1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/dax.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/memremap.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/sysctl.h> 63 #include "swap.h" 64 #include "internal.h" 65 #include "ras/ras_event.h" 66 67 static int sysctl_memory_failure_early_kill __read_mostly; 68 69 static int sysctl_memory_failure_recovery __read_mostly = 1; 70 71 static int sysctl_enable_soft_offline __read_mostly = 1; 72 73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 74 75 static bool hw_memory_failure __read_mostly = false; 76 77 static DEFINE_MUTEX(mf_mutex); 78 79 void num_poisoned_pages_inc(unsigned long pfn) 80 { 81 atomic_long_inc(&num_poisoned_pages); 82 memblk_nr_poison_inc(pfn); 83 } 84 85 void num_poisoned_pages_sub(unsigned long pfn, long i) 86 { 87 atomic_long_sub(i, &num_poisoned_pages); 88 if (pfn != -1UL) 89 memblk_nr_poison_sub(pfn, i); 90 } 91 92 /** 93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 94 * @_name: name of the file in the per NUMA sysfs directory. 95 */ 96 #define MF_ATTR_RO(_name) \ 97 static ssize_t _name##_show(struct device *dev, \ 98 struct device_attribute *attr, \ 99 char *buf) \ 100 { \ 101 struct memory_failure_stats *mf_stats = \ 102 &NODE_DATA(dev->id)->mf_stats; \ 103 return sysfs_emit(buf, "%lu\n", mf_stats->_name); \ 104 } \ 105 static DEVICE_ATTR_RO(_name) 106 107 MF_ATTR_RO(total); 108 MF_ATTR_RO(ignored); 109 MF_ATTR_RO(failed); 110 MF_ATTR_RO(delayed); 111 MF_ATTR_RO(recovered); 112 113 static struct attribute *memory_failure_attr[] = { 114 &dev_attr_total.attr, 115 &dev_attr_ignored.attr, 116 &dev_attr_failed.attr, 117 &dev_attr_delayed.attr, 118 &dev_attr_recovered.attr, 119 NULL, 120 }; 121 122 const struct attribute_group memory_failure_attr_group = { 123 .name = "memory_failure", 124 .attrs = memory_failure_attr, 125 }; 126 127 static const struct ctl_table memory_failure_table[] = { 128 { 129 .procname = "memory_failure_early_kill", 130 .data = &sysctl_memory_failure_early_kill, 131 .maxlen = sizeof(sysctl_memory_failure_early_kill), 132 .mode = 0644, 133 .proc_handler = proc_dointvec_minmax, 134 .extra1 = SYSCTL_ZERO, 135 .extra2 = SYSCTL_ONE, 136 }, 137 { 138 .procname = "memory_failure_recovery", 139 .data = &sysctl_memory_failure_recovery, 140 .maxlen = sizeof(sysctl_memory_failure_recovery), 141 .mode = 0644, 142 .proc_handler = proc_dointvec_minmax, 143 .extra1 = SYSCTL_ZERO, 144 .extra2 = SYSCTL_ONE, 145 }, 146 { 147 .procname = "enable_soft_offline", 148 .data = &sysctl_enable_soft_offline, 149 .maxlen = sizeof(sysctl_enable_soft_offline), 150 .mode = 0644, 151 .proc_handler = proc_dointvec_minmax, 152 .extra1 = SYSCTL_ZERO, 153 .extra2 = SYSCTL_ONE, 154 } 155 }; 156 157 /* 158 * Return values: 159 * 1: the page is dissolved (if needed) and taken off from buddy, 160 * 0: the page is dissolved (if needed) and not taken off from buddy, 161 * < 0: failed to dissolve. 162 */ 163 static int __page_handle_poison(struct page *page) 164 { 165 int ret; 166 167 /* 168 * zone_pcp_disable() can't be used here. It will 169 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold 170 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap 171 * optimization is enabled. This will break current lock dependency 172 * chain and leads to deadlock. 173 * Disabling pcp before dissolving the page was a deterministic 174 * approach because we made sure that those pages cannot end up in any 175 * PCP list. Draining PCP lists expels those pages to the buddy system, 176 * but nothing guarantees that those pages do not get back to a PCP 177 * queue if we need to refill those. 178 */ 179 ret = dissolve_free_hugetlb_folio(page_folio(page)); 180 if (!ret) { 181 drain_all_pages(page_zone(page)); 182 ret = take_page_off_buddy(page); 183 } 184 185 return ret; 186 } 187 188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 189 { 190 if (hugepage_or_freepage) { 191 /* 192 * Doing this check for free pages is also fine since 193 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well. 194 */ 195 if (__page_handle_poison(page) <= 0) 196 /* 197 * We could fail to take off the target page from buddy 198 * for example due to racy page allocation, but that's 199 * acceptable because soft-offlined page is not broken 200 * and if someone really want to use it, they should 201 * take it. 202 */ 203 return false; 204 } 205 206 SetPageHWPoison(page); 207 if (release) 208 put_page(page); 209 page_ref_inc(page); 210 num_poisoned_pages_inc(page_to_pfn(page)); 211 212 return true; 213 } 214 215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT) 216 217 u32 hwpoison_filter_enable = 0; 218 u32 hwpoison_filter_dev_major = ~0U; 219 u32 hwpoison_filter_dev_minor = ~0U; 220 u64 hwpoison_filter_flags_mask; 221 u64 hwpoison_filter_flags_value; 222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 227 228 static int hwpoison_filter_dev(struct page *p) 229 { 230 struct folio *folio = page_folio(p); 231 struct address_space *mapping; 232 dev_t dev; 233 234 if (hwpoison_filter_dev_major == ~0U && 235 hwpoison_filter_dev_minor == ~0U) 236 return 0; 237 238 mapping = folio_mapping(folio); 239 if (mapping == NULL || mapping->host == NULL) 240 return -EINVAL; 241 242 dev = mapping->host->i_sb->s_dev; 243 if (hwpoison_filter_dev_major != ~0U && 244 hwpoison_filter_dev_major != MAJOR(dev)) 245 return -EINVAL; 246 if (hwpoison_filter_dev_minor != ~0U && 247 hwpoison_filter_dev_minor != MINOR(dev)) 248 return -EINVAL; 249 250 return 0; 251 } 252 253 static int hwpoison_filter_flags(struct page *p) 254 { 255 if (!hwpoison_filter_flags_mask) 256 return 0; 257 258 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 259 hwpoison_filter_flags_value) 260 return 0; 261 else 262 return -EINVAL; 263 } 264 265 /* 266 * This allows stress tests to limit test scope to a collection of tasks 267 * by putting them under some memcg. This prevents killing unrelated/important 268 * processes such as /sbin/init. Note that the target task may share clean 269 * pages with init (eg. libc text), which is harmless. If the target task 270 * share _dirty_ pages with another task B, the test scheme must make sure B 271 * is also included in the memcg. At last, due to race conditions this filter 272 * can only guarantee that the page either belongs to the memcg tasks, or is 273 * a freed page. 274 */ 275 #ifdef CONFIG_MEMCG 276 u64 hwpoison_filter_memcg; 277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 278 static int hwpoison_filter_task(struct page *p) 279 { 280 if (!hwpoison_filter_memcg) 281 return 0; 282 283 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 284 return -EINVAL; 285 286 return 0; 287 } 288 #else 289 static int hwpoison_filter_task(struct page *p) { return 0; } 290 #endif 291 292 int hwpoison_filter(struct page *p) 293 { 294 if (!hwpoison_filter_enable) 295 return 0; 296 297 if (hwpoison_filter_dev(p)) 298 return -EINVAL; 299 300 if (hwpoison_filter_flags(p)) 301 return -EINVAL; 302 303 if (hwpoison_filter_task(p)) 304 return -EINVAL; 305 306 return 0; 307 } 308 EXPORT_SYMBOL_GPL(hwpoison_filter); 309 #else 310 int hwpoison_filter(struct page *p) 311 { 312 return 0; 313 } 314 #endif 315 316 /* 317 * Kill all processes that have a poisoned page mapped and then isolate 318 * the page. 319 * 320 * General strategy: 321 * Find all processes having the page mapped and kill them. 322 * But we keep a page reference around so that the page is not 323 * actually freed yet. 324 * Then stash the page away 325 * 326 * There's no convenient way to get back to mapped processes 327 * from the VMAs. So do a brute-force search over all 328 * running processes. 329 * 330 * Remember that machine checks are not common (or rather 331 * if they are common you have other problems), so this shouldn't 332 * be a performance issue. 333 * 334 * Also there are some races possible while we get from the 335 * error detection to actually handle it. 336 */ 337 338 struct to_kill { 339 struct list_head nd; 340 struct task_struct *tsk; 341 unsigned long addr; 342 short size_shift; 343 }; 344 345 /* 346 * Send all the processes who have the page mapped a signal. 347 * ``action optional'' if they are not immediately affected by the error 348 * ``action required'' if error happened in current execution context 349 */ 350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 351 { 352 struct task_struct *t = tk->tsk; 353 short addr_lsb = tk->size_shift; 354 int ret = 0; 355 356 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 357 pfn, t->comm, task_pid_nr(t)); 358 359 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 360 ret = force_sig_mceerr(BUS_MCEERR_AR, 361 (void __user *)tk->addr, addr_lsb); 362 else 363 /* 364 * Signal other processes sharing the page if they have 365 * PF_MCE_EARLY set. 366 * Don't use force here, it's convenient if the signal 367 * can be temporarily blocked. 368 */ 369 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 370 addr_lsb, t); 371 if (ret < 0) 372 pr_info("Error sending signal to %s:%d: %d\n", 373 t->comm, task_pid_nr(t), ret); 374 return ret; 375 } 376 377 /* 378 * Unknown page type encountered. Try to check whether it can turn PageLRU by 379 * lru_add_drain_all. 380 */ 381 void shake_folio(struct folio *folio) 382 { 383 if (folio_test_hugetlb(folio)) 384 return; 385 /* 386 * TODO: Could shrink slab caches here if a lightweight range-based 387 * shrinker will be available. 388 */ 389 if (folio_test_slab(folio)) 390 return; 391 392 lru_add_drain_all(); 393 } 394 EXPORT_SYMBOL_GPL(shake_folio); 395 396 static void shake_page(struct page *page) 397 { 398 shake_folio(page_folio(page)); 399 } 400 401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 402 unsigned long address) 403 { 404 unsigned long ret = 0; 405 pgd_t *pgd; 406 p4d_t *p4d; 407 pud_t *pud; 408 pmd_t *pmd; 409 pte_t *pte; 410 pte_t ptent; 411 412 VM_BUG_ON_VMA(address == -EFAULT, vma); 413 pgd = pgd_offset(vma->vm_mm, address); 414 if (!pgd_present(*pgd)) 415 return 0; 416 p4d = p4d_offset(pgd, address); 417 if (!p4d_present(*p4d)) 418 return 0; 419 pud = pud_offset(p4d, address); 420 if (!pud_present(*pud)) 421 return 0; 422 if (pud_trans_huge(*pud)) 423 return PUD_SHIFT; 424 pmd = pmd_offset(pud, address); 425 if (!pmd_present(*pmd)) 426 return 0; 427 if (pmd_trans_huge(*pmd)) 428 return PMD_SHIFT; 429 pte = pte_offset_map(pmd, address); 430 if (!pte) 431 return 0; 432 ptent = ptep_get(pte); 433 if (pte_present(ptent)) 434 ret = PAGE_SHIFT; 435 pte_unmap(pte); 436 return ret; 437 } 438 439 /* 440 * Failure handling: if we can't find or can't kill a process there's 441 * not much we can do. We just print a message and ignore otherwise. 442 */ 443 444 /* 445 * Schedule a process for later kill. 446 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 447 */ 448 static void __add_to_kill(struct task_struct *tsk, const struct page *p, 449 struct vm_area_struct *vma, struct list_head *to_kill, 450 unsigned long addr) 451 { 452 struct to_kill *tk; 453 454 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 455 if (!tk) { 456 pr_err("Out of memory while machine check handling\n"); 457 return; 458 } 459 460 tk->addr = addr; 461 if (is_zone_device_page(p)) 462 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 463 else 464 tk->size_shift = folio_shift(page_folio(p)); 465 466 /* 467 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 468 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 469 * so "tk->size_shift == 0" effectively checks no mapping on 470 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 471 * to a process' address space, it's possible not all N VMAs 472 * contain mappings for the page, but at least one VMA does. 473 * Only deliver SIGBUS with payload derived from the VMA that 474 * has a mapping for the page. 475 */ 476 if (tk->addr == -EFAULT) { 477 pr_info("Unable to find user space address %lx in %s\n", 478 page_to_pfn(p), tsk->comm); 479 } else if (tk->size_shift == 0) { 480 kfree(tk); 481 return; 482 } 483 484 get_task_struct(tsk); 485 tk->tsk = tsk; 486 list_add_tail(&tk->nd, to_kill); 487 } 488 489 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p, 490 struct vm_area_struct *vma, struct list_head *to_kill, 491 unsigned long addr) 492 { 493 if (addr == -EFAULT) 494 return; 495 __add_to_kill(tsk, p, vma, to_kill, addr); 496 } 497 498 #ifdef CONFIG_KSM 499 static bool task_in_to_kill_list(struct list_head *to_kill, 500 struct task_struct *tsk) 501 { 502 struct to_kill *tk, *next; 503 504 list_for_each_entry_safe(tk, next, to_kill, nd) { 505 if (tk->tsk == tsk) 506 return true; 507 } 508 509 return false; 510 } 511 512 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p, 513 struct vm_area_struct *vma, struct list_head *to_kill, 514 unsigned long addr) 515 { 516 if (!task_in_to_kill_list(to_kill, tsk)) 517 __add_to_kill(tsk, p, vma, to_kill, addr); 518 } 519 #endif 520 /* 521 * Kill the processes that have been collected earlier. 522 * 523 * Only do anything when FORCEKILL is set, otherwise just free the 524 * list (this is used for clean pages which do not need killing) 525 */ 526 static void kill_procs(struct list_head *to_kill, int forcekill, 527 unsigned long pfn, int flags) 528 { 529 struct to_kill *tk, *next; 530 531 list_for_each_entry_safe(tk, next, to_kill, nd) { 532 if (forcekill) { 533 if (tk->addr == -EFAULT) { 534 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 535 pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); 536 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 537 tk->tsk, PIDTYPE_PID); 538 } 539 540 /* 541 * In theory the process could have mapped 542 * something else on the address in-between. We could 543 * check for that, but we need to tell the 544 * process anyways. 545 */ 546 else if (kill_proc(tk, pfn, flags) < 0) 547 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 548 pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); 549 } 550 list_del(&tk->nd); 551 put_task_struct(tk->tsk); 552 kfree(tk); 553 } 554 } 555 556 /* 557 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 558 * on behalf of the thread group. Return task_struct of the (first found) 559 * dedicated thread if found, and return NULL otherwise. 560 * 561 * We already hold rcu lock in the caller, so we don't have to call 562 * rcu_read_lock/unlock() in this function. 563 */ 564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 565 { 566 struct task_struct *t; 567 568 for_each_thread(tsk, t) { 569 if (t->flags & PF_MCE_PROCESS) { 570 if (t->flags & PF_MCE_EARLY) 571 return t; 572 } else { 573 if (sysctl_memory_failure_early_kill) 574 return t; 575 } 576 } 577 return NULL; 578 } 579 580 /* 581 * Determine whether a given process is "early kill" process which expects 582 * to be signaled when some page under the process is hwpoisoned. 583 * Return task_struct of the dedicated thread (main thread unless explicitly 584 * specified) if the process is "early kill" and otherwise returns NULL. 585 * 586 * Note that the above is true for Action Optional case. For Action Required 587 * case, it's only meaningful to the current thread which need to be signaled 588 * with SIGBUS, this error is Action Optional for other non current 589 * processes sharing the same error page,if the process is "early kill", the 590 * task_struct of the dedicated thread will also be returned. 591 */ 592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 593 { 594 if (!tsk->mm) 595 return NULL; 596 /* 597 * Comparing ->mm here because current task might represent 598 * a subthread, while tsk always points to the main thread. 599 */ 600 if (force_early && tsk->mm == current->mm) 601 return current; 602 603 return find_early_kill_thread(tsk); 604 } 605 606 /* 607 * Collect processes when the error hit an anonymous page. 608 */ 609 static void collect_procs_anon(const struct folio *folio, 610 const struct page *page, struct list_head *to_kill, 611 int force_early) 612 { 613 struct task_struct *tsk; 614 struct anon_vma *av; 615 pgoff_t pgoff; 616 617 av = folio_lock_anon_vma_read(folio, NULL); 618 if (av == NULL) /* Not actually mapped anymore */ 619 return; 620 621 pgoff = page_pgoff(folio, page); 622 rcu_read_lock(); 623 for_each_process(tsk) { 624 struct vm_area_struct *vma; 625 struct anon_vma_chain *vmac; 626 struct task_struct *t = task_early_kill(tsk, force_early); 627 unsigned long addr; 628 629 if (!t) 630 continue; 631 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 632 pgoff, pgoff) { 633 vma = vmac->vma; 634 if (vma->vm_mm != t->mm) 635 continue; 636 addr = page_mapped_in_vma(page, vma); 637 add_to_kill_anon_file(t, page, vma, to_kill, addr); 638 } 639 } 640 rcu_read_unlock(); 641 anon_vma_unlock_read(av); 642 } 643 644 /* 645 * Collect processes when the error hit a file mapped page. 646 */ 647 static void collect_procs_file(const struct folio *folio, 648 const struct page *page, struct list_head *to_kill, 649 int force_early) 650 { 651 struct vm_area_struct *vma; 652 struct task_struct *tsk; 653 struct address_space *mapping = folio->mapping; 654 pgoff_t pgoff; 655 656 i_mmap_lock_read(mapping); 657 rcu_read_lock(); 658 pgoff = page_pgoff(folio, page); 659 for_each_process(tsk) { 660 struct task_struct *t = task_early_kill(tsk, force_early); 661 unsigned long addr; 662 663 if (!t) 664 continue; 665 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 666 pgoff) { 667 /* 668 * Send early kill signal to tasks where a vma covers 669 * the page but the corrupted page is not necessarily 670 * mapped in its pte. 671 * Assume applications who requested early kill want 672 * to be informed of all such data corruptions. 673 */ 674 if (vma->vm_mm != t->mm) 675 continue; 676 addr = page_address_in_vma(folio, page, vma); 677 add_to_kill_anon_file(t, page, vma, to_kill, addr); 678 } 679 } 680 rcu_read_unlock(); 681 i_mmap_unlock_read(mapping); 682 } 683 684 #ifdef CONFIG_FS_DAX 685 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p, 686 struct vm_area_struct *vma, 687 struct list_head *to_kill, pgoff_t pgoff) 688 { 689 unsigned long addr = vma_address(vma, pgoff, 1); 690 __add_to_kill(tsk, p, vma, to_kill, addr); 691 } 692 693 /* 694 * Collect processes when the error hit a fsdax page. 695 */ 696 static void collect_procs_fsdax(const struct page *page, 697 struct address_space *mapping, pgoff_t pgoff, 698 struct list_head *to_kill, bool pre_remove) 699 { 700 struct vm_area_struct *vma; 701 struct task_struct *tsk; 702 703 i_mmap_lock_read(mapping); 704 rcu_read_lock(); 705 for_each_process(tsk) { 706 struct task_struct *t = tsk; 707 708 /* 709 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because 710 * the current may not be the one accessing the fsdax page. 711 * Otherwise, search for the current task. 712 */ 713 if (!pre_remove) 714 t = task_early_kill(tsk, true); 715 if (!t) 716 continue; 717 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 718 if (vma->vm_mm == t->mm) 719 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 720 } 721 } 722 rcu_read_unlock(); 723 i_mmap_unlock_read(mapping); 724 } 725 #endif /* CONFIG_FS_DAX */ 726 727 /* 728 * Collect the processes who have the corrupted page mapped to kill. 729 */ 730 static void collect_procs(const struct folio *folio, const struct page *page, 731 struct list_head *tokill, int force_early) 732 { 733 if (!folio->mapping) 734 return; 735 if (unlikely(folio_test_ksm(folio))) 736 collect_procs_ksm(folio, page, tokill, force_early); 737 else if (folio_test_anon(folio)) 738 collect_procs_anon(folio, page, tokill, force_early); 739 else 740 collect_procs_file(folio, page, tokill, force_early); 741 } 742 743 struct hwpoison_walk { 744 struct to_kill tk; 745 unsigned long pfn; 746 int flags; 747 }; 748 749 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 750 { 751 tk->addr = addr; 752 tk->size_shift = shift; 753 } 754 755 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 756 unsigned long poisoned_pfn, struct to_kill *tk) 757 { 758 unsigned long pfn = 0; 759 760 if (pte_present(pte)) { 761 pfn = pte_pfn(pte); 762 } else { 763 swp_entry_t swp = pte_to_swp_entry(pte); 764 765 if (is_hwpoison_entry(swp)) 766 pfn = swp_offset_pfn(swp); 767 } 768 769 if (!pfn || pfn != poisoned_pfn) 770 return 0; 771 772 set_to_kill(tk, addr, shift); 773 return 1; 774 } 775 776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 777 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 778 struct hwpoison_walk *hwp) 779 { 780 pmd_t pmd = *pmdp; 781 unsigned long pfn; 782 unsigned long hwpoison_vaddr; 783 784 if (!pmd_present(pmd)) 785 return 0; 786 pfn = pmd_pfn(pmd); 787 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 788 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 789 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 790 return 1; 791 } 792 return 0; 793 } 794 #else 795 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 796 struct hwpoison_walk *hwp) 797 { 798 return 0; 799 } 800 #endif 801 802 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 803 unsigned long end, struct mm_walk *walk) 804 { 805 struct hwpoison_walk *hwp = walk->private; 806 int ret = 0; 807 pte_t *ptep, *mapped_pte; 808 spinlock_t *ptl; 809 810 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 811 if (ptl) { 812 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 813 spin_unlock(ptl); 814 goto out; 815 } 816 817 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 818 addr, &ptl); 819 if (!ptep) 820 goto out; 821 822 for (; addr != end; ptep++, addr += PAGE_SIZE) { 823 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, 824 hwp->pfn, &hwp->tk); 825 if (ret == 1) 826 break; 827 } 828 pte_unmap_unlock(mapped_pte, ptl); 829 out: 830 cond_resched(); 831 return ret; 832 } 833 834 #ifdef CONFIG_HUGETLB_PAGE 835 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 836 unsigned long addr, unsigned long end, 837 struct mm_walk *walk) 838 { 839 struct hwpoison_walk *hwp = walk->private; 840 pte_t pte = huge_ptep_get(walk->mm, addr, ptep); 841 struct hstate *h = hstate_vma(walk->vma); 842 843 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 844 hwp->pfn, &hwp->tk); 845 } 846 #else 847 #define hwpoison_hugetlb_range NULL 848 #endif 849 850 static const struct mm_walk_ops hwpoison_walk_ops = { 851 .pmd_entry = hwpoison_pte_range, 852 .hugetlb_entry = hwpoison_hugetlb_range, 853 .walk_lock = PGWALK_RDLOCK, 854 }; 855 856 /* 857 * Sends SIGBUS to the current process with error info. 858 * 859 * This function is intended to handle "Action Required" MCEs on already 860 * hardware poisoned pages. They could happen, for example, when 861 * memory_failure() failed to unmap the error page at the first call, or 862 * when multiple local machine checks happened on different CPUs. 863 * 864 * MCE handler currently has no easy access to the error virtual address, 865 * so this function walks page table to find it. The returned virtual address 866 * is proper in most cases, but it could be wrong when the application 867 * process has multiple entries mapping the error page. 868 */ 869 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 870 int flags) 871 { 872 int ret; 873 struct hwpoison_walk priv = { 874 .pfn = pfn, 875 }; 876 priv.tk.tsk = p; 877 878 if (!p->mm) 879 return -EFAULT; 880 881 mmap_read_lock(p->mm); 882 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops, 883 (void *)&priv); 884 /* 885 * ret = 1 when CMCI wins, regardless of whether try_to_unmap() 886 * succeeds or fails, then kill the process with SIGBUS. 887 * ret = 0 when poison page is a clean page and it's dropped, no 888 * SIGBUS is needed. 889 */ 890 if (ret == 1 && priv.tk.addr) 891 kill_proc(&priv.tk, pfn, flags); 892 mmap_read_unlock(p->mm); 893 894 return ret > 0 ? -EHWPOISON : 0; 895 } 896 897 /* 898 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed. 899 * But it could not do more to isolate the page from being accessed again, 900 * nor does it kill the process. This is extremely rare and one of the 901 * potential causes is that the page state has been changed due to 902 * underlying race condition. This is the most severe outcomes. 903 * 904 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed. 905 * It should have killed the process, but it can't isolate the page, 906 * due to conditions such as extra pin, unmap failure, etc. Accessing 907 * the page again may trigger another MCE and the process will be killed 908 * by the m-f() handler immediately. 909 * 910 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed. 911 * The page is unmapped, and is removed from the LRU or file mapping. 912 * An attempt to access the page again will trigger page fault and the 913 * PF handler will kill the process. 914 * 915 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed. 916 * The page has been completely isolated, that is, unmapped, taken out of 917 * the buddy system, or hole-punnched out of the file mapping. 918 */ 919 static const char *action_name[] = { 920 [MF_IGNORED] = "Ignored", 921 [MF_FAILED] = "Failed", 922 [MF_DELAYED] = "Delayed", 923 [MF_RECOVERED] = "Recovered", 924 }; 925 926 static const char * const action_page_types[] = { 927 [MF_MSG_KERNEL] = "reserved kernel page", 928 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 929 [MF_MSG_HUGE] = "huge page", 930 [MF_MSG_FREE_HUGE] = "free huge page", 931 [MF_MSG_GET_HWPOISON] = "get hwpoison page", 932 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 933 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 934 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 935 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 936 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 937 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 938 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 939 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 940 [MF_MSG_CLEAN_LRU] = "clean LRU page", 941 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 942 [MF_MSG_BUDDY] = "free buddy page", 943 [MF_MSG_DAX] = "dax page", 944 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 945 [MF_MSG_ALREADY_POISONED] = "already poisoned", 946 [MF_MSG_UNKNOWN] = "unknown page", 947 }; 948 949 /* 950 * XXX: It is possible that a page is isolated from LRU cache, 951 * and then kept in swap cache or failed to remove from page cache. 952 * The page count will stop it from being freed by unpoison. 953 * Stress tests should be aware of this memory leak problem. 954 */ 955 static int delete_from_lru_cache(struct folio *folio) 956 { 957 if (folio_isolate_lru(folio)) { 958 /* 959 * Clear sensible page flags, so that the buddy system won't 960 * complain when the folio is unpoison-and-freed. 961 */ 962 folio_clear_active(folio); 963 folio_clear_unevictable(folio); 964 965 /* 966 * Poisoned page might never drop its ref count to 0 so we have 967 * to uncharge it manually from its memcg. 968 */ 969 mem_cgroup_uncharge(folio); 970 971 /* 972 * drop the refcount elevated by folio_isolate_lru() 973 */ 974 folio_put(folio); 975 return 0; 976 } 977 return -EIO; 978 } 979 980 static int truncate_error_folio(struct folio *folio, unsigned long pfn, 981 struct address_space *mapping) 982 { 983 int ret = MF_FAILED; 984 985 if (mapping->a_ops->error_remove_folio) { 986 int err = mapping->a_ops->error_remove_folio(mapping, folio); 987 988 if (err != 0) 989 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 990 else if (!filemap_release_folio(folio, GFP_NOIO)) 991 pr_info("%#lx: failed to release buffers\n", pfn); 992 else 993 ret = MF_RECOVERED; 994 } else { 995 /* 996 * If the file system doesn't support it just invalidate 997 * This fails on dirty or anything with private pages 998 */ 999 if (mapping_evict_folio(mapping, folio)) 1000 ret = MF_RECOVERED; 1001 else 1002 pr_info("%#lx: Failed to invalidate\n", pfn); 1003 } 1004 1005 return ret; 1006 } 1007 1008 struct page_state { 1009 unsigned long mask; 1010 unsigned long res; 1011 enum mf_action_page_type type; 1012 1013 /* Callback ->action() has to unlock the relevant page inside it. */ 1014 int (*action)(struct page_state *ps, struct page *p); 1015 }; 1016 1017 /* 1018 * Return true if page is still referenced by others, otherwise return 1019 * false. 1020 * 1021 * The extra_pins is true when one extra refcount is expected. 1022 */ 1023 static bool has_extra_refcount(struct page_state *ps, struct page *p, 1024 bool extra_pins) 1025 { 1026 int count = page_count(p) - 1; 1027 1028 if (extra_pins) 1029 count -= folio_nr_pages(page_folio(p)); 1030 1031 if (count > 0) { 1032 pr_err("%#lx: %s still referenced by %d users\n", 1033 page_to_pfn(p), action_page_types[ps->type], count); 1034 return true; 1035 } 1036 1037 return false; 1038 } 1039 1040 /* 1041 * Error hit kernel page. 1042 * Do nothing, try to be lucky and not touch this instead. For a few cases we 1043 * could be more sophisticated. 1044 */ 1045 static int me_kernel(struct page_state *ps, struct page *p) 1046 { 1047 unlock_page(p); 1048 return MF_IGNORED; 1049 } 1050 1051 /* 1052 * Page in unknown state. Do nothing. 1053 * This is a catch-all in case we fail to make sense of the page state. 1054 */ 1055 static int me_unknown(struct page_state *ps, struct page *p) 1056 { 1057 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1058 unlock_page(p); 1059 return MF_IGNORED; 1060 } 1061 1062 /* 1063 * Clean (or cleaned) page cache page. 1064 */ 1065 static int me_pagecache_clean(struct page_state *ps, struct page *p) 1066 { 1067 struct folio *folio = page_folio(p); 1068 int ret; 1069 struct address_space *mapping; 1070 bool extra_pins; 1071 1072 delete_from_lru_cache(folio); 1073 1074 /* 1075 * For anonymous folios the only reference left 1076 * should be the one m_f() holds. 1077 */ 1078 if (folio_test_anon(folio)) { 1079 ret = MF_RECOVERED; 1080 goto out; 1081 } 1082 1083 /* 1084 * Now truncate the page in the page cache. This is really 1085 * more like a "temporary hole punch" 1086 * Don't do this for block devices when someone else 1087 * has a reference, because it could be file system metadata 1088 * and that's not safe to truncate. 1089 */ 1090 mapping = folio_mapping(folio); 1091 if (!mapping) { 1092 /* Folio has been torn down in the meantime */ 1093 ret = MF_FAILED; 1094 goto out; 1095 } 1096 1097 /* 1098 * The shmem page is kept in page cache instead of truncating 1099 * so is expected to have an extra refcount after error-handling. 1100 */ 1101 extra_pins = shmem_mapping(mapping); 1102 1103 /* 1104 * Truncation is a bit tricky. Enable it per file system for now. 1105 * 1106 * Open: to take i_rwsem or not for this? Right now we don't. 1107 */ 1108 ret = truncate_error_folio(folio, page_to_pfn(p), mapping); 1109 if (has_extra_refcount(ps, p, extra_pins)) 1110 ret = MF_FAILED; 1111 1112 out: 1113 folio_unlock(folio); 1114 1115 return ret; 1116 } 1117 1118 /* 1119 * Dirty pagecache page 1120 * Issues: when the error hit a hole page the error is not properly 1121 * propagated. 1122 */ 1123 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1124 { 1125 struct folio *folio = page_folio(p); 1126 struct address_space *mapping = folio_mapping(folio); 1127 1128 /* TBD: print more information about the file. */ 1129 if (mapping) { 1130 /* 1131 * IO error will be reported by write(), fsync(), etc. 1132 * who check the mapping. 1133 * This way the application knows that something went 1134 * wrong with its dirty file data. 1135 */ 1136 mapping_set_error(mapping, -EIO); 1137 } 1138 1139 return me_pagecache_clean(ps, p); 1140 } 1141 1142 /* 1143 * Clean and dirty swap cache. 1144 * 1145 * Dirty swap cache page is tricky to handle. The page could live both in page 1146 * table and swap cache(ie. page is freshly swapped in). So it could be 1147 * referenced concurrently by 2 types of PTEs: 1148 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1149 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1150 * and then 1151 * - clear dirty bit to prevent IO 1152 * - remove from LRU 1153 * - but keep in the swap cache, so that when we return to it on 1154 * a later page fault, we know the application is accessing 1155 * corrupted data and shall be killed (we installed simple 1156 * interception code in do_swap_page to catch it). 1157 * 1158 * Clean swap cache pages can be directly isolated. A later page fault will 1159 * bring in the known good data from disk. 1160 */ 1161 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1162 { 1163 struct folio *folio = page_folio(p); 1164 int ret; 1165 bool extra_pins = false; 1166 1167 folio_clear_dirty(folio); 1168 /* Trigger EIO in shmem: */ 1169 folio_clear_uptodate(folio); 1170 1171 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED; 1172 folio_unlock(folio); 1173 1174 if (ret == MF_DELAYED) 1175 extra_pins = true; 1176 1177 if (has_extra_refcount(ps, p, extra_pins)) 1178 ret = MF_FAILED; 1179 1180 return ret; 1181 } 1182 1183 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1184 { 1185 struct folio *folio = page_folio(p); 1186 int ret; 1187 1188 delete_from_swap_cache(folio); 1189 1190 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED; 1191 folio_unlock(folio); 1192 1193 if (has_extra_refcount(ps, p, false)) 1194 ret = MF_FAILED; 1195 1196 return ret; 1197 } 1198 1199 /* 1200 * Huge pages. Needs work. 1201 * Issues: 1202 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1203 * To narrow down kill region to one page, we need to break up pmd. 1204 */ 1205 static int me_huge_page(struct page_state *ps, struct page *p) 1206 { 1207 struct folio *folio = page_folio(p); 1208 int res; 1209 struct address_space *mapping; 1210 bool extra_pins = false; 1211 1212 mapping = folio_mapping(folio); 1213 if (mapping) { 1214 res = truncate_error_folio(folio, page_to_pfn(p), mapping); 1215 /* The page is kept in page cache. */ 1216 extra_pins = true; 1217 folio_unlock(folio); 1218 } else { 1219 folio_unlock(folio); 1220 /* 1221 * migration entry prevents later access on error hugepage, 1222 * so we can free and dissolve it into buddy to save healthy 1223 * subpages. 1224 */ 1225 folio_put(folio); 1226 if (__page_handle_poison(p) > 0) { 1227 page_ref_inc(p); 1228 res = MF_RECOVERED; 1229 } else { 1230 res = MF_FAILED; 1231 } 1232 } 1233 1234 if (has_extra_refcount(ps, p, extra_pins)) 1235 res = MF_FAILED; 1236 1237 return res; 1238 } 1239 1240 /* 1241 * Various page states we can handle. 1242 * 1243 * A page state is defined by its current page->flags bits. 1244 * The table matches them in order and calls the right handler. 1245 * 1246 * This is quite tricky because we can access page at any time 1247 * in its live cycle, so all accesses have to be extremely careful. 1248 * 1249 * This is not complete. More states could be added. 1250 * For any missing state don't attempt recovery. 1251 */ 1252 1253 #define dirty (1UL << PG_dirty) 1254 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1255 #define unevict (1UL << PG_unevictable) 1256 #define mlock (1UL << PG_mlocked) 1257 #define lru (1UL << PG_lru) 1258 #define head (1UL << PG_head) 1259 #define reserved (1UL << PG_reserved) 1260 1261 static struct page_state error_states[] = { 1262 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1263 /* 1264 * free pages are specially detected outside this table: 1265 * PG_buddy pages only make a small fraction of all free pages. 1266 */ 1267 1268 { head, head, MF_MSG_HUGE, me_huge_page }, 1269 1270 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1271 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1272 1273 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1274 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1275 1276 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1277 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1278 1279 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1280 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1281 1282 /* 1283 * Catchall entry: must be at end. 1284 */ 1285 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1286 }; 1287 1288 #undef dirty 1289 #undef sc 1290 #undef unevict 1291 #undef mlock 1292 #undef lru 1293 #undef head 1294 #undef reserved 1295 1296 static void update_per_node_mf_stats(unsigned long pfn, 1297 enum mf_result result) 1298 { 1299 int nid = MAX_NUMNODES; 1300 struct memory_failure_stats *mf_stats = NULL; 1301 1302 nid = pfn_to_nid(pfn); 1303 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1304 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1305 return; 1306 } 1307 1308 mf_stats = &NODE_DATA(nid)->mf_stats; 1309 switch (result) { 1310 case MF_IGNORED: 1311 ++mf_stats->ignored; 1312 break; 1313 case MF_FAILED: 1314 ++mf_stats->failed; 1315 break; 1316 case MF_DELAYED: 1317 ++mf_stats->delayed; 1318 break; 1319 case MF_RECOVERED: 1320 ++mf_stats->recovered; 1321 break; 1322 default: 1323 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1324 break; 1325 } 1326 ++mf_stats->total; 1327 } 1328 1329 /* 1330 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1331 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1332 */ 1333 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1334 enum mf_result result) 1335 { 1336 trace_memory_failure_event(pfn, type, result); 1337 1338 num_poisoned_pages_inc(pfn); 1339 1340 update_per_node_mf_stats(pfn, result); 1341 1342 pr_err("%#lx: recovery action for %s: %s\n", 1343 pfn, action_page_types[type], action_name[result]); 1344 1345 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1346 } 1347 1348 static int page_action(struct page_state *ps, struct page *p, 1349 unsigned long pfn) 1350 { 1351 int result; 1352 1353 /* page p should be unlocked after returning from ps->action(). */ 1354 result = ps->action(ps, p); 1355 1356 /* Could do more checks here if page looks ok */ 1357 /* 1358 * Could adjust zone counters here to correct for the missing page. 1359 */ 1360 1361 return action_result(pfn, ps->type, result); 1362 } 1363 1364 static inline bool PageHWPoisonTakenOff(struct page *page) 1365 { 1366 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1367 } 1368 1369 void SetPageHWPoisonTakenOff(struct page *page) 1370 { 1371 set_page_private(page, MAGIC_HWPOISON); 1372 } 1373 1374 void ClearPageHWPoisonTakenOff(struct page *page) 1375 { 1376 if (PageHWPoison(page)) 1377 set_page_private(page, 0); 1378 } 1379 1380 /* 1381 * Return true if a page type of a given page is supported by hwpoison 1382 * mechanism (while handling could fail), otherwise false. This function 1383 * does not return true for hugetlb or device memory pages, so it's assumed 1384 * to be called only in the context where we never have such pages. 1385 */ 1386 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1387 { 1388 if (PageSlab(page)) 1389 return false; 1390 1391 /* Soft offline could migrate non-LRU movable pages */ 1392 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1393 return true; 1394 1395 return PageLRU(page) || is_free_buddy_page(page); 1396 } 1397 1398 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1399 { 1400 struct folio *folio = page_folio(page); 1401 int ret = 0; 1402 bool hugetlb = false; 1403 1404 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1405 if (hugetlb) { 1406 /* Make sure hugetlb demotion did not happen from under us. */ 1407 if (folio == page_folio(page)) 1408 return ret; 1409 if (ret > 0) { 1410 folio_put(folio); 1411 folio = page_folio(page); 1412 } 1413 } 1414 1415 /* 1416 * This check prevents from calling folio_try_get() for any 1417 * unsupported type of folio in order to reduce the risk of unexpected 1418 * races caused by taking a folio refcount. 1419 */ 1420 if (!HWPoisonHandlable(&folio->page, flags)) 1421 return -EBUSY; 1422 1423 if (folio_try_get(folio)) { 1424 if (folio == page_folio(page)) 1425 return 1; 1426 1427 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1428 folio_put(folio); 1429 } 1430 1431 return 0; 1432 } 1433 1434 #define GET_PAGE_MAX_RETRY_NUM 3 1435 1436 static int get_any_page(struct page *p, unsigned long flags) 1437 { 1438 int ret = 0, pass = 0; 1439 bool count_increased = false; 1440 1441 if (flags & MF_COUNT_INCREASED) 1442 count_increased = true; 1443 1444 try_again: 1445 if (!count_increased) { 1446 ret = __get_hwpoison_page(p, flags); 1447 if (!ret) { 1448 if (page_count(p)) { 1449 /* We raced with an allocation, retry. */ 1450 if (pass++ < GET_PAGE_MAX_RETRY_NUM) 1451 goto try_again; 1452 ret = -EBUSY; 1453 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1454 /* We raced with put_page, retry. */ 1455 if (pass++ < GET_PAGE_MAX_RETRY_NUM) 1456 goto try_again; 1457 ret = -EIO; 1458 } 1459 goto out; 1460 } else if (ret == -EBUSY) { 1461 /* 1462 * We raced with (possibly temporary) unhandlable 1463 * page, retry. 1464 */ 1465 if (pass++ < 3) { 1466 shake_page(p); 1467 goto try_again; 1468 } 1469 ret = -EIO; 1470 goto out; 1471 } 1472 } 1473 1474 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1475 ret = 1; 1476 } else { 1477 /* 1478 * A page we cannot handle. Check whether we can turn 1479 * it into something we can handle. 1480 */ 1481 if (pass++ < GET_PAGE_MAX_RETRY_NUM) { 1482 put_page(p); 1483 shake_page(p); 1484 count_increased = false; 1485 goto try_again; 1486 } 1487 put_page(p); 1488 ret = -EIO; 1489 } 1490 out: 1491 if (ret == -EIO) 1492 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1493 1494 return ret; 1495 } 1496 1497 static int __get_unpoison_page(struct page *page) 1498 { 1499 struct folio *folio = page_folio(page); 1500 int ret = 0; 1501 bool hugetlb = false; 1502 1503 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1504 if (hugetlb) { 1505 /* Make sure hugetlb demotion did not happen from under us. */ 1506 if (folio == page_folio(page)) 1507 return ret; 1508 if (ret > 0) 1509 folio_put(folio); 1510 } 1511 1512 /* 1513 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1514 * but also isolated from buddy freelist, so need to identify the 1515 * state and have to cancel both operations to unpoison. 1516 */ 1517 if (PageHWPoisonTakenOff(page)) 1518 return -EHWPOISON; 1519 1520 return get_page_unless_zero(page) ? 1 : 0; 1521 } 1522 1523 /** 1524 * get_hwpoison_page() - Get refcount for memory error handling 1525 * @p: Raw error page (hit by memory error) 1526 * @flags: Flags controlling behavior of error handling 1527 * 1528 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1529 * error on it, after checking that the error page is in a well-defined state 1530 * (defined as a page-type we can successfully handle the memory error on it, 1531 * such as LRU page and hugetlb page). 1532 * 1533 * Memory error handling could be triggered at any time on any type of page, 1534 * so it's prone to race with typical memory management lifecycle (like 1535 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1536 * extra care for the error page's state (as done in __get_hwpoison_page()), 1537 * and has some retry logic in get_any_page(). 1538 * 1539 * When called from unpoison_memory(), the caller should already ensure that 1540 * the given page has PG_hwpoison. So it's never reused for other page 1541 * allocations, and __get_unpoison_page() never races with them. 1542 * 1543 * Return: 0 on failure or free buddy (hugetlb) page, 1544 * 1 on success for in-use pages in a well-defined state, 1545 * -EIO for pages on which we can not handle memory errors, 1546 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1547 * operations like allocation and free, 1548 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1549 */ 1550 static int get_hwpoison_page(struct page *p, unsigned long flags) 1551 { 1552 int ret; 1553 1554 zone_pcp_disable(page_zone(p)); 1555 if (flags & MF_UNPOISON) 1556 ret = __get_unpoison_page(p); 1557 else 1558 ret = get_any_page(p, flags); 1559 zone_pcp_enable(page_zone(p)); 1560 1561 return ret; 1562 } 1563 1564 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill) 1565 { 1566 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1567 struct address_space *mapping; 1568 1569 if (folio_test_swapcache(folio)) { 1570 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1571 ttu &= ~TTU_HWPOISON; 1572 } 1573 1574 /* 1575 * Propagate the dirty bit from PTEs to struct page first, because we 1576 * need this to decide if we should kill or just drop the page. 1577 * XXX: the dirty test could be racy: set_page_dirty() may not always 1578 * be called inside page lock (it's recommended but not enforced). 1579 */ 1580 mapping = folio_mapping(folio); 1581 if (!must_kill && !folio_test_dirty(folio) && mapping && 1582 mapping_can_writeback(mapping)) { 1583 if (folio_mkclean(folio)) { 1584 folio_set_dirty(folio); 1585 } else { 1586 ttu &= ~TTU_HWPOISON; 1587 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1588 pfn); 1589 } 1590 } 1591 1592 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { 1593 /* 1594 * For hugetlb folios in shared mappings, try_to_unmap 1595 * could potentially call huge_pmd_unshare. Because of 1596 * this, take semaphore in write mode here and set 1597 * TTU_RMAP_LOCKED to indicate we have taken the lock 1598 * at this higher level. 1599 */ 1600 mapping = hugetlb_folio_mapping_lock_write(folio); 1601 if (!mapping) { 1602 pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n", 1603 folio_pfn(folio)); 1604 return -EBUSY; 1605 } 1606 1607 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1608 i_mmap_unlock_write(mapping); 1609 } else { 1610 try_to_unmap(folio, ttu); 1611 } 1612 1613 return folio_mapped(folio) ? -EBUSY : 0; 1614 } 1615 1616 /* 1617 * Do all that is necessary to remove user space mappings. Unmap 1618 * the pages and send SIGBUS to the processes if the data was dirty. 1619 */ 1620 static bool hwpoison_user_mappings(struct folio *folio, struct page *p, 1621 unsigned long pfn, int flags) 1622 { 1623 LIST_HEAD(tokill); 1624 bool unmap_success; 1625 int forcekill; 1626 bool mlocked = folio_test_mlocked(folio); 1627 1628 /* 1629 * Here we are interested only in user-mapped pages, so skip any 1630 * other types of pages. 1631 */ 1632 if (folio_test_reserved(folio) || folio_test_slab(folio) || 1633 folio_test_pgtable(folio) || folio_test_offline(folio)) 1634 return true; 1635 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio))) 1636 return true; 1637 1638 /* 1639 * This check implies we don't kill processes if their pages 1640 * are in the swap cache early. Those are always late kills. 1641 */ 1642 if (!folio_mapped(folio)) 1643 return true; 1644 1645 /* 1646 * First collect all the processes that have the page 1647 * mapped in dirty form. This has to be done before try_to_unmap, 1648 * because ttu takes the rmap data structures down. 1649 */ 1650 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 1651 1652 unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL); 1653 if (!unmap_success) 1654 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n", 1655 pfn, folio_mapcount(folio)); 1656 1657 /* 1658 * try_to_unmap() might put mlocked page in lru cache, so call 1659 * shake_page() again to ensure that it's flushed. 1660 */ 1661 if (mlocked) 1662 shake_folio(folio); 1663 1664 /* 1665 * Now that the dirty bit has been propagated to the 1666 * struct page and all unmaps done we can decide if 1667 * killing is needed or not. Only kill when the page 1668 * was dirty or the process is not restartable, 1669 * otherwise the tokill list is merely 1670 * freed. When there was a problem unmapping earlier 1671 * use a more force-full uncatchable kill to prevent 1672 * any accesses to the poisoned memory. 1673 */ 1674 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) || 1675 !unmap_success; 1676 kill_procs(&tokill, forcekill, pfn, flags); 1677 1678 return unmap_success; 1679 } 1680 1681 static int identify_page_state(unsigned long pfn, struct page *p, 1682 unsigned long page_flags) 1683 { 1684 struct page_state *ps; 1685 1686 /* 1687 * The first check uses the current page flags which may not have any 1688 * relevant information. The second check with the saved page flags is 1689 * carried out only if the first check can't determine the page status. 1690 */ 1691 for (ps = error_states;; ps++) 1692 if ((p->flags & ps->mask) == ps->res) 1693 break; 1694 1695 page_flags |= (p->flags & (1UL << PG_dirty)); 1696 1697 if (!ps->mask) 1698 for (ps = error_states;; ps++) 1699 if ((page_flags & ps->mask) == ps->res) 1700 break; 1701 return page_action(ps, p, pfn); 1702 } 1703 1704 /* 1705 * When 'release' is 'false', it means that if thp split has failed, 1706 * there is still more to do, hence the page refcount we took earlier 1707 * is still needed. 1708 */ 1709 static int try_to_split_thp_page(struct page *page, bool release) 1710 { 1711 int ret; 1712 1713 lock_page(page); 1714 ret = split_huge_page(page); 1715 unlock_page(page); 1716 1717 if (ret && release) 1718 put_page(page); 1719 1720 return ret; 1721 } 1722 1723 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1724 struct address_space *mapping, pgoff_t index, int flags) 1725 { 1726 struct to_kill *tk; 1727 unsigned long size = 0; 1728 1729 list_for_each_entry(tk, to_kill, nd) 1730 if (tk->size_shift) 1731 size = max(size, 1UL << tk->size_shift); 1732 1733 if (size) { 1734 /* 1735 * Unmap the largest mapping to avoid breaking up device-dax 1736 * mappings which are constant size. The actual size of the 1737 * mapping being torn down is communicated in siginfo, see 1738 * kill_proc() 1739 */ 1740 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1); 1741 1742 unmap_mapping_range(mapping, start, size, 0); 1743 } 1744 1745 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags); 1746 } 1747 1748 /* 1749 * Only dev_pagemap pages get here, such as fsdax when the filesystem 1750 * either do not claim or fails to claim a hwpoison event, or devdax. 1751 * The fsdax pages are initialized per base page, and the devdax pages 1752 * could be initialized either as base pages, or as compound pages with 1753 * vmemmap optimization enabled. Devdax is simplistic in its dealing with 1754 * hwpoison, such that, if a subpage of a compound page is poisoned, 1755 * simply mark the compound head page is by far sufficient. 1756 */ 1757 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1758 struct dev_pagemap *pgmap) 1759 { 1760 struct folio *folio = pfn_folio(pfn); 1761 LIST_HEAD(to_kill); 1762 dax_entry_t cookie; 1763 int rc = 0; 1764 1765 /* 1766 * Prevent the inode from being freed while we are interrogating 1767 * the address_space, typically this would be handled by 1768 * lock_page(), but dax pages do not use the page lock. This 1769 * also prevents changes to the mapping of this pfn until 1770 * poison signaling is complete. 1771 */ 1772 cookie = dax_lock_folio(folio); 1773 if (!cookie) 1774 return -EBUSY; 1775 1776 if (hwpoison_filter(&folio->page)) { 1777 rc = -EOPNOTSUPP; 1778 goto unlock; 1779 } 1780 1781 switch (pgmap->type) { 1782 case MEMORY_DEVICE_PRIVATE: 1783 case MEMORY_DEVICE_COHERENT: 1784 /* 1785 * TODO: Handle device pages which may need coordination 1786 * with device-side memory. 1787 */ 1788 rc = -ENXIO; 1789 goto unlock; 1790 default: 1791 break; 1792 } 1793 1794 /* 1795 * Use this flag as an indication that the dax page has been 1796 * remapped UC to prevent speculative consumption of poison. 1797 */ 1798 SetPageHWPoison(&folio->page); 1799 1800 /* 1801 * Unlike System-RAM there is no possibility to swap in a 1802 * different physical page at a given virtual address, so all 1803 * userspace consumption of ZONE_DEVICE memory necessitates 1804 * SIGBUS (i.e. MF_MUST_KILL) 1805 */ 1806 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1807 collect_procs(folio, &folio->page, &to_kill, true); 1808 1809 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags); 1810 unlock: 1811 dax_unlock_folio(folio, cookie); 1812 return rc; 1813 } 1814 1815 #ifdef CONFIG_FS_DAX 1816 /** 1817 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1818 * @mapping: address_space of the file in use 1819 * @index: start pgoff of the range within the file 1820 * @count: length of the range, in unit of PAGE_SIZE 1821 * @mf_flags: memory failure flags 1822 */ 1823 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1824 unsigned long count, int mf_flags) 1825 { 1826 LIST_HEAD(to_kill); 1827 dax_entry_t cookie; 1828 struct page *page; 1829 size_t end = index + count; 1830 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE; 1831 1832 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1833 1834 for (; index < end; index++) { 1835 page = NULL; 1836 cookie = dax_lock_mapping_entry(mapping, index, &page); 1837 if (!cookie) 1838 return -EBUSY; 1839 if (!page) 1840 goto unlock; 1841 1842 if (!pre_remove) 1843 SetPageHWPoison(page); 1844 1845 /* 1846 * The pre_remove case is revoking access, the memory is still 1847 * good and could theoretically be put back into service. 1848 */ 1849 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove); 1850 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1851 index, mf_flags); 1852 unlock: 1853 dax_unlock_mapping_entry(mapping, index, cookie); 1854 } 1855 return 0; 1856 } 1857 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1858 #endif /* CONFIG_FS_DAX */ 1859 1860 #ifdef CONFIG_HUGETLB_PAGE 1861 1862 /* 1863 * Struct raw_hwp_page represents information about "raw error page", 1864 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1865 */ 1866 struct raw_hwp_page { 1867 struct llist_node node; 1868 struct page *page; 1869 }; 1870 1871 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1872 { 1873 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1874 } 1875 1876 bool is_raw_hwpoison_page_in_hugepage(struct page *page) 1877 { 1878 struct llist_head *raw_hwp_head; 1879 struct raw_hwp_page *p; 1880 struct folio *folio = page_folio(page); 1881 bool ret = false; 1882 1883 if (!folio_test_hwpoison(folio)) 1884 return false; 1885 1886 if (!folio_test_hugetlb(folio)) 1887 return PageHWPoison(page); 1888 1889 /* 1890 * When RawHwpUnreliable is set, kernel lost track of which subpages 1891 * are HWPOISON. So return as if ALL subpages are HWPOISONed. 1892 */ 1893 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1894 return true; 1895 1896 mutex_lock(&mf_mutex); 1897 1898 raw_hwp_head = raw_hwp_list_head(folio); 1899 llist_for_each_entry(p, raw_hwp_head->first, node) { 1900 if (page == p->page) { 1901 ret = true; 1902 break; 1903 } 1904 } 1905 1906 mutex_unlock(&mf_mutex); 1907 1908 return ret; 1909 } 1910 1911 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1912 { 1913 struct llist_node *head; 1914 struct raw_hwp_page *p, *next; 1915 unsigned long count = 0; 1916 1917 head = llist_del_all(raw_hwp_list_head(folio)); 1918 llist_for_each_entry_safe(p, next, head, node) { 1919 if (move_flag) 1920 SetPageHWPoison(p->page); 1921 else 1922 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1923 kfree(p); 1924 count++; 1925 } 1926 return count; 1927 } 1928 1929 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1930 { 1931 struct llist_head *head; 1932 struct raw_hwp_page *raw_hwp; 1933 struct raw_hwp_page *p; 1934 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1935 1936 /* 1937 * Once the hwpoison hugepage has lost reliable raw error info, 1938 * there is little meaning to keep additional error info precisely, 1939 * so skip to add additional raw error info. 1940 */ 1941 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1942 return -EHWPOISON; 1943 head = raw_hwp_list_head(folio); 1944 llist_for_each_entry(p, head->first, node) { 1945 if (p->page == page) 1946 return -EHWPOISON; 1947 } 1948 1949 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1950 if (raw_hwp) { 1951 raw_hwp->page = page; 1952 llist_add(&raw_hwp->node, head); 1953 /* the first error event will be counted in action_result(). */ 1954 if (ret) 1955 num_poisoned_pages_inc(page_to_pfn(page)); 1956 } else { 1957 /* 1958 * Failed to save raw error info. We no longer trace all 1959 * hwpoisoned subpages, and we need refuse to free/dissolve 1960 * this hwpoisoned hugepage. 1961 */ 1962 folio_set_hugetlb_raw_hwp_unreliable(folio); 1963 /* 1964 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1965 * used any more, so free it. 1966 */ 1967 __folio_free_raw_hwp(folio, false); 1968 } 1969 return ret; 1970 } 1971 1972 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1973 { 1974 /* 1975 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1976 * pages for tail pages are required but they don't exist. 1977 */ 1978 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1979 return 0; 1980 1981 /* 1982 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1983 * definition. 1984 */ 1985 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1986 return 0; 1987 1988 return __folio_free_raw_hwp(folio, move_flag); 1989 } 1990 1991 void folio_clear_hugetlb_hwpoison(struct folio *folio) 1992 { 1993 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1994 return; 1995 if (folio_test_hugetlb_vmemmap_optimized(folio)) 1996 return; 1997 folio_clear_hwpoison(folio); 1998 folio_free_raw_hwp(folio, true); 1999 } 2000 2001 /* 2002 * Called from hugetlb code with hugetlb_lock held. 2003 * 2004 * Return values: 2005 * 0 - free hugepage 2006 * 1 - in-use hugepage 2007 * 2 - not a hugepage 2008 * -EBUSY - the hugepage is busy (try to retry) 2009 * -EHWPOISON - the hugepage is already hwpoisoned 2010 */ 2011 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 2012 bool *migratable_cleared) 2013 { 2014 struct page *page = pfn_to_page(pfn); 2015 struct folio *folio = page_folio(page); 2016 int ret = 2; /* fallback to normal page handling */ 2017 bool count_increased = false; 2018 2019 if (!folio_test_hugetlb(folio)) 2020 goto out; 2021 2022 if (flags & MF_COUNT_INCREASED) { 2023 ret = 1; 2024 count_increased = true; 2025 } else if (folio_test_hugetlb_freed(folio)) { 2026 ret = 0; 2027 } else if (folio_test_hugetlb_migratable(folio)) { 2028 ret = folio_try_get(folio); 2029 if (ret) 2030 count_increased = true; 2031 } else { 2032 ret = -EBUSY; 2033 if (!(flags & MF_NO_RETRY)) 2034 goto out; 2035 } 2036 2037 if (folio_set_hugetlb_hwpoison(folio, page)) { 2038 ret = -EHWPOISON; 2039 goto out; 2040 } 2041 2042 /* 2043 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 2044 * from being migrated by memory hotremove. 2045 */ 2046 if (count_increased && folio_test_hugetlb_migratable(folio)) { 2047 folio_clear_hugetlb_migratable(folio); 2048 *migratable_cleared = true; 2049 } 2050 2051 return ret; 2052 out: 2053 if (count_increased) 2054 folio_put(folio); 2055 return ret; 2056 } 2057 2058 /* 2059 * Taking refcount of hugetlb pages needs extra care about race conditions 2060 * with basic operations like hugepage allocation/free/demotion. 2061 * So some of prechecks for hwpoison (pinning, and testing/setting 2062 * PageHWPoison) should be done in single hugetlb_lock range. 2063 */ 2064 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2065 { 2066 int res; 2067 struct page *p = pfn_to_page(pfn); 2068 struct folio *folio; 2069 unsigned long page_flags; 2070 bool migratable_cleared = false; 2071 2072 *hugetlb = 1; 2073 retry: 2074 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 2075 if (res == 2) { /* fallback to normal page handling */ 2076 *hugetlb = 0; 2077 return 0; 2078 } else if (res == -EHWPOISON) { 2079 pr_err("%#lx: already hardware poisoned\n", pfn); 2080 if (flags & MF_ACTION_REQUIRED) { 2081 folio = page_folio(p); 2082 res = kill_accessing_process(current, folio_pfn(folio), flags); 2083 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); 2084 } 2085 return res; 2086 } else if (res == -EBUSY) { 2087 if (!(flags & MF_NO_RETRY)) { 2088 flags |= MF_NO_RETRY; 2089 goto retry; 2090 } 2091 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); 2092 } 2093 2094 folio = page_folio(p); 2095 folio_lock(folio); 2096 2097 if (hwpoison_filter(p)) { 2098 folio_clear_hugetlb_hwpoison(folio); 2099 if (migratable_cleared) 2100 folio_set_hugetlb_migratable(folio); 2101 folio_unlock(folio); 2102 if (res == 1) 2103 folio_put(folio); 2104 return -EOPNOTSUPP; 2105 } 2106 2107 /* 2108 * Handling free hugepage. The possible race with hugepage allocation 2109 * or demotion can be prevented by PageHWPoison flag. 2110 */ 2111 if (res == 0) { 2112 folio_unlock(folio); 2113 if (__page_handle_poison(p) > 0) { 2114 page_ref_inc(p); 2115 res = MF_RECOVERED; 2116 } else { 2117 res = MF_FAILED; 2118 } 2119 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2120 } 2121 2122 page_flags = folio->flags; 2123 2124 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2125 folio_unlock(folio); 2126 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); 2127 } 2128 2129 return identify_page_state(pfn, p, page_flags); 2130 } 2131 2132 #else 2133 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2134 { 2135 return 0; 2136 } 2137 2138 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2139 { 2140 return 0; 2141 } 2142 #endif /* CONFIG_HUGETLB_PAGE */ 2143 2144 /* Drop the extra refcount in case we come from madvise() */ 2145 static void put_ref_page(unsigned long pfn, int flags) 2146 { 2147 if (!(flags & MF_COUNT_INCREASED)) 2148 return; 2149 2150 put_page(pfn_to_page(pfn)); 2151 } 2152 2153 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2154 struct dev_pagemap *pgmap) 2155 { 2156 int rc = -ENXIO; 2157 2158 /* device metadata space is not recoverable */ 2159 if (!pgmap_pfn_valid(pgmap, pfn)) 2160 goto out; 2161 2162 /* 2163 * Call driver's implementation to handle the memory failure, otherwise 2164 * fall back to generic handler. 2165 */ 2166 if (pgmap_has_memory_failure(pgmap)) { 2167 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2168 /* 2169 * Fall back to generic handler too if operation is not 2170 * supported inside the driver/device/filesystem. 2171 */ 2172 if (rc != -EOPNOTSUPP) 2173 goto out; 2174 } 2175 2176 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2177 out: 2178 /* drop pgmap ref acquired in caller */ 2179 put_dev_pagemap(pgmap); 2180 if (rc != -EOPNOTSUPP) 2181 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2182 return rc; 2183 } 2184 2185 /* 2186 * The calling condition is as such: thp split failed, page might have 2187 * been RDMA pinned, not much can be done for recovery. 2188 * But a SIGBUS should be delivered with vaddr provided so that the user 2189 * application has a chance to recover. Also, application processes' 2190 * election for MCE early killed will be honored. 2191 */ 2192 static void kill_procs_now(struct page *p, unsigned long pfn, int flags, 2193 struct folio *folio) 2194 { 2195 LIST_HEAD(tokill); 2196 2197 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 2198 kill_procs(&tokill, true, pfn, flags); 2199 } 2200 2201 /** 2202 * memory_failure - Handle memory failure of a page. 2203 * @pfn: Page Number of the corrupted page 2204 * @flags: fine tune action taken 2205 * 2206 * This function is called by the low level machine check code 2207 * of an architecture when it detects hardware memory corruption 2208 * of a page. It tries its best to recover, which includes 2209 * dropping pages, killing processes etc. 2210 * 2211 * The function is primarily of use for corruptions that 2212 * happen outside the current execution context (e.g. when 2213 * detected by a background scrubber) 2214 * 2215 * Must run in process context (e.g. a work queue) with interrupts 2216 * enabled and no spinlocks held. 2217 * 2218 * Return: 2219 * 0 - success, 2220 * -ENXIO - memory not managed by the kernel 2221 * -EOPNOTSUPP - hwpoison_filter() filtered the error event, 2222 * -EHWPOISON - the page was already poisoned, potentially 2223 * kill process, 2224 * other negative values - failure. 2225 */ 2226 int memory_failure(unsigned long pfn, int flags) 2227 { 2228 struct page *p; 2229 struct folio *folio; 2230 struct dev_pagemap *pgmap; 2231 int res = 0; 2232 unsigned long page_flags; 2233 bool retry = true; 2234 int hugetlb = 0; 2235 2236 if (!sysctl_memory_failure_recovery) 2237 panic("Memory failure on page %lx", pfn); 2238 2239 mutex_lock(&mf_mutex); 2240 2241 if (!(flags & MF_SW_SIMULATED)) 2242 hw_memory_failure = true; 2243 2244 p = pfn_to_online_page(pfn); 2245 if (!p) { 2246 res = arch_memory_failure(pfn, flags); 2247 if (res == 0) 2248 goto unlock_mutex; 2249 2250 if (pfn_valid(pfn)) { 2251 pgmap = get_dev_pagemap(pfn, NULL); 2252 put_ref_page(pfn, flags); 2253 if (pgmap) { 2254 res = memory_failure_dev_pagemap(pfn, flags, 2255 pgmap); 2256 goto unlock_mutex; 2257 } 2258 } 2259 pr_err("%#lx: memory outside kernel control\n", pfn); 2260 res = -ENXIO; 2261 goto unlock_mutex; 2262 } 2263 2264 try_again: 2265 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2266 if (hugetlb) 2267 goto unlock_mutex; 2268 2269 if (TestSetPageHWPoison(p)) { 2270 pr_err("%#lx: already hardware poisoned\n", pfn); 2271 res = -EHWPOISON; 2272 if (flags & MF_ACTION_REQUIRED) 2273 res = kill_accessing_process(current, pfn, flags); 2274 if (flags & MF_COUNT_INCREASED) 2275 put_page(p); 2276 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); 2277 goto unlock_mutex; 2278 } 2279 2280 /* 2281 * We need/can do nothing about count=0 pages. 2282 * 1) it's a free page, and therefore in safe hand: 2283 * check_new_page() will be the gate keeper. 2284 * 2) it's part of a non-compound high order page. 2285 * Implies some kernel user: cannot stop them from 2286 * R/W the page; let's pray that the page has been 2287 * used and will be freed some time later. 2288 * In fact it's dangerous to directly bump up page count from 0, 2289 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2290 */ 2291 if (!(flags & MF_COUNT_INCREASED)) { 2292 res = get_hwpoison_page(p, flags); 2293 if (!res) { 2294 if (is_free_buddy_page(p)) { 2295 if (take_page_off_buddy(p)) { 2296 page_ref_inc(p); 2297 res = MF_RECOVERED; 2298 } else { 2299 /* We lost the race, try again */ 2300 if (retry) { 2301 ClearPageHWPoison(p); 2302 retry = false; 2303 goto try_again; 2304 } 2305 res = MF_FAILED; 2306 } 2307 res = action_result(pfn, MF_MSG_BUDDY, res); 2308 } else { 2309 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2310 } 2311 goto unlock_mutex; 2312 } else if (res < 0) { 2313 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); 2314 goto unlock_mutex; 2315 } 2316 } 2317 2318 folio = page_folio(p); 2319 2320 /* filter pages that are protected from hwpoison test by users */ 2321 folio_lock(folio); 2322 if (hwpoison_filter(p)) { 2323 ClearPageHWPoison(p); 2324 folio_unlock(folio); 2325 folio_put(folio); 2326 res = -EOPNOTSUPP; 2327 goto unlock_mutex; 2328 } 2329 folio_unlock(folio); 2330 2331 if (folio_test_large(folio)) { 2332 /* 2333 * The flag must be set after the refcount is bumped 2334 * otherwise it may race with THP split. 2335 * And the flag can't be set in get_hwpoison_page() since 2336 * it is called by soft offline too and it is just called 2337 * for !MF_COUNT_INCREASED. So here seems to be the best 2338 * place. 2339 * 2340 * Don't need care about the above error handling paths for 2341 * get_hwpoison_page() since they handle either free page 2342 * or unhandlable page. The refcount is bumped iff the 2343 * page is a valid handlable page. 2344 */ 2345 folio_set_has_hwpoisoned(folio); 2346 if (try_to_split_thp_page(p, false) < 0) { 2347 res = -EHWPOISON; 2348 kill_procs_now(p, pfn, flags, folio); 2349 put_page(p); 2350 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED); 2351 goto unlock_mutex; 2352 } 2353 VM_BUG_ON_PAGE(!page_count(p), p); 2354 folio = page_folio(p); 2355 } 2356 2357 /* 2358 * We ignore non-LRU pages for good reasons. 2359 * - PG_locked is only well defined for LRU pages and a few others 2360 * - to avoid races with __SetPageLocked() 2361 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2362 * The check (unnecessarily) ignores LRU pages being isolated and 2363 * walked by the page reclaim code, however that's not a big loss. 2364 */ 2365 shake_folio(folio); 2366 2367 folio_lock(folio); 2368 2369 /* 2370 * We're only intended to deal with the non-Compound page here. 2371 * The page cannot become compound pages again as folio has been 2372 * splited and extra refcnt is held. 2373 */ 2374 WARN_ON(folio_test_large(folio)); 2375 2376 /* 2377 * We use page flags to determine what action should be taken, but 2378 * the flags can be modified by the error containment action. One 2379 * example is an mlocked page, where PG_mlocked is cleared by 2380 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page 2381 * status correctly, we save a copy of the page flags at this time. 2382 */ 2383 page_flags = folio->flags; 2384 2385 /* 2386 * __munlock_folio() may clear a writeback folio's LRU flag without 2387 * the folio lock. We need to wait for writeback completion for this 2388 * folio or it may trigger a vfs BUG while evicting inode. 2389 */ 2390 if (!folio_test_lru(folio) && !folio_test_writeback(folio)) 2391 goto identify_page_state; 2392 2393 /* 2394 * It's very difficult to mess with pages currently under IO 2395 * and in many cases impossible, so we just avoid it here. 2396 */ 2397 folio_wait_writeback(folio); 2398 2399 /* 2400 * Now take care of user space mappings. 2401 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2402 */ 2403 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2404 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); 2405 goto unlock_page; 2406 } 2407 2408 /* 2409 * Torn down by someone else? 2410 */ 2411 if (folio_test_lru(folio) && !folio_test_swapcache(folio) && 2412 folio->mapping == NULL) { 2413 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2414 goto unlock_page; 2415 } 2416 2417 identify_page_state: 2418 res = identify_page_state(pfn, p, page_flags); 2419 mutex_unlock(&mf_mutex); 2420 return res; 2421 unlock_page: 2422 folio_unlock(folio); 2423 unlock_mutex: 2424 mutex_unlock(&mf_mutex); 2425 return res; 2426 } 2427 EXPORT_SYMBOL_GPL(memory_failure); 2428 2429 #define MEMORY_FAILURE_FIFO_ORDER 4 2430 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2431 2432 struct memory_failure_entry { 2433 unsigned long pfn; 2434 int flags; 2435 }; 2436 2437 struct memory_failure_cpu { 2438 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2439 MEMORY_FAILURE_FIFO_SIZE); 2440 raw_spinlock_t lock; 2441 struct work_struct work; 2442 }; 2443 2444 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2445 2446 /** 2447 * memory_failure_queue - Schedule handling memory failure of a page. 2448 * @pfn: Page Number of the corrupted page 2449 * @flags: Flags for memory failure handling 2450 * 2451 * This function is called by the low level hardware error handler 2452 * when it detects hardware memory corruption of a page. It schedules 2453 * the recovering of error page, including dropping pages, killing 2454 * processes etc. 2455 * 2456 * The function is primarily of use for corruptions that 2457 * happen outside the current execution context (e.g. when 2458 * detected by a background scrubber) 2459 * 2460 * Can run in IRQ context. 2461 */ 2462 void memory_failure_queue(unsigned long pfn, int flags) 2463 { 2464 struct memory_failure_cpu *mf_cpu; 2465 unsigned long proc_flags; 2466 bool buffer_overflow; 2467 struct memory_failure_entry entry = { 2468 .pfn = pfn, 2469 .flags = flags, 2470 }; 2471 2472 mf_cpu = &get_cpu_var(memory_failure_cpu); 2473 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2474 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry); 2475 if (!buffer_overflow) 2476 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2477 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2478 put_cpu_var(memory_failure_cpu); 2479 if (buffer_overflow) 2480 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2481 pfn); 2482 } 2483 EXPORT_SYMBOL_GPL(memory_failure_queue); 2484 2485 static void memory_failure_work_func(struct work_struct *work) 2486 { 2487 struct memory_failure_cpu *mf_cpu; 2488 struct memory_failure_entry entry = { 0, }; 2489 unsigned long proc_flags; 2490 int gotten; 2491 2492 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2493 for (;;) { 2494 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2495 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2496 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2497 if (!gotten) 2498 break; 2499 if (entry.flags & MF_SOFT_OFFLINE) 2500 soft_offline_page(entry.pfn, entry.flags); 2501 else 2502 memory_failure(entry.pfn, entry.flags); 2503 } 2504 } 2505 2506 /* 2507 * Process memory_failure work queued on the specified CPU. 2508 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2509 */ 2510 void memory_failure_queue_kick(int cpu) 2511 { 2512 struct memory_failure_cpu *mf_cpu; 2513 2514 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2515 cancel_work_sync(&mf_cpu->work); 2516 memory_failure_work_func(&mf_cpu->work); 2517 } 2518 2519 static int __init memory_failure_init(void) 2520 { 2521 struct memory_failure_cpu *mf_cpu; 2522 int cpu; 2523 2524 for_each_possible_cpu(cpu) { 2525 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2526 raw_spin_lock_init(&mf_cpu->lock); 2527 INIT_KFIFO(mf_cpu->fifo); 2528 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2529 } 2530 2531 register_sysctl_init("vm", memory_failure_table); 2532 2533 return 0; 2534 } 2535 core_initcall(memory_failure_init); 2536 2537 #undef pr_fmt 2538 #define pr_fmt(fmt) "Unpoison: " fmt 2539 #define unpoison_pr_info(fmt, pfn, rs) \ 2540 ({ \ 2541 if (__ratelimit(rs)) \ 2542 pr_info(fmt, pfn); \ 2543 }) 2544 2545 /** 2546 * unpoison_memory - Unpoison a previously poisoned page 2547 * @pfn: Page number of the to be unpoisoned page 2548 * 2549 * Software-unpoison a page that has been poisoned by 2550 * memory_failure() earlier. 2551 * 2552 * This is only done on the software-level, so it only works 2553 * for linux injected failures, not real hardware failures 2554 * 2555 * Returns 0 for success, otherwise -errno. 2556 */ 2557 int unpoison_memory(unsigned long pfn) 2558 { 2559 struct folio *folio; 2560 struct page *p; 2561 int ret = -EBUSY, ghp; 2562 unsigned long count; 2563 bool huge = false; 2564 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2565 DEFAULT_RATELIMIT_BURST); 2566 2567 if (!pfn_valid(pfn)) 2568 return -ENXIO; 2569 2570 p = pfn_to_page(pfn); 2571 folio = page_folio(p); 2572 2573 mutex_lock(&mf_mutex); 2574 2575 if (hw_memory_failure) { 2576 unpoison_pr_info("%#lx: disabled after HW memory failure\n", 2577 pfn, &unpoison_rs); 2578 ret = -EOPNOTSUPP; 2579 goto unlock_mutex; 2580 } 2581 2582 if (is_huge_zero_folio(folio)) { 2583 unpoison_pr_info("%#lx: huge zero page is not supported\n", 2584 pfn, &unpoison_rs); 2585 ret = -EOPNOTSUPP; 2586 goto unlock_mutex; 2587 } 2588 2589 if (!PageHWPoison(p)) { 2590 unpoison_pr_info("%#lx: page was already unpoisoned\n", 2591 pfn, &unpoison_rs); 2592 goto unlock_mutex; 2593 } 2594 2595 if (folio_ref_count(folio) > 1) { 2596 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n", 2597 pfn, &unpoison_rs); 2598 goto unlock_mutex; 2599 } 2600 2601 if (folio_test_slab(folio) || folio_test_pgtable(folio) || 2602 folio_test_reserved(folio) || folio_test_offline(folio)) 2603 goto unlock_mutex; 2604 2605 if (folio_mapped(folio)) { 2606 unpoison_pr_info("%#lx: someone maps the hwpoison page\n", 2607 pfn, &unpoison_rs); 2608 goto unlock_mutex; 2609 } 2610 2611 if (folio_mapping(folio)) { 2612 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n", 2613 pfn, &unpoison_rs); 2614 goto unlock_mutex; 2615 } 2616 2617 ghp = get_hwpoison_page(p, MF_UNPOISON); 2618 if (!ghp) { 2619 if (folio_test_hugetlb(folio)) { 2620 huge = true; 2621 count = folio_free_raw_hwp(folio, false); 2622 if (count == 0) 2623 goto unlock_mutex; 2624 } 2625 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2626 } else if (ghp < 0) { 2627 if (ghp == -EHWPOISON) { 2628 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2629 } else { 2630 ret = ghp; 2631 unpoison_pr_info("%#lx: failed to grab page\n", 2632 pfn, &unpoison_rs); 2633 } 2634 } else { 2635 if (folio_test_hugetlb(folio)) { 2636 huge = true; 2637 count = folio_free_raw_hwp(folio, false); 2638 if (count == 0) { 2639 folio_put(folio); 2640 goto unlock_mutex; 2641 } 2642 } 2643 2644 folio_put(folio); 2645 if (TestClearPageHWPoison(p)) { 2646 folio_put(folio); 2647 ret = 0; 2648 } 2649 } 2650 2651 unlock_mutex: 2652 mutex_unlock(&mf_mutex); 2653 if (!ret) { 2654 if (!huge) 2655 num_poisoned_pages_sub(pfn, 1); 2656 unpoison_pr_info("%#lx: software-unpoisoned page\n", 2657 page_to_pfn(p), &unpoison_rs); 2658 } 2659 return ret; 2660 } 2661 EXPORT_SYMBOL(unpoison_memory); 2662 2663 #undef pr_fmt 2664 #define pr_fmt(fmt) "Soft offline: " fmt 2665 2666 /* 2667 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2668 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2669 * If the page is mapped, it migrates the contents over. 2670 */ 2671 static int soft_offline_in_use_page(struct page *page) 2672 { 2673 long ret = 0; 2674 unsigned long pfn = page_to_pfn(page); 2675 struct folio *folio = page_folio(page); 2676 char const *msg_page[] = {"page", "hugepage"}; 2677 bool huge = folio_test_hugetlb(folio); 2678 bool isolated; 2679 LIST_HEAD(pagelist); 2680 struct migration_target_control mtc = { 2681 .nid = NUMA_NO_NODE, 2682 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2683 .reason = MR_MEMORY_FAILURE, 2684 }; 2685 2686 if (!huge && folio_test_large(folio)) { 2687 if (try_to_split_thp_page(page, true)) { 2688 pr_info("%#lx: thp split failed\n", pfn); 2689 return -EBUSY; 2690 } 2691 folio = page_folio(page); 2692 } 2693 2694 folio_lock(folio); 2695 if (!huge) 2696 folio_wait_writeback(folio); 2697 if (PageHWPoison(page)) { 2698 folio_unlock(folio); 2699 folio_put(folio); 2700 pr_info("%#lx: page already poisoned\n", pfn); 2701 return 0; 2702 } 2703 2704 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio)) 2705 /* 2706 * Try to invalidate first. This should work for 2707 * non dirty unmapped page cache pages. 2708 */ 2709 ret = mapping_evict_folio(folio_mapping(folio), folio); 2710 folio_unlock(folio); 2711 2712 if (ret) { 2713 pr_info("%#lx: invalidated\n", pfn); 2714 page_handle_poison(page, false, true); 2715 return 0; 2716 } 2717 2718 isolated = isolate_folio_to_list(folio, &pagelist); 2719 2720 /* 2721 * If we succeed to isolate the folio, we grabbed another refcount on 2722 * the folio, so we can safely drop the one we got from get_any_page(). 2723 * If we failed to isolate the folio, it means that we cannot go further 2724 * and we will return an error, so drop the reference we got from 2725 * get_any_page() as well. 2726 */ 2727 folio_put(folio); 2728 2729 if (isolated) { 2730 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2731 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2732 if (!ret) { 2733 bool release = !huge; 2734 2735 if (!page_handle_poison(page, huge, release)) 2736 ret = -EBUSY; 2737 } else { 2738 if (!list_empty(&pagelist)) 2739 putback_movable_pages(&pagelist); 2740 2741 pr_info("%#lx: %s migration failed %ld, type %pGp\n", 2742 pfn, msg_page[huge], ret, &page->flags); 2743 if (ret > 0) 2744 ret = -EBUSY; 2745 } 2746 } else { 2747 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n", 2748 pfn, msg_page[huge], page_count(page), &page->flags); 2749 ret = -EBUSY; 2750 } 2751 return ret; 2752 } 2753 2754 /** 2755 * soft_offline_page - Soft offline a page. 2756 * @pfn: pfn to soft-offline 2757 * @flags: flags. Same as memory_failure(). 2758 * 2759 * Returns 0 on success, 2760 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or 2761 * disabled by /proc/sys/vm/enable_soft_offline, 2762 * < 0 otherwise negated errno. 2763 * 2764 * Soft offline a page, by migration or invalidation, 2765 * without killing anything. This is for the case when 2766 * a page is not corrupted yet (so it's still valid to access), 2767 * but has had a number of corrected errors and is better taken 2768 * out. 2769 * 2770 * The actual policy on when to do that is maintained by 2771 * user space. 2772 * 2773 * This should never impact any application or cause data loss, 2774 * however it might take some time. 2775 * 2776 * This is not a 100% solution for all memory, but tries to be 2777 * ``good enough'' for the majority of memory. 2778 */ 2779 int soft_offline_page(unsigned long pfn, int flags) 2780 { 2781 int ret; 2782 bool try_again = true; 2783 struct page *page; 2784 2785 if (!pfn_valid(pfn)) { 2786 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2787 return -ENXIO; 2788 } 2789 2790 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2791 page = pfn_to_online_page(pfn); 2792 if (!page) { 2793 put_ref_page(pfn, flags); 2794 return -EIO; 2795 } 2796 2797 if (!sysctl_enable_soft_offline) { 2798 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n"); 2799 put_ref_page(pfn, flags); 2800 return -EOPNOTSUPP; 2801 } 2802 2803 mutex_lock(&mf_mutex); 2804 2805 if (PageHWPoison(page)) { 2806 pr_info("%#lx: page already poisoned\n", pfn); 2807 put_ref_page(pfn, flags); 2808 mutex_unlock(&mf_mutex); 2809 return 0; 2810 } 2811 2812 retry: 2813 get_online_mems(); 2814 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2815 put_online_mems(); 2816 2817 if (hwpoison_filter(page)) { 2818 if (ret > 0) 2819 put_page(page); 2820 2821 mutex_unlock(&mf_mutex); 2822 return -EOPNOTSUPP; 2823 } 2824 2825 if (ret > 0) { 2826 ret = soft_offline_in_use_page(page); 2827 } else if (ret == 0) { 2828 if (!page_handle_poison(page, true, false)) { 2829 if (try_again) { 2830 try_again = false; 2831 flags &= ~MF_COUNT_INCREASED; 2832 goto retry; 2833 } 2834 ret = -EBUSY; 2835 } 2836 } 2837 2838 mutex_unlock(&mf_mutex); 2839 2840 return ret; 2841 } 2842