xref: /linux/mm/memory-failure.c (revision f43d3870cafa2a0f3854c1819c8385733db8f9ae)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61 
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63 
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65 
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67 
68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69 
70 u32 hwpoison_filter_enable = 0;
71 u32 hwpoison_filter_dev_major = ~0U;
72 u32 hwpoison_filter_dev_minor = ~0U;
73 u64 hwpoison_filter_flags_mask;
74 u64 hwpoison_filter_flags_value;
75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
80 
81 static int hwpoison_filter_dev(struct page *p)
82 {
83 	struct address_space *mapping;
84 	dev_t dev;
85 
86 	if (hwpoison_filter_dev_major == ~0U &&
87 	    hwpoison_filter_dev_minor == ~0U)
88 		return 0;
89 
90 	/*
91 	 * page_mapping() does not accept slab pages.
92 	 */
93 	if (PageSlab(p))
94 		return -EINVAL;
95 
96 	mapping = page_mapping(p);
97 	if (mapping == NULL || mapping->host == NULL)
98 		return -EINVAL;
99 
100 	dev = mapping->host->i_sb->s_dev;
101 	if (hwpoison_filter_dev_major != ~0U &&
102 	    hwpoison_filter_dev_major != MAJOR(dev))
103 		return -EINVAL;
104 	if (hwpoison_filter_dev_minor != ~0U &&
105 	    hwpoison_filter_dev_minor != MINOR(dev))
106 		return -EINVAL;
107 
108 	return 0;
109 }
110 
111 static int hwpoison_filter_flags(struct page *p)
112 {
113 	if (!hwpoison_filter_flags_mask)
114 		return 0;
115 
116 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 				    hwpoison_filter_flags_value)
118 		return 0;
119 	else
120 		return -EINVAL;
121 }
122 
123 /*
124  * This allows stress tests to limit test scope to a collection of tasks
125  * by putting them under some memcg. This prevents killing unrelated/important
126  * processes such as /sbin/init. Note that the target task may share clean
127  * pages with init (eg. libc text), which is harmless. If the target task
128  * share _dirty_ pages with another task B, the test scheme must make sure B
129  * is also included in the memcg. At last, due to race conditions this filter
130  * can only guarantee that the page either belongs to the memcg tasks, or is
131  * a freed page.
132  */
133 #ifdef CONFIG_MEMCG
134 u64 hwpoison_filter_memcg;
135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136 static int hwpoison_filter_task(struct page *p)
137 {
138 	if (!hwpoison_filter_memcg)
139 		return 0;
140 
141 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
142 		return -EINVAL;
143 
144 	return 0;
145 }
146 #else
147 static int hwpoison_filter_task(struct page *p) { return 0; }
148 #endif
149 
150 int hwpoison_filter(struct page *p)
151 {
152 	if (!hwpoison_filter_enable)
153 		return 0;
154 
155 	if (hwpoison_filter_dev(p))
156 		return -EINVAL;
157 
158 	if (hwpoison_filter_flags(p))
159 		return -EINVAL;
160 
161 	if (hwpoison_filter_task(p))
162 		return -EINVAL;
163 
164 	return 0;
165 }
166 #else
167 int hwpoison_filter(struct page *p)
168 {
169 	return 0;
170 }
171 #endif
172 
173 EXPORT_SYMBOL_GPL(hwpoison_filter);
174 
175 /*
176  * Kill all processes that have a poisoned page mapped and then isolate
177  * the page.
178  *
179  * General strategy:
180  * Find all processes having the page mapped and kill them.
181  * But we keep a page reference around so that the page is not
182  * actually freed yet.
183  * Then stash the page away
184  *
185  * There's no convenient way to get back to mapped processes
186  * from the VMAs. So do a brute-force search over all
187  * running processes.
188  *
189  * Remember that machine checks are not common (or rather
190  * if they are common you have other problems), so this shouldn't
191  * be a performance issue.
192  *
193  * Also there are some races possible while we get from the
194  * error detection to actually handle it.
195  */
196 
197 struct to_kill {
198 	struct list_head nd;
199 	struct task_struct *tsk;
200 	unsigned long addr;
201 	short size_shift;
202 };
203 
204 /*
205  * Send all the processes who have the page mapped a signal.
206  * ``action optional'' if they are not immediately affected by the error
207  * ``action required'' if error happened in current execution context
208  */
209 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
210 {
211 	struct task_struct *t = tk->tsk;
212 	short addr_lsb = tk->size_shift;
213 	int ret = 0;
214 
215 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
216 			pfn, t->comm, t->pid);
217 
218 	if (flags & MF_ACTION_REQUIRED) {
219 		WARN_ON_ONCE(t != current);
220 		ret = force_sig_mceerr(BUS_MCEERR_AR,
221 					 (void __user *)tk->addr, addr_lsb);
222 	} else {
223 		/*
224 		 * Don't use force here, it's convenient if the signal
225 		 * can be temporarily blocked.
226 		 * This could cause a loop when the user sets SIGBUS
227 		 * to SIG_IGN, but hopefully no one will do that?
228 		 */
229 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
230 				      addr_lsb, t);  /* synchronous? */
231 	}
232 	if (ret < 0)
233 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
234 			t->comm, t->pid, ret);
235 	return ret;
236 }
237 
238 /*
239  * When a unknown page type is encountered drain as many buffers as possible
240  * in the hope to turn the page into a LRU or free page, which we can handle.
241  */
242 void shake_page(struct page *p, int access)
243 {
244 	if (PageHuge(p))
245 		return;
246 
247 	if (!PageSlab(p)) {
248 		lru_add_drain_all();
249 		if (PageLRU(p))
250 			return;
251 		drain_all_pages(page_zone(p));
252 		if (PageLRU(p) || is_free_buddy_page(p))
253 			return;
254 	}
255 
256 	/*
257 	 * Only call shrink_node_slabs here (which would also shrink
258 	 * other caches) if access is not potentially fatal.
259 	 */
260 	if (access)
261 		drop_slab_node(page_to_nid(p));
262 }
263 EXPORT_SYMBOL_GPL(shake_page);
264 
265 static unsigned long dev_pagemap_mapping_shift(struct page *page,
266 		struct vm_area_struct *vma)
267 {
268 	unsigned long address = vma_address(page, vma);
269 	pgd_t *pgd;
270 	p4d_t *p4d;
271 	pud_t *pud;
272 	pmd_t *pmd;
273 	pte_t *pte;
274 
275 	pgd = pgd_offset(vma->vm_mm, address);
276 	if (!pgd_present(*pgd))
277 		return 0;
278 	p4d = p4d_offset(pgd, address);
279 	if (!p4d_present(*p4d))
280 		return 0;
281 	pud = pud_offset(p4d, address);
282 	if (!pud_present(*pud))
283 		return 0;
284 	if (pud_devmap(*pud))
285 		return PUD_SHIFT;
286 	pmd = pmd_offset(pud, address);
287 	if (!pmd_present(*pmd))
288 		return 0;
289 	if (pmd_devmap(*pmd))
290 		return PMD_SHIFT;
291 	pte = pte_offset_map(pmd, address);
292 	if (!pte_present(*pte))
293 		return 0;
294 	if (pte_devmap(*pte))
295 		return PAGE_SHIFT;
296 	return 0;
297 }
298 
299 /*
300  * Failure handling: if we can't find or can't kill a process there's
301  * not much we can do.	We just print a message and ignore otherwise.
302  */
303 
304 /*
305  * Schedule a process for later kill.
306  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
307  */
308 static void add_to_kill(struct task_struct *tsk, struct page *p,
309 		       struct vm_area_struct *vma,
310 		       struct list_head *to_kill)
311 {
312 	struct to_kill *tk;
313 
314 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
315 	if (!tk) {
316 		pr_err("Memory failure: Out of memory while machine check handling\n");
317 		return;
318 	}
319 
320 	tk->addr = page_address_in_vma(p, vma);
321 	if (is_zone_device_page(p))
322 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
323 	else
324 		tk->size_shift = page_shift(compound_head(p));
325 
326 	/*
327 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
328 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
329 	 * so "tk->size_shift == 0" effectively checks no mapping on
330 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
331 	 * to a process' address space, it's possible not all N VMAs
332 	 * contain mappings for the page, but at least one VMA does.
333 	 * Only deliver SIGBUS with payload derived from the VMA that
334 	 * has a mapping for the page.
335 	 */
336 	if (tk->addr == -EFAULT) {
337 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
338 			page_to_pfn(p), tsk->comm);
339 	} else if (tk->size_shift == 0) {
340 		kfree(tk);
341 		return;
342 	}
343 
344 	get_task_struct(tsk);
345 	tk->tsk = tsk;
346 	list_add_tail(&tk->nd, to_kill);
347 }
348 
349 /*
350  * Kill the processes that have been collected earlier.
351  *
352  * Only do anything when DOIT is set, otherwise just free the list
353  * (this is used for clean pages which do not need killing)
354  * Also when FAIL is set do a force kill because something went
355  * wrong earlier.
356  */
357 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
358 		unsigned long pfn, int flags)
359 {
360 	struct to_kill *tk, *next;
361 
362 	list_for_each_entry_safe (tk, next, to_kill, nd) {
363 		if (forcekill) {
364 			/*
365 			 * In case something went wrong with munmapping
366 			 * make sure the process doesn't catch the
367 			 * signal and then access the memory. Just kill it.
368 			 */
369 			if (fail || tk->addr == -EFAULT) {
370 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
371 				       pfn, tk->tsk->comm, tk->tsk->pid);
372 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
373 						 tk->tsk, PIDTYPE_PID);
374 			}
375 
376 			/*
377 			 * In theory the process could have mapped
378 			 * something else on the address in-between. We could
379 			 * check for that, but we need to tell the
380 			 * process anyways.
381 			 */
382 			else if (kill_proc(tk, pfn, flags) < 0)
383 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
384 				       pfn, tk->tsk->comm, tk->tsk->pid);
385 		}
386 		put_task_struct(tk->tsk);
387 		kfree(tk);
388 	}
389 }
390 
391 /*
392  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
393  * on behalf of the thread group. Return task_struct of the (first found)
394  * dedicated thread if found, and return NULL otherwise.
395  *
396  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
397  * have to call rcu_read_lock/unlock() in this function.
398  */
399 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
400 {
401 	struct task_struct *t;
402 
403 	for_each_thread(tsk, t) {
404 		if (t->flags & PF_MCE_PROCESS) {
405 			if (t->flags & PF_MCE_EARLY)
406 				return t;
407 		} else {
408 			if (sysctl_memory_failure_early_kill)
409 				return t;
410 		}
411 	}
412 	return NULL;
413 }
414 
415 /*
416  * Determine whether a given process is "early kill" process which expects
417  * to be signaled when some page under the process is hwpoisoned.
418  * Return task_struct of the dedicated thread (main thread unless explicitly
419  * specified) if the process is "early kill," and otherwise returns NULL.
420  *
421  * Note that the above is true for Action Optional case, but not for Action
422  * Required case where SIGBUS should sent only to the current thread.
423  */
424 static struct task_struct *task_early_kill(struct task_struct *tsk,
425 					   int force_early)
426 {
427 	if (!tsk->mm)
428 		return NULL;
429 	if (force_early) {
430 		/*
431 		 * Comparing ->mm here because current task might represent
432 		 * a subthread, while tsk always points to the main thread.
433 		 */
434 		if (tsk->mm == current->mm)
435 			return current;
436 		else
437 			return NULL;
438 	}
439 	return find_early_kill_thread(tsk);
440 }
441 
442 /*
443  * Collect processes when the error hit an anonymous page.
444  */
445 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
446 				int force_early)
447 {
448 	struct vm_area_struct *vma;
449 	struct task_struct *tsk;
450 	struct anon_vma *av;
451 	pgoff_t pgoff;
452 
453 	av = page_lock_anon_vma_read(page);
454 	if (av == NULL)	/* Not actually mapped anymore */
455 		return;
456 
457 	pgoff = page_to_pgoff(page);
458 	read_lock(&tasklist_lock);
459 	for_each_process (tsk) {
460 		struct anon_vma_chain *vmac;
461 		struct task_struct *t = task_early_kill(tsk, force_early);
462 
463 		if (!t)
464 			continue;
465 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
466 					       pgoff, pgoff) {
467 			vma = vmac->vma;
468 			if (!page_mapped_in_vma(page, vma))
469 				continue;
470 			if (vma->vm_mm == t->mm)
471 				add_to_kill(t, page, vma, to_kill);
472 		}
473 	}
474 	read_unlock(&tasklist_lock);
475 	page_unlock_anon_vma_read(av);
476 }
477 
478 /*
479  * Collect processes when the error hit a file mapped page.
480  */
481 static void collect_procs_file(struct page *page, struct list_head *to_kill,
482 				int force_early)
483 {
484 	struct vm_area_struct *vma;
485 	struct task_struct *tsk;
486 	struct address_space *mapping = page->mapping;
487 	pgoff_t pgoff;
488 
489 	i_mmap_lock_read(mapping);
490 	read_lock(&tasklist_lock);
491 	pgoff = page_to_pgoff(page);
492 	for_each_process(tsk) {
493 		struct task_struct *t = task_early_kill(tsk, force_early);
494 
495 		if (!t)
496 			continue;
497 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
498 				      pgoff) {
499 			/*
500 			 * Send early kill signal to tasks where a vma covers
501 			 * the page but the corrupted page is not necessarily
502 			 * mapped it in its pte.
503 			 * Assume applications who requested early kill want
504 			 * to be informed of all such data corruptions.
505 			 */
506 			if (vma->vm_mm == t->mm)
507 				add_to_kill(t, page, vma, to_kill);
508 		}
509 	}
510 	read_unlock(&tasklist_lock);
511 	i_mmap_unlock_read(mapping);
512 }
513 
514 /*
515  * Collect the processes who have the corrupted page mapped to kill.
516  */
517 static void collect_procs(struct page *page, struct list_head *tokill,
518 				int force_early)
519 {
520 	if (!page->mapping)
521 		return;
522 
523 	if (PageAnon(page))
524 		collect_procs_anon(page, tokill, force_early);
525 	else
526 		collect_procs_file(page, tokill, force_early);
527 }
528 
529 static const char *action_name[] = {
530 	[MF_IGNORED] = "Ignored",
531 	[MF_FAILED] = "Failed",
532 	[MF_DELAYED] = "Delayed",
533 	[MF_RECOVERED] = "Recovered",
534 };
535 
536 static const char * const action_page_types[] = {
537 	[MF_MSG_KERNEL]			= "reserved kernel page",
538 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
539 	[MF_MSG_SLAB]			= "kernel slab page",
540 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
541 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
542 	[MF_MSG_HUGE]			= "huge page",
543 	[MF_MSG_FREE_HUGE]		= "free huge page",
544 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
545 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
546 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
547 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
548 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
549 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
550 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
551 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
552 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
553 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
554 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
555 	[MF_MSG_BUDDY]			= "free buddy page",
556 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
557 	[MF_MSG_DAX]			= "dax page",
558 	[MF_MSG_UNKNOWN]		= "unknown page",
559 };
560 
561 /*
562  * XXX: It is possible that a page is isolated from LRU cache,
563  * and then kept in swap cache or failed to remove from page cache.
564  * The page count will stop it from being freed by unpoison.
565  * Stress tests should be aware of this memory leak problem.
566  */
567 static int delete_from_lru_cache(struct page *p)
568 {
569 	if (!isolate_lru_page(p)) {
570 		/*
571 		 * Clear sensible page flags, so that the buddy system won't
572 		 * complain when the page is unpoison-and-freed.
573 		 */
574 		ClearPageActive(p);
575 		ClearPageUnevictable(p);
576 
577 		/*
578 		 * Poisoned page might never drop its ref count to 0 so we have
579 		 * to uncharge it manually from its memcg.
580 		 */
581 		mem_cgroup_uncharge(p);
582 
583 		/*
584 		 * drop the page count elevated by isolate_lru_page()
585 		 */
586 		put_page(p);
587 		return 0;
588 	}
589 	return -EIO;
590 }
591 
592 static int truncate_error_page(struct page *p, unsigned long pfn,
593 				struct address_space *mapping)
594 {
595 	int ret = MF_FAILED;
596 
597 	if (mapping->a_ops->error_remove_page) {
598 		int err = mapping->a_ops->error_remove_page(mapping, p);
599 
600 		if (err != 0) {
601 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
602 				pfn, err);
603 		} else if (page_has_private(p) &&
604 			   !try_to_release_page(p, GFP_NOIO)) {
605 			pr_info("Memory failure: %#lx: failed to release buffers\n",
606 				pfn);
607 		} else {
608 			ret = MF_RECOVERED;
609 		}
610 	} else {
611 		/*
612 		 * If the file system doesn't support it just invalidate
613 		 * This fails on dirty or anything with private pages
614 		 */
615 		if (invalidate_inode_page(p))
616 			ret = MF_RECOVERED;
617 		else
618 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
619 				pfn);
620 	}
621 
622 	return ret;
623 }
624 
625 /*
626  * Error hit kernel page.
627  * Do nothing, try to be lucky and not touch this instead. For a few cases we
628  * could be more sophisticated.
629  */
630 static int me_kernel(struct page *p, unsigned long pfn)
631 {
632 	return MF_IGNORED;
633 }
634 
635 /*
636  * Page in unknown state. Do nothing.
637  */
638 static int me_unknown(struct page *p, unsigned long pfn)
639 {
640 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
641 	return MF_FAILED;
642 }
643 
644 /*
645  * Clean (or cleaned) page cache page.
646  */
647 static int me_pagecache_clean(struct page *p, unsigned long pfn)
648 {
649 	struct address_space *mapping;
650 
651 	delete_from_lru_cache(p);
652 
653 	/*
654 	 * For anonymous pages we're done the only reference left
655 	 * should be the one m_f() holds.
656 	 */
657 	if (PageAnon(p))
658 		return MF_RECOVERED;
659 
660 	/*
661 	 * Now truncate the page in the page cache. This is really
662 	 * more like a "temporary hole punch"
663 	 * Don't do this for block devices when someone else
664 	 * has a reference, because it could be file system metadata
665 	 * and that's not safe to truncate.
666 	 */
667 	mapping = page_mapping(p);
668 	if (!mapping) {
669 		/*
670 		 * Page has been teared down in the meanwhile
671 		 */
672 		return MF_FAILED;
673 	}
674 
675 	/*
676 	 * Truncation is a bit tricky. Enable it per file system for now.
677 	 *
678 	 * Open: to take i_mutex or not for this? Right now we don't.
679 	 */
680 	return truncate_error_page(p, pfn, mapping);
681 }
682 
683 /*
684  * Dirty pagecache page
685  * Issues: when the error hit a hole page the error is not properly
686  * propagated.
687  */
688 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
689 {
690 	struct address_space *mapping = page_mapping(p);
691 
692 	SetPageError(p);
693 	/* TBD: print more information about the file. */
694 	if (mapping) {
695 		/*
696 		 * IO error will be reported by write(), fsync(), etc.
697 		 * who check the mapping.
698 		 * This way the application knows that something went
699 		 * wrong with its dirty file data.
700 		 *
701 		 * There's one open issue:
702 		 *
703 		 * The EIO will be only reported on the next IO
704 		 * operation and then cleared through the IO map.
705 		 * Normally Linux has two mechanisms to pass IO error
706 		 * first through the AS_EIO flag in the address space
707 		 * and then through the PageError flag in the page.
708 		 * Since we drop pages on memory failure handling the
709 		 * only mechanism open to use is through AS_AIO.
710 		 *
711 		 * This has the disadvantage that it gets cleared on
712 		 * the first operation that returns an error, while
713 		 * the PageError bit is more sticky and only cleared
714 		 * when the page is reread or dropped.  If an
715 		 * application assumes it will always get error on
716 		 * fsync, but does other operations on the fd before
717 		 * and the page is dropped between then the error
718 		 * will not be properly reported.
719 		 *
720 		 * This can already happen even without hwpoisoned
721 		 * pages: first on metadata IO errors (which only
722 		 * report through AS_EIO) or when the page is dropped
723 		 * at the wrong time.
724 		 *
725 		 * So right now we assume that the application DTRT on
726 		 * the first EIO, but we're not worse than other parts
727 		 * of the kernel.
728 		 */
729 		mapping_set_error(mapping, -EIO);
730 	}
731 
732 	return me_pagecache_clean(p, pfn);
733 }
734 
735 /*
736  * Clean and dirty swap cache.
737  *
738  * Dirty swap cache page is tricky to handle. The page could live both in page
739  * cache and swap cache(ie. page is freshly swapped in). So it could be
740  * referenced concurrently by 2 types of PTEs:
741  * normal PTEs and swap PTEs. We try to handle them consistently by calling
742  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
743  * and then
744  *      - clear dirty bit to prevent IO
745  *      - remove from LRU
746  *      - but keep in the swap cache, so that when we return to it on
747  *        a later page fault, we know the application is accessing
748  *        corrupted data and shall be killed (we installed simple
749  *        interception code in do_swap_page to catch it).
750  *
751  * Clean swap cache pages can be directly isolated. A later page fault will
752  * bring in the known good data from disk.
753  */
754 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
755 {
756 	ClearPageDirty(p);
757 	/* Trigger EIO in shmem: */
758 	ClearPageUptodate(p);
759 
760 	if (!delete_from_lru_cache(p))
761 		return MF_DELAYED;
762 	else
763 		return MF_FAILED;
764 }
765 
766 static int me_swapcache_clean(struct page *p, unsigned long pfn)
767 {
768 	delete_from_swap_cache(p);
769 
770 	if (!delete_from_lru_cache(p))
771 		return MF_RECOVERED;
772 	else
773 		return MF_FAILED;
774 }
775 
776 /*
777  * Huge pages. Needs work.
778  * Issues:
779  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
780  *   To narrow down kill region to one page, we need to break up pmd.
781  */
782 static int me_huge_page(struct page *p, unsigned long pfn)
783 {
784 	int res = 0;
785 	struct page *hpage = compound_head(p);
786 	struct address_space *mapping;
787 
788 	if (!PageHuge(hpage))
789 		return MF_DELAYED;
790 
791 	mapping = page_mapping(hpage);
792 	if (mapping) {
793 		res = truncate_error_page(hpage, pfn, mapping);
794 	} else {
795 		unlock_page(hpage);
796 		/*
797 		 * migration entry prevents later access on error anonymous
798 		 * hugepage, so we can free and dissolve it into buddy to
799 		 * save healthy subpages.
800 		 */
801 		if (PageAnon(hpage))
802 			put_page(hpage);
803 		dissolve_free_huge_page(p);
804 		res = MF_RECOVERED;
805 		lock_page(hpage);
806 	}
807 
808 	return res;
809 }
810 
811 /*
812  * Various page states we can handle.
813  *
814  * A page state is defined by its current page->flags bits.
815  * The table matches them in order and calls the right handler.
816  *
817  * This is quite tricky because we can access page at any time
818  * in its live cycle, so all accesses have to be extremely careful.
819  *
820  * This is not complete. More states could be added.
821  * For any missing state don't attempt recovery.
822  */
823 
824 #define dirty		(1UL << PG_dirty)
825 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
826 #define unevict		(1UL << PG_unevictable)
827 #define mlock		(1UL << PG_mlocked)
828 #define lru		(1UL << PG_lru)
829 #define head		(1UL << PG_head)
830 #define slab		(1UL << PG_slab)
831 #define reserved	(1UL << PG_reserved)
832 
833 static struct page_state {
834 	unsigned long mask;
835 	unsigned long res;
836 	enum mf_action_page_type type;
837 	int (*action)(struct page *p, unsigned long pfn);
838 } error_states[] = {
839 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
840 	/*
841 	 * free pages are specially detected outside this table:
842 	 * PG_buddy pages only make a small fraction of all free pages.
843 	 */
844 
845 	/*
846 	 * Could in theory check if slab page is free or if we can drop
847 	 * currently unused objects without touching them. But just
848 	 * treat it as standard kernel for now.
849 	 */
850 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
851 
852 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
853 
854 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
855 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
856 
857 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
858 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
859 
860 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
861 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
862 
863 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
864 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
865 
866 	/*
867 	 * Catchall entry: must be at end.
868 	 */
869 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
870 };
871 
872 #undef dirty
873 #undef sc
874 #undef unevict
875 #undef mlock
876 #undef lru
877 #undef head
878 #undef slab
879 #undef reserved
880 
881 /*
882  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
883  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
884  */
885 static void action_result(unsigned long pfn, enum mf_action_page_type type,
886 			  enum mf_result result)
887 {
888 	trace_memory_failure_event(pfn, type, result);
889 
890 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
891 		pfn, action_page_types[type], action_name[result]);
892 }
893 
894 static int page_action(struct page_state *ps, struct page *p,
895 			unsigned long pfn)
896 {
897 	int result;
898 	int count;
899 
900 	result = ps->action(p, pfn);
901 
902 	count = page_count(p) - 1;
903 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
904 		count--;
905 	if (count > 0) {
906 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
907 		       pfn, action_page_types[ps->type], count);
908 		result = MF_FAILED;
909 	}
910 	action_result(pfn, ps->type, result);
911 
912 	/* Could do more checks here if page looks ok */
913 	/*
914 	 * Could adjust zone counters here to correct for the missing page.
915 	 */
916 
917 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
918 }
919 
920 /**
921  * get_hwpoison_page() - Get refcount for memory error handling:
922  * @page:	raw error page (hit by memory error)
923  *
924  * Return: return 0 if failed to grab the refcount, otherwise true (some
925  * non-zero value.)
926  */
927 int get_hwpoison_page(struct page *page)
928 {
929 	struct page *head = compound_head(page);
930 
931 	if (!PageHuge(head) && PageTransHuge(head)) {
932 		/*
933 		 * Non anonymous thp exists only in allocation/free time. We
934 		 * can't handle such a case correctly, so let's give it up.
935 		 * This should be better than triggering BUG_ON when kernel
936 		 * tries to touch the "partially handled" page.
937 		 */
938 		if (!PageAnon(head)) {
939 			pr_err("Memory failure: %#lx: non anonymous thp\n",
940 				page_to_pfn(page));
941 			return 0;
942 		}
943 	}
944 
945 	if (get_page_unless_zero(head)) {
946 		if (head == compound_head(page))
947 			return 1;
948 
949 		pr_info("Memory failure: %#lx cannot catch tail\n",
950 			page_to_pfn(page));
951 		put_page(head);
952 	}
953 
954 	return 0;
955 }
956 EXPORT_SYMBOL_GPL(get_hwpoison_page);
957 
958 /*
959  * Do all that is necessary to remove user space mappings. Unmap
960  * the pages and send SIGBUS to the processes if the data was dirty.
961  */
962 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
963 				  int flags, struct page **hpagep)
964 {
965 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
966 	struct address_space *mapping;
967 	LIST_HEAD(tokill);
968 	bool unmap_success = true;
969 	int kill = 1, forcekill;
970 	struct page *hpage = *hpagep;
971 	bool mlocked = PageMlocked(hpage);
972 
973 	/*
974 	 * Here we are interested only in user-mapped pages, so skip any
975 	 * other types of pages.
976 	 */
977 	if (PageReserved(p) || PageSlab(p))
978 		return true;
979 	if (!(PageLRU(hpage) || PageHuge(p)))
980 		return true;
981 
982 	/*
983 	 * This check implies we don't kill processes if their pages
984 	 * are in the swap cache early. Those are always late kills.
985 	 */
986 	if (!page_mapped(hpage))
987 		return true;
988 
989 	if (PageKsm(p)) {
990 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
991 		return false;
992 	}
993 
994 	if (PageSwapCache(p)) {
995 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
996 			pfn);
997 		ttu |= TTU_IGNORE_HWPOISON;
998 	}
999 
1000 	/*
1001 	 * Propagate the dirty bit from PTEs to struct page first, because we
1002 	 * need this to decide if we should kill or just drop the page.
1003 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1004 	 * be called inside page lock (it's recommended but not enforced).
1005 	 */
1006 	mapping = page_mapping(hpage);
1007 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1008 	    mapping_can_writeback(mapping)) {
1009 		if (page_mkclean(hpage)) {
1010 			SetPageDirty(hpage);
1011 		} else {
1012 			kill = 0;
1013 			ttu |= TTU_IGNORE_HWPOISON;
1014 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1015 				pfn);
1016 		}
1017 	}
1018 
1019 	/*
1020 	 * First collect all the processes that have the page
1021 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1022 	 * because ttu takes the rmap data structures down.
1023 	 *
1024 	 * Error handling: We ignore errors here because
1025 	 * there's nothing that can be done.
1026 	 */
1027 	if (kill)
1028 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1029 
1030 	if (!PageHuge(hpage)) {
1031 		unmap_success = try_to_unmap(hpage, ttu);
1032 	} else {
1033 		/*
1034 		 * For hugetlb pages, try_to_unmap could potentially call
1035 		 * huge_pmd_unshare.  Because of this, take semaphore in
1036 		 * write mode here and set TTU_RMAP_LOCKED to indicate we
1037 		 * have taken the lock at this higer level.
1038 		 *
1039 		 * Note that the call to hugetlb_page_mapping_lock_write
1040 		 * is necessary even if mapping is already set.  It handles
1041 		 * ugliness of potentially having to drop page lock to obtain
1042 		 * i_mmap_rwsem.
1043 		 */
1044 		mapping = hugetlb_page_mapping_lock_write(hpage);
1045 
1046 		if (mapping) {
1047 			unmap_success = try_to_unmap(hpage,
1048 						     ttu|TTU_RMAP_LOCKED);
1049 			i_mmap_unlock_write(mapping);
1050 		} else {
1051 			pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n",
1052 				pfn);
1053 			unmap_success = false;
1054 		}
1055 	}
1056 	if (!unmap_success)
1057 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1058 		       pfn, page_mapcount(hpage));
1059 
1060 	/*
1061 	 * try_to_unmap() might put mlocked page in lru cache, so call
1062 	 * shake_page() again to ensure that it's flushed.
1063 	 */
1064 	if (mlocked)
1065 		shake_page(hpage, 0);
1066 
1067 	/*
1068 	 * Now that the dirty bit has been propagated to the
1069 	 * struct page and all unmaps done we can decide if
1070 	 * killing is needed or not.  Only kill when the page
1071 	 * was dirty or the process is not restartable,
1072 	 * otherwise the tokill list is merely
1073 	 * freed.  When there was a problem unmapping earlier
1074 	 * use a more force-full uncatchable kill to prevent
1075 	 * any accesses to the poisoned memory.
1076 	 */
1077 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1078 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1079 
1080 	return unmap_success;
1081 }
1082 
1083 static int identify_page_state(unsigned long pfn, struct page *p,
1084 				unsigned long page_flags)
1085 {
1086 	struct page_state *ps;
1087 
1088 	/*
1089 	 * The first check uses the current page flags which may not have any
1090 	 * relevant information. The second check with the saved page flags is
1091 	 * carried out only if the first check can't determine the page status.
1092 	 */
1093 	for (ps = error_states;; ps++)
1094 		if ((p->flags & ps->mask) == ps->res)
1095 			break;
1096 
1097 	page_flags |= (p->flags & (1UL << PG_dirty));
1098 
1099 	if (!ps->mask)
1100 		for (ps = error_states;; ps++)
1101 			if ((page_flags & ps->mask) == ps->res)
1102 				break;
1103 	return page_action(ps, p, pfn);
1104 }
1105 
1106 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1107 {
1108 	struct page *p = pfn_to_page(pfn);
1109 	struct page *head = compound_head(p);
1110 	int res;
1111 	unsigned long page_flags;
1112 
1113 	if (TestSetPageHWPoison(head)) {
1114 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1115 		       pfn);
1116 		return 0;
1117 	}
1118 
1119 	num_poisoned_pages_inc();
1120 
1121 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1122 		/*
1123 		 * Check "filter hit" and "race with other subpage."
1124 		 */
1125 		lock_page(head);
1126 		if (PageHWPoison(head)) {
1127 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1128 			    || (p != head && TestSetPageHWPoison(head))) {
1129 				num_poisoned_pages_dec();
1130 				unlock_page(head);
1131 				return 0;
1132 			}
1133 		}
1134 		unlock_page(head);
1135 		dissolve_free_huge_page(p);
1136 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1137 		return 0;
1138 	}
1139 
1140 	lock_page(head);
1141 	page_flags = head->flags;
1142 
1143 	if (!PageHWPoison(head)) {
1144 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1145 		num_poisoned_pages_dec();
1146 		unlock_page(head);
1147 		put_hwpoison_page(head);
1148 		return 0;
1149 	}
1150 
1151 	/*
1152 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1153 	 * simply disable it. In order to make it work properly, we need
1154 	 * make sure that:
1155 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1156 	 *    entry properly works, and
1157 	 *  - other mm code walking over page table is aware of pud-aligned
1158 	 *    hwpoison entries.
1159 	 */
1160 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1161 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1162 		res = -EBUSY;
1163 		goto out;
1164 	}
1165 
1166 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1167 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1168 		res = -EBUSY;
1169 		goto out;
1170 	}
1171 
1172 	res = identify_page_state(pfn, p, page_flags);
1173 out:
1174 	unlock_page(head);
1175 	return res;
1176 }
1177 
1178 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1179 		struct dev_pagemap *pgmap)
1180 {
1181 	struct page *page = pfn_to_page(pfn);
1182 	const bool unmap_success = true;
1183 	unsigned long size = 0;
1184 	struct to_kill *tk;
1185 	LIST_HEAD(tokill);
1186 	int rc = -EBUSY;
1187 	loff_t start;
1188 	dax_entry_t cookie;
1189 
1190 	/*
1191 	 * Prevent the inode from being freed while we are interrogating
1192 	 * the address_space, typically this would be handled by
1193 	 * lock_page(), but dax pages do not use the page lock. This
1194 	 * also prevents changes to the mapping of this pfn until
1195 	 * poison signaling is complete.
1196 	 */
1197 	cookie = dax_lock_page(page);
1198 	if (!cookie)
1199 		goto out;
1200 
1201 	if (hwpoison_filter(page)) {
1202 		rc = 0;
1203 		goto unlock;
1204 	}
1205 
1206 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1207 		/*
1208 		 * TODO: Handle HMM pages which may need coordination
1209 		 * with device-side memory.
1210 		 */
1211 		goto unlock;
1212 	}
1213 
1214 	/*
1215 	 * Use this flag as an indication that the dax page has been
1216 	 * remapped UC to prevent speculative consumption of poison.
1217 	 */
1218 	SetPageHWPoison(page);
1219 
1220 	/*
1221 	 * Unlike System-RAM there is no possibility to swap in a
1222 	 * different physical page at a given virtual address, so all
1223 	 * userspace consumption of ZONE_DEVICE memory necessitates
1224 	 * SIGBUS (i.e. MF_MUST_KILL)
1225 	 */
1226 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1227 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1228 
1229 	list_for_each_entry(tk, &tokill, nd)
1230 		if (tk->size_shift)
1231 			size = max(size, 1UL << tk->size_shift);
1232 	if (size) {
1233 		/*
1234 		 * Unmap the largest mapping to avoid breaking up
1235 		 * device-dax mappings which are constant size. The
1236 		 * actual size of the mapping being torn down is
1237 		 * communicated in siginfo, see kill_proc()
1238 		 */
1239 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1240 		unmap_mapping_range(page->mapping, start, start + size, 0);
1241 	}
1242 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1243 	rc = 0;
1244 unlock:
1245 	dax_unlock_page(page, cookie);
1246 out:
1247 	/* drop pgmap ref acquired in caller */
1248 	put_dev_pagemap(pgmap);
1249 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1250 	return rc;
1251 }
1252 
1253 /**
1254  * memory_failure - Handle memory failure of a page.
1255  * @pfn: Page Number of the corrupted page
1256  * @flags: fine tune action taken
1257  *
1258  * This function is called by the low level machine check code
1259  * of an architecture when it detects hardware memory corruption
1260  * of a page. It tries its best to recover, which includes
1261  * dropping pages, killing processes etc.
1262  *
1263  * The function is primarily of use for corruptions that
1264  * happen outside the current execution context (e.g. when
1265  * detected by a background scrubber)
1266  *
1267  * Must run in process context (e.g. a work queue) with interrupts
1268  * enabled and no spinlocks hold.
1269  */
1270 int memory_failure(unsigned long pfn, int flags)
1271 {
1272 	struct page *p;
1273 	struct page *hpage;
1274 	struct page *orig_head;
1275 	struct dev_pagemap *pgmap;
1276 	int res;
1277 	unsigned long page_flags;
1278 
1279 	if (!sysctl_memory_failure_recovery)
1280 		panic("Memory failure on page %lx", pfn);
1281 
1282 	p = pfn_to_online_page(pfn);
1283 	if (!p) {
1284 		if (pfn_valid(pfn)) {
1285 			pgmap = get_dev_pagemap(pfn, NULL);
1286 			if (pgmap)
1287 				return memory_failure_dev_pagemap(pfn, flags,
1288 								  pgmap);
1289 		}
1290 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1291 			pfn);
1292 		return -ENXIO;
1293 	}
1294 
1295 	if (PageHuge(p))
1296 		return memory_failure_hugetlb(pfn, flags);
1297 	if (TestSetPageHWPoison(p)) {
1298 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1299 			pfn);
1300 		return 0;
1301 	}
1302 
1303 	orig_head = hpage = compound_head(p);
1304 	num_poisoned_pages_inc();
1305 
1306 	/*
1307 	 * We need/can do nothing about count=0 pages.
1308 	 * 1) it's a free page, and therefore in safe hand:
1309 	 *    prep_new_page() will be the gate keeper.
1310 	 * 2) it's part of a non-compound high order page.
1311 	 *    Implies some kernel user: cannot stop them from
1312 	 *    R/W the page; let's pray that the page has been
1313 	 *    used and will be freed some time later.
1314 	 * In fact it's dangerous to directly bump up page count from 0,
1315 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1316 	 */
1317 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1318 		if (is_free_buddy_page(p)) {
1319 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1320 			return 0;
1321 		} else {
1322 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1323 			return -EBUSY;
1324 		}
1325 	}
1326 
1327 	if (PageTransHuge(hpage)) {
1328 		lock_page(p);
1329 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1330 			unlock_page(p);
1331 			if (!PageAnon(p))
1332 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1333 					pfn);
1334 			else
1335 				pr_err("Memory failure: %#lx: thp split failed\n",
1336 					pfn);
1337 			if (TestClearPageHWPoison(p))
1338 				num_poisoned_pages_dec();
1339 			put_hwpoison_page(p);
1340 			return -EBUSY;
1341 		}
1342 		unlock_page(p);
1343 		VM_BUG_ON_PAGE(!page_count(p), p);
1344 		hpage = compound_head(p);
1345 	}
1346 
1347 	/*
1348 	 * We ignore non-LRU pages for good reasons.
1349 	 * - PG_locked is only well defined for LRU pages and a few others
1350 	 * - to avoid races with __SetPageLocked()
1351 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1352 	 * The check (unnecessarily) ignores LRU pages being isolated and
1353 	 * walked by the page reclaim code, however that's not a big loss.
1354 	 */
1355 	shake_page(p, 0);
1356 	/* shake_page could have turned it free. */
1357 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1358 		if (flags & MF_COUNT_INCREASED)
1359 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1360 		else
1361 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1362 		return 0;
1363 	}
1364 
1365 	lock_page(p);
1366 
1367 	/*
1368 	 * The page could have changed compound pages during the locking.
1369 	 * If this happens just bail out.
1370 	 */
1371 	if (PageCompound(p) && compound_head(p) != orig_head) {
1372 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1373 		res = -EBUSY;
1374 		goto out;
1375 	}
1376 
1377 	/*
1378 	 * We use page flags to determine what action should be taken, but
1379 	 * the flags can be modified by the error containment action.  One
1380 	 * example is an mlocked page, where PG_mlocked is cleared by
1381 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1382 	 * correctly, we save a copy of the page flags at this time.
1383 	 */
1384 	if (PageHuge(p))
1385 		page_flags = hpage->flags;
1386 	else
1387 		page_flags = p->flags;
1388 
1389 	/*
1390 	 * unpoison always clear PG_hwpoison inside page lock
1391 	 */
1392 	if (!PageHWPoison(p)) {
1393 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1394 		num_poisoned_pages_dec();
1395 		unlock_page(p);
1396 		put_hwpoison_page(p);
1397 		return 0;
1398 	}
1399 	if (hwpoison_filter(p)) {
1400 		if (TestClearPageHWPoison(p))
1401 			num_poisoned_pages_dec();
1402 		unlock_page(p);
1403 		put_hwpoison_page(p);
1404 		return 0;
1405 	}
1406 
1407 	if (!PageTransTail(p) && !PageLRU(p))
1408 		goto identify_page_state;
1409 
1410 	/*
1411 	 * It's very difficult to mess with pages currently under IO
1412 	 * and in many cases impossible, so we just avoid it here.
1413 	 */
1414 	wait_on_page_writeback(p);
1415 
1416 	/*
1417 	 * Now take care of user space mappings.
1418 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1419 	 *
1420 	 * When the raw error page is thp tail page, hpage points to the raw
1421 	 * page after thp split.
1422 	 */
1423 	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1424 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1425 		res = -EBUSY;
1426 		goto out;
1427 	}
1428 
1429 	/*
1430 	 * Torn down by someone else?
1431 	 */
1432 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1433 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1434 		res = -EBUSY;
1435 		goto out;
1436 	}
1437 
1438 identify_page_state:
1439 	res = identify_page_state(pfn, p, page_flags);
1440 out:
1441 	unlock_page(p);
1442 	return res;
1443 }
1444 EXPORT_SYMBOL_GPL(memory_failure);
1445 
1446 #define MEMORY_FAILURE_FIFO_ORDER	4
1447 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1448 
1449 struct memory_failure_entry {
1450 	unsigned long pfn;
1451 	int flags;
1452 };
1453 
1454 struct memory_failure_cpu {
1455 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1456 		      MEMORY_FAILURE_FIFO_SIZE);
1457 	spinlock_t lock;
1458 	struct work_struct work;
1459 };
1460 
1461 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1462 
1463 /**
1464  * memory_failure_queue - Schedule handling memory failure of a page.
1465  * @pfn: Page Number of the corrupted page
1466  * @flags: Flags for memory failure handling
1467  *
1468  * This function is called by the low level hardware error handler
1469  * when it detects hardware memory corruption of a page. It schedules
1470  * the recovering of error page, including dropping pages, killing
1471  * processes etc.
1472  *
1473  * The function is primarily of use for corruptions that
1474  * happen outside the current execution context (e.g. when
1475  * detected by a background scrubber)
1476  *
1477  * Can run in IRQ context.
1478  */
1479 void memory_failure_queue(unsigned long pfn, int flags)
1480 {
1481 	struct memory_failure_cpu *mf_cpu;
1482 	unsigned long proc_flags;
1483 	struct memory_failure_entry entry = {
1484 		.pfn =		pfn,
1485 		.flags =	flags,
1486 	};
1487 
1488 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1489 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1490 	if (kfifo_put(&mf_cpu->fifo, entry))
1491 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1492 	else
1493 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1494 		       pfn);
1495 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1496 	put_cpu_var(memory_failure_cpu);
1497 }
1498 EXPORT_SYMBOL_GPL(memory_failure_queue);
1499 
1500 static void memory_failure_work_func(struct work_struct *work)
1501 {
1502 	struct memory_failure_cpu *mf_cpu;
1503 	struct memory_failure_entry entry = { 0, };
1504 	unsigned long proc_flags;
1505 	int gotten;
1506 
1507 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1508 	for (;;) {
1509 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1510 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1511 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1512 		if (!gotten)
1513 			break;
1514 		if (entry.flags & MF_SOFT_OFFLINE)
1515 			soft_offline_page(entry.pfn, entry.flags);
1516 		else
1517 			memory_failure(entry.pfn, entry.flags);
1518 	}
1519 }
1520 
1521 /*
1522  * Process memory_failure work queued on the specified CPU.
1523  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1524  */
1525 void memory_failure_queue_kick(int cpu)
1526 {
1527 	struct memory_failure_cpu *mf_cpu;
1528 
1529 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1530 	cancel_work_sync(&mf_cpu->work);
1531 	memory_failure_work_func(&mf_cpu->work);
1532 }
1533 
1534 static int __init memory_failure_init(void)
1535 {
1536 	struct memory_failure_cpu *mf_cpu;
1537 	int cpu;
1538 
1539 	for_each_possible_cpu(cpu) {
1540 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1541 		spin_lock_init(&mf_cpu->lock);
1542 		INIT_KFIFO(mf_cpu->fifo);
1543 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1544 	}
1545 
1546 	return 0;
1547 }
1548 core_initcall(memory_failure_init);
1549 
1550 #define unpoison_pr_info(fmt, pfn, rs)			\
1551 ({							\
1552 	if (__ratelimit(rs))				\
1553 		pr_info(fmt, pfn);			\
1554 })
1555 
1556 /**
1557  * unpoison_memory - Unpoison a previously poisoned page
1558  * @pfn: Page number of the to be unpoisoned page
1559  *
1560  * Software-unpoison a page that has been poisoned by
1561  * memory_failure() earlier.
1562  *
1563  * This is only done on the software-level, so it only works
1564  * for linux injected failures, not real hardware failures
1565  *
1566  * Returns 0 for success, otherwise -errno.
1567  */
1568 int unpoison_memory(unsigned long pfn)
1569 {
1570 	struct page *page;
1571 	struct page *p;
1572 	int freeit = 0;
1573 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1574 					DEFAULT_RATELIMIT_BURST);
1575 
1576 	if (!pfn_valid(pfn))
1577 		return -ENXIO;
1578 
1579 	p = pfn_to_page(pfn);
1580 	page = compound_head(p);
1581 
1582 	if (!PageHWPoison(p)) {
1583 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1584 				 pfn, &unpoison_rs);
1585 		return 0;
1586 	}
1587 
1588 	if (page_count(page) > 1) {
1589 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1590 				 pfn, &unpoison_rs);
1591 		return 0;
1592 	}
1593 
1594 	if (page_mapped(page)) {
1595 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1596 				 pfn, &unpoison_rs);
1597 		return 0;
1598 	}
1599 
1600 	if (page_mapping(page)) {
1601 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1602 				 pfn, &unpoison_rs);
1603 		return 0;
1604 	}
1605 
1606 	/*
1607 	 * unpoison_memory() can encounter thp only when the thp is being
1608 	 * worked by memory_failure() and the page lock is not held yet.
1609 	 * In such case, we yield to memory_failure() and make unpoison fail.
1610 	 */
1611 	if (!PageHuge(page) && PageTransHuge(page)) {
1612 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1613 				 pfn, &unpoison_rs);
1614 		return 0;
1615 	}
1616 
1617 	if (!get_hwpoison_page(p)) {
1618 		if (TestClearPageHWPoison(p))
1619 			num_poisoned_pages_dec();
1620 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1621 				 pfn, &unpoison_rs);
1622 		return 0;
1623 	}
1624 
1625 	lock_page(page);
1626 	/*
1627 	 * This test is racy because PG_hwpoison is set outside of page lock.
1628 	 * That's acceptable because that won't trigger kernel panic. Instead,
1629 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1630 	 * the free buddy page pool.
1631 	 */
1632 	if (TestClearPageHWPoison(page)) {
1633 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1634 				 pfn, &unpoison_rs);
1635 		num_poisoned_pages_dec();
1636 		freeit = 1;
1637 	}
1638 	unlock_page(page);
1639 
1640 	put_hwpoison_page(page);
1641 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1642 		put_hwpoison_page(page);
1643 
1644 	return 0;
1645 }
1646 EXPORT_SYMBOL(unpoison_memory);
1647 
1648 static struct page *new_page(struct page *p, unsigned long private)
1649 {
1650 	struct migration_target_control mtc = {
1651 		.nid = page_to_nid(p),
1652 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1653 	};
1654 
1655 	return alloc_migration_target(p, (unsigned long)&mtc);
1656 }
1657 
1658 /*
1659  * Safely get reference count of an arbitrary page.
1660  * Returns 0 for a free page, -EIO for a zero refcount page
1661  * that is not free, and 1 for any other page type.
1662  * For 1 the page is returned with increased page count, otherwise not.
1663  */
1664 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1665 {
1666 	int ret;
1667 
1668 	if (flags & MF_COUNT_INCREASED)
1669 		return 1;
1670 
1671 	/*
1672 	 * When the target page is a free hugepage, just remove it
1673 	 * from free hugepage list.
1674 	 */
1675 	if (!get_hwpoison_page(p)) {
1676 		if (PageHuge(p)) {
1677 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1678 			ret = 0;
1679 		} else if (is_free_buddy_page(p)) {
1680 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1681 			ret = 0;
1682 		} else {
1683 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1684 				__func__, pfn, p->flags);
1685 			ret = -EIO;
1686 		}
1687 	} else {
1688 		/* Not a free page */
1689 		ret = 1;
1690 	}
1691 	return ret;
1692 }
1693 
1694 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1695 {
1696 	int ret = __get_any_page(page, pfn, flags);
1697 
1698 	if (ret == 1 && !PageHuge(page) &&
1699 	    !PageLRU(page) && !__PageMovable(page)) {
1700 		/*
1701 		 * Try to free it.
1702 		 */
1703 		put_hwpoison_page(page);
1704 		shake_page(page, 1);
1705 
1706 		/*
1707 		 * Did it turn free?
1708 		 */
1709 		ret = __get_any_page(page, pfn, 0);
1710 		if (ret == 1 && !PageLRU(page)) {
1711 			/* Drop page reference which is from __get_any_page() */
1712 			put_hwpoison_page(page);
1713 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1714 				pfn, page->flags, &page->flags);
1715 			return -EIO;
1716 		}
1717 	}
1718 	return ret;
1719 }
1720 
1721 static int soft_offline_huge_page(struct page *page, int flags)
1722 {
1723 	int ret;
1724 	unsigned long pfn = page_to_pfn(page);
1725 	struct page *hpage = compound_head(page);
1726 	LIST_HEAD(pagelist);
1727 
1728 	/*
1729 	 * This double-check of PageHWPoison is to avoid the race with
1730 	 * memory_failure(). See also comment in __soft_offline_page().
1731 	 */
1732 	lock_page(hpage);
1733 	if (PageHWPoison(hpage)) {
1734 		unlock_page(hpage);
1735 		put_hwpoison_page(hpage);
1736 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1737 		return -EBUSY;
1738 	}
1739 	unlock_page(hpage);
1740 
1741 	ret = isolate_huge_page(hpage, &pagelist);
1742 	/*
1743 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1744 	 * so need to drop one here.
1745 	 */
1746 	put_hwpoison_page(hpage);
1747 	if (!ret) {
1748 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1749 		return -EBUSY;
1750 	}
1751 
1752 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1753 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1754 	if (ret) {
1755 		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1756 			pfn, ret, page->flags, &page->flags);
1757 		if (!list_empty(&pagelist))
1758 			putback_movable_pages(&pagelist);
1759 		if (ret > 0)
1760 			ret = -EIO;
1761 	} else {
1762 		/*
1763 		 * We set PG_hwpoison only when the migration source hugepage
1764 		 * was successfully dissolved, because otherwise hwpoisoned
1765 		 * hugepage remains on free hugepage list, then userspace will
1766 		 * find it as SIGBUS by allocation failure. That's not expected
1767 		 * in soft-offlining.
1768 		 */
1769 		ret = dissolve_free_huge_page(page);
1770 		if (!ret) {
1771 			if (set_hwpoison_free_buddy_page(page))
1772 				num_poisoned_pages_inc();
1773 			else
1774 				ret = -EBUSY;
1775 		}
1776 	}
1777 	return ret;
1778 }
1779 
1780 static int __soft_offline_page(struct page *page, int flags)
1781 {
1782 	int ret;
1783 	unsigned long pfn = page_to_pfn(page);
1784 
1785 	/*
1786 	 * Check PageHWPoison again inside page lock because PageHWPoison
1787 	 * is set by memory_failure() outside page lock. Note that
1788 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1789 	 * so there's no race between soft_offline_page() and memory_failure().
1790 	 */
1791 	lock_page(page);
1792 	wait_on_page_writeback(page);
1793 	if (PageHWPoison(page)) {
1794 		unlock_page(page);
1795 		put_hwpoison_page(page);
1796 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1797 		return -EBUSY;
1798 	}
1799 	/*
1800 	 * Try to invalidate first. This should work for
1801 	 * non dirty unmapped page cache pages.
1802 	 */
1803 	ret = invalidate_inode_page(page);
1804 	unlock_page(page);
1805 	/*
1806 	 * RED-PEN would be better to keep it isolated here, but we
1807 	 * would need to fix isolation locking first.
1808 	 */
1809 	if (ret == 1) {
1810 		put_hwpoison_page(page);
1811 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1812 		SetPageHWPoison(page);
1813 		num_poisoned_pages_inc();
1814 		return 0;
1815 	}
1816 
1817 	/*
1818 	 * Simple invalidation didn't work.
1819 	 * Try to migrate to a new page instead. migrate.c
1820 	 * handles a large number of cases for us.
1821 	 */
1822 	if (PageLRU(page))
1823 		ret = isolate_lru_page(page);
1824 	else
1825 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1826 	/*
1827 	 * Drop page reference which is came from get_any_page()
1828 	 * successful isolate_lru_page() already took another one.
1829 	 */
1830 	put_hwpoison_page(page);
1831 	if (!ret) {
1832 		LIST_HEAD(pagelist);
1833 		/*
1834 		 * After isolated lru page, the PageLRU will be cleared,
1835 		 * so use !__PageMovable instead for LRU page's mapping
1836 		 * cannot have PAGE_MAPPING_MOVABLE.
1837 		 */
1838 		if (!__PageMovable(page))
1839 			inc_node_page_state(page, NR_ISOLATED_ANON +
1840 						page_is_file_lru(page));
1841 		list_add(&page->lru, &pagelist);
1842 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1843 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1844 		if (ret) {
1845 			if (!list_empty(&pagelist))
1846 				putback_movable_pages(&pagelist);
1847 
1848 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1849 				pfn, ret, page->flags, &page->flags);
1850 			if (ret > 0)
1851 				ret = -EIO;
1852 		}
1853 	} else {
1854 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1855 			pfn, ret, page_count(page), page->flags, &page->flags);
1856 	}
1857 	return ret;
1858 }
1859 
1860 static int soft_offline_in_use_page(struct page *page, int flags)
1861 {
1862 	int ret;
1863 	int mt;
1864 	struct page *hpage = compound_head(page);
1865 
1866 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1867 		lock_page(page);
1868 		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1869 			unlock_page(page);
1870 			if (!PageAnon(page))
1871 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1872 			else
1873 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1874 			put_hwpoison_page(page);
1875 			return -EBUSY;
1876 		}
1877 		unlock_page(page);
1878 	}
1879 
1880 	/*
1881 	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1882 	 * to free list immediately (not via pcplist) when released after
1883 	 * successful page migration. Otherwise we can't guarantee that the
1884 	 * page is really free after put_page() returns, so
1885 	 * set_hwpoison_free_buddy_page() highly likely fails.
1886 	 */
1887 	mt = get_pageblock_migratetype(page);
1888 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1889 	if (PageHuge(page))
1890 		ret = soft_offline_huge_page(page, flags);
1891 	else
1892 		ret = __soft_offline_page(page, flags);
1893 	set_pageblock_migratetype(page, mt);
1894 	return ret;
1895 }
1896 
1897 static int soft_offline_free_page(struct page *page)
1898 {
1899 	int rc = dissolve_free_huge_page(page);
1900 
1901 	if (!rc) {
1902 		if (set_hwpoison_free_buddy_page(page))
1903 			num_poisoned_pages_inc();
1904 		else
1905 			rc = -EBUSY;
1906 	}
1907 	return rc;
1908 }
1909 
1910 /**
1911  * soft_offline_page - Soft offline a page.
1912  * @pfn: pfn to soft-offline
1913  * @flags: flags. Same as memory_failure().
1914  *
1915  * Returns 0 on success, otherwise negated errno.
1916  *
1917  * Soft offline a page, by migration or invalidation,
1918  * without killing anything. This is for the case when
1919  * a page is not corrupted yet (so it's still valid to access),
1920  * but has had a number of corrected errors and is better taken
1921  * out.
1922  *
1923  * The actual policy on when to do that is maintained by
1924  * user space.
1925  *
1926  * This should never impact any application or cause data loss,
1927  * however it might take some time.
1928  *
1929  * This is not a 100% solution for all memory, but tries to be
1930  * ``good enough'' for the majority of memory.
1931  */
1932 int soft_offline_page(unsigned long pfn, int flags)
1933 {
1934 	int ret;
1935 	struct page *page;
1936 
1937 	if (!pfn_valid(pfn))
1938 		return -ENXIO;
1939 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1940 	page = pfn_to_online_page(pfn);
1941 	if (!page)
1942 		return -EIO;
1943 
1944 	if (PageHWPoison(page)) {
1945 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1946 		if (flags & MF_COUNT_INCREASED)
1947 			put_hwpoison_page(page);
1948 		return -EBUSY;
1949 	}
1950 
1951 	get_online_mems();
1952 	ret = get_any_page(page, pfn, flags);
1953 	put_online_mems();
1954 
1955 	if (ret > 0)
1956 		ret = soft_offline_in_use_page(page, flags);
1957 	else if (ret == 0)
1958 		ret = soft_offline_free_page(page);
1959 
1960 	return ret;
1961 }
1962