xref: /linux/mm/memory-failure.c (revision dcb8cbb58a218c99aab0dbf3f76cf06a04d44f37)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/memremap.h>
60 #include <linux/kfifo.h>
61 #include <linux/ratelimit.h>
62 #include <linux/page-isolation.h>
63 #include <linux/pagewalk.h>
64 #include <linux/shmem_fs.h>
65 #include <linux/sysctl.h>
66 #include "swap.h"
67 #include "internal.h"
68 #include "ras/ras_event.h"
69 
70 static int sysctl_memory_failure_early_kill __read_mostly;
71 
72 static int sysctl_memory_failure_recovery __read_mostly = 1;
73 
74 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
75 
76 static bool hw_memory_failure __read_mostly = false;
77 
78 inline void num_poisoned_pages_inc(unsigned long pfn)
79 {
80 	atomic_long_inc(&num_poisoned_pages);
81 	memblk_nr_poison_inc(pfn);
82 }
83 
84 inline void num_poisoned_pages_sub(unsigned long pfn, long i)
85 {
86 	atomic_long_sub(i, &num_poisoned_pages);
87 	if (pfn != -1UL)
88 		memblk_nr_poison_sub(pfn, i);
89 }
90 
91 /**
92  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
93  * @_name: name of the file in the per NUMA sysfs directory.
94  */
95 #define MF_ATTR_RO(_name)					\
96 static ssize_t _name##_show(struct device *dev,			\
97 			    struct device_attribute *attr,	\
98 			    char *buf)				\
99 {								\
100 	struct memory_failure_stats *mf_stats =			\
101 		&NODE_DATA(dev->id)->mf_stats;			\
102 	return sprintf(buf, "%lu\n", mf_stats->_name);		\
103 }								\
104 static DEVICE_ATTR_RO(_name)
105 
106 MF_ATTR_RO(total);
107 MF_ATTR_RO(ignored);
108 MF_ATTR_RO(failed);
109 MF_ATTR_RO(delayed);
110 MF_ATTR_RO(recovered);
111 
112 static struct attribute *memory_failure_attr[] = {
113 	&dev_attr_total.attr,
114 	&dev_attr_ignored.attr,
115 	&dev_attr_failed.attr,
116 	&dev_attr_delayed.attr,
117 	&dev_attr_recovered.attr,
118 	NULL,
119 };
120 
121 const struct attribute_group memory_failure_attr_group = {
122 	.name = "memory_failure",
123 	.attrs = memory_failure_attr,
124 };
125 
126 static struct ctl_table memory_failure_table[] = {
127 	{
128 		.procname	= "memory_failure_early_kill",
129 		.data		= &sysctl_memory_failure_early_kill,
130 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
131 		.mode		= 0644,
132 		.proc_handler	= proc_dointvec_minmax,
133 		.extra1		= SYSCTL_ZERO,
134 		.extra2		= SYSCTL_ONE,
135 	},
136 	{
137 		.procname	= "memory_failure_recovery",
138 		.data		= &sysctl_memory_failure_recovery,
139 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
140 		.mode		= 0644,
141 		.proc_handler	= proc_dointvec_minmax,
142 		.extra1		= SYSCTL_ZERO,
143 		.extra2		= SYSCTL_ONE,
144 	},
145 	{ }
146 };
147 
148 /*
149  * Return values:
150  *   1:   the page is dissolved (if needed) and taken off from buddy,
151  *   0:   the page is dissolved (if needed) and not taken off from buddy,
152  *   < 0: failed to dissolve.
153  */
154 static int __page_handle_poison(struct page *page)
155 {
156 	int ret;
157 
158 	zone_pcp_disable(page_zone(page));
159 	ret = dissolve_free_huge_page(page);
160 	if (!ret)
161 		ret = take_page_off_buddy(page);
162 	zone_pcp_enable(page_zone(page));
163 
164 	return ret;
165 }
166 
167 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
168 {
169 	if (hugepage_or_freepage) {
170 		/*
171 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
172 		 * returns 0 for non-hugetlb pages as well.
173 		 */
174 		if (__page_handle_poison(page) <= 0)
175 			/*
176 			 * We could fail to take off the target page from buddy
177 			 * for example due to racy page allocation, but that's
178 			 * acceptable because soft-offlined page is not broken
179 			 * and if someone really want to use it, they should
180 			 * take it.
181 			 */
182 			return false;
183 	}
184 
185 	SetPageHWPoison(page);
186 	if (release)
187 		put_page(page);
188 	page_ref_inc(page);
189 	num_poisoned_pages_inc(page_to_pfn(page));
190 
191 	return true;
192 }
193 
194 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
195 
196 u32 hwpoison_filter_enable = 0;
197 u32 hwpoison_filter_dev_major = ~0U;
198 u32 hwpoison_filter_dev_minor = ~0U;
199 u64 hwpoison_filter_flags_mask;
200 u64 hwpoison_filter_flags_value;
201 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
202 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
203 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
204 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
205 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
206 
207 static int hwpoison_filter_dev(struct page *p)
208 {
209 	struct address_space *mapping;
210 	dev_t dev;
211 
212 	if (hwpoison_filter_dev_major == ~0U &&
213 	    hwpoison_filter_dev_minor == ~0U)
214 		return 0;
215 
216 	mapping = page_mapping(p);
217 	if (mapping == NULL || mapping->host == NULL)
218 		return -EINVAL;
219 
220 	dev = mapping->host->i_sb->s_dev;
221 	if (hwpoison_filter_dev_major != ~0U &&
222 	    hwpoison_filter_dev_major != MAJOR(dev))
223 		return -EINVAL;
224 	if (hwpoison_filter_dev_minor != ~0U &&
225 	    hwpoison_filter_dev_minor != MINOR(dev))
226 		return -EINVAL;
227 
228 	return 0;
229 }
230 
231 static int hwpoison_filter_flags(struct page *p)
232 {
233 	if (!hwpoison_filter_flags_mask)
234 		return 0;
235 
236 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
237 				    hwpoison_filter_flags_value)
238 		return 0;
239 	else
240 		return -EINVAL;
241 }
242 
243 /*
244  * This allows stress tests to limit test scope to a collection of tasks
245  * by putting them under some memcg. This prevents killing unrelated/important
246  * processes such as /sbin/init. Note that the target task may share clean
247  * pages with init (eg. libc text), which is harmless. If the target task
248  * share _dirty_ pages with another task B, the test scheme must make sure B
249  * is also included in the memcg. At last, due to race conditions this filter
250  * can only guarantee that the page either belongs to the memcg tasks, or is
251  * a freed page.
252  */
253 #ifdef CONFIG_MEMCG
254 u64 hwpoison_filter_memcg;
255 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
256 static int hwpoison_filter_task(struct page *p)
257 {
258 	if (!hwpoison_filter_memcg)
259 		return 0;
260 
261 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
262 		return -EINVAL;
263 
264 	return 0;
265 }
266 #else
267 static int hwpoison_filter_task(struct page *p) { return 0; }
268 #endif
269 
270 int hwpoison_filter(struct page *p)
271 {
272 	if (!hwpoison_filter_enable)
273 		return 0;
274 
275 	if (hwpoison_filter_dev(p))
276 		return -EINVAL;
277 
278 	if (hwpoison_filter_flags(p))
279 		return -EINVAL;
280 
281 	if (hwpoison_filter_task(p))
282 		return -EINVAL;
283 
284 	return 0;
285 }
286 #else
287 int hwpoison_filter(struct page *p)
288 {
289 	return 0;
290 }
291 #endif
292 
293 EXPORT_SYMBOL_GPL(hwpoison_filter);
294 
295 /*
296  * Kill all processes that have a poisoned page mapped and then isolate
297  * the page.
298  *
299  * General strategy:
300  * Find all processes having the page mapped and kill them.
301  * But we keep a page reference around so that the page is not
302  * actually freed yet.
303  * Then stash the page away
304  *
305  * There's no convenient way to get back to mapped processes
306  * from the VMAs. So do a brute-force search over all
307  * running processes.
308  *
309  * Remember that machine checks are not common (or rather
310  * if they are common you have other problems), so this shouldn't
311  * be a performance issue.
312  *
313  * Also there are some races possible while we get from the
314  * error detection to actually handle it.
315  */
316 
317 struct to_kill {
318 	struct list_head nd;
319 	struct task_struct *tsk;
320 	unsigned long addr;
321 	short size_shift;
322 };
323 
324 /*
325  * Send all the processes who have the page mapped a signal.
326  * ``action optional'' if they are not immediately affected by the error
327  * ``action required'' if error happened in current execution context
328  */
329 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
330 {
331 	struct task_struct *t = tk->tsk;
332 	short addr_lsb = tk->size_shift;
333 	int ret = 0;
334 
335 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
336 			pfn, t->comm, t->pid);
337 
338 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
339 		ret = force_sig_mceerr(BUS_MCEERR_AR,
340 				 (void __user *)tk->addr, addr_lsb);
341 	else
342 		/*
343 		 * Signal other processes sharing the page if they have
344 		 * PF_MCE_EARLY set.
345 		 * Don't use force here, it's convenient if the signal
346 		 * can be temporarily blocked.
347 		 * This could cause a loop when the user sets SIGBUS
348 		 * to SIG_IGN, but hopefully no one will do that?
349 		 */
350 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
351 				      addr_lsb, t);
352 	if (ret < 0)
353 		pr_info("Error sending signal to %s:%d: %d\n",
354 			t->comm, t->pid, ret);
355 	return ret;
356 }
357 
358 /*
359  * Unknown page type encountered. Try to check whether it can turn PageLRU by
360  * lru_add_drain_all.
361  */
362 void shake_page(struct page *p)
363 {
364 	if (PageHuge(p))
365 		return;
366 
367 	if (!PageSlab(p)) {
368 		lru_add_drain_all();
369 		if (PageLRU(p) || is_free_buddy_page(p))
370 			return;
371 	}
372 
373 	/*
374 	 * TODO: Could shrink slab caches here if a lightweight range-based
375 	 * shrinker will be available.
376 	 */
377 }
378 EXPORT_SYMBOL_GPL(shake_page);
379 
380 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
381 		unsigned long address)
382 {
383 	unsigned long ret = 0;
384 	pgd_t *pgd;
385 	p4d_t *p4d;
386 	pud_t *pud;
387 	pmd_t *pmd;
388 	pte_t *pte;
389 
390 	VM_BUG_ON_VMA(address == -EFAULT, vma);
391 	pgd = pgd_offset(vma->vm_mm, address);
392 	if (!pgd_present(*pgd))
393 		return 0;
394 	p4d = p4d_offset(pgd, address);
395 	if (!p4d_present(*p4d))
396 		return 0;
397 	pud = pud_offset(p4d, address);
398 	if (!pud_present(*pud))
399 		return 0;
400 	if (pud_devmap(*pud))
401 		return PUD_SHIFT;
402 	pmd = pmd_offset(pud, address);
403 	if (!pmd_present(*pmd))
404 		return 0;
405 	if (pmd_devmap(*pmd))
406 		return PMD_SHIFT;
407 	pte = pte_offset_map(pmd, address);
408 	if (pte_present(*pte) && pte_devmap(*pte))
409 		ret = PAGE_SHIFT;
410 	pte_unmap(pte);
411 	return ret;
412 }
413 
414 /*
415  * Failure handling: if we can't find or can't kill a process there's
416  * not much we can do.	We just print a message and ignore otherwise.
417  */
418 
419 #define FSDAX_INVALID_PGOFF ULONG_MAX
420 
421 /*
422  * Schedule a process for later kill.
423  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
424  *
425  * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
426  * filesystem with a memory failure handler has claimed the
427  * memory_failure event. In all other cases, page->index and
428  * page->mapping are sufficient for mapping the page back to its
429  * corresponding user virtual address.
430  */
431 static void __add_to_kill(struct task_struct *tsk, struct page *p,
432 			  struct vm_area_struct *vma, struct list_head *to_kill,
433 			  unsigned long ksm_addr, pgoff_t fsdax_pgoff)
434 {
435 	struct to_kill *tk;
436 
437 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
438 	if (!tk) {
439 		pr_err("Out of memory while machine check handling\n");
440 		return;
441 	}
442 
443 	tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
444 	if (is_zone_device_page(p)) {
445 		if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
446 			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
447 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
448 	} else
449 		tk->size_shift = page_shift(compound_head(p));
450 
451 	/*
452 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
453 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
454 	 * so "tk->size_shift == 0" effectively checks no mapping on
455 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
456 	 * to a process' address space, it's possible not all N VMAs
457 	 * contain mappings for the page, but at least one VMA does.
458 	 * Only deliver SIGBUS with payload derived from the VMA that
459 	 * has a mapping for the page.
460 	 */
461 	if (tk->addr == -EFAULT) {
462 		pr_info("Unable to find user space address %lx in %s\n",
463 			page_to_pfn(p), tsk->comm);
464 	} else if (tk->size_shift == 0) {
465 		kfree(tk);
466 		return;
467 	}
468 
469 	get_task_struct(tsk);
470 	tk->tsk = tsk;
471 	list_add_tail(&tk->nd, to_kill);
472 }
473 
474 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
475 				  struct vm_area_struct *vma,
476 				  struct list_head *to_kill)
477 {
478 	__add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
479 }
480 
481 #ifdef CONFIG_KSM
482 static bool task_in_to_kill_list(struct list_head *to_kill,
483 				 struct task_struct *tsk)
484 {
485 	struct to_kill *tk, *next;
486 
487 	list_for_each_entry_safe(tk, next, to_kill, nd) {
488 		if (tk->tsk == tsk)
489 			return true;
490 	}
491 
492 	return false;
493 }
494 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
495 		     struct vm_area_struct *vma, struct list_head *to_kill,
496 		     unsigned long ksm_addr)
497 {
498 	if (!task_in_to_kill_list(to_kill, tsk))
499 		__add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
500 }
501 #endif
502 /*
503  * Kill the processes that have been collected earlier.
504  *
505  * Only do anything when FORCEKILL is set, otherwise just free the
506  * list (this is used for clean pages which do not need killing)
507  * Also when FAIL is set do a force kill because something went
508  * wrong earlier.
509  */
510 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
511 		unsigned long pfn, int flags)
512 {
513 	struct to_kill *tk, *next;
514 
515 	list_for_each_entry_safe(tk, next, to_kill, nd) {
516 		if (forcekill) {
517 			/*
518 			 * In case something went wrong with munmapping
519 			 * make sure the process doesn't catch the
520 			 * signal and then access the memory. Just kill it.
521 			 */
522 			if (fail || tk->addr == -EFAULT) {
523 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
524 				       pfn, tk->tsk->comm, tk->tsk->pid);
525 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
526 						 tk->tsk, PIDTYPE_PID);
527 			}
528 
529 			/*
530 			 * In theory the process could have mapped
531 			 * something else on the address in-between. We could
532 			 * check for that, but we need to tell the
533 			 * process anyways.
534 			 */
535 			else if (kill_proc(tk, pfn, flags) < 0)
536 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
537 				       pfn, tk->tsk->comm, tk->tsk->pid);
538 		}
539 		list_del(&tk->nd);
540 		put_task_struct(tk->tsk);
541 		kfree(tk);
542 	}
543 }
544 
545 /*
546  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
547  * on behalf of the thread group. Return task_struct of the (first found)
548  * dedicated thread if found, and return NULL otherwise.
549  *
550  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
551  * have to call rcu_read_lock/unlock() in this function.
552  */
553 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
554 {
555 	struct task_struct *t;
556 
557 	for_each_thread(tsk, t) {
558 		if (t->flags & PF_MCE_PROCESS) {
559 			if (t->flags & PF_MCE_EARLY)
560 				return t;
561 		} else {
562 			if (sysctl_memory_failure_early_kill)
563 				return t;
564 		}
565 	}
566 	return NULL;
567 }
568 
569 /*
570  * Determine whether a given process is "early kill" process which expects
571  * to be signaled when some page under the process is hwpoisoned.
572  * Return task_struct of the dedicated thread (main thread unless explicitly
573  * specified) if the process is "early kill" and otherwise returns NULL.
574  *
575  * Note that the above is true for Action Optional case. For Action Required
576  * case, it's only meaningful to the current thread which need to be signaled
577  * with SIGBUS, this error is Action Optional for other non current
578  * processes sharing the same error page,if the process is "early kill", the
579  * task_struct of the dedicated thread will also be returned.
580  */
581 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
582 {
583 	if (!tsk->mm)
584 		return NULL;
585 	/*
586 	 * Comparing ->mm here because current task might represent
587 	 * a subthread, while tsk always points to the main thread.
588 	 */
589 	if (force_early && tsk->mm == current->mm)
590 		return current;
591 
592 	return find_early_kill_thread(tsk);
593 }
594 
595 /*
596  * Collect processes when the error hit an anonymous page.
597  */
598 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
599 				int force_early)
600 {
601 	struct folio *folio = page_folio(page);
602 	struct vm_area_struct *vma;
603 	struct task_struct *tsk;
604 	struct anon_vma *av;
605 	pgoff_t pgoff;
606 
607 	av = folio_lock_anon_vma_read(folio, NULL);
608 	if (av == NULL)	/* Not actually mapped anymore */
609 		return;
610 
611 	pgoff = page_to_pgoff(page);
612 	read_lock(&tasklist_lock);
613 	for_each_process (tsk) {
614 		struct anon_vma_chain *vmac;
615 		struct task_struct *t = task_early_kill(tsk, force_early);
616 
617 		if (!t)
618 			continue;
619 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
620 					       pgoff, pgoff) {
621 			vma = vmac->vma;
622 			if (vma->vm_mm != t->mm)
623 				continue;
624 			if (!page_mapped_in_vma(page, vma))
625 				continue;
626 			add_to_kill_anon_file(t, page, vma, to_kill);
627 		}
628 	}
629 	read_unlock(&tasklist_lock);
630 	anon_vma_unlock_read(av);
631 }
632 
633 /*
634  * Collect processes when the error hit a file mapped page.
635  */
636 static void collect_procs_file(struct page *page, struct list_head *to_kill,
637 				int force_early)
638 {
639 	struct vm_area_struct *vma;
640 	struct task_struct *tsk;
641 	struct address_space *mapping = page->mapping;
642 	pgoff_t pgoff;
643 
644 	i_mmap_lock_read(mapping);
645 	read_lock(&tasklist_lock);
646 	pgoff = page_to_pgoff(page);
647 	for_each_process(tsk) {
648 		struct task_struct *t = task_early_kill(tsk, force_early);
649 
650 		if (!t)
651 			continue;
652 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
653 				      pgoff) {
654 			/*
655 			 * Send early kill signal to tasks where a vma covers
656 			 * the page but the corrupted page is not necessarily
657 			 * mapped it in its pte.
658 			 * Assume applications who requested early kill want
659 			 * to be informed of all such data corruptions.
660 			 */
661 			if (vma->vm_mm == t->mm)
662 				add_to_kill_anon_file(t, page, vma, to_kill);
663 		}
664 	}
665 	read_unlock(&tasklist_lock);
666 	i_mmap_unlock_read(mapping);
667 }
668 
669 #ifdef CONFIG_FS_DAX
670 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
671 			      struct vm_area_struct *vma,
672 			      struct list_head *to_kill, pgoff_t pgoff)
673 {
674 	__add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
675 }
676 
677 /*
678  * Collect processes when the error hit a fsdax page.
679  */
680 static void collect_procs_fsdax(struct page *page,
681 		struct address_space *mapping, pgoff_t pgoff,
682 		struct list_head *to_kill)
683 {
684 	struct vm_area_struct *vma;
685 	struct task_struct *tsk;
686 
687 	i_mmap_lock_read(mapping);
688 	read_lock(&tasklist_lock);
689 	for_each_process(tsk) {
690 		struct task_struct *t = task_early_kill(tsk, true);
691 
692 		if (!t)
693 			continue;
694 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
695 			if (vma->vm_mm == t->mm)
696 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
697 		}
698 	}
699 	read_unlock(&tasklist_lock);
700 	i_mmap_unlock_read(mapping);
701 }
702 #endif /* CONFIG_FS_DAX */
703 
704 /*
705  * Collect the processes who have the corrupted page mapped to kill.
706  */
707 static void collect_procs(struct page *page, struct list_head *tokill,
708 				int force_early)
709 {
710 	if (!page->mapping)
711 		return;
712 	if (unlikely(PageKsm(page)))
713 		collect_procs_ksm(page, tokill, force_early);
714 	else if (PageAnon(page))
715 		collect_procs_anon(page, tokill, force_early);
716 	else
717 		collect_procs_file(page, tokill, force_early);
718 }
719 
720 struct hwp_walk {
721 	struct to_kill tk;
722 	unsigned long pfn;
723 	int flags;
724 };
725 
726 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
727 {
728 	tk->addr = addr;
729 	tk->size_shift = shift;
730 }
731 
732 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
733 				unsigned long poisoned_pfn, struct to_kill *tk)
734 {
735 	unsigned long pfn = 0;
736 
737 	if (pte_present(pte)) {
738 		pfn = pte_pfn(pte);
739 	} else {
740 		swp_entry_t swp = pte_to_swp_entry(pte);
741 
742 		if (is_hwpoison_entry(swp))
743 			pfn = swp_offset_pfn(swp);
744 	}
745 
746 	if (!pfn || pfn != poisoned_pfn)
747 		return 0;
748 
749 	set_to_kill(tk, addr, shift);
750 	return 1;
751 }
752 
753 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
754 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
755 				      struct hwp_walk *hwp)
756 {
757 	pmd_t pmd = *pmdp;
758 	unsigned long pfn;
759 	unsigned long hwpoison_vaddr;
760 
761 	if (!pmd_present(pmd))
762 		return 0;
763 	pfn = pmd_pfn(pmd);
764 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
765 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
766 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
767 		return 1;
768 	}
769 	return 0;
770 }
771 #else
772 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
773 				      struct hwp_walk *hwp)
774 {
775 	return 0;
776 }
777 #endif
778 
779 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
780 			      unsigned long end, struct mm_walk *walk)
781 {
782 	struct hwp_walk *hwp = walk->private;
783 	int ret = 0;
784 	pte_t *ptep, *mapped_pte;
785 	spinlock_t *ptl;
786 
787 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
788 	if (ptl) {
789 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
790 		spin_unlock(ptl);
791 		goto out;
792 	}
793 
794 	if (pmd_trans_unstable(pmdp))
795 		goto out;
796 
797 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
798 						addr, &ptl);
799 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
800 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
801 					     hwp->pfn, &hwp->tk);
802 		if (ret == 1)
803 			break;
804 	}
805 	pte_unmap_unlock(mapped_pte, ptl);
806 out:
807 	cond_resched();
808 	return ret;
809 }
810 
811 #ifdef CONFIG_HUGETLB_PAGE
812 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
813 			    unsigned long addr, unsigned long end,
814 			    struct mm_walk *walk)
815 {
816 	struct hwp_walk *hwp = walk->private;
817 	pte_t pte = huge_ptep_get(ptep);
818 	struct hstate *h = hstate_vma(walk->vma);
819 
820 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
821 				      hwp->pfn, &hwp->tk);
822 }
823 #else
824 #define hwpoison_hugetlb_range	NULL
825 #endif
826 
827 static const struct mm_walk_ops hwp_walk_ops = {
828 	.pmd_entry = hwpoison_pte_range,
829 	.hugetlb_entry = hwpoison_hugetlb_range,
830 };
831 
832 /*
833  * Sends SIGBUS to the current process with error info.
834  *
835  * This function is intended to handle "Action Required" MCEs on already
836  * hardware poisoned pages. They could happen, for example, when
837  * memory_failure() failed to unmap the error page at the first call, or
838  * when multiple local machine checks happened on different CPUs.
839  *
840  * MCE handler currently has no easy access to the error virtual address,
841  * so this function walks page table to find it. The returned virtual address
842  * is proper in most cases, but it could be wrong when the application
843  * process has multiple entries mapping the error page.
844  */
845 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
846 				  int flags)
847 {
848 	int ret;
849 	struct hwp_walk priv = {
850 		.pfn = pfn,
851 	};
852 	priv.tk.tsk = p;
853 
854 	if (!p->mm)
855 		return -EFAULT;
856 
857 	mmap_read_lock(p->mm);
858 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
859 			      (void *)&priv);
860 	if (ret == 1 && priv.tk.addr)
861 		kill_proc(&priv.tk, pfn, flags);
862 	else
863 		ret = 0;
864 	mmap_read_unlock(p->mm);
865 	return ret > 0 ? -EHWPOISON : -EFAULT;
866 }
867 
868 static const char *action_name[] = {
869 	[MF_IGNORED] = "Ignored",
870 	[MF_FAILED] = "Failed",
871 	[MF_DELAYED] = "Delayed",
872 	[MF_RECOVERED] = "Recovered",
873 };
874 
875 static const char * const action_page_types[] = {
876 	[MF_MSG_KERNEL]			= "reserved kernel page",
877 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
878 	[MF_MSG_SLAB]			= "kernel slab page",
879 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
880 	[MF_MSG_HUGE]			= "huge page",
881 	[MF_MSG_FREE_HUGE]		= "free huge page",
882 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
883 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
884 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
885 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
886 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
887 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
888 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
889 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
890 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
891 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
892 	[MF_MSG_BUDDY]			= "free buddy page",
893 	[MF_MSG_DAX]			= "dax page",
894 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
895 	[MF_MSG_UNKNOWN]		= "unknown page",
896 };
897 
898 /*
899  * XXX: It is possible that a page is isolated from LRU cache,
900  * and then kept in swap cache or failed to remove from page cache.
901  * The page count will stop it from being freed by unpoison.
902  * Stress tests should be aware of this memory leak problem.
903  */
904 static int delete_from_lru_cache(struct page *p)
905 {
906 	if (isolate_lru_page(p)) {
907 		/*
908 		 * Clear sensible page flags, so that the buddy system won't
909 		 * complain when the page is unpoison-and-freed.
910 		 */
911 		ClearPageActive(p);
912 		ClearPageUnevictable(p);
913 
914 		/*
915 		 * Poisoned page might never drop its ref count to 0 so we have
916 		 * to uncharge it manually from its memcg.
917 		 */
918 		mem_cgroup_uncharge(page_folio(p));
919 
920 		/*
921 		 * drop the page count elevated by isolate_lru_page()
922 		 */
923 		put_page(p);
924 		return 0;
925 	}
926 	return -EIO;
927 }
928 
929 static int truncate_error_page(struct page *p, unsigned long pfn,
930 				struct address_space *mapping)
931 {
932 	int ret = MF_FAILED;
933 
934 	if (mapping->a_ops->error_remove_page) {
935 		struct folio *folio = page_folio(p);
936 		int err = mapping->a_ops->error_remove_page(mapping, p);
937 
938 		if (err != 0) {
939 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
940 		} else if (folio_has_private(folio) &&
941 			   !filemap_release_folio(folio, GFP_NOIO)) {
942 			pr_info("%#lx: failed to release buffers\n", pfn);
943 		} else {
944 			ret = MF_RECOVERED;
945 		}
946 	} else {
947 		/*
948 		 * If the file system doesn't support it just invalidate
949 		 * This fails on dirty or anything with private pages
950 		 */
951 		if (invalidate_inode_page(p))
952 			ret = MF_RECOVERED;
953 		else
954 			pr_info("%#lx: Failed to invalidate\n",	pfn);
955 	}
956 
957 	return ret;
958 }
959 
960 struct page_state {
961 	unsigned long mask;
962 	unsigned long res;
963 	enum mf_action_page_type type;
964 
965 	/* Callback ->action() has to unlock the relevant page inside it. */
966 	int (*action)(struct page_state *ps, struct page *p);
967 };
968 
969 /*
970  * Return true if page is still referenced by others, otherwise return
971  * false.
972  *
973  * The extra_pins is true when one extra refcount is expected.
974  */
975 static bool has_extra_refcount(struct page_state *ps, struct page *p,
976 			       bool extra_pins)
977 {
978 	int count = page_count(p) - 1;
979 
980 	if (extra_pins)
981 		count -= 1;
982 
983 	if (count > 0) {
984 		pr_err("%#lx: %s still referenced by %d users\n",
985 		       page_to_pfn(p), action_page_types[ps->type], count);
986 		return true;
987 	}
988 
989 	return false;
990 }
991 
992 /*
993  * Error hit kernel page.
994  * Do nothing, try to be lucky and not touch this instead. For a few cases we
995  * could be more sophisticated.
996  */
997 static int me_kernel(struct page_state *ps, struct page *p)
998 {
999 	unlock_page(p);
1000 	return MF_IGNORED;
1001 }
1002 
1003 /*
1004  * Page in unknown state. Do nothing.
1005  */
1006 static int me_unknown(struct page_state *ps, struct page *p)
1007 {
1008 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1009 	unlock_page(p);
1010 	return MF_FAILED;
1011 }
1012 
1013 /*
1014  * Clean (or cleaned) page cache page.
1015  */
1016 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1017 {
1018 	int ret;
1019 	struct address_space *mapping;
1020 	bool extra_pins;
1021 
1022 	delete_from_lru_cache(p);
1023 
1024 	/*
1025 	 * For anonymous pages we're done the only reference left
1026 	 * should be the one m_f() holds.
1027 	 */
1028 	if (PageAnon(p)) {
1029 		ret = MF_RECOVERED;
1030 		goto out;
1031 	}
1032 
1033 	/*
1034 	 * Now truncate the page in the page cache. This is really
1035 	 * more like a "temporary hole punch"
1036 	 * Don't do this for block devices when someone else
1037 	 * has a reference, because it could be file system metadata
1038 	 * and that's not safe to truncate.
1039 	 */
1040 	mapping = page_mapping(p);
1041 	if (!mapping) {
1042 		/*
1043 		 * Page has been teared down in the meanwhile
1044 		 */
1045 		ret = MF_FAILED;
1046 		goto out;
1047 	}
1048 
1049 	/*
1050 	 * The shmem page is kept in page cache instead of truncating
1051 	 * so is expected to have an extra refcount after error-handling.
1052 	 */
1053 	extra_pins = shmem_mapping(mapping);
1054 
1055 	/*
1056 	 * Truncation is a bit tricky. Enable it per file system for now.
1057 	 *
1058 	 * Open: to take i_rwsem or not for this? Right now we don't.
1059 	 */
1060 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
1061 	if (has_extra_refcount(ps, p, extra_pins))
1062 		ret = MF_FAILED;
1063 
1064 out:
1065 	unlock_page(p);
1066 
1067 	return ret;
1068 }
1069 
1070 /*
1071  * Dirty pagecache page
1072  * Issues: when the error hit a hole page the error is not properly
1073  * propagated.
1074  */
1075 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1076 {
1077 	struct address_space *mapping = page_mapping(p);
1078 
1079 	SetPageError(p);
1080 	/* TBD: print more information about the file. */
1081 	if (mapping) {
1082 		/*
1083 		 * IO error will be reported by write(), fsync(), etc.
1084 		 * who check the mapping.
1085 		 * This way the application knows that something went
1086 		 * wrong with its dirty file data.
1087 		 *
1088 		 * There's one open issue:
1089 		 *
1090 		 * The EIO will be only reported on the next IO
1091 		 * operation and then cleared through the IO map.
1092 		 * Normally Linux has two mechanisms to pass IO error
1093 		 * first through the AS_EIO flag in the address space
1094 		 * and then through the PageError flag in the page.
1095 		 * Since we drop pages on memory failure handling the
1096 		 * only mechanism open to use is through AS_AIO.
1097 		 *
1098 		 * This has the disadvantage that it gets cleared on
1099 		 * the first operation that returns an error, while
1100 		 * the PageError bit is more sticky and only cleared
1101 		 * when the page is reread or dropped.  If an
1102 		 * application assumes it will always get error on
1103 		 * fsync, but does other operations on the fd before
1104 		 * and the page is dropped between then the error
1105 		 * will not be properly reported.
1106 		 *
1107 		 * This can already happen even without hwpoisoned
1108 		 * pages: first on metadata IO errors (which only
1109 		 * report through AS_EIO) or when the page is dropped
1110 		 * at the wrong time.
1111 		 *
1112 		 * So right now we assume that the application DTRT on
1113 		 * the first EIO, but we're not worse than other parts
1114 		 * of the kernel.
1115 		 */
1116 		mapping_set_error(mapping, -EIO);
1117 	}
1118 
1119 	return me_pagecache_clean(ps, p);
1120 }
1121 
1122 /*
1123  * Clean and dirty swap cache.
1124  *
1125  * Dirty swap cache page is tricky to handle. The page could live both in page
1126  * cache and swap cache(ie. page is freshly swapped in). So it could be
1127  * referenced concurrently by 2 types of PTEs:
1128  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1129  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1130  * and then
1131  *      - clear dirty bit to prevent IO
1132  *      - remove from LRU
1133  *      - but keep in the swap cache, so that when we return to it on
1134  *        a later page fault, we know the application is accessing
1135  *        corrupted data and shall be killed (we installed simple
1136  *        interception code in do_swap_page to catch it).
1137  *
1138  * Clean swap cache pages can be directly isolated. A later page fault will
1139  * bring in the known good data from disk.
1140  */
1141 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1142 {
1143 	int ret;
1144 	bool extra_pins = false;
1145 
1146 	ClearPageDirty(p);
1147 	/* Trigger EIO in shmem: */
1148 	ClearPageUptodate(p);
1149 
1150 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1151 	unlock_page(p);
1152 
1153 	if (ret == MF_DELAYED)
1154 		extra_pins = true;
1155 
1156 	if (has_extra_refcount(ps, p, extra_pins))
1157 		ret = MF_FAILED;
1158 
1159 	return ret;
1160 }
1161 
1162 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1163 {
1164 	struct folio *folio = page_folio(p);
1165 	int ret;
1166 
1167 	delete_from_swap_cache(folio);
1168 
1169 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1170 	folio_unlock(folio);
1171 
1172 	if (has_extra_refcount(ps, p, false))
1173 		ret = MF_FAILED;
1174 
1175 	return ret;
1176 }
1177 
1178 /*
1179  * Huge pages. Needs work.
1180  * Issues:
1181  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1182  *   To narrow down kill region to one page, we need to break up pmd.
1183  */
1184 static int me_huge_page(struct page_state *ps, struct page *p)
1185 {
1186 	int res;
1187 	struct page *hpage = compound_head(p);
1188 	struct address_space *mapping;
1189 	bool extra_pins = false;
1190 
1191 	if (!PageHuge(hpage))
1192 		return MF_DELAYED;
1193 
1194 	mapping = page_mapping(hpage);
1195 	if (mapping) {
1196 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1197 		/* The page is kept in page cache. */
1198 		extra_pins = true;
1199 		unlock_page(hpage);
1200 	} else {
1201 		unlock_page(hpage);
1202 		/*
1203 		 * migration entry prevents later access on error hugepage,
1204 		 * so we can free and dissolve it into buddy to save healthy
1205 		 * subpages.
1206 		 */
1207 		put_page(hpage);
1208 		if (__page_handle_poison(p) >= 0) {
1209 			page_ref_inc(p);
1210 			res = MF_RECOVERED;
1211 		} else {
1212 			res = MF_FAILED;
1213 		}
1214 	}
1215 
1216 	if (has_extra_refcount(ps, p, extra_pins))
1217 		res = MF_FAILED;
1218 
1219 	return res;
1220 }
1221 
1222 /*
1223  * Various page states we can handle.
1224  *
1225  * A page state is defined by its current page->flags bits.
1226  * The table matches them in order and calls the right handler.
1227  *
1228  * This is quite tricky because we can access page at any time
1229  * in its live cycle, so all accesses have to be extremely careful.
1230  *
1231  * This is not complete. More states could be added.
1232  * For any missing state don't attempt recovery.
1233  */
1234 
1235 #define dirty		(1UL << PG_dirty)
1236 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1237 #define unevict		(1UL << PG_unevictable)
1238 #define mlock		(1UL << PG_mlocked)
1239 #define lru		(1UL << PG_lru)
1240 #define head		(1UL << PG_head)
1241 #define slab		(1UL << PG_slab)
1242 #define reserved	(1UL << PG_reserved)
1243 
1244 static struct page_state error_states[] = {
1245 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1246 	/*
1247 	 * free pages are specially detected outside this table:
1248 	 * PG_buddy pages only make a small fraction of all free pages.
1249 	 */
1250 
1251 	/*
1252 	 * Could in theory check if slab page is free or if we can drop
1253 	 * currently unused objects without touching them. But just
1254 	 * treat it as standard kernel for now.
1255 	 */
1256 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1257 
1258 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1259 
1260 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1261 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1262 
1263 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1264 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1265 
1266 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1267 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1268 
1269 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1270 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1271 
1272 	/*
1273 	 * Catchall entry: must be at end.
1274 	 */
1275 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1276 };
1277 
1278 #undef dirty
1279 #undef sc
1280 #undef unevict
1281 #undef mlock
1282 #undef lru
1283 #undef head
1284 #undef slab
1285 #undef reserved
1286 
1287 static void update_per_node_mf_stats(unsigned long pfn,
1288 				     enum mf_result result)
1289 {
1290 	int nid = MAX_NUMNODES;
1291 	struct memory_failure_stats *mf_stats = NULL;
1292 
1293 	nid = pfn_to_nid(pfn);
1294 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1295 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1296 		return;
1297 	}
1298 
1299 	mf_stats = &NODE_DATA(nid)->mf_stats;
1300 	switch (result) {
1301 	case MF_IGNORED:
1302 		++mf_stats->ignored;
1303 		break;
1304 	case MF_FAILED:
1305 		++mf_stats->failed;
1306 		break;
1307 	case MF_DELAYED:
1308 		++mf_stats->delayed;
1309 		break;
1310 	case MF_RECOVERED:
1311 		++mf_stats->recovered;
1312 		break;
1313 	default:
1314 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1315 		break;
1316 	}
1317 	++mf_stats->total;
1318 }
1319 
1320 /*
1321  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1322  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1323  */
1324 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1325 			 enum mf_result result)
1326 {
1327 	trace_memory_failure_event(pfn, type, result);
1328 
1329 	num_poisoned_pages_inc(pfn);
1330 
1331 	update_per_node_mf_stats(pfn, result);
1332 
1333 	pr_err("%#lx: recovery action for %s: %s\n",
1334 		pfn, action_page_types[type], action_name[result]);
1335 
1336 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1337 }
1338 
1339 static int page_action(struct page_state *ps, struct page *p,
1340 			unsigned long pfn)
1341 {
1342 	int result;
1343 
1344 	/* page p should be unlocked after returning from ps->action().  */
1345 	result = ps->action(ps, p);
1346 
1347 	/* Could do more checks here if page looks ok */
1348 	/*
1349 	 * Could adjust zone counters here to correct for the missing page.
1350 	 */
1351 
1352 	return action_result(pfn, ps->type, result);
1353 }
1354 
1355 static inline bool PageHWPoisonTakenOff(struct page *page)
1356 {
1357 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1358 }
1359 
1360 void SetPageHWPoisonTakenOff(struct page *page)
1361 {
1362 	set_page_private(page, MAGIC_HWPOISON);
1363 }
1364 
1365 void ClearPageHWPoisonTakenOff(struct page *page)
1366 {
1367 	if (PageHWPoison(page))
1368 		set_page_private(page, 0);
1369 }
1370 
1371 /*
1372  * Return true if a page type of a given page is supported by hwpoison
1373  * mechanism (while handling could fail), otherwise false.  This function
1374  * does not return true for hugetlb or device memory pages, so it's assumed
1375  * to be called only in the context where we never have such pages.
1376  */
1377 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1378 {
1379 	/* Soft offline could migrate non-LRU movable pages */
1380 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1381 		return true;
1382 
1383 	return PageLRU(page) || is_free_buddy_page(page);
1384 }
1385 
1386 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1387 {
1388 	struct folio *folio = page_folio(page);
1389 	int ret = 0;
1390 	bool hugetlb = false;
1391 
1392 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1393 	if (hugetlb)
1394 		return ret;
1395 
1396 	/*
1397 	 * This check prevents from calling folio_try_get() for any
1398 	 * unsupported type of folio in order to reduce the risk of unexpected
1399 	 * races caused by taking a folio refcount.
1400 	 */
1401 	if (!HWPoisonHandlable(&folio->page, flags))
1402 		return -EBUSY;
1403 
1404 	if (folio_try_get(folio)) {
1405 		if (folio == page_folio(page))
1406 			return 1;
1407 
1408 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1409 		folio_put(folio);
1410 	}
1411 
1412 	return 0;
1413 }
1414 
1415 static int get_any_page(struct page *p, unsigned long flags)
1416 {
1417 	int ret = 0, pass = 0;
1418 	bool count_increased = false;
1419 
1420 	if (flags & MF_COUNT_INCREASED)
1421 		count_increased = true;
1422 
1423 try_again:
1424 	if (!count_increased) {
1425 		ret = __get_hwpoison_page(p, flags);
1426 		if (!ret) {
1427 			if (page_count(p)) {
1428 				/* We raced with an allocation, retry. */
1429 				if (pass++ < 3)
1430 					goto try_again;
1431 				ret = -EBUSY;
1432 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1433 				/* We raced with put_page, retry. */
1434 				if (pass++ < 3)
1435 					goto try_again;
1436 				ret = -EIO;
1437 			}
1438 			goto out;
1439 		} else if (ret == -EBUSY) {
1440 			/*
1441 			 * We raced with (possibly temporary) unhandlable
1442 			 * page, retry.
1443 			 */
1444 			if (pass++ < 3) {
1445 				shake_page(p);
1446 				goto try_again;
1447 			}
1448 			ret = -EIO;
1449 			goto out;
1450 		}
1451 	}
1452 
1453 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1454 		ret = 1;
1455 	} else {
1456 		/*
1457 		 * A page we cannot handle. Check whether we can turn
1458 		 * it into something we can handle.
1459 		 */
1460 		if (pass++ < 3) {
1461 			put_page(p);
1462 			shake_page(p);
1463 			count_increased = false;
1464 			goto try_again;
1465 		}
1466 		put_page(p);
1467 		ret = -EIO;
1468 	}
1469 out:
1470 	if (ret == -EIO)
1471 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1472 
1473 	return ret;
1474 }
1475 
1476 static int __get_unpoison_page(struct page *page)
1477 {
1478 	struct folio *folio = page_folio(page);
1479 	int ret = 0;
1480 	bool hugetlb = false;
1481 
1482 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1483 	if (hugetlb)
1484 		return ret;
1485 
1486 	/*
1487 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1488 	 * but also isolated from buddy freelist, so need to identify the
1489 	 * state and have to cancel both operations to unpoison.
1490 	 */
1491 	if (PageHWPoisonTakenOff(page))
1492 		return -EHWPOISON;
1493 
1494 	return get_page_unless_zero(page) ? 1 : 0;
1495 }
1496 
1497 /**
1498  * get_hwpoison_page() - Get refcount for memory error handling
1499  * @p:		Raw error page (hit by memory error)
1500  * @flags:	Flags controlling behavior of error handling
1501  *
1502  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1503  * error on it, after checking that the error page is in a well-defined state
1504  * (defined as a page-type we can successfully handle the memory error on it,
1505  * such as LRU page and hugetlb page).
1506  *
1507  * Memory error handling could be triggered at any time on any type of page,
1508  * so it's prone to race with typical memory management lifecycle (like
1509  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1510  * extra care for the error page's state (as done in __get_hwpoison_page()),
1511  * and has some retry logic in get_any_page().
1512  *
1513  * When called from unpoison_memory(), the caller should already ensure that
1514  * the given page has PG_hwpoison. So it's never reused for other page
1515  * allocations, and __get_unpoison_page() never races with them.
1516  *
1517  * Return: 0 on failure,
1518  *         1 on success for in-use pages in a well-defined state,
1519  *         -EIO for pages on which we can not handle memory errors,
1520  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1521  *         operations like allocation and free,
1522  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1523  */
1524 static int get_hwpoison_page(struct page *p, unsigned long flags)
1525 {
1526 	int ret;
1527 
1528 	zone_pcp_disable(page_zone(p));
1529 	if (flags & MF_UNPOISON)
1530 		ret = __get_unpoison_page(p);
1531 	else
1532 		ret = get_any_page(p, flags);
1533 	zone_pcp_enable(page_zone(p));
1534 
1535 	return ret;
1536 }
1537 
1538 /*
1539  * Do all that is necessary to remove user space mappings. Unmap
1540  * the pages and send SIGBUS to the processes if the data was dirty.
1541  */
1542 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1543 				  int flags, struct page *hpage)
1544 {
1545 	struct folio *folio = page_folio(hpage);
1546 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1547 	struct address_space *mapping;
1548 	LIST_HEAD(tokill);
1549 	bool unmap_success;
1550 	int forcekill;
1551 	bool mlocked = PageMlocked(hpage);
1552 
1553 	/*
1554 	 * Here we are interested only in user-mapped pages, so skip any
1555 	 * other types of pages.
1556 	 */
1557 	if (PageReserved(p) || PageSlab(p) || PageTable(p))
1558 		return true;
1559 	if (!(PageLRU(hpage) || PageHuge(p)))
1560 		return true;
1561 
1562 	/*
1563 	 * This check implies we don't kill processes if their pages
1564 	 * are in the swap cache early. Those are always late kills.
1565 	 */
1566 	if (!page_mapped(hpage))
1567 		return true;
1568 
1569 	if (PageSwapCache(p)) {
1570 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1571 		ttu &= ~TTU_HWPOISON;
1572 	}
1573 
1574 	/*
1575 	 * Propagate the dirty bit from PTEs to struct page first, because we
1576 	 * need this to decide if we should kill or just drop the page.
1577 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1578 	 * be called inside page lock (it's recommended but not enforced).
1579 	 */
1580 	mapping = page_mapping(hpage);
1581 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1582 	    mapping_can_writeback(mapping)) {
1583 		if (page_mkclean(hpage)) {
1584 			SetPageDirty(hpage);
1585 		} else {
1586 			ttu &= ~TTU_HWPOISON;
1587 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1588 				pfn);
1589 		}
1590 	}
1591 
1592 	/*
1593 	 * First collect all the processes that have the page
1594 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1595 	 * because ttu takes the rmap data structures down.
1596 	 */
1597 	collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1598 
1599 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1600 		/*
1601 		 * For hugetlb pages in shared mappings, try_to_unmap
1602 		 * could potentially call huge_pmd_unshare.  Because of
1603 		 * this, take semaphore in write mode here and set
1604 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1605 		 * at this higher level.
1606 		 */
1607 		mapping = hugetlb_page_mapping_lock_write(hpage);
1608 		if (mapping) {
1609 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1610 			i_mmap_unlock_write(mapping);
1611 		} else
1612 			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1613 	} else {
1614 		try_to_unmap(folio, ttu);
1615 	}
1616 
1617 	unmap_success = !page_mapped(hpage);
1618 	if (!unmap_success)
1619 		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1620 		       pfn, page_mapcount(hpage));
1621 
1622 	/*
1623 	 * try_to_unmap() might put mlocked page in lru cache, so call
1624 	 * shake_page() again to ensure that it's flushed.
1625 	 */
1626 	if (mlocked)
1627 		shake_page(hpage);
1628 
1629 	/*
1630 	 * Now that the dirty bit has been propagated to the
1631 	 * struct page and all unmaps done we can decide if
1632 	 * killing is needed or not.  Only kill when the page
1633 	 * was dirty or the process is not restartable,
1634 	 * otherwise the tokill list is merely
1635 	 * freed.  When there was a problem unmapping earlier
1636 	 * use a more force-full uncatchable kill to prevent
1637 	 * any accesses to the poisoned memory.
1638 	 */
1639 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1640 		    !unmap_success;
1641 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1642 
1643 	return unmap_success;
1644 }
1645 
1646 static int identify_page_state(unsigned long pfn, struct page *p,
1647 				unsigned long page_flags)
1648 {
1649 	struct page_state *ps;
1650 
1651 	/*
1652 	 * The first check uses the current page flags which may not have any
1653 	 * relevant information. The second check with the saved page flags is
1654 	 * carried out only if the first check can't determine the page status.
1655 	 */
1656 	for (ps = error_states;; ps++)
1657 		if ((p->flags & ps->mask) == ps->res)
1658 			break;
1659 
1660 	page_flags |= (p->flags & (1UL << PG_dirty));
1661 
1662 	if (!ps->mask)
1663 		for (ps = error_states;; ps++)
1664 			if ((page_flags & ps->mask) == ps->res)
1665 				break;
1666 	return page_action(ps, p, pfn);
1667 }
1668 
1669 static int try_to_split_thp_page(struct page *page)
1670 {
1671 	int ret;
1672 
1673 	lock_page(page);
1674 	ret = split_huge_page(page);
1675 	unlock_page(page);
1676 
1677 	if (unlikely(ret))
1678 		put_page(page);
1679 
1680 	return ret;
1681 }
1682 
1683 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1684 		struct address_space *mapping, pgoff_t index, int flags)
1685 {
1686 	struct to_kill *tk;
1687 	unsigned long size = 0;
1688 
1689 	list_for_each_entry(tk, to_kill, nd)
1690 		if (tk->size_shift)
1691 			size = max(size, 1UL << tk->size_shift);
1692 
1693 	if (size) {
1694 		/*
1695 		 * Unmap the largest mapping to avoid breaking up device-dax
1696 		 * mappings which are constant size. The actual size of the
1697 		 * mapping being torn down is communicated in siginfo, see
1698 		 * kill_proc()
1699 		 */
1700 		loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1701 
1702 		unmap_mapping_range(mapping, start, size, 0);
1703 	}
1704 
1705 	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1706 }
1707 
1708 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1709 		struct dev_pagemap *pgmap)
1710 {
1711 	struct page *page = pfn_to_page(pfn);
1712 	LIST_HEAD(to_kill);
1713 	dax_entry_t cookie;
1714 	int rc = 0;
1715 
1716 	/*
1717 	 * Pages instantiated by device-dax (not filesystem-dax)
1718 	 * may be compound pages.
1719 	 */
1720 	page = compound_head(page);
1721 
1722 	/*
1723 	 * Prevent the inode from being freed while we are interrogating
1724 	 * the address_space, typically this would be handled by
1725 	 * lock_page(), but dax pages do not use the page lock. This
1726 	 * also prevents changes to the mapping of this pfn until
1727 	 * poison signaling is complete.
1728 	 */
1729 	cookie = dax_lock_page(page);
1730 	if (!cookie)
1731 		return -EBUSY;
1732 
1733 	if (hwpoison_filter(page)) {
1734 		rc = -EOPNOTSUPP;
1735 		goto unlock;
1736 	}
1737 
1738 	switch (pgmap->type) {
1739 	case MEMORY_DEVICE_PRIVATE:
1740 	case MEMORY_DEVICE_COHERENT:
1741 		/*
1742 		 * TODO: Handle device pages which may need coordination
1743 		 * with device-side memory.
1744 		 */
1745 		rc = -ENXIO;
1746 		goto unlock;
1747 	default:
1748 		break;
1749 	}
1750 
1751 	/*
1752 	 * Use this flag as an indication that the dax page has been
1753 	 * remapped UC to prevent speculative consumption of poison.
1754 	 */
1755 	SetPageHWPoison(page);
1756 
1757 	/*
1758 	 * Unlike System-RAM there is no possibility to swap in a
1759 	 * different physical page at a given virtual address, so all
1760 	 * userspace consumption of ZONE_DEVICE memory necessitates
1761 	 * SIGBUS (i.e. MF_MUST_KILL)
1762 	 */
1763 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1764 	collect_procs(page, &to_kill, true);
1765 
1766 	unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1767 unlock:
1768 	dax_unlock_page(page, cookie);
1769 	return rc;
1770 }
1771 
1772 #ifdef CONFIG_FS_DAX
1773 /**
1774  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1775  * @mapping:	address_space of the file in use
1776  * @index:	start pgoff of the range within the file
1777  * @count:	length of the range, in unit of PAGE_SIZE
1778  * @mf_flags:	memory failure flags
1779  */
1780 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1781 		unsigned long count, int mf_flags)
1782 {
1783 	LIST_HEAD(to_kill);
1784 	dax_entry_t cookie;
1785 	struct page *page;
1786 	size_t end = index + count;
1787 
1788 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1789 
1790 	for (; index < end; index++) {
1791 		page = NULL;
1792 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1793 		if (!cookie)
1794 			return -EBUSY;
1795 		if (!page)
1796 			goto unlock;
1797 
1798 		SetPageHWPoison(page);
1799 
1800 		collect_procs_fsdax(page, mapping, index, &to_kill);
1801 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1802 				index, mf_flags);
1803 unlock:
1804 		dax_unlock_mapping_entry(mapping, index, cookie);
1805 	}
1806 	return 0;
1807 }
1808 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1809 #endif /* CONFIG_FS_DAX */
1810 
1811 #ifdef CONFIG_HUGETLB_PAGE
1812 /*
1813  * Struct raw_hwp_page represents information about "raw error page",
1814  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1815  */
1816 struct raw_hwp_page {
1817 	struct llist_node node;
1818 	struct page *page;
1819 };
1820 
1821 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1822 {
1823 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1824 }
1825 
1826 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1827 {
1828 	struct llist_head *head;
1829 	struct llist_node *t, *tnode;
1830 	unsigned long count = 0;
1831 
1832 	head = raw_hwp_list_head(folio);
1833 	llist_for_each_safe(tnode, t, head->first) {
1834 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1835 
1836 		if (move_flag)
1837 			SetPageHWPoison(p->page);
1838 		else
1839 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1840 		kfree(p);
1841 		count++;
1842 	}
1843 	llist_del_all(head);
1844 	return count;
1845 }
1846 
1847 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1848 {
1849 	struct llist_head *head;
1850 	struct raw_hwp_page *raw_hwp;
1851 	struct llist_node *t, *tnode;
1852 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1853 
1854 	/*
1855 	 * Once the hwpoison hugepage has lost reliable raw error info,
1856 	 * there is little meaning to keep additional error info precisely,
1857 	 * so skip to add additional raw error info.
1858 	 */
1859 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1860 		return -EHWPOISON;
1861 	head = raw_hwp_list_head(folio);
1862 	llist_for_each_safe(tnode, t, head->first) {
1863 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1864 
1865 		if (p->page == page)
1866 			return -EHWPOISON;
1867 	}
1868 
1869 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1870 	if (raw_hwp) {
1871 		raw_hwp->page = page;
1872 		llist_add(&raw_hwp->node, head);
1873 		/* the first error event will be counted in action_result(). */
1874 		if (ret)
1875 			num_poisoned_pages_inc(page_to_pfn(page));
1876 	} else {
1877 		/*
1878 		 * Failed to save raw error info.  We no longer trace all
1879 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1880 		 * this hwpoisoned hugepage.
1881 		 */
1882 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1883 		/*
1884 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1885 		 * used any more, so free it.
1886 		 */
1887 		__folio_free_raw_hwp(folio, false);
1888 	}
1889 	return ret;
1890 }
1891 
1892 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1893 {
1894 	/*
1895 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1896 	 * pages for tail pages are required but they don't exist.
1897 	 */
1898 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1899 		return 0;
1900 
1901 	/*
1902 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1903 	 * definition.
1904 	 */
1905 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1906 		return 0;
1907 
1908 	return __folio_free_raw_hwp(folio, move_flag);
1909 }
1910 
1911 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1912 {
1913 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1914 		return;
1915 	folio_clear_hwpoison(folio);
1916 	folio_free_raw_hwp(folio, true);
1917 }
1918 
1919 /*
1920  * Called from hugetlb code with hugetlb_lock held.
1921  *
1922  * Return values:
1923  *   0             - free hugepage
1924  *   1             - in-use hugepage
1925  *   2             - not a hugepage
1926  *   -EBUSY        - the hugepage is busy (try to retry)
1927  *   -EHWPOISON    - the hugepage is already hwpoisoned
1928  */
1929 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1930 				 bool *migratable_cleared)
1931 {
1932 	struct page *page = pfn_to_page(pfn);
1933 	struct folio *folio = page_folio(page);
1934 	int ret = 2;	/* fallback to normal page handling */
1935 	bool count_increased = false;
1936 
1937 	if (!folio_test_hugetlb(folio))
1938 		goto out;
1939 
1940 	if (flags & MF_COUNT_INCREASED) {
1941 		ret = 1;
1942 		count_increased = true;
1943 	} else if (folio_test_hugetlb_freed(folio)) {
1944 		ret = 0;
1945 	} else if (folio_test_hugetlb_migratable(folio)) {
1946 		ret = folio_try_get(folio);
1947 		if (ret)
1948 			count_increased = true;
1949 	} else {
1950 		ret = -EBUSY;
1951 		if (!(flags & MF_NO_RETRY))
1952 			goto out;
1953 	}
1954 
1955 	if (folio_set_hugetlb_hwpoison(folio, page)) {
1956 		ret = -EHWPOISON;
1957 		goto out;
1958 	}
1959 
1960 	/*
1961 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
1962 	 * from being migrated by memory hotremove.
1963 	 */
1964 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
1965 		folio_clear_hugetlb_migratable(folio);
1966 		*migratable_cleared = true;
1967 	}
1968 
1969 	return ret;
1970 out:
1971 	if (count_increased)
1972 		folio_put(folio);
1973 	return ret;
1974 }
1975 
1976 /*
1977  * Taking refcount of hugetlb pages needs extra care about race conditions
1978  * with basic operations like hugepage allocation/free/demotion.
1979  * So some of prechecks for hwpoison (pinning, and testing/setting
1980  * PageHWPoison) should be done in single hugetlb_lock range.
1981  */
1982 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1983 {
1984 	int res;
1985 	struct page *p = pfn_to_page(pfn);
1986 	struct folio *folio;
1987 	unsigned long page_flags;
1988 	bool migratable_cleared = false;
1989 
1990 	*hugetlb = 1;
1991 retry:
1992 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
1993 	if (res == 2) { /* fallback to normal page handling */
1994 		*hugetlb = 0;
1995 		return 0;
1996 	} else if (res == -EHWPOISON) {
1997 		pr_err("%#lx: already hardware poisoned\n", pfn);
1998 		if (flags & MF_ACTION_REQUIRED) {
1999 			folio = page_folio(p);
2000 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2001 		}
2002 		return res;
2003 	} else if (res == -EBUSY) {
2004 		if (!(flags & MF_NO_RETRY)) {
2005 			flags |= MF_NO_RETRY;
2006 			goto retry;
2007 		}
2008 		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2009 	}
2010 
2011 	folio = page_folio(p);
2012 	folio_lock(folio);
2013 
2014 	if (hwpoison_filter(p)) {
2015 		folio_clear_hugetlb_hwpoison(folio);
2016 		if (migratable_cleared)
2017 			folio_set_hugetlb_migratable(folio);
2018 		folio_unlock(folio);
2019 		if (res == 1)
2020 			folio_put(folio);
2021 		return -EOPNOTSUPP;
2022 	}
2023 
2024 	/*
2025 	 * Handling free hugepage.  The possible race with hugepage allocation
2026 	 * or demotion can be prevented by PageHWPoison flag.
2027 	 */
2028 	if (res == 0) {
2029 		folio_unlock(folio);
2030 		if (__page_handle_poison(p) >= 0) {
2031 			page_ref_inc(p);
2032 			res = MF_RECOVERED;
2033 		} else {
2034 			res = MF_FAILED;
2035 		}
2036 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2037 	}
2038 
2039 	page_flags = folio->flags;
2040 
2041 	if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2042 		folio_unlock(folio);
2043 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2044 	}
2045 
2046 	return identify_page_state(pfn, p, page_flags);
2047 }
2048 
2049 #else
2050 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2051 {
2052 	return 0;
2053 }
2054 
2055 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2056 {
2057 	return 0;
2058 }
2059 #endif	/* CONFIG_HUGETLB_PAGE */
2060 
2061 /* Drop the extra refcount in case we come from madvise() */
2062 static void put_ref_page(unsigned long pfn, int flags)
2063 {
2064 	struct page *page;
2065 
2066 	if (!(flags & MF_COUNT_INCREASED))
2067 		return;
2068 
2069 	page = pfn_to_page(pfn);
2070 	if (page)
2071 		put_page(page);
2072 }
2073 
2074 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2075 		struct dev_pagemap *pgmap)
2076 {
2077 	int rc = -ENXIO;
2078 
2079 	put_ref_page(pfn, flags);
2080 
2081 	/* device metadata space is not recoverable */
2082 	if (!pgmap_pfn_valid(pgmap, pfn))
2083 		goto out;
2084 
2085 	/*
2086 	 * Call driver's implementation to handle the memory failure, otherwise
2087 	 * fall back to generic handler.
2088 	 */
2089 	if (pgmap_has_memory_failure(pgmap)) {
2090 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2091 		/*
2092 		 * Fall back to generic handler too if operation is not
2093 		 * supported inside the driver/device/filesystem.
2094 		 */
2095 		if (rc != -EOPNOTSUPP)
2096 			goto out;
2097 	}
2098 
2099 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2100 out:
2101 	/* drop pgmap ref acquired in caller */
2102 	put_dev_pagemap(pgmap);
2103 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2104 	return rc;
2105 }
2106 
2107 static DEFINE_MUTEX(mf_mutex);
2108 
2109 /**
2110  * memory_failure - Handle memory failure of a page.
2111  * @pfn: Page Number of the corrupted page
2112  * @flags: fine tune action taken
2113  *
2114  * This function is called by the low level machine check code
2115  * of an architecture when it detects hardware memory corruption
2116  * of a page. It tries its best to recover, which includes
2117  * dropping pages, killing processes etc.
2118  *
2119  * The function is primarily of use for corruptions that
2120  * happen outside the current execution context (e.g. when
2121  * detected by a background scrubber)
2122  *
2123  * Must run in process context (e.g. a work queue) with interrupts
2124  * enabled and no spinlocks hold.
2125  *
2126  * Return: 0 for successfully handled the memory error,
2127  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2128  *         < 0(except -EOPNOTSUPP) on failure.
2129  */
2130 int memory_failure(unsigned long pfn, int flags)
2131 {
2132 	struct page *p;
2133 	struct page *hpage;
2134 	struct dev_pagemap *pgmap;
2135 	int res = 0;
2136 	unsigned long page_flags;
2137 	bool retry = true;
2138 	int hugetlb = 0;
2139 
2140 	if (!sysctl_memory_failure_recovery)
2141 		panic("Memory failure on page %lx", pfn);
2142 
2143 	mutex_lock(&mf_mutex);
2144 
2145 	if (!(flags & MF_SW_SIMULATED))
2146 		hw_memory_failure = true;
2147 
2148 	p = pfn_to_online_page(pfn);
2149 	if (!p) {
2150 		res = arch_memory_failure(pfn, flags);
2151 		if (res == 0)
2152 			goto unlock_mutex;
2153 
2154 		if (pfn_valid(pfn)) {
2155 			pgmap = get_dev_pagemap(pfn, NULL);
2156 			if (pgmap) {
2157 				res = memory_failure_dev_pagemap(pfn, flags,
2158 								 pgmap);
2159 				goto unlock_mutex;
2160 			}
2161 		}
2162 		pr_err("%#lx: memory outside kernel control\n", pfn);
2163 		res = -ENXIO;
2164 		goto unlock_mutex;
2165 	}
2166 
2167 try_again:
2168 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2169 	if (hugetlb)
2170 		goto unlock_mutex;
2171 
2172 	if (TestSetPageHWPoison(p)) {
2173 		pr_err("%#lx: already hardware poisoned\n", pfn);
2174 		res = -EHWPOISON;
2175 		if (flags & MF_ACTION_REQUIRED)
2176 			res = kill_accessing_process(current, pfn, flags);
2177 		if (flags & MF_COUNT_INCREASED)
2178 			put_page(p);
2179 		goto unlock_mutex;
2180 	}
2181 
2182 	hpage = compound_head(p);
2183 
2184 	/*
2185 	 * We need/can do nothing about count=0 pages.
2186 	 * 1) it's a free page, and therefore in safe hand:
2187 	 *    check_new_page() will be the gate keeper.
2188 	 * 2) it's part of a non-compound high order page.
2189 	 *    Implies some kernel user: cannot stop them from
2190 	 *    R/W the page; let's pray that the page has been
2191 	 *    used and will be freed some time later.
2192 	 * In fact it's dangerous to directly bump up page count from 0,
2193 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2194 	 */
2195 	if (!(flags & MF_COUNT_INCREASED)) {
2196 		res = get_hwpoison_page(p, flags);
2197 		if (!res) {
2198 			if (is_free_buddy_page(p)) {
2199 				if (take_page_off_buddy(p)) {
2200 					page_ref_inc(p);
2201 					res = MF_RECOVERED;
2202 				} else {
2203 					/* We lost the race, try again */
2204 					if (retry) {
2205 						ClearPageHWPoison(p);
2206 						retry = false;
2207 						goto try_again;
2208 					}
2209 					res = MF_FAILED;
2210 				}
2211 				res = action_result(pfn, MF_MSG_BUDDY, res);
2212 			} else {
2213 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2214 			}
2215 			goto unlock_mutex;
2216 		} else if (res < 0) {
2217 			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2218 			goto unlock_mutex;
2219 		}
2220 	}
2221 
2222 	if (PageTransHuge(hpage)) {
2223 		/*
2224 		 * The flag must be set after the refcount is bumped
2225 		 * otherwise it may race with THP split.
2226 		 * And the flag can't be set in get_hwpoison_page() since
2227 		 * it is called by soft offline too and it is just called
2228 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
2229 		 * place.
2230 		 *
2231 		 * Don't need care about the above error handling paths for
2232 		 * get_hwpoison_page() since they handle either free page
2233 		 * or unhandlable page.  The refcount is bumped iff the
2234 		 * page is a valid handlable page.
2235 		 */
2236 		SetPageHasHWPoisoned(hpage);
2237 		if (try_to_split_thp_page(p) < 0) {
2238 			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2239 			goto unlock_mutex;
2240 		}
2241 		VM_BUG_ON_PAGE(!page_count(p), p);
2242 	}
2243 
2244 	/*
2245 	 * We ignore non-LRU pages for good reasons.
2246 	 * - PG_locked is only well defined for LRU pages and a few others
2247 	 * - to avoid races with __SetPageLocked()
2248 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2249 	 * The check (unnecessarily) ignores LRU pages being isolated and
2250 	 * walked by the page reclaim code, however that's not a big loss.
2251 	 */
2252 	shake_page(p);
2253 
2254 	lock_page(p);
2255 
2256 	/*
2257 	 * We're only intended to deal with the non-Compound page here.
2258 	 * However, the page could have changed compound pages due to
2259 	 * race window. If this happens, we could try again to hopefully
2260 	 * handle the page next round.
2261 	 */
2262 	if (PageCompound(p)) {
2263 		if (retry) {
2264 			ClearPageHWPoison(p);
2265 			unlock_page(p);
2266 			put_page(p);
2267 			flags &= ~MF_COUNT_INCREASED;
2268 			retry = false;
2269 			goto try_again;
2270 		}
2271 		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2272 		goto unlock_page;
2273 	}
2274 
2275 	/*
2276 	 * We use page flags to determine what action should be taken, but
2277 	 * the flags can be modified by the error containment action.  One
2278 	 * example is an mlocked page, where PG_mlocked is cleared by
2279 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2280 	 * correctly, we save a copy of the page flags at this time.
2281 	 */
2282 	page_flags = p->flags;
2283 
2284 	if (hwpoison_filter(p)) {
2285 		ClearPageHWPoison(p);
2286 		unlock_page(p);
2287 		put_page(p);
2288 		res = -EOPNOTSUPP;
2289 		goto unlock_mutex;
2290 	}
2291 
2292 	/*
2293 	 * __munlock_folio() may clear a writeback page's LRU flag without
2294 	 * page_lock. We need wait writeback completion for this page or it
2295 	 * may trigger vfs BUG while evict inode.
2296 	 */
2297 	if (!PageLRU(p) && !PageWriteback(p))
2298 		goto identify_page_state;
2299 
2300 	/*
2301 	 * It's very difficult to mess with pages currently under IO
2302 	 * and in many cases impossible, so we just avoid it here.
2303 	 */
2304 	wait_on_page_writeback(p);
2305 
2306 	/*
2307 	 * Now take care of user space mappings.
2308 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2309 	 */
2310 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2311 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2312 		goto unlock_page;
2313 	}
2314 
2315 	/*
2316 	 * Torn down by someone else?
2317 	 */
2318 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2319 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2320 		goto unlock_page;
2321 	}
2322 
2323 identify_page_state:
2324 	res = identify_page_state(pfn, p, page_flags);
2325 	mutex_unlock(&mf_mutex);
2326 	return res;
2327 unlock_page:
2328 	unlock_page(p);
2329 unlock_mutex:
2330 	mutex_unlock(&mf_mutex);
2331 	return res;
2332 }
2333 EXPORT_SYMBOL_GPL(memory_failure);
2334 
2335 #define MEMORY_FAILURE_FIFO_ORDER	4
2336 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2337 
2338 struct memory_failure_entry {
2339 	unsigned long pfn;
2340 	int flags;
2341 };
2342 
2343 struct memory_failure_cpu {
2344 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2345 		      MEMORY_FAILURE_FIFO_SIZE);
2346 	spinlock_t lock;
2347 	struct work_struct work;
2348 };
2349 
2350 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2351 
2352 /**
2353  * memory_failure_queue - Schedule handling memory failure of a page.
2354  * @pfn: Page Number of the corrupted page
2355  * @flags: Flags for memory failure handling
2356  *
2357  * This function is called by the low level hardware error handler
2358  * when it detects hardware memory corruption of a page. It schedules
2359  * the recovering of error page, including dropping pages, killing
2360  * processes etc.
2361  *
2362  * The function is primarily of use for corruptions that
2363  * happen outside the current execution context (e.g. when
2364  * detected by a background scrubber)
2365  *
2366  * Can run in IRQ context.
2367  */
2368 void memory_failure_queue(unsigned long pfn, int flags)
2369 {
2370 	struct memory_failure_cpu *mf_cpu;
2371 	unsigned long proc_flags;
2372 	struct memory_failure_entry entry = {
2373 		.pfn =		pfn,
2374 		.flags =	flags,
2375 	};
2376 
2377 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2378 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2379 	if (kfifo_put(&mf_cpu->fifo, entry))
2380 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2381 	else
2382 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2383 		       pfn);
2384 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2385 	put_cpu_var(memory_failure_cpu);
2386 }
2387 EXPORT_SYMBOL_GPL(memory_failure_queue);
2388 
2389 static void memory_failure_work_func(struct work_struct *work)
2390 {
2391 	struct memory_failure_cpu *mf_cpu;
2392 	struct memory_failure_entry entry = { 0, };
2393 	unsigned long proc_flags;
2394 	int gotten;
2395 
2396 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2397 	for (;;) {
2398 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2399 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2400 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2401 		if (!gotten)
2402 			break;
2403 		if (entry.flags & MF_SOFT_OFFLINE)
2404 			soft_offline_page(entry.pfn, entry.flags);
2405 		else
2406 			memory_failure(entry.pfn, entry.flags);
2407 	}
2408 }
2409 
2410 /*
2411  * Process memory_failure work queued on the specified CPU.
2412  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2413  */
2414 void memory_failure_queue_kick(int cpu)
2415 {
2416 	struct memory_failure_cpu *mf_cpu;
2417 
2418 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2419 	cancel_work_sync(&mf_cpu->work);
2420 	memory_failure_work_func(&mf_cpu->work);
2421 }
2422 
2423 static int __init memory_failure_init(void)
2424 {
2425 	struct memory_failure_cpu *mf_cpu;
2426 	int cpu;
2427 
2428 	for_each_possible_cpu(cpu) {
2429 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2430 		spin_lock_init(&mf_cpu->lock);
2431 		INIT_KFIFO(mf_cpu->fifo);
2432 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2433 	}
2434 
2435 	register_sysctl_init("vm", memory_failure_table);
2436 
2437 	return 0;
2438 }
2439 core_initcall(memory_failure_init);
2440 
2441 #undef pr_fmt
2442 #define pr_fmt(fmt)	"" fmt
2443 #define unpoison_pr_info(fmt, pfn, rs)			\
2444 ({							\
2445 	if (__ratelimit(rs))				\
2446 		pr_info(fmt, pfn);			\
2447 })
2448 
2449 /**
2450  * unpoison_memory - Unpoison a previously poisoned page
2451  * @pfn: Page number of the to be unpoisoned page
2452  *
2453  * Software-unpoison a page that has been poisoned by
2454  * memory_failure() earlier.
2455  *
2456  * This is only done on the software-level, so it only works
2457  * for linux injected failures, not real hardware failures
2458  *
2459  * Returns 0 for success, otherwise -errno.
2460  */
2461 int unpoison_memory(unsigned long pfn)
2462 {
2463 	struct folio *folio;
2464 	struct page *p;
2465 	int ret = -EBUSY;
2466 	unsigned long count = 1;
2467 	bool huge = false;
2468 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2469 					DEFAULT_RATELIMIT_BURST);
2470 
2471 	if (!pfn_valid(pfn))
2472 		return -ENXIO;
2473 
2474 	p = pfn_to_page(pfn);
2475 	folio = page_folio(p);
2476 
2477 	mutex_lock(&mf_mutex);
2478 
2479 	if (hw_memory_failure) {
2480 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2481 				 pfn, &unpoison_rs);
2482 		ret = -EOPNOTSUPP;
2483 		goto unlock_mutex;
2484 	}
2485 
2486 	if (!folio_test_hwpoison(folio)) {
2487 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2488 				 pfn, &unpoison_rs);
2489 		goto unlock_mutex;
2490 	}
2491 
2492 	if (folio_ref_count(folio) > 1) {
2493 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2494 				 pfn, &unpoison_rs);
2495 		goto unlock_mutex;
2496 	}
2497 
2498 	if (folio_mapped(folio)) {
2499 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2500 				 pfn, &unpoison_rs);
2501 		goto unlock_mutex;
2502 	}
2503 
2504 	if (folio_mapping(folio)) {
2505 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2506 				 pfn, &unpoison_rs);
2507 		goto unlock_mutex;
2508 	}
2509 
2510 	if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio))
2511 		goto unlock_mutex;
2512 
2513 	ret = get_hwpoison_page(p, MF_UNPOISON);
2514 	if (!ret) {
2515 		if (PageHuge(p)) {
2516 			huge = true;
2517 			count = folio_free_raw_hwp(folio, false);
2518 			if (count == 0) {
2519 				ret = -EBUSY;
2520 				goto unlock_mutex;
2521 			}
2522 		}
2523 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2524 	} else if (ret < 0) {
2525 		if (ret == -EHWPOISON) {
2526 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2527 		} else
2528 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2529 					 pfn, &unpoison_rs);
2530 	} else {
2531 		if (PageHuge(p)) {
2532 			huge = true;
2533 			count = folio_free_raw_hwp(folio, false);
2534 			if (count == 0) {
2535 				ret = -EBUSY;
2536 				folio_put(folio);
2537 				goto unlock_mutex;
2538 			}
2539 		}
2540 
2541 		folio_put(folio);
2542 		if (TestClearPageHWPoison(p)) {
2543 			folio_put(folio);
2544 			ret = 0;
2545 		}
2546 	}
2547 
2548 unlock_mutex:
2549 	mutex_unlock(&mf_mutex);
2550 	if (!ret) {
2551 		if (!huge)
2552 			num_poisoned_pages_sub(pfn, 1);
2553 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2554 				 page_to_pfn(p), &unpoison_rs);
2555 	}
2556 	return ret;
2557 }
2558 EXPORT_SYMBOL(unpoison_memory);
2559 
2560 static bool isolate_page(struct page *page, struct list_head *pagelist)
2561 {
2562 	bool isolated = false;
2563 
2564 	if (PageHuge(page)) {
2565 		isolated = isolate_hugetlb(page_folio(page), pagelist);
2566 	} else {
2567 		bool lru = !__PageMovable(page);
2568 
2569 		if (lru)
2570 			isolated = isolate_lru_page(page);
2571 		else
2572 			isolated = isolate_movable_page(page,
2573 							ISOLATE_UNEVICTABLE);
2574 
2575 		if (isolated) {
2576 			list_add(&page->lru, pagelist);
2577 			if (lru)
2578 				inc_node_page_state(page, NR_ISOLATED_ANON +
2579 						    page_is_file_lru(page));
2580 		}
2581 	}
2582 
2583 	/*
2584 	 * If we succeed to isolate the page, we grabbed another refcount on
2585 	 * the page, so we can safely drop the one we got from get_any_pages().
2586 	 * If we failed to isolate the page, it means that we cannot go further
2587 	 * and we will return an error, so drop the reference we got from
2588 	 * get_any_pages() as well.
2589 	 */
2590 	put_page(page);
2591 	return isolated;
2592 }
2593 
2594 /*
2595  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2596  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2597  * If the page is mapped, it migrates the contents over.
2598  */
2599 static int soft_offline_in_use_page(struct page *page)
2600 {
2601 	long ret = 0;
2602 	unsigned long pfn = page_to_pfn(page);
2603 	struct page *hpage = compound_head(page);
2604 	char const *msg_page[] = {"page", "hugepage"};
2605 	bool huge = PageHuge(page);
2606 	LIST_HEAD(pagelist);
2607 	struct migration_target_control mtc = {
2608 		.nid = NUMA_NO_NODE,
2609 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2610 	};
2611 
2612 	if (!huge && PageTransHuge(hpage)) {
2613 		if (try_to_split_thp_page(page)) {
2614 			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2615 			return -EBUSY;
2616 		}
2617 		hpage = page;
2618 	}
2619 
2620 	lock_page(page);
2621 	if (!PageHuge(page))
2622 		wait_on_page_writeback(page);
2623 	if (PageHWPoison(page)) {
2624 		unlock_page(page);
2625 		put_page(page);
2626 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2627 		return 0;
2628 	}
2629 
2630 	if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2631 		/*
2632 		 * Try to invalidate first. This should work for
2633 		 * non dirty unmapped page cache pages.
2634 		 */
2635 		ret = invalidate_inode_page(page);
2636 	unlock_page(page);
2637 
2638 	if (ret) {
2639 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2640 		page_handle_poison(page, false, true);
2641 		return 0;
2642 	}
2643 
2644 	if (isolate_page(hpage, &pagelist)) {
2645 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2646 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2647 		if (!ret) {
2648 			bool release = !huge;
2649 
2650 			if (!page_handle_poison(page, huge, release))
2651 				ret = -EBUSY;
2652 		} else {
2653 			if (!list_empty(&pagelist))
2654 				putback_movable_pages(&pagelist);
2655 
2656 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2657 				pfn, msg_page[huge], ret, &page->flags);
2658 			if (ret > 0)
2659 				ret = -EBUSY;
2660 		}
2661 	} else {
2662 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2663 			pfn, msg_page[huge], page_count(page), &page->flags);
2664 		ret = -EBUSY;
2665 	}
2666 	return ret;
2667 }
2668 
2669 /**
2670  * soft_offline_page - Soft offline a page.
2671  * @pfn: pfn to soft-offline
2672  * @flags: flags. Same as memory_failure().
2673  *
2674  * Returns 0 on success
2675  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2676  *         < 0 otherwise negated errno.
2677  *
2678  * Soft offline a page, by migration or invalidation,
2679  * without killing anything. This is for the case when
2680  * a page is not corrupted yet (so it's still valid to access),
2681  * but has had a number of corrected errors and is better taken
2682  * out.
2683  *
2684  * The actual policy on when to do that is maintained by
2685  * user space.
2686  *
2687  * This should never impact any application or cause data loss,
2688  * however it might take some time.
2689  *
2690  * This is not a 100% solution for all memory, but tries to be
2691  * ``good enough'' for the majority of memory.
2692  */
2693 int soft_offline_page(unsigned long pfn, int flags)
2694 {
2695 	int ret;
2696 	bool try_again = true;
2697 	struct page *page;
2698 
2699 	if (!pfn_valid(pfn)) {
2700 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2701 		return -ENXIO;
2702 	}
2703 
2704 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2705 	page = pfn_to_online_page(pfn);
2706 	if (!page) {
2707 		put_ref_page(pfn, flags);
2708 		return -EIO;
2709 	}
2710 
2711 	mutex_lock(&mf_mutex);
2712 
2713 	if (PageHWPoison(page)) {
2714 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2715 		put_ref_page(pfn, flags);
2716 		mutex_unlock(&mf_mutex);
2717 		return 0;
2718 	}
2719 
2720 retry:
2721 	get_online_mems();
2722 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2723 	put_online_mems();
2724 
2725 	if (hwpoison_filter(page)) {
2726 		if (ret > 0)
2727 			put_page(page);
2728 
2729 		mutex_unlock(&mf_mutex);
2730 		return -EOPNOTSUPP;
2731 	}
2732 
2733 	if (ret > 0) {
2734 		ret = soft_offline_in_use_page(page);
2735 	} else if (ret == 0) {
2736 		if (!page_handle_poison(page, true, false) && try_again) {
2737 			try_again = false;
2738 			flags &= ~MF_COUNT_INCREASED;
2739 			goto retry;
2740 		}
2741 	}
2742 
2743 	mutex_unlock(&mf_mutex);
2744 
2745 	return ret;
2746 }
2747