1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * It can be very tempting to add handling for obscure cases here. 25 * In general any code for handling new cases should only be added iff: 26 * - You know how to test it. 27 * - You have a test that can be added to mce-test 28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 29 * - The case actually shows up as a frequent (top 10) page state in 30 * tools/vm/page-types when running a real workload. 31 * 32 * There are several operations here with exponential complexity because 33 * of unsuitable VM data structures. For example the operation to map back 34 * from RMAP chains to processes has to walk the complete process list and 35 * has non linear complexity with the number. But since memory corruptions 36 * are rare we hope to get away with this. This avoids impacting the core 37 * VM. 38 */ 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched.h> 44 #include <linux/ksm.h> 45 #include <linux/rmap.h> 46 #include <linux/export.h> 47 #include <linux/pagemap.h> 48 #include <linux/swap.h> 49 #include <linux/backing-dev.h> 50 #include <linux/migrate.h> 51 #include <linux/page-isolation.h> 52 #include <linux/suspend.h> 53 #include <linux/slab.h> 54 #include <linux/swapops.h> 55 #include <linux/hugetlb.h> 56 #include <linux/memory_hotplug.h> 57 #include <linux/mm_inline.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include "internal.h" 61 #include "ras/ras_event.h" 62 63 int sysctl_memory_failure_early_kill __read_mostly = 0; 64 65 int sysctl_memory_failure_recovery __read_mostly = 1; 66 67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 68 69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 70 71 u32 hwpoison_filter_enable = 0; 72 u32 hwpoison_filter_dev_major = ~0U; 73 u32 hwpoison_filter_dev_minor = ~0U; 74 u64 hwpoison_filter_flags_mask; 75 u64 hwpoison_filter_flags_value; 76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 81 82 static int hwpoison_filter_dev(struct page *p) 83 { 84 struct address_space *mapping; 85 dev_t dev; 86 87 if (hwpoison_filter_dev_major == ~0U && 88 hwpoison_filter_dev_minor == ~0U) 89 return 0; 90 91 /* 92 * page_mapping() does not accept slab pages. 93 */ 94 if (PageSlab(p)) 95 return -EINVAL; 96 97 mapping = page_mapping(p); 98 if (mapping == NULL || mapping->host == NULL) 99 return -EINVAL; 100 101 dev = mapping->host->i_sb->s_dev; 102 if (hwpoison_filter_dev_major != ~0U && 103 hwpoison_filter_dev_major != MAJOR(dev)) 104 return -EINVAL; 105 if (hwpoison_filter_dev_minor != ~0U && 106 hwpoison_filter_dev_minor != MINOR(dev)) 107 return -EINVAL; 108 109 return 0; 110 } 111 112 static int hwpoison_filter_flags(struct page *p) 113 { 114 if (!hwpoison_filter_flags_mask) 115 return 0; 116 117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 118 hwpoison_filter_flags_value) 119 return 0; 120 else 121 return -EINVAL; 122 } 123 124 /* 125 * This allows stress tests to limit test scope to a collection of tasks 126 * by putting them under some memcg. This prevents killing unrelated/important 127 * processes such as /sbin/init. Note that the target task may share clean 128 * pages with init (eg. libc text), which is harmless. If the target task 129 * share _dirty_ pages with another task B, the test scheme must make sure B 130 * is also included in the memcg. At last, due to race conditions this filter 131 * can only guarantee that the page either belongs to the memcg tasks, or is 132 * a freed page. 133 */ 134 #ifdef CONFIG_MEMCG 135 u64 hwpoison_filter_memcg; 136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 137 static int hwpoison_filter_task(struct page *p) 138 { 139 if (!hwpoison_filter_memcg) 140 return 0; 141 142 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 143 return -EINVAL; 144 145 return 0; 146 } 147 #else 148 static int hwpoison_filter_task(struct page *p) { return 0; } 149 #endif 150 151 int hwpoison_filter(struct page *p) 152 { 153 if (!hwpoison_filter_enable) 154 return 0; 155 156 if (hwpoison_filter_dev(p)) 157 return -EINVAL; 158 159 if (hwpoison_filter_flags(p)) 160 return -EINVAL; 161 162 if (hwpoison_filter_task(p)) 163 return -EINVAL; 164 165 return 0; 166 } 167 #else 168 int hwpoison_filter(struct page *p) 169 { 170 return 0; 171 } 172 #endif 173 174 EXPORT_SYMBOL_GPL(hwpoison_filter); 175 176 /* 177 * Send all the processes who have the page mapped a signal. 178 * ``action optional'' if they are not immediately affected by the error 179 * ``action required'' if error happened in current execution context 180 */ 181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, 182 unsigned long pfn, struct page *page, int flags) 183 { 184 struct siginfo si; 185 int ret; 186 187 printk(KERN_ERR 188 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n", 189 pfn, t->comm, t->pid); 190 si.si_signo = SIGBUS; 191 si.si_errno = 0; 192 si.si_addr = (void *)addr; 193 #ifdef __ARCH_SI_TRAPNO 194 si.si_trapno = trapno; 195 #endif 196 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; 197 198 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 199 si.si_code = BUS_MCEERR_AR; 200 ret = force_sig_info(SIGBUS, &si, current); 201 } else { 202 /* 203 * Don't use force here, it's convenient if the signal 204 * can be temporarily blocked. 205 * This could cause a loop when the user sets SIGBUS 206 * to SIG_IGN, but hopefully no one will do that? 207 */ 208 si.si_code = BUS_MCEERR_AO; 209 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 210 } 211 if (ret < 0) 212 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", 213 t->comm, t->pid, ret); 214 return ret; 215 } 216 217 /* 218 * When a unknown page type is encountered drain as many buffers as possible 219 * in the hope to turn the page into a LRU or free page, which we can handle. 220 */ 221 void shake_page(struct page *p, int access) 222 { 223 if (!PageSlab(p)) { 224 lru_add_drain_all(); 225 if (PageLRU(p)) 226 return; 227 drain_all_pages(page_zone(p)); 228 if (PageLRU(p) || is_free_buddy_page(p)) 229 return; 230 } 231 232 /* 233 * Only call shrink_node_slabs here (which would also shrink 234 * other caches) if access is not potentially fatal. 235 */ 236 if (access) 237 drop_slab_node(page_to_nid(p)); 238 } 239 EXPORT_SYMBOL_GPL(shake_page); 240 241 /* 242 * Kill all processes that have a poisoned page mapped and then isolate 243 * the page. 244 * 245 * General strategy: 246 * Find all processes having the page mapped and kill them. 247 * But we keep a page reference around so that the page is not 248 * actually freed yet. 249 * Then stash the page away 250 * 251 * There's no convenient way to get back to mapped processes 252 * from the VMAs. So do a brute-force search over all 253 * running processes. 254 * 255 * Remember that machine checks are not common (or rather 256 * if they are common you have other problems), so this shouldn't 257 * be a performance issue. 258 * 259 * Also there are some races possible while we get from the 260 * error detection to actually handle it. 261 */ 262 263 struct to_kill { 264 struct list_head nd; 265 struct task_struct *tsk; 266 unsigned long addr; 267 char addr_valid; 268 }; 269 270 /* 271 * Failure handling: if we can't find or can't kill a process there's 272 * not much we can do. We just print a message and ignore otherwise. 273 */ 274 275 /* 276 * Schedule a process for later kill. 277 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 278 * TBD would GFP_NOIO be enough? 279 */ 280 static void add_to_kill(struct task_struct *tsk, struct page *p, 281 struct vm_area_struct *vma, 282 struct list_head *to_kill, 283 struct to_kill **tkc) 284 { 285 struct to_kill *tk; 286 287 if (*tkc) { 288 tk = *tkc; 289 *tkc = NULL; 290 } else { 291 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 292 if (!tk) { 293 printk(KERN_ERR 294 "MCE: Out of memory while machine check handling\n"); 295 return; 296 } 297 } 298 tk->addr = page_address_in_vma(p, vma); 299 tk->addr_valid = 1; 300 301 /* 302 * In theory we don't have to kill when the page was 303 * munmaped. But it could be also a mremap. Since that's 304 * likely very rare kill anyways just out of paranoia, but use 305 * a SIGKILL because the error is not contained anymore. 306 */ 307 if (tk->addr == -EFAULT) { 308 pr_info("MCE: Unable to find user space address %lx in %s\n", 309 page_to_pfn(p), tsk->comm); 310 tk->addr_valid = 0; 311 } 312 get_task_struct(tsk); 313 tk->tsk = tsk; 314 list_add_tail(&tk->nd, to_kill); 315 } 316 317 /* 318 * Kill the processes that have been collected earlier. 319 * 320 * Only do anything when DOIT is set, otherwise just free the list 321 * (this is used for clean pages which do not need killing) 322 * Also when FAIL is set do a force kill because something went 323 * wrong earlier. 324 */ 325 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno, 326 int fail, struct page *page, unsigned long pfn, 327 int flags) 328 { 329 struct to_kill *tk, *next; 330 331 list_for_each_entry_safe (tk, next, to_kill, nd) { 332 if (forcekill) { 333 /* 334 * In case something went wrong with munmapping 335 * make sure the process doesn't catch the 336 * signal and then access the memory. Just kill it. 337 */ 338 if (fail || tk->addr_valid == 0) { 339 printk(KERN_ERR 340 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 341 pfn, tk->tsk->comm, tk->tsk->pid); 342 force_sig(SIGKILL, tk->tsk); 343 } 344 345 /* 346 * In theory the process could have mapped 347 * something else on the address in-between. We could 348 * check for that, but we need to tell the 349 * process anyways. 350 */ 351 else if (kill_proc(tk->tsk, tk->addr, trapno, 352 pfn, page, flags) < 0) 353 printk(KERN_ERR 354 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", 355 pfn, tk->tsk->comm, tk->tsk->pid); 356 } 357 put_task_struct(tk->tsk); 358 kfree(tk); 359 } 360 } 361 362 /* 363 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 364 * on behalf of the thread group. Return task_struct of the (first found) 365 * dedicated thread if found, and return NULL otherwise. 366 * 367 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 368 * have to call rcu_read_lock/unlock() in this function. 369 */ 370 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 371 { 372 struct task_struct *t; 373 374 for_each_thread(tsk, t) 375 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 376 return t; 377 return NULL; 378 } 379 380 /* 381 * Determine whether a given process is "early kill" process which expects 382 * to be signaled when some page under the process is hwpoisoned. 383 * Return task_struct of the dedicated thread (main thread unless explicitly 384 * specified) if the process is "early kill," and otherwise returns NULL. 385 */ 386 static struct task_struct *task_early_kill(struct task_struct *tsk, 387 int force_early) 388 { 389 struct task_struct *t; 390 if (!tsk->mm) 391 return NULL; 392 if (force_early) 393 return tsk; 394 t = find_early_kill_thread(tsk); 395 if (t) 396 return t; 397 if (sysctl_memory_failure_early_kill) 398 return tsk; 399 return NULL; 400 } 401 402 /* 403 * Collect processes when the error hit an anonymous page. 404 */ 405 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 406 struct to_kill **tkc, int force_early) 407 { 408 struct vm_area_struct *vma; 409 struct task_struct *tsk; 410 struct anon_vma *av; 411 pgoff_t pgoff; 412 413 av = page_lock_anon_vma_read(page); 414 if (av == NULL) /* Not actually mapped anymore */ 415 return; 416 417 pgoff = page_to_pgoff(page); 418 read_lock(&tasklist_lock); 419 for_each_process (tsk) { 420 struct anon_vma_chain *vmac; 421 struct task_struct *t = task_early_kill(tsk, force_early); 422 423 if (!t) 424 continue; 425 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 426 pgoff, pgoff) { 427 vma = vmac->vma; 428 if (!page_mapped_in_vma(page, vma)) 429 continue; 430 if (vma->vm_mm == t->mm) 431 add_to_kill(t, page, vma, to_kill, tkc); 432 } 433 } 434 read_unlock(&tasklist_lock); 435 page_unlock_anon_vma_read(av); 436 } 437 438 /* 439 * Collect processes when the error hit a file mapped page. 440 */ 441 static void collect_procs_file(struct page *page, struct list_head *to_kill, 442 struct to_kill **tkc, int force_early) 443 { 444 struct vm_area_struct *vma; 445 struct task_struct *tsk; 446 struct address_space *mapping = page->mapping; 447 448 i_mmap_lock_read(mapping); 449 read_lock(&tasklist_lock); 450 for_each_process(tsk) { 451 pgoff_t pgoff = page_to_pgoff(page); 452 struct task_struct *t = task_early_kill(tsk, force_early); 453 454 if (!t) 455 continue; 456 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 457 pgoff) { 458 /* 459 * Send early kill signal to tasks where a vma covers 460 * the page but the corrupted page is not necessarily 461 * mapped it in its pte. 462 * Assume applications who requested early kill want 463 * to be informed of all such data corruptions. 464 */ 465 if (vma->vm_mm == t->mm) 466 add_to_kill(t, page, vma, to_kill, tkc); 467 } 468 } 469 read_unlock(&tasklist_lock); 470 i_mmap_unlock_read(mapping); 471 } 472 473 /* 474 * Collect the processes who have the corrupted page mapped to kill. 475 * This is done in two steps for locking reasons. 476 * First preallocate one tokill structure outside the spin locks, 477 * so that we can kill at least one process reasonably reliable. 478 */ 479 static void collect_procs(struct page *page, struct list_head *tokill, 480 int force_early) 481 { 482 struct to_kill *tk; 483 484 if (!page->mapping) 485 return; 486 487 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 488 if (!tk) 489 return; 490 if (PageAnon(page)) 491 collect_procs_anon(page, tokill, &tk, force_early); 492 else 493 collect_procs_file(page, tokill, &tk, force_early); 494 kfree(tk); 495 } 496 497 static const char *action_name[] = { 498 [MF_IGNORED] = "Ignored", 499 [MF_FAILED] = "Failed", 500 [MF_DELAYED] = "Delayed", 501 [MF_RECOVERED] = "Recovered", 502 }; 503 504 static const char * const action_page_types[] = { 505 [MF_MSG_KERNEL] = "reserved kernel page", 506 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 507 [MF_MSG_SLAB] = "kernel slab page", 508 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 509 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 510 [MF_MSG_HUGE] = "huge page", 511 [MF_MSG_FREE_HUGE] = "free huge page", 512 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 513 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 514 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 515 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 516 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 517 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 518 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 519 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 520 [MF_MSG_CLEAN_LRU] = "clean LRU page", 521 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 522 [MF_MSG_BUDDY] = "free buddy page", 523 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 524 [MF_MSG_UNKNOWN] = "unknown page", 525 }; 526 527 /* 528 * XXX: It is possible that a page is isolated from LRU cache, 529 * and then kept in swap cache or failed to remove from page cache. 530 * The page count will stop it from being freed by unpoison. 531 * Stress tests should be aware of this memory leak problem. 532 */ 533 static int delete_from_lru_cache(struct page *p) 534 { 535 if (!isolate_lru_page(p)) { 536 /* 537 * Clear sensible page flags, so that the buddy system won't 538 * complain when the page is unpoison-and-freed. 539 */ 540 ClearPageActive(p); 541 ClearPageUnevictable(p); 542 /* 543 * drop the page count elevated by isolate_lru_page() 544 */ 545 page_cache_release(p); 546 return 0; 547 } 548 return -EIO; 549 } 550 551 /* 552 * Error hit kernel page. 553 * Do nothing, try to be lucky and not touch this instead. For a few cases we 554 * could be more sophisticated. 555 */ 556 static int me_kernel(struct page *p, unsigned long pfn) 557 { 558 return MF_IGNORED; 559 } 560 561 /* 562 * Page in unknown state. Do nothing. 563 */ 564 static int me_unknown(struct page *p, unsigned long pfn) 565 { 566 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); 567 return MF_FAILED; 568 } 569 570 /* 571 * Clean (or cleaned) page cache page. 572 */ 573 static int me_pagecache_clean(struct page *p, unsigned long pfn) 574 { 575 int err; 576 int ret = MF_FAILED; 577 struct address_space *mapping; 578 579 delete_from_lru_cache(p); 580 581 /* 582 * For anonymous pages we're done the only reference left 583 * should be the one m_f() holds. 584 */ 585 if (PageAnon(p)) 586 return MF_RECOVERED; 587 588 /* 589 * Now truncate the page in the page cache. This is really 590 * more like a "temporary hole punch" 591 * Don't do this for block devices when someone else 592 * has a reference, because it could be file system metadata 593 * and that's not safe to truncate. 594 */ 595 mapping = page_mapping(p); 596 if (!mapping) { 597 /* 598 * Page has been teared down in the meanwhile 599 */ 600 return MF_FAILED; 601 } 602 603 /* 604 * Truncation is a bit tricky. Enable it per file system for now. 605 * 606 * Open: to take i_mutex or not for this? Right now we don't. 607 */ 608 if (mapping->a_ops->error_remove_page) { 609 err = mapping->a_ops->error_remove_page(mapping, p); 610 if (err != 0) { 611 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", 612 pfn, err); 613 } else if (page_has_private(p) && 614 !try_to_release_page(p, GFP_NOIO)) { 615 pr_info("MCE %#lx: failed to release buffers\n", pfn); 616 } else { 617 ret = MF_RECOVERED; 618 } 619 } else { 620 /* 621 * If the file system doesn't support it just invalidate 622 * This fails on dirty or anything with private pages 623 */ 624 if (invalidate_inode_page(p)) 625 ret = MF_RECOVERED; 626 else 627 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", 628 pfn); 629 } 630 return ret; 631 } 632 633 /* 634 * Dirty pagecache page 635 * Issues: when the error hit a hole page the error is not properly 636 * propagated. 637 */ 638 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 639 { 640 struct address_space *mapping = page_mapping(p); 641 642 SetPageError(p); 643 /* TBD: print more information about the file. */ 644 if (mapping) { 645 /* 646 * IO error will be reported by write(), fsync(), etc. 647 * who check the mapping. 648 * This way the application knows that something went 649 * wrong with its dirty file data. 650 * 651 * There's one open issue: 652 * 653 * The EIO will be only reported on the next IO 654 * operation and then cleared through the IO map. 655 * Normally Linux has two mechanisms to pass IO error 656 * first through the AS_EIO flag in the address space 657 * and then through the PageError flag in the page. 658 * Since we drop pages on memory failure handling the 659 * only mechanism open to use is through AS_AIO. 660 * 661 * This has the disadvantage that it gets cleared on 662 * the first operation that returns an error, while 663 * the PageError bit is more sticky and only cleared 664 * when the page is reread or dropped. If an 665 * application assumes it will always get error on 666 * fsync, but does other operations on the fd before 667 * and the page is dropped between then the error 668 * will not be properly reported. 669 * 670 * This can already happen even without hwpoisoned 671 * pages: first on metadata IO errors (which only 672 * report through AS_EIO) or when the page is dropped 673 * at the wrong time. 674 * 675 * So right now we assume that the application DTRT on 676 * the first EIO, but we're not worse than other parts 677 * of the kernel. 678 */ 679 mapping_set_error(mapping, EIO); 680 } 681 682 return me_pagecache_clean(p, pfn); 683 } 684 685 /* 686 * Clean and dirty swap cache. 687 * 688 * Dirty swap cache page is tricky to handle. The page could live both in page 689 * cache and swap cache(ie. page is freshly swapped in). So it could be 690 * referenced concurrently by 2 types of PTEs: 691 * normal PTEs and swap PTEs. We try to handle them consistently by calling 692 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 693 * and then 694 * - clear dirty bit to prevent IO 695 * - remove from LRU 696 * - but keep in the swap cache, so that when we return to it on 697 * a later page fault, we know the application is accessing 698 * corrupted data and shall be killed (we installed simple 699 * interception code in do_swap_page to catch it). 700 * 701 * Clean swap cache pages can be directly isolated. A later page fault will 702 * bring in the known good data from disk. 703 */ 704 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 705 { 706 ClearPageDirty(p); 707 /* Trigger EIO in shmem: */ 708 ClearPageUptodate(p); 709 710 if (!delete_from_lru_cache(p)) 711 return MF_DELAYED; 712 else 713 return MF_FAILED; 714 } 715 716 static int me_swapcache_clean(struct page *p, unsigned long pfn) 717 { 718 delete_from_swap_cache(p); 719 720 if (!delete_from_lru_cache(p)) 721 return MF_RECOVERED; 722 else 723 return MF_FAILED; 724 } 725 726 /* 727 * Huge pages. Needs work. 728 * Issues: 729 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 730 * To narrow down kill region to one page, we need to break up pmd. 731 */ 732 static int me_huge_page(struct page *p, unsigned long pfn) 733 { 734 int res = 0; 735 struct page *hpage = compound_head(p); 736 737 if (!PageHuge(hpage)) 738 return MF_DELAYED; 739 740 /* 741 * We can safely recover from error on free or reserved (i.e. 742 * not in-use) hugepage by dequeuing it from freelist. 743 * To check whether a hugepage is in-use or not, we can't use 744 * page->lru because it can be used in other hugepage operations, 745 * such as __unmap_hugepage_range() and gather_surplus_pages(). 746 * So instead we use page_mapping() and PageAnon(). 747 * We assume that this function is called with page lock held, 748 * so there is no race between isolation and mapping/unmapping. 749 */ 750 if (!(page_mapping(hpage) || PageAnon(hpage))) { 751 res = dequeue_hwpoisoned_huge_page(hpage); 752 if (!res) 753 return MF_RECOVERED; 754 } 755 return MF_DELAYED; 756 } 757 758 /* 759 * Various page states we can handle. 760 * 761 * A page state is defined by its current page->flags bits. 762 * The table matches them in order and calls the right handler. 763 * 764 * This is quite tricky because we can access page at any time 765 * in its live cycle, so all accesses have to be extremely careful. 766 * 767 * This is not complete. More states could be added. 768 * For any missing state don't attempt recovery. 769 */ 770 771 #define dirty (1UL << PG_dirty) 772 #define sc (1UL << PG_swapcache) 773 #define unevict (1UL << PG_unevictable) 774 #define mlock (1UL << PG_mlocked) 775 #define writeback (1UL << PG_writeback) 776 #define lru (1UL << PG_lru) 777 #define swapbacked (1UL << PG_swapbacked) 778 #define head (1UL << PG_head) 779 #define tail (1UL << PG_tail) 780 #define compound (1UL << PG_compound) 781 #define slab (1UL << PG_slab) 782 #define reserved (1UL << PG_reserved) 783 784 static struct page_state { 785 unsigned long mask; 786 unsigned long res; 787 enum mf_action_page_type type; 788 int (*action)(struct page *p, unsigned long pfn); 789 } error_states[] = { 790 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 791 /* 792 * free pages are specially detected outside this table: 793 * PG_buddy pages only make a small fraction of all free pages. 794 */ 795 796 /* 797 * Could in theory check if slab page is free or if we can drop 798 * currently unused objects without touching them. But just 799 * treat it as standard kernel for now. 800 */ 801 { slab, slab, MF_MSG_SLAB, me_kernel }, 802 803 #ifdef CONFIG_PAGEFLAGS_EXTENDED 804 { head, head, MF_MSG_HUGE, me_huge_page }, 805 { tail, tail, MF_MSG_HUGE, me_huge_page }, 806 #else 807 { compound, compound, MF_MSG_HUGE, me_huge_page }, 808 #endif 809 810 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 811 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 812 813 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 814 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 815 816 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 817 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 818 819 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 820 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 821 822 /* 823 * Catchall entry: must be at end. 824 */ 825 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 826 }; 827 828 #undef dirty 829 #undef sc 830 #undef unevict 831 #undef mlock 832 #undef writeback 833 #undef lru 834 #undef swapbacked 835 #undef head 836 #undef tail 837 #undef compound 838 #undef slab 839 #undef reserved 840 841 /* 842 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 843 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 844 */ 845 static void action_result(unsigned long pfn, enum mf_action_page_type type, 846 enum mf_result result) 847 { 848 trace_memory_failure_event(pfn, type, result); 849 850 pr_err("MCE %#lx: recovery action for %s: %s\n", 851 pfn, action_page_types[type], action_name[result]); 852 } 853 854 static int page_action(struct page_state *ps, struct page *p, 855 unsigned long pfn) 856 { 857 int result; 858 int count; 859 860 result = ps->action(p, pfn); 861 862 count = page_count(p) - 1; 863 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 864 count--; 865 if (count != 0) { 866 printk(KERN_ERR 867 "MCE %#lx: %s still referenced by %d users\n", 868 pfn, action_page_types[ps->type], count); 869 result = MF_FAILED; 870 } 871 action_result(pfn, ps->type, result); 872 873 /* Could do more checks here if page looks ok */ 874 /* 875 * Could adjust zone counters here to correct for the missing page. 876 */ 877 878 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 879 } 880 881 /** 882 * get_hwpoison_page() - Get refcount for memory error handling: 883 * @page: raw error page (hit by memory error) 884 * 885 * Return: return 0 if failed to grab the refcount, otherwise true (some 886 * non-zero value.) 887 */ 888 int get_hwpoison_page(struct page *page) 889 { 890 struct page *head = compound_head(page); 891 892 if (PageHuge(head)) 893 return get_page_unless_zero(head); 894 895 /* 896 * Thp tail page has special refcounting rule (refcount of tail pages 897 * is stored in ->_mapcount,) so we can't call get_page_unless_zero() 898 * directly for tail pages. 899 */ 900 if (PageTransHuge(head)) { 901 /* 902 * Non anonymous thp exists only in allocation/free time. We 903 * can't handle such a case correctly, so let's give it up. 904 * This should be better than triggering BUG_ON when kernel 905 * tries to touch the "partially handled" page. 906 */ 907 if (!PageAnon(head)) { 908 pr_err("MCE: %#lx: non anonymous thp\n", 909 page_to_pfn(page)); 910 return 0; 911 } 912 913 if (get_page_unless_zero(head)) { 914 if (PageTail(page)) 915 get_page(page); 916 return 1; 917 } else { 918 return 0; 919 } 920 } 921 922 return get_page_unless_zero(page); 923 } 924 EXPORT_SYMBOL_GPL(get_hwpoison_page); 925 926 /** 927 * put_hwpoison_page() - Put refcount for memory error handling: 928 * @page: raw error page (hit by memory error) 929 */ 930 void put_hwpoison_page(struct page *page) 931 { 932 struct page *head = compound_head(page); 933 934 if (PageHuge(head)) { 935 put_page(head); 936 return; 937 } 938 939 if (PageTransHuge(head)) 940 if (page != head) 941 put_page(head); 942 943 put_page(page); 944 } 945 EXPORT_SYMBOL_GPL(put_hwpoison_page); 946 947 /* 948 * Do all that is necessary to remove user space mappings. Unmap 949 * the pages and send SIGBUS to the processes if the data was dirty. 950 */ 951 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 952 int trapno, int flags, struct page **hpagep) 953 { 954 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 955 struct address_space *mapping; 956 LIST_HEAD(tokill); 957 int ret; 958 int kill = 1, forcekill; 959 struct page *hpage = *hpagep; 960 961 /* 962 * Here we are interested only in user-mapped pages, so skip any 963 * other types of pages. 964 */ 965 if (PageReserved(p) || PageSlab(p)) 966 return SWAP_SUCCESS; 967 if (!(PageLRU(hpage) || PageHuge(p))) 968 return SWAP_SUCCESS; 969 970 /* 971 * This check implies we don't kill processes if their pages 972 * are in the swap cache early. Those are always late kills. 973 */ 974 if (!page_mapped(hpage)) 975 return SWAP_SUCCESS; 976 977 if (PageKsm(p)) { 978 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn); 979 return SWAP_FAIL; 980 } 981 982 if (PageSwapCache(p)) { 983 printk(KERN_ERR 984 "MCE %#lx: keeping poisoned page in swap cache\n", pfn); 985 ttu |= TTU_IGNORE_HWPOISON; 986 } 987 988 /* 989 * Propagate the dirty bit from PTEs to struct page first, because we 990 * need this to decide if we should kill or just drop the page. 991 * XXX: the dirty test could be racy: set_page_dirty() may not always 992 * be called inside page lock (it's recommended but not enforced). 993 */ 994 mapping = page_mapping(hpage); 995 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 996 mapping_cap_writeback_dirty(mapping)) { 997 if (page_mkclean(hpage)) { 998 SetPageDirty(hpage); 999 } else { 1000 kill = 0; 1001 ttu |= TTU_IGNORE_HWPOISON; 1002 printk(KERN_INFO 1003 "MCE %#lx: corrupted page was clean: dropped without side effects\n", 1004 pfn); 1005 } 1006 } 1007 1008 /* 1009 * First collect all the processes that have the page 1010 * mapped in dirty form. This has to be done before try_to_unmap, 1011 * because ttu takes the rmap data structures down. 1012 * 1013 * Error handling: We ignore errors here because 1014 * there's nothing that can be done. 1015 */ 1016 if (kill) 1017 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1018 1019 ret = try_to_unmap(hpage, ttu); 1020 if (ret != SWAP_SUCCESS) 1021 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", 1022 pfn, page_mapcount(hpage)); 1023 1024 /* 1025 * Now that the dirty bit has been propagated to the 1026 * struct page and all unmaps done we can decide if 1027 * killing is needed or not. Only kill when the page 1028 * was dirty or the process is not restartable, 1029 * otherwise the tokill list is merely 1030 * freed. When there was a problem unmapping earlier 1031 * use a more force-full uncatchable kill to prevent 1032 * any accesses to the poisoned memory. 1033 */ 1034 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1035 kill_procs(&tokill, forcekill, trapno, 1036 ret != SWAP_SUCCESS, p, pfn, flags); 1037 1038 return ret; 1039 } 1040 1041 static void set_page_hwpoison_huge_page(struct page *hpage) 1042 { 1043 int i; 1044 int nr_pages = 1 << compound_order(hpage); 1045 for (i = 0; i < nr_pages; i++) 1046 SetPageHWPoison(hpage + i); 1047 } 1048 1049 static void clear_page_hwpoison_huge_page(struct page *hpage) 1050 { 1051 int i; 1052 int nr_pages = 1 << compound_order(hpage); 1053 for (i = 0; i < nr_pages; i++) 1054 ClearPageHWPoison(hpage + i); 1055 } 1056 1057 /** 1058 * memory_failure - Handle memory failure of a page. 1059 * @pfn: Page Number of the corrupted page 1060 * @trapno: Trap number reported in the signal to user space. 1061 * @flags: fine tune action taken 1062 * 1063 * This function is called by the low level machine check code 1064 * of an architecture when it detects hardware memory corruption 1065 * of a page. It tries its best to recover, which includes 1066 * dropping pages, killing processes etc. 1067 * 1068 * The function is primarily of use for corruptions that 1069 * happen outside the current execution context (e.g. when 1070 * detected by a background scrubber) 1071 * 1072 * Must run in process context (e.g. a work queue) with interrupts 1073 * enabled and no spinlocks hold. 1074 */ 1075 int memory_failure(unsigned long pfn, int trapno, int flags) 1076 { 1077 struct page_state *ps; 1078 struct page *p; 1079 struct page *hpage; 1080 struct page *orig_head; 1081 int res; 1082 unsigned int nr_pages; 1083 unsigned long page_flags; 1084 1085 if (!sysctl_memory_failure_recovery) 1086 panic("Memory failure from trap %d on page %lx", trapno, pfn); 1087 1088 if (!pfn_valid(pfn)) { 1089 printk(KERN_ERR 1090 "MCE %#lx: memory outside kernel control\n", 1091 pfn); 1092 return -ENXIO; 1093 } 1094 1095 p = pfn_to_page(pfn); 1096 orig_head = hpage = compound_head(p); 1097 if (TestSetPageHWPoison(p)) { 1098 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); 1099 return 0; 1100 } 1101 1102 /* 1103 * Currently errors on hugetlbfs pages are measured in hugepage units, 1104 * so nr_pages should be 1 << compound_order. OTOH when errors are on 1105 * transparent hugepages, they are supposed to be split and error 1106 * measurement is done in normal page units. So nr_pages should be one 1107 * in this case. 1108 */ 1109 if (PageHuge(p)) 1110 nr_pages = 1 << compound_order(hpage); 1111 else /* normal page or thp */ 1112 nr_pages = 1; 1113 num_poisoned_pages_add(nr_pages); 1114 1115 /* 1116 * We need/can do nothing about count=0 pages. 1117 * 1) it's a free page, and therefore in safe hand: 1118 * prep_new_page() will be the gate keeper. 1119 * 2) it's a free hugepage, which is also safe: 1120 * an affected hugepage will be dequeued from hugepage freelist, 1121 * so there's no concern about reusing it ever after. 1122 * 3) it's part of a non-compound high order page. 1123 * Implies some kernel user: cannot stop them from 1124 * R/W the page; let's pray that the page has been 1125 * used and will be freed some time later. 1126 * In fact it's dangerous to directly bump up page count from 0, 1127 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1128 */ 1129 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1130 if (is_free_buddy_page(p)) { 1131 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1132 return 0; 1133 } else if (PageHuge(hpage)) { 1134 /* 1135 * Check "filter hit" and "race with other subpage." 1136 */ 1137 lock_page(hpage); 1138 if (PageHWPoison(hpage)) { 1139 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1140 || (p != hpage && TestSetPageHWPoison(hpage))) { 1141 num_poisoned_pages_sub(nr_pages); 1142 unlock_page(hpage); 1143 return 0; 1144 } 1145 } 1146 set_page_hwpoison_huge_page(hpage); 1147 res = dequeue_hwpoisoned_huge_page(hpage); 1148 action_result(pfn, MF_MSG_FREE_HUGE, 1149 res ? MF_IGNORED : MF_DELAYED); 1150 unlock_page(hpage); 1151 return res; 1152 } else { 1153 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1154 return -EBUSY; 1155 } 1156 } 1157 1158 if (!PageHuge(p) && PageTransHuge(hpage)) { 1159 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) { 1160 if (!PageAnon(hpage)) 1161 pr_err("MCE: %#lx: non anonymous thp\n", pfn); 1162 else 1163 pr_err("MCE: %#lx: thp split failed\n", pfn); 1164 if (TestClearPageHWPoison(p)) 1165 num_poisoned_pages_sub(nr_pages); 1166 put_hwpoison_page(p); 1167 return -EBUSY; 1168 } 1169 VM_BUG_ON_PAGE(!page_count(p), p); 1170 hpage = compound_head(p); 1171 } 1172 1173 /* 1174 * We ignore non-LRU pages for good reasons. 1175 * - PG_locked is only well defined for LRU pages and a few others 1176 * - to avoid races with __set_page_locked() 1177 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1178 * The check (unnecessarily) ignores LRU pages being isolated and 1179 * walked by the page reclaim code, however that's not a big loss. 1180 */ 1181 if (!PageHuge(p)) { 1182 if (!PageLRU(p)) 1183 shake_page(p, 0); 1184 if (!PageLRU(p)) { 1185 /* 1186 * shake_page could have turned it free. 1187 */ 1188 if (is_free_buddy_page(p)) { 1189 if (flags & MF_COUNT_INCREASED) 1190 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1191 else 1192 action_result(pfn, MF_MSG_BUDDY_2ND, 1193 MF_DELAYED); 1194 return 0; 1195 } 1196 } 1197 } 1198 1199 lock_page(hpage); 1200 1201 /* 1202 * The page could have changed compound pages during the locking. 1203 * If this happens just bail out. 1204 */ 1205 if (PageCompound(p) && compound_head(p) != orig_head) { 1206 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1207 res = -EBUSY; 1208 goto out; 1209 } 1210 1211 /* 1212 * We use page flags to determine what action should be taken, but 1213 * the flags can be modified by the error containment action. One 1214 * example is an mlocked page, where PG_mlocked is cleared by 1215 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1216 * correctly, we save a copy of the page flags at this time. 1217 */ 1218 page_flags = p->flags; 1219 1220 /* 1221 * unpoison always clear PG_hwpoison inside page lock 1222 */ 1223 if (!PageHWPoison(p)) { 1224 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); 1225 num_poisoned_pages_sub(nr_pages); 1226 unlock_page(hpage); 1227 put_hwpoison_page(hpage); 1228 return 0; 1229 } 1230 if (hwpoison_filter(p)) { 1231 if (TestClearPageHWPoison(p)) 1232 num_poisoned_pages_sub(nr_pages); 1233 unlock_page(hpage); 1234 put_hwpoison_page(hpage); 1235 return 0; 1236 } 1237 1238 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p)) 1239 goto identify_page_state; 1240 1241 /* 1242 * For error on the tail page, we should set PG_hwpoison 1243 * on the head page to show that the hugepage is hwpoisoned 1244 */ 1245 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { 1246 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED); 1247 unlock_page(hpage); 1248 put_hwpoison_page(hpage); 1249 return 0; 1250 } 1251 /* 1252 * Set PG_hwpoison on all pages in an error hugepage, 1253 * because containment is done in hugepage unit for now. 1254 * Since we have done TestSetPageHWPoison() for the head page with 1255 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1256 */ 1257 if (PageHuge(p)) 1258 set_page_hwpoison_huge_page(hpage); 1259 1260 /* 1261 * It's very difficult to mess with pages currently under IO 1262 * and in many cases impossible, so we just avoid it here. 1263 */ 1264 wait_on_page_writeback(p); 1265 1266 /* 1267 * Now take care of user space mappings. 1268 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1269 * 1270 * When the raw error page is thp tail page, hpage points to the raw 1271 * page after thp split. 1272 */ 1273 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage) 1274 != SWAP_SUCCESS) { 1275 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1276 res = -EBUSY; 1277 goto out; 1278 } 1279 1280 /* 1281 * Torn down by someone else? 1282 */ 1283 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1284 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1285 res = -EBUSY; 1286 goto out; 1287 } 1288 1289 identify_page_state: 1290 res = -EBUSY; 1291 /* 1292 * The first check uses the current page flags which may not have any 1293 * relevant information. The second check with the saved page flagss is 1294 * carried out only if the first check can't determine the page status. 1295 */ 1296 for (ps = error_states;; ps++) 1297 if ((p->flags & ps->mask) == ps->res) 1298 break; 1299 1300 page_flags |= (p->flags & (1UL << PG_dirty)); 1301 1302 if (!ps->mask) 1303 for (ps = error_states;; ps++) 1304 if ((page_flags & ps->mask) == ps->res) 1305 break; 1306 res = page_action(ps, p, pfn); 1307 out: 1308 unlock_page(hpage); 1309 return res; 1310 } 1311 EXPORT_SYMBOL_GPL(memory_failure); 1312 1313 #define MEMORY_FAILURE_FIFO_ORDER 4 1314 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1315 1316 struct memory_failure_entry { 1317 unsigned long pfn; 1318 int trapno; 1319 int flags; 1320 }; 1321 1322 struct memory_failure_cpu { 1323 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1324 MEMORY_FAILURE_FIFO_SIZE); 1325 spinlock_t lock; 1326 struct work_struct work; 1327 }; 1328 1329 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1330 1331 /** 1332 * memory_failure_queue - Schedule handling memory failure of a page. 1333 * @pfn: Page Number of the corrupted page 1334 * @trapno: Trap number reported in the signal to user space. 1335 * @flags: Flags for memory failure handling 1336 * 1337 * This function is called by the low level hardware error handler 1338 * when it detects hardware memory corruption of a page. It schedules 1339 * the recovering of error page, including dropping pages, killing 1340 * processes etc. 1341 * 1342 * The function is primarily of use for corruptions that 1343 * happen outside the current execution context (e.g. when 1344 * detected by a background scrubber) 1345 * 1346 * Can run in IRQ context. 1347 */ 1348 void memory_failure_queue(unsigned long pfn, int trapno, int flags) 1349 { 1350 struct memory_failure_cpu *mf_cpu; 1351 unsigned long proc_flags; 1352 struct memory_failure_entry entry = { 1353 .pfn = pfn, 1354 .trapno = trapno, 1355 .flags = flags, 1356 }; 1357 1358 mf_cpu = &get_cpu_var(memory_failure_cpu); 1359 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1360 if (kfifo_put(&mf_cpu->fifo, entry)) 1361 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1362 else 1363 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1364 pfn); 1365 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1366 put_cpu_var(memory_failure_cpu); 1367 } 1368 EXPORT_SYMBOL_GPL(memory_failure_queue); 1369 1370 static void memory_failure_work_func(struct work_struct *work) 1371 { 1372 struct memory_failure_cpu *mf_cpu; 1373 struct memory_failure_entry entry = { 0, }; 1374 unsigned long proc_flags; 1375 int gotten; 1376 1377 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1378 for (;;) { 1379 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1380 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1381 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1382 if (!gotten) 1383 break; 1384 if (entry.flags & MF_SOFT_OFFLINE) 1385 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1386 else 1387 memory_failure(entry.pfn, entry.trapno, entry.flags); 1388 } 1389 } 1390 1391 static int __init memory_failure_init(void) 1392 { 1393 struct memory_failure_cpu *mf_cpu; 1394 int cpu; 1395 1396 for_each_possible_cpu(cpu) { 1397 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1398 spin_lock_init(&mf_cpu->lock); 1399 INIT_KFIFO(mf_cpu->fifo); 1400 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1401 } 1402 1403 return 0; 1404 } 1405 core_initcall(memory_failure_init); 1406 1407 #define unpoison_pr_info(fmt, pfn, rs) \ 1408 ({ \ 1409 if (__ratelimit(rs)) \ 1410 pr_info(fmt, pfn); \ 1411 }) 1412 1413 /** 1414 * unpoison_memory - Unpoison a previously poisoned page 1415 * @pfn: Page number of the to be unpoisoned page 1416 * 1417 * Software-unpoison a page that has been poisoned by 1418 * memory_failure() earlier. 1419 * 1420 * This is only done on the software-level, so it only works 1421 * for linux injected failures, not real hardware failures 1422 * 1423 * Returns 0 for success, otherwise -errno. 1424 */ 1425 int unpoison_memory(unsigned long pfn) 1426 { 1427 struct page *page; 1428 struct page *p; 1429 int freeit = 0; 1430 unsigned int nr_pages; 1431 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1432 DEFAULT_RATELIMIT_BURST); 1433 1434 if (!pfn_valid(pfn)) 1435 return -ENXIO; 1436 1437 p = pfn_to_page(pfn); 1438 page = compound_head(p); 1439 1440 if (!PageHWPoison(p)) { 1441 unpoison_pr_info("MCE: Page was already unpoisoned %#lx\n", 1442 pfn, &unpoison_rs); 1443 return 0; 1444 } 1445 1446 if (page_count(page) > 1) { 1447 unpoison_pr_info("MCE: Someone grabs the hwpoison page %#lx\n", 1448 pfn, &unpoison_rs); 1449 return 0; 1450 } 1451 1452 if (page_mapped(page)) { 1453 unpoison_pr_info("MCE: Someone maps the hwpoison page %#lx\n", 1454 pfn, &unpoison_rs); 1455 return 0; 1456 } 1457 1458 if (page_mapping(page)) { 1459 unpoison_pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n", 1460 pfn, &unpoison_rs); 1461 return 0; 1462 } 1463 1464 /* 1465 * unpoison_memory() can encounter thp only when the thp is being 1466 * worked by memory_failure() and the page lock is not held yet. 1467 * In such case, we yield to memory_failure() and make unpoison fail. 1468 */ 1469 if (!PageHuge(page) && PageTransHuge(page)) { 1470 unpoison_pr_info("MCE: Memory failure is now running on %#lx\n", 1471 pfn, &unpoison_rs); 1472 return 0; 1473 } 1474 1475 nr_pages = 1 << compound_order(page); 1476 1477 if (!get_hwpoison_page(p)) { 1478 /* 1479 * Since HWPoisoned hugepage should have non-zero refcount, 1480 * race between memory failure and unpoison seems to happen. 1481 * In such case unpoison fails and memory failure runs 1482 * to the end. 1483 */ 1484 if (PageHuge(page)) { 1485 unpoison_pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", 1486 pfn, &unpoison_rs); 1487 return 0; 1488 } 1489 if (TestClearPageHWPoison(p)) 1490 num_poisoned_pages_dec(); 1491 unpoison_pr_info("MCE: Software-unpoisoned free page %#lx\n", 1492 pfn, &unpoison_rs); 1493 return 0; 1494 } 1495 1496 lock_page(page); 1497 /* 1498 * This test is racy because PG_hwpoison is set outside of page lock. 1499 * That's acceptable because that won't trigger kernel panic. Instead, 1500 * the PG_hwpoison page will be caught and isolated on the entrance to 1501 * the free buddy page pool. 1502 */ 1503 if (TestClearPageHWPoison(page)) { 1504 unpoison_pr_info("MCE: Software-unpoisoned page %#lx\n", 1505 pfn, &unpoison_rs); 1506 num_poisoned_pages_sub(nr_pages); 1507 freeit = 1; 1508 if (PageHuge(page)) 1509 clear_page_hwpoison_huge_page(page); 1510 } 1511 unlock_page(page); 1512 1513 put_hwpoison_page(page); 1514 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1515 put_hwpoison_page(page); 1516 1517 return 0; 1518 } 1519 EXPORT_SYMBOL(unpoison_memory); 1520 1521 static struct page *new_page(struct page *p, unsigned long private, int **x) 1522 { 1523 int nid = page_to_nid(p); 1524 if (PageHuge(p)) 1525 return alloc_huge_page_node(page_hstate(compound_head(p)), 1526 nid); 1527 else 1528 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1529 } 1530 1531 /* 1532 * Safely get reference count of an arbitrary page. 1533 * Returns 0 for a free page, -EIO for a zero refcount page 1534 * that is not free, and 1 for any other page type. 1535 * For 1 the page is returned with increased page count, otherwise not. 1536 */ 1537 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1538 { 1539 int ret; 1540 1541 if (flags & MF_COUNT_INCREASED) 1542 return 1; 1543 1544 /* 1545 * When the target page is a free hugepage, just remove it 1546 * from free hugepage list. 1547 */ 1548 if (!get_hwpoison_page(p)) { 1549 if (PageHuge(p)) { 1550 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1551 ret = 0; 1552 } else if (is_free_buddy_page(p)) { 1553 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1554 ret = 0; 1555 } else { 1556 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1557 __func__, pfn, p->flags); 1558 ret = -EIO; 1559 } 1560 } else { 1561 /* Not a free page */ 1562 ret = 1; 1563 } 1564 return ret; 1565 } 1566 1567 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1568 { 1569 int ret = __get_any_page(page, pfn, flags); 1570 1571 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) { 1572 /* 1573 * Try to free it. 1574 */ 1575 put_hwpoison_page(page); 1576 shake_page(page, 1); 1577 1578 /* 1579 * Did it turn free? 1580 */ 1581 ret = __get_any_page(page, pfn, 0); 1582 if (!PageLRU(page)) { 1583 /* Drop page reference which is from __get_any_page() */ 1584 put_hwpoison_page(page); 1585 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", 1586 pfn, page->flags); 1587 return -EIO; 1588 } 1589 } 1590 return ret; 1591 } 1592 1593 static int soft_offline_huge_page(struct page *page, int flags) 1594 { 1595 int ret; 1596 unsigned long pfn = page_to_pfn(page); 1597 struct page *hpage = compound_head(page); 1598 LIST_HEAD(pagelist); 1599 1600 /* 1601 * This double-check of PageHWPoison is to avoid the race with 1602 * memory_failure(). See also comment in __soft_offline_page(). 1603 */ 1604 lock_page(hpage); 1605 if (PageHWPoison(hpage)) { 1606 unlock_page(hpage); 1607 put_hwpoison_page(hpage); 1608 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1609 return -EBUSY; 1610 } 1611 unlock_page(hpage); 1612 1613 ret = isolate_huge_page(hpage, &pagelist); 1614 /* 1615 * get_any_page() and isolate_huge_page() takes a refcount each, 1616 * so need to drop one here. 1617 */ 1618 put_hwpoison_page(hpage); 1619 if (!ret) { 1620 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1621 return -EBUSY; 1622 } 1623 1624 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1625 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1626 if (ret) { 1627 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1628 pfn, ret, page->flags); 1629 /* 1630 * We know that soft_offline_huge_page() tries to migrate 1631 * only one hugepage pointed to by hpage, so we need not 1632 * run through the pagelist here. 1633 */ 1634 putback_active_hugepage(hpage); 1635 if (ret > 0) 1636 ret = -EIO; 1637 } else { 1638 /* overcommit hugetlb page will be freed to buddy */ 1639 if (PageHuge(page)) { 1640 set_page_hwpoison_huge_page(hpage); 1641 dequeue_hwpoisoned_huge_page(hpage); 1642 num_poisoned_pages_add(1 << compound_order(hpage)); 1643 } else { 1644 SetPageHWPoison(page); 1645 num_poisoned_pages_inc(); 1646 } 1647 } 1648 return ret; 1649 } 1650 1651 static int __soft_offline_page(struct page *page, int flags) 1652 { 1653 int ret; 1654 unsigned long pfn = page_to_pfn(page); 1655 1656 /* 1657 * Check PageHWPoison again inside page lock because PageHWPoison 1658 * is set by memory_failure() outside page lock. Note that 1659 * memory_failure() also double-checks PageHWPoison inside page lock, 1660 * so there's no race between soft_offline_page() and memory_failure(). 1661 */ 1662 lock_page(page); 1663 wait_on_page_writeback(page); 1664 if (PageHWPoison(page)) { 1665 unlock_page(page); 1666 put_hwpoison_page(page); 1667 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1668 return -EBUSY; 1669 } 1670 /* 1671 * Try to invalidate first. This should work for 1672 * non dirty unmapped page cache pages. 1673 */ 1674 ret = invalidate_inode_page(page); 1675 unlock_page(page); 1676 /* 1677 * RED-PEN would be better to keep it isolated here, but we 1678 * would need to fix isolation locking first. 1679 */ 1680 if (ret == 1) { 1681 put_hwpoison_page(page); 1682 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1683 SetPageHWPoison(page); 1684 num_poisoned_pages_inc(); 1685 return 0; 1686 } 1687 1688 /* 1689 * Simple invalidation didn't work. 1690 * Try to migrate to a new page instead. migrate.c 1691 * handles a large number of cases for us. 1692 */ 1693 ret = isolate_lru_page(page); 1694 /* 1695 * Drop page reference which is came from get_any_page() 1696 * successful isolate_lru_page() already took another one. 1697 */ 1698 put_hwpoison_page(page); 1699 if (!ret) { 1700 LIST_HEAD(pagelist); 1701 inc_zone_page_state(page, NR_ISOLATED_ANON + 1702 page_is_file_cache(page)); 1703 list_add(&page->lru, &pagelist); 1704 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1705 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1706 if (ret) { 1707 if (!list_empty(&pagelist)) { 1708 list_del(&page->lru); 1709 dec_zone_page_state(page, NR_ISOLATED_ANON + 1710 page_is_file_cache(page)); 1711 putback_lru_page(page); 1712 } 1713 1714 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1715 pfn, ret, page->flags); 1716 if (ret > 0) 1717 ret = -EIO; 1718 } 1719 } else { 1720 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1721 pfn, ret, page_count(page), page->flags); 1722 } 1723 return ret; 1724 } 1725 1726 /** 1727 * soft_offline_page - Soft offline a page. 1728 * @page: page to offline 1729 * @flags: flags. Same as memory_failure(). 1730 * 1731 * Returns 0 on success, otherwise negated errno. 1732 * 1733 * Soft offline a page, by migration or invalidation, 1734 * without killing anything. This is for the case when 1735 * a page is not corrupted yet (so it's still valid to access), 1736 * but has had a number of corrected errors and is better taken 1737 * out. 1738 * 1739 * The actual policy on when to do that is maintained by 1740 * user space. 1741 * 1742 * This should never impact any application or cause data loss, 1743 * however it might take some time. 1744 * 1745 * This is not a 100% solution for all memory, but tries to be 1746 * ``good enough'' for the majority of memory. 1747 */ 1748 int soft_offline_page(struct page *page, int flags) 1749 { 1750 int ret; 1751 unsigned long pfn = page_to_pfn(page); 1752 struct page *hpage = compound_head(page); 1753 1754 if (PageHWPoison(page)) { 1755 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1756 if (flags & MF_COUNT_INCREASED) 1757 put_hwpoison_page(page); 1758 return -EBUSY; 1759 } 1760 if (!PageHuge(page) && PageTransHuge(hpage)) { 1761 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) { 1762 pr_info("soft offline: %#lx: failed to split THP\n", 1763 pfn); 1764 if (flags & MF_COUNT_INCREASED) 1765 put_hwpoison_page(page); 1766 return -EBUSY; 1767 } 1768 } 1769 1770 get_online_mems(); 1771 1772 ret = get_any_page(page, pfn, flags); 1773 put_online_mems(); 1774 if (ret > 0) { /* for in-use pages */ 1775 if (PageHuge(page)) 1776 ret = soft_offline_huge_page(page, flags); 1777 else 1778 ret = __soft_offline_page(page, flags); 1779 } else if (ret == 0) { /* for free pages */ 1780 if (PageHuge(page)) { 1781 set_page_hwpoison_huge_page(hpage); 1782 if (!dequeue_hwpoisoned_huge_page(hpage)) 1783 num_poisoned_pages_add(1 << compound_order(hpage)); 1784 } else { 1785 if (!TestSetPageHWPoison(page)) 1786 num_poisoned_pages_inc(); 1787 } 1788 } 1789 return ret; 1790 } 1791