xref: /linux/mm/memory-tiers.c (revision 6aacab308a5dfd222b2d23662bbae60c11007cfb)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/lockdep.h>
4 #include <linux/sysfs.h>
5 #include <linux/kobject.h>
6 #include <linux/memory.h>
7 #include <linux/memory-tiers.h>
8 #include <linux/notifier.h>
9 #include <linux/sched/sysctl.h>
10 
11 #include "internal.h"
12 
13 struct memory_tier {
14 	/* hierarchy of memory tiers */
15 	struct list_head list;
16 	/* list of all memory types part of this tier */
17 	struct list_head memory_types;
18 	/*
19 	 * start value of abstract distance. memory tier maps
20 	 * an abstract distance  range,
21 	 * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
22 	 */
23 	int adistance_start;
24 	struct device dev;
25 	/* All the nodes that are part of all the lower memory tiers. */
26 	nodemask_t lower_tier_mask;
27 };
28 
29 struct demotion_nodes {
30 	nodemask_t preferred;
31 };
32 
33 struct node_memory_type_map {
34 	struct memory_dev_type *memtype;
35 	int map_count;
36 };
37 
38 static DEFINE_MUTEX(memory_tier_lock);
39 static LIST_HEAD(memory_tiers);
40 /*
41  * The list is used to store all memory types that are not created
42  * by a device driver.
43  */
44 static LIST_HEAD(default_memory_types);
45 static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
46 struct memory_dev_type *default_dram_type;
47 nodemask_t default_dram_nodes __initdata = NODE_MASK_NONE;
48 
49 static const struct bus_type memory_tier_subsys = {
50 	.name = "memory_tiering",
51 	.dev_name = "memory_tier",
52 };
53 
54 #ifdef CONFIG_NUMA_BALANCING
55 /**
56  * folio_use_access_time - check if a folio reuses cpupid for page access time
57  * @folio: folio to check
58  *
59  * folio's _last_cpupid field is repurposed by memory tiering. In memory
60  * tiering mode, cpupid of slow memory folio (not toptier memory) is used to
61  * record page access time.
62  *
63  * Return: the folio _last_cpupid is used to record page access time
64  */
65 bool folio_use_access_time(struct folio *folio)
66 {
67 	return (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
68 	       !node_is_toptier(folio_nid(folio));
69 }
70 #endif
71 
72 #ifdef CONFIG_MIGRATION
73 static int top_tier_adistance;
74 /*
75  * node_demotion[] examples:
76  *
77  * Example 1:
78  *
79  * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
80  *
81  * node distances:
82  * node   0    1    2    3
83  *    0  10   20   30   40
84  *    1  20   10   40   30
85  *    2  30   40   10   40
86  *    3  40   30   40   10
87  *
88  * memory_tiers0 = 0-1
89  * memory_tiers1 = 2-3
90  *
91  * node_demotion[0].preferred = 2
92  * node_demotion[1].preferred = 3
93  * node_demotion[2].preferred = <empty>
94  * node_demotion[3].preferred = <empty>
95  *
96  * Example 2:
97  *
98  * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
99  *
100  * node distances:
101  * node   0    1    2
102  *    0  10   20   30
103  *    1  20   10   30
104  *    2  30   30   10
105  *
106  * memory_tiers0 = 0-2
107  *
108  * node_demotion[0].preferred = <empty>
109  * node_demotion[1].preferred = <empty>
110  * node_demotion[2].preferred = <empty>
111  *
112  * Example 3:
113  *
114  * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
115  *
116  * node distances:
117  * node   0    1    2
118  *    0  10   20   30
119  *    1  20   10   40
120  *    2  30   40   10
121  *
122  * memory_tiers0 = 1
123  * memory_tiers1 = 0
124  * memory_tiers2 = 2
125  *
126  * node_demotion[0].preferred = 2
127  * node_demotion[1].preferred = 0
128  * node_demotion[2].preferred = <empty>
129  *
130  */
131 static struct demotion_nodes *node_demotion __read_mostly;
132 #endif /* CONFIG_MIGRATION */
133 
134 static BLOCKING_NOTIFIER_HEAD(mt_adistance_algorithms);
135 
136 /* The lock is used to protect `default_dram_perf*` info and nid. */
137 static DEFINE_MUTEX(default_dram_perf_lock);
138 static bool default_dram_perf_error;
139 static struct access_coordinate default_dram_perf;
140 static int default_dram_perf_ref_nid = NUMA_NO_NODE;
141 static const char *default_dram_perf_ref_source;
142 
143 static inline struct memory_tier *to_memory_tier(struct device *device)
144 {
145 	return container_of(device, struct memory_tier, dev);
146 }
147 
148 static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
149 {
150 	nodemask_t nodes = NODE_MASK_NONE;
151 	struct memory_dev_type *memtype;
152 
153 	list_for_each_entry(memtype, &memtier->memory_types, tier_sibling)
154 		nodes_or(nodes, nodes, memtype->nodes);
155 
156 	return nodes;
157 }
158 
159 static void memory_tier_device_release(struct device *dev)
160 {
161 	struct memory_tier *tier = to_memory_tier(dev);
162 	/*
163 	 * synchronize_rcu in clear_node_memory_tier makes sure
164 	 * we don't have rcu access to this memory tier.
165 	 */
166 	kfree(tier);
167 }
168 
169 static ssize_t nodelist_show(struct device *dev,
170 			     struct device_attribute *attr, char *buf)
171 {
172 	int ret;
173 	nodemask_t nmask;
174 
175 	mutex_lock(&memory_tier_lock);
176 	nmask = get_memtier_nodemask(to_memory_tier(dev));
177 	ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask));
178 	mutex_unlock(&memory_tier_lock);
179 	return ret;
180 }
181 static DEVICE_ATTR_RO(nodelist);
182 
183 static struct attribute *memtier_dev_attrs[] = {
184 	&dev_attr_nodelist.attr,
185 	NULL
186 };
187 
188 static const struct attribute_group memtier_dev_group = {
189 	.attrs = memtier_dev_attrs,
190 };
191 
192 static const struct attribute_group *memtier_dev_groups[] = {
193 	&memtier_dev_group,
194 	NULL
195 };
196 
197 static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
198 {
199 	int ret;
200 	bool found_slot = false;
201 	struct memory_tier *memtier, *new_memtier;
202 	int adistance = memtype->adistance;
203 	unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
204 
205 	lockdep_assert_held_once(&memory_tier_lock);
206 
207 	adistance = round_down(adistance, memtier_adistance_chunk_size);
208 	/*
209 	 * If the memtype is already part of a memory tier,
210 	 * just return that.
211 	 */
212 	if (!list_empty(&memtype->tier_sibling)) {
213 		list_for_each_entry(memtier, &memory_tiers, list) {
214 			if (adistance == memtier->adistance_start)
215 				return memtier;
216 		}
217 		WARN_ON(1);
218 		return ERR_PTR(-EINVAL);
219 	}
220 
221 	list_for_each_entry(memtier, &memory_tiers, list) {
222 		if (adistance == memtier->adistance_start) {
223 			goto link_memtype;
224 		} else if (adistance < memtier->adistance_start) {
225 			found_slot = true;
226 			break;
227 		}
228 	}
229 
230 	new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL);
231 	if (!new_memtier)
232 		return ERR_PTR(-ENOMEM);
233 
234 	new_memtier->adistance_start = adistance;
235 	INIT_LIST_HEAD(&new_memtier->list);
236 	INIT_LIST_HEAD(&new_memtier->memory_types);
237 	if (found_slot)
238 		list_add_tail(&new_memtier->list, &memtier->list);
239 	else
240 		list_add_tail(&new_memtier->list, &memory_tiers);
241 
242 	new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS;
243 	new_memtier->dev.bus = &memory_tier_subsys;
244 	new_memtier->dev.release = memory_tier_device_release;
245 	new_memtier->dev.groups = memtier_dev_groups;
246 
247 	ret = device_register(&new_memtier->dev);
248 	if (ret) {
249 		list_del(&new_memtier->list);
250 		put_device(&new_memtier->dev);
251 		return ERR_PTR(ret);
252 	}
253 	memtier = new_memtier;
254 
255 link_memtype:
256 	list_add(&memtype->tier_sibling, &memtier->memory_types);
257 	return memtier;
258 }
259 
260 static struct memory_tier *__node_get_memory_tier(int node)
261 {
262 	pg_data_t *pgdat;
263 
264 	pgdat = NODE_DATA(node);
265 	if (!pgdat)
266 		return NULL;
267 	/*
268 	 * Since we hold memory_tier_lock, we can avoid
269 	 * RCU read locks when accessing the details. No
270 	 * parallel updates are possible here.
271 	 */
272 	return rcu_dereference_check(pgdat->memtier,
273 				     lockdep_is_held(&memory_tier_lock));
274 }
275 
276 #ifdef CONFIG_MIGRATION
277 bool node_is_toptier(int node)
278 {
279 	bool toptier;
280 	pg_data_t *pgdat;
281 	struct memory_tier *memtier;
282 
283 	pgdat = NODE_DATA(node);
284 	if (!pgdat)
285 		return false;
286 
287 	rcu_read_lock();
288 	memtier = rcu_dereference(pgdat->memtier);
289 	if (!memtier) {
290 		toptier = true;
291 		goto out;
292 	}
293 	if (memtier->adistance_start <= top_tier_adistance)
294 		toptier = true;
295 	else
296 		toptier = false;
297 out:
298 	rcu_read_unlock();
299 	return toptier;
300 }
301 
302 void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
303 {
304 	struct memory_tier *memtier;
305 
306 	/*
307 	 * pg_data_t.memtier updates includes a synchronize_rcu()
308 	 * which ensures that we either find NULL or a valid memtier
309 	 * in NODE_DATA. protect the access via rcu_read_lock();
310 	 */
311 	rcu_read_lock();
312 	memtier = rcu_dereference(pgdat->memtier);
313 	if (memtier)
314 		*targets = memtier->lower_tier_mask;
315 	else
316 		*targets = NODE_MASK_NONE;
317 	rcu_read_unlock();
318 }
319 
320 /**
321  * next_demotion_node() - Get the next node in the demotion path
322  * @node: The starting node to lookup the next node
323  * @allowed_mask: The pointer to allowed node mask
324  *
325  * Return: node id for next memory node in the demotion path hierarchy
326  * from @node; NUMA_NO_NODE if @node is terminal.  This does not keep
327  * @node online or guarantee that it *continues* to be the next demotion
328  * target.
329  */
330 int next_demotion_node(int node, const nodemask_t *allowed_mask)
331 {
332 	struct demotion_nodes *nd;
333 	nodemask_t mask;
334 
335 	if (!node_demotion)
336 		return NUMA_NO_NODE;
337 
338 	nd = &node_demotion[node];
339 
340 	/*
341 	 * node_demotion[] is updated without excluding this
342 	 * function from running.
343 	 *
344 	 * Make sure to use RCU over entire code blocks if
345 	 * node_demotion[] reads need to be consistent.
346 	 */
347 	rcu_read_lock();
348 	/* Filter out nodes that are not in allowed_mask. */
349 	nodes_and(mask, nd->preferred, *allowed_mask);
350 	rcu_read_unlock();
351 
352 	/*
353 	 * If there are multiple target nodes, just select one
354 	 * target node randomly.
355 	 *
356 	 * In addition, we can also use round-robin to select
357 	 * target node, but we should introduce another variable
358 	 * for node_demotion[] to record last selected target node,
359 	 * that may cause cache ping-pong due to the changing of
360 	 * last target node. Or introducing per-cpu data to avoid
361 	 * caching issue, which seems more complicated. So selecting
362 	 * target node randomly seems better until now.
363 	 */
364 	if (!nodes_empty(mask))
365 		return node_random(&mask);
366 
367 	/*
368 	 * Preferred nodes are not in allowed_mask. Flip bits in
369 	 * allowed_mask as used node mask. Then, use it to get the
370 	 * closest demotion target.
371 	 */
372 	nodes_complement(mask, *allowed_mask);
373 	return find_next_best_node(node, &mask);
374 }
375 
376 static void disable_all_demotion_targets(void)
377 {
378 	struct memory_tier *memtier;
379 	int node;
380 
381 	for_each_node_state(node, N_MEMORY) {
382 		node_demotion[node].preferred = NODE_MASK_NONE;
383 		/*
384 		 * We are holding memory_tier_lock, it is safe
385 		 * to access pgda->memtier.
386 		 */
387 		memtier = __node_get_memory_tier(node);
388 		if (memtier)
389 			memtier->lower_tier_mask = NODE_MASK_NONE;
390 	}
391 	/*
392 	 * Ensure that the "disable" is visible across the system.
393 	 * Readers will see either a combination of before+disable
394 	 * state or disable+after.  They will never see before and
395 	 * after state together.
396 	 */
397 	synchronize_rcu();
398 }
399 
400 static void dump_demotion_targets(void)
401 {
402 	int node;
403 
404 	for_each_node_state(node, N_MEMORY) {
405 		struct memory_tier *memtier = __node_get_memory_tier(node);
406 		nodemask_t preferred = node_demotion[node].preferred;
407 
408 		if (!memtier)
409 			continue;
410 
411 		if (nodes_empty(preferred))
412 			pr_info("Demotion targets for Node %d: null\n", node);
413 		else
414 			pr_info("Demotion targets for Node %d: preferred: %*pbl, fallback: %*pbl\n",
415 				node, nodemask_pr_args(&preferred),
416 				nodemask_pr_args(&memtier->lower_tier_mask));
417 	}
418 }
419 
420 /*
421  * Find an automatic demotion target for all memory
422  * nodes. Failing here is OK.  It might just indicate
423  * being at the end of a chain.
424  */
425 static void establish_demotion_targets(void)
426 {
427 	struct memory_tier *memtier;
428 	struct demotion_nodes *nd;
429 	int target = NUMA_NO_NODE, node;
430 	int distance, best_distance;
431 	nodemask_t tier_nodes, lower_tier;
432 
433 	lockdep_assert_held_once(&memory_tier_lock);
434 
435 	if (!node_demotion)
436 		return;
437 
438 	disable_all_demotion_targets();
439 
440 	for_each_node_state(node, N_MEMORY) {
441 		best_distance = -1;
442 		nd = &node_demotion[node];
443 
444 		memtier = __node_get_memory_tier(node);
445 		if (!memtier || list_is_last(&memtier->list, &memory_tiers))
446 			continue;
447 		/*
448 		 * Get the lower memtier to find the  demotion node list.
449 		 */
450 		memtier = list_next_entry(memtier, list);
451 		tier_nodes = get_memtier_nodemask(memtier);
452 		/*
453 		 * find_next_best_node, use 'used' nodemask as a skip list.
454 		 * Add all memory nodes except the selected memory tier
455 		 * nodelist to skip list so that we find the best node from the
456 		 * memtier nodelist.
457 		 */
458 		nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
459 
460 		/*
461 		 * Find all the nodes in the memory tier node list of same best distance.
462 		 * add them to the preferred mask. We randomly select between nodes
463 		 * in the preferred mask when allocating pages during demotion.
464 		 */
465 		do {
466 			target = find_next_best_node(node, &tier_nodes);
467 			if (target == NUMA_NO_NODE)
468 				break;
469 
470 			distance = node_distance(node, target);
471 			if (distance == best_distance || best_distance == -1) {
472 				best_distance = distance;
473 				node_set(target, nd->preferred);
474 			} else {
475 				break;
476 			}
477 		} while (1);
478 	}
479 	/*
480 	 * Promotion is allowed from a memory tier to higher
481 	 * memory tier only if the memory tier doesn't include
482 	 * compute. We want to skip promotion from a memory tier,
483 	 * if any node that is part of the memory tier have CPUs.
484 	 * Once we detect such a memory tier, we consider that tier
485 	 * as top tiper from which promotion is not allowed.
486 	 */
487 	list_for_each_entry_reverse(memtier, &memory_tiers, list) {
488 		tier_nodes = get_memtier_nodemask(memtier);
489 		if (nodes_and(tier_nodes, node_states[N_CPU], tier_nodes)) {
490 			/*
491 			 * abstract distance below the max value of this memtier
492 			 * is considered toptier.
493 			 */
494 			top_tier_adistance = memtier->adistance_start +
495 						MEMTIER_CHUNK_SIZE - 1;
496 			break;
497 		}
498 	}
499 	/*
500 	 * Now build the lower_tier mask for each node collecting node mask from
501 	 * all memory tier below it. This allows us to fallback demotion page
502 	 * allocation to a set of nodes that is closer the above selected
503 	 * preferred node.
504 	 */
505 	lower_tier = node_states[N_MEMORY];
506 	list_for_each_entry(memtier, &memory_tiers, list) {
507 		/*
508 		 * Keep removing current tier from lower_tier nodes,
509 		 * This will remove all nodes in current and above
510 		 * memory tier from the lower_tier mask.
511 		 */
512 		tier_nodes = get_memtier_nodemask(memtier);
513 		nodes_andnot(lower_tier, lower_tier, tier_nodes);
514 		memtier->lower_tier_mask = lower_tier;
515 	}
516 
517 	dump_demotion_targets();
518 }
519 
520 #else
521 static inline void establish_demotion_targets(void) {}
522 #endif /* CONFIG_MIGRATION */
523 
524 static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
525 {
526 	if (!node_memory_types[node].memtype)
527 		node_memory_types[node].memtype = memtype;
528 	/*
529 	 * for each device getting added in the same NUMA node
530 	 * with this specific memtype, bump the map count. We
531 	 * Only take memtype device reference once, so that
532 	 * changing a node memtype can be done by dropping the
533 	 * only reference count taken here.
534 	 */
535 
536 	if (node_memory_types[node].memtype == memtype) {
537 		if (!node_memory_types[node].map_count++)
538 			kref_get(&memtype->kref);
539 	}
540 }
541 
542 static struct memory_tier *set_node_memory_tier(int node)
543 {
544 	struct memory_tier *memtier;
545 	struct memory_dev_type *memtype = default_dram_type;
546 	int adist = MEMTIER_ADISTANCE_DRAM;
547 	pg_data_t *pgdat = NODE_DATA(node);
548 
549 
550 	lockdep_assert_held_once(&memory_tier_lock);
551 
552 	if (!node_state(node, N_MEMORY))
553 		return ERR_PTR(-EINVAL);
554 
555 	mt_calc_adistance(node, &adist);
556 	if (!node_memory_types[node].memtype) {
557 		memtype = mt_find_alloc_memory_type(adist, &default_memory_types);
558 		if (IS_ERR(memtype)) {
559 			memtype = default_dram_type;
560 			pr_info("Failed to allocate a memory type. Fall back.\n");
561 		}
562 	}
563 
564 	__init_node_memory_type(node, memtype);
565 
566 	memtype = node_memory_types[node].memtype;
567 	node_set(node, memtype->nodes);
568 	memtier = find_create_memory_tier(memtype);
569 	if (!IS_ERR(memtier))
570 		rcu_assign_pointer(pgdat->memtier, memtier);
571 	return memtier;
572 }
573 
574 static void destroy_memory_tier(struct memory_tier *memtier)
575 {
576 	list_del(&memtier->list);
577 	device_unregister(&memtier->dev);
578 }
579 
580 static bool clear_node_memory_tier(int node)
581 {
582 	bool cleared = false;
583 	pg_data_t *pgdat;
584 	struct memory_tier *memtier;
585 
586 	pgdat = NODE_DATA(node);
587 	if (!pgdat)
588 		return false;
589 
590 	/*
591 	 * Make sure that anybody looking at NODE_DATA who finds
592 	 * a valid memtier finds memory_dev_types with nodes still
593 	 * linked to the memtier. We achieve this by waiting for
594 	 * rcu read section to finish using synchronize_rcu.
595 	 * This also enables us to free the destroyed memory tier
596 	 * with kfree instead of kfree_rcu
597 	 */
598 	memtier = __node_get_memory_tier(node);
599 	if (memtier) {
600 		struct memory_dev_type *memtype;
601 
602 		rcu_assign_pointer(pgdat->memtier, NULL);
603 		synchronize_rcu();
604 		memtype = node_memory_types[node].memtype;
605 		node_clear(node, memtype->nodes);
606 		if (nodes_empty(memtype->nodes)) {
607 			list_del_init(&memtype->tier_sibling);
608 			if (list_empty(&memtier->memory_types))
609 				destroy_memory_tier(memtier);
610 		}
611 		cleared = true;
612 	}
613 	return cleared;
614 }
615 
616 static void release_memtype(struct kref *kref)
617 {
618 	struct memory_dev_type *memtype;
619 
620 	memtype = container_of(kref, struct memory_dev_type, kref);
621 	kfree(memtype);
622 }
623 
624 struct memory_dev_type *alloc_memory_type(int adistance)
625 {
626 	struct memory_dev_type *memtype;
627 
628 	memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
629 	if (!memtype)
630 		return ERR_PTR(-ENOMEM);
631 
632 	memtype->adistance = adistance;
633 	INIT_LIST_HEAD(&memtype->tier_sibling);
634 	memtype->nodes  = NODE_MASK_NONE;
635 	kref_init(&memtype->kref);
636 	return memtype;
637 }
638 EXPORT_SYMBOL_GPL(alloc_memory_type);
639 
640 void put_memory_type(struct memory_dev_type *memtype)
641 {
642 	kref_put(&memtype->kref, release_memtype);
643 }
644 EXPORT_SYMBOL_GPL(put_memory_type);
645 
646 void init_node_memory_type(int node, struct memory_dev_type *memtype)
647 {
648 
649 	mutex_lock(&memory_tier_lock);
650 	__init_node_memory_type(node, memtype);
651 	mutex_unlock(&memory_tier_lock);
652 }
653 EXPORT_SYMBOL_GPL(init_node_memory_type);
654 
655 void clear_node_memory_type(int node, struct memory_dev_type *memtype)
656 {
657 	mutex_lock(&memory_tier_lock);
658 	if (node_memory_types[node].memtype == memtype || !memtype)
659 		node_memory_types[node].map_count--;
660 	/*
661 	 * If we unmapped all the attached devices to this node,
662 	 * clear the node memory type.
663 	 */
664 	if (!node_memory_types[node].map_count) {
665 		memtype = node_memory_types[node].memtype;
666 		node_memory_types[node].memtype = NULL;
667 		put_memory_type(memtype);
668 	}
669 	mutex_unlock(&memory_tier_lock);
670 }
671 EXPORT_SYMBOL_GPL(clear_node_memory_type);
672 
673 struct memory_dev_type *mt_find_alloc_memory_type(int adist, struct list_head *memory_types)
674 {
675 	struct memory_dev_type *mtype;
676 
677 	list_for_each_entry(mtype, memory_types, list)
678 		if (mtype->adistance == adist)
679 			return mtype;
680 
681 	mtype = alloc_memory_type(adist);
682 	if (IS_ERR(mtype))
683 		return mtype;
684 
685 	list_add(&mtype->list, memory_types);
686 
687 	return mtype;
688 }
689 EXPORT_SYMBOL_GPL(mt_find_alloc_memory_type);
690 
691 void mt_put_memory_types(struct list_head *memory_types)
692 {
693 	struct memory_dev_type *mtype, *mtn;
694 
695 	list_for_each_entry_safe(mtype, mtn, memory_types, list) {
696 		list_del(&mtype->list);
697 		put_memory_type(mtype);
698 	}
699 }
700 EXPORT_SYMBOL_GPL(mt_put_memory_types);
701 
702 /*
703  * This is invoked via `late_initcall()` to initialize memory tiers for
704  * memory nodes, both with and without CPUs. After the initialization of
705  * firmware and devices, adistance algorithms are expected to be provided.
706  */
707 static int __init memory_tier_late_init(void)
708 {
709 	int nid;
710 	struct memory_tier *memtier;
711 
712 	get_online_mems();
713 	guard(mutex)(&memory_tier_lock);
714 
715 	/* Assign each uninitialized N_MEMORY node to a memory tier. */
716 	for_each_node_state(nid, N_MEMORY) {
717 		/*
718 		 * Some device drivers may have initialized
719 		 * memory tiers, potentially bringing memory nodes
720 		 * online and configuring memory tiers.
721 		 * Exclude them here.
722 		 */
723 		if (node_memory_types[nid].memtype)
724 			continue;
725 
726 		memtier = set_node_memory_tier(nid);
727 		if (IS_ERR(memtier))
728 			continue;
729 	}
730 
731 	establish_demotion_targets();
732 	put_online_mems();
733 
734 	return 0;
735 }
736 late_initcall(memory_tier_late_init);
737 
738 static void dump_hmem_attrs(struct access_coordinate *coord, const char *prefix)
739 {
740 	pr_info(
741 "%sread_latency: %u, write_latency: %u, read_bandwidth: %u, write_bandwidth: %u\n",
742 		prefix, coord->read_latency, coord->write_latency,
743 		coord->read_bandwidth, coord->write_bandwidth);
744 }
745 
746 int mt_set_default_dram_perf(int nid, struct access_coordinate *perf,
747 			     const char *source)
748 {
749 	guard(mutex)(&default_dram_perf_lock);
750 	if (default_dram_perf_error)
751 		return -EIO;
752 
753 	if (perf->read_latency + perf->write_latency == 0 ||
754 	    perf->read_bandwidth + perf->write_bandwidth == 0)
755 		return -EINVAL;
756 
757 	if (default_dram_perf_ref_nid == NUMA_NO_NODE) {
758 		default_dram_perf = *perf;
759 		default_dram_perf_ref_nid = nid;
760 		default_dram_perf_ref_source = kstrdup(source, GFP_KERNEL);
761 		return 0;
762 	}
763 
764 	/*
765 	 * The performance of all default DRAM nodes is expected to be
766 	 * same (that is, the variation is less than 10%).  And it
767 	 * will be used as base to calculate the abstract distance of
768 	 * other memory nodes.
769 	 */
770 	if (abs(perf->read_latency - default_dram_perf.read_latency) * 10 >
771 	    default_dram_perf.read_latency ||
772 	    abs(perf->write_latency - default_dram_perf.write_latency) * 10 >
773 	    default_dram_perf.write_latency ||
774 	    abs(perf->read_bandwidth - default_dram_perf.read_bandwidth) * 10 >
775 	    default_dram_perf.read_bandwidth ||
776 	    abs(perf->write_bandwidth - default_dram_perf.write_bandwidth) * 10 >
777 	    default_dram_perf.write_bandwidth) {
778 		pr_info(
779 "memory-tiers: the performance of DRAM node %d mismatches that of the reference\n"
780 "DRAM node %d.\n", nid, default_dram_perf_ref_nid);
781 		pr_info("  performance of reference DRAM node %d from %s:\n",
782 			default_dram_perf_ref_nid, default_dram_perf_ref_source);
783 		dump_hmem_attrs(&default_dram_perf, "    ");
784 		pr_info("  performance of DRAM node %d from %s:\n", nid, source);
785 		dump_hmem_attrs(perf, "    ");
786 		pr_info(
787 "  disable default DRAM node performance based abstract distance algorithm.\n");
788 		default_dram_perf_error = true;
789 		return -EINVAL;
790 	}
791 
792 	return 0;
793 }
794 
795 int mt_perf_to_adistance(struct access_coordinate *perf, int *adist)
796 {
797 	guard(mutex)(&default_dram_perf_lock);
798 	if (default_dram_perf_error)
799 		return -EIO;
800 
801 	if (perf->read_latency + perf->write_latency == 0 ||
802 	    perf->read_bandwidth + perf->write_bandwidth == 0)
803 		return -EINVAL;
804 
805 	if (default_dram_perf_ref_nid == NUMA_NO_NODE)
806 		return -ENOENT;
807 
808 	/*
809 	 * The abstract distance of a memory node is in direct proportion to
810 	 * its memory latency (read + write) and inversely proportional to its
811 	 * memory bandwidth (read + write).  The abstract distance, memory
812 	 * latency, and memory bandwidth of the default DRAM nodes are used as
813 	 * the base.
814 	 */
815 	*adist = MEMTIER_ADISTANCE_DRAM *
816 		(perf->read_latency + perf->write_latency) /
817 		(default_dram_perf.read_latency + default_dram_perf.write_latency) *
818 		(default_dram_perf.read_bandwidth + default_dram_perf.write_bandwidth) /
819 		(perf->read_bandwidth + perf->write_bandwidth);
820 
821 	return 0;
822 }
823 EXPORT_SYMBOL_GPL(mt_perf_to_adistance);
824 
825 /**
826  * register_mt_adistance_algorithm() - Register memory tiering abstract distance algorithm
827  * @nb: The notifier block which describe the algorithm
828  *
829  * Return: 0 on success, errno on error.
830  *
831  * Every memory tiering abstract distance algorithm provider needs to
832  * register the algorithm with register_mt_adistance_algorithm().  To
833  * calculate the abstract distance for a specified memory node, the
834  * notifier function will be called unless some high priority
835  * algorithm has provided result.  The prototype of the notifier
836  * function is as follows,
837  *
838  *   int (*algorithm_notifier)(struct notifier_block *nb,
839  *                             unsigned long nid, void *data);
840  *
841  * Where "nid" specifies the memory node, "data" is the pointer to the
842  * returned abstract distance (that is, "int *adist").  If the
843  * algorithm provides the result, NOTIFY_STOP should be returned.
844  * Otherwise, return_value & %NOTIFY_STOP_MASK == 0 to allow the next
845  * algorithm in the chain to provide the result.
846  */
847 int register_mt_adistance_algorithm(struct notifier_block *nb)
848 {
849 	return blocking_notifier_chain_register(&mt_adistance_algorithms, nb);
850 }
851 EXPORT_SYMBOL_GPL(register_mt_adistance_algorithm);
852 
853 /**
854  * unregister_mt_adistance_algorithm() - Unregister memory tiering abstract distance algorithm
855  * @nb: the notifier block which describe the algorithm
856  *
857  * Return: 0 on success, errno on error.
858  */
859 int unregister_mt_adistance_algorithm(struct notifier_block *nb)
860 {
861 	return blocking_notifier_chain_unregister(&mt_adistance_algorithms, nb);
862 }
863 EXPORT_SYMBOL_GPL(unregister_mt_adistance_algorithm);
864 
865 /**
866  * mt_calc_adistance() - Calculate abstract distance with registered algorithms
867  * @node: the node to calculate abstract distance for
868  * @adist: the returned abstract distance
869  *
870  * Return: if return_value & %NOTIFY_STOP_MASK != 0, then some
871  * abstract distance algorithm provides the result, and return it via
872  * @adist.  Otherwise, no algorithm can provide the result and @adist
873  * will be kept as it is.
874  */
875 int mt_calc_adistance(int node, int *adist)
876 {
877 	return blocking_notifier_call_chain(&mt_adistance_algorithms, node, adist);
878 }
879 EXPORT_SYMBOL_GPL(mt_calc_adistance);
880 
881 static int __meminit memtier_hotplug_callback(struct notifier_block *self,
882 					      unsigned long action, void *_arg)
883 {
884 	struct memory_tier *memtier;
885 	struct node_notify *nn = _arg;
886 
887 	switch (action) {
888 	case NODE_REMOVED_LAST_MEMORY:
889 		mutex_lock(&memory_tier_lock);
890 		if (clear_node_memory_tier(nn->nid))
891 			establish_demotion_targets();
892 		mutex_unlock(&memory_tier_lock);
893 		break;
894 	case NODE_ADDED_FIRST_MEMORY:
895 		mutex_lock(&memory_tier_lock);
896 		memtier = set_node_memory_tier(nn->nid);
897 		if (!IS_ERR(memtier))
898 			establish_demotion_targets();
899 		mutex_unlock(&memory_tier_lock);
900 		break;
901 	}
902 
903 	return notifier_from_errno(0);
904 }
905 
906 static int __init memory_tier_init(void)
907 {
908 	int ret;
909 
910 	ret = subsys_virtual_register(&memory_tier_subsys, NULL);
911 	if (ret)
912 		panic("%s() failed to register memory tier subsystem\n", __func__);
913 
914 #ifdef CONFIG_MIGRATION
915 	node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
916 				GFP_KERNEL);
917 	WARN_ON(!node_demotion);
918 #endif
919 
920 	mutex_lock(&memory_tier_lock);
921 	/*
922 	 * For now we can have 4 faster memory tiers with smaller adistance
923 	 * than default DRAM tier.
924 	 */
925 	default_dram_type = mt_find_alloc_memory_type(MEMTIER_ADISTANCE_DRAM,
926 						      &default_memory_types);
927 	mutex_unlock(&memory_tier_lock);
928 	if (IS_ERR(default_dram_type))
929 		panic("%s() failed to allocate default DRAM tier\n", __func__);
930 
931 	/* Record nodes with memory and CPU to set default DRAM performance. */
932 	nodes_and(default_dram_nodes, node_states[N_MEMORY],
933 		  node_states[N_CPU]);
934 
935 	hotplug_node_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI);
936 	return 0;
937 }
938 subsys_initcall(memory_tier_init);
939 
940 bool numa_demotion_enabled = false;
941 
942 #ifdef CONFIG_MIGRATION
943 #ifdef CONFIG_SYSFS
944 static ssize_t demotion_enabled_show(struct kobject *kobj,
945 				     struct kobj_attribute *attr, char *buf)
946 {
947 	return sysfs_emit(buf, "%s\n", str_true_false(numa_demotion_enabled));
948 }
949 
950 static ssize_t demotion_enabled_store(struct kobject *kobj,
951 				      struct kobj_attribute *attr,
952 				      const char *buf, size_t count)
953 {
954 	ssize_t ret;
955 	bool before = numa_demotion_enabled;
956 
957 	ret = kstrtobool(buf, &numa_demotion_enabled);
958 	if (ret)
959 		return ret;
960 
961 	/*
962 	 * Reset kswapd_failures statistics. They may no longer be
963 	 * valid since the policy for kswapd has changed.
964 	 */
965 	if (before == false && numa_demotion_enabled == true) {
966 		struct pglist_data *pgdat;
967 
968 		for_each_online_pgdat(pgdat)
969 			kswapd_clear_hopeless(pgdat, KSWAPD_CLEAR_HOPELESS_OTHER);
970 	}
971 
972 	return count;
973 }
974 
975 static struct kobj_attribute numa_demotion_enabled_attr =
976 	__ATTR_RW(demotion_enabled);
977 
978 static struct attribute *numa_attrs[] = {
979 	&numa_demotion_enabled_attr.attr,
980 	NULL,
981 };
982 
983 static const struct attribute_group numa_attr_group = {
984 	.attrs = numa_attrs,
985 };
986 
987 static int __init numa_init_sysfs(void)
988 {
989 	int err;
990 	struct kobject *numa_kobj;
991 
992 	numa_kobj = kobject_create_and_add("numa", mm_kobj);
993 	if (!numa_kobj) {
994 		pr_err("failed to create numa kobject\n");
995 		return -ENOMEM;
996 	}
997 	err = sysfs_create_group(numa_kobj, &numa_attr_group);
998 	if (err) {
999 		pr_err("failed to register numa group\n");
1000 		goto delete_obj;
1001 	}
1002 	return 0;
1003 
1004 delete_obj:
1005 	kobject_put(numa_kobj);
1006 	return err;
1007 }
1008 subsys_initcall(numa_init_sysfs);
1009 #endif /* CONFIG_SYSFS */
1010 #endif
1011