1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/dax.h> 46 #include <linux/ksm.h> 47 #include <linux/rmap.h> 48 #include <linux/export.h> 49 #include <linux/pagemap.h> 50 #include <linux/swap.h> 51 #include <linux/backing-dev.h> 52 #include <linux/migrate.h> 53 #include <linux/suspend.h> 54 #include <linux/slab.h> 55 #include <linux/swapops.h> 56 #include <linux/hugetlb.h> 57 #include <linux/memory_hotplug.h> 58 #include <linux/mm_inline.h> 59 #include <linux/memremap.h> 60 #include <linux/kfifo.h> 61 #include <linux/ratelimit.h> 62 #include <linux/page-isolation.h> 63 #include <linux/pagewalk.h> 64 #include <linux/shmem_fs.h> 65 #include <linux/sysctl.h> 66 #include "swap.h" 67 #include "internal.h" 68 #include "ras/ras_event.h" 69 70 static int sysctl_memory_failure_early_kill __read_mostly; 71 72 static int sysctl_memory_failure_recovery __read_mostly = 1; 73 74 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 75 76 static bool hw_memory_failure __read_mostly = false; 77 78 inline void num_poisoned_pages_inc(unsigned long pfn) 79 { 80 atomic_long_inc(&num_poisoned_pages); 81 memblk_nr_poison_inc(pfn); 82 } 83 84 inline void num_poisoned_pages_sub(unsigned long pfn, long i) 85 { 86 atomic_long_sub(i, &num_poisoned_pages); 87 if (pfn != -1UL) 88 memblk_nr_poison_sub(pfn, i); 89 } 90 91 /** 92 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 93 * @_name: name of the file in the per NUMA sysfs directory. 94 */ 95 #define MF_ATTR_RO(_name) \ 96 static ssize_t _name##_show(struct device *dev, \ 97 struct device_attribute *attr, \ 98 char *buf) \ 99 { \ 100 struct memory_failure_stats *mf_stats = \ 101 &NODE_DATA(dev->id)->mf_stats; \ 102 return sprintf(buf, "%lu\n", mf_stats->_name); \ 103 } \ 104 static DEVICE_ATTR_RO(_name) 105 106 MF_ATTR_RO(total); 107 MF_ATTR_RO(ignored); 108 MF_ATTR_RO(failed); 109 MF_ATTR_RO(delayed); 110 MF_ATTR_RO(recovered); 111 112 static struct attribute *memory_failure_attr[] = { 113 &dev_attr_total.attr, 114 &dev_attr_ignored.attr, 115 &dev_attr_failed.attr, 116 &dev_attr_delayed.attr, 117 &dev_attr_recovered.attr, 118 NULL, 119 }; 120 121 const struct attribute_group memory_failure_attr_group = { 122 .name = "memory_failure", 123 .attrs = memory_failure_attr, 124 }; 125 126 static struct ctl_table memory_failure_table[] = { 127 { 128 .procname = "memory_failure_early_kill", 129 .data = &sysctl_memory_failure_early_kill, 130 .maxlen = sizeof(sysctl_memory_failure_early_kill), 131 .mode = 0644, 132 .proc_handler = proc_dointvec_minmax, 133 .extra1 = SYSCTL_ZERO, 134 .extra2 = SYSCTL_ONE, 135 }, 136 { 137 .procname = "memory_failure_recovery", 138 .data = &sysctl_memory_failure_recovery, 139 .maxlen = sizeof(sysctl_memory_failure_recovery), 140 .mode = 0644, 141 .proc_handler = proc_dointvec_minmax, 142 .extra1 = SYSCTL_ZERO, 143 .extra2 = SYSCTL_ONE, 144 }, 145 { } 146 }; 147 148 /* 149 * Return values: 150 * 1: the page is dissolved (if needed) and taken off from buddy, 151 * 0: the page is dissolved (if needed) and not taken off from buddy, 152 * < 0: failed to dissolve. 153 */ 154 static int __page_handle_poison(struct page *page) 155 { 156 int ret; 157 158 zone_pcp_disable(page_zone(page)); 159 ret = dissolve_free_huge_page(page); 160 if (!ret) 161 ret = take_page_off_buddy(page); 162 zone_pcp_enable(page_zone(page)); 163 164 return ret; 165 } 166 167 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 168 { 169 if (hugepage_or_freepage) { 170 /* 171 * Doing this check for free pages is also fine since dissolve_free_huge_page 172 * returns 0 for non-hugetlb pages as well. 173 */ 174 if (__page_handle_poison(page) <= 0) 175 /* 176 * We could fail to take off the target page from buddy 177 * for example due to racy page allocation, but that's 178 * acceptable because soft-offlined page is not broken 179 * and if someone really want to use it, they should 180 * take it. 181 */ 182 return false; 183 } 184 185 SetPageHWPoison(page); 186 if (release) 187 put_page(page); 188 page_ref_inc(page); 189 num_poisoned_pages_inc(page_to_pfn(page)); 190 191 return true; 192 } 193 194 #if IS_ENABLED(CONFIG_HWPOISON_INJECT) 195 196 u32 hwpoison_filter_enable = 0; 197 u32 hwpoison_filter_dev_major = ~0U; 198 u32 hwpoison_filter_dev_minor = ~0U; 199 u64 hwpoison_filter_flags_mask; 200 u64 hwpoison_filter_flags_value; 201 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 202 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 203 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 204 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 205 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 206 207 static int hwpoison_filter_dev(struct page *p) 208 { 209 struct address_space *mapping; 210 dev_t dev; 211 212 if (hwpoison_filter_dev_major == ~0U && 213 hwpoison_filter_dev_minor == ~0U) 214 return 0; 215 216 mapping = page_mapping(p); 217 if (mapping == NULL || mapping->host == NULL) 218 return -EINVAL; 219 220 dev = mapping->host->i_sb->s_dev; 221 if (hwpoison_filter_dev_major != ~0U && 222 hwpoison_filter_dev_major != MAJOR(dev)) 223 return -EINVAL; 224 if (hwpoison_filter_dev_minor != ~0U && 225 hwpoison_filter_dev_minor != MINOR(dev)) 226 return -EINVAL; 227 228 return 0; 229 } 230 231 static int hwpoison_filter_flags(struct page *p) 232 { 233 if (!hwpoison_filter_flags_mask) 234 return 0; 235 236 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 237 hwpoison_filter_flags_value) 238 return 0; 239 else 240 return -EINVAL; 241 } 242 243 /* 244 * This allows stress tests to limit test scope to a collection of tasks 245 * by putting them under some memcg. This prevents killing unrelated/important 246 * processes such as /sbin/init. Note that the target task may share clean 247 * pages with init (eg. libc text), which is harmless. If the target task 248 * share _dirty_ pages with another task B, the test scheme must make sure B 249 * is also included in the memcg. At last, due to race conditions this filter 250 * can only guarantee that the page either belongs to the memcg tasks, or is 251 * a freed page. 252 */ 253 #ifdef CONFIG_MEMCG 254 u64 hwpoison_filter_memcg; 255 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 256 static int hwpoison_filter_task(struct page *p) 257 { 258 if (!hwpoison_filter_memcg) 259 return 0; 260 261 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 262 return -EINVAL; 263 264 return 0; 265 } 266 #else 267 static int hwpoison_filter_task(struct page *p) { return 0; } 268 #endif 269 270 int hwpoison_filter(struct page *p) 271 { 272 if (!hwpoison_filter_enable) 273 return 0; 274 275 if (hwpoison_filter_dev(p)) 276 return -EINVAL; 277 278 if (hwpoison_filter_flags(p)) 279 return -EINVAL; 280 281 if (hwpoison_filter_task(p)) 282 return -EINVAL; 283 284 return 0; 285 } 286 #else 287 int hwpoison_filter(struct page *p) 288 { 289 return 0; 290 } 291 #endif 292 293 EXPORT_SYMBOL_GPL(hwpoison_filter); 294 295 /* 296 * Kill all processes that have a poisoned page mapped and then isolate 297 * the page. 298 * 299 * General strategy: 300 * Find all processes having the page mapped and kill them. 301 * But we keep a page reference around so that the page is not 302 * actually freed yet. 303 * Then stash the page away 304 * 305 * There's no convenient way to get back to mapped processes 306 * from the VMAs. So do a brute-force search over all 307 * running processes. 308 * 309 * Remember that machine checks are not common (or rather 310 * if they are common you have other problems), so this shouldn't 311 * be a performance issue. 312 * 313 * Also there are some races possible while we get from the 314 * error detection to actually handle it. 315 */ 316 317 struct to_kill { 318 struct list_head nd; 319 struct task_struct *tsk; 320 unsigned long addr; 321 short size_shift; 322 }; 323 324 /* 325 * Send all the processes who have the page mapped a signal. 326 * ``action optional'' if they are not immediately affected by the error 327 * ``action required'' if error happened in current execution context 328 */ 329 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 330 { 331 struct task_struct *t = tk->tsk; 332 short addr_lsb = tk->size_shift; 333 int ret = 0; 334 335 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 336 pfn, t->comm, t->pid); 337 338 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 339 ret = force_sig_mceerr(BUS_MCEERR_AR, 340 (void __user *)tk->addr, addr_lsb); 341 else 342 /* 343 * Signal other processes sharing the page if they have 344 * PF_MCE_EARLY set. 345 * Don't use force here, it's convenient if the signal 346 * can be temporarily blocked. 347 * This could cause a loop when the user sets SIGBUS 348 * to SIG_IGN, but hopefully no one will do that? 349 */ 350 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 351 addr_lsb, t); 352 if (ret < 0) 353 pr_info("Error sending signal to %s:%d: %d\n", 354 t->comm, t->pid, ret); 355 return ret; 356 } 357 358 /* 359 * Unknown page type encountered. Try to check whether it can turn PageLRU by 360 * lru_add_drain_all. 361 */ 362 void shake_page(struct page *p) 363 { 364 if (PageHuge(p)) 365 return; 366 367 if (!PageSlab(p)) { 368 lru_add_drain_all(); 369 if (PageLRU(p) || is_free_buddy_page(p)) 370 return; 371 } 372 373 /* 374 * TODO: Could shrink slab caches here if a lightweight range-based 375 * shrinker will be available. 376 */ 377 } 378 EXPORT_SYMBOL_GPL(shake_page); 379 380 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 381 unsigned long address) 382 { 383 unsigned long ret = 0; 384 pgd_t *pgd; 385 p4d_t *p4d; 386 pud_t *pud; 387 pmd_t *pmd; 388 pte_t *pte; 389 390 VM_BUG_ON_VMA(address == -EFAULT, vma); 391 pgd = pgd_offset(vma->vm_mm, address); 392 if (!pgd_present(*pgd)) 393 return 0; 394 p4d = p4d_offset(pgd, address); 395 if (!p4d_present(*p4d)) 396 return 0; 397 pud = pud_offset(p4d, address); 398 if (!pud_present(*pud)) 399 return 0; 400 if (pud_devmap(*pud)) 401 return PUD_SHIFT; 402 pmd = pmd_offset(pud, address); 403 if (!pmd_present(*pmd)) 404 return 0; 405 if (pmd_devmap(*pmd)) 406 return PMD_SHIFT; 407 pte = pte_offset_map(pmd, address); 408 if (pte_present(*pte) && pte_devmap(*pte)) 409 ret = PAGE_SHIFT; 410 pte_unmap(pte); 411 return ret; 412 } 413 414 /* 415 * Failure handling: if we can't find or can't kill a process there's 416 * not much we can do. We just print a message and ignore otherwise. 417 */ 418 419 #define FSDAX_INVALID_PGOFF ULONG_MAX 420 421 /* 422 * Schedule a process for later kill. 423 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 424 * 425 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a 426 * filesystem with a memory failure handler has claimed the 427 * memory_failure event. In all other cases, page->index and 428 * page->mapping are sufficient for mapping the page back to its 429 * corresponding user virtual address. 430 */ 431 static void __add_to_kill(struct task_struct *tsk, struct page *p, 432 struct vm_area_struct *vma, struct list_head *to_kill, 433 unsigned long ksm_addr, pgoff_t fsdax_pgoff) 434 { 435 struct to_kill *tk; 436 437 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 438 if (!tk) { 439 pr_err("Out of memory while machine check handling\n"); 440 return; 441 } 442 443 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma); 444 if (is_zone_device_page(p)) { 445 if (fsdax_pgoff != FSDAX_INVALID_PGOFF) 446 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma); 447 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 448 } else 449 tk->size_shift = page_shift(compound_head(p)); 450 451 /* 452 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 453 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 454 * so "tk->size_shift == 0" effectively checks no mapping on 455 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 456 * to a process' address space, it's possible not all N VMAs 457 * contain mappings for the page, but at least one VMA does. 458 * Only deliver SIGBUS with payload derived from the VMA that 459 * has a mapping for the page. 460 */ 461 if (tk->addr == -EFAULT) { 462 pr_info("Unable to find user space address %lx in %s\n", 463 page_to_pfn(p), tsk->comm); 464 } else if (tk->size_shift == 0) { 465 kfree(tk); 466 return; 467 } 468 469 get_task_struct(tsk); 470 tk->tsk = tsk; 471 list_add_tail(&tk->nd, to_kill); 472 } 473 474 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p, 475 struct vm_area_struct *vma, 476 struct list_head *to_kill) 477 { 478 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF); 479 } 480 481 #ifdef CONFIG_KSM 482 static bool task_in_to_kill_list(struct list_head *to_kill, 483 struct task_struct *tsk) 484 { 485 struct to_kill *tk, *next; 486 487 list_for_each_entry_safe(tk, next, to_kill, nd) { 488 if (tk->tsk == tsk) 489 return true; 490 } 491 492 return false; 493 } 494 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 495 struct vm_area_struct *vma, struct list_head *to_kill, 496 unsigned long ksm_addr) 497 { 498 if (!task_in_to_kill_list(to_kill, tsk)) 499 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF); 500 } 501 #endif 502 /* 503 * Kill the processes that have been collected earlier. 504 * 505 * Only do anything when FORCEKILL is set, otherwise just free the 506 * list (this is used for clean pages which do not need killing) 507 * Also when FAIL is set do a force kill because something went 508 * wrong earlier. 509 */ 510 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 511 unsigned long pfn, int flags) 512 { 513 struct to_kill *tk, *next; 514 515 list_for_each_entry_safe(tk, next, to_kill, nd) { 516 if (forcekill) { 517 /* 518 * In case something went wrong with munmapping 519 * make sure the process doesn't catch the 520 * signal and then access the memory. Just kill it. 521 */ 522 if (fail || tk->addr == -EFAULT) { 523 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 524 pfn, tk->tsk->comm, tk->tsk->pid); 525 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 526 tk->tsk, PIDTYPE_PID); 527 } 528 529 /* 530 * In theory the process could have mapped 531 * something else on the address in-between. We could 532 * check for that, but we need to tell the 533 * process anyways. 534 */ 535 else if (kill_proc(tk, pfn, flags) < 0) 536 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 537 pfn, tk->tsk->comm, tk->tsk->pid); 538 } 539 list_del(&tk->nd); 540 put_task_struct(tk->tsk); 541 kfree(tk); 542 } 543 } 544 545 /* 546 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 547 * on behalf of the thread group. Return task_struct of the (first found) 548 * dedicated thread if found, and return NULL otherwise. 549 * 550 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 551 * have to call rcu_read_lock/unlock() in this function. 552 */ 553 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 554 { 555 struct task_struct *t; 556 557 for_each_thread(tsk, t) { 558 if (t->flags & PF_MCE_PROCESS) { 559 if (t->flags & PF_MCE_EARLY) 560 return t; 561 } else { 562 if (sysctl_memory_failure_early_kill) 563 return t; 564 } 565 } 566 return NULL; 567 } 568 569 /* 570 * Determine whether a given process is "early kill" process which expects 571 * to be signaled when some page under the process is hwpoisoned. 572 * Return task_struct of the dedicated thread (main thread unless explicitly 573 * specified) if the process is "early kill" and otherwise returns NULL. 574 * 575 * Note that the above is true for Action Optional case. For Action Required 576 * case, it's only meaningful to the current thread which need to be signaled 577 * with SIGBUS, this error is Action Optional for other non current 578 * processes sharing the same error page,if the process is "early kill", the 579 * task_struct of the dedicated thread will also be returned. 580 */ 581 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 582 { 583 if (!tsk->mm) 584 return NULL; 585 /* 586 * Comparing ->mm here because current task might represent 587 * a subthread, while tsk always points to the main thread. 588 */ 589 if (force_early && tsk->mm == current->mm) 590 return current; 591 592 return find_early_kill_thread(tsk); 593 } 594 595 /* 596 * Collect processes when the error hit an anonymous page. 597 */ 598 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 599 int force_early) 600 { 601 struct folio *folio = page_folio(page); 602 struct vm_area_struct *vma; 603 struct task_struct *tsk; 604 struct anon_vma *av; 605 pgoff_t pgoff; 606 607 av = folio_lock_anon_vma_read(folio, NULL); 608 if (av == NULL) /* Not actually mapped anymore */ 609 return; 610 611 pgoff = page_to_pgoff(page); 612 read_lock(&tasklist_lock); 613 for_each_process (tsk) { 614 struct anon_vma_chain *vmac; 615 struct task_struct *t = task_early_kill(tsk, force_early); 616 617 if (!t) 618 continue; 619 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 620 pgoff, pgoff) { 621 vma = vmac->vma; 622 if (vma->vm_mm != t->mm) 623 continue; 624 if (!page_mapped_in_vma(page, vma)) 625 continue; 626 add_to_kill_anon_file(t, page, vma, to_kill); 627 } 628 } 629 read_unlock(&tasklist_lock); 630 anon_vma_unlock_read(av); 631 } 632 633 /* 634 * Collect processes when the error hit a file mapped page. 635 */ 636 static void collect_procs_file(struct page *page, struct list_head *to_kill, 637 int force_early) 638 { 639 struct vm_area_struct *vma; 640 struct task_struct *tsk; 641 struct address_space *mapping = page->mapping; 642 pgoff_t pgoff; 643 644 i_mmap_lock_read(mapping); 645 read_lock(&tasklist_lock); 646 pgoff = page_to_pgoff(page); 647 for_each_process(tsk) { 648 struct task_struct *t = task_early_kill(tsk, force_early); 649 650 if (!t) 651 continue; 652 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 653 pgoff) { 654 /* 655 * Send early kill signal to tasks where a vma covers 656 * the page but the corrupted page is not necessarily 657 * mapped it in its pte. 658 * Assume applications who requested early kill want 659 * to be informed of all such data corruptions. 660 */ 661 if (vma->vm_mm == t->mm) 662 add_to_kill_anon_file(t, page, vma, to_kill); 663 } 664 } 665 read_unlock(&tasklist_lock); 666 i_mmap_unlock_read(mapping); 667 } 668 669 #ifdef CONFIG_FS_DAX 670 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p, 671 struct vm_area_struct *vma, 672 struct list_head *to_kill, pgoff_t pgoff) 673 { 674 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff); 675 } 676 677 /* 678 * Collect processes when the error hit a fsdax page. 679 */ 680 static void collect_procs_fsdax(struct page *page, 681 struct address_space *mapping, pgoff_t pgoff, 682 struct list_head *to_kill) 683 { 684 struct vm_area_struct *vma; 685 struct task_struct *tsk; 686 687 i_mmap_lock_read(mapping); 688 read_lock(&tasklist_lock); 689 for_each_process(tsk) { 690 struct task_struct *t = task_early_kill(tsk, true); 691 692 if (!t) 693 continue; 694 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 695 if (vma->vm_mm == t->mm) 696 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 697 } 698 } 699 read_unlock(&tasklist_lock); 700 i_mmap_unlock_read(mapping); 701 } 702 #endif /* CONFIG_FS_DAX */ 703 704 /* 705 * Collect the processes who have the corrupted page mapped to kill. 706 */ 707 static void collect_procs(struct page *page, struct list_head *tokill, 708 int force_early) 709 { 710 if (!page->mapping) 711 return; 712 if (unlikely(PageKsm(page))) 713 collect_procs_ksm(page, tokill, force_early); 714 else if (PageAnon(page)) 715 collect_procs_anon(page, tokill, force_early); 716 else 717 collect_procs_file(page, tokill, force_early); 718 } 719 720 struct hwp_walk { 721 struct to_kill tk; 722 unsigned long pfn; 723 int flags; 724 }; 725 726 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 727 { 728 tk->addr = addr; 729 tk->size_shift = shift; 730 } 731 732 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 733 unsigned long poisoned_pfn, struct to_kill *tk) 734 { 735 unsigned long pfn = 0; 736 737 if (pte_present(pte)) { 738 pfn = pte_pfn(pte); 739 } else { 740 swp_entry_t swp = pte_to_swp_entry(pte); 741 742 if (is_hwpoison_entry(swp)) 743 pfn = swp_offset_pfn(swp); 744 } 745 746 if (!pfn || pfn != poisoned_pfn) 747 return 0; 748 749 set_to_kill(tk, addr, shift); 750 return 1; 751 } 752 753 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 754 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 755 struct hwp_walk *hwp) 756 { 757 pmd_t pmd = *pmdp; 758 unsigned long pfn; 759 unsigned long hwpoison_vaddr; 760 761 if (!pmd_present(pmd)) 762 return 0; 763 pfn = pmd_pfn(pmd); 764 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 765 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 766 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 767 return 1; 768 } 769 return 0; 770 } 771 #else 772 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 773 struct hwp_walk *hwp) 774 { 775 return 0; 776 } 777 #endif 778 779 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 780 unsigned long end, struct mm_walk *walk) 781 { 782 struct hwp_walk *hwp = walk->private; 783 int ret = 0; 784 pte_t *ptep, *mapped_pte; 785 spinlock_t *ptl; 786 787 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 788 if (ptl) { 789 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 790 spin_unlock(ptl); 791 goto out; 792 } 793 794 if (pmd_trans_unstable(pmdp)) 795 goto out; 796 797 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 798 addr, &ptl); 799 for (; addr != end; ptep++, addr += PAGE_SIZE) { 800 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT, 801 hwp->pfn, &hwp->tk); 802 if (ret == 1) 803 break; 804 } 805 pte_unmap_unlock(mapped_pte, ptl); 806 out: 807 cond_resched(); 808 return ret; 809 } 810 811 #ifdef CONFIG_HUGETLB_PAGE 812 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 813 unsigned long addr, unsigned long end, 814 struct mm_walk *walk) 815 { 816 struct hwp_walk *hwp = walk->private; 817 pte_t pte = huge_ptep_get(ptep); 818 struct hstate *h = hstate_vma(walk->vma); 819 820 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 821 hwp->pfn, &hwp->tk); 822 } 823 #else 824 #define hwpoison_hugetlb_range NULL 825 #endif 826 827 static const struct mm_walk_ops hwp_walk_ops = { 828 .pmd_entry = hwpoison_pte_range, 829 .hugetlb_entry = hwpoison_hugetlb_range, 830 }; 831 832 /* 833 * Sends SIGBUS to the current process with error info. 834 * 835 * This function is intended to handle "Action Required" MCEs on already 836 * hardware poisoned pages. They could happen, for example, when 837 * memory_failure() failed to unmap the error page at the first call, or 838 * when multiple local machine checks happened on different CPUs. 839 * 840 * MCE handler currently has no easy access to the error virtual address, 841 * so this function walks page table to find it. The returned virtual address 842 * is proper in most cases, but it could be wrong when the application 843 * process has multiple entries mapping the error page. 844 */ 845 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 846 int flags) 847 { 848 int ret; 849 struct hwp_walk priv = { 850 .pfn = pfn, 851 }; 852 priv.tk.tsk = p; 853 854 if (!p->mm) 855 return -EFAULT; 856 857 mmap_read_lock(p->mm); 858 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 859 (void *)&priv); 860 if (ret == 1 && priv.tk.addr) 861 kill_proc(&priv.tk, pfn, flags); 862 else 863 ret = 0; 864 mmap_read_unlock(p->mm); 865 return ret > 0 ? -EHWPOISON : -EFAULT; 866 } 867 868 static const char *action_name[] = { 869 [MF_IGNORED] = "Ignored", 870 [MF_FAILED] = "Failed", 871 [MF_DELAYED] = "Delayed", 872 [MF_RECOVERED] = "Recovered", 873 }; 874 875 static const char * const action_page_types[] = { 876 [MF_MSG_KERNEL] = "reserved kernel page", 877 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 878 [MF_MSG_SLAB] = "kernel slab page", 879 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 880 [MF_MSG_HUGE] = "huge page", 881 [MF_MSG_FREE_HUGE] = "free huge page", 882 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 883 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 884 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 885 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 886 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 887 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 888 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 889 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 890 [MF_MSG_CLEAN_LRU] = "clean LRU page", 891 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 892 [MF_MSG_BUDDY] = "free buddy page", 893 [MF_MSG_DAX] = "dax page", 894 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 895 [MF_MSG_UNKNOWN] = "unknown page", 896 }; 897 898 /* 899 * XXX: It is possible that a page is isolated from LRU cache, 900 * and then kept in swap cache or failed to remove from page cache. 901 * The page count will stop it from being freed by unpoison. 902 * Stress tests should be aware of this memory leak problem. 903 */ 904 static int delete_from_lru_cache(struct page *p) 905 { 906 if (isolate_lru_page(p)) { 907 /* 908 * Clear sensible page flags, so that the buddy system won't 909 * complain when the page is unpoison-and-freed. 910 */ 911 ClearPageActive(p); 912 ClearPageUnevictable(p); 913 914 /* 915 * Poisoned page might never drop its ref count to 0 so we have 916 * to uncharge it manually from its memcg. 917 */ 918 mem_cgroup_uncharge(page_folio(p)); 919 920 /* 921 * drop the page count elevated by isolate_lru_page() 922 */ 923 put_page(p); 924 return 0; 925 } 926 return -EIO; 927 } 928 929 static int truncate_error_page(struct page *p, unsigned long pfn, 930 struct address_space *mapping) 931 { 932 int ret = MF_FAILED; 933 934 if (mapping->a_ops->error_remove_page) { 935 struct folio *folio = page_folio(p); 936 int err = mapping->a_ops->error_remove_page(mapping, p); 937 938 if (err != 0) { 939 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 940 } else if (folio_has_private(folio) && 941 !filemap_release_folio(folio, GFP_NOIO)) { 942 pr_info("%#lx: failed to release buffers\n", pfn); 943 } else { 944 ret = MF_RECOVERED; 945 } 946 } else { 947 /* 948 * If the file system doesn't support it just invalidate 949 * This fails on dirty or anything with private pages 950 */ 951 if (invalidate_inode_page(p)) 952 ret = MF_RECOVERED; 953 else 954 pr_info("%#lx: Failed to invalidate\n", pfn); 955 } 956 957 return ret; 958 } 959 960 struct page_state { 961 unsigned long mask; 962 unsigned long res; 963 enum mf_action_page_type type; 964 965 /* Callback ->action() has to unlock the relevant page inside it. */ 966 int (*action)(struct page_state *ps, struct page *p); 967 }; 968 969 /* 970 * Return true if page is still referenced by others, otherwise return 971 * false. 972 * 973 * The extra_pins is true when one extra refcount is expected. 974 */ 975 static bool has_extra_refcount(struct page_state *ps, struct page *p, 976 bool extra_pins) 977 { 978 int count = page_count(p) - 1; 979 980 if (extra_pins) 981 count -= 1; 982 983 if (count > 0) { 984 pr_err("%#lx: %s still referenced by %d users\n", 985 page_to_pfn(p), action_page_types[ps->type], count); 986 return true; 987 } 988 989 return false; 990 } 991 992 /* 993 * Error hit kernel page. 994 * Do nothing, try to be lucky and not touch this instead. For a few cases we 995 * could be more sophisticated. 996 */ 997 static int me_kernel(struct page_state *ps, struct page *p) 998 { 999 unlock_page(p); 1000 return MF_IGNORED; 1001 } 1002 1003 /* 1004 * Page in unknown state. Do nothing. 1005 */ 1006 static int me_unknown(struct page_state *ps, struct page *p) 1007 { 1008 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1009 unlock_page(p); 1010 return MF_FAILED; 1011 } 1012 1013 /* 1014 * Clean (or cleaned) page cache page. 1015 */ 1016 static int me_pagecache_clean(struct page_state *ps, struct page *p) 1017 { 1018 int ret; 1019 struct address_space *mapping; 1020 bool extra_pins; 1021 1022 delete_from_lru_cache(p); 1023 1024 /* 1025 * For anonymous pages we're done the only reference left 1026 * should be the one m_f() holds. 1027 */ 1028 if (PageAnon(p)) { 1029 ret = MF_RECOVERED; 1030 goto out; 1031 } 1032 1033 /* 1034 * Now truncate the page in the page cache. This is really 1035 * more like a "temporary hole punch" 1036 * Don't do this for block devices when someone else 1037 * has a reference, because it could be file system metadata 1038 * and that's not safe to truncate. 1039 */ 1040 mapping = page_mapping(p); 1041 if (!mapping) { 1042 /* 1043 * Page has been teared down in the meanwhile 1044 */ 1045 ret = MF_FAILED; 1046 goto out; 1047 } 1048 1049 /* 1050 * The shmem page is kept in page cache instead of truncating 1051 * so is expected to have an extra refcount after error-handling. 1052 */ 1053 extra_pins = shmem_mapping(mapping); 1054 1055 /* 1056 * Truncation is a bit tricky. Enable it per file system for now. 1057 * 1058 * Open: to take i_rwsem or not for this? Right now we don't. 1059 */ 1060 ret = truncate_error_page(p, page_to_pfn(p), mapping); 1061 if (has_extra_refcount(ps, p, extra_pins)) 1062 ret = MF_FAILED; 1063 1064 out: 1065 unlock_page(p); 1066 1067 return ret; 1068 } 1069 1070 /* 1071 * Dirty pagecache page 1072 * Issues: when the error hit a hole page the error is not properly 1073 * propagated. 1074 */ 1075 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1076 { 1077 struct address_space *mapping = page_mapping(p); 1078 1079 SetPageError(p); 1080 /* TBD: print more information about the file. */ 1081 if (mapping) { 1082 /* 1083 * IO error will be reported by write(), fsync(), etc. 1084 * who check the mapping. 1085 * This way the application knows that something went 1086 * wrong with its dirty file data. 1087 * 1088 * There's one open issue: 1089 * 1090 * The EIO will be only reported on the next IO 1091 * operation and then cleared through the IO map. 1092 * Normally Linux has two mechanisms to pass IO error 1093 * first through the AS_EIO flag in the address space 1094 * and then through the PageError flag in the page. 1095 * Since we drop pages on memory failure handling the 1096 * only mechanism open to use is through AS_AIO. 1097 * 1098 * This has the disadvantage that it gets cleared on 1099 * the first operation that returns an error, while 1100 * the PageError bit is more sticky and only cleared 1101 * when the page is reread or dropped. If an 1102 * application assumes it will always get error on 1103 * fsync, but does other operations on the fd before 1104 * and the page is dropped between then the error 1105 * will not be properly reported. 1106 * 1107 * This can already happen even without hwpoisoned 1108 * pages: first on metadata IO errors (which only 1109 * report through AS_EIO) or when the page is dropped 1110 * at the wrong time. 1111 * 1112 * So right now we assume that the application DTRT on 1113 * the first EIO, but we're not worse than other parts 1114 * of the kernel. 1115 */ 1116 mapping_set_error(mapping, -EIO); 1117 } 1118 1119 return me_pagecache_clean(ps, p); 1120 } 1121 1122 /* 1123 * Clean and dirty swap cache. 1124 * 1125 * Dirty swap cache page is tricky to handle. The page could live both in page 1126 * cache and swap cache(ie. page is freshly swapped in). So it could be 1127 * referenced concurrently by 2 types of PTEs: 1128 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1129 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1130 * and then 1131 * - clear dirty bit to prevent IO 1132 * - remove from LRU 1133 * - but keep in the swap cache, so that when we return to it on 1134 * a later page fault, we know the application is accessing 1135 * corrupted data and shall be killed (we installed simple 1136 * interception code in do_swap_page to catch it). 1137 * 1138 * Clean swap cache pages can be directly isolated. A later page fault will 1139 * bring in the known good data from disk. 1140 */ 1141 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1142 { 1143 int ret; 1144 bool extra_pins = false; 1145 1146 ClearPageDirty(p); 1147 /* Trigger EIO in shmem: */ 1148 ClearPageUptodate(p); 1149 1150 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 1151 unlock_page(p); 1152 1153 if (ret == MF_DELAYED) 1154 extra_pins = true; 1155 1156 if (has_extra_refcount(ps, p, extra_pins)) 1157 ret = MF_FAILED; 1158 1159 return ret; 1160 } 1161 1162 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1163 { 1164 struct folio *folio = page_folio(p); 1165 int ret; 1166 1167 delete_from_swap_cache(folio); 1168 1169 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1170 folio_unlock(folio); 1171 1172 if (has_extra_refcount(ps, p, false)) 1173 ret = MF_FAILED; 1174 1175 return ret; 1176 } 1177 1178 /* 1179 * Huge pages. Needs work. 1180 * Issues: 1181 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1182 * To narrow down kill region to one page, we need to break up pmd. 1183 */ 1184 static int me_huge_page(struct page_state *ps, struct page *p) 1185 { 1186 int res; 1187 struct page *hpage = compound_head(p); 1188 struct address_space *mapping; 1189 bool extra_pins = false; 1190 1191 if (!PageHuge(hpage)) 1192 return MF_DELAYED; 1193 1194 mapping = page_mapping(hpage); 1195 if (mapping) { 1196 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1197 /* The page is kept in page cache. */ 1198 extra_pins = true; 1199 unlock_page(hpage); 1200 } else { 1201 unlock_page(hpage); 1202 /* 1203 * migration entry prevents later access on error hugepage, 1204 * so we can free and dissolve it into buddy to save healthy 1205 * subpages. 1206 */ 1207 put_page(hpage); 1208 if (__page_handle_poison(p) >= 0) { 1209 page_ref_inc(p); 1210 res = MF_RECOVERED; 1211 } else { 1212 res = MF_FAILED; 1213 } 1214 } 1215 1216 if (has_extra_refcount(ps, p, extra_pins)) 1217 res = MF_FAILED; 1218 1219 return res; 1220 } 1221 1222 /* 1223 * Various page states we can handle. 1224 * 1225 * A page state is defined by its current page->flags bits. 1226 * The table matches them in order and calls the right handler. 1227 * 1228 * This is quite tricky because we can access page at any time 1229 * in its live cycle, so all accesses have to be extremely careful. 1230 * 1231 * This is not complete. More states could be added. 1232 * For any missing state don't attempt recovery. 1233 */ 1234 1235 #define dirty (1UL << PG_dirty) 1236 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1237 #define unevict (1UL << PG_unevictable) 1238 #define mlock (1UL << PG_mlocked) 1239 #define lru (1UL << PG_lru) 1240 #define head (1UL << PG_head) 1241 #define slab (1UL << PG_slab) 1242 #define reserved (1UL << PG_reserved) 1243 1244 static struct page_state error_states[] = { 1245 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1246 /* 1247 * free pages are specially detected outside this table: 1248 * PG_buddy pages only make a small fraction of all free pages. 1249 */ 1250 1251 /* 1252 * Could in theory check if slab page is free or if we can drop 1253 * currently unused objects without touching them. But just 1254 * treat it as standard kernel for now. 1255 */ 1256 { slab, slab, MF_MSG_SLAB, me_kernel }, 1257 1258 { head, head, MF_MSG_HUGE, me_huge_page }, 1259 1260 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1261 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1262 1263 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1264 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1265 1266 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1267 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1268 1269 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1270 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1271 1272 /* 1273 * Catchall entry: must be at end. 1274 */ 1275 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1276 }; 1277 1278 #undef dirty 1279 #undef sc 1280 #undef unevict 1281 #undef mlock 1282 #undef lru 1283 #undef head 1284 #undef slab 1285 #undef reserved 1286 1287 static void update_per_node_mf_stats(unsigned long pfn, 1288 enum mf_result result) 1289 { 1290 int nid = MAX_NUMNODES; 1291 struct memory_failure_stats *mf_stats = NULL; 1292 1293 nid = pfn_to_nid(pfn); 1294 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1295 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1296 return; 1297 } 1298 1299 mf_stats = &NODE_DATA(nid)->mf_stats; 1300 switch (result) { 1301 case MF_IGNORED: 1302 ++mf_stats->ignored; 1303 break; 1304 case MF_FAILED: 1305 ++mf_stats->failed; 1306 break; 1307 case MF_DELAYED: 1308 ++mf_stats->delayed; 1309 break; 1310 case MF_RECOVERED: 1311 ++mf_stats->recovered; 1312 break; 1313 default: 1314 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1315 break; 1316 } 1317 ++mf_stats->total; 1318 } 1319 1320 /* 1321 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1322 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1323 */ 1324 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1325 enum mf_result result) 1326 { 1327 trace_memory_failure_event(pfn, type, result); 1328 1329 num_poisoned_pages_inc(pfn); 1330 1331 update_per_node_mf_stats(pfn, result); 1332 1333 pr_err("%#lx: recovery action for %s: %s\n", 1334 pfn, action_page_types[type], action_name[result]); 1335 1336 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1337 } 1338 1339 static int page_action(struct page_state *ps, struct page *p, 1340 unsigned long pfn) 1341 { 1342 int result; 1343 1344 /* page p should be unlocked after returning from ps->action(). */ 1345 result = ps->action(ps, p); 1346 1347 /* Could do more checks here if page looks ok */ 1348 /* 1349 * Could adjust zone counters here to correct for the missing page. 1350 */ 1351 1352 return action_result(pfn, ps->type, result); 1353 } 1354 1355 static inline bool PageHWPoisonTakenOff(struct page *page) 1356 { 1357 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1358 } 1359 1360 void SetPageHWPoisonTakenOff(struct page *page) 1361 { 1362 set_page_private(page, MAGIC_HWPOISON); 1363 } 1364 1365 void ClearPageHWPoisonTakenOff(struct page *page) 1366 { 1367 if (PageHWPoison(page)) 1368 set_page_private(page, 0); 1369 } 1370 1371 /* 1372 * Return true if a page type of a given page is supported by hwpoison 1373 * mechanism (while handling could fail), otherwise false. This function 1374 * does not return true for hugetlb or device memory pages, so it's assumed 1375 * to be called only in the context where we never have such pages. 1376 */ 1377 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1378 { 1379 /* Soft offline could migrate non-LRU movable pages */ 1380 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1381 return true; 1382 1383 return PageLRU(page) || is_free_buddy_page(page); 1384 } 1385 1386 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1387 { 1388 struct folio *folio = page_folio(page); 1389 int ret = 0; 1390 bool hugetlb = false; 1391 1392 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1393 if (hugetlb) 1394 return ret; 1395 1396 /* 1397 * This check prevents from calling folio_try_get() for any 1398 * unsupported type of folio in order to reduce the risk of unexpected 1399 * races caused by taking a folio refcount. 1400 */ 1401 if (!HWPoisonHandlable(&folio->page, flags)) 1402 return -EBUSY; 1403 1404 if (folio_try_get(folio)) { 1405 if (folio == page_folio(page)) 1406 return 1; 1407 1408 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1409 folio_put(folio); 1410 } 1411 1412 return 0; 1413 } 1414 1415 static int get_any_page(struct page *p, unsigned long flags) 1416 { 1417 int ret = 0, pass = 0; 1418 bool count_increased = false; 1419 1420 if (flags & MF_COUNT_INCREASED) 1421 count_increased = true; 1422 1423 try_again: 1424 if (!count_increased) { 1425 ret = __get_hwpoison_page(p, flags); 1426 if (!ret) { 1427 if (page_count(p)) { 1428 /* We raced with an allocation, retry. */ 1429 if (pass++ < 3) 1430 goto try_again; 1431 ret = -EBUSY; 1432 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1433 /* We raced with put_page, retry. */ 1434 if (pass++ < 3) 1435 goto try_again; 1436 ret = -EIO; 1437 } 1438 goto out; 1439 } else if (ret == -EBUSY) { 1440 /* 1441 * We raced with (possibly temporary) unhandlable 1442 * page, retry. 1443 */ 1444 if (pass++ < 3) { 1445 shake_page(p); 1446 goto try_again; 1447 } 1448 ret = -EIO; 1449 goto out; 1450 } 1451 } 1452 1453 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1454 ret = 1; 1455 } else { 1456 /* 1457 * A page we cannot handle. Check whether we can turn 1458 * it into something we can handle. 1459 */ 1460 if (pass++ < 3) { 1461 put_page(p); 1462 shake_page(p); 1463 count_increased = false; 1464 goto try_again; 1465 } 1466 put_page(p); 1467 ret = -EIO; 1468 } 1469 out: 1470 if (ret == -EIO) 1471 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1472 1473 return ret; 1474 } 1475 1476 static int __get_unpoison_page(struct page *page) 1477 { 1478 struct folio *folio = page_folio(page); 1479 int ret = 0; 1480 bool hugetlb = false; 1481 1482 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1483 if (hugetlb) 1484 return ret; 1485 1486 /* 1487 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1488 * but also isolated from buddy freelist, so need to identify the 1489 * state and have to cancel both operations to unpoison. 1490 */ 1491 if (PageHWPoisonTakenOff(page)) 1492 return -EHWPOISON; 1493 1494 return get_page_unless_zero(page) ? 1 : 0; 1495 } 1496 1497 /** 1498 * get_hwpoison_page() - Get refcount for memory error handling 1499 * @p: Raw error page (hit by memory error) 1500 * @flags: Flags controlling behavior of error handling 1501 * 1502 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1503 * error on it, after checking that the error page is in a well-defined state 1504 * (defined as a page-type we can successfully handle the memory error on it, 1505 * such as LRU page and hugetlb page). 1506 * 1507 * Memory error handling could be triggered at any time on any type of page, 1508 * so it's prone to race with typical memory management lifecycle (like 1509 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1510 * extra care for the error page's state (as done in __get_hwpoison_page()), 1511 * and has some retry logic in get_any_page(). 1512 * 1513 * When called from unpoison_memory(), the caller should already ensure that 1514 * the given page has PG_hwpoison. So it's never reused for other page 1515 * allocations, and __get_unpoison_page() never races with them. 1516 * 1517 * Return: 0 on failure, 1518 * 1 on success for in-use pages in a well-defined state, 1519 * -EIO for pages on which we can not handle memory errors, 1520 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1521 * operations like allocation and free, 1522 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1523 */ 1524 static int get_hwpoison_page(struct page *p, unsigned long flags) 1525 { 1526 int ret; 1527 1528 zone_pcp_disable(page_zone(p)); 1529 if (flags & MF_UNPOISON) 1530 ret = __get_unpoison_page(p); 1531 else 1532 ret = get_any_page(p, flags); 1533 zone_pcp_enable(page_zone(p)); 1534 1535 return ret; 1536 } 1537 1538 /* 1539 * Do all that is necessary to remove user space mappings. Unmap 1540 * the pages and send SIGBUS to the processes if the data was dirty. 1541 */ 1542 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1543 int flags, struct page *hpage) 1544 { 1545 struct folio *folio = page_folio(hpage); 1546 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1547 struct address_space *mapping; 1548 LIST_HEAD(tokill); 1549 bool unmap_success; 1550 int forcekill; 1551 bool mlocked = PageMlocked(hpage); 1552 1553 /* 1554 * Here we are interested only in user-mapped pages, so skip any 1555 * other types of pages. 1556 */ 1557 if (PageReserved(p) || PageSlab(p) || PageTable(p)) 1558 return true; 1559 if (!(PageLRU(hpage) || PageHuge(p))) 1560 return true; 1561 1562 /* 1563 * This check implies we don't kill processes if their pages 1564 * are in the swap cache early. Those are always late kills. 1565 */ 1566 if (!page_mapped(hpage)) 1567 return true; 1568 1569 if (PageSwapCache(p)) { 1570 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1571 ttu &= ~TTU_HWPOISON; 1572 } 1573 1574 /* 1575 * Propagate the dirty bit from PTEs to struct page first, because we 1576 * need this to decide if we should kill or just drop the page. 1577 * XXX: the dirty test could be racy: set_page_dirty() may not always 1578 * be called inside page lock (it's recommended but not enforced). 1579 */ 1580 mapping = page_mapping(hpage); 1581 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1582 mapping_can_writeback(mapping)) { 1583 if (page_mkclean(hpage)) { 1584 SetPageDirty(hpage); 1585 } else { 1586 ttu &= ~TTU_HWPOISON; 1587 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1588 pfn); 1589 } 1590 } 1591 1592 /* 1593 * First collect all the processes that have the page 1594 * mapped in dirty form. This has to be done before try_to_unmap, 1595 * because ttu takes the rmap data structures down. 1596 */ 1597 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1598 1599 if (PageHuge(hpage) && !PageAnon(hpage)) { 1600 /* 1601 * For hugetlb pages in shared mappings, try_to_unmap 1602 * could potentially call huge_pmd_unshare. Because of 1603 * this, take semaphore in write mode here and set 1604 * TTU_RMAP_LOCKED to indicate we have taken the lock 1605 * at this higher level. 1606 */ 1607 mapping = hugetlb_page_mapping_lock_write(hpage); 1608 if (mapping) { 1609 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1610 i_mmap_unlock_write(mapping); 1611 } else 1612 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); 1613 } else { 1614 try_to_unmap(folio, ttu); 1615 } 1616 1617 unmap_success = !page_mapped(hpage); 1618 if (!unmap_success) 1619 pr_err("%#lx: failed to unmap page (mapcount=%d)\n", 1620 pfn, page_mapcount(hpage)); 1621 1622 /* 1623 * try_to_unmap() might put mlocked page in lru cache, so call 1624 * shake_page() again to ensure that it's flushed. 1625 */ 1626 if (mlocked) 1627 shake_page(hpage); 1628 1629 /* 1630 * Now that the dirty bit has been propagated to the 1631 * struct page and all unmaps done we can decide if 1632 * killing is needed or not. Only kill when the page 1633 * was dirty or the process is not restartable, 1634 * otherwise the tokill list is merely 1635 * freed. When there was a problem unmapping earlier 1636 * use a more force-full uncatchable kill to prevent 1637 * any accesses to the poisoned memory. 1638 */ 1639 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) || 1640 !unmap_success; 1641 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1642 1643 return unmap_success; 1644 } 1645 1646 static int identify_page_state(unsigned long pfn, struct page *p, 1647 unsigned long page_flags) 1648 { 1649 struct page_state *ps; 1650 1651 /* 1652 * The first check uses the current page flags which may not have any 1653 * relevant information. The second check with the saved page flags is 1654 * carried out only if the first check can't determine the page status. 1655 */ 1656 for (ps = error_states;; ps++) 1657 if ((p->flags & ps->mask) == ps->res) 1658 break; 1659 1660 page_flags |= (p->flags & (1UL << PG_dirty)); 1661 1662 if (!ps->mask) 1663 for (ps = error_states;; ps++) 1664 if ((page_flags & ps->mask) == ps->res) 1665 break; 1666 return page_action(ps, p, pfn); 1667 } 1668 1669 static int try_to_split_thp_page(struct page *page) 1670 { 1671 int ret; 1672 1673 lock_page(page); 1674 ret = split_huge_page(page); 1675 unlock_page(page); 1676 1677 if (unlikely(ret)) 1678 put_page(page); 1679 1680 return ret; 1681 } 1682 1683 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1684 struct address_space *mapping, pgoff_t index, int flags) 1685 { 1686 struct to_kill *tk; 1687 unsigned long size = 0; 1688 1689 list_for_each_entry(tk, to_kill, nd) 1690 if (tk->size_shift) 1691 size = max(size, 1UL << tk->size_shift); 1692 1693 if (size) { 1694 /* 1695 * Unmap the largest mapping to avoid breaking up device-dax 1696 * mappings which are constant size. The actual size of the 1697 * mapping being torn down is communicated in siginfo, see 1698 * kill_proc() 1699 */ 1700 loff_t start = (index << PAGE_SHIFT) & ~(size - 1); 1701 1702 unmap_mapping_range(mapping, start, size, 0); 1703 } 1704 1705 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); 1706 } 1707 1708 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1709 struct dev_pagemap *pgmap) 1710 { 1711 struct page *page = pfn_to_page(pfn); 1712 LIST_HEAD(to_kill); 1713 dax_entry_t cookie; 1714 int rc = 0; 1715 1716 /* 1717 * Pages instantiated by device-dax (not filesystem-dax) 1718 * may be compound pages. 1719 */ 1720 page = compound_head(page); 1721 1722 /* 1723 * Prevent the inode from being freed while we are interrogating 1724 * the address_space, typically this would be handled by 1725 * lock_page(), but dax pages do not use the page lock. This 1726 * also prevents changes to the mapping of this pfn until 1727 * poison signaling is complete. 1728 */ 1729 cookie = dax_lock_page(page); 1730 if (!cookie) 1731 return -EBUSY; 1732 1733 if (hwpoison_filter(page)) { 1734 rc = -EOPNOTSUPP; 1735 goto unlock; 1736 } 1737 1738 switch (pgmap->type) { 1739 case MEMORY_DEVICE_PRIVATE: 1740 case MEMORY_DEVICE_COHERENT: 1741 /* 1742 * TODO: Handle device pages which may need coordination 1743 * with device-side memory. 1744 */ 1745 rc = -ENXIO; 1746 goto unlock; 1747 default: 1748 break; 1749 } 1750 1751 /* 1752 * Use this flag as an indication that the dax page has been 1753 * remapped UC to prevent speculative consumption of poison. 1754 */ 1755 SetPageHWPoison(page); 1756 1757 /* 1758 * Unlike System-RAM there is no possibility to swap in a 1759 * different physical page at a given virtual address, so all 1760 * userspace consumption of ZONE_DEVICE memory necessitates 1761 * SIGBUS (i.e. MF_MUST_KILL) 1762 */ 1763 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1764 collect_procs(page, &to_kill, true); 1765 1766 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags); 1767 unlock: 1768 dax_unlock_page(page, cookie); 1769 return rc; 1770 } 1771 1772 #ifdef CONFIG_FS_DAX 1773 /** 1774 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1775 * @mapping: address_space of the file in use 1776 * @index: start pgoff of the range within the file 1777 * @count: length of the range, in unit of PAGE_SIZE 1778 * @mf_flags: memory failure flags 1779 */ 1780 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1781 unsigned long count, int mf_flags) 1782 { 1783 LIST_HEAD(to_kill); 1784 dax_entry_t cookie; 1785 struct page *page; 1786 size_t end = index + count; 1787 1788 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1789 1790 for (; index < end; index++) { 1791 page = NULL; 1792 cookie = dax_lock_mapping_entry(mapping, index, &page); 1793 if (!cookie) 1794 return -EBUSY; 1795 if (!page) 1796 goto unlock; 1797 1798 SetPageHWPoison(page); 1799 1800 collect_procs_fsdax(page, mapping, index, &to_kill); 1801 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1802 index, mf_flags); 1803 unlock: 1804 dax_unlock_mapping_entry(mapping, index, cookie); 1805 } 1806 return 0; 1807 } 1808 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1809 #endif /* CONFIG_FS_DAX */ 1810 1811 #ifdef CONFIG_HUGETLB_PAGE 1812 /* 1813 * Struct raw_hwp_page represents information about "raw error page", 1814 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1815 */ 1816 struct raw_hwp_page { 1817 struct llist_node node; 1818 struct page *page; 1819 }; 1820 1821 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1822 { 1823 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1824 } 1825 1826 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1827 { 1828 struct llist_head *head; 1829 struct llist_node *t, *tnode; 1830 unsigned long count = 0; 1831 1832 head = raw_hwp_list_head(folio); 1833 llist_for_each_safe(tnode, t, head->first) { 1834 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1835 1836 if (move_flag) 1837 SetPageHWPoison(p->page); 1838 else 1839 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1840 kfree(p); 1841 count++; 1842 } 1843 llist_del_all(head); 1844 return count; 1845 } 1846 1847 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1848 { 1849 struct llist_head *head; 1850 struct raw_hwp_page *raw_hwp; 1851 struct llist_node *t, *tnode; 1852 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1853 1854 /* 1855 * Once the hwpoison hugepage has lost reliable raw error info, 1856 * there is little meaning to keep additional error info precisely, 1857 * so skip to add additional raw error info. 1858 */ 1859 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1860 return -EHWPOISON; 1861 head = raw_hwp_list_head(folio); 1862 llist_for_each_safe(tnode, t, head->first) { 1863 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1864 1865 if (p->page == page) 1866 return -EHWPOISON; 1867 } 1868 1869 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1870 if (raw_hwp) { 1871 raw_hwp->page = page; 1872 llist_add(&raw_hwp->node, head); 1873 /* the first error event will be counted in action_result(). */ 1874 if (ret) 1875 num_poisoned_pages_inc(page_to_pfn(page)); 1876 } else { 1877 /* 1878 * Failed to save raw error info. We no longer trace all 1879 * hwpoisoned subpages, and we need refuse to free/dissolve 1880 * this hwpoisoned hugepage. 1881 */ 1882 folio_set_hugetlb_raw_hwp_unreliable(folio); 1883 /* 1884 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1885 * used any more, so free it. 1886 */ 1887 __folio_free_raw_hwp(folio, false); 1888 } 1889 return ret; 1890 } 1891 1892 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1893 { 1894 /* 1895 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1896 * pages for tail pages are required but they don't exist. 1897 */ 1898 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1899 return 0; 1900 1901 /* 1902 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1903 * definition. 1904 */ 1905 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1906 return 0; 1907 1908 return __folio_free_raw_hwp(folio, move_flag); 1909 } 1910 1911 void folio_clear_hugetlb_hwpoison(struct folio *folio) 1912 { 1913 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1914 return; 1915 folio_clear_hwpoison(folio); 1916 folio_free_raw_hwp(folio, true); 1917 } 1918 1919 /* 1920 * Called from hugetlb code with hugetlb_lock held. 1921 * 1922 * Return values: 1923 * 0 - free hugepage 1924 * 1 - in-use hugepage 1925 * 2 - not a hugepage 1926 * -EBUSY - the hugepage is busy (try to retry) 1927 * -EHWPOISON - the hugepage is already hwpoisoned 1928 */ 1929 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 1930 bool *migratable_cleared) 1931 { 1932 struct page *page = pfn_to_page(pfn); 1933 struct folio *folio = page_folio(page); 1934 int ret = 2; /* fallback to normal page handling */ 1935 bool count_increased = false; 1936 1937 if (!folio_test_hugetlb(folio)) 1938 goto out; 1939 1940 if (flags & MF_COUNT_INCREASED) { 1941 ret = 1; 1942 count_increased = true; 1943 } else if (folio_test_hugetlb_freed(folio)) { 1944 ret = 0; 1945 } else if (folio_test_hugetlb_migratable(folio)) { 1946 ret = folio_try_get(folio); 1947 if (ret) 1948 count_increased = true; 1949 } else { 1950 ret = -EBUSY; 1951 if (!(flags & MF_NO_RETRY)) 1952 goto out; 1953 } 1954 1955 if (folio_set_hugetlb_hwpoison(folio, page)) { 1956 ret = -EHWPOISON; 1957 goto out; 1958 } 1959 1960 /* 1961 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 1962 * from being migrated by memory hotremove. 1963 */ 1964 if (count_increased && folio_test_hugetlb_migratable(folio)) { 1965 folio_clear_hugetlb_migratable(folio); 1966 *migratable_cleared = true; 1967 } 1968 1969 return ret; 1970 out: 1971 if (count_increased) 1972 folio_put(folio); 1973 return ret; 1974 } 1975 1976 /* 1977 * Taking refcount of hugetlb pages needs extra care about race conditions 1978 * with basic operations like hugepage allocation/free/demotion. 1979 * So some of prechecks for hwpoison (pinning, and testing/setting 1980 * PageHWPoison) should be done in single hugetlb_lock range. 1981 */ 1982 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1983 { 1984 int res; 1985 struct page *p = pfn_to_page(pfn); 1986 struct folio *folio; 1987 unsigned long page_flags; 1988 bool migratable_cleared = false; 1989 1990 *hugetlb = 1; 1991 retry: 1992 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 1993 if (res == 2) { /* fallback to normal page handling */ 1994 *hugetlb = 0; 1995 return 0; 1996 } else if (res == -EHWPOISON) { 1997 pr_err("%#lx: already hardware poisoned\n", pfn); 1998 if (flags & MF_ACTION_REQUIRED) { 1999 folio = page_folio(p); 2000 res = kill_accessing_process(current, folio_pfn(folio), flags); 2001 } 2002 return res; 2003 } else if (res == -EBUSY) { 2004 if (!(flags & MF_NO_RETRY)) { 2005 flags |= MF_NO_RETRY; 2006 goto retry; 2007 } 2008 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2009 } 2010 2011 folio = page_folio(p); 2012 folio_lock(folio); 2013 2014 if (hwpoison_filter(p)) { 2015 folio_clear_hugetlb_hwpoison(folio); 2016 if (migratable_cleared) 2017 folio_set_hugetlb_migratable(folio); 2018 folio_unlock(folio); 2019 if (res == 1) 2020 folio_put(folio); 2021 return -EOPNOTSUPP; 2022 } 2023 2024 /* 2025 * Handling free hugepage. The possible race with hugepage allocation 2026 * or demotion can be prevented by PageHWPoison flag. 2027 */ 2028 if (res == 0) { 2029 folio_unlock(folio); 2030 if (__page_handle_poison(p) >= 0) { 2031 page_ref_inc(p); 2032 res = MF_RECOVERED; 2033 } else { 2034 res = MF_FAILED; 2035 } 2036 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2037 } 2038 2039 page_flags = folio->flags; 2040 2041 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) { 2042 folio_unlock(folio); 2043 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2044 } 2045 2046 return identify_page_state(pfn, p, page_flags); 2047 } 2048 2049 #else 2050 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2051 { 2052 return 0; 2053 } 2054 2055 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2056 { 2057 return 0; 2058 } 2059 #endif /* CONFIG_HUGETLB_PAGE */ 2060 2061 /* Drop the extra refcount in case we come from madvise() */ 2062 static void put_ref_page(unsigned long pfn, int flags) 2063 { 2064 struct page *page; 2065 2066 if (!(flags & MF_COUNT_INCREASED)) 2067 return; 2068 2069 page = pfn_to_page(pfn); 2070 if (page) 2071 put_page(page); 2072 } 2073 2074 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2075 struct dev_pagemap *pgmap) 2076 { 2077 int rc = -ENXIO; 2078 2079 put_ref_page(pfn, flags); 2080 2081 /* device metadata space is not recoverable */ 2082 if (!pgmap_pfn_valid(pgmap, pfn)) 2083 goto out; 2084 2085 /* 2086 * Call driver's implementation to handle the memory failure, otherwise 2087 * fall back to generic handler. 2088 */ 2089 if (pgmap_has_memory_failure(pgmap)) { 2090 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2091 /* 2092 * Fall back to generic handler too if operation is not 2093 * supported inside the driver/device/filesystem. 2094 */ 2095 if (rc != -EOPNOTSUPP) 2096 goto out; 2097 } 2098 2099 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2100 out: 2101 /* drop pgmap ref acquired in caller */ 2102 put_dev_pagemap(pgmap); 2103 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2104 return rc; 2105 } 2106 2107 static DEFINE_MUTEX(mf_mutex); 2108 2109 /** 2110 * memory_failure - Handle memory failure of a page. 2111 * @pfn: Page Number of the corrupted page 2112 * @flags: fine tune action taken 2113 * 2114 * This function is called by the low level machine check code 2115 * of an architecture when it detects hardware memory corruption 2116 * of a page. It tries its best to recover, which includes 2117 * dropping pages, killing processes etc. 2118 * 2119 * The function is primarily of use for corruptions that 2120 * happen outside the current execution context (e.g. when 2121 * detected by a background scrubber) 2122 * 2123 * Must run in process context (e.g. a work queue) with interrupts 2124 * enabled and no spinlocks hold. 2125 * 2126 * Return: 0 for successfully handled the memory error, 2127 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 2128 * < 0(except -EOPNOTSUPP) on failure. 2129 */ 2130 int memory_failure(unsigned long pfn, int flags) 2131 { 2132 struct page *p; 2133 struct page *hpage; 2134 struct dev_pagemap *pgmap; 2135 int res = 0; 2136 unsigned long page_flags; 2137 bool retry = true; 2138 int hugetlb = 0; 2139 2140 if (!sysctl_memory_failure_recovery) 2141 panic("Memory failure on page %lx", pfn); 2142 2143 mutex_lock(&mf_mutex); 2144 2145 if (!(flags & MF_SW_SIMULATED)) 2146 hw_memory_failure = true; 2147 2148 p = pfn_to_online_page(pfn); 2149 if (!p) { 2150 res = arch_memory_failure(pfn, flags); 2151 if (res == 0) 2152 goto unlock_mutex; 2153 2154 if (pfn_valid(pfn)) { 2155 pgmap = get_dev_pagemap(pfn, NULL); 2156 if (pgmap) { 2157 res = memory_failure_dev_pagemap(pfn, flags, 2158 pgmap); 2159 goto unlock_mutex; 2160 } 2161 } 2162 pr_err("%#lx: memory outside kernel control\n", pfn); 2163 res = -ENXIO; 2164 goto unlock_mutex; 2165 } 2166 2167 try_again: 2168 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2169 if (hugetlb) 2170 goto unlock_mutex; 2171 2172 if (TestSetPageHWPoison(p)) { 2173 pr_err("%#lx: already hardware poisoned\n", pfn); 2174 res = -EHWPOISON; 2175 if (flags & MF_ACTION_REQUIRED) 2176 res = kill_accessing_process(current, pfn, flags); 2177 if (flags & MF_COUNT_INCREASED) 2178 put_page(p); 2179 goto unlock_mutex; 2180 } 2181 2182 hpage = compound_head(p); 2183 2184 /* 2185 * We need/can do nothing about count=0 pages. 2186 * 1) it's a free page, and therefore in safe hand: 2187 * check_new_page() will be the gate keeper. 2188 * 2) it's part of a non-compound high order page. 2189 * Implies some kernel user: cannot stop them from 2190 * R/W the page; let's pray that the page has been 2191 * used and will be freed some time later. 2192 * In fact it's dangerous to directly bump up page count from 0, 2193 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2194 */ 2195 if (!(flags & MF_COUNT_INCREASED)) { 2196 res = get_hwpoison_page(p, flags); 2197 if (!res) { 2198 if (is_free_buddy_page(p)) { 2199 if (take_page_off_buddy(p)) { 2200 page_ref_inc(p); 2201 res = MF_RECOVERED; 2202 } else { 2203 /* We lost the race, try again */ 2204 if (retry) { 2205 ClearPageHWPoison(p); 2206 retry = false; 2207 goto try_again; 2208 } 2209 res = MF_FAILED; 2210 } 2211 res = action_result(pfn, MF_MSG_BUDDY, res); 2212 } else { 2213 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2214 } 2215 goto unlock_mutex; 2216 } else if (res < 0) { 2217 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2218 goto unlock_mutex; 2219 } 2220 } 2221 2222 if (PageTransHuge(hpage)) { 2223 /* 2224 * The flag must be set after the refcount is bumped 2225 * otherwise it may race with THP split. 2226 * And the flag can't be set in get_hwpoison_page() since 2227 * it is called by soft offline too and it is just called 2228 * for !MF_COUNT_INCREASE. So here seems to be the best 2229 * place. 2230 * 2231 * Don't need care about the above error handling paths for 2232 * get_hwpoison_page() since they handle either free page 2233 * or unhandlable page. The refcount is bumped iff the 2234 * page is a valid handlable page. 2235 */ 2236 SetPageHasHWPoisoned(hpage); 2237 if (try_to_split_thp_page(p) < 0) { 2238 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 2239 goto unlock_mutex; 2240 } 2241 VM_BUG_ON_PAGE(!page_count(p), p); 2242 } 2243 2244 /* 2245 * We ignore non-LRU pages for good reasons. 2246 * - PG_locked is only well defined for LRU pages and a few others 2247 * - to avoid races with __SetPageLocked() 2248 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2249 * The check (unnecessarily) ignores LRU pages being isolated and 2250 * walked by the page reclaim code, however that's not a big loss. 2251 */ 2252 shake_page(p); 2253 2254 lock_page(p); 2255 2256 /* 2257 * We're only intended to deal with the non-Compound page here. 2258 * However, the page could have changed compound pages due to 2259 * race window. If this happens, we could try again to hopefully 2260 * handle the page next round. 2261 */ 2262 if (PageCompound(p)) { 2263 if (retry) { 2264 ClearPageHWPoison(p); 2265 unlock_page(p); 2266 put_page(p); 2267 flags &= ~MF_COUNT_INCREASED; 2268 retry = false; 2269 goto try_again; 2270 } 2271 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 2272 goto unlock_page; 2273 } 2274 2275 /* 2276 * We use page flags to determine what action should be taken, but 2277 * the flags can be modified by the error containment action. One 2278 * example is an mlocked page, where PG_mlocked is cleared by 2279 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 2280 * correctly, we save a copy of the page flags at this time. 2281 */ 2282 page_flags = p->flags; 2283 2284 if (hwpoison_filter(p)) { 2285 ClearPageHWPoison(p); 2286 unlock_page(p); 2287 put_page(p); 2288 res = -EOPNOTSUPP; 2289 goto unlock_mutex; 2290 } 2291 2292 /* 2293 * __munlock_folio() may clear a writeback page's LRU flag without 2294 * page_lock. We need wait writeback completion for this page or it 2295 * may trigger vfs BUG while evict inode. 2296 */ 2297 if (!PageLRU(p) && !PageWriteback(p)) 2298 goto identify_page_state; 2299 2300 /* 2301 * It's very difficult to mess with pages currently under IO 2302 * and in many cases impossible, so we just avoid it here. 2303 */ 2304 wait_on_page_writeback(p); 2305 2306 /* 2307 * Now take care of user space mappings. 2308 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2309 */ 2310 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 2311 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2312 goto unlock_page; 2313 } 2314 2315 /* 2316 * Torn down by someone else? 2317 */ 2318 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 2319 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2320 goto unlock_page; 2321 } 2322 2323 identify_page_state: 2324 res = identify_page_state(pfn, p, page_flags); 2325 mutex_unlock(&mf_mutex); 2326 return res; 2327 unlock_page: 2328 unlock_page(p); 2329 unlock_mutex: 2330 mutex_unlock(&mf_mutex); 2331 return res; 2332 } 2333 EXPORT_SYMBOL_GPL(memory_failure); 2334 2335 #define MEMORY_FAILURE_FIFO_ORDER 4 2336 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2337 2338 struct memory_failure_entry { 2339 unsigned long pfn; 2340 int flags; 2341 }; 2342 2343 struct memory_failure_cpu { 2344 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2345 MEMORY_FAILURE_FIFO_SIZE); 2346 spinlock_t lock; 2347 struct work_struct work; 2348 }; 2349 2350 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2351 2352 /** 2353 * memory_failure_queue - Schedule handling memory failure of a page. 2354 * @pfn: Page Number of the corrupted page 2355 * @flags: Flags for memory failure handling 2356 * 2357 * This function is called by the low level hardware error handler 2358 * when it detects hardware memory corruption of a page. It schedules 2359 * the recovering of error page, including dropping pages, killing 2360 * processes etc. 2361 * 2362 * The function is primarily of use for corruptions that 2363 * happen outside the current execution context (e.g. when 2364 * detected by a background scrubber) 2365 * 2366 * Can run in IRQ context. 2367 */ 2368 void memory_failure_queue(unsigned long pfn, int flags) 2369 { 2370 struct memory_failure_cpu *mf_cpu; 2371 unsigned long proc_flags; 2372 struct memory_failure_entry entry = { 2373 .pfn = pfn, 2374 .flags = flags, 2375 }; 2376 2377 mf_cpu = &get_cpu_var(memory_failure_cpu); 2378 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2379 if (kfifo_put(&mf_cpu->fifo, entry)) 2380 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2381 else 2382 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2383 pfn); 2384 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2385 put_cpu_var(memory_failure_cpu); 2386 } 2387 EXPORT_SYMBOL_GPL(memory_failure_queue); 2388 2389 static void memory_failure_work_func(struct work_struct *work) 2390 { 2391 struct memory_failure_cpu *mf_cpu; 2392 struct memory_failure_entry entry = { 0, }; 2393 unsigned long proc_flags; 2394 int gotten; 2395 2396 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2397 for (;;) { 2398 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2399 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2400 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2401 if (!gotten) 2402 break; 2403 if (entry.flags & MF_SOFT_OFFLINE) 2404 soft_offline_page(entry.pfn, entry.flags); 2405 else 2406 memory_failure(entry.pfn, entry.flags); 2407 } 2408 } 2409 2410 /* 2411 * Process memory_failure work queued on the specified CPU. 2412 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2413 */ 2414 void memory_failure_queue_kick(int cpu) 2415 { 2416 struct memory_failure_cpu *mf_cpu; 2417 2418 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2419 cancel_work_sync(&mf_cpu->work); 2420 memory_failure_work_func(&mf_cpu->work); 2421 } 2422 2423 static int __init memory_failure_init(void) 2424 { 2425 struct memory_failure_cpu *mf_cpu; 2426 int cpu; 2427 2428 for_each_possible_cpu(cpu) { 2429 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2430 spin_lock_init(&mf_cpu->lock); 2431 INIT_KFIFO(mf_cpu->fifo); 2432 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2433 } 2434 2435 register_sysctl_init("vm", memory_failure_table); 2436 2437 return 0; 2438 } 2439 core_initcall(memory_failure_init); 2440 2441 #undef pr_fmt 2442 #define pr_fmt(fmt) "" fmt 2443 #define unpoison_pr_info(fmt, pfn, rs) \ 2444 ({ \ 2445 if (__ratelimit(rs)) \ 2446 pr_info(fmt, pfn); \ 2447 }) 2448 2449 /** 2450 * unpoison_memory - Unpoison a previously poisoned page 2451 * @pfn: Page number of the to be unpoisoned page 2452 * 2453 * Software-unpoison a page that has been poisoned by 2454 * memory_failure() earlier. 2455 * 2456 * This is only done on the software-level, so it only works 2457 * for linux injected failures, not real hardware failures 2458 * 2459 * Returns 0 for success, otherwise -errno. 2460 */ 2461 int unpoison_memory(unsigned long pfn) 2462 { 2463 struct folio *folio; 2464 struct page *p; 2465 int ret = -EBUSY; 2466 unsigned long count = 1; 2467 bool huge = false; 2468 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2469 DEFAULT_RATELIMIT_BURST); 2470 2471 if (!pfn_valid(pfn)) 2472 return -ENXIO; 2473 2474 p = pfn_to_page(pfn); 2475 folio = page_folio(p); 2476 2477 mutex_lock(&mf_mutex); 2478 2479 if (hw_memory_failure) { 2480 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", 2481 pfn, &unpoison_rs); 2482 ret = -EOPNOTSUPP; 2483 goto unlock_mutex; 2484 } 2485 2486 if (!folio_test_hwpoison(folio)) { 2487 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2488 pfn, &unpoison_rs); 2489 goto unlock_mutex; 2490 } 2491 2492 if (folio_ref_count(folio) > 1) { 2493 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2494 pfn, &unpoison_rs); 2495 goto unlock_mutex; 2496 } 2497 2498 if (folio_mapped(folio)) { 2499 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2500 pfn, &unpoison_rs); 2501 goto unlock_mutex; 2502 } 2503 2504 if (folio_mapping(folio)) { 2505 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2506 pfn, &unpoison_rs); 2507 goto unlock_mutex; 2508 } 2509 2510 if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio)) 2511 goto unlock_mutex; 2512 2513 ret = get_hwpoison_page(p, MF_UNPOISON); 2514 if (!ret) { 2515 if (PageHuge(p)) { 2516 huge = true; 2517 count = folio_free_raw_hwp(folio, false); 2518 if (count == 0) { 2519 ret = -EBUSY; 2520 goto unlock_mutex; 2521 } 2522 } 2523 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2524 } else if (ret < 0) { 2525 if (ret == -EHWPOISON) { 2526 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2527 } else 2528 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2529 pfn, &unpoison_rs); 2530 } else { 2531 if (PageHuge(p)) { 2532 huge = true; 2533 count = folio_free_raw_hwp(folio, false); 2534 if (count == 0) { 2535 ret = -EBUSY; 2536 folio_put(folio); 2537 goto unlock_mutex; 2538 } 2539 } 2540 2541 folio_put(folio); 2542 if (TestClearPageHWPoison(p)) { 2543 folio_put(folio); 2544 ret = 0; 2545 } 2546 } 2547 2548 unlock_mutex: 2549 mutex_unlock(&mf_mutex); 2550 if (!ret) { 2551 if (!huge) 2552 num_poisoned_pages_sub(pfn, 1); 2553 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2554 page_to_pfn(p), &unpoison_rs); 2555 } 2556 return ret; 2557 } 2558 EXPORT_SYMBOL(unpoison_memory); 2559 2560 static bool isolate_page(struct page *page, struct list_head *pagelist) 2561 { 2562 bool isolated = false; 2563 2564 if (PageHuge(page)) { 2565 isolated = isolate_hugetlb(page_folio(page), pagelist); 2566 } else { 2567 bool lru = !__PageMovable(page); 2568 2569 if (lru) 2570 isolated = isolate_lru_page(page); 2571 else 2572 isolated = isolate_movable_page(page, 2573 ISOLATE_UNEVICTABLE); 2574 2575 if (isolated) { 2576 list_add(&page->lru, pagelist); 2577 if (lru) 2578 inc_node_page_state(page, NR_ISOLATED_ANON + 2579 page_is_file_lru(page)); 2580 } 2581 } 2582 2583 /* 2584 * If we succeed to isolate the page, we grabbed another refcount on 2585 * the page, so we can safely drop the one we got from get_any_pages(). 2586 * If we failed to isolate the page, it means that we cannot go further 2587 * and we will return an error, so drop the reference we got from 2588 * get_any_pages() as well. 2589 */ 2590 put_page(page); 2591 return isolated; 2592 } 2593 2594 /* 2595 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2596 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2597 * If the page is mapped, it migrates the contents over. 2598 */ 2599 static int soft_offline_in_use_page(struct page *page) 2600 { 2601 long ret = 0; 2602 unsigned long pfn = page_to_pfn(page); 2603 struct page *hpage = compound_head(page); 2604 char const *msg_page[] = {"page", "hugepage"}; 2605 bool huge = PageHuge(page); 2606 LIST_HEAD(pagelist); 2607 struct migration_target_control mtc = { 2608 .nid = NUMA_NO_NODE, 2609 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2610 }; 2611 2612 if (!huge && PageTransHuge(hpage)) { 2613 if (try_to_split_thp_page(page)) { 2614 pr_info("soft offline: %#lx: thp split failed\n", pfn); 2615 return -EBUSY; 2616 } 2617 hpage = page; 2618 } 2619 2620 lock_page(page); 2621 if (!PageHuge(page)) 2622 wait_on_page_writeback(page); 2623 if (PageHWPoison(page)) { 2624 unlock_page(page); 2625 put_page(page); 2626 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2627 return 0; 2628 } 2629 2630 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page)) 2631 /* 2632 * Try to invalidate first. This should work for 2633 * non dirty unmapped page cache pages. 2634 */ 2635 ret = invalidate_inode_page(page); 2636 unlock_page(page); 2637 2638 if (ret) { 2639 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2640 page_handle_poison(page, false, true); 2641 return 0; 2642 } 2643 2644 if (isolate_page(hpage, &pagelist)) { 2645 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2646 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2647 if (!ret) { 2648 bool release = !huge; 2649 2650 if (!page_handle_poison(page, huge, release)) 2651 ret = -EBUSY; 2652 } else { 2653 if (!list_empty(&pagelist)) 2654 putback_movable_pages(&pagelist); 2655 2656 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2657 pfn, msg_page[huge], ret, &page->flags); 2658 if (ret > 0) 2659 ret = -EBUSY; 2660 } 2661 } else { 2662 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2663 pfn, msg_page[huge], page_count(page), &page->flags); 2664 ret = -EBUSY; 2665 } 2666 return ret; 2667 } 2668 2669 /** 2670 * soft_offline_page - Soft offline a page. 2671 * @pfn: pfn to soft-offline 2672 * @flags: flags. Same as memory_failure(). 2673 * 2674 * Returns 0 on success 2675 * -EOPNOTSUPP for hwpoison_filter() filtered the error event 2676 * < 0 otherwise negated errno. 2677 * 2678 * Soft offline a page, by migration or invalidation, 2679 * without killing anything. This is for the case when 2680 * a page is not corrupted yet (so it's still valid to access), 2681 * but has had a number of corrected errors and is better taken 2682 * out. 2683 * 2684 * The actual policy on when to do that is maintained by 2685 * user space. 2686 * 2687 * This should never impact any application or cause data loss, 2688 * however it might take some time. 2689 * 2690 * This is not a 100% solution for all memory, but tries to be 2691 * ``good enough'' for the majority of memory. 2692 */ 2693 int soft_offline_page(unsigned long pfn, int flags) 2694 { 2695 int ret; 2696 bool try_again = true; 2697 struct page *page; 2698 2699 if (!pfn_valid(pfn)) { 2700 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2701 return -ENXIO; 2702 } 2703 2704 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2705 page = pfn_to_online_page(pfn); 2706 if (!page) { 2707 put_ref_page(pfn, flags); 2708 return -EIO; 2709 } 2710 2711 mutex_lock(&mf_mutex); 2712 2713 if (PageHWPoison(page)) { 2714 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2715 put_ref_page(pfn, flags); 2716 mutex_unlock(&mf_mutex); 2717 return 0; 2718 } 2719 2720 retry: 2721 get_online_mems(); 2722 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2723 put_online_mems(); 2724 2725 if (hwpoison_filter(page)) { 2726 if (ret > 0) 2727 put_page(page); 2728 2729 mutex_unlock(&mf_mutex); 2730 return -EOPNOTSUPP; 2731 } 2732 2733 if (ret > 0) { 2734 ret = soft_offline_in_use_page(page); 2735 } else if (ret == 0) { 2736 if (!page_handle_poison(page, true, false) && try_again) { 2737 try_again = false; 2738 flags &= ~MF_COUNT_INCREASED; 2739 goto retry; 2740 } 2741 } 2742 2743 mutex_unlock(&mf_mutex); 2744 2745 return ret; 2746 } 2747