1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 #include <linux/kernel.h> 37 #include <linux/mm.h> 38 #include <linux/page-flags.h> 39 #include <linux/kernel-page-flags.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/task.h> 42 #include <linux/ksm.h> 43 #include <linux/rmap.h> 44 #include <linux/export.h> 45 #include <linux/pagemap.h> 46 #include <linux/swap.h> 47 #include <linux/backing-dev.h> 48 #include <linux/migrate.h> 49 #include <linux/suspend.h> 50 #include <linux/slab.h> 51 #include <linux/swapops.h> 52 #include <linux/hugetlb.h> 53 #include <linux/memory_hotplug.h> 54 #include <linux/mm_inline.h> 55 #include <linux/memremap.h> 56 #include <linux/kfifo.h> 57 #include <linux/ratelimit.h> 58 #include <linux/page-isolation.h> 59 #include "internal.h" 60 #include "ras/ras_event.h" 61 62 int sysctl_memory_failure_early_kill __read_mostly = 0; 63 64 int sysctl_memory_failure_recovery __read_mostly = 1; 65 66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 67 68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 69 70 u32 hwpoison_filter_enable = 0; 71 u32 hwpoison_filter_dev_major = ~0U; 72 u32 hwpoison_filter_dev_minor = ~0U; 73 u64 hwpoison_filter_flags_mask; 74 u64 hwpoison_filter_flags_value; 75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 80 81 static int hwpoison_filter_dev(struct page *p) 82 { 83 struct address_space *mapping; 84 dev_t dev; 85 86 if (hwpoison_filter_dev_major == ~0U && 87 hwpoison_filter_dev_minor == ~0U) 88 return 0; 89 90 /* 91 * page_mapping() does not accept slab pages. 92 */ 93 if (PageSlab(p)) 94 return -EINVAL; 95 96 mapping = page_mapping(p); 97 if (mapping == NULL || mapping->host == NULL) 98 return -EINVAL; 99 100 dev = mapping->host->i_sb->s_dev; 101 if (hwpoison_filter_dev_major != ~0U && 102 hwpoison_filter_dev_major != MAJOR(dev)) 103 return -EINVAL; 104 if (hwpoison_filter_dev_minor != ~0U && 105 hwpoison_filter_dev_minor != MINOR(dev)) 106 return -EINVAL; 107 108 return 0; 109 } 110 111 static int hwpoison_filter_flags(struct page *p) 112 { 113 if (!hwpoison_filter_flags_mask) 114 return 0; 115 116 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 117 hwpoison_filter_flags_value) 118 return 0; 119 else 120 return -EINVAL; 121 } 122 123 /* 124 * This allows stress tests to limit test scope to a collection of tasks 125 * by putting them under some memcg. This prevents killing unrelated/important 126 * processes such as /sbin/init. Note that the target task may share clean 127 * pages with init (eg. libc text), which is harmless. If the target task 128 * share _dirty_ pages with another task B, the test scheme must make sure B 129 * is also included in the memcg. At last, due to race conditions this filter 130 * can only guarantee that the page either belongs to the memcg tasks, or is 131 * a freed page. 132 */ 133 #ifdef CONFIG_MEMCG 134 u64 hwpoison_filter_memcg; 135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 136 static int hwpoison_filter_task(struct page *p) 137 { 138 if (!hwpoison_filter_memcg) 139 return 0; 140 141 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 142 return -EINVAL; 143 144 return 0; 145 } 146 #else 147 static int hwpoison_filter_task(struct page *p) { return 0; } 148 #endif 149 150 int hwpoison_filter(struct page *p) 151 { 152 if (!hwpoison_filter_enable) 153 return 0; 154 155 if (hwpoison_filter_dev(p)) 156 return -EINVAL; 157 158 if (hwpoison_filter_flags(p)) 159 return -EINVAL; 160 161 if (hwpoison_filter_task(p)) 162 return -EINVAL; 163 164 return 0; 165 } 166 #else 167 int hwpoison_filter(struct page *p) 168 { 169 return 0; 170 } 171 #endif 172 173 EXPORT_SYMBOL_GPL(hwpoison_filter); 174 175 /* 176 * Kill all processes that have a poisoned page mapped and then isolate 177 * the page. 178 * 179 * General strategy: 180 * Find all processes having the page mapped and kill them. 181 * But we keep a page reference around so that the page is not 182 * actually freed yet. 183 * Then stash the page away 184 * 185 * There's no convenient way to get back to mapped processes 186 * from the VMAs. So do a brute-force search over all 187 * running processes. 188 * 189 * Remember that machine checks are not common (or rather 190 * if they are common you have other problems), so this shouldn't 191 * be a performance issue. 192 * 193 * Also there are some races possible while we get from the 194 * error detection to actually handle it. 195 */ 196 197 struct to_kill { 198 struct list_head nd; 199 struct task_struct *tsk; 200 unsigned long addr; 201 short size_shift; 202 }; 203 204 /* 205 * Send all the processes who have the page mapped a signal. 206 * ``action optional'' if they are not immediately affected by the error 207 * ``action required'' if error happened in current execution context 208 */ 209 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 210 { 211 struct task_struct *t = tk->tsk; 212 short addr_lsb = tk->size_shift; 213 int ret = 0; 214 215 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 216 pfn, t->comm, t->pid); 217 218 if (flags & MF_ACTION_REQUIRED) { 219 WARN_ON_ONCE(t != current); 220 ret = force_sig_mceerr(BUS_MCEERR_AR, 221 (void __user *)tk->addr, addr_lsb); 222 } else { 223 /* 224 * Don't use force here, it's convenient if the signal 225 * can be temporarily blocked. 226 * This could cause a loop when the user sets SIGBUS 227 * to SIG_IGN, but hopefully no one will do that? 228 */ 229 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 230 addr_lsb, t); /* synchronous? */ 231 } 232 if (ret < 0) 233 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 234 t->comm, t->pid, ret); 235 return ret; 236 } 237 238 /* 239 * When a unknown page type is encountered drain as many buffers as possible 240 * in the hope to turn the page into a LRU or free page, which we can handle. 241 */ 242 void shake_page(struct page *p, int access) 243 { 244 if (PageHuge(p)) 245 return; 246 247 if (!PageSlab(p)) { 248 lru_add_drain_all(); 249 if (PageLRU(p)) 250 return; 251 drain_all_pages(page_zone(p)); 252 if (PageLRU(p) || is_free_buddy_page(p)) 253 return; 254 } 255 256 /* 257 * Only call shrink_node_slabs here (which would also shrink 258 * other caches) if access is not potentially fatal. 259 */ 260 if (access) 261 drop_slab_node(page_to_nid(p)); 262 } 263 EXPORT_SYMBOL_GPL(shake_page); 264 265 static unsigned long dev_pagemap_mapping_shift(struct page *page, 266 struct vm_area_struct *vma) 267 { 268 unsigned long address = vma_address(page, vma); 269 pgd_t *pgd; 270 p4d_t *p4d; 271 pud_t *pud; 272 pmd_t *pmd; 273 pte_t *pte; 274 275 pgd = pgd_offset(vma->vm_mm, address); 276 if (!pgd_present(*pgd)) 277 return 0; 278 p4d = p4d_offset(pgd, address); 279 if (!p4d_present(*p4d)) 280 return 0; 281 pud = pud_offset(p4d, address); 282 if (!pud_present(*pud)) 283 return 0; 284 if (pud_devmap(*pud)) 285 return PUD_SHIFT; 286 pmd = pmd_offset(pud, address); 287 if (!pmd_present(*pmd)) 288 return 0; 289 if (pmd_devmap(*pmd)) 290 return PMD_SHIFT; 291 pte = pte_offset_map(pmd, address); 292 if (!pte_present(*pte)) 293 return 0; 294 if (pte_devmap(*pte)) 295 return PAGE_SHIFT; 296 return 0; 297 } 298 299 /* 300 * Failure handling: if we can't find or can't kill a process there's 301 * not much we can do. We just print a message and ignore otherwise. 302 */ 303 304 /* 305 * Schedule a process for later kill. 306 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 307 */ 308 static void add_to_kill(struct task_struct *tsk, struct page *p, 309 struct vm_area_struct *vma, 310 struct list_head *to_kill) 311 { 312 struct to_kill *tk; 313 314 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 315 if (!tk) { 316 pr_err("Memory failure: Out of memory while machine check handling\n"); 317 return; 318 } 319 320 tk->addr = page_address_in_vma(p, vma); 321 if (is_zone_device_page(p)) 322 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 323 else 324 tk->size_shift = page_shift(compound_head(p)); 325 326 /* 327 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 328 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 329 * so "tk->size_shift == 0" effectively checks no mapping on 330 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 331 * to a process' address space, it's possible not all N VMAs 332 * contain mappings for the page, but at least one VMA does. 333 * Only deliver SIGBUS with payload derived from the VMA that 334 * has a mapping for the page. 335 */ 336 if (tk->addr == -EFAULT) { 337 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 338 page_to_pfn(p), tsk->comm); 339 } else if (tk->size_shift == 0) { 340 kfree(tk); 341 return; 342 } 343 344 get_task_struct(tsk); 345 tk->tsk = tsk; 346 list_add_tail(&tk->nd, to_kill); 347 } 348 349 /* 350 * Kill the processes that have been collected earlier. 351 * 352 * Only do anything when DOIT is set, otherwise just free the list 353 * (this is used for clean pages which do not need killing) 354 * Also when FAIL is set do a force kill because something went 355 * wrong earlier. 356 */ 357 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 358 unsigned long pfn, int flags) 359 { 360 struct to_kill *tk, *next; 361 362 list_for_each_entry_safe (tk, next, to_kill, nd) { 363 if (forcekill) { 364 /* 365 * In case something went wrong with munmapping 366 * make sure the process doesn't catch the 367 * signal and then access the memory. Just kill it. 368 */ 369 if (fail || tk->addr == -EFAULT) { 370 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 371 pfn, tk->tsk->comm, tk->tsk->pid); 372 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 373 tk->tsk, PIDTYPE_PID); 374 } 375 376 /* 377 * In theory the process could have mapped 378 * something else on the address in-between. We could 379 * check for that, but we need to tell the 380 * process anyways. 381 */ 382 else if (kill_proc(tk, pfn, flags) < 0) 383 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 384 pfn, tk->tsk->comm, tk->tsk->pid); 385 } 386 put_task_struct(tk->tsk); 387 kfree(tk); 388 } 389 } 390 391 /* 392 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 393 * on behalf of the thread group. Return task_struct of the (first found) 394 * dedicated thread if found, and return NULL otherwise. 395 * 396 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 397 * have to call rcu_read_lock/unlock() in this function. 398 */ 399 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 400 { 401 struct task_struct *t; 402 403 for_each_thread(tsk, t) { 404 if (t->flags & PF_MCE_PROCESS) { 405 if (t->flags & PF_MCE_EARLY) 406 return t; 407 } else { 408 if (sysctl_memory_failure_early_kill) 409 return t; 410 } 411 } 412 return NULL; 413 } 414 415 /* 416 * Determine whether a given process is "early kill" process which expects 417 * to be signaled when some page under the process is hwpoisoned. 418 * Return task_struct of the dedicated thread (main thread unless explicitly 419 * specified) if the process is "early kill," and otherwise returns NULL. 420 * 421 * Note that the above is true for Action Optional case, but not for Action 422 * Required case where SIGBUS should sent only to the current thread. 423 */ 424 static struct task_struct *task_early_kill(struct task_struct *tsk, 425 int force_early) 426 { 427 if (!tsk->mm) 428 return NULL; 429 if (force_early) { 430 /* 431 * Comparing ->mm here because current task might represent 432 * a subthread, while tsk always points to the main thread. 433 */ 434 if (tsk->mm == current->mm) 435 return current; 436 else 437 return NULL; 438 } 439 return find_early_kill_thread(tsk); 440 } 441 442 /* 443 * Collect processes when the error hit an anonymous page. 444 */ 445 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 446 int force_early) 447 { 448 struct vm_area_struct *vma; 449 struct task_struct *tsk; 450 struct anon_vma *av; 451 pgoff_t pgoff; 452 453 av = page_lock_anon_vma_read(page); 454 if (av == NULL) /* Not actually mapped anymore */ 455 return; 456 457 pgoff = page_to_pgoff(page); 458 read_lock(&tasklist_lock); 459 for_each_process (tsk) { 460 struct anon_vma_chain *vmac; 461 struct task_struct *t = task_early_kill(tsk, force_early); 462 463 if (!t) 464 continue; 465 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 466 pgoff, pgoff) { 467 vma = vmac->vma; 468 if (!page_mapped_in_vma(page, vma)) 469 continue; 470 if (vma->vm_mm == t->mm) 471 add_to_kill(t, page, vma, to_kill); 472 } 473 } 474 read_unlock(&tasklist_lock); 475 page_unlock_anon_vma_read(av); 476 } 477 478 /* 479 * Collect processes when the error hit a file mapped page. 480 */ 481 static void collect_procs_file(struct page *page, struct list_head *to_kill, 482 int force_early) 483 { 484 struct vm_area_struct *vma; 485 struct task_struct *tsk; 486 struct address_space *mapping = page->mapping; 487 pgoff_t pgoff; 488 489 i_mmap_lock_read(mapping); 490 read_lock(&tasklist_lock); 491 pgoff = page_to_pgoff(page); 492 for_each_process(tsk) { 493 struct task_struct *t = task_early_kill(tsk, force_early); 494 495 if (!t) 496 continue; 497 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 498 pgoff) { 499 /* 500 * Send early kill signal to tasks where a vma covers 501 * the page but the corrupted page is not necessarily 502 * mapped it in its pte. 503 * Assume applications who requested early kill want 504 * to be informed of all such data corruptions. 505 */ 506 if (vma->vm_mm == t->mm) 507 add_to_kill(t, page, vma, to_kill); 508 } 509 } 510 read_unlock(&tasklist_lock); 511 i_mmap_unlock_read(mapping); 512 } 513 514 /* 515 * Collect the processes who have the corrupted page mapped to kill. 516 */ 517 static void collect_procs(struct page *page, struct list_head *tokill, 518 int force_early) 519 { 520 if (!page->mapping) 521 return; 522 523 if (PageAnon(page)) 524 collect_procs_anon(page, tokill, force_early); 525 else 526 collect_procs_file(page, tokill, force_early); 527 } 528 529 static const char *action_name[] = { 530 [MF_IGNORED] = "Ignored", 531 [MF_FAILED] = "Failed", 532 [MF_DELAYED] = "Delayed", 533 [MF_RECOVERED] = "Recovered", 534 }; 535 536 static const char * const action_page_types[] = { 537 [MF_MSG_KERNEL] = "reserved kernel page", 538 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 539 [MF_MSG_SLAB] = "kernel slab page", 540 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 541 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 542 [MF_MSG_HUGE] = "huge page", 543 [MF_MSG_FREE_HUGE] = "free huge page", 544 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 545 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 546 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 547 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 548 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 549 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 550 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 551 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 552 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 553 [MF_MSG_CLEAN_LRU] = "clean LRU page", 554 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 555 [MF_MSG_BUDDY] = "free buddy page", 556 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 557 [MF_MSG_DAX] = "dax page", 558 [MF_MSG_UNKNOWN] = "unknown page", 559 }; 560 561 /* 562 * XXX: It is possible that a page is isolated from LRU cache, 563 * and then kept in swap cache or failed to remove from page cache. 564 * The page count will stop it from being freed by unpoison. 565 * Stress tests should be aware of this memory leak problem. 566 */ 567 static int delete_from_lru_cache(struct page *p) 568 { 569 if (!isolate_lru_page(p)) { 570 /* 571 * Clear sensible page flags, so that the buddy system won't 572 * complain when the page is unpoison-and-freed. 573 */ 574 ClearPageActive(p); 575 ClearPageUnevictable(p); 576 577 /* 578 * Poisoned page might never drop its ref count to 0 so we have 579 * to uncharge it manually from its memcg. 580 */ 581 mem_cgroup_uncharge(p); 582 583 /* 584 * drop the page count elevated by isolate_lru_page() 585 */ 586 put_page(p); 587 return 0; 588 } 589 return -EIO; 590 } 591 592 static int truncate_error_page(struct page *p, unsigned long pfn, 593 struct address_space *mapping) 594 { 595 int ret = MF_FAILED; 596 597 if (mapping->a_ops->error_remove_page) { 598 int err = mapping->a_ops->error_remove_page(mapping, p); 599 600 if (err != 0) { 601 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 602 pfn, err); 603 } else if (page_has_private(p) && 604 !try_to_release_page(p, GFP_NOIO)) { 605 pr_info("Memory failure: %#lx: failed to release buffers\n", 606 pfn); 607 } else { 608 ret = MF_RECOVERED; 609 } 610 } else { 611 /* 612 * If the file system doesn't support it just invalidate 613 * This fails on dirty or anything with private pages 614 */ 615 if (invalidate_inode_page(p)) 616 ret = MF_RECOVERED; 617 else 618 pr_info("Memory failure: %#lx: Failed to invalidate\n", 619 pfn); 620 } 621 622 return ret; 623 } 624 625 /* 626 * Error hit kernel page. 627 * Do nothing, try to be lucky and not touch this instead. For a few cases we 628 * could be more sophisticated. 629 */ 630 static int me_kernel(struct page *p, unsigned long pfn) 631 { 632 return MF_IGNORED; 633 } 634 635 /* 636 * Page in unknown state. Do nothing. 637 */ 638 static int me_unknown(struct page *p, unsigned long pfn) 639 { 640 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 641 return MF_FAILED; 642 } 643 644 /* 645 * Clean (or cleaned) page cache page. 646 */ 647 static int me_pagecache_clean(struct page *p, unsigned long pfn) 648 { 649 struct address_space *mapping; 650 651 delete_from_lru_cache(p); 652 653 /* 654 * For anonymous pages we're done the only reference left 655 * should be the one m_f() holds. 656 */ 657 if (PageAnon(p)) 658 return MF_RECOVERED; 659 660 /* 661 * Now truncate the page in the page cache. This is really 662 * more like a "temporary hole punch" 663 * Don't do this for block devices when someone else 664 * has a reference, because it could be file system metadata 665 * and that's not safe to truncate. 666 */ 667 mapping = page_mapping(p); 668 if (!mapping) { 669 /* 670 * Page has been teared down in the meanwhile 671 */ 672 return MF_FAILED; 673 } 674 675 /* 676 * Truncation is a bit tricky. Enable it per file system for now. 677 * 678 * Open: to take i_mutex or not for this? Right now we don't. 679 */ 680 return truncate_error_page(p, pfn, mapping); 681 } 682 683 /* 684 * Dirty pagecache page 685 * Issues: when the error hit a hole page the error is not properly 686 * propagated. 687 */ 688 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 689 { 690 struct address_space *mapping = page_mapping(p); 691 692 SetPageError(p); 693 /* TBD: print more information about the file. */ 694 if (mapping) { 695 /* 696 * IO error will be reported by write(), fsync(), etc. 697 * who check the mapping. 698 * This way the application knows that something went 699 * wrong with its dirty file data. 700 * 701 * There's one open issue: 702 * 703 * The EIO will be only reported on the next IO 704 * operation and then cleared through the IO map. 705 * Normally Linux has two mechanisms to pass IO error 706 * first through the AS_EIO flag in the address space 707 * and then through the PageError flag in the page. 708 * Since we drop pages on memory failure handling the 709 * only mechanism open to use is through AS_AIO. 710 * 711 * This has the disadvantage that it gets cleared on 712 * the first operation that returns an error, while 713 * the PageError bit is more sticky and only cleared 714 * when the page is reread or dropped. If an 715 * application assumes it will always get error on 716 * fsync, but does other operations on the fd before 717 * and the page is dropped between then the error 718 * will not be properly reported. 719 * 720 * This can already happen even without hwpoisoned 721 * pages: first on metadata IO errors (which only 722 * report through AS_EIO) or when the page is dropped 723 * at the wrong time. 724 * 725 * So right now we assume that the application DTRT on 726 * the first EIO, but we're not worse than other parts 727 * of the kernel. 728 */ 729 mapping_set_error(mapping, -EIO); 730 } 731 732 return me_pagecache_clean(p, pfn); 733 } 734 735 /* 736 * Clean and dirty swap cache. 737 * 738 * Dirty swap cache page is tricky to handle. The page could live both in page 739 * cache and swap cache(ie. page is freshly swapped in). So it could be 740 * referenced concurrently by 2 types of PTEs: 741 * normal PTEs and swap PTEs. We try to handle them consistently by calling 742 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 743 * and then 744 * - clear dirty bit to prevent IO 745 * - remove from LRU 746 * - but keep in the swap cache, so that when we return to it on 747 * a later page fault, we know the application is accessing 748 * corrupted data and shall be killed (we installed simple 749 * interception code in do_swap_page to catch it). 750 * 751 * Clean swap cache pages can be directly isolated. A later page fault will 752 * bring in the known good data from disk. 753 */ 754 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 755 { 756 ClearPageDirty(p); 757 /* Trigger EIO in shmem: */ 758 ClearPageUptodate(p); 759 760 if (!delete_from_lru_cache(p)) 761 return MF_DELAYED; 762 else 763 return MF_FAILED; 764 } 765 766 static int me_swapcache_clean(struct page *p, unsigned long pfn) 767 { 768 delete_from_swap_cache(p); 769 770 if (!delete_from_lru_cache(p)) 771 return MF_RECOVERED; 772 else 773 return MF_FAILED; 774 } 775 776 /* 777 * Huge pages. Needs work. 778 * Issues: 779 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 780 * To narrow down kill region to one page, we need to break up pmd. 781 */ 782 static int me_huge_page(struct page *p, unsigned long pfn) 783 { 784 int res = 0; 785 struct page *hpage = compound_head(p); 786 struct address_space *mapping; 787 788 if (!PageHuge(hpage)) 789 return MF_DELAYED; 790 791 mapping = page_mapping(hpage); 792 if (mapping) { 793 res = truncate_error_page(hpage, pfn, mapping); 794 } else { 795 unlock_page(hpage); 796 /* 797 * migration entry prevents later access on error anonymous 798 * hugepage, so we can free and dissolve it into buddy to 799 * save healthy subpages. 800 */ 801 if (PageAnon(hpage)) 802 put_page(hpage); 803 dissolve_free_huge_page(p); 804 res = MF_RECOVERED; 805 lock_page(hpage); 806 } 807 808 return res; 809 } 810 811 /* 812 * Various page states we can handle. 813 * 814 * A page state is defined by its current page->flags bits. 815 * The table matches them in order and calls the right handler. 816 * 817 * This is quite tricky because we can access page at any time 818 * in its live cycle, so all accesses have to be extremely careful. 819 * 820 * This is not complete. More states could be added. 821 * For any missing state don't attempt recovery. 822 */ 823 824 #define dirty (1UL << PG_dirty) 825 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 826 #define unevict (1UL << PG_unevictable) 827 #define mlock (1UL << PG_mlocked) 828 #define lru (1UL << PG_lru) 829 #define head (1UL << PG_head) 830 #define slab (1UL << PG_slab) 831 #define reserved (1UL << PG_reserved) 832 833 static struct page_state { 834 unsigned long mask; 835 unsigned long res; 836 enum mf_action_page_type type; 837 int (*action)(struct page *p, unsigned long pfn); 838 } error_states[] = { 839 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 840 /* 841 * free pages are specially detected outside this table: 842 * PG_buddy pages only make a small fraction of all free pages. 843 */ 844 845 /* 846 * Could in theory check if slab page is free or if we can drop 847 * currently unused objects without touching them. But just 848 * treat it as standard kernel for now. 849 */ 850 { slab, slab, MF_MSG_SLAB, me_kernel }, 851 852 { head, head, MF_MSG_HUGE, me_huge_page }, 853 854 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 855 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 856 857 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 858 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 859 860 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 861 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 862 863 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 864 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 865 866 /* 867 * Catchall entry: must be at end. 868 */ 869 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 870 }; 871 872 #undef dirty 873 #undef sc 874 #undef unevict 875 #undef mlock 876 #undef lru 877 #undef head 878 #undef slab 879 #undef reserved 880 881 /* 882 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 883 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 884 */ 885 static void action_result(unsigned long pfn, enum mf_action_page_type type, 886 enum mf_result result) 887 { 888 trace_memory_failure_event(pfn, type, result); 889 890 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 891 pfn, action_page_types[type], action_name[result]); 892 } 893 894 static int page_action(struct page_state *ps, struct page *p, 895 unsigned long pfn) 896 { 897 int result; 898 int count; 899 900 result = ps->action(p, pfn); 901 902 count = page_count(p) - 1; 903 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 904 count--; 905 if (count > 0) { 906 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 907 pfn, action_page_types[ps->type], count); 908 result = MF_FAILED; 909 } 910 action_result(pfn, ps->type, result); 911 912 /* Could do more checks here if page looks ok */ 913 /* 914 * Could adjust zone counters here to correct for the missing page. 915 */ 916 917 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 918 } 919 920 /** 921 * get_hwpoison_page() - Get refcount for memory error handling: 922 * @page: raw error page (hit by memory error) 923 * 924 * Return: return 0 if failed to grab the refcount, otherwise true (some 925 * non-zero value.) 926 */ 927 int get_hwpoison_page(struct page *page) 928 { 929 struct page *head = compound_head(page); 930 931 if (!PageHuge(head) && PageTransHuge(head)) { 932 /* 933 * Non anonymous thp exists only in allocation/free time. We 934 * can't handle such a case correctly, so let's give it up. 935 * This should be better than triggering BUG_ON when kernel 936 * tries to touch the "partially handled" page. 937 */ 938 if (!PageAnon(head)) { 939 pr_err("Memory failure: %#lx: non anonymous thp\n", 940 page_to_pfn(page)); 941 return 0; 942 } 943 } 944 945 if (get_page_unless_zero(head)) { 946 if (head == compound_head(page)) 947 return 1; 948 949 pr_info("Memory failure: %#lx cannot catch tail\n", 950 page_to_pfn(page)); 951 put_page(head); 952 } 953 954 return 0; 955 } 956 EXPORT_SYMBOL_GPL(get_hwpoison_page); 957 958 /* 959 * Do all that is necessary to remove user space mappings. Unmap 960 * the pages and send SIGBUS to the processes if the data was dirty. 961 */ 962 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 963 int flags, struct page **hpagep) 964 { 965 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 966 struct address_space *mapping; 967 LIST_HEAD(tokill); 968 bool unmap_success = true; 969 int kill = 1, forcekill; 970 struct page *hpage = *hpagep; 971 bool mlocked = PageMlocked(hpage); 972 973 /* 974 * Here we are interested only in user-mapped pages, so skip any 975 * other types of pages. 976 */ 977 if (PageReserved(p) || PageSlab(p)) 978 return true; 979 if (!(PageLRU(hpage) || PageHuge(p))) 980 return true; 981 982 /* 983 * This check implies we don't kill processes if their pages 984 * are in the swap cache early. Those are always late kills. 985 */ 986 if (!page_mapped(hpage)) 987 return true; 988 989 if (PageKsm(p)) { 990 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 991 return false; 992 } 993 994 if (PageSwapCache(p)) { 995 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 996 pfn); 997 ttu |= TTU_IGNORE_HWPOISON; 998 } 999 1000 /* 1001 * Propagate the dirty bit from PTEs to struct page first, because we 1002 * need this to decide if we should kill or just drop the page. 1003 * XXX: the dirty test could be racy: set_page_dirty() may not always 1004 * be called inside page lock (it's recommended but not enforced). 1005 */ 1006 mapping = page_mapping(hpage); 1007 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1008 mapping_can_writeback(mapping)) { 1009 if (page_mkclean(hpage)) { 1010 SetPageDirty(hpage); 1011 } else { 1012 kill = 0; 1013 ttu |= TTU_IGNORE_HWPOISON; 1014 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1015 pfn); 1016 } 1017 } 1018 1019 /* 1020 * First collect all the processes that have the page 1021 * mapped in dirty form. This has to be done before try_to_unmap, 1022 * because ttu takes the rmap data structures down. 1023 * 1024 * Error handling: We ignore errors here because 1025 * there's nothing that can be done. 1026 */ 1027 if (kill) 1028 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1029 1030 if (!PageHuge(hpage)) { 1031 unmap_success = try_to_unmap(hpage, ttu); 1032 } else { 1033 /* 1034 * For hugetlb pages, try_to_unmap could potentially call 1035 * huge_pmd_unshare. Because of this, take semaphore in 1036 * write mode here and set TTU_RMAP_LOCKED to indicate we 1037 * have taken the lock at this higer level. 1038 * 1039 * Note that the call to hugetlb_page_mapping_lock_write 1040 * is necessary even if mapping is already set. It handles 1041 * ugliness of potentially having to drop page lock to obtain 1042 * i_mmap_rwsem. 1043 */ 1044 mapping = hugetlb_page_mapping_lock_write(hpage); 1045 1046 if (mapping) { 1047 unmap_success = try_to_unmap(hpage, 1048 ttu|TTU_RMAP_LOCKED); 1049 i_mmap_unlock_write(mapping); 1050 } else { 1051 pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n", 1052 pfn); 1053 unmap_success = false; 1054 } 1055 } 1056 if (!unmap_success) 1057 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1058 pfn, page_mapcount(hpage)); 1059 1060 /* 1061 * try_to_unmap() might put mlocked page in lru cache, so call 1062 * shake_page() again to ensure that it's flushed. 1063 */ 1064 if (mlocked) 1065 shake_page(hpage, 0); 1066 1067 /* 1068 * Now that the dirty bit has been propagated to the 1069 * struct page and all unmaps done we can decide if 1070 * killing is needed or not. Only kill when the page 1071 * was dirty or the process is not restartable, 1072 * otherwise the tokill list is merely 1073 * freed. When there was a problem unmapping earlier 1074 * use a more force-full uncatchable kill to prevent 1075 * any accesses to the poisoned memory. 1076 */ 1077 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1078 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1079 1080 return unmap_success; 1081 } 1082 1083 static int identify_page_state(unsigned long pfn, struct page *p, 1084 unsigned long page_flags) 1085 { 1086 struct page_state *ps; 1087 1088 /* 1089 * The first check uses the current page flags which may not have any 1090 * relevant information. The second check with the saved page flags is 1091 * carried out only if the first check can't determine the page status. 1092 */ 1093 for (ps = error_states;; ps++) 1094 if ((p->flags & ps->mask) == ps->res) 1095 break; 1096 1097 page_flags |= (p->flags & (1UL << PG_dirty)); 1098 1099 if (!ps->mask) 1100 for (ps = error_states;; ps++) 1101 if ((page_flags & ps->mask) == ps->res) 1102 break; 1103 return page_action(ps, p, pfn); 1104 } 1105 1106 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1107 { 1108 struct page *p = pfn_to_page(pfn); 1109 struct page *head = compound_head(p); 1110 int res; 1111 unsigned long page_flags; 1112 1113 if (TestSetPageHWPoison(head)) { 1114 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1115 pfn); 1116 return 0; 1117 } 1118 1119 num_poisoned_pages_inc(); 1120 1121 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1122 /* 1123 * Check "filter hit" and "race with other subpage." 1124 */ 1125 lock_page(head); 1126 if (PageHWPoison(head)) { 1127 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1128 || (p != head && TestSetPageHWPoison(head))) { 1129 num_poisoned_pages_dec(); 1130 unlock_page(head); 1131 return 0; 1132 } 1133 } 1134 unlock_page(head); 1135 dissolve_free_huge_page(p); 1136 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED); 1137 return 0; 1138 } 1139 1140 lock_page(head); 1141 page_flags = head->flags; 1142 1143 if (!PageHWPoison(head)) { 1144 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1145 num_poisoned_pages_dec(); 1146 unlock_page(head); 1147 put_hwpoison_page(head); 1148 return 0; 1149 } 1150 1151 /* 1152 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1153 * simply disable it. In order to make it work properly, we need 1154 * make sure that: 1155 * - conversion of a pud that maps an error hugetlb into hwpoison 1156 * entry properly works, and 1157 * - other mm code walking over page table is aware of pud-aligned 1158 * hwpoison entries. 1159 */ 1160 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1161 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1162 res = -EBUSY; 1163 goto out; 1164 } 1165 1166 if (!hwpoison_user_mappings(p, pfn, flags, &head)) { 1167 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1168 res = -EBUSY; 1169 goto out; 1170 } 1171 1172 res = identify_page_state(pfn, p, page_flags); 1173 out: 1174 unlock_page(head); 1175 return res; 1176 } 1177 1178 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1179 struct dev_pagemap *pgmap) 1180 { 1181 struct page *page = pfn_to_page(pfn); 1182 const bool unmap_success = true; 1183 unsigned long size = 0; 1184 struct to_kill *tk; 1185 LIST_HEAD(tokill); 1186 int rc = -EBUSY; 1187 loff_t start; 1188 dax_entry_t cookie; 1189 1190 /* 1191 * Prevent the inode from being freed while we are interrogating 1192 * the address_space, typically this would be handled by 1193 * lock_page(), but dax pages do not use the page lock. This 1194 * also prevents changes to the mapping of this pfn until 1195 * poison signaling is complete. 1196 */ 1197 cookie = dax_lock_page(page); 1198 if (!cookie) 1199 goto out; 1200 1201 if (hwpoison_filter(page)) { 1202 rc = 0; 1203 goto unlock; 1204 } 1205 1206 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 1207 /* 1208 * TODO: Handle HMM pages which may need coordination 1209 * with device-side memory. 1210 */ 1211 goto unlock; 1212 } 1213 1214 /* 1215 * Use this flag as an indication that the dax page has been 1216 * remapped UC to prevent speculative consumption of poison. 1217 */ 1218 SetPageHWPoison(page); 1219 1220 /* 1221 * Unlike System-RAM there is no possibility to swap in a 1222 * different physical page at a given virtual address, so all 1223 * userspace consumption of ZONE_DEVICE memory necessitates 1224 * SIGBUS (i.e. MF_MUST_KILL) 1225 */ 1226 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1227 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); 1228 1229 list_for_each_entry(tk, &tokill, nd) 1230 if (tk->size_shift) 1231 size = max(size, 1UL << tk->size_shift); 1232 if (size) { 1233 /* 1234 * Unmap the largest mapping to avoid breaking up 1235 * device-dax mappings which are constant size. The 1236 * actual size of the mapping being torn down is 1237 * communicated in siginfo, see kill_proc() 1238 */ 1239 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1240 unmap_mapping_range(page->mapping, start, start + size, 0); 1241 } 1242 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags); 1243 rc = 0; 1244 unlock: 1245 dax_unlock_page(page, cookie); 1246 out: 1247 /* drop pgmap ref acquired in caller */ 1248 put_dev_pagemap(pgmap); 1249 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1250 return rc; 1251 } 1252 1253 /** 1254 * memory_failure - Handle memory failure of a page. 1255 * @pfn: Page Number of the corrupted page 1256 * @flags: fine tune action taken 1257 * 1258 * This function is called by the low level machine check code 1259 * of an architecture when it detects hardware memory corruption 1260 * of a page. It tries its best to recover, which includes 1261 * dropping pages, killing processes etc. 1262 * 1263 * The function is primarily of use for corruptions that 1264 * happen outside the current execution context (e.g. when 1265 * detected by a background scrubber) 1266 * 1267 * Must run in process context (e.g. a work queue) with interrupts 1268 * enabled and no spinlocks hold. 1269 */ 1270 int memory_failure(unsigned long pfn, int flags) 1271 { 1272 struct page *p; 1273 struct page *hpage; 1274 struct page *orig_head; 1275 struct dev_pagemap *pgmap; 1276 int res; 1277 unsigned long page_flags; 1278 1279 if (!sysctl_memory_failure_recovery) 1280 panic("Memory failure on page %lx", pfn); 1281 1282 p = pfn_to_online_page(pfn); 1283 if (!p) { 1284 if (pfn_valid(pfn)) { 1285 pgmap = get_dev_pagemap(pfn, NULL); 1286 if (pgmap) 1287 return memory_failure_dev_pagemap(pfn, flags, 1288 pgmap); 1289 } 1290 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1291 pfn); 1292 return -ENXIO; 1293 } 1294 1295 if (PageHuge(p)) 1296 return memory_failure_hugetlb(pfn, flags); 1297 if (TestSetPageHWPoison(p)) { 1298 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1299 pfn); 1300 return 0; 1301 } 1302 1303 orig_head = hpage = compound_head(p); 1304 num_poisoned_pages_inc(); 1305 1306 /* 1307 * We need/can do nothing about count=0 pages. 1308 * 1) it's a free page, and therefore in safe hand: 1309 * prep_new_page() will be the gate keeper. 1310 * 2) it's part of a non-compound high order page. 1311 * Implies some kernel user: cannot stop them from 1312 * R/W the page; let's pray that the page has been 1313 * used and will be freed some time later. 1314 * In fact it's dangerous to directly bump up page count from 0, 1315 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1316 */ 1317 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1318 if (is_free_buddy_page(p)) { 1319 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1320 return 0; 1321 } else { 1322 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1323 return -EBUSY; 1324 } 1325 } 1326 1327 if (PageTransHuge(hpage)) { 1328 lock_page(p); 1329 if (!PageAnon(p) || unlikely(split_huge_page(p))) { 1330 unlock_page(p); 1331 if (!PageAnon(p)) 1332 pr_err("Memory failure: %#lx: non anonymous thp\n", 1333 pfn); 1334 else 1335 pr_err("Memory failure: %#lx: thp split failed\n", 1336 pfn); 1337 if (TestClearPageHWPoison(p)) 1338 num_poisoned_pages_dec(); 1339 put_hwpoison_page(p); 1340 return -EBUSY; 1341 } 1342 unlock_page(p); 1343 VM_BUG_ON_PAGE(!page_count(p), p); 1344 hpage = compound_head(p); 1345 } 1346 1347 /* 1348 * We ignore non-LRU pages for good reasons. 1349 * - PG_locked is only well defined for LRU pages and a few others 1350 * - to avoid races with __SetPageLocked() 1351 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1352 * The check (unnecessarily) ignores LRU pages being isolated and 1353 * walked by the page reclaim code, however that's not a big loss. 1354 */ 1355 shake_page(p, 0); 1356 /* shake_page could have turned it free. */ 1357 if (!PageLRU(p) && is_free_buddy_page(p)) { 1358 if (flags & MF_COUNT_INCREASED) 1359 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1360 else 1361 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); 1362 return 0; 1363 } 1364 1365 lock_page(p); 1366 1367 /* 1368 * The page could have changed compound pages during the locking. 1369 * If this happens just bail out. 1370 */ 1371 if (PageCompound(p) && compound_head(p) != orig_head) { 1372 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1373 res = -EBUSY; 1374 goto out; 1375 } 1376 1377 /* 1378 * We use page flags to determine what action should be taken, but 1379 * the flags can be modified by the error containment action. One 1380 * example is an mlocked page, where PG_mlocked is cleared by 1381 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1382 * correctly, we save a copy of the page flags at this time. 1383 */ 1384 if (PageHuge(p)) 1385 page_flags = hpage->flags; 1386 else 1387 page_flags = p->flags; 1388 1389 /* 1390 * unpoison always clear PG_hwpoison inside page lock 1391 */ 1392 if (!PageHWPoison(p)) { 1393 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1394 num_poisoned_pages_dec(); 1395 unlock_page(p); 1396 put_hwpoison_page(p); 1397 return 0; 1398 } 1399 if (hwpoison_filter(p)) { 1400 if (TestClearPageHWPoison(p)) 1401 num_poisoned_pages_dec(); 1402 unlock_page(p); 1403 put_hwpoison_page(p); 1404 return 0; 1405 } 1406 1407 if (!PageTransTail(p) && !PageLRU(p)) 1408 goto identify_page_state; 1409 1410 /* 1411 * It's very difficult to mess with pages currently under IO 1412 * and in many cases impossible, so we just avoid it here. 1413 */ 1414 wait_on_page_writeback(p); 1415 1416 /* 1417 * Now take care of user space mappings. 1418 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1419 * 1420 * When the raw error page is thp tail page, hpage points to the raw 1421 * page after thp split. 1422 */ 1423 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) { 1424 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1425 res = -EBUSY; 1426 goto out; 1427 } 1428 1429 /* 1430 * Torn down by someone else? 1431 */ 1432 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1433 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1434 res = -EBUSY; 1435 goto out; 1436 } 1437 1438 identify_page_state: 1439 res = identify_page_state(pfn, p, page_flags); 1440 out: 1441 unlock_page(p); 1442 return res; 1443 } 1444 EXPORT_SYMBOL_GPL(memory_failure); 1445 1446 #define MEMORY_FAILURE_FIFO_ORDER 4 1447 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1448 1449 struct memory_failure_entry { 1450 unsigned long pfn; 1451 int flags; 1452 }; 1453 1454 struct memory_failure_cpu { 1455 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1456 MEMORY_FAILURE_FIFO_SIZE); 1457 spinlock_t lock; 1458 struct work_struct work; 1459 }; 1460 1461 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1462 1463 /** 1464 * memory_failure_queue - Schedule handling memory failure of a page. 1465 * @pfn: Page Number of the corrupted page 1466 * @flags: Flags for memory failure handling 1467 * 1468 * This function is called by the low level hardware error handler 1469 * when it detects hardware memory corruption of a page. It schedules 1470 * the recovering of error page, including dropping pages, killing 1471 * processes etc. 1472 * 1473 * The function is primarily of use for corruptions that 1474 * happen outside the current execution context (e.g. when 1475 * detected by a background scrubber) 1476 * 1477 * Can run in IRQ context. 1478 */ 1479 void memory_failure_queue(unsigned long pfn, int flags) 1480 { 1481 struct memory_failure_cpu *mf_cpu; 1482 unsigned long proc_flags; 1483 struct memory_failure_entry entry = { 1484 .pfn = pfn, 1485 .flags = flags, 1486 }; 1487 1488 mf_cpu = &get_cpu_var(memory_failure_cpu); 1489 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1490 if (kfifo_put(&mf_cpu->fifo, entry)) 1491 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1492 else 1493 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1494 pfn); 1495 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1496 put_cpu_var(memory_failure_cpu); 1497 } 1498 EXPORT_SYMBOL_GPL(memory_failure_queue); 1499 1500 static void memory_failure_work_func(struct work_struct *work) 1501 { 1502 struct memory_failure_cpu *mf_cpu; 1503 struct memory_failure_entry entry = { 0, }; 1504 unsigned long proc_flags; 1505 int gotten; 1506 1507 mf_cpu = container_of(work, struct memory_failure_cpu, work); 1508 for (;;) { 1509 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1510 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1511 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1512 if (!gotten) 1513 break; 1514 if (entry.flags & MF_SOFT_OFFLINE) 1515 soft_offline_page(entry.pfn, entry.flags); 1516 else 1517 memory_failure(entry.pfn, entry.flags); 1518 } 1519 } 1520 1521 /* 1522 * Process memory_failure work queued on the specified CPU. 1523 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 1524 */ 1525 void memory_failure_queue_kick(int cpu) 1526 { 1527 struct memory_failure_cpu *mf_cpu; 1528 1529 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1530 cancel_work_sync(&mf_cpu->work); 1531 memory_failure_work_func(&mf_cpu->work); 1532 } 1533 1534 static int __init memory_failure_init(void) 1535 { 1536 struct memory_failure_cpu *mf_cpu; 1537 int cpu; 1538 1539 for_each_possible_cpu(cpu) { 1540 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1541 spin_lock_init(&mf_cpu->lock); 1542 INIT_KFIFO(mf_cpu->fifo); 1543 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1544 } 1545 1546 return 0; 1547 } 1548 core_initcall(memory_failure_init); 1549 1550 #define unpoison_pr_info(fmt, pfn, rs) \ 1551 ({ \ 1552 if (__ratelimit(rs)) \ 1553 pr_info(fmt, pfn); \ 1554 }) 1555 1556 /** 1557 * unpoison_memory - Unpoison a previously poisoned page 1558 * @pfn: Page number of the to be unpoisoned page 1559 * 1560 * Software-unpoison a page that has been poisoned by 1561 * memory_failure() earlier. 1562 * 1563 * This is only done on the software-level, so it only works 1564 * for linux injected failures, not real hardware failures 1565 * 1566 * Returns 0 for success, otherwise -errno. 1567 */ 1568 int unpoison_memory(unsigned long pfn) 1569 { 1570 struct page *page; 1571 struct page *p; 1572 int freeit = 0; 1573 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1574 DEFAULT_RATELIMIT_BURST); 1575 1576 if (!pfn_valid(pfn)) 1577 return -ENXIO; 1578 1579 p = pfn_to_page(pfn); 1580 page = compound_head(p); 1581 1582 if (!PageHWPoison(p)) { 1583 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1584 pfn, &unpoison_rs); 1585 return 0; 1586 } 1587 1588 if (page_count(page) > 1) { 1589 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1590 pfn, &unpoison_rs); 1591 return 0; 1592 } 1593 1594 if (page_mapped(page)) { 1595 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1596 pfn, &unpoison_rs); 1597 return 0; 1598 } 1599 1600 if (page_mapping(page)) { 1601 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1602 pfn, &unpoison_rs); 1603 return 0; 1604 } 1605 1606 /* 1607 * unpoison_memory() can encounter thp only when the thp is being 1608 * worked by memory_failure() and the page lock is not held yet. 1609 * In such case, we yield to memory_failure() and make unpoison fail. 1610 */ 1611 if (!PageHuge(page) && PageTransHuge(page)) { 1612 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1613 pfn, &unpoison_rs); 1614 return 0; 1615 } 1616 1617 if (!get_hwpoison_page(p)) { 1618 if (TestClearPageHWPoison(p)) 1619 num_poisoned_pages_dec(); 1620 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1621 pfn, &unpoison_rs); 1622 return 0; 1623 } 1624 1625 lock_page(page); 1626 /* 1627 * This test is racy because PG_hwpoison is set outside of page lock. 1628 * That's acceptable because that won't trigger kernel panic. Instead, 1629 * the PG_hwpoison page will be caught and isolated on the entrance to 1630 * the free buddy page pool. 1631 */ 1632 if (TestClearPageHWPoison(page)) { 1633 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1634 pfn, &unpoison_rs); 1635 num_poisoned_pages_dec(); 1636 freeit = 1; 1637 } 1638 unlock_page(page); 1639 1640 put_hwpoison_page(page); 1641 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1642 put_hwpoison_page(page); 1643 1644 return 0; 1645 } 1646 EXPORT_SYMBOL(unpoison_memory); 1647 1648 static struct page *new_page(struct page *p, unsigned long private) 1649 { 1650 struct migration_target_control mtc = { 1651 .nid = page_to_nid(p), 1652 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1653 }; 1654 1655 return alloc_migration_target(p, (unsigned long)&mtc); 1656 } 1657 1658 /* 1659 * Safely get reference count of an arbitrary page. 1660 * Returns 0 for a free page, -EIO for a zero refcount page 1661 * that is not free, and 1 for any other page type. 1662 * For 1 the page is returned with increased page count, otherwise not. 1663 */ 1664 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1665 { 1666 int ret; 1667 1668 if (flags & MF_COUNT_INCREASED) 1669 return 1; 1670 1671 /* 1672 * When the target page is a free hugepage, just remove it 1673 * from free hugepage list. 1674 */ 1675 if (!get_hwpoison_page(p)) { 1676 if (PageHuge(p)) { 1677 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1678 ret = 0; 1679 } else if (is_free_buddy_page(p)) { 1680 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1681 ret = 0; 1682 } else { 1683 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1684 __func__, pfn, p->flags); 1685 ret = -EIO; 1686 } 1687 } else { 1688 /* Not a free page */ 1689 ret = 1; 1690 } 1691 return ret; 1692 } 1693 1694 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1695 { 1696 int ret = __get_any_page(page, pfn, flags); 1697 1698 if (ret == 1 && !PageHuge(page) && 1699 !PageLRU(page) && !__PageMovable(page)) { 1700 /* 1701 * Try to free it. 1702 */ 1703 put_hwpoison_page(page); 1704 shake_page(page, 1); 1705 1706 /* 1707 * Did it turn free? 1708 */ 1709 ret = __get_any_page(page, pfn, 0); 1710 if (ret == 1 && !PageLRU(page)) { 1711 /* Drop page reference which is from __get_any_page() */ 1712 put_hwpoison_page(page); 1713 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", 1714 pfn, page->flags, &page->flags); 1715 return -EIO; 1716 } 1717 } 1718 return ret; 1719 } 1720 1721 static int soft_offline_huge_page(struct page *page, int flags) 1722 { 1723 int ret; 1724 unsigned long pfn = page_to_pfn(page); 1725 struct page *hpage = compound_head(page); 1726 LIST_HEAD(pagelist); 1727 1728 /* 1729 * This double-check of PageHWPoison is to avoid the race with 1730 * memory_failure(). See also comment in __soft_offline_page(). 1731 */ 1732 lock_page(hpage); 1733 if (PageHWPoison(hpage)) { 1734 unlock_page(hpage); 1735 put_hwpoison_page(hpage); 1736 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1737 return -EBUSY; 1738 } 1739 unlock_page(hpage); 1740 1741 ret = isolate_huge_page(hpage, &pagelist); 1742 /* 1743 * get_any_page() and isolate_huge_page() takes a refcount each, 1744 * so need to drop one here. 1745 */ 1746 put_hwpoison_page(hpage); 1747 if (!ret) { 1748 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1749 return -EBUSY; 1750 } 1751 1752 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1753 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1754 if (ret) { 1755 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n", 1756 pfn, ret, page->flags, &page->flags); 1757 if (!list_empty(&pagelist)) 1758 putback_movable_pages(&pagelist); 1759 if (ret > 0) 1760 ret = -EIO; 1761 } else { 1762 /* 1763 * We set PG_hwpoison only when the migration source hugepage 1764 * was successfully dissolved, because otherwise hwpoisoned 1765 * hugepage remains on free hugepage list, then userspace will 1766 * find it as SIGBUS by allocation failure. That's not expected 1767 * in soft-offlining. 1768 */ 1769 ret = dissolve_free_huge_page(page); 1770 if (!ret) { 1771 if (set_hwpoison_free_buddy_page(page)) 1772 num_poisoned_pages_inc(); 1773 else 1774 ret = -EBUSY; 1775 } 1776 } 1777 return ret; 1778 } 1779 1780 static int __soft_offline_page(struct page *page, int flags) 1781 { 1782 int ret; 1783 unsigned long pfn = page_to_pfn(page); 1784 1785 /* 1786 * Check PageHWPoison again inside page lock because PageHWPoison 1787 * is set by memory_failure() outside page lock. Note that 1788 * memory_failure() also double-checks PageHWPoison inside page lock, 1789 * so there's no race between soft_offline_page() and memory_failure(). 1790 */ 1791 lock_page(page); 1792 wait_on_page_writeback(page); 1793 if (PageHWPoison(page)) { 1794 unlock_page(page); 1795 put_hwpoison_page(page); 1796 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1797 return -EBUSY; 1798 } 1799 /* 1800 * Try to invalidate first. This should work for 1801 * non dirty unmapped page cache pages. 1802 */ 1803 ret = invalidate_inode_page(page); 1804 unlock_page(page); 1805 /* 1806 * RED-PEN would be better to keep it isolated here, but we 1807 * would need to fix isolation locking first. 1808 */ 1809 if (ret == 1) { 1810 put_hwpoison_page(page); 1811 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1812 SetPageHWPoison(page); 1813 num_poisoned_pages_inc(); 1814 return 0; 1815 } 1816 1817 /* 1818 * Simple invalidation didn't work. 1819 * Try to migrate to a new page instead. migrate.c 1820 * handles a large number of cases for us. 1821 */ 1822 if (PageLRU(page)) 1823 ret = isolate_lru_page(page); 1824 else 1825 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1826 /* 1827 * Drop page reference which is came from get_any_page() 1828 * successful isolate_lru_page() already took another one. 1829 */ 1830 put_hwpoison_page(page); 1831 if (!ret) { 1832 LIST_HEAD(pagelist); 1833 /* 1834 * After isolated lru page, the PageLRU will be cleared, 1835 * so use !__PageMovable instead for LRU page's mapping 1836 * cannot have PAGE_MAPPING_MOVABLE. 1837 */ 1838 if (!__PageMovable(page)) 1839 inc_node_page_state(page, NR_ISOLATED_ANON + 1840 page_is_file_lru(page)); 1841 list_add(&page->lru, &pagelist); 1842 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1843 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1844 if (ret) { 1845 if (!list_empty(&pagelist)) 1846 putback_movable_pages(&pagelist); 1847 1848 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", 1849 pfn, ret, page->flags, &page->flags); 1850 if (ret > 0) 1851 ret = -EIO; 1852 } 1853 } else { 1854 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n", 1855 pfn, ret, page_count(page), page->flags, &page->flags); 1856 } 1857 return ret; 1858 } 1859 1860 static int soft_offline_in_use_page(struct page *page, int flags) 1861 { 1862 int ret; 1863 int mt; 1864 struct page *hpage = compound_head(page); 1865 1866 if (!PageHuge(page) && PageTransHuge(hpage)) { 1867 lock_page(page); 1868 if (!PageAnon(page) || unlikely(split_huge_page(page))) { 1869 unlock_page(page); 1870 if (!PageAnon(page)) 1871 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); 1872 else 1873 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); 1874 put_hwpoison_page(page); 1875 return -EBUSY; 1876 } 1877 unlock_page(page); 1878 } 1879 1880 /* 1881 * Setting MIGRATE_ISOLATE here ensures that the page will be linked 1882 * to free list immediately (not via pcplist) when released after 1883 * successful page migration. Otherwise we can't guarantee that the 1884 * page is really free after put_page() returns, so 1885 * set_hwpoison_free_buddy_page() highly likely fails. 1886 */ 1887 mt = get_pageblock_migratetype(page); 1888 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 1889 if (PageHuge(page)) 1890 ret = soft_offline_huge_page(page, flags); 1891 else 1892 ret = __soft_offline_page(page, flags); 1893 set_pageblock_migratetype(page, mt); 1894 return ret; 1895 } 1896 1897 static int soft_offline_free_page(struct page *page) 1898 { 1899 int rc = dissolve_free_huge_page(page); 1900 1901 if (!rc) { 1902 if (set_hwpoison_free_buddy_page(page)) 1903 num_poisoned_pages_inc(); 1904 else 1905 rc = -EBUSY; 1906 } 1907 return rc; 1908 } 1909 1910 /** 1911 * soft_offline_page - Soft offline a page. 1912 * @pfn: pfn to soft-offline 1913 * @flags: flags. Same as memory_failure(). 1914 * 1915 * Returns 0 on success, otherwise negated errno. 1916 * 1917 * Soft offline a page, by migration or invalidation, 1918 * without killing anything. This is for the case when 1919 * a page is not corrupted yet (so it's still valid to access), 1920 * but has had a number of corrected errors and is better taken 1921 * out. 1922 * 1923 * The actual policy on when to do that is maintained by 1924 * user space. 1925 * 1926 * This should never impact any application or cause data loss, 1927 * however it might take some time. 1928 * 1929 * This is not a 100% solution for all memory, but tries to be 1930 * ``good enough'' for the majority of memory. 1931 */ 1932 int soft_offline_page(unsigned long pfn, int flags) 1933 { 1934 int ret; 1935 struct page *page; 1936 1937 if (!pfn_valid(pfn)) 1938 return -ENXIO; 1939 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 1940 page = pfn_to_online_page(pfn); 1941 if (!page) 1942 return -EIO; 1943 1944 if (PageHWPoison(page)) { 1945 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1946 if (flags & MF_COUNT_INCREASED) 1947 put_hwpoison_page(page); 1948 return -EBUSY; 1949 } 1950 1951 get_online_mems(); 1952 ret = get_any_page(page, pfn, flags); 1953 put_online_mems(); 1954 1955 if (ret > 0) 1956 ret = soft_offline_in_use_page(page, flags); 1957 else if (ret == 0) 1958 ret = soft_offline_free_page(page); 1959 1960 return ret; 1961 } 1962