 852 853 return count; 854 } 855 856 static struct kobj_attribute numa_demotion_enabled_attr = 857 __ATTR_RW(demotion_enabled); 858 859 static struct attribute *numa_attrs[] = { 860 &numa_demotion_enabled_attr.attr, 861 NULL, 862 }; 863 864 static const struct attribute_group numa_attr_group = { 865 .attrs = numa_attrs, 866 }; 867 868 static int __init numa_init_sysfs(void) 869 { 870 int err; 871 struct kobject *numa_kobj; 872 873 numa_kobj = kobject_create_and_add("numa", mm_kobj); 874 if (!numa_kobj) { 875 pr_err("failed to create numa kobject\n"); 876 return -ENOMEM; 877 } 878 err = sysfs_create_group(numa_kobj, &numa_attr_group); 879 if (err) { 880 pr_err("failed to register numa group\n"); 881 goto delete_obj; 882 } 883 return 0; 884 885 delete_obj: 886 kobject_put(numa_kobj); 887 return err; 888 } 889 subsys_initcall(numa_init_sysfs); 890 #endif /* CONFIG_SYSFS */ 891 #endif 892