1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 #include <linux/kernel.h> 37 #include <linux/mm.h> 38 #include <linux/page-flags.h> 39 #include <linux/kernel-page-flags.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/task.h> 42 #include <linux/dax.h> 43 #include <linux/ksm.h> 44 #include <linux/rmap.h> 45 #include <linux/export.h> 46 #include <linux/pagemap.h> 47 #include <linux/swap.h> 48 #include <linux/backing-dev.h> 49 #include <linux/migrate.h> 50 #include <linux/suspend.h> 51 #include <linux/slab.h> 52 #include <linux/swapops.h> 53 #include <linux/hugetlb.h> 54 #include <linux/memory_hotplug.h> 55 #include <linux/mm_inline.h> 56 #include <linux/memremap.h> 57 #include <linux/kfifo.h> 58 #include <linux/ratelimit.h> 59 #include <linux/page-isolation.h> 60 #include <linux/pagewalk.h> 61 #include "internal.h" 62 #include "ras/ras_event.h" 63 64 int sysctl_memory_failure_early_kill __read_mostly = 0; 65 66 int sysctl_memory_failure_recovery __read_mostly = 1; 67 68 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 69 70 static bool __page_handle_poison(struct page *page) 71 { 72 int ret; 73 74 zone_pcp_disable(page_zone(page)); 75 ret = dissolve_free_huge_page(page); 76 if (!ret) 77 ret = take_page_off_buddy(page); 78 zone_pcp_enable(page_zone(page)); 79 80 return ret > 0; 81 } 82 83 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 84 { 85 if (hugepage_or_freepage) { 86 /* 87 * Doing this check for free pages is also fine since dissolve_free_huge_page 88 * returns 0 for non-hugetlb pages as well. 89 */ 90 if (!__page_handle_poison(page)) 91 /* 92 * We could fail to take off the target page from buddy 93 * for example due to racy page allocation, but that's 94 * acceptable because soft-offlined page is not broken 95 * and if someone really want to use it, they should 96 * take it. 97 */ 98 return false; 99 } 100 101 SetPageHWPoison(page); 102 if (release) 103 put_page(page); 104 page_ref_inc(page); 105 num_poisoned_pages_inc(); 106 107 return true; 108 } 109 110 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 111 112 u32 hwpoison_filter_enable = 0; 113 u32 hwpoison_filter_dev_major = ~0U; 114 u32 hwpoison_filter_dev_minor = ~0U; 115 u64 hwpoison_filter_flags_mask; 116 u64 hwpoison_filter_flags_value; 117 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 118 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 119 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 120 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 121 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 122 123 static int hwpoison_filter_dev(struct page *p) 124 { 125 struct address_space *mapping; 126 dev_t dev; 127 128 if (hwpoison_filter_dev_major == ~0U && 129 hwpoison_filter_dev_minor == ~0U) 130 return 0; 131 132 /* 133 * page_mapping() does not accept slab pages. 134 */ 135 if (PageSlab(p)) 136 return -EINVAL; 137 138 mapping = page_mapping(p); 139 if (mapping == NULL || mapping->host == NULL) 140 return -EINVAL; 141 142 dev = mapping->host->i_sb->s_dev; 143 if (hwpoison_filter_dev_major != ~0U && 144 hwpoison_filter_dev_major != MAJOR(dev)) 145 return -EINVAL; 146 if (hwpoison_filter_dev_minor != ~0U && 147 hwpoison_filter_dev_minor != MINOR(dev)) 148 return -EINVAL; 149 150 return 0; 151 } 152 153 static int hwpoison_filter_flags(struct page *p) 154 { 155 if (!hwpoison_filter_flags_mask) 156 return 0; 157 158 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 159 hwpoison_filter_flags_value) 160 return 0; 161 else 162 return -EINVAL; 163 } 164 165 /* 166 * This allows stress tests to limit test scope to a collection of tasks 167 * by putting them under some memcg. This prevents killing unrelated/important 168 * processes such as /sbin/init. Note that the target task may share clean 169 * pages with init (eg. libc text), which is harmless. If the target task 170 * share _dirty_ pages with another task B, the test scheme must make sure B 171 * is also included in the memcg. At last, due to race conditions this filter 172 * can only guarantee that the page either belongs to the memcg tasks, or is 173 * a freed page. 174 */ 175 #ifdef CONFIG_MEMCG 176 u64 hwpoison_filter_memcg; 177 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 178 static int hwpoison_filter_task(struct page *p) 179 { 180 if (!hwpoison_filter_memcg) 181 return 0; 182 183 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 184 return -EINVAL; 185 186 return 0; 187 } 188 #else 189 static int hwpoison_filter_task(struct page *p) { return 0; } 190 #endif 191 192 int hwpoison_filter(struct page *p) 193 { 194 if (!hwpoison_filter_enable) 195 return 0; 196 197 if (hwpoison_filter_dev(p)) 198 return -EINVAL; 199 200 if (hwpoison_filter_flags(p)) 201 return -EINVAL; 202 203 if (hwpoison_filter_task(p)) 204 return -EINVAL; 205 206 return 0; 207 } 208 #else 209 int hwpoison_filter(struct page *p) 210 { 211 return 0; 212 } 213 #endif 214 215 EXPORT_SYMBOL_GPL(hwpoison_filter); 216 217 /* 218 * Kill all processes that have a poisoned page mapped and then isolate 219 * the page. 220 * 221 * General strategy: 222 * Find all processes having the page mapped and kill them. 223 * But we keep a page reference around so that the page is not 224 * actually freed yet. 225 * Then stash the page away 226 * 227 * There's no convenient way to get back to mapped processes 228 * from the VMAs. So do a brute-force search over all 229 * running processes. 230 * 231 * Remember that machine checks are not common (or rather 232 * if they are common you have other problems), so this shouldn't 233 * be a performance issue. 234 * 235 * Also there are some races possible while we get from the 236 * error detection to actually handle it. 237 */ 238 239 struct to_kill { 240 struct list_head nd; 241 struct task_struct *tsk; 242 unsigned long addr; 243 short size_shift; 244 }; 245 246 /* 247 * Send all the processes who have the page mapped a signal. 248 * ``action optional'' if they are not immediately affected by the error 249 * ``action required'' if error happened in current execution context 250 */ 251 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 252 { 253 struct task_struct *t = tk->tsk; 254 short addr_lsb = tk->size_shift; 255 int ret = 0; 256 257 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 258 pfn, t->comm, t->pid); 259 260 if (flags & MF_ACTION_REQUIRED) { 261 if (t == current) 262 ret = force_sig_mceerr(BUS_MCEERR_AR, 263 (void __user *)tk->addr, addr_lsb); 264 else 265 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */ 266 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 267 addr_lsb, t); 268 } else { 269 /* 270 * Don't use force here, it's convenient if the signal 271 * can be temporarily blocked. 272 * This could cause a loop when the user sets SIGBUS 273 * to SIG_IGN, but hopefully no one will do that? 274 */ 275 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 276 addr_lsb, t); /* synchronous? */ 277 } 278 if (ret < 0) 279 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 280 t->comm, t->pid, ret); 281 return ret; 282 } 283 284 /* 285 * Unknown page type encountered. Try to check whether it can turn PageLRU by 286 * lru_add_drain_all. 287 */ 288 void shake_page(struct page *p) 289 { 290 if (PageHuge(p)) 291 return; 292 293 if (!PageSlab(p)) { 294 lru_add_drain_all(); 295 if (PageLRU(p) || is_free_buddy_page(p)) 296 return; 297 } 298 299 /* 300 * TODO: Could shrink slab caches here if a lightweight range-based 301 * shrinker will be available. 302 */ 303 } 304 EXPORT_SYMBOL_GPL(shake_page); 305 306 static unsigned long dev_pagemap_mapping_shift(struct page *page, 307 struct vm_area_struct *vma) 308 { 309 unsigned long address = vma_address(page, vma); 310 unsigned long ret = 0; 311 pgd_t *pgd; 312 p4d_t *p4d; 313 pud_t *pud; 314 pmd_t *pmd; 315 pte_t *pte; 316 317 pgd = pgd_offset(vma->vm_mm, address); 318 if (!pgd_present(*pgd)) 319 return 0; 320 p4d = p4d_offset(pgd, address); 321 if (!p4d_present(*p4d)) 322 return 0; 323 pud = pud_offset(p4d, address); 324 if (!pud_present(*pud)) 325 return 0; 326 if (pud_devmap(*pud)) 327 return PUD_SHIFT; 328 pmd = pmd_offset(pud, address); 329 if (!pmd_present(*pmd)) 330 return 0; 331 if (pmd_devmap(*pmd)) 332 return PMD_SHIFT; 333 pte = pte_offset_map(pmd, address); 334 if (pte_present(*pte) && pte_devmap(*pte)) 335 ret = PAGE_SHIFT; 336 pte_unmap(pte); 337 return ret; 338 } 339 340 /* 341 * Failure handling: if we can't find or can't kill a process there's 342 * not much we can do. We just print a message and ignore otherwise. 343 */ 344 345 /* 346 * Schedule a process for later kill. 347 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 348 */ 349 static void add_to_kill(struct task_struct *tsk, struct page *p, 350 struct vm_area_struct *vma, 351 struct list_head *to_kill) 352 { 353 struct to_kill *tk; 354 355 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 356 if (!tk) { 357 pr_err("Memory failure: Out of memory while machine check handling\n"); 358 return; 359 } 360 361 tk->addr = page_address_in_vma(p, vma); 362 if (is_zone_device_page(p)) 363 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 364 else 365 tk->size_shift = page_shift(compound_head(p)); 366 367 /* 368 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 369 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 370 * so "tk->size_shift == 0" effectively checks no mapping on 371 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 372 * to a process' address space, it's possible not all N VMAs 373 * contain mappings for the page, but at least one VMA does. 374 * Only deliver SIGBUS with payload derived from the VMA that 375 * has a mapping for the page. 376 */ 377 if (tk->addr == -EFAULT) { 378 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 379 page_to_pfn(p), tsk->comm); 380 } else if (tk->size_shift == 0) { 381 kfree(tk); 382 return; 383 } 384 385 get_task_struct(tsk); 386 tk->tsk = tsk; 387 list_add_tail(&tk->nd, to_kill); 388 } 389 390 /* 391 * Kill the processes that have been collected earlier. 392 * 393 * Only do anything when FORCEKILL is set, otherwise just free the 394 * list (this is used for clean pages which do not need killing) 395 * Also when FAIL is set do a force kill because something went 396 * wrong earlier. 397 */ 398 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 399 unsigned long pfn, int flags) 400 { 401 struct to_kill *tk, *next; 402 403 list_for_each_entry_safe (tk, next, to_kill, nd) { 404 if (forcekill) { 405 /* 406 * In case something went wrong with munmapping 407 * make sure the process doesn't catch the 408 * signal and then access the memory. Just kill it. 409 */ 410 if (fail || tk->addr == -EFAULT) { 411 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 412 pfn, tk->tsk->comm, tk->tsk->pid); 413 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 414 tk->tsk, PIDTYPE_PID); 415 } 416 417 /* 418 * In theory the process could have mapped 419 * something else on the address in-between. We could 420 * check for that, but we need to tell the 421 * process anyways. 422 */ 423 else if (kill_proc(tk, pfn, flags) < 0) 424 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 425 pfn, tk->tsk->comm, tk->tsk->pid); 426 } 427 put_task_struct(tk->tsk); 428 kfree(tk); 429 } 430 } 431 432 /* 433 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 434 * on behalf of the thread group. Return task_struct of the (first found) 435 * dedicated thread if found, and return NULL otherwise. 436 * 437 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 438 * have to call rcu_read_lock/unlock() in this function. 439 */ 440 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 441 { 442 struct task_struct *t; 443 444 for_each_thread(tsk, t) { 445 if (t->flags & PF_MCE_PROCESS) { 446 if (t->flags & PF_MCE_EARLY) 447 return t; 448 } else { 449 if (sysctl_memory_failure_early_kill) 450 return t; 451 } 452 } 453 return NULL; 454 } 455 456 /* 457 * Determine whether a given process is "early kill" process which expects 458 * to be signaled when some page under the process is hwpoisoned. 459 * Return task_struct of the dedicated thread (main thread unless explicitly 460 * specified) if the process is "early kill" and otherwise returns NULL. 461 * 462 * Note that the above is true for Action Optional case. For Action Required 463 * case, it's only meaningful to the current thread which need to be signaled 464 * with SIGBUS, this error is Action Optional for other non current 465 * processes sharing the same error page,if the process is "early kill", the 466 * task_struct of the dedicated thread will also be returned. 467 */ 468 static struct task_struct *task_early_kill(struct task_struct *tsk, 469 int force_early) 470 { 471 if (!tsk->mm) 472 return NULL; 473 /* 474 * Comparing ->mm here because current task might represent 475 * a subthread, while tsk always points to the main thread. 476 */ 477 if (force_early && tsk->mm == current->mm) 478 return current; 479 480 return find_early_kill_thread(tsk); 481 } 482 483 /* 484 * Collect processes when the error hit an anonymous page. 485 */ 486 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 487 int force_early) 488 { 489 struct vm_area_struct *vma; 490 struct task_struct *tsk; 491 struct anon_vma *av; 492 pgoff_t pgoff; 493 494 av = page_lock_anon_vma_read(page); 495 if (av == NULL) /* Not actually mapped anymore */ 496 return; 497 498 pgoff = page_to_pgoff(page); 499 read_lock(&tasklist_lock); 500 for_each_process (tsk) { 501 struct anon_vma_chain *vmac; 502 struct task_struct *t = task_early_kill(tsk, force_early); 503 504 if (!t) 505 continue; 506 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 507 pgoff, pgoff) { 508 vma = vmac->vma; 509 if (!page_mapped_in_vma(page, vma)) 510 continue; 511 if (vma->vm_mm == t->mm) 512 add_to_kill(t, page, vma, to_kill); 513 } 514 } 515 read_unlock(&tasklist_lock); 516 page_unlock_anon_vma_read(av); 517 } 518 519 /* 520 * Collect processes when the error hit a file mapped page. 521 */ 522 static void collect_procs_file(struct page *page, struct list_head *to_kill, 523 int force_early) 524 { 525 struct vm_area_struct *vma; 526 struct task_struct *tsk; 527 struct address_space *mapping = page->mapping; 528 pgoff_t pgoff; 529 530 i_mmap_lock_read(mapping); 531 read_lock(&tasklist_lock); 532 pgoff = page_to_pgoff(page); 533 for_each_process(tsk) { 534 struct task_struct *t = task_early_kill(tsk, force_early); 535 536 if (!t) 537 continue; 538 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 539 pgoff) { 540 /* 541 * Send early kill signal to tasks where a vma covers 542 * the page but the corrupted page is not necessarily 543 * mapped it in its pte. 544 * Assume applications who requested early kill want 545 * to be informed of all such data corruptions. 546 */ 547 if (vma->vm_mm == t->mm) 548 add_to_kill(t, page, vma, to_kill); 549 } 550 } 551 read_unlock(&tasklist_lock); 552 i_mmap_unlock_read(mapping); 553 } 554 555 /* 556 * Collect the processes who have the corrupted page mapped to kill. 557 */ 558 static void collect_procs(struct page *page, struct list_head *tokill, 559 int force_early) 560 { 561 if (!page->mapping) 562 return; 563 564 if (PageAnon(page)) 565 collect_procs_anon(page, tokill, force_early); 566 else 567 collect_procs_file(page, tokill, force_early); 568 } 569 570 struct hwp_walk { 571 struct to_kill tk; 572 unsigned long pfn; 573 int flags; 574 }; 575 576 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 577 { 578 tk->addr = addr; 579 tk->size_shift = shift; 580 } 581 582 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 583 unsigned long poisoned_pfn, struct to_kill *tk) 584 { 585 unsigned long pfn = 0; 586 587 if (pte_present(pte)) { 588 pfn = pte_pfn(pte); 589 } else { 590 swp_entry_t swp = pte_to_swp_entry(pte); 591 592 if (is_hwpoison_entry(swp)) 593 pfn = hwpoison_entry_to_pfn(swp); 594 } 595 596 if (!pfn || pfn != poisoned_pfn) 597 return 0; 598 599 set_to_kill(tk, addr, shift); 600 return 1; 601 } 602 603 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 604 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 605 struct hwp_walk *hwp) 606 { 607 pmd_t pmd = *pmdp; 608 unsigned long pfn; 609 unsigned long hwpoison_vaddr; 610 611 if (!pmd_present(pmd)) 612 return 0; 613 pfn = pmd_pfn(pmd); 614 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 615 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 616 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 617 return 1; 618 } 619 return 0; 620 } 621 #else 622 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 623 struct hwp_walk *hwp) 624 { 625 return 0; 626 } 627 #endif 628 629 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 630 unsigned long end, struct mm_walk *walk) 631 { 632 struct hwp_walk *hwp = (struct hwp_walk *)walk->private; 633 int ret = 0; 634 pte_t *ptep, *mapped_pte; 635 spinlock_t *ptl; 636 637 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 638 if (ptl) { 639 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 640 spin_unlock(ptl); 641 goto out; 642 } 643 644 if (pmd_trans_unstable(pmdp)) 645 goto out; 646 647 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 648 addr, &ptl); 649 for (; addr != end; ptep++, addr += PAGE_SIZE) { 650 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT, 651 hwp->pfn, &hwp->tk); 652 if (ret == 1) 653 break; 654 } 655 pte_unmap_unlock(mapped_pte, ptl); 656 out: 657 cond_resched(); 658 return ret; 659 } 660 661 #ifdef CONFIG_HUGETLB_PAGE 662 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 663 unsigned long addr, unsigned long end, 664 struct mm_walk *walk) 665 { 666 struct hwp_walk *hwp = (struct hwp_walk *)walk->private; 667 pte_t pte = huge_ptep_get(ptep); 668 struct hstate *h = hstate_vma(walk->vma); 669 670 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 671 hwp->pfn, &hwp->tk); 672 } 673 #else 674 #define hwpoison_hugetlb_range NULL 675 #endif 676 677 static const struct mm_walk_ops hwp_walk_ops = { 678 .pmd_entry = hwpoison_pte_range, 679 .hugetlb_entry = hwpoison_hugetlb_range, 680 }; 681 682 /* 683 * Sends SIGBUS to the current process with error info. 684 * 685 * This function is intended to handle "Action Required" MCEs on already 686 * hardware poisoned pages. They could happen, for example, when 687 * memory_failure() failed to unmap the error page at the first call, or 688 * when multiple local machine checks happened on different CPUs. 689 * 690 * MCE handler currently has no easy access to the error virtual address, 691 * so this function walks page table to find it. The returned virtual address 692 * is proper in most cases, but it could be wrong when the application 693 * process has multiple entries mapping the error page. 694 */ 695 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 696 int flags) 697 { 698 int ret; 699 struct hwp_walk priv = { 700 .pfn = pfn, 701 }; 702 priv.tk.tsk = p; 703 704 mmap_read_lock(p->mm); 705 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 706 (void *)&priv); 707 if (ret == 1 && priv.tk.addr) 708 kill_proc(&priv.tk, pfn, flags); 709 mmap_read_unlock(p->mm); 710 return ret ? -EFAULT : -EHWPOISON; 711 } 712 713 static const char *action_name[] = { 714 [MF_IGNORED] = "Ignored", 715 [MF_FAILED] = "Failed", 716 [MF_DELAYED] = "Delayed", 717 [MF_RECOVERED] = "Recovered", 718 }; 719 720 static const char * const action_page_types[] = { 721 [MF_MSG_KERNEL] = "reserved kernel page", 722 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 723 [MF_MSG_SLAB] = "kernel slab page", 724 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 725 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 726 [MF_MSG_HUGE] = "huge page", 727 [MF_MSG_FREE_HUGE] = "free huge page", 728 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 729 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 730 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 731 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 732 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 733 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 734 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 735 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 736 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 737 [MF_MSG_CLEAN_LRU] = "clean LRU page", 738 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 739 [MF_MSG_BUDDY] = "free buddy page", 740 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 741 [MF_MSG_DAX] = "dax page", 742 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 743 [MF_MSG_UNKNOWN] = "unknown page", 744 }; 745 746 /* 747 * XXX: It is possible that a page is isolated from LRU cache, 748 * and then kept in swap cache or failed to remove from page cache. 749 * The page count will stop it from being freed by unpoison. 750 * Stress tests should be aware of this memory leak problem. 751 */ 752 static int delete_from_lru_cache(struct page *p) 753 { 754 if (!isolate_lru_page(p)) { 755 /* 756 * Clear sensible page flags, so that the buddy system won't 757 * complain when the page is unpoison-and-freed. 758 */ 759 ClearPageActive(p); 760 ClearPageUnevictable(p); 761 762 /* 763 * Poisoned page might never drop its ref count to 0 so we have 764 * to uncharge it manually from its memcg. 765 */ 766 mem_cgroup_uncharge(page_folio(p)); 767 768 /* 769 * drop the page count elevated by isolate_lru_page() 770 */ 771 put_page(p); 772 return 0; 773 } 774 return -EIO; 775 } 776 777 static int truncate_error_page(struct page *p, unsigned long pfn, 778 struct address_space *mapping) 779 { 780 int ret = MF_FAILED; 781 782 if (mapping->a_ops->error_remove_page) { 783 int err = mapping->a_ops->error_remove_page(mapping, p); 784 785 if (err != 0) { 786 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 787 pfn, err); 788 } else if (page_has_private(p) && 789 !try_to_release_page(p, GFP_NOIO)) { 790 pr_info("Memory failure: %#lx: failed to release buffers\n", 791 pfn); 792 } else { 793 ret = MF_RECOVERED; 794 } 795 } else { 796 /* 797 * If the file system doesn't support it just invalidate 798 * This fails on dirty or anything with private pages 799 */ 800 if (invalidate_inode_page(p)) 801 ret = MF_RECOVERED; 802 else 803 pr_info("Memory failure: %#lx: Failed to invalidate\n", 804 pfn); 805 } 806 807 return ret; 808 } 809 810 struct page_state { 811 unsigned long mask; 812 unsigned long res; 813 enum mf_action_page_type type; 814 815 /* Callback ->action() has to unlock the relevant page inside it. */ 816 int (*action)(struct page_state *ps, struct page *p); 817 }; 818 819 /* 820 * Return true if page is still referenced by others, otherwise return 821 * false. 822 * 823 * The extra_pins is true when one extra refcount is expected. 824 */ 825 static bool has_extra_refcount(struct page_state *ps, struct page *p, 826 bool extra_pins) 827 { 828 int count = page_count(p) - 1; 829 830 if (extra_pins) 831 count -= 1; 832 833 if (count > 0) { 834 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 835 page_to_pfn(p), action_page_types[ps->type], count); 836 return true; 837 } 838 839 return false; 840 } 841 842 /* 843 * Error hit kernel page. 844 * Do nothing, try to be lucky and not touch this instead. For a few cases we 845 * could be more sophisticated. 846 */ 847 static int me_kernel(struct page_state *ps, struct page *p) 848 { 849 unlock_page(p); 850 return MF_IGNORED; 851 } 852 853 /* 854 * Page in unknown state. Do nothing. 855 */ 856 static int me_unknown(struct page_state *ps, struct page *p) 857 { 858 pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p)); 859 unlock_page(p); 860 return MF_FAILED; 861 } 862 863 /* 864 * Clean (or cleaned) page cache page. 865 */ 866 static int me_pagecache_clean(struct page_state *ps, struct page *p) 867 { 868 int ret; 869 struct address_space *mapping; 870 871 delete_from_lru_cache(p); 872 873 /* 874 * For anonymous pages we're done the only reference left 875 * should be the one m_f() holds. 876 */ 877 if (PageAnon(p)) { 878 ret = MF_RECOVERED; 879 goto out; 880 } 881 882 /* 883 * Now truncate the page in the page cache. This is really 884 * more like a "temporary hole punch" 885 * Don't do this for block devices when someone else 886 * has a reference, because it could be file system metadata 887 * and that's not safe to truncate. 888 */ 889 mapping = page_mapping(p); 890 if (!mapping) { 891 /* 892 * Page has been teared down in the meanwhile 893 */ 894 ret = MF_FAILED; 895 goto out; 896 } 897 898 /* 899 * Truncation is a bit tricky. Enable it per file system for now. 900 * 901 * Open: to take i_rwsem or not for this? Right now we don't. 902 */ 903 ret = truncate_error_page(p, page_to_pfn(p), mapping); 904 out: 905 unlock_page(p); 906 907 if (has_extra_refcount(ps, p, false)) 908 ret = MF_FAILED; 909 910 return ret; 911 } 912 913 /* 914 * Dirty pagecache page 915 * Issues: when the error hit a hole page the error is not properly 916 * propagated. 917 */ 918 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 919 { 920 struct address_space *mapping = page_mapping(p); 921 922 SetPageError(p); 923 /* TBD: print more information about the file. */ 924 if (mapping) { 925 /* 926 * IO error will be reported by write(), fsync(), etc. 927 * who check the mapping. 928 * This way the application knows that something went 929 * wrong with its dirty file data. 930 * 931 * There's one open issue: 932 * 933 * The EIO will be only reported on the next IO 934 * operation and then cleared through the IO map. 935 * Normally Linux has two mechanisms to pass IO error 936 * first through the AS_EIO flag in the address space 937 * and then through the PageError flag in the page. 938 * Since we drop pages on memory failure handling the 939 * only mechanism open to use is through AS_AIO. 940 * 941 * This has the disadvantage that it gets cleared on 942 * the first operation that returns an error, while 943 * the PageError bit is more sticky and only cleared 944 * when the page is reread or dropped. If an 945 * application assumes it will always get error on 946 * fsync, but does other operations on the fd before 947 * and the page is dropped between then the error 948 * will not be properly reported. 949 * 950 * This can already happen even without hwpoisoned 951 * pages: first on metadata IO errors (which only 952 * report through AS_EIO) or when the page is dropped 953 * at the wrong time. 954 * 955 * So right now we assume that the application DTRT on 956 * the first EIO, but we're not worse than other parts 957 * of the kernel. 958 */ 959 mapping_set_error(mapping, -EIO); 960 } 961 962 return me_pagecache_clean(ps, p); 963 } 964 965 /* 966 * Clean and dirty swap cache. 967 * 968 * Dirty swap cache page is tricky to handle. The page could live both in page 969 * cache and swap cache(ie. page is freshly swapped in). So it could be 970 * referenced concurrently by 2 types of PTEs: 971 * normal PTEs and swap PTEs. We try to handle them consistently by calling 972 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 973 * and then 974 * - clear dirty bit to prevent IO 975 * - remove from LRU 976 * - but keep in the swap cache, so that when we return to it on 977 * a later page fault, we know the application is accessing 978 * corrupted data and shall be killed (we installed simple 979 * interception code in do_swap_page to catch it). 980 * 981 * Clean swap cache pages can be directly isolated. A later page fault will 982 * bring in the known good data from disk. 983 */ 984 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 985 { 986 int ret; 987 bool extra_pins = false; 988 989 ClearPageDirty(p); 990 /* Trigger EIO in shmem: */ 991 ClearPageUptodate(p); 992 993 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 994 unlock_page(p); 995 996 if (ret == MF_DELAYED) 997 extra_pins = true; 998 999 if (has_extra_refcount(ps, p, extra_pins)) 1000 ret = MF_FAILED; 1001 1002 return ret; 1003 } 1004 1005 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1006 { 1007 int ret; 1008 1009 delete_from_swap_cache(p); 1010 1011 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1012 unlock_page(p); 1013 1014 if (has_extra_refcount(ps, p, false)) 1015 ret = MF_FAILED; 1016 1017 return ret; 1018 } 1019 1020 /* 1021 * Huge pages. Needs work. 1022 * Issues: 1023 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1024 * To narrow down kill region to one page, we need to break up pmd. 1025 */ 1026 static int me_huge_page(struct page_state *ps, struct page *p) 1027 { 1028 int res; 1029 struct page *hpage = compound_head(p); 1030 struct address_space *mapping; 1031 1032 if (!PageHuge(hpage)) 1033 return MF_DELAYED; 1034 1035 mapping = page_mapping(hpage); 1036 if (mapping) { 1037 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1038 unlock_page(hpage); 1039 } else { 1040 res = MF_FAILED; 1041 unlock_page(hpage); 1042 /* 1043 * migration entry prevents later access on error anonymous 1044 * hugepage, so we can free and dissolve it into buddy to 1045 * save healthy subpages. 1046 */ 1047 if (PageAnon(hpage)) 1048 put_page(hpage); 1049 if (__page_handle_poison(p)) { 1050 page_ref_inc(p); 1051 res = MF_RECOVERED; 1052 } 1053 } 1054 1055 if (has_extra_refcount(ps, p, false)) 1056 res = MF_FAILED; 1057 1058 return res; 1059 } 1060 1061 /* 1062 * Various page states we can handle. 1063 * 1064 * A page state is defined by its current page->flags bits. 1065 * The table matches them in order and calls the right handler. 1066 * 1067 * This is quite tricky because we can access page at any time 1068 * in its live cycle, so all accesses have to be extremely careful. 1069 * 1070 * This is not complete. More states could be added. 1071 * For any missing state don't attempt recovery. 1072 */ 1073 1074 #define dirty (1UL << PG_dirty) 1075 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1076 #define unevict (1UL << PG_unevictable) 1077 #define mlock (1UL << PG_mlocked) 1078 #define lru (1UL << PG_lru) 1079 #define head (1UL << PG_head) 1080 #define slab (1UL << PG_slab) 1081 #define reserved (1UL << PG_reserved) 1082 1083 static struct page_state error_states[] = { 1084 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1085 /* 1086 * free pages are specially detected outside this table: 1087 * PG_buddy pages only make a small fraction of all free pages. 1088 */ 1089 1090 /* 1091 * Could in theory check if slab page is free or if we can drop 1092 * currently unused objects without touching them. But just 1093 * treat it as standard kernel for now. 1094 */ 1095 { slab, slab, MF_MSG_SLAB, me_kernel }, 1096 1097 { head, head, MF_MSG_HUGE, me_huge_page }, 1098 1099 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1100 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1101 1102 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1103 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1104 1105 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1106 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1107 1108 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1109 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1110 1111 /* 1112 * Catchall entry: must be at end. 1113 */ 1114 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1115 }; 1116 1117 #undef dirty 1118 #undef sc 1119 #undef unevict 1120 #undef mlock 1121 #undef lru 1122 #undef head 1123 #undef slab 1124 #undef reserved 1125 1126 /* 1127 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1128 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1129 */ 1130 static void action_result(unsigned long pfn, enum mf_action_page_type type, 1131 enum mf_result result) 1132 { 1133 trace_memory_failure_event(pfn, type, result); 1134 1135 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 1136 pfn, action_page_types[type], action_name[result]); 1137 } 1138 1139 static int page_action(struct page_state *ps, struct page *p, 1140 unsigned long pfn) 1141 { 1142 int result; 1143 1144 /* page p should be unlocked after returning from ps->action(). */ 1145 result = ps->action(ps, p); 1146 1147 action_result(pfn, ps->type, result); 1148 1149 /* Could do more checks here if page looks ok */ 1150 /* 1151 * Could adjust zone counters here to correct for the missing page. 1152 */ 1153 1154 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1155 } 1156 1157 /* 1158 * Return true if a page type of a given page is supported by hwpoison 1159 * mechanism (while handling could fail), otherwise false. This function 1160 * does not return true for hugetlb or device memory pages, so it's assumed 1161 * to be called only in the context where we never have such pages. 1162 */ 1163 static inline bool HWPoisonHandlable(struct page *page) 1164 { 1165 return PageLRU(page) || __PageMovable(page) || is_free_buddy_page(page); 1166 } 1167 1168 static int __get_hwpoison_page(struct page *page) 1169 { 1170 struct page *head = compound_head(page); 1171 int ret = 0; 1172 bool hugetlb = false; 1173 1174 ret = get_hwpoison_huge_page(head, &hugetlb); 1175 if (hugetlb) 1176 return ret; 1177 1178 /* 1179 * This check prevents from calling get_hwpoison_unless_zero() 1180 * for any unsupported type of page in order to reduce the risk of 1181 * unexpected races caused by taking a page refcount. 1182 */ 1183 if (!HWPoisonHandlable(head)) 1184 return -EBUSY; 1185 1186 if (get_page_unless_zero(head)) { 1187 if (head == compound_head(page)) 1188 return 1; 1189 1190 pr_info("Memory failure: %#lx cannot catch tail\n", 1191 page_to_pfn(page)); 1192 put_page(head); 1193 } 1194 1195 return 0; 1196 } 1197 1198 static int get_any_page(struct page *p, unsigned long flags) 1199 { 1200 int ret = 0, pass = 0; 1201 bool count_increased = false; 1202 1203 if (flags & MF_COUNT_INCREASED) 1204 count_increased = true; 1205 1206 try_again: 1207 if (!count_increased) { 1208 ret = __get_hwpoison_page(p); 1209 if (!ret) { 1210 if (page_count(p)) { 1211 /* We raced with an allocation, retry. */ 1212 if (pass++ < 3) 1213 goto try_again; 1214 ret = -EBUSY; 1215 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1216 /* We raced with put_page, retry. */ 1217 if (pass++ < 3) 1218 goto try_again; 1219 ret = -EIO; 1220 } 1221 goto out; 1222 } else if (ret == -EBUSY) { 1223 /* 1224 * We raced with (possibly temporary) unhandlable 1225 * page, retry. 1226 */ 1227 if (pass++ < 3) { 1228 shake_page(p); 1229 goto try_again; 1230 } 1231 ret = -EIO; 1232 goto out; 1233 } 1234 } 1235 1236 if (PageHuge(p) || HWPoisonHandlable(p)) { 1237 ret = 1; 1238 } else { 1239 /* 1240 * A page we cannot handle. Check whether we can turn 1241 * it into something we can handle. 1242 */ 1243 if (pass++ < 3) { 1244 put_page(p); 1245 shake_page(p); 1246 count_increased = false; 1247 goto try_again; 1248 } 1249 put_page(p); 1250 ret = -EIO; 1251 } 1252 out: 1253 if (ret == -EIO) 1254 dump_page(p, "hwpoison: unhandlable page"); 1255 1256 return ret; 1257 } 1258 1259 /** 1260 * get_hwpoison_page() - Get refcount for memory error handling 1261 * @p: Raw error page (hit by memory error) 1262 * @flags: Flags controlling behavior of error handling 1263 * 1264 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1265 * error on it, after checking that the error page is in a well-defined state 1266 * (defined as a page-type we can successfully handle the memor error on it, 1267 * such as LRU page and hugetlb page). 1268 * 1269 * Memory error handling could be triggered at any time on any type of page, 1270 * so it's prone to race with typical memory management lifecycle (like 1271 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1272 * extra care for the error page's state (as done in __get_hwpoison_page()), 1273 * and has some retry logic in get_any_page(). 1274 * 1275 * Return: 0 on failure, 1276 * 1 on success for in-use pages in a well-defined state, 1277 * -EIO for pages on which we can not handle memory errors, 1278 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1279 * operations like allocation and free. 1280 */ 1281 static int get_hwpoison_page(struct page *p, unsigned long flags) 1282 { 1283 int ret; 1284 1285 zone_pcp_disable(page_zone(p)); 1286 ret = get_any_page(p, flags); 1287 zone_pcp_enable(page_zone(p)); 1288 1289 return ret; 1290 } 1291 1292 /* 1293 * Do all that is necessary to remove user space mappings. Unmap 1294 * the pages and send SIGBUS to the processes if the data was dirty. 1295 */ 1296 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1297 int flags, struct page *hpage) 1298 { 1299 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC; 1300 struct address_space *mapping; 1301 LIST_HEAD(tokill); 1302 bool unmap_success; 1303 int kill = 1, forcekill; 1304 bool mlocked = PageMlocked(hpage); 1305 1306 /* 1307 * Here we are interested only in user-mapped pages, so skip any 1308 * other types of pages. 1309 */ 1310 if (PageReserved(p) || PageSlab(p)) 1311 return true; 1312 if (!(PageLRU(hpage) || PageHuge(p))) 1313 return true; 1314 1315 /* 1316 * This check implies we don't kill processes if their pages 1317 * are in the swap cache early. Those are always late kills. 1318 */ 1319 if (!page_mapped(hpage)) 1320 return true; 1321 1322 if (PageKsm(p)) { 1323 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 1324 return false; 1325 } 1326 1327 if (PageSwapCache(p)) { 1328 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 1329 pfn); 1330 ttu |= TTU_IGNORE_HWPOISON; 1331 } 1332 1333 /* 1334 * Propagate the dirty bit from PTEs to struct page first, because we 1335 * need this to decide if we should kill or just drop the page. 1336 * XXX: the dirty test could be racy: set_page_dirty() may not always 1337 * be called inside page lock (it's recommended but not enforced). 1338 */ 1339 mapping = page_mapping(hpage); 1340 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1341 mapping_can_writeback(mapping)) { 1342 if (page_mkclean(hpage)) { 1343 SetPageDirty(hpage); 1344 } else { 1345 kill = 0; 1346 ttu |= TTU_IGNORE_HWPOISON; 1347 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1348 pfn); 1349 } 1350 } 1351 1352 /* 1353 * First collect all the processes that have the page 1354 * mapped in dirty form. This has to be done before try_to_unmap, 1355 * because ttu takes the rmap data structures down. 1356 * 1357 * Error handling: We ignore errors here because 1358 * there's nothing that can be done. 1359 */ 1360 if (kill) 1361 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1362 1363 if (!PageHuge(hpage)) { 1364 try_to_unmap(hpage, ttu); 1365 } else { 1366 if (!PageAnon(hpage)) { 1367 /* 1368 * For hugetlb pages in shared mappings, try_to_unmap 1369 * could potentially call huge_pmd_unshare. Because of 1370 * this, take semaphore in write mode here and set 1371 * TTU_RMAP_LOCKED to indicate we have taken the lock 1372 * at this higher level. 1373 */ 1374 mapping = hugetlb_page_mapping_lock_write(hpage); 1375 if (mapping) { 1376 try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED); 1377 i_mmap_unlock_write(mapping); 1378 } else 1379 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn); 1380 } else { 1381 try_to_unmap(hpage, ttu); 1382 } 1383 } 1384 1385 unmap_success = !page_mapped(hpage); 1386 if (!unmap_success) 1387 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1388 pfn, page_mapcount(hpage)); 1389 1390 /* 1391 * try_to_unmap() might put mlocked page in lru cache, so call 1392 * shake_page() again to ensure that it's flushed. 1393 */ 1394 if (mlocked) 1395 shake_page(hpage); 1396 1397 /* 1398 * Now that the dirty bit has been propagated to the 1399 * struct page and all unmaps done we can decide if 1400 * killing is needed or not. Only kill when the page 1401 * was dirty or the process is not restartable, 1402 * otherwise the tokill list is merely 1403 * freed. When there was a problem unmapping earlier 1404 * use a more force-full uncatchable kill to prevent 1405 * any accesses to the poisoned memory. 1406 */ 1407 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1408 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1409 1410 return unmap_success; 1411 } 1412 1413 static int identify_page_state(unsigned long pfn, struct page *p, 1414 unsigned long page_flags) 1415 { 1416 struct page_state *ps; 1417 1418 /* 1419 * The first check uses the current page flags which may not have any 1420 * relevant information. The second check with the saved page flags is 1421 * carried out only if the first check can't determine the page status. 1422 */ 1423 for (ps = error_states;; ps++) 1424 if ((p->flags & ps->mask) == ps->res) 1425 break; 1426 1427 page_flags |= (p->flags & (1UL << PG_dirty)); 1428 1429 if (!ps->mask) 1430 for (ps = error_states;; ps++) 1431 if ((page_flags & ps->mask) == ps->res) 1432 break; 1433 return page_action(ps, p, pfn); 1434 } 1435 1436 static int try_to_split_thp_page(struct page *page, const char *msg) 1437 { 1438 lock_page(page); 1439 if (unlikely(split_huge_page(page))) { 1440 unsigned long pfn = page_to_pfn(page); 1441 1442 unlock_page(page); 1443 pr_info("%s: %#lx: thp split failed\n", msg, pfn); 1444 put_page(page); 1445 return -EBUSY; 1446 } 1447 unlock_page(page); 1448 1449 return 0; 1450 } 1451 1452 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1453 { 1454 struct page *p = pfn_to_page(pfn); 1455 struct page *head = compound_head(p); 1456 int res; 1457 unsigned long page_flags; 1458 1459 if (TestSetPageHWPoison(head)) { 1460 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1461 pfn); 1462 res = -EHWPOISON; 1463 if (flags & MF_ACTION_REQUIRED) 1464 res = kill_accessing_process(current, page_to_pfn(head), flags); 1465 return res; 1466 } 1467 1468 num_poisoned_pages_inc(); 1469 1470 if (!(flags & MF_COUNT_INCREASED)) { 1471 res = get_hwpoison_page(p, flags); 1472 if (!res) { 1473 /* 1474 * Check "filter hit" and "race with other subpage." 1475 */ 1476 lock_page(head); 1477 if (PageHWPoison(head)) { 1478 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1479 || (p != head && TestSetPageHWPoison(head))) { 1480 num_poisoned_pages_dec(); 1481 unlock_page(head); 1482 return 0; 1483 } 1484 } 1485 unlock_page(head); 1486 res = MF_FAILED; 1487 if (__page_handle_poison(p)) { 1488 page_ref_inc(p); 1489 res = MF_RECOVERED; 1490 } 1491 action_result(pfn, MF_MSG_FREE_HUGE, res); 1492 return res == MF_RECOVERED ? 0 : -EBUSY; 1493 } else if (res < 0) { 1494 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1495 return -EBUSY; 1496 } 1497 } 1498 1499 lock_page(head); 1500 page_flags = head->flags; 1501 1502 if (!PageHWPoison(head)) { 1503 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1504 num_poisoned_pages_dec(); 1505 unlock_page(head); 1506 put_page(head); 1507 return 0; 1508 } 1509 1510 /* 1511 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1512 * simply disable it. In order to make it work properly, we need 1513 * make sure that: 1514 * - conversion of a pud that maps an error hugetlb into hwpoison 1515 * entry properly works, and 1516 * - other mm code walking over page table is aware of pud-aligned 1517 * hwpoison entries. 1518 */ 1519 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1520 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1521 res = -EBUSY; 1522 goto out; 1523 } 1524 1525 if (!hwpoison_user_mappings(p, pfn, flags, head)) { 1526 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1527 res = -EBUSY; 1528 goto out; 1529 } 1530 1531 return identify_page_state(pfn, p, page_flags); 1532 out: 1533 unlock_page(head); 1534 return res; 1535 } 1536 1537 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1538 struct dev_pagemap *pgmap) 1539 { 1540 struct page *page = pfn_to_page(pfn); 1541 unsigned long size = 0; 1542 struct to_kill *tk; 1543 LIST_HEAD(tokill); 1544 int rc = -EBUSY; 1545 loff_t start; 1546 dax_entry_t cookie; 1547 1548 if (flags & MF_COUNT_INCREASED) 1549 /* 1550 * Drop the extra refcount in case we come from madvise(). 1551 */ 1552 put_page(page); 1553 1554 /* device metadata space is not recoverable */ 1555 if (!pgmap_pfn_valid(pgmap, pfn)) { 1556 rc = -ENXIO; 1557 goto out; 1558 } 1559 1560 /* 1561 * Prevent the inode from being freed while we are interrogating 1562 * the address_space, typically this would be handled by 1563 * lock_page(), but dax pages do not use the page lock. This 1564 * also prevents changes to the mapping of this pfn until 1565 * poison signaling is complete. 1566 */ 1567 cookie = dax_lock_page(page); 1568 if (!cookie) 1569 goto out; 1570 1571 if (hwpoison_filter(page)) { 1572 rc = 0; 1573 goto unlock; 1574 } 1575 1576 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 1577 /* 1578 * TODO: Handle HMM pages which may need coordination 1579 * with device-side memory. 1580 */ 1581 goto unlock; 1582 } 1583 1584 /* 1585 * Use this flag as an indication that the dax page has been 1586 * remapped UC to prevent speculative consumption of poison. 1587 */ 1588 SetPageHWPoison(page); 1589 1590 /* 1591 * Unlike System-RAM there is no possibility to swap in a 1592 * different physical page at a given virtual address, so all 1593 * userspace consumption of ZONE_DEVICE memory necessitates 1594 * SIGBUS (i.e. MF_MUST_KILL) 1595 */ 1596 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1597 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); 1598 1599 list_for_each_entry(tk, &tokill, nd) 1600 if (tk->size_shift) 1601 size = max(size, 1UL << tk->size_shift); 1602 if (size) { 1603 /* 1604 * Unmap the largest mapping to avoid breaking up 1605 * device-dax mappings which are constant size. The 1606 * actual size of the mapping being torn down is 1607 * communicated in siginfo, see kill_proc() 1608 */ 1609 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1610 unmap_mapping_range(page->mapping, start, size, 0); 1611 } 1612 kill_procs(&tokill, flags & MF_MUST_KILL, false, pfn, flags); 1613 rc = 0; 1614 unlock: 1615 dax_unlock_page(page, cookie); 1616 out: 1617 /* drop pgmap ref acquired in caller */ 1618 put_dev_pagemap(pgmap); 1619 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1620 return rc; 1621 } 1622 1623 /** 1624 * memory_failure - Handle memory failure of a page. 1625 * @pfn: Page Number of the corrupted page 1626 * @flags: fine tune action taken 1627 * 1628 * This function is called by the low level machine check code 1629 * of an architecture when it detects hardware memory corruption 1630 * of a page. It tries its best to recover, which includes 1631 * dropping pages, killing processes etc. 1632 * 1633 * The function is primarily of use for corruptions that 1634 * happen outside the current execution context (e.g. when 1635 * detected by a background scrubber) 1636 * 1637 * Must run in process context (e.g. a work queue) with interrupts 1638 * enabled and no spinlocks hold. 1639 */ 1640 int memory_failure(unsigned long pfn, int flags) 1641 { 1642 struct page *p; 1643 struct page *hpage; 1644 struct page *orig_head; 1645 struct dev_pagemap *pgmap; 1646 int res = 0; 1647 unsigned long page_flags; 1648 bool retry = true; 1649 static DEFINE_MUTEX(mf_mutex); 1650 1651 if (!sysctl_memory_failure_recovery) 1652 panic("Memory failure on page %lx", pfn); 1653 1654 p = pfn_to_online_page(pfn); 1655 if (!p) { 1656 if (pfn_valid(pfn)) { 1657 pgmap = get_dev_pagemap(pfn, NULL); 1658 if (pgmap) 1659 return memory_failure_dev_pagemap(pfn, flags, 1660 pgmap); 1661 } 1662 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1663 pfn); 1664 return -ENXIO; 1665 } 1666 1667 mutex_lock(&mf_mutex); 1668 1669 try_again: 1670 if (PageHuge(p)) { 1671 res = memory_failure_hugetlb(pfn, flags); 1672 goto unlock_mutex; 1673 } 1674 1675 if (TestSetPageHWPoison(p)) { 1676 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1677 pfn); 1678 res = -EHWPOISON; 1679 if (flags & MF_ACTION_REQUIRED) 1680 res = kill_accessing_process(current, pfn, flags); 1681 goto unlock_mutex; 1682 } 1683 1684 orig_head = hpage = compound_head(p); 1685 num_poisoned_pages_inc(); 1686 1687 /* 1688 * We need/can do nothing about count=0 pages. 1689 * 1) it's a free page, and therefore in safe hand: 1690 * prep_new_page() will be the gate keeper. 1691 * 2) it's part of a non-compound high order page. 1692 * Implies some kernel user: cannot stop them from 1693 * R/W the page; let's pray that the page has been 1694 * used and will be freed some time later. 1695 * In fact it's dangerous to directly bump up page count from 0, 1696 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1697 */ 1698 if (!(flags & MF_COUNT_INCREASED)) { 1699 res = get_hwpoison_page(p, flags); 1700 if (!res) { 1701 if (is_free_buddy_page(p)) { 1702 if (take_page_off_buddy(p)) { 1703 page_ref_inc(p); 1704 res = MF_RECOVERED; 1705 } else { 1706 /* We lost the race, try again */ 1707 if (retry) { 1708 ClearPageHWPoison(p); 1709 num_poisoned_pages_dec(); 1710 retry = false; 1711 goto try_again; 1712 } 1713 res = MF_FAILED; 1714 } 1715 action_result(pfn, MF_MSG_BUDDY, res); 1716 res = res == MF_RECOVERED ? 0 : -EBUSY; 1717 } else { 1718 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1719 res = -EBUSY; 1720 } 1721 goto unlock_mutex; 1722 } else if (res < 0) { 1723 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1724 res = -EBUSY; 1725 goto unlock_mutex; 1726 } 1727 } 1728 1729 if (PageTransHuge(hpage)) { 1730 /* 1731 * The flag must be set after the refcount is bumped 1732 * otherwise it may race with THP split. 1733 * And the flag can't be set in get_hwpoison_page() since 1734 * it is called by soft offline too and it is just called 1735 * for !MF_COUNT_INCREASE. So here seems to be the best 1736 * place. 1737 * 1738 * Don't need care about the above error handling paths for 1739 * get_hwpoison_page() since they handle either free page 1740 * or unhandlable page. The refcount is bumped iff the 1741 * page is a valid handlable page. 1742 */ 1743 SetPageHasHWPoisoned(hpage); 1744 if (try_to_split_thp_page(p, "Memory Failure") < 0) { 1745 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 1746 res = -EBUSY; 1747 goto unlock_mutex; 1748 } 1749 VM_BUG_ON_PAGE(!page_count(p), p); 1750 } 1751 1752 /* 1753 * We ignore non-LRU pages for good reasons. 1754 * - PG_locked is only well defined for LRU pages and a few others 1755 * - to avoid races with __SetPageLocked() 1756 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1757 * The check (unnecessarily) ignores LRU pages being isolated and 1758 * walked by the page reclaim code, however that's not a big loss. 1759 */ 1760 shake_page(p); 1761 1762 lock_page(p); 1763 1764 /* 1765 * The page could have changed compound pages during the locking. 1766 * If this happens just bail out. 1767 */ 1768 if (PageCompound(p) && compound_head(p) != orig_head) { 1769 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1770 res = -EBUSY; 1771 goto unlock_page; 1772 } 1773 1774 /* 1775 * We use page flags to determine what action should be taken, but 1776 * the flags can be modified by the error containment action. One 1777 * example is an mlocked page, where PG_mlocked is cleared by 1778 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1779 * correctly, we save a copy of the page flags at this time. 1780 */ 1781 page_flags = p->flags; 1782 1783 /* 1784 * unpoison always clear PG_hwpoison inside page lock 1785 */ 1786 if (!PageHWPoison(p)) { 1787 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1788 num_poisoned_pages_dec(); 1789 unlock_page(p); 1790 put_page(p); 1791 goto unlock_mutex; 1792 } 1793 if (hwpoison_filter(p)) { 1794 if (TestClearPageHWPoison(p)) 1795 num_poisoned_pages_dec(); 1796 unlock_page(p); 1797 put_page(p); 1798 goto unlock_mutex; 1799 } 1800 1801 /* 1802 * __munlock_pagevec may clear a writeback page's LRU flag without 1803 * page_lock. We need wait writeback completion for this page or it 1804 * may trigger vfs BUG while evict inode. 1805 */ 1806 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p)) 1807 goto identify_page_state; 1808 1809 /* 1810 * It's very difficult to mess with pages currently under IO 1811 * and in many cases impossible, so we just avoid it here. 1812 */ 1813 wait_on_page_writeback(p); 1814 1815 /* 1816 * Now take care of user space mappings. 1817 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1818 */ 1819 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 1820 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1821 res = -EBUSY; 1822 goto unlock_page; 1823 } 1824 1825 /* 1826 * Torn down by someone else? 1827 */ 1828 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1829 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1830 res = -EBUSY; 1831 goto unlock_page; 1832 } 1833 1834 identify_page_state: 1835 res = identify_page_state(pfn, p, page_flags); 1836 mutex_unlock(&mf_mutex); 1837 return res; 1838 unlock_page: 1839 unlock_page(p); 1840 unlock_mutex: 1841 mutex_unlock(&mf_mutex); 1842 return res; 1843 } 1844 EXPORT_SYMBOL_GPL(memory_failure); 1845 1846 #define MEMORY_FAILURE_FIFO_ORDER 4 1847 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1848 1849 struct memory_failure_entry { 1850 unsigned long pfn; 1851 int flags; 1852 }; 1853 1854 struct memory_failure_cpu { 1855 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1856 MEMORY_FAILURE_FIFO_SIZE); 1857 spinlock_t lock; 1858 struct work_struct work; 1859 }; 1860 1861 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1862 1863 /** 1864 * memory_failure_queue - Schedule handling memory failure of a page. 1865 * @pfn: Page Number of the corrupted page 1866 * @flags: Flags for memory failure handling 1867 * 1868 * This function is called by the low level hardware error handler 1869 * when it detects hardware memory corruption of a page. It schedules 1870 * the recovering of error page, including dropping pages, killing 1871 * processes etc. 1872 * 1873 * The function is primarily of use for corruptions that 1874 * happen outside the current execution context (e.g. when 1875 * detected by a background scrubber) 1876 * 1877 * Can run in IRQ context. 1878 */ 1879 void memory_failure_queue(unsigned long pfn, int flags) 1880 { 1881 struct memory_failure_cpu *mf_cpu; 1882 unsigned long proc_flags; 1883 struct memory_failure_entry entry = { 1884 .pfn = pfn, 1885 .flags = flags, 1886 }; 1887 1888 mf_cpu = &get_cpu_var(memory_failure_cpu); 1889 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1890 if (kfifo_put(&mf_cpu->fifo, entry)) 1891 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1892 else 1893 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1894 pfn); 1895 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1896 put_cpu_var(memory_failure_cpu); 1897 } 1898 EXPORT_SYMBOL_GPL(memory_failure_queue); 1899 1900 static void memory_failure_work_func(struct work_struct *work) 1901 { 1902 struct memory_failure_cpu *mf_cpu; 1903 struct memory_failure_entry entry = { 0, }; 1904 unsigned long proc_flags; 1905 int gotten; 1906 1907 mf_cpu = container_of(work, struct memory_failure_cpu, work); 1908 for (;;) { 1909 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1910 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1911 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1912 if (!gotten) 1913 break; 1914 if (entry.flags & MF_SOFT_OFFLINE) 1915 soft_offline_page(entry.pfn, entry.flags); 1916 else 1917 memory_failure(entry.pfn, entry.flags); 1918 } 1919 } 1920 1921 /* 1922 * Process memory_failure work queued on the specified CPU. 1923 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 1924 */ 1925 void memory_failure_queue_kick(int cpu) 1926 { 1927 struct memory_failure_cpu *mf_cpu; 1928 1929 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1930 cancel_work_sync(&mf_cpu->work); 1931 memory_failure_work_func(&mf_cpu->work); 1932 } 1933 1934 static int __init memory_failure_init(void) 1935 { 1936 struct memory_failure_cpu *mf_cpu; 1937 int cpu; 1938 1939 for_each_possible_cpu(cpu) { 1940 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1941 spin_lock_init(&mf_cpu->lock); 1942 INIT_KFIFO(mf_cpu->fifo); 1943 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1944 } 1945 1946 return 0; 1947 } 1948 core_initcall(memory_failure_init); 1949 1950 #define unpoison_pr_info(fmt, pfn, rs) \ 1951 ({ \ 1952 if (__ratelimit(rs)) \ 1953 pr_info(fmt, pfn); \ 1954 }) 1955 1956 /** 1957 * unpoison_memory - Unpoison a previously poisoned page 1958 * @pfn: Page number of the to be unpoisoned page 1959 * 1960 * Software-unpoison a page that has been poisoned by 1961 * memory_failure() earlier. 1962 * 1963 * This is only done on the software-level, so it only works 1964 * for linux injected failures, not real hardware failures 1965 * 1966 * Returns 0 for success, otherwise -errno. 1967 */ 1968 int unpoison_memory(unsigned long pfn) 1969 { 1970 struct page *page; 1971 struct page *p; 1972 int freeit = 0; 1973 unsigned long flags = 0; 1974 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1975 DEFAULT_RATELIMIT_BURST); 1976 1977 if (!pfn_valid(pfn)) 1978 return -ENXIO; 1979 1980 p = pfn_to_page(pfn); 1981 page = compound_head(p); 1982 1983 if (!PageHWPoison(p)) { 1984 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1985 pfn, &unpoison_rs); 1986 return 0; 1987 } 1988 1989 if (page_count(page) > 1) { 1990 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1991 pfn, &unpoison_rs); 1992 return 0; 1993 } 1994 1995 if (page_mapped(page)) { 1996 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1997 pfn, &unpoison_rs); 1998 return 0; 1999 } 2000 2001 if (page_mapping(page)) { 2002 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2003 pfn, &unpoison_rs); 2004 return 0; 2005 } 2006 2007 /* 2008 * unpoison_memory() can encounter thp only when the thp is being 2009 * worked by memory_failure() and the page lock is not held yet. 2010 * In such case, we yield to memory_failure() and make unpoison fail. 2011 */ 2012 if (!PageHuge(page) && PageTransHuge(page)) { 2013 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 2014 pfn, &unpoison_rs); 2015 return 0; 2016 } 2017 2018 if (!get_hwpoison_page(p, flags)) { 2019 if (TestClearPageHWPoison(p)) 2020 num_poisoned_pages_dec(); 2021 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 2022 pfn, &unpoison_rs); 2023 return 0; 2024 } 2025 2026 lock_page(page); 2027 /* 2028 * This test is racy because PG_hwpoison is set outside of page lock. 2029 * That's acceptable because that won't trigger kernel panic. Instead, 2030 * the PG_hwpoison page will be caught and isolated on the entrance to 2031 * the free buddy page pool. 2032 */ 2033 if (TestClearPageHWPoison(page)) { 2034 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2035 pfn, &unpoison_rs); 2036 num_poisoned_pages_dec(); 2037 freeit = 1; 2038 } 2039 unlock_page(page); 2040 2041 put_page(page); 2042 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 2043 put_page(page); 2044 2045 return 0; 2046 } 2047 EXPORT_SYMBOL(unpoison_memory); 2048 2049 static bool isolate_page(struct page *page, struct list_head *pagelist) 2050 { 2051 bool isolated = false; 2052 bool lru = PageLRU(page); 2053 2054 if (PageHuge(page)) { 2055 isolated = isolate_huge_page(page, pagelist); 2056 } else { 2057 if (lru) 2058 isolated = !isolate_lru_page(page); 2059 else 2060 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE); 2061 2062 if (isolated) 2063 list_add(&page->lru, pagelist); 2064 } 2065 2066 if (isolated && lru) 2067 inc_node_page_state(page, NR_ISOLATED_ANON + 2068 page_is_file_lru(page)); 2069 2070 /* 2071 * If we succeed to isolate the page, we grabbed another refcount on 2072 * the page, so we can safely drop the one we got from get_any_pages(). 2073 * If we failed to isolate the page, it means that we cannot go further 2074 * and we will return an error, so drop the reference we got from 2075 * get_any_pages() as well. 2076 */ 2077 put_page(page); 2078 return isolated; 2079 } 2080 2081 /* 2082 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages. 2083 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2084 * If the page is mapped, it migrates the contents over. 2085 */ 2086 static int __soft_offline_page(struct page *page) 2087 { 2088 int ret = 0; 2089 unsigned long pfn = page_to_pfn(page); 2090 struct page *hpage = compound_head(page); 2091 char const *msg_page[] = {"page", "hugepage"}; 2092 bool huge = PageHuge(page); 2093 LIST_HEAD(pagelist); 2094 struct migration_target_control mtc = { 2095 .nid = NUMA_NO_NODE, 2096 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2097 }; 2098 2099 /* 2100 * Check PageHWPoison again inside page lock because PageHWPoison 2101 * is set by memory_failure() outside page lock. Note that 2102 * memory_failure() also double-checks PageHWPoison inside page lock, 2103 * so there's no race between soft_offline_page() and memory_failure(). 2104 */ 2105 lock_page(page); 2106 if (!PageHuge(page)) 2107 wait_on_page_writeback(page); 2108 if (PageHWPoison(page)) { 2109 unlock_page(page); 2110 put_page(page); 2111 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2112 return 0; 2113 } 2114 2115 if (!PageHuge(page)) 2116 /* 2117 * Try to invalidate first. This should work for 2118 * non dirty unmapped page cache pages. 2119 */ 2120 ret = invalidate_inode_page(page); 2121 unlock_page(page); 2122 2123 /* 2124 * RED-PEN would be better to keep it isolated here, but we 2125 * would need to fix isolation locking first. 2126 */ 2127 if (ret) { 2128 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2129 page_handle_poison(page, false, true); 2130 return 0; 2131 } 2132 2133 if (isolate_page(hpage, &pagelist)) { 2134 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2135 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2136 if (!ret) { 2137 bool release = !huge; 2138 2139 if (!page_handle_poison(page, huge, release)) 2140 ret = -EBUSY; 2141 } else { 2142 if (!list_empty(&pagelist)) 2143 putback_movable_pages(&pagelist); 2144 2145 pr_info("soft offline: %#lx: %s migration failed %d, type %pGp\n", 2146 pfn, msg_page[huge], ret, &page->flags); 2147 if (ret > 0) 2148 ret = -EBUSY; 2149 } 2150 } else { 2151 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2152 pfn, msg_page[huge], page_count(page), &page->flags); 2153 ret = -EBUSY; 2154 } 2155 return ret; 2156 } 2157 2158 static int soft_offline_in_use_page(struct page *page) 2159 { 2160 struct page *hpage = compound_head(page); 2161 2162 if (!PageHuge(page) && PageTransHuge(hpage)) 2163 if (try_to_split_thp_page(page, "soft offline") < 0) 2164 return -EBUSY; 2165 return __soft_offline_page(page); 2166 } 2167 2168 static int soft_offline_free_page(struct page *page) 2169 { 2170 int rc = 0; 2171 2172 if (!page_handle_poison(page, true, false)) 2173 rc = -EBUSY; 2174 2175 return rc; 2176 } 2177 2178 static void put_ref_page(struct page *page) 2179 { 2180 if (page) 2181 put_page(page); 2182 } 2183 2184 /** 2185 * soft_offline_page - Soft offline a page. 2186 * @pfn: pfn to soft-offline 2187 * @flags: flags. Same as memory_failure(). 2188 * 2189 * Returns 0 on success, otherwise negated errno. 2190 * 2191 * Soft offline a page, by migration or invalidation, 2192 * without killing anything. This is for the case when 2193 * a page is not corrupted yet (so it's still valid to access), 2194 * but has had a number of corrected errors and is better taken 2195 * out. 2196 * 2197 * The actual policy on when to do that is maintained by 2198 * user space. 2199 * 2200 * This should never impact any application or cause data loss, 2201 * however it might take some time. 2202 * 2203 * This is not a 100% solution for all memory, but tries to be 2204 * ``good enough'' for the majority of memory. 2205 */ 2206 int soft_offline_page(unsigned long pfn, int flags) 2207 { 2208 int ret; 2209 bool try_again = true; 2210 struct page *page, *ref_page = NULL; 2211 2212 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED)); 2213 2214 if (!pfn_valid(pfn)) 2215 return -ENXIO; 2216 if (flags & MF_COUNT_INCREASED) 2217 ref_page = pfn_to_page(pfn); 2218 2219 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2220 page = pfn_to_online_page(pfn); 2221 if (!page) { 2222 put_ref_page(ref_page); 2223 return -EIO; 2224 } 2225 2226 if (PageHWPoison(page)) { 2227 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2228 put_ref_page(ref_page); 2229 return 0; 2230 } 2231 2232 retry: 2233 get_online_mems(); 2234 ret = get_hwpoison_page(page, flags); 2235 put_online_mems(); 2236 2237 if (ret > 0) { 2238 ret = soft_offline_in_use_page(page); 2239 } else if (ret == 0) { 2240 if (soft_offline_free_page(page) && try_again) { 2241 try_again = false; 2242 goto retry; 2243 } 2244 } 2245 2246 return ret; 2247 } 2248