1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/dax.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/memremap.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/sysctl.h> 63 #include "swap.h" 64 #include "internal.h" 65 #include "ras/ras_event.h" 66 67 static int sysctl_memory_failure_early_kill __read_mostly; 68 69 static int sysctl_memory_failure_recovery __read_mostly = 1; 70 71 static int sysctl_enable_soft_offline __read_mostly = 1; 72 73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 74 75 static bool hw_memory_failure __read_mostly = false; 76 77 static DEFINE_MUTEX(mf_mutex); 78 79 void num_poisoned_pages_inc(unsigned long pfn) 80 { 81 atomic_long_inc(&num_poisoned_pages); 82 memblk_nr_poison_inc(pfn); 83 } 84 85 void num_poisoned_pages_sub(unsigned long pfn, long i) 86 { 87 atomic_long_sub(i, &num_poisoned_pages); 88 if (pfn != -1UL) 89 memblk_nr_poison_sub(pfn, i); 90 } 91 92 /** 93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 94 * @_name: name of the file in the per NUMA sysfs directory. 95 */ 96 #define MF_ATTR_RO(_name) \ 97 static ssize_t _name##_show(struct device *dev, \ 98 struct device_attribute *attr, \ 99 char *buf) \ 100 { \ 101 struct memory_failure_stats *mf_stats = \ 102 &NODE_DATA(dev->id)->mf_stats; \ 103 return sprintf(buf, "%lu\n", mf_stats->_name); \ 104 } \ 105 static DEVICE_ATTR_RO(_name) 106 107 MF_ATTR_RO(total); 108 MF_ATTR_RO(ignored); 109 MF_ATTR_RO(failed); 110 MF_ATTR_RO(delayed); 111 MF_ATTR_RO(recovered); 112 113 static struct attribute *memory_failure_attr[] = { 114 &dev_attr_total.attr, 115 &dev_attr_ignored.attr, 116 &dev_attr_failed.attr, 117 &dev_attr_delayed.attr, 118 &dev_attr_recovered.attr, 119 NULL, 120 }; 121 122 const struct attribute_group memory_failure_attr_group = { 123 .name = "memory_failure", 124 .attrs = memory_failure_attr, 125 }; 126 127 static struct ctl_table memory_failure_table[] = { 128 { 129 .procname = "memory_failure_early_kill", 130 .data = &sysctl_memory_failure_early_kill, 131 .maxlen = sizeof(sysctl_memory_failure_early_kill), 132 .mode = 0644, 133 .proc_handler = proc_dointvec_minmax, 134 .extra1 = SYSCTL_ZERO, 135 .extra2 = SYSCTL_ONE, 136 }, 137 { 138 .procname = "memory_failure_recovery", 139 .data = &sysctl_memory_failure_recovery, 140 .maxlen = sizeof(sysctl_memory_failure_recovery), 141 .mode = 0644, 142 .proc_handler = proc_dointvec_minmax, 143 .extra1 = SYSCTL_ZERO, 144 .extra2 = SYSCTL_ONE, 145 }, 146 { 147 .procname = "enable_soft_offline", 148 .data = &sysctl_enable_soft_offline, 149 .maxlen = sizeof(sysctl_enable_soft_offline), 150 .mode = 0644, 151 .proc_handler = proc_dointvec_minmax, 152 .extra1 = SYSCTL_ZERO, 153 .extra2 = SYSCTL_ONE, 154 } 155 }; 156 157 /* 158 * Return values: 159 * 1: the page is dissolved (if needed) and taken off from buddy, 160 * 0: the page is dissolved (if needed) and not taken off from buddy, 161 * < 0: failed to dissolve. 162 */ 163 static int __page_handle_poison(struct page *page) 164 { 165 int ret; 166 167 /* 168 * zone_pcp_disable() can't be used here. It will 169 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold 170 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap 171 * optimization is enabled. This will break current lock dependency 172 * chain and leads to deadlock. 173 * Disabling pcp before dissolving the page was a deterministic 174 * approach because we made sure that those pages cannot end up in any 175 * PCP list. Draining PCP lists expels those pages to the buddy system, 176 * but nothing guarantees that those pages do not get back to a PCP 177 * queue if we need to refill those. 178 */ 179 ret = dissolve_free_hugetlb_folio(page_folio(page)); 180 if (!ret) { 181 drain_all_pages(page_zone(page)); 182 ret = take_page_off_buddy(page); 183 } 184 185 return ret; 186 } 187 188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 189 { 190 if (hugepage_or_freepage) { 191 /* 192 * Doing this check for free pages is also fine since 193 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well. 194 */ 195 if (__page_handle_poison(page) <= 0) 196 /* 197 * We could fail to take off the target page from buddy 198 * for example due to racy page allocation, but that's 199 * acceptable because soft-offlined page is not broken 200 * and if someone really want to use it, they should 201 * take it. 202 */ 203 return false; 204 } 205 206 SetPageHWPoison(page); 207 if (release) 208 put_page(page); 209 page_ref_inc(page); 210 num_poisoned_pages_inc(page_to_pfn(page)); 211 212 return true; 213 } 214 215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT) 216 217 u32 hwpoison_filter_enable = 0; 218 u32 hwpoison_filter_dev_major = ~0U; 219 u32 hwpoison_filter_dev_minor = ~0U; 220 u64 hwpoison_filter_flags_mask; 221 u64 hwpoison_filter_flags_value; 222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 227 228 static int hwpoison_filter_dev(struct page *p) 229 { 230 struct folio *folio = page_folio(p); 231 struct address_space *mapping; 232 dev_t dev; 233 234 if (hwpoison_filter_dev_major == ~0U && 235 hwpoison_filter_dev_minor == ~0U) 236 return 0; 237 238 mapping = folio_mapping(folio); 239 if (mapping == NULL || mapping->host == NULL) 240 return -EINVAL; 241 242 dev = mapping->host->i_sb->s_dev; 243 if (hwpoison_filter_dev_major != ~0U && 244 hwpoison_filter_dev_major != MAJOR(dev)) 245 return -EINVAL; 246 if (hwpoison_filter_dev_minor != ~0U && 247 hwpoison_filter_dev_minor != MINOR(dev)) 248 return -EINVAL; 249 250 return 0; 251 } 252 253 static int hwpoison_filter_flags(struct page *p) 254 { 255 if (!hwpoison_filter_flags_mask) 256 return 0; 257 258 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 259 hwpoison_filter_flags_value) 260 return 0; 261 else 262 return -EINVAL; 263 } 264 265 /* 266 * This allows stress tests to limit test scope to a collection of tasks 267 * by putting them under some memcg. This prevents killing unrelated/important 268 * processes such as /sbin/init. Note that the target task may share clean 269 * pages with init (eg. libc text), which is harmless. If the target task 270 * share _dirty_ pages with another task B, the test scheme must make sure B 271 * is also included in the memcg. At last, due to race conditions this filter 272 * can only guarantee that the page either belongs to the memcg tasks, or is 273 * a freed page. 274 */ 275 #ifdef CONFIG_MEMCG 276 u64 hwpoison_filter_memcg; 277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 278 static int hwpoison_filter_task(struct page *p) 279 { 280 if (!hwpoison_filter_memcg) 281 return 0; 282 283 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 284 return -EINVAL; 285 286 return 0; 287 } 288 #else 289 static int hwpoison_filter_task(struct page *p) { return 0; } 290 #endif 291 292 int hwpoison_filter(struct page *p) 293 { 294 if (!hwpoison_filter_enable) 295 return 0; 296 297 if (hwpoison_filter_dev(p)) 298 return -EINVAL; 299 300 if (hwpoison_filter_flags(p)) 301 return -EINVAL; 302 303 if (hwpoison_filter_task(p)) 304 return -EINVAL; 305 306 return 0; 307 } 308 EXPORT_SYMBOL_GPL(hwpoison_filter); 309 #else 310 int hwpoison_filter(struct page *p) 311 { 312 return 0; 313 } 314 #endif 315 316 /* 317 * Kill all processes that have a poisoned page mapped and then isolate 318 * the page. 319 * 320 * General strategy: 321 * Find all processes having the page mapped and kill them. 322 * But we keep a page reference around so that the page is not 323 * actually freed yet. 324 * Then stash the page away 325 * 326 * There's no convenient way to get back to mapped processes 327 * from the VMAs. So do a brute-force search over all 328 * running processes. 329 * 330 * Remember that machine checks are not common (or rather 331 * if they are common you have other problems), so this shouldn't 332 * be a performance issue. 333 * 334 * Also there are some races possible while we get from the 335 * error detection to actually handle it. 336 */ 337 338 struct to_kill { 339 struct list_head nd; 340 struct task_struct *tsk; 341 unsigned long addr; 342 short size_shift; 343 }; 344 345 /* 346 * Send all the processes who have the page mapped a signal. 347 * ``action optional'' if they are not immediately affected by the error 348 * ``action required'' if error happened in current execution context 349 */ 350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 351 { 352 struct task_struct *t = tk->tsk; 353 short addr_lsb = tk->size_shift; 354 int ret = 0; 355 356 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 357 pfn, t->comm, task_pid_nr(t)); 358 359 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 360 ret = force_sig_mceerr(BUS_MCEERR_AR, 361 (void __user *)tk->addr, addr_lsb); 362 else 363 /* 364 * Signal other processes sharing the page if they have 365 * PF_MCE_EARLY set. 366 * Don't use force here, it's convenient if the signal 367 * can be temporarily blocked. 368 */ 369 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 370 addr_lsb, t); 371 if (ret < 0) 372 pr_info("Error sending signal to %s:%d: %d\n", 373 t->comm, task_pid_nr(t), ret); 374 return ret; 375 } 376 377 /* 378 * Unknown page type encountered. Try to check whether it can turn PageLRU by 379 * lru_add_drain_all. 380 */ 381 void shake_folio(struct folio *folio) 382 { 383 if (folio_test_hugetlb(folio)) 384 return; 385 /* 386 * TODO: Could shrink slab caches here if a lightweight range-based 387 * shrinker will be available. 388 */ 389 if (folio_test_slab(folio)) 390 return; 391 392 lru_add_drain_all(); 393 } 394 EXPORT_SYMBOL_GPL(shake_folio); 395 396 static void shake_page(struct page *page) 397 { 398 shake_folio(page_folio(page)); 399 } 400 401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 402 unsigned long address) 403 { 404 unsigned long ret = 0; 405 pgd_t *pgd; 406 p4d_t *p4d; 407 pud_t *pud; 408 pmd_t *pmd; 409 pte_t *pte; 410 pte_t ptent; 411 412 VM_BUG_ON_VMA(address == -EFAULT, vma); 413 pgd = pgd_offset(vma->vm_mm, address); 414 if (!pgd_present(*pgd)) 415 return 0; 416 p4d = p4d_offset(pgd, address); 417 if (!p4d_present(*p4d)) 418 return 0; 419 pud = pud_offset(p4d, address); 420 if (!pud_present(*pud)) 421 return 0; 422 if (pud_devmap(*pud)) 423 return PUD_SHIFT; 424 pmd = pmd_offset(pud, address); 425 if (!pmd_present(*pmd)) 426 return 0; 427 if (pmd_devmap(*pmd)) 428 return PMD_SHIFT; 429 pte = pte_offset_map(pmd, address); 430 if (!pte) 431 return 0; 432 ptent = ptep_get(pte); 433 if (pte_present(ptent) && pte_devmap(ptent)) 434 ret = PAGE_SHIFT; 435 pte_unmap(pte); 436 return ret; 437 } 438 439 /* 440 * Failure handling: if we can't find or can't kill a process there's 441 * not much we can do. We just print a message and ignore otherwise. 442 */ 443 444 /* 445 * Schedule a process for later kill. 446 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 447 */ 448 static void __add_to_kill(struct task_struct *tsk, struct page *p, 449 struct vm_area_struct *vma, struct list_head *to_kill, 450 unsigned long addr) 451 { 452 struct to_kill *tk; 453 454 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 455 if (!tk) { 456 pr_err("Out of memory while machine check handling\n"); 457 return; 458 } 459 460 tk->addr = addr; 461 if (is_zone_device_page(p)) 462 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 463 else 464 tk->size_shift = page_shift(compound_head(p)); 465 466 /* 467 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 468 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 469 * so "tk->size_shift == 0" effectively checks no mapping on 470 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 471 * to a process' address space, it's possible not all N VMAs 472 * contain mappings for the page, but at least one VMA does. 473 * Only deliver SIGBUS with payload derived from the VMA that 474 * has a mapping for the page. 475 */ 476 if (tk->addr == -EFAULT) { 477 pr_info("Unable to find user space address %lx in %s\n", 478 page_to_pfn(p), tsk->comm); 479 } else if (tk->size_shift == 0) { 480 kfree(tk); 481 return; 482 } 483 484 get_task_struct(tsk); 485 tk->tsk = tsk; 486 list_add_tail(&tk->nd, to_kill); 487 } 488 489 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p, 490 struct vm_area_struct *vma, struct list_head *to_kill, 491 unsigned long addr) 492 { 493 if (addr == -EFAULT) 494 return; 495 __add_to_kill(tsk, p, vma, to_kill, addr); 496 } 497 498 #ifdef CONFIG_KSM 499 static bool task_in_to_kill_list(struct list_head *to_kill, 500 struct task_struct *tsk) 501 { 502 struct to_kill *tk, *next; 503 504 list_for_each_entry_safe(tk, next, to_kill, nd) { 505 if (tk->tsk == tsk) 506 return true; 507 } 508 509 return false; 510 } 511 512 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 513 struct vm_area_struct *vma, struct list_head *to_kill, 514 unsigned long addr) 515 { 516 if (!task_in_to_kill_list(to_kill, tsk)) 517 __add_to_kill(tsk, p, vma, to_kill, addr); 518 } 519 #endif 520 /* 521 * Kill the processes that have been collected earlier. 522 * 523 * Only do anything when FORCEKILL is set, otherwise just free the 524 * list (this is used for clean pages which do not need killing) 525 */ 526 static void kill_procs(struct list_head *to_kill, int forcekill, 527 unsigned long pfn, int flags) 528 { 529 struct to_kill *tk, *next; 530 531 list_for_each_entry_safe(tk, next, to_kill, nd) { 532 if (forcekill) { 533 if (tk->addr == -EFAULT) { 534 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 535 pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); 536 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 537 tk->tsk, PIDTYPE_PID); 538 } 539 540 /* 541 * In theory the process could have mapped 542 * something else on the address in-between. We could 543 * check for that, but we need to tell the 544 * process anyways. 545 */ 546 else if (kill_proc(tk, pfn, flags) < 0) 547 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 548 pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); 549 } 550 list_del(&tk->nd); 551 put_task_struct(tk->tsk); 552 kfree(tk); 553 } 554 } 555 556 /* 557 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 558 * on behalf of the thread group. Return task_struct of the (first found) 559 * dedicated thread if found, and return NULL otherwise. 560 * 561 * We already hold rcu lock in the caller, so we don't have to call 562 * rcu_read_lock/unlock() in this function. 563 */ 564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 565 { 566 struct task_struct *t; 567 568 for_each_thread(tsk, t) { 569 if (t->flags & PF_MCE_PROCESS) { 570 if (t->flags & PF_MCE_EARLY) 571 return t; 572 } else { 573 if (sysctl_memory_failure_early_kill) 574 return t; 575 } 576 } 577 return NULL; 578 } 579 580 /* 581 * Determine whether a given process is "early kill" process which expects 582 * to be signaled when some page under the process is hwpoisoned. 583 * Return task_struct of the dedicated thread (main thread unless explicitly 584 * specified) if the process is "early kill" and otherwise returns NULL. 585 * 586 * Note that the above is true for Action Optional case. For Action Required 587 * case, it's only meaningful to the current thread which need to be signaled 588 * with SIGBUS, this error is Action Optional for other non current 589 * processes sharing the same error page,if the process is "early kill", the 590 * task_struct of the dedicated thread will also be returned. 591 */ 592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 593 { 594 if (!tsk->mm) 595 return NULL; 596 /* 597 * Comparing ->mm here because current task might represent 598 * a subthread, while tsk always points to the main thread. 599 */ 600 if (force_early && tsk->mm == current->mm) 601 return current; 602 603 return find_early_kill_thread(tsk); 604 } 605 606 /* 607 * Collect processes when the error hit an anonymous page. 608 */ 609 static void collect_procs_anon(struct folio *folio, struct page *page, 610 struct list_head *to_kill, int force_early) 611 { 612 struct task_struct *tsk; 613 struct anon_vma *av; 614 pgoff_t pgoff; 615 616 av = folio_lock_anon_vma_read(folio, NULL); 617 if (av == NULL) /* Not actually mapped anymore */ 618 return; 619 620 pgoff = page_to_pgoff(page); 621 rcu_read_lock(); 622 for_each_process(tsk) { 623 struct vm_area_struct *vma; 624 struct anon_vma_chain *vmac; 625 struct task_struct *t = task_early_kill(tsk, force_early); 626 unsigned long addr; 627 628 if (!t) 629 continue; 630 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 631 pgoff, pgoff) { 632 vma = vmac->vma; 633 if (vma->vm_mm != t->mm) 634 continue; 635 addr = page_mapped_in_vma(page, vma); 636 add_to_kill_anon_file(t, page, vma, to_kill, addr); 637 } 638 } 639 rcu_read_unlock(); 640 anon_vma_unlock_read(av); 641 } 642 643 /* 644 * Collect processes when the error hit a file mapped page. 645 */ 646 static void collect_procs_file(struct folio *folio, struct page *page, 647 struct list_head *to_kill, int force_early) 648 { 649 struct vm_area_struct *vma; 650 struct task_struct *tsk; 651 struct address_space *mapping = folio->mapping; 652 pgoff_t pgoff; 653 654 i_mmap_lock_read(mapping); 655 rcu_read_lock(); 656 pgoff = page_to_pgoff(page); 657 for_each_process(tsk) { 658 struct task_struct *t = task_early_kill(tsk, force_early); 659 unsigned long addr; 660 661 if (!t) 662 continue; 663 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 664 pgoff) { 665 /* 666 * Send early kill signal to tasks where a vma covers 667 * the page but the corrupted page is not necessarily 668 * mapped in its pte. 669 * Assume applications who requested early kill want 670 * to be informed of all such data corruptions. 671 */ 672 if (vma->vm_mm != t->mm) 673 continue; 674 addr = page_address_in_vma(page, vma); 675 add_to_kill_anon_file(t, page, vma, to_kill, addr); 676 } 677 } 678 rcu_read_unlock(); 679 i_mmap_unlock_read(mapping); 680 } 681 682 #ifdef CONFIG_FS_DAX 683 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p, 684 struct vm_area_struct *vma, 685 struct list_head *to_kill, pgoff_t pgoff) 686 { 687 unsigned long addr = vma_address(vma, pgoff, 1); 688 __add_to_kill(tsk, p, vma, to_kill, addr); 689 } 690 691 /* 692 * Collect processes when the error hit a fsdax page. 693 */ 694 static void collect_procs_fsdax(struct page *page, 695 struct address_space *mapping, pgoff_t pgoff, 696 struct list_head *to_kill, bool pre_remove) 697 { 698 struct vm_area_struct *vma; 699 struct task_struct *tsk; 700 701 i_mmap_lock_read(mapping); 702 rcu_read_lock(); 703 for_each_process(tsk) { 704 struct task_struct *t = tsk; 705 706 /* 707 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because 708 * the current may not be the one accessing the fsdax page. 709 * Otherwise, search for the current task. 710 */ 711 if (!pre_remove) 712 t = task_early_kill(tsk, true); 713 if (!t) 714 continue; 715 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 716 if (vma->vm_mm == t->mm) 717 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 718 } 719 } 720 rcu_read_unlock(); 721 i_mmap_unlock_read(mapping); 722 } 723 #endif /* CONFIG_FS_DAX */ 724 725 /* 726 * Collect the processes who have the corrupted page mapped to kill. 727 */ 728 static void collect_procs(struct folio *folio, struct page *page, 729 struct list_head *tokill, int force_early) 730 { 731 if (!folio->mapping) 732 return; 733 if (unlikely(folio_test_ksm(folio))) 734 collect_procs_ksm(folio, page, tokill, force_early); 735 else if (folio_test_anon(folio)) 736 collect_procs_anon(folio, page, tokill, force_early); 737 else 738 collect_procs_file(folio, page, tokill, force_early); 739 } 740 741 struct hwpoison_walk { 742 struct to_kill tk; 743 unsigned long pfn; 744 int flags; 745 }; 746 747 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 748 { 749 tk->addr = addr; 750 tk->size_shift = shift; 751 } 752 753 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 754 unsigned long poisoned_pfn, struct to_kill *tk) 755 { 756 unsigned long pfn = 0; 757 758 if (pte_present(pte)) { 759 pfn = pte_pfn(pte); 760 } else { 761 swp_entry_t swp = pte_to_swp_entry(pte); 762 763 if (is_hwpoison_entry(swp)) 764 pfn = swp_offset_pfn(swp); 765 } 766 767 if (!pfn || pfn != poisoned_pfn) 768 return 0; 769 770 set_to_kill(tk, addr, shift); 771 return 1; 772 } 773 774 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 775 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 776 struct hwpoison_walk *hwp) 777 { 778 pmd_t pmd = *pmdp; 779 unsigned long pfn; 780 unsigned long hwpoison_vaddr; 781 782 if (!pmd_present(pmd)) 783 return 0; 784 pfn = pmd_pfn(pmd); 785 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 786 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 787 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 788 return 1; 789 } 790 return 0; 791 } 792 #else 793 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 794 struct hwpoison_walk *hwp) 795 { 796 return 0; 797 } 798 #endif 799 800 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 801 unsigned long end, struct mm_walk *walk) 802 { 803 struct hwpoison_walk *hwp = walk->private; 804 int ret = 0; 805 pte_t *ptep, *mapped_pte; 806 spinlock_t *ptl; 807 808 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 809 if (ptl) { 810 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 811 spin_unlock(ptl); 812 goto out; 813 } 814 815 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 816 addr, &ptl); 817 if (!ptep) 818 goto out; 819 820 for (; addr != end; ptep++, addr += PAGE_SIZE) { 821 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, 822 hwp->pfn, &hwp->tk); 823 if (ret == 1) 824 break; 825 } 826 pte_unmap_unlock(mapped_pte, ptl); 827 out: 828 cond_resched(); 829 return ret; 830 } 831 832 #ifdef CONFIG_HUGETLB_PAGE 833 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 834 unsigned long addr, unsigned long end, 835 struct mm_walk *walk) 836 { 837 struct hwpoison_walk *hwp = walk->private; 838 pte_t pte = huge_ptep_get(walk->mm, addr, ptep); 839 struct hstate *h = hstate_vma(walk->vma); 840 841 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 842 hwp->pfn, &hwp->tk); 843 } 844 #else 845 #define hwpoison_hugetlb_range NULL 846 #endif 847 848 static const struct mm_walk_ops hwpoison_walk_ops = { 849 .pmd_entry = hwpoison_pte_range, 850 .hugetlb_entry = hwpoison_hugetlb_range, 851 .walk_lock = PGWALK_RDLOCK, 852 }; 853 854 /* 855 * Sends SIGBUS to the current process with error info. 856 * 857 * This function is intended to handle "Action Required" MCEs on already 858 * hardware poisoned pages. They could happen, for example, when 859 * memory_failure() failed to unmap the error page at the first call, or 860 * when multiple local machine checks happened on different CPUs. 861 * 862 * MCE handler currently has no easy access to the error virtual address, 863 * so this function walks page table to find it. The returned virtual address 864 * is proper in most cases, but it could be wrong when the application 865 * process has multiple entries mapping the error page. 866 */ 867 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 868 int flags) 869 { 870 int ret; 871 struct hwpoison_walk priv = { 872 .pfn = pfn, 873 }; 874 priv.tk.tsk = p; 875 876 if (!p->mm) 877 return -EFAULT; 878 879 mmap_read_lock(p->mm); 880 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops, 881 (void *)&priv); 882 if (ret == 1 && priv.tk.addr) 883 kill_proc(&priv.tk, pfn, flags); 884 else 885 ret = 0; 886 mmap_read_unlock(p->mm); 887 return ret > 0 ? -EHWPOISON : -EFAULT; 888 } 889 890 /* 891 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed. 892 * But it could not do more to isolate the page from being accessed again, 893 * nor does it kill the process. This is extremely rare and one of the 894 * potential causes is that the page state has been changed due to 895 * underlying race condition. This is the most severe outcomes. 896 * 897 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed. 898 * It should have killed the process, but it can't isolate the page, 899 * due to conditions such as extra pin, unmap failure, etc. Accessing 900 * the page again may trigger another MCE and the process will be killed 901 * by the m-f() handler immediately. 902 * 903 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed. 904 * The page is unmapped, and is removed from the LRU or file mapping. 905 * An attempt to access the page again will trigger page fault and the 906 * PF handler will kill the process. 907 * 908 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed. 909 * The page has been completely isolated, that is, unmapped, taken out of 910 * the buddy system, or hole-punnched out of the file mapping. 911 */ 912 static const char *action_name[] = { 913 [MF_IGNORED] = "Ignored", 914 [MF_FAILED] = "Failed", 915 [MF_DELAYED] = "Delayed", 916 [MF_RECOVERED] = "Recovered", 917 }; 918 919 static const char * const action_page_types[] = { 920 [MF_MSG_KERNEL] = "reserved kernel page", 921 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 922 [MF_MSG_HUGE] = "huge page", 923 [MF_MSG_FREE_HUGE] = "free huge page", 924 [MF_MSG_GET_HWPOISON] = "get hwpoison page", 925 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 926 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 927 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 928 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 929 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 930 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 931 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 932 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 933 [MF_MSG_CLEAN_LRU] = "clean LRU page", 934 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 935 [MF_MSG_BUDDY] = "free buddy page", 936 [MF_MSG_DAX] = "dax page", 937 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 938 [MF_MSG_ALREADY_POISONED] = "already poisoned", 939 [MF_MSG_UNKNOWN] = "unknown page", 940 }; 941 942 /* 943 * XXX: It is possible that a page is isolated from LRU cache, 944 * and then kept in swap cache or failed to remove from page cache. 945 * The page count will stop it from being freed by unpoison. 946 * Stress tests should be aware of this memory leak problem. 947 */ 948 static int delete_from_lru_cache(struct folio *folio) 949 { 950 if (folio_isolate_lru(folio)) { 951 /* 952 * Clear sensible page flags, so that the buddy system won't 953 * complain when the folio is unpoison-and-freed. 954 */ 955 folio_clear_active(folio); 956 folio_clear_unevictable(folio); 957 958 /* 959 * Poisoned page might never drop its ref count to 0 so we have 960 * to uncharge it manually from its memcg. 961 */ 962 mem_cgroup_uncharge(folio); 963 964 /* 965 * drop the refcount elevated by folio_isolate_lru() 966 */ 967 folio_put(folio); 968 return 0; 969 } 970 return -EIO; 971 } 972 973 static int truncate_error_folio(struct folio *folio, unsigned long pfn, 974 struct address_space *mapping) 975 { 976 int ret = MF_FAILED; 977 978 if (mapping->a_ops->error_remove_folio) { 979 int err = mapping->a_ops->error_remove_folio(mapping, folio); 980 981 if (err != 0) 982 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 983 else if (!filemap_release_folio(folio, GFP_NOIO)) 984 pr_info("%#lx: failed to release buffers\n", pfn); 985 else 986 ret = MF_RECOVERED; 987 } else { 988 /* 989 * If the file system doesn't support it just invalidate 990 * This fails on dirty or anything with private pages 991 */ 992 if (mapping_evict_folio(mapping, folio)) 993 ret = MF_RECOVERED; 994 else 995 pr_info("%#lx: Failed to invalidate\n", pfn); 996 } 997 998 return ret; 999 } 1000 1001 struct page_state { 1002 unsigned long mask; 1003 unsigned long res; 1004 enum mf_action_page_type type; 1005 1006 /* Callback ->action() has to unlock the relevant page inside it. */ 1007 int (*action)(struct page_state *ps, struct page *p); 1008 }; 1009 1010 /* 1011 * Return true if page is still referenced by others, otherwise return 1012 * false. 1013 * 1014 * The extra_pins is true when one extra refcount is expected. 1015 */ 1016 static bool has_extra_refcount(struct page_state *ps, struct page *p, 1017 bool extra_pins) 1018 { 1019 int count = page_count(p) - 1; 1020 1021 if (extra_pins) 1022 count -= folio_nr_pages(page_folio(p)); 1023 1024 if (count > 0) { 1025 pr_err("%#lx: %s still referenced by %d users\n", 1026 page_to_pfn(p), action_page_types[ps->type], count); 1027 return true; 1028 } 1029 1030 return false; 1031 } 1032 1033 /* 1034 * Error hit kernel page. 1035 * Do nothing, try to be lucky and not touch this instead. For a few cases we 1036 * could be more sophisticated. 1037 */ 1038 static int me_kernel(struct page_state *ps, struct page *p) 1039 { 1040 unlock_page(p); 1041 return MF_IGNORED; 1042 } 1043 1044 /* 1045 * Page in unknown state. Do nothing. 1046 * This is a catch-all in case we fail to make sense of the page state. 1047 */ 1048 static int me_unknown(struct page_state *ps, struct page *p) 1049 { 1050 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1051 unlock_page(p); 1052 return MF_IGNORED; 1053 } 1054 1055 /* 1056 * Clean (or cleaned) page cache page. 1057 */ 1058 static int me_pagecache_clean(struct page_state *ps, struct page *p) 1059 { 1060 struct folio *folio = page_folio(p); 1061 int ret; 1062 struct address_space *mapping; 1063 bool extra_pins; 1064 1065 delete_from_lru_cache(folio); 1066 1067 /* 1068 * For anonymous folios the only reference left 1069 * should be the one m_f() holds. 1070 */ 1071 if (folio_test_anon(folio)) { 1072 ret = MF_RECOVERED; 1073 goto out; 1074 } 1075 1076 /* 1077 * Now truncate the page in the page cache. This is really 1078 * more like a "temporary hole punch" 1079 * Don't do this for block devices when someone else 1080 * has a reference, because it could be file system metadata 1081 * and that's not safe to truncate. 1082 */ 1083 mapping = folio_mapping(folio); 1084 if (!mapping) { 1085 /* Folio has been torn down in the meantime */ 1086 ret = MF_FAILED; 1087 goto out; 1088 } 1089 1090 /* 1091 * The shmem page is kept in page cache instead of truncating 1092 * so is expected to have an extra refcount after error-handling. 1093 */ 1094 extra_pins = shmem_mapping(mapping); 1095 1096 /* 1097 * Truncation is a bit tricky. Enable it per file system for now. 1098 * 1099 * Open: to take i_rwsem or not for this? Right now we don't. 1100 */ 1101 ret = truncate_error_folio(folio, page_to_pfn(p), mapping); 1102 if (has_extra_refcount(ps, p, extra_pins)) 1103 ret = MF_FAILED; 1104 1105 out: 1106 folio_unlock(folio); 1107 1108 return ret; 1109 } 1110 1111 /* 1112 * Dirty pagecache page 1113 * Issues: when the error hit a hole page the error is not properly 1114 * propagated. 1115 */ 1116 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1117 { 1118 struct folio *folio = page_folio(p); 1119 struct address_space *mapping = folio_mapping(folio); 1120 1121 /* TBD: print more information about the file. */ 1122 if (mapping) { 1123 /* 1124 * IO error will be reported by write(), fsync(), etc. 1125 * who check the mapping. 1126 * This way the application knows that something went 1127 * wrong with its dirty file data. 1128 */ 1129 mapping_set_error(mapping, -EIO); 1130 } 1131 1132 return me_pagecache_clean(ps, p); 1133 } 1134 1135 /* 1136 * Clean and dirty swap cache. 1137 * 1138 * Dirty swap cache page is tricky to handle. The page could live both in page 1139 * table and swap cache(ie. page is freshly swapped in). So it could be 1140 * referenced concurrently by 2 types of PTEs: 1141 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1142 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1143 * and then 1144 * - clear dirty bit to prevent IO 1145 * - remove from LRU 1146 * - but keep in the swap cache, so that when we return to it on 1147 * a later page fault, we know the application is accessing 1148 * corrupted data and shall be killed (we installed simple 1149 * interception code in do_swap_page to catch it). 1150 * 1151 * Clean swap cache pages can be directly isolated. A later page fault will 1152 * bring in the known good data from disk. 1153 */ 1154 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1155 { 1156 struct folio *folio = page_folio(p); 1157 int ret; 1158 bool extra_pins = false; 1159 1160 folio_clear_dirty(folio); 1161 /* Trigger EIO in shmem: */ 1162 folio_clear_uptodate(folio); 1163 1164 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED; 1165 folio_unlock(folio); 1166 1167 if (ret == MF_DELAYED) 1168 extra_pins = true; 1169 1170 if (has_extra_refcount(ps, p, extra_pins)) 1171 ret = MF_FAILED; 1172 1173 return ret; 1174 } 1175 1176 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1177 { 1178 struct folio *folio = page_folio(p); 1179 int ret; 1180 1181 delete_from_swap_cache(folio); 1182 1183 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED; 1184 folio_unlock(folio); 1185 1186 if (has_extra_refcount(ps, p, false)) 1187 ret = MF_FAILED; 1188 1189 return ret; 1190 } 1191 1192 /* 1193 * Huge pages. Needs work. 1194 * Issues: 1195 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1196 * To narrow down kill region to one page, we need to break up pmd. 1197 */ 1198 static int me_huge_page(struct page_state *ps, struct page *p) 1199 { 1200 struct folio *folio = page_folio(p); 1201 int res; 1202 struct address_space *mapping; 1203 bool extra_pins = false; 1204 1205 mapping = folio_mapping(folio); 1206 if (mapping) { 1207 res = truncate_error_folio(folio, page_to_pfn(p), mapping); 1208 /* The page is kept in page cache. */ 1209 extra_pins = true; 1210 folio_unlock(folio); 1211 } else { 1212 folio_unlock(folio); 1213 /* 1214 * migration entry prevents later access on error hugepage, 1215 * so we can free and dissolve it into buddy to save healthy 1216 * subpages. 1217 */ 1218 folio_put(folio); 1219 if (__page_handle_poison(p) > 0) { 1220 page_ref_inc(p); 1221 res = MF_RECOVERED; 1222 } else { 1223 res = MF_FAILED; 1224 } 1225 } 1226 1227 if (has_extra_refcount(ps, p, extra_pins)) 1228 res = MF_FAILED; 1229 1230 return res; 1231 } 1232 1233 /* 1234 * Various page states we can handle. 1235 * 1236 * A page state is defined by its current page->flags bits. 1237 * The table matches them in order and calls the right handler. 1238 * 1239 * This is quite tricky because we can access page at any time 1240 * in its live cycle, so all accesses have to be extremely careful. 1241 * 1242 * This is not complete. More states could be added. 1243 * For any missing state don't attempt recovery. 1244 */ 1245 1246 #define dirty (1UL << PG_dirty) 1247 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1248 #define unevict (1UL << PG_unevictable) 1249 #define mlock (1UL << PG_mlocked) 1250 #define lru (1UL << PG_lru) 1251 #define head (1UL << PG_head) 1252 #define reserved (1UL << PG_reserved) 1253 1254 static struct page_state error_states[] = { 1255 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1256 /* 1257 * free pages are specially detected outside this table: 1258 * PG_buddy pages only make a small fraction of all free pages. 1259 */ 1260 1261 { head, head, MF_MSG_HUGE, me_huge_page }, 1262 1263 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1264 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1265 1266 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1267 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1268 1269 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1270 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1271 1272 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1273 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1274 1275 /* 1276 * Catchall entry: must be at end. 1277 */ 1278 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1279 }; 1280 1281 #undef dirty 1282 #undef sc 1283 #undef unevict 1284 #undef mlock 1285 #undef lru 1286 #undef head 1287 #undef reserved 1288 1289 static void update_per_node_mf_stats(unsigned long pfn, 1290 enum mf_result result) 1291 { 1292 int nid = MAX_NUMNODES; 1293 struct memory_failure_stats *mf_stats = NULL; 1294 1295 nid = pfn_to_nid(pfn); 1296 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1297 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1298 return; 1299 } 1300 1301 mf_stats = &NODE_DATA(nid)->mf_stats; 1302 switch (result) { 1303 case MF_IGNORED: 1304 ++mf_stats->ignored; 1305 break; 1306 case MF_FAILED: 1307 ++mf_stats->failed; 1308 break; 1309 case MF_DELAYED: 1310 ++mf_stats->delayed; 1311 break; 1312 case MF_RECOVERED: 1313 ++mf_stats->recovered; 1314 break; 1315 default: 1316 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1317 break; 1318 } 1319 ++mf_stats->total; 1320 } 1321 1322 /* 1323 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1324 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1325 */ 1326 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1327 enum mf_result result) 1328 { 1329 trace_memory_failure_event(pfn, type, result); 1330 1331 num_poisoned_pages_inc(pfn); 1332 1333 update_per_node_mf_stats(pfn, result); 1334 1335 pr_err("%#lx: recovery action for %s: %s\n", 1336 pfn, action_page_types[type], action_name[result]); 1337 1338 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1339 } 1340 1341 static int page_action(struct page_state *ps, struct page *p, 1342 unsigned long pfn) 1343 { 1344 int result; 1345 1346 /* page p should be unlocked after returning from ps->action(). */ 1347 result = ps->action(ps, p); 1348 1349 /* Could do more checks here if page looks ok */ 1350 /* 1351 * Could adjust zone counters here to correct for the missing page. 1352 */ 1353 1354 return action_result(pfn, ps->type, result); 1355 } 1356 1357 static inline bool PageHWPoisonTakenOff(struct page *page) 1358 { 1359 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1360 } 1361 1362 void SetPageHWPoisonTakenOff(struct page *page) 1363 { 1364 set_page_private(page, MAGIC_HWPOISON); 1365 } 1366 1367 void ClearPageHWPoisonTakenOff(struct page *page) 1368 { 1369 if (PageHWPoison(page)) 1370 set_page_private(page, 0); 1371 } 1372 1373 /* 1374 * Return true if a page type of a given page is supported by hwpoison 1375 * mechanism (while handling could fail), otherwise false. This function 1376 * does not return true for hugetlb or device memory pages, so it's assumed 1377 * to be called only in the context where we never have such pages. 1378 */ 1379 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1380 { 1381 if (PageSlab(page)) 1382 return false; 1383 1384 /* Soft offline could migrate non-LRU movable pages */ 1385 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1386 return true; 1387 1388 return PageLRU(page) || is_free_buddy_page(page); 1389 } 1390 1391 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1392 { 1393 struct folio *folio = page_folio(page); 1394 int ret = 0; 1395 bool hugetlb = false; 1396 1397 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1398 if (hugetlb) { 1399 /* Make sure hugetlb demotion did not happen from under us. */ 1400 if (folio == page_folio(page)) 1401 return ret; 1402 if (ret > 0) { 1403 folio_put(folio); 1404 folio = page_folio(page); 1405 } 1406 } 1407 1408 /* 1409 * This check prevents from calling folio_try_get() for any 1410 * unsupported type of folio in order to reduce the risk of unexpected 1411 * races caused by taking a folio refcount. 1412 */ 1413 if (!HWPoisonHandlable(&folio->page, flags)) 1414 return -EBUSY; 1415 1416 if (folio_try_get(folio)) { 1417 if (folio == page_folio(page)) 1418 return 1; 1419 1420 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1421 folio_put(folio); 1422 } 1423 1424 return 0; 1425 } 1426 1427 #define GET_PAGE_MAX_RETRY_NUM 3 1428 1429 static int get_any_page(struct page *p, unsigned long flags) 1430 { 1431 int ret = 0, pass = 0; 1432 bool count_increased = false; 1433 1434 if (flags & MF_COUNT_INCREASED) 1435 count_increased = true; 1436 1437 try_again: 1438 if (!count_increased) { 1439 ret = __get_hwpoison_page(p, flags); 1440 if (!ret) { 1441 if (page_count(p)) { 1442 /* We raced with an allocation, retry. */ 1443 if (pass++ < GET_PAGE_MAX_RETRY_NUM) 1444 goto try_again; 1445 ret = -EBUSY; 1446 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1447 /* We raced with put_page, retry. */ 1448 if (pass++ < GET_PAGE_MAX_RETRY_NUM) 1449 goto try_again; 1450 ret = -EIO; 1451 } 1452 goto out; 1453 } else if (ret == -EBUSY) { 1454 /* 1455 * We raced with (possibly temporary) unhandlable 1456 * page, retry. 1457 */ 1458 if (pass++ < 3) { 1459 shake_page(p); 1460 goto try_again; 1461 } 1462 ret = -EIO; 1463 goto out; 1464 } 1465 } 1466 1467 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1468 ret = 1; 1469 } else { 1470 /* 1471 * A page we cannot handle. Check whether we can turn 1472 * it into something we can handle. 1473 */ 1474 if (pass++ < GET_PAGE_MAX_RETRY_NUM) { 1475 put_page(p); 1476 shake_page(p); 1477 count_increased = false; 1478 goto try_again; 1479 } 1480 put_page(p); 1481 ret = -EIO; 1482 } 1483 out: 1484 if (ret == -EIO) 1485 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1486 1487 return ret; 1488 } 1489 1490 static int __get_unpoison_page(struct page *page) 1491 { 1492 struct folio *folio = page_folio(page); 1493 int ret = 0; 1494 bool hugetlb = false; 1495 1496 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1497 if (hugetlb) { 1498 /* Make sure hugetlb demotion did not happen from under us. */ 1499 if (folio == page_folio(page)) 1500 return ret; 1501 if (ret > 0) 1502 folio_put(folio); 1503 } 1504 1505 /* 1506 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1507 * but also isolated from buddy freelist, so need to identify the 1508 * state and have to cancel both operations to unpoison. 1509 */ 1510 if (PageHWPoisonTakenOff(page)) 1511 return -EHWPOISON; 1512 1513 return get_page_unless_zero(page) ? 1 : 0; 1514 } 1515 1516 /** 1517 * get_hwpoison_page() - Get refcount for memory error handling 1518 * @p: Raw error page (hit by memory error) 1519 * @flags: Flags controlling behavior of error handling 1520 * 1521 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1522 * error on it, after checking that the error page is in a well-defined state 1523 * (defined as a page-type we can successfully handle the memory error on it, 1524 * such as LRU page and hugetlb page). 1525 * 1526 * Memory error handling could be triggered at any time on any type of page, 1527 * so it's prone to race with typical memory management lifecycle (like 1528 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1529 * extra care for the error page's state (as done in __get_hwpoison_page()), 1530 * and has some retry logic in get_any_page(). 1531 * 1532 * When called from unpoison_memory(), the caller should already ensure that 1533 * the given page has PG_hwpoison. So it's never reused for other page 1534 * allocations, and __get_unpoison_page() never races with them. 1535 * 1536 * Return: 0 on failure or free buddy (hugetlb) page, 1537 * 1 on success for in-use pages in a well-defined state, 1538 * -EIO for pages on which we can not handle memory errors, 1539 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1540 * operations like allocation and free, 1541 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1542 */ 1543 static int get_hwpoison_page(struct page *p, unsigned long flags) 1544 { 1545 int ret; 1546 1547 zone_pcp_disable(page_zone(p)); 1548 if (flags & MF_UNPOISON) 1549 ret = __get_unpoison_page(p); 1550 else 1551 ret = get_any_page(p, flags); 1552 zone_pcp_enable(page_zone(p)); 1553 1554 return ret; 1555 } 1556 1557 /* 1558 * Do all that is necessary to remove user space mappings. Unmap 1559 * the pages and send SIGBUS to the processes if the data was dirty. 1560 */ 1561 static bool hwpoison_user_mappings(struct folio *folio, struct page *p, 1562 unsigned long pfn, int flags) 1563 { 1564 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1565 struct address_space *mapping; 1566 LIST_HEAD(tokill); 1567 bool unmap_success; 1568 int forcekill; 1569 bool mlocked = folio_test_mlocked(folio); 1570 1571 /* 1572 * Here we are interested only in user-mapped pages, so skip any 1573 * other types of pages. 1574 */ 1575 if (folio_test_reserved(folio) || folio_test_slab(folio) || 1576 folio_test_pgtable(folio) || folio_test_offline(folio)) 1577 return true; 1578 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio))) 1579 return true; 1580 1581 /* 1582 * This check implies we don't kill processes if their pages 1583 * are in the swap cache early. Those are always late kills. 1584 */ 1585 if (!folio_mapped(folio)) 1586 return true; 1587 1588 if (folio_test_swapcache(folio)) { 1589 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1590 ttu &= ~TTU_HWPOISON; 1591 } 1592 1593 /* 1594 * Propagate the dirty bit from PTEs to struct page first, because we 1595 * need this to decide if we should kill or just drop the page. 1596 * XXX: the dirty test could be racy: set_page_dirty() may not always 1597 * be called inside page lock (it's recommended but not enforced). 1598 */ 1599 mapping = folio_mapping(folio); 1600 if (!(flags & MF_MUST_KILL) && !folio_test_dirty(folio) && mapping && 1601 mapping_can_writeback(mapping)) { 1602 if (folio_mkclean(folio)) { 1603 folio_set_dirty(folio); 1604 } else { 1605 ttu &= ~TTU_HWPOISON; 1606 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1607 pfn); 1608 } 1609 } 1610 1611 /* 1612 * First collect all the processes that have the page 1613 * mapped in dirty form. This has to be done before try_to_unmap, 1614 * because ttu takes the rmap data structures down. 1615 */ 1616 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 1617 1618 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { 1619 /* 1620 * For hugetlb pages in shared mappings, try_to_unmap 1621 * could potentially call huge_pmd_unshare. Because of 1622 * this, take semaphore in write mode here and set 1623 * TTU_RMAP_LOCKED to indicate we have taken the lock 1624 * at this higher level. 1625 */ 1626 mapping = hugetlb_folio_mapping_lock_write(folio); 1627 if (mapping) { 1628 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1629 i_mmap_unlock_write(mapping); 1630 } else 1631 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); 1632 } else { 1633 try_to_unmap(folio, ttu); 1634 } 1635 1636 unmap_success = !folio_mapped(folio); 1637 if (!unmap_success) 1638 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n", 1639 pfn, folio_mapcount(folio)); 1640 1641 /* 1642 * try_to_unmap() might put mlocked page in lru cache, so call 1643 * shake_page() again to ensure that it's flushed. 1644 */ 1645 if (mlocked) 1646 shake_folio(folio); 1647 1648 /* 1649 * Now that the dirty bit has been propagated to the 1650 * struct page and all unmaps done we can decide if 1651 * killing is needed or not. Only kill when the page 1652 * was dirty or the process is not restartable, 1653 * otherwise the tokill list is merely 1654 * freed. When there was a problem unmapping earlier 1655 * use a more force-full uncatchable kill to prevent 1656 * any accesses to the poisoned memory. 1657 */ 1658 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) || 1659 !unmap_success; 1660 kill_procs(&tokill, forcekill, pfn, flags); 1661 1662 return unmap_success; 1663 } 1664 1665 static int identify_page_state(unsigned long pfn, struct page *p, 1666 unsigned long page_flags) 1667 { 1668 struct page_state *ps; 1669 1670 /* 1671 * The first check uses the current page flags which may not have any 1672 * relevant information. The second check with the saved page flags is 1673 * carried out only if the first check can't determine the page status. 1674 */ 1675 for (ps = error_states;; ps++) 1676 if ((p->flags & ps->mask) == ps->res) 1677 break; 1678 1679 page_flags |= (p->flags & (1UL << PG_dirty)); 1680 1681 if (!ps->mask) 1682 for (ps = error_states;; ps++) 1683 if ((page_flags & ps->mask) == ps->res) 1684 break; 1685 return page_action(ps, p, pfn); 1686 } 1687 1688 /* 1689 * When 'release' is 'false', it means that if thp split has failed, 1690 * there is still more to do, hence the page refcount we took earlier 1691 * is still needed. 1692 */ 1693 static int try_to_split_thp_page(struct page *page, bool release) 1694 { 1695 int ret; 1696 1697 lock_page(page); 1698 ret = split_huge_page(page); 1699 unlock_page(page); 1700 1701 if (ret && release) 1702 put_page(page); 1703 1704 return ret; 1705 } 1706 1707 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1708 struct address_space *mapping, pgoff_t index, int flags) 1709 { 1710 struct to_kill *tk; 1711 unsigned long size = 0; 1712 1713 list_for_each_entry(tk, to_kill, nd) 1714 if (tk->size_shift) 1715 size = max(size, 1UL << tk->size_shift); 1716 1717 if (size) { 1718 /* 1719 * Unmap the largest mapping to avoid breaking up device-dax 1720 * mappings which are constant size. The actual size of the 1721 * mapping being torn down is communicated in siginfo, see 1722 * kill_proc() 1723 */ 1724 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1); 1725 1726 unmap_mapping_range(mapping, start, size, 0); 1727 } 1728 1729 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags); 1730 } 1731 1732 /* 1733 * Only dev_pagemap pages get here, such as fsdax when the filesystem 1734 * either do not claim or fails to claim a hwpoison event, or devdax. 1735 * The fsdax pages are initialized per base page, and the devdax pages 1736 * could be initialized either as base pages, or as compound pages with 1737 * vmemmap optimization enabled. Devdax is simplistic in its dealing with 1738 * hwpoison, such that, if a subpage of a compound page is poisoned, 1739 * simply mark the compound head page is by far sufficient. 1740 */ 1741 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1742 struct dev_pagemap *pgmap) 1743 { 1744 struct folio *folio = pfn_folio(pfn); 1745 LIST_HEAD(to_kill); 1746 dax_entry_t cookie; 1747 int rc = 0; 1748 1749 /* 1750 * Prevent the inode from being freed while we are interrogating 1751 * the address_space, typically this would be handled by 1752 * lock_page(), but dax pages do not use the page lock. This 1753 * also prevents changes to the mapping of this pfn until 1754 * poison signaling is complete. 1755 */ 1756 cookie = dax_lock_folio(folio); 1757 if (!cookie) 1758 return -EBUSY; 1759 1760 if (hwpoison_filter(&folio->page)) { 1761 rc = -EOPNOTSUPP; 1762 goto unlock; 1763 } 1764 1765 switch (pgmap->type) { 1766 case MEMORY_DEVICE_PRIVATE: 1767 case MEMORY_DEVICE_COHERENT: 1768 /* 1769 * TODO: Handle device pages which may need coordination 1770 * with device-side memory. 1771 */ 1772 rc = -ENXIO; 1773 goto unlock; 1774 default: 1775 break; 1776 } 1777 1778 /* 1779 * Use this flag as an indication that the dax page has been 1780 * remapped UC to prevent speculative consumption of poison. 1781 */ 1782 SetPageHWPoison(&folio->page); 1783 1784 /* 1785 * Unlike System-RAM there is no possibility to swap in a 1786 * different physical page at a given virtual address, so all 1787 * userspace consumption of ZONE_DEVICE memory necessitates 1788 * SIGBUS (i.e. MF_MUST_KILL) 1789 */ 1790 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1791 collect_procs(folio, &folio->page, &to_kill, true); 1792 1793 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags); 1794 unlock: 1795 dax_unlock_folio(folio, cookie); 1796 return rc; 1797 } 1798 1799 #ifdef CONFIG_FS_DAX 1800 /** 1801 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1802 * @mapping: address_space of the file in use 1803 * @index: start pgoff of the range within the file 1804 * @count: length of the range, in unit of PAGE_SIZE 1805 * @mf_flags: memory failure flags 1806 */ 1807 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1808 unsigned long count, int mf_flags) 1809 { 1810 LIST_HEAD(to_kill); 1811 dax_entry_t cookie; 1812 struct page *page; 1813 size_t end = index + count; 1814 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE; 1815 1816 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1817 1818 for (; index < end; index++) { 1819 page = NULL; 1820 cookie = dax_lock_mapping_entry(mapping, index, &page); 1821 if (!cookie) 1822 return -EBUSY; 1823 if (!page) 1824 goto unlock; 1825 1826 if (!pre_remove) 1827 SetPageHWPoison(page); 1828 1829 /* 1830 * The pre_remove case is revoking access, the memory is still 1831 * good and could theoretically be put back into service. 1832 */ 1833 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove); 1834 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1835 index, mf_flags); 1836 unlock: 1837 dax_unlock_mapping_entry(mapping, index, cookie); 1838 } 1839 return 0; 1840 } 1841 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1842 #endif /* CONFIG_FS_DAX */ 1843 1844 #ifdef CONFIG_HUGETLB_PAGE 1845 1846 /* 1847 * Struct raw_hwp_page represents information about "raw error page", 1848 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1849 */ 1850 struct raw_hwp_page { 1851 struct llist_node node; 1852 struct page *page; 1853 }; 1854 1855 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1856 { 1857 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1858 } 1859 1860 bool is_raw_hwpoison_page_in_hugepage(struct page *page) 1861 { 1862 struct llist_head *raw_hwp_head; 1863 struct raw_hwp_page *p; 1864 struct folio *folio = page_folio(page); 1865 bool ret = false; 1866 1867 if (!folio_test_hwpoison(folio)) 1868 return false; 1869 1870 if (!folio_test_hugetlb(folio)) 1871 return PageHWPoison(page); 1872 1873 /* 1874 * When RawHwpUnreliable is set, kernel lost track of which subpages 1875 * are HWPOISON. So return as if ALL subpages are HWPOISONed. 1876 */ 1877 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1878 return true; 1879 1880 mutex_lock(&mf_mutex); 1881 1882 raw_hwp_head = raw_hwp_list_head(folio); 1883 llist_for_each_entry(p, raw_hwp_head->first, node) { 1884 if (page == p->page) { 1885 ret = true; 1886 break; 1887 } 1888 } 1889 1890 mutex_unlock(&mf_mutex); 1891 1892 return ret; 1893 } 1894 1895 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1896 { 1897 struct llist_node *head; 1898 struct raw_hwp_page *p, *next; 1899 unsigned long count = 0; 1900 1901 head = llist_del_all(raw_hwp_list_head(folio)); 1902 llist_for_each_entry_safe(p, next, head, node) { 1903 if (move_flag) 1904 SetPageHWPoison(p->page); 1905 else 1906 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1907 kfree(p); 1908 count++; 1909 } 1910 return count; 1911 } 1912 1913 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1914 { 1915 struct llist_head *head; 1916 struct raw_hwp_page *raw_hwp; 1917 struct raw_hwp_page *p; 1918 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1919 1920 /* 1921 * Once the hwpoison hugepage has lost reliable raw error info, 1922 * there is little meaning to keep additional error info precisely, 1923 * so skip to add additional raw error info. 1924 */ 1925 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1926 return -EHWPOISON; 1927 head = raw_hwp_list_head(folio); 1928 llist_for_each_entry(p, head->first, node) { 1929 if (p->page == page) 1930 return -EHWPOISON; 1931 } 1932 1933 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1934 if (raw_hwp) { 1935 raw_hwp->page = page; 1936 llist_add(&raw_hwp->node, head); 1937 /* the first error event will be counted in action_result(). */ 1938 if (ret) 1939 num_poisoned_pages_inc(page_to_pfn(page)); 1940 } else { 1941 /* 1942 * Failed to save raw error info. We no longer trace all 1943 * hwpoisoned subpages, and we need refuse to free/dissolve 1944 * this hwpoisoned hugepage. 1945 */ 1946 folio_set_hugetlb_raw_hwp_unreliable(folio); 1947 /* 1948 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1949 * used any more, so free it. 1950 */ 1951 __folio_free_raw_hwp(folio, false); 1952 } 1953 return ret; 1954 } 1955 1956 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1957 { 1958 /* 1959 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1960 * pages for tail pages are required but they don't exist. 1961 */ 1962 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1963 return 0; 1964 1965 /* 1966 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1967 * definition. 1968 */ 1969 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1970 return 0; 1971 1972 return __folio_free_raw_hwp(folio, move_flag); 1973 } 1974 1975 void folio_clear_hugetlb_hwpoison(struct folio *folio) 1976 { 1977 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1978 return; 1979 if (folio_test_hugetlb_vmemmap_optimized(folio)) 1980 return; 1981 folio_clear_hwpoison(folio); 1982 folio_free_raw_hwp(folio, true); 1983 } 1984 1985 /* 1986 * Called from hugetlb code with hugetlb_lock held. 1987 * 1988 * Return values: 1989 * 0 - free hugepage 1990 * 1 - in-use hugepage 1991 * 2 - not a hugepage 1992 * -EBUSY - the hugepage is busy (try to retry) 1993 * -EHWPOISON - the hugepage is already hwpoisoned 1994 */ 1995 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 1996 bool *migratable_cleared) 1997 { 1998 struct page *page = pfn_to_page(pfn); 1999 struct folio *folio = page_folio(page); 2000 int ret = 2; /* fallback to normal page handling */ 2001 bool count_increased = false; 2002 2003 if (!folio_test_hugetlb(folio)) 2004 goto out; 2005 2006 if (flags & MF_COUNT_INCREASED) { 2007 ret = 1; 2008 count_increased = true; 2009 } else if (folio_test_hugetlb_freed(folio)) { 2010 ret = 0; 2011 } else if (folio_test_hugetlb_migratable(folio)) { 2012 ret = folio_try_get(folio); 2013 if (ret) 2014 count_increased = true; 2015 } else { 2016 ret = -EBUSY; 2017 if (!(flags & MF_NO_RETRY)) 2018 goto out; 2019 } 2020 2021 if (folio_set_hugetlb_hwpoison(folio, page)) { 2022 ret = -EHWPOISON; 2023 goto out; 2024 } 2025 2026 /* 2027 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 2028 * from being migrated by memory hotremove. 2029 */ 2030 if (count_increased && folio_test_hugetlb_migratable(folio)) { 2031 folio_clear_hugetlb_migratable(folio); 2032 *migratable_cleared = true; 2033 } 2034 2035 return ret; 2036 out: 2037 if (count_increased) 2038 folio_put(folio); 2039 return ret; 2040 } 2041 2042 /* 2043 * Taking refcount of hugetlb pages needs extra care about race conditions 2044 * with basic operations like hugepage allocation/free/demotion. 2045 * So some of prechecks for hwpoison (pinning, and testing/setting 2046 * PageHWPoison) should be done in single hugetlb_lock range. 2047 */ 2048 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2049 { 2050 int res; 2051 struct page *p = pfn_to_page(pfn); 2052 struct folio *folio; 2053 unsigned long page_flags; 2054 bool migratable_cleared = false; 2055 2056 *hugetlb = 1; 2057 retry: 2058 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 2059 if (res == 2) { /* fallback to normal page handling */ 2060 *hugetlb = 0; 2061 return 0; 2062 } else if (res == -EHWPOISON) { 2063 pr_err("%#lx: already hardware poisoned\n", pfn); 2064 if (flags & MF_ACTION_REQUIRED) { 2065 folio = page_folio(p); 2066 res = kill_accessing_process(current, folio_pfn(folio), flags); 2067 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); 2068 } 2069 return res; 2070 } else if (res == -EBUSY) { 2071 if (!(flags & MF_NO_RETRY)) { 2072 flags |= MF_NO_RETRY; 2073 goto retry; 2074 } 2075 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); 2076 } 2077 2078 folio = page_folio(p); 2079 folio_lock(folio); 2080 2081 if (hwpoison_filter(p)) { 2082 folio_clear_hugetlb_hwpoison(folio); 2083 if (migratable_cleared) 2084 folio_set_hugetlb_migratable(folio); 2085 folio_unlock(folio); 2086 if (res == 1) 2087 folio_put(folio); 2088 return -EOPNOTSUPP; 2089 } 2090 2091 /* 2092 * Handling free hugepage. The possible race with hugepage allocation 2093 * or demotion can be prevented by PageHWPoison flag. 2094 */ 2095 if (res == 0) { 2096 folio_unlock(folio); 2097 if (__page_handle_poison(p) > 0) { 2098 page_ref_inc(p); 2099 res = MF_RECOVERED; 2100 } else { 2101 res = MF_FAILED; 2102 } 2103 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2104 } 2105 2106 page_flags = folio->flags; 2107 2108 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2109 folio_unlock(folio); 2110 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); 2111 } 2112 2113 return identify_page_state(pfn, p, page_flags); 2114 } 2115 2116 #else 2117 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2118 { 2119 return 0; 2120 } 2121 2122 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2123 { 2124 return 0; 2125 } 2126 #endif /* CONFIG_HUGETLB_PAGE */ 2127 2128 /* Drop the extra refcount in case we come from madvise() */ 2129 static void put_ref_page(unsigned long pfn, int flags) 2130 { 2131 if (!(flags & MF_COUNT_INCREASED)) 2132 return; 2133 2134 put_page(pfn_to_page(pfn)); 2135 } 2136 2137 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2138 struct dev_pagemap *pgmap) 2139 { 2140 int rc = -ENXIO; 2141 2142 /* device metadata space is not recoverable */ 2143 if (!pgmap_pfn_valid(pgmap, pfn)) 2144 goto out; 2145 2146 /* 2147 * Call driver's implementation to handle the memory failure, otherwise 2148 * fall back to generic handler. 2149 */ 2150 if (pgmap_has_memory_failure(pgmap)) { 2151 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2152 /* 2153 * Fall back to generic handler too if operation is not 2154 * supported inside the driver/device/filesystem. 2155 */ 2156 if (rc != -EOPNOTSUPP) 2157 goto out; 2158 } 2159 2160 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2161 out: 2162 /* drop pgmap ref acquired in caller */ 2163 put_dev_pagemap(pgmap); 2164 if (rc != -EOPNOTSUPP) 2165 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2166 return rc; 2167 } 2168 2169 /* 2170 * The calling condition is as such: thp split failed, page might have 2171 * been RDMA pinned, not much can be done for recovery. 2172 * But a SIGBUS should be delivered with vaddr provided so that the user 2173 * application has a chance to recover. Also, application processes' 2174 * election for MCE early killed will be honored. 2175 */ 2176 static void kill_procs_now(struct page *p, unsigned long pfn, int flags, 2177 struct folio *folio) 2178 { 2179 LIST_HEAD(tokill); 2180 2181 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 2182 kill_procs(&tokill, true, pfn, flags); 2183 } 2184 2185 /** 2186 * memory_failure - Handle memory failure of a page. 2187 * @pfn: Page Number of the corrupted page 2188 * @flags: fine tune action taken 2189 * 2190 * This function is called by the low level machine check code 2191 * of an architecture when it detects hardware memory corruption 2192 * of a page. It tries its best to recover, which includes 2193 * dropping pages, killing processes etc. 2194 * 2195 * The function is primarily of use for corruptions that 2196 * happen outside the current execution context (e.g. when 2197 * detected by a background scrubber) 2198 * 2199 * Must run in process context (e.g. a work queue) with interrupts 2200 * enabled and no spinlocks held. 2201 * 2202 * Return: 0 for successfully handled the memory error, 2203 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 2204 * < 0(except -EOPNOTSUPP) on failure. 2205 */ 2206 int memory_failure(unsigned long pfn, int flags) 2207 { 2208 struct page *p; 2209 struct folio *folio; 2210 struct dev_pagemap *pgmap; 2211 int res = 0; 2212 unsigned long page_flags; 2213 bool retry = true; 2214 int hugetlb = 0; 2215 2216 if (!sysctl_memory_failure_recovery) 2217 panic("Memory failure on page %lx", pfn); 2218 2219 mutex_lock(&mf_mutex); 2220 2221 if (!(flags & MF_SW_SIMULATED)) 2222 hw_memory_failure = true; 2223 2224 p = pfn_to_online_page(pfn); 2225 if (!p) { 2226 res = arch_memory_failure(pfn, flags); 2227 if (res == 0) 2228 goto unlock_mutex; 2229 2230 if (pfn_valid(pfn)) { 2231 pgmap = get_dev_pagemap(pfn, NULL); 2232 put_ref_page(pfn, flags); 2233 if (pgmap) { 2234 res = memory_failure_dev_pagemap(pfn, flags, 2235 pgmap); 2236 goto unlock_mutex; 2237 } 2238 } 2239 pr_err("%#lx: memory outside kernel control\n", pfn); 2240 res = -ENXIO; 2241 goto unlock_mutex; 2242 } 2243 2244 try_again: 2245 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2246 if (hugetlb) 2247 goto unlock_mutex; 2248 2249 if (TestSetPageHWPoison(p)) { 2250 pr_err("%#lx: already hardware poisoned\n", pfn); 2251 res = -EHWPOISON; 2252 if (flags & MF_ACTION_REQUIRED) 2253 res = kill_accessing_process(current, pfn, flags); 2254 if (flags & MF_COUNT_INCREASED) 2255 put_page(p); 2256 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); 2257 goto unlock_mutex; 2258 } 2259 2260 /* 2261 * We need/can do nothing about count=0 pages. 2262 * 1) it's a free page, and therefore in safe hand: 2263 * check_new_page() will be the gate keeper. 2264 * 2) it's part of a non-compound high order page. 2265 * Implies some kernel user: cannot stop them from 2266 * R/W the page; let's pray that the page has been 2267 * used and will be freed some time later. 2268 * In fact it's dangerous to directly bump up page count from 0, 2269 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2270 */ 2271 if (!(flags & MF_COUNT_INCREASED)) { 2272 res = get_hwpoison_page(p, flags); 2273 if (!res) { 2274 if (is_free_buddy_page(p)) { 2275 if (take_page_off_buddy(p)) { 2276 page_ref_inc(p); 2277 res = MF_RECOVERED; 2278 } else { 2279 /* We lost the race, try again */ 2280 if (retry) { 2281 ClearPageHWPoison(p); 2282 retry = false; 2283 goto try_again; 2284 } 2285 res = MF_FAILED; 2286 } 2287 res = action_result(pfn, MF_MSG_BUDDY, res); 2288 } else { 2289 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2290 } 2291 goto unlock_mutex; 2292 } else if (res < 0) { 2293 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); 2294 goto unlock_mutex; 2295 } 2296 } 2297 2298 folio = page_folio(p); 2299 2300 /* filter pages that are protected from hwpoison test by users */ 2301 folio_lock(folio); 2302 if (hwpoison_filter(p)) { 2303 ClearPageHWPoison(p); 2304 folio_unlock(folio); 2305 folio_put(folio); 2306 res = -EOPNOTSUPP; 2307 goto unlock_mutex; 2308 } 2309 folio_unlock(folio); 2310 2311 if (folio_test_large(folio)) { 2312 /* 2313 * The flag must be set after the refcount is bumped 2314 * otherwise it may race with THP split. 2315 * And the flag can't be set in get_hwpoison_page() since 2316 * it is called by soft offline too and it is just called 2317 * for !MF_COUNT_INCREASED. So here seems to be the best 2318 * place. 2319 * 2320 * Don't need care about the above error handling paths for 2321 * get_hwpoison_page() since they handle either free page 2322 * or unhandlable page. The refcount is bumped iff the 2323 * page is a valid handlable page. 2324 */ 2325 folio_set_has_hwpoisoned(folio); 2326 if (try_to_split_thp_page(p, false) < 0) { 2327 res = -EHWPOISON; 2328 kill_procs_now(p, pfn, flags, folio); 2329 put_page(p); 2330 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED); 2331 goto unlock_mutex; 2332 } 2333 VM_BUG_ON_PAGE(!page_count(p), p); 2334 folio = page_folio(p); 2335 } 2336 2337 /* 2338 * We ignore non-LRU pages for good reasons. 2339 * - PG_locked is only well defined for LRU pages and a few others 2340 * - to avoid races with __SetPageLocked() 2341 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2342 * The check (unnecessarily) ignores LRU pages being isolated and 2343 * walked by the page reclaim code, however that's not a big loss. 2344 */ 2345 shake_folio(folio); 2346 2347 folio_lock(folio); 2348 2349 /* 2350 * We're only intended to deal with the non-Compound page here. 2351 * The page cannot become compound pages again as folio has been 2352 * splited and extra refcnt is held. 2353 */ 2354 WARN_ON(folio_test_large(folio)); 2355 2356 /* 2357 * We use page flags to determine what action should be taken, but 2358 * the flags can be modified by the error containment action. One 2359 * example is an mlocked page, where PG_mlocked is cleared by 2360 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page 2361 * status correctly, we save a copy of the page flags at this time. 2362 */ 2363 page_flags = folio->flags; 2364 2365 /* 2366 * __munlock_folio() may clear a writeback folio's LRU flag without 2367 * the folio lock. We need to wait for writeback completion for this 2368 * folio or it may trigger a vfs BUG while evicting inode. 2369 */ 2370 if (!folio_test_lru(folio) && !folio_test_writeback(folio)) 2371 goto identify_page_state; 2372 2373 /* 2374 * It's very difficult to mess with pages currently under IO 2375 * and in many cases impossible, so we just avoid it here. 2376 */ 2377 folio_wait_writeback(folio); 2378 2379 /* 2380 * Now take care of user space mappings. 2381 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2382 */ 2383 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2384 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); 2385 goto unlock_page; 2386 } 2387 2388 /* 2389 * Torn down by someone else? 2390 */ 2391 if (folio_test_lru(folio) && !folio_test_swapcache(folio) && 2392 folio->mapping == NULL) { 2393 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2394 goto unlock_page; 2395 } 2396 2397 identify_page_state: 2398 res = identify_page_state(pfn, p, page_flags); 2399 mutex_unlock(&mf_mutex); 2400 return res; 2401 unlock_page: 2402 folio_unlock(folio); 2403 unlock_mutex: 2404 mutex_unlock(&mf_mutex); 2405 return res; 2406 } 2407 EXPORT_SYMBOL_GPL(memory_failure); 2408 2409 #define MEMORY_FAILURE_FIFO_ORDER 4 2410 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2411 2412 struct memory_failure_entry { 2413 unsigned long pfn; 2414 int flags; 2415 }; 2416 2417 struct memory_failure_cpu { 2418 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2419 MEMORY_FAILURE_FIFO_SIZE); 2420 raw_spinlock_t lock; 2421 struct work_struct work; 2422 }; 2423 2424 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2425 2426 /** 2427 * memory_failure_queue - Schedule handling memory failure of a page. 2428 * @pfn: Page Number of the corrupted page 2429 * @flags: Flags for memory failure handling 2430 * 2431 * This function is called by the low level hardware error handler 2432 * when it detects hardware memory corruption of a page. It schedules 2433 * the recovering of error page, including dropping pages, killing 2434 * processes etc. 2435 * 2436 * The function is primarily of use for corruptions that 2437 * happen outside the current execution context (e.g. when 2438 * detected by a background scrubber) 2439 * 2440 * Can run in IRQ context. 2441 */ 2442 void memory_failure_queue(unsigned long pfn, int flags) 2443 { 2444 struct memory_failure_cpu *mf_cpu; 2445 unsigned long proc_flags; 2446 bool buffer_overflow; 2447 struct memory_failure_entry entry = { 2448 .pfn = pfn, 2449 .flags = flags, 2450 }; 2451 2452 mf_cpu = &get_cpu_var(memory_failure_cpu); 2453 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2454 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry); 2455 if (!buffer_overflow) 2456 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2457 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2458 put_cpu_var(memory_failure_cpu); 2459 if (buffer_overflow) 2460 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2461 pfn); 2462 } 2463 EXPORT_SYMBOL_GPL(memory_failure_queue); 2464 2465 static void memory_failure_work_func(struct work_struct *work) 2466 { 2467 struct memory_failure_cpu *mf_cpu; 2468 struct memory_failure_entry entry = { 0, }; 2469 unsigned long proc_flags; 2470 int gotten; 2471 2472 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2473 for (;;) { 2474 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2475 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2476 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2477 if (!gotten) 2478 break; 2479 if (entry.flags & MF_SOFT_OFFLINE) 2480 soft_offline_page(entry.pfn, entry.flags); 2481 else 2482 memory_failure(entry.pfn, entry.flags); 2483 } 2484 } 2485 2486 /* 2487 * Process memory_failure work queued on the specified CPU. 2488 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2489 */ 2490 void memory_failure_queue_kick(int cpu) 2491 { 2492 struct memory_failure_cpu *mf_cpu; 2493 2494 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2495 cancel_work_sync(&mf_cpu->work); 2496 memory_failure_work_func(&mf_cpu->work); 2497 } 2498 2499 static int __init memory_failure_init(void) 2500 { 2501 struct memory_failure_cpu *mf_cpu; 2502 int cpu; 2503 2504 for_each_possible_cpu(cpu) { 2505 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2506 raw_spin_lock_init(&mf_cpu->lock); 2507 INIT_KFIFO(mf_cpu->fifo); 2508 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2509 } 2510 2511 register_sysctl_init("vm", memory_failure_table); 2512 2513 return 0; 2514 } 2515 core_initcall(memory_failure_init); 2516 2517 #undef pr_fmt 2518 #define pr_fmt(fmt) "Unpoison: " fmt 2519 #define unpoison_pr_info(fmt, pfn, rs) \ 2520 ({ \ 2521 if (__ratelimit(rs)) \ 2522 pr_info(fmt, pfn); \ 2523 }) 2524 2525 /** 2526 * unpoison_memory - Unpoison a previously poisoned page 2527 * @pfn: Page number of the to be unpoisoned page 2528 * 2529 * Software-unpoison a page that has been poisoned by 2530 * memory_failure() earlier. 2531 * 2532 * This is only done on the software-level, so it only works 2533 * for linux injected failures, not real hardware failures 2534 * 2535 * Returns 0 for success, otherwise -errno. 2536 */ 2537 int unpoison_memory(unsigned long pfn) 2538 { 2539 struct folio *folio; 2540 struct page *p; 2541 int ret = -EBUSY, ghp; 2542 unsigned long count; 2543 bool huge = false; 2544 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2545 DEFAULT_RATELIMIT_BURST); 2546 2547 if (!pfn_valid(pfn)) 2548 return -ENXIO; 2549 2550 p = pfn_to_page(pfn); 2551 folio = page_folio(p); 2552 2553 mutex_lock(&mf_mutex); 2554 2555 if (hw_memory_failure) { 2556 unpoison_pr_info("%#lx: disabled after HW memory failure\n", 2557 pfn, &unpoison_rs); 2558 ret = -EOPNOTSUPP; 2559 goto unlock_mutex; 2560 } 2561 2562 if (is_huge_zero_folio(folio)) { 2563 unpoison_pr_info("%#lx: huge zero page is not supported\n", 2564 pfn, &unpoison_rs); 2565 ret = -EOPNOTSUPP; 2566 goto unlock_mutex; 2567 } 2568 2569 if (!PageHWPoison(p)) { 2570 unpoison_pr_info("%#lx: page was already unpoisoned\n", 2571 pfn, &unpoison_rs); 2572 goto unlock_mutex; 2573 } 2574 2575 if (folio_ref_count(folio) > 1) { 2576 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n", 2577 pfn, &unpoison_rs); 2578 goto unlock_mutex; 2579 } 2580 2581 if (folio_test_slab(folio) || folio_test_pgtable(folio) || 2582 folio_test_reserved(folio) || folio_test_offline(folio)) 2583 goto unlock_mutex; 2584 2585 if (folio_mapped(folio)) { 2586 unpoison_pr_info("%#lx: someone maps the hwpoison page\n", 2587 pfn, &unpoison_rs); 2588 goto unlock_mutex; 2589 } 2590 2591 if (folio_mapping(folio)) { 2592 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n", 2593 pfn, &unpoison_rs); 2594 goto unlock_mutex; 2595 } 2596 2597 ghp = get_hwpoison_page(p, MF_UNPOISON); 2598 if (!ghp) { 2599 if (folio_test_hugetlb(folio)) { 2600 huge = true; 2601 count = folio_free_raw_hwp(folio, false); 2602 if (count == 0) 2603 goto unlock_mutex; 2604 } 2605 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2606 } else if (ghp < 0) { 2607 if (ghp == -EHWPOISON) { 2608 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2609 } else { 2610 ret = ghp; 2611 unpoison_pr_info("%#lx: failed to grab page\n", 2612 pfn, &unpoison_rs); 2613 } 2614 } else { 2615 if (folio_test_hugetlb(folio)) { 2616 huge = true; 2617 count = folio_free_raw_hwp(folio, false); 2618 if (count == 0) { 2619 folio_put(folio); 2620 goto unlock_mutex; 2621 } 2622 } 2623 2624 folio_put(folio); 2625 if (TestClearPageHWPoison(p)) { 2626 folio_put(folio); 2627 ret = 0; 2628 } 2629 } 2630 2631 unlock_mutex: 2632 mutex_unlock(&mf_mutex); 2633 if (!ret) { 2634 if (!huge) 2635 num_poisoned_pages_sub(pfn, 1); 2636 unpoison_pr_info("%#lx: software-unpoisoned page\n", 2637 page_to_pfn(p), &unpoison_rs); 2638 } 2639 return ret; 2640 } 2641 EXPORT_SYMBOL(unpoison_memory); 2642 2643 #undef pr_fmt 2644 #define pr_fmt(fmt) "Soft offline: " fmt 2645 2646 static bool mf_isolate_folio(struct folio *folio, struct list_head *pagelist) 2647 { 2648 bool isolated = false; 2649 2650 if (folio_test_hugetlb(folio)) { 2651 isolated = isolate_hugetlb(folio, pagelist); 2652 } else { 2653 bool lru = !__folio_test_movable(folio); 2654 2655 if (lru) 2656 isolated = folio_isolate_lru(folio); 2657 else 2658 isolated = isolate_movable_page(&folio->page, 2659 ISOLATE_UNEVICTABLE); 2660 2661 if (isolated) { 2662 list_add(&folio->lru, pagelist); 2663 if (lru) 2664 node_stat_add_folio(folio, NR_ISOLATED_ANON + 2665 folio_is_file_lru(folio)); 2666 } 2667 } 2668 2669 /* 2670 * If we succeed to isolate the folio, we grabbed another refcount on 2671 * the folio, so we can safely drop the one we got from get_any_page(). 2672 * If we failed to isolate the folio, it means that we cannot go further 2673 * and we will return an error, so drop the reference we got from 2674 * get_any_page() as well. 2675 */ 2676 folio_put(folio); 2677 return isolated; 2678 } 2679 2680 /* 2681 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2682 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2683 * If the page is mapped, it migrates the contents over. 2684 */ 2685 static int soft_offline_in_use_page(struct page *page) 2686 { 2687 long ret = 0; 2688 unsigned long pfn = page_to_pfn(page); 2689 struct folio *folio = page_folio(page); 2690 char const *msg_page[] = {"page", "hugepage"}; 2691 bool huge = folio_test_hugetlb(folio); 2692 LIST_HEAD(pagelist); 2693 struct migration_target_control mtc = { 2694 .nid = NUMA_NO_NODE, 2695 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2696 .reason = MR_MEMORY_FAILURE, 2697 }; 2698 2699 if (!huge && folio_test_large(folio)) { 2700 if (try_to_split_thp_page(page, true)) { 2701 pr_info("%#lx: thp split failed\n", pfn); 2702 return -EBUSY; 2703 } 2704 folio = page_folio(page); 2705 } 2706 2707 folio_lock(folio); 2708 if (!huge) 2709 folio_wait_writeback(folio); 2710 if (PageHWPoison(page)) { 2711 folio_unlock(folio); 2712 folio_put(folio); 2713 pr_info("%#lx: page already poisoned\n", pfn); 2714 return 0; 2715 } 2716 2717 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio)) 2718 /* 2719 * Try to invalidate first. This should work for 2720 * non dirty unmapped page cache pages. 2721 */ 2722 ret = mapping_evict_folio(folio_mapping(folio), folio); 2723 folio_unlock(folio); 2724 2725 if (ret) { 2726 pr_info("%#lx: invalidated\n", pfn); 2727 page_handle_poison(page, false, true); 2728 return 0; 2729 } 2730 2731 if (mf_isolate_folio(folio, &pagelist)) { 2732 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2733 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2734 if (!ret) { 2735 bool release = !huge; 2736 2737 if (!page_handle_poison(page, huge, release)) 2738 ret = -EBUSY; 2739 } else { 2740 if (!list_empty(&pagelist)) 2741 putback_movable_pages(&pagelist); 2742 2743 pr_info("%#lx: %s migration failed %ld, type %pGp\n", 2744 pfn, msg_page[huge], ret, &page->flags); 2745 if (ret > 0) 2746 ret = -EBUSY; 2747 } 2748 } else { 2749 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n", 2750 pfn, msg_page[huge], page_count(page), &page->flags); 2751 ret = -EBUSY; 2752 } 2753 return ret; 2754 } 2755 2756 /** 2757 * soft_offline_page - Soft offline a page. 2758 * @pfn: pfn to soft-offline 2759 * @flags: flags. Same as memory_failure(). 2760 * 2761 * Returns 0 on success, 2762 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or 2763 * disabled by /proc/sys/vm/enable_soft_offline, 2764 * < 0 otherwise negated errno. 2765 * 2766 * Soft offline a page, by migration or invalidation, 2767 * without killing anything. This is for the case when 2768 * a page is not corrupted yet (so it's still valid to access), 2769 * but has had a number of corrected errors and is better taken 2770 * out. 2771 * 2772 * The actual policy on when to do that is maintained by 2773 * user space. 2774 * 2775 * This should never impact any application or cause data loss, 2776 * however it might take some time. 2777 * 2778 * This is not a 100% solution for all memory, but tries to be 2779 * ``good enough'' for the majority of memory. 2780 */ 2781 int soft_offline_page(unsigned long pfn, int flags) 2782 { 2783 int ret; 2784 bool try_again = true; 2785 struct page *page; 2786 2787 if (!pfn_valid(pfn)) { 2788 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2789 return -ENXIO; 2790 } 2791 2792 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2793 page = pfn_to_online_page(pfn); 2794 if (!page) { 2795 put_ref_page(pfn, flags); 2796 return -EIO; 2797 } 2798 2799 if (!sysctl_enable_soft_offline) { 2800 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n"); 2801 put_ref_page(pfn, flags); 2802 return -EOPNOTSUPP; 2803 } 2804 2805 mutex_lock(&mf_mutex); 2806 2807 if (PageHWPoison(page)) { 2808 pr_info("%#lx: page already poisoned\n", pfn); 2809 put_ref_page(pfn, flags); 2810 mutex_unlock(&mf_mutex); 2811 return 0; 2812 } 2813 2814 retry: 2815 get_online_mems(); 2816 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2817 put_online_mems(); 2818 2819 if (hwpoison_filter(page)) { 2820 if (ret > 0) 2821 put_page(page); 2822 2823 mutex_unlock(&mf_mutex); 2824 return -EOPNOTSUPP; 2825 } 2826 2827 if (ret > 0) { 2828 ret = soft_offline_in_use_page(page); 2829 } else if (ret == 0) { 2830 if (!page_handle_poison(page, true, false)) { 2831 if (try_again) { 2832 try_again = false; 2833 flags &= ~MF_COUNT_INCREASED; 2834 goto retry; 2835 } 2836 ret = -EBUSY; 2837 } 2838 } 2839 2840 mutex_unlock(&mf_mutex); 2841 2842 return ret; 2843 } 2844