1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a 2bit ECC memory or cache 11 * failure. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronous to other VM 15 * users, because memory failures could happen anytime and anywhere, 16 * possibly violating some of their assumptions. This is why this code 17 * has to be extremely careful. Generally it tries to use normal locking 18 * rules, as in get the standard locks, even if that means the 19 * error handling takes potentially a long time. 20 * 21 * The operation to map back from RMAP chains to processes has to walk 22 * the complete process list and has non linear complexity with the number 23 * mappings. In short it can be quite slow. But since memory corruptions 24 * are rare we hope to get away with this. 25 */ 26 27 /* 28 * Notebook: 29 * - hugetlb needs more code 30 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages 31 * - pass bad pages to kdump next kernel 32 */ 33 #define DEBUG 1 /* remove me in 2.6.34 */ 34 #include <linux/kernel.h> 35 #include <linux/mm.h> 36 #include <linux/page-flags.h> 37 #include <linux/kernel-page-flags.h> 38 #include <linux/sched.h> 39 #include <linux/ksm.h> 40 #include <linux/rmap.h> 41 #include <linux/pagemap.h> 42 #include <linux/swap.h> 43 #include <linux/backing-dev.h> 44 #include <linux/migrate.h> 45 #include <linux/page-isolation.h> 46 #include <linux/suspend.h> 47 #include <linux/slab.h> 48 #include <linux/swapops.h> 49 #include <linux/hugetlb.h> 50 #include "internal.h" 51 52 int sysctl_memory_failure_early_kill __read_mostly = 0; 53 54 int sysctl_memory_failure_recovery __read_mostly = 1; 55 56 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0); 57 58 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 59 60 u32 hwpoison_filter_enable = 0; 61 u32 hwpoison_filter_dev_major = ~0U; 62 u32 hwpoison_filter_dev_minor = ~0U; 63 u64 hwpoison_filter_flags_mask; 64 u64 hwpoison_filter_flags_value; 65 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 66 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 67 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 68 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 69 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 70 71 static int hwpoison_filter_dev(struct page *p) 72 { 73 struct address_space *mapping; 74 dev_t dev; 75 76 if (hwpoison_filter_dev_major == ~0U && 77 hwpoison_filter_dev_minor == ~0U) 78 return 0; 79 80 /* 81 * page_mapping() does not accept slab page 82 */ 83 if (PageSlab(p)) 84 return -EINVAL; 85 86 mapping = page_mapping(p); 87 if (mapping == NULL || mapping->host == NULL) 88 return -EINVAL; 89 90 dev = mapping->host->i_sb->s_dev; 91 if (hwpoison_filter_dev_major != ~0U && 92 hwpoison_filter_dev_major != MAJOR(dev)) 93 return -EINVAL; 94 if (hwpoison_filter_dev_minor != ~0U && 95 hwpoison_filter_dev_minor != MINOR(dev)) 96 return -EINVAL; 97 98 return 0; 99 } 100 101 static int hwpoison_filter_flags(struct page *p) 102 { 103 if (!hwpoison_filter_flags_mask) 104 return 0; 105 106 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 107 hwpoison_filter_flags_value) 108 return 0; 109 else 110 return -EINVAL; 111 } 112 113 /* 114 * This allows stress tests to limit test scope to a collection of tasks 115 * by putting them under some memcg. This prevents killing unrelated/important 116 * processes such as /sbin/init. Note that the target task may share clean 117 * pages with init (eg. libc text), which is harmless. If the target task 118 * share _dirty_ pages with another task B, the test scheme must make sure B 119 * is also included in the memcg. At last, due to race conditions this filter 120 * can only guarantee that the page either belongs to the memcg tasks, or is 121 * a freed page. 122 */ 123 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 124 u64 hwpoison_filter_memcg; 125 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 126 static int hwpoison_filter_task(struct page *p) 127 { 128 struct mem_cgroup *mem; 129 struct cgroup_subsys_state *css; 130 unsigned long ino; 131 132 if (!hwpoison_filter_memcg) 133 return 0; 134 135 mem = try_get_mem_cgroup_from_page(p); 136 if (!mem) 137 return -EINVAL; 138 139 css = mem_cgroup_css(mem); 140 /* root_mem_cgroup has NULL dentries */ 141 if (!css->cgroup->dentry) 142 return -EINVAL; 143 144 ino = css->cgroup->dentry->d_inode->i_ino; 145 css_put(css); 146 147 if (ino != hwpoison_filter_memcg) 148 return -EINVAL; 149 150 return 0; 151 } 152 #else 153 static int hwpoison_filter_task(struct page *p) { return 0; } 154 #endif 155 156 int hwpoison_filter(struct page *p) 157 { 158 if (!hwpoison_filter_enable) 159 return 0; 160 161 if (hwpoison_filter_dev(p)) 162 return -EINVAL; 163 164 if (hwpoison_filter_flags(p)) 165 return -EINVAL; 166 167 if (hwpoison_filter_task(p)) 168 return -EINVAL; 169 170 return 0; 171 } 172 #else 173 int hwpoison_filter(struct page *p) 174 { 175 return 0; 176 } 177 #endif 178 179 EXPORT_SYMBOL_GPL(hwpoison_filter); 180 181 /* 182 * Send all the processes who have the page mapped an ``action optional'' 183 * signal. 184 */ 185 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno, 186 unsigned long pfn) 187 { 188 struct siginfo si; 189 int ret; 190 191 printk(KERN_ERR 192 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n", 193 pfn, t->comm, t->pid); 194 si.si_signo = SIGBUS; 195 si.si_errno = 0; 196 si.si_code = BUS_MCEERR_AO; 197 si.si_addr = (void *)addr; 198 #ifdef __ARCH_SI_TRAPNO 199 si.si_trapno = trapno; 200 #endif 201 si.si_addr_lsb = PAGE_SHIFT; 202 /* 203 * Don't use force here, it's convenient if the signal 204 * can be temporarily blocked. 205 * This could cause a loop when the user sets SIGBUS 206 * to SIG_IGN, but hopefully noone will do that? 207 */ 208 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 209 if (ret < 0) 210 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", 211 t->comm, t->pid, ret); 212 return ret; 213 } 214 215 /* 216 * When a unknown page type is encountered drain as many buffers as possible 217 * in the hope to turn the page into a LRU or free page, which we can handle. 218 */ 219 void shake_page(struct page *p, int access) 220 { 221 if (!PageSlab(p)) { 222 lru_add_drain_all(); 223 if (PageLRU(p)) 224 return; 225 drain_all_pages(); 226 if (PageLRU(p) || is_free_buddy_page(p)) 227 return; 228 } 229 230 /* 231 * Only all shrink_slab here (which would also 232 * shrink other caches) if access is not potentially fatal. 233 */ 234 if (access) { 235 int nr; 236 do { 237 nr = shrink_slab(1000, GFP_KERNEL, 1000); 238 if (page_count(p) == 0) 239 break; 240 } while (nr > 10); 241 } 242 } 243 EXPORT_SYMBOL_GPL(shake_page); 244 245 /* 246 * Kill all processes that have a poisoned page mapped and then isolate 247 * the page. 248 * 249 * General strategy: 250 * Find all processes having the page mapped and kill them. 251 * But we keep a page reference around so that the page is not 252 * actually freed yet. 253 * Then stash the page away 254 * 255 * There's no convenient way to get back to mapped processes 256 * from the VMAs. So do a brute-force search over all 257 * running processes. 258 * 259 * Remember that machine checks are not common (or rather 260 * if they are common you have other problems), so this shouldn't 261 * be a performance issue. 262 * 263 * Also there are some races possible while we get from the 264 * error detection to actually handle it. 265 */ 266 267 struct to_kill { 268 struct list_head nd; 269 struct task_struct *tsk; 270 unsigned long addr; 271 unsigned addr_valid:1; 272 }; 273 274 /* 275 * Failure handling: if we can't find or can't kill a process there's 276 * not much we can do. We just print a message and ignore otherwise. 277 */ 278 279 /* 280 * Schedule a process for later kill. 281 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 282 * TBD would GFP_NOIO be enough? 283 */ 284 static void add_to_kill(struct task_struct *tsk, struct page *p, 285 struct vm_area_struct *vma, 286 struct list_head *to_kill, 287 struct to_kill **tkc) 288 { 289 struct to_kill *tk; 290 291 if (*tkc) { 292 tk = *tkc; 293 *tkc = NULL; 294 } else { 295 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 296 if (!tk) { 297 printk(KERN_ERR 298 "MCE: Out of memory while machine check handling\n"); 299 return; 300 } 301 } 302 tk->addr = page_address_in_vma(p, vma); 303 tk->addr_valid = 1; 304 305 /* 306 * In theory we don't have to kill when the page was 307 * munmaped. But it could be also a mremap. Since that's 308 * likely very rare kill anyways just out of paranoia, but use 309 * a SIGKILL because the error is not contained anymore. 310 */ 311 if (tk->addr == -EFAULT) { 312 pr_debug("MCE: Unable to find user space address %lx in %s\n", 313 page_to_pfn(p), tsk->comm); 314 tk->addr_valid = 0; 315 } 316 get_task_struct(tsk); 317 tk->tsk = tsk; 318 list_add_tail(&tk->nd, to_kill); 319 } 320 321 /* 322 * Kill the processes that have been collected earlier. 323 * 324 * Only do anything when DOIT is set, otherwise just free the list 325 * (this is used for clean pages which do not need killing) 326 * Also when FAIL is set do a force kill because something went 327 * wrong earlier. 328 */ 329 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno, 330 int fail, unsigned long pfn) 331 { 332 struct to_kill *tk, *next; 333 334 list_for_each_entry_safe (tk, next, to_kill, nd) { 335 if (doit) { 336 /* 337 * In case something went wrong with munmapping 338 * make sure the process doesn't catch the 339 * signal and then access the memory. Just kill it. 340 */ 341 if (fail || tk->addr_valid == 0) { 342 printk(KERN_ERR 343 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 344 pfn, tk->tsk->comm, tk->tsk->pid); 345 force_sig(SIGKILL, tk->tsk); 346 } 347 348 /* 349 * In theory the process could have mapped 350 * something else on the address in-between. We could 351 * check for that, but we need to tell the 352 * process anyways. 353 */ 354 else if (kill_proc_ao(tk->tsk, tk->addr, trapno, 355 pfn) < 0) 356 printk(KERN_ERR 357 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", 358 pfn, tk->tsk->comm, tk->tsk->pid); 359 } 360 put_task_struct(tk->tsk); 361 kfree(tk); 362 } 363 } 364 365 static int task_early_kill(struct task_struct *tsk) 366 { 367 if (!tsk->mm) 368 return 0; 369 if (tsk->flags & PF_MCE_PROCESS) 370 return !!(tsk->flags & PF_MCE_EARLY); 371 return sysctl_memory_failure_early_kill; 372 } 373 374 /* 375 * Collect processes when the error hit an anonymous page. 376 */ 377 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 378 struct to_kill **tkc) 379 { 380 struct vm_area_struct *vma; 381 struct task_struct *tsk; 382 struct anon_vma *av; 383 384 read_lock(&tasklist_lock); 385 av = page_lock_anon_vma(page); 386 if (av == NULL) /* Not actually mapped anymore */ 387 goto out; 388 for_each_process (tsk) { 389 struct anon_vma_chain *vmac; 390 391 if (!task_early_kill(tsk)) 392 continue; 393 list_for_each_entry(vmac, &av->head, same_anon_vma) { 394 vma = vmac->vma; 395 if (!page_mapped_in_vma(page, vma)) 396 continue; 397 if (vma->vm_mm == tsk->mm) 398 add_to_kill(tsk, page, vma, to_kill, tkc); 399 } 400 } 401 page_unlock_anon_vma(av); 402 out: 403 read_unlock(&tasklist_lock); 404 } 405 406 /* 407 * Collect processes when the error hit a file mapped page. 408 */ 409 static void collect_procs_file(struct page *page, struct list_head *to_kill, 410 struct to_kill **tkc) 411 { 412 struct vm_area_struct *vma; 413 struct task_struct *tsk; 414 struct prio_tree_iter iter; 415 struct address_space *mapping = page->mapping; 416 417 /* 418 * A note on the locking order between the two locks. 419 * We don't rely on this particular order. 420 * If you have some other code that needs a different order 421 * feel free to switch them around. Or add a reverse link 422 * from mm_struct to task_struct, then this could be all 423 * done without taking tasklist_lock and looping over all tasks. 424 */ 425 426 read_lock(&tasklist_lock); 427 spin_lock(&mapping->i_mmap_lock); 428 for_each_process(tsk) { 429 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 430 431 if (!task_early_kill(tsk)) 432 continue; 433 434 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, 435 pgoff) { 436 /* 437 * Send early kill signal to tasks where a vma covers 438 * the page but the corrupted page is not necessarily 439 * mapped it in its pte. 440 * Assume applications who requested early kill want 441 * to be informed of all such data corruptions. 442 */ 443 if (vma->vm_mm == tsk->mm) 444 add_to_kill(tsk, page, vma, to_kill, tkc); 445 } 446 } 447 spin_unlock(&mapping->i_mmap_lock); 448 read_unlock(&tasklist_lock); 449 } 450 451 /* 452 * Collect the processes who have the corrupted page mapped to kill. 453 * This is done in two steps for locking reasons. 454 * First preallocate one tokill structure outside the spin locks, 455 * so that we can kill at least one process reasonably reliable. 456 */ 457 static void collect_procs(struct page *page, struct list_head *tokill) 458 { 459 struct to_kill *tk; 460 461 if (!page->mapping) 462 return; 463 464 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 465 if (!tk) 466 return; 467 if (PageAnon(page)) 468 collect_procs_anon(page, tokill, &tk); 469 else 470 collect_procs_file(page, tokill, &tk); 471 kfree(tk); 472 } 473 474 /* 475 * Error handlers for various types of pages. 476 */ 477 478 enum outcome { 479 IGNORED, /* Error: cannot be handled */ 480 FAILED, /* Error: handling failed */ 481 DELAYED, /* Will be handled later */ 482 RECOVERED, /* Successfully recovered */ 483 }; 484 485 static const char *action_name[] = { 486 [IGNORED] = "Ignored", 487 [FAILED] = "Failed", 488 [DELAYED] = "Delayed", 489 [RECOVERED] = "Recovered", 490 }; 491 492 /* 493 * XXX: It is possible that a page is isolated from LRU cache, 494 * and then kept in swap cache or failed to remove from page cache. 495 * The page count will stop it from being freed by unpoison. 496 * Stress tests should be aware of this memory leak problem. 497 */ 498 static int delete_from_lru_cache(struct page *p) 499 { 500 if (!isolate_lru_page(p)) { 501 /* 502 * Clear sensible page flags, so that the buddy system won't 503 * complain when the page is unpoison-and-freed. 504 */ 505 ClearPageActive(p); 506 ClearPageUnevictable(p); 507 /* 508 * drop the page count elevated by isolate_lru_page() 509 */ 510 page_cache_release(p); 511 return 0; 512 } 513 return -EIO; 514 } 515 516 /* 517 * Error hit kernel page. 518 * Do nothing, try to be lucky and not touch this instead. For a few cases we 519 * could be more sophisticated. 520 */ 521 static int me_kernel(struct page *p, unsigned long pfn) 522 { 523 return IGNORED; 524 } 525 526 /* 527 * Page in unknown state. Do nothing. 528 */ 529 static int me_unknown(struct page *p, unsigned long pfn) 530 { 531 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); 532 return FAILED; 533 } 534 535 /* 536 * Clean (or cleaned) page cache page. 537 */ 538 static int me_pagecache_clean(struct page *p, unsigned long pfn) 539 { 540 int err; 541 int ret = FAILED; 542 struct address_space *mapping; 543 544 delete_from_lru_cache(p); 545 546 /* 547 * For anonymous pages we're done the only reference left 548 * should be the one m_f() holds. 549 */ 550 if (PageAnon(p)) 551 return RECOVERED; 552 553 /* 554 * Now truncate the page in the page cache. This is really 555 * more like a "temporary hole punch" 556 * Don't do this for block devices when someone else 557 * has a reference, because it could be file system metadata 558 * and that's not safe to truncate. 559 */ 560 mapping = page_mapping(p); 561 if (!mapping) { 562 /* 563 * Page has been teared down in the meanwhile 564 */ 565 return FAILED; 566 } 567 568 /* 569 * Truncation is a bit tricky. Enable it per file system for now. 570 * 571 * Open: to take i_mutex or not for this? Right now we don't. 572 */ 573 if (mapping->a_ops->error_remove_page) { 574 err = mapping->a_ops->error_remove_page(mapping, p); 575 if (err != 0) { 576 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", 577 pfn, err); 578 } else if (page_has_private(p) && 579 !try_to_release_page(p, GFP_NOIO)) { 580 pr_debug("MCE %#lx: failed to release buffers\n", pfn); 581 } else { 582 ret = RECOVERED; 583 } 584 } else { 585 /* 586 * If the file system doesn't support it just invalidate 587 * This fails on dirty or anything with private pages 588 */ 589 if (invalidate_inode_page(p)) 590 ret = RECOVERED; 591 else 592 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", 593 pfn); 594 } 595 return ret; 596 } 597 598 /* 599 * Dirty cache page page 600 * Issues: when the error hit a hole page the error is not properly 601 * propagated. 602 */ 603 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 604 { 605 struct address_space *mapping = page_mapping(p); 606 607 SetPageError(p); 608 /* TBD: print more information about the file. */ 609 if (mapping) { 610 /* 611 * IO error will be reported by write(), fsync(), etc. 612 * who check the mapping. 613 * This way the application knows that something went 614 * wrong with its dirty file data. 615 * 616 * There's one open issue: 617 * 618 * The EIO will be only reported on the next IO 619 * operation and then cleared through the IO map. 620 * Normally Linux has two mechanisms to pass IO error 621 * first through the AS_EIO flag in the address space 622 * and then through the PageError flag in the page. 623 * Since we drop pages on memory failure handling the 624 * only mechanism open to use is through AS_AIO. 625 * 626 * This has the disadvantage that it gets cleared on 627 * the first operation that returns an error, while 628 * the PageError bit is more sticky and only cleared 629 * when the page is reread or dropped. If an 630 * application assumes it will always get error on 631 * fsync, but does other operations on the fd before 632 * and the page is dropped inbetween then the error 633 * will not be properly reported. 634 * 635 * This can already happen even without hwpoisoned 636 * pages: first on metadata IO errors (which only 637 * report through AS_EIO) or when the page is dropped 638 * at the wrong time. 639 * 640 * So right now we assume that the application DTRT on 641 * the first EIO, but we're not worse than other parts 642 * of the kernel. 643 */ 644 mapping_set_error(mapping, EIO); 645 } 646 647 return me_pagecache_clean(p, pfn); 648 } 649 650 /* 651 * Clean and dirty swap cache. 652 * 653 * Dirty swap cache page is tricky to handle. The page could live both in page 654 * cache and swap cache(ie. page is freshly swapped in). So it could be 655 * referenced concurrently by 2 types of PTEs: 656 * normal PTEs and swap PTEs. We try to handle them consistently by calling 657 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 658 * and then 659 * - clear dirty bit to prevent IO 660 * - remove from LRU 661 * - but keep in the swap cache, so that when we return to it on 662 * a later page fault, we know the application is accessing 663 * corrupted data and shall be killed (we installed simple 664 * interception code in do_swap_page to catch it). 665 * 666 * Clean swap cache pages can be directly isolated. A later page fault will 667 * bring in the known good data from disk. 668 */ 669 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 670 { 671 ClearPageDirty(p); 672 /* Trigger EIO in shmem: */ 673 ClearPageUptodate(p); 674 675 if (!delete_from_lru_cache(p)) 676 return DELAYED; 677 else 678 return FAILED; 679 } 680 681 static int me_swapcache_clean(struct page *p, unsigned long pfn) 682 { 683 delete_from_swap_cache(p); 684 685 if (!delete_from_lru_cache(p)) 686 return RECOVERED; 687 else 688 return FAILED; 689 } 690 691 /* 692 * Huge pages. Needs work. 693 * Issues: 694 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 695 * To narrow down kill region to one page, we need to break up pmd. 696 * - To support soft-offlining for hugepage, we need to support hugepage 697 * migration. 698 */ 699 static int me_huge_page(struct page *p, unsigned long pfn) 700 { 701 struct page *hpage = compound_head(p); 702 /* 703 * We can safely recover from error on free or reserved (i.e. 704 * not in-use) hugepage by dequeuing it from freelist. 705 * To check whether a hugepage is in-use or not, we can't use 706 * page->lru because it can be used in other hugepage operations, 707 * such as __unmap_hugepage_range() and gather_surplus_pages(). 708 * So instead we use page_mapping() and PageAnon(). 709 * We assume that this function is called with page lock held, 710 * so there is no race between isolation and mapping/unmapping. 711 */ 712 if (!(page_mapping(hpage) || PageAnon(hpage))) { 713 __isolate_hwpoisoned_huge_page(hpage); 714 return RECOVERED; 715 } 716 return DELAYED; 717 } 718 719 /* 720 * Various page states we can handle. 721 * 722 * A page state is defined by its current page->flags bits. 723 * The table matches them in order and calls the right handler. 724 * 725 * This is quite tricky because we can access page at any time 726 * in its live cycle, so all accesses have to be extremly careful. 727 * 728 * This is not complete. More states could be added. 729 * For any missing state don't attempt recovery. 730 */ 731 732 #define dirty (1UL << PG_dirty) 733 #define sc (1UL << PG_swapcache) 734 #define unevict (1UL << PG_unevictable) 735 #define mlock (1UL << PG_mlocked) 736 #define writeback (1UL << PG_writeback) 737 #define lru (1UL << PG_lru) 738 #define swapbacked (1UL << PG_swapbacked) 739 #define head (1UL << PG_head) 740 #define tail (1UL << PG_tail) 741 #define compound (1UL << PG_compound) 742 #define slab (1UL << PG_slab) 743 #define reserved (1UL << PG_reserved) 744 745 static struct page_state { 746 unsigned long mask; 747 unsigned long res; 748 char *msg; 749 int (*action)(struct page *p, unsigned long pfn); 750 } error_states[] = { 751 { reserved, reserved, "reserved kernel", me_kernel }, 752 /* 753 * free pages are specially detected outside this table: 754 * PG_buddy pages only make a small fraction of all free pages. 755 */ 756 757 /* 758 * Could in theory check if slab page is free or if we can drop 759 * currently unused objects without touching them. But just 760 * treat it as standard kernel for now. 761 */ 762 { slab, slab, "kernel slab", me_kernel }, 763 764 #ifdef CONFIG_PAGEFLAGS_EXTENDED 765 { head, head, "huge", me_huge_page }, 766 { tail, tail, "huge", me_huge_page }, 767 #else 768 { compound, compound, "huge", me_huge_page }, 769 #endif 770 771 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty }, 772 { sc|dirty, sc, "swapcache", me_swapcache_clean }, 773 774 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty}, 775 { unevict, unevict, "unevictable LRU", me_pagecache_clean}, 776 777 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty }, 778 { mlock, mlock, "mlocked LRU", me_pagecache_clean }, 779 780 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty }, 781 { lru|dirty, lru, "clean LRU", me_pagecache_clean }, 782 783 /* 784 * Catchall entry: must be at end. 785 */ 786 { 0, 0, "unknown page state", me_unknown }, 787 }; 788 789 #undef dirty 790 #undef sc 791 #undef unevict 792 #undef mlock 793 #undef writeback 794 #undef lru 795 #undef swapbacked 796 #undef head 797 #undef tail 798 #undef compound 799 #undef slab 800 #undef reserved 801 802 static void action_result(unsigned long pfn, char *msg, int result) 803 { 804 struct page *page = pfn_to_page(pfn); 805 806 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n", 807 pfn, 808 PageDirty(page) ? "dirty " : "", 809 msg, action_name[result]); 810 } 811 812 static int page_action(struct page_state *ps, struct page *p, 813 unsigned long pfn) 814 { 815 int result; 816 int count; 817 818 result = ps->action(p, pfn); 819 action_result(pfn, ps->msg, result); 820 821 count = page_count(p) - 1; 822 if (ps->action == me_swapcache_dirty && result == DELAYED) 823 count--; 824 if (count != 0) { 825 printk(KERN_ERR 826 "MCE %#lx: %s page still referenced by %d users\n", 827 pfn, ps->msg, count); 828 result = FAILED; 829 } 830 831 /* Could do more checks here if page looks ok */ 832 /* 833 * Could adjust zone counters here to correct for the missing page. 834 */ 835 836 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; 837 } 838 839 #define N_UNMAP_TRIES 5 840 841 /* 842 * Do all that is necessary to remove user space mappings. Unmap 843 * the pages and send SIGBUS to the processes if the data was dirty. 844 */ 845 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 846 int trapno) 847 { 848 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 849 struct address_space *mapping; 850 LIST_HEAD(tokill); 851 int ret; 852 int i; 853 int kill = 1; 854 struct page *hpage = compound_head(p); 855 856 if (PageReserved(p) || PageSlab(p)) 857 return SWAP_SUCCESS; 858 859 /* 860 * This check implies we don't kill processes if their pages 861 * are in the swap cache early. Those are always late kills. 862 */ 863 if (!page_mapped(hpage)) 864 return SWAP_SUCCESS; 865 866 if (PageKsm(p)) 867 return SWAP_FAIL; 868 869 if (PageSwapCache(p)) { 870 printk(KERN_ERR 871 "MCE %#lx: keeping poisoned page in swap cache\n", pfn); 872 ttu |= TTU_IGNORE_HWPOISON; 873 } 874 875 /* 876 * Propagate the dirty bit from PTEs to struct page first, because we 877 * need this to decide if we should kill or just drop the page. 878 * XXX: the dirty test could be racy: set_page_dirty() may not always 879 * be called inside page lock (it's recommended but not enforced). 880 */ 881 mapping = page_mapping(hpage); 882 if (!PageDirty(hpage) && mapping && 883 mapping_cap_writeback_dirty(mapping)) { 884 if (page_mkclean(hpage)) { 885 SetPageDirty(hpage); 886 } else { 887 kill = 0; 888 ttu |= TTU_IGNORE_HWPOISON; 889 printk(KERN_INFO 890 "MCE %#lx: corrupted page was clean: dropped without side effects\n", 891 pfn); 892 } 893 } 894 895 /* 896 * First collect all the processes that have the page 897 * mapped in dirty form. This has to be done before try_to_unmap, 898 * because ttu takes the rmap data structures down. 899 * 900 * Error handling: We ignore errors here because 901 * there's nothing that can be done. 902 */ 903 if (kill) 904 collect_procs(hpage, &tokill); 905 906 /* 907 * try_to_unmap can fail temporarily due to races. 908 * Try a few times (RED-PEN better strategy?) 909 */ 910 for (i = 0; i < N_UNMAP_TRIES; i++) { 911 ret = try_to_unmap(hpage, ttu); 912 if (ret == SWAP_SUCCESS) 913 break; 914 pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret); 915 } 916 917 if (ret != SWAP_SUCCESS) 918 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", 919 pfn, page_mapcount(hpage)); 920 921 /* 922 * Now that the dirty bit has been propagated to the 923 * struct page and all unmaps done we can decide if 924 * killing is needed or not. Only kill when the page 925 * was dirty, otherwise the tokill list is merely 926 * freed. When there was a problem unmapping earlier 927 * use a more force-full uncatchable kill to prevent 928 * any accesses to the poisoned memory. 929 */ 930 kill_procs_ao(&tokill, !!PageDirty(hpage), trapno, 931 ret != SWAP_SUCCESS, pfn); 932 933 return ret; 934 } 935 936 static void set_page_hwpoison_huge_page(struct page *hpage) 937 { 938 int i; 939 int nr_pages = 1 << compound_order(hpage); 940 for (i = 0; i < nr_pages; i++) 941 SetPageHWPoison(hpage + i); 942 } 943 944 static void clear_page_hwpoison_huge_page(struct page *hpage) 945 { 946 int i; 947 int nr_pages = 1 << compound_order(hpage); 948 for (i = 0; i < nr_pages; i++) 949 ClearPageHWPoison(hpage + i); 950 } 951 952 int __memory_failure(unsigned long pfn, int trapno, int flags) 953 { 954 struct page_state *ps; 955 struct page *p; 956 struct page *hpage; 957 int res; 958 unsigned int nr_pages; 959 960 if (!sysctl_memory_failure_recovery) 961 panic("Memory failure from trap %d on page %lx", trapno, pfn); 962 963 if (!pfn_valid(pfn)) { 964 printk(KERN_ERR 965 "MCE %#lx: memory outside kernel control\n", 966 pfn); 967 return -ENXIO; 968 } 969 970 p = pfn_to_page(pfn); 971 hpage = compound_head(p); 972 if (TestSetPageHWPoison(p)) { 973 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); 974 return 0; 975 } 976 977 nr_pages = 1 << compound_order(hpage); 978 atomic_long_add(nr_pages, &mce_bad_pages); 979 980 /* 981 * We need/can do nothing about count=0 pages. 982 * 1) it's a free page, and therefore in safe hand: 983 * prep_new_page() will be the gate keeper. 984 * 2) it's part of a non-compound high order page. 985 * Implies some kernel user: cannot stop them from 986 * R/W the page; let's pray that the page has been 987 * used and will be freed some time later. 988 * In fact it's dangerous to directly bump up page count from 0, 989 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 990 */ 991 if (!(flags & MF_COUNT_INCREASED) && 992 !get_page_unless_zero(hpage)) { 993 if (is_free_buddy_page(p)) { 994 action_result(pfn, "free buddy", DELAYED); 995 return 0; 996 } else { 997 action_result(pfn, "high order kernel", IGNORED); 998 return -EBUSY; 999 } 1000 } 1001 1002 /* 1003 * We ignore non-LRU pages for good reasons. 1004 * - PG_locked is only well defined for LRU pages and a few others 1005 * - to avoid races with __set_page_locked() 1006 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1007 * The check (unnecessarily) ignores LRU pages being isolated and 1008 * walked by the page reclaim code, however that's not a big loss. 1009 */ 1010 if (!PageLRU(p) && !PageHuge(p)) 1011 shake_page(p, 0); 1012 if (!PageLRU(p) && !PageHuge(p)) { 1013 /* 1014 * shake_page could have turned it free. 1015 */ 1016 if (is_free_buddy_page(p)) { 1017 action_result(pfn, "free buddy, 2nd try", DELAYED); 1018 return 0; 1019 } 1020 action_result(pfn, "non LRU", IGNORED); 1021 put_page(p); 1022 return -EBUSY; 1023 } 1024 1025 /* 1026 * Lock the page and wait for writeback to finish. 1027 * It's very difficult to mess with pages currently under IO 1028 * and in many cases impossible, so we just avoid it here. 1029 */ 1030 lock_page_nosync(hpage); 1031 1032 /* 1033 * unpoison always clear PG_hwpoison inside page lock 1034 */ 1035 if (!PageHWPoison(p)) { 1036 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); 1037 res = 0; 1038 goto out; 1039 } 1040 if (hwpoison_filter(p)) { 1041 if (TestClearPageHWPoison(p)) 1042 atomic_long_sub(nr_pages, &mce_bad_pages); 1043 unlock_page(hpage); 1044 put_page(hpage); 1045 return 0; 1046 } 1047 1048 /* 1049 * For error on the tail page, we should set PG_hwpoison 1050 * on the head page to show that the hugepage is hwpoisoned 1051 */ 1052 if (PageTail(p) && TestSetPageHWPoison(hpage)) { 1053 action_result(pfn, "hugepage already hardware poisoned", 1054 IGNORED); 1055 unlock_page(hpage); 1056 put_page(hpage); 1057 return 0; 1058 } 1059 /* 1060 * Set PG_hwpoison on all pages in an error hugepage, 1061 * because containment is done in hugepage unit for now. 1062 * Since we have done TestSetPageHWPoison() for the head page with 1063 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1064 */ 1065 if (PageHuge(p)) 1066 set_page_hwpoison_huge_page(hpage); 1067 1068 wait_on_page_writeback(p); 1069 1070 /* 1071 * Now take care of user space mappings. 1072 * Abort on fail: __remove_from_page_cache() assumes unmapped page. 1073 */ 1074 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) { 1075 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); 1076 res = -EBUSY; 1077 goto out; 1078 } 1079 1080 /* 1081 * Torn down by someone else? 1082 */ 1083 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1084 action_result(pfn, "already truncated LRU", IGNORED); 1085 res = -EBUSY; 1086 goto out; 1087 } 1088 1089 res = -EBUSY; 1090 for (ps = error_states;; ps++) { 1091 if ((p->flags & ps->mask) == ps->res) { 1092 res = page_action(ps, p, pfn); 1093 break; 1094 } 1095 } 1096 out: 1097 unlock_page(hpage); 1098 return res; 1099 } 1100 EXPORT_SYMBOL_GPL(__memory_failure); 1101 1102 /** 1103 * memory_failure - Handle memory failure of a page. 1104 * @pfn: Page Number of the corrupted page 1105 * @trapno: Trap number reported in the signal to user space. 1106 * 1107 * This function is called by the low level machine check code 1108 * of an architecture when it detects hardware memory corruption 1109 * of a page. It tries its best to recover, which includes 1110 * dropping pages, killing processes etc. 1111 * 1112 * The function is primarily of use for corruptions that 1113 * happen outside the current execution context (e.g. when 1114 * detected by a background scrubber) 1115 * 1116 * Must run in process context (e.g. a work queue) with interrupts 1117 * enabled and no spinlocks hold. 1118 */ 1119 void memory_failure(unsigned long pfn, int trapno) 1120 { 1121 __memory_failure(pfn, trapno, 0); 1122 } 1123 1124 /** 1125 * unpoison_memory - Unpoison a previously poisoned page 1126 * @pfn: Page number of the to be unpoisoned page 1127 * 1128 * Software-unpoison a page that has been poisoned by 1129 * memory_failure() earlier. 1130 * 1131 * This is only done on the software-level, so it only works 1132 * for linux injected failures, not real hardware failures 1133 * 1134 * Returns 0 for success, otherwise -errno. 1135 */ 1136 int unpoison_memory(unsigned long pfn) 1137 { 1138 struct page *page; 1139 struct page *p; 1140 int freeit = 0; 1141 unsigned int nr_pages; 1142 1143 if (!pfn_valid(pfn)) 1144 return -ENXIO; 1145 1146 p = pfn_to_page(pfn); 1147 page = compound_head(p); 1148 1149 if (!PageHWPoison(p)) { 1150 pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn); 1151 return 0; 1152 } 1153 1154 nr_pages = 1 << compound_order(page); 1155 1156 if (!get_page_unless_zero(page)) { 1157 if (TestClearPageHWPoison(p)) 1158 atomic_long_sub(nr_pages, &mce_bad_pages); 1159 pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn); 1160 return 0; 1161 } 1162 1163 lock_page_nosync(page); 1164 /* 1165 * This test is racy because PG_hwpoison is set outside of page lock. 1166 * That's acceptable because that won't trigger kernel panic. Instead, 1167 * the PG_hwpoison page will be caught and isolated on the entrance to 1168 * the free buddy page pool. 1169 */ 1170 if (TestClearPageHWPoison(page)) { 1171 pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn); 1172 atomic_long_sub(nr_pages, &mce_bad_pages); 1173 freeit = 1; 1174 } 1175 if (PageHuge(p)) 1176 clear_page_hwpoison_huge_page(page); 1177 unlock_page(page); 1178 1179 put_page(page); 1180 if (freeit) 1181 put_page(page); 1182 1183 return 0; 1184 } 1185 EXPORT_SYMBOL(unpoison_memory); 1186 1187 static struct page *new_page(struct page *p, unsigned long private, int **x) 1188 { 1189 int nid = page_to_nid(p); 1190 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1191 } 1192 1193 /* 1194 * Safely get reference count of an arbitrary page. 1195 * Returns 0 for a free page, -EIO for a zero refcount page 1196 * that is not free, and 1 for any other page type. 1197 * For 1 the page is returned with increased page count, otherwise not. 1198 */ 1199 static int get_any_page(struct page *p, unsigned long pfn, int flags) 1200 { 1201 int ret; 1202 1203 if (flags & MF_COUNT_INCREASED) 1204 return 1; 1205 1206 /* 1207 * The lock_system_sleep prevents a race with memory hotplug, 1208 * because the isolation assumes there's only a single user. 1209 * This is a big hammer, a better would be nicer. 1210 */ 1211 lock_system_sleep(); 1212 1213 /* 1214 * Isolate the page, so that it doesn't get reallocated if it 1215 * was free. 1216 */ 1217 set_migratetype_isolate(p); 1218 if (!get_page_unless_zero(compound_head(p))) { 1219 if (is_free_buddy_page(p)) { 1220 pr_debug("get_any_page: %#lx free buddy page\n", pfn); 1221 /* Set hwpoison bit while page is still isolated */ 1222 SetPageHWPoison(p); 1223 ret = 0; 1224 } else { 1225 pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n", 1226 pfn, p->flags); 1227 ret = -EIO; 1228 } 1229 } else { 1230 /* Not a free page */ 1231 ret = 1; 1232 } 1233 unset_migratetype_isolate(p); 1234 unlock_system_sleep(); 1235 return ret; 1236 } 1237 1238 /** 1239 * soft_offline_page - Soft offline a page. 1240 * @page: page to offline 1241 * @flags: flags. Same as memory_failure(). 1242 * 1243 * Returns 0 on success, otherwise negated errno. 1244 * 1245 * Soft offline a page, by migration or invalidation, 1246 * without killing anything. This is for the case when 1247 * a page is not corrupted yet (so it's still valid to access), 1248 * but has had a number of corrected errors and is better taken 1249 * out. 1250 * 1251 * The actual policy on when to do that is maintained by 1252 * user space. 1253 * 1254 * This should never impact any application or cause data loss, 1255 * however it might take some time. 1256 * 1257 * This is not a 100% solution for all memory, but tries to be 1258 * ``good enough'' for the majority of memory. 1259 */ 1260 int soft_offline_page(struct page *page, int flags) 1261 { 1262 int ret; 1263 unsigned long pfn = page_to_pfn(page); 1264 1265 ret = get_any_page(page, pfn, flags); 1266 if (ret < 0) 1267 return ret; 1268 if (ret == 0) 1269 goto done; 1270 1271 /* 1272 * Page cache page we can handle? 1273 */ 1274 if (!PageLRU(page)) { 1275 /* 1276 * Try to free it. 1277 */ 1278 put_page(page); 1279 shake_page(page, 1); 1280 1281 /* 1282 * Did it turn free? 1283 */ 1284 ret = get_any_page(page, pfn, 0); 1285 if (ret < 0) 1286 return ret; 1287 if (ret == 0) 1288 goto done; 1289 } 1290 if (!PageLRU(page)) { 1291 pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n", 1292 pfn, page->flags); 1293 return -EIO; 1294 } 1295 1296 lock_page(page); 1297 wait_on_page_writeback(page); 1298 1299 /* 1300 * Synchronized using the page lock with memory_failure() 1301 */ 1302 if (PageHWPoison(page)) { 1303 unlock_page(page); 1304 put_page(page); 1305 pr_debug("soft offline: %#lx page already poisoned\n", pfn); 1306 return -EBUSY; 1307 } 1308 1309 /* 1310 * Try to invalidate first. This should work for 1311 * non dirty unmapped page cache pages. 1312 */ 1313 ret = invalidate_inode_page(page); 1314 unlock_page(page); 1315 1316 /* 1317 * Drop count because page migration doesn't like raised 1318 * counts. The page could get re-allocated, but if it becomes 1319 * LRU the isolation will just fail. 1320 * RED-PEN would be better to keep it isolated here, but we 1321 * would need to fix isolation locking first. 1322 */ 1323 put_page(page); 1324 if (ret == 1) { 1325 ret = 0; 1326 pr_debug("soft_offline: %#lx: invalidated\n", pfn); 1327 goto done; 1328 } 1329 1330 /* 1331 * Simple invalidation didn't work. 1332 * Try to migrate to a new page instead. migrate.c 1333 * handles a large number of cases for us. 1334 */ 1335 ret = isolate_lru_page(page); 1336 if (!ret) { 1337 LIST_HEAD(pagelist); 1338 1339 list_add(&page->lru, &pagelist); 1340 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0); 1341 if (ret) { 1342 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n", 1343 pfn, ret, page->flags); 1344 if (ret > 0) 1345 ret = -EIO; 1346 } 1347 } else { 1348 pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1349 pfn, ret, page_count(page), page->flags); 1350 } 1351 if (ret) 1352 return ret; 1353 1354 done: 1355 atomic_long_add(1, &mce_bad_pages); 1356 SetPageHWPoison(page); 1357 /* keep elevated page count for bad page */ 1358 return ret; 1359 } 1360 1361 /* 1362 * The caller must hold current->mm->mmap_sem in read mode. 1363 */ 1364 int is_hwpoison_address(unsigned long addr) 1365 { 1366 pgd_t *pgdp; 1367 pud_t pud, *pudp; 1368 pmd_t pmd, *pmdp; 1369 pte_t pte, *ptep; 1370 swp_entry_t entry; 1371 1372 pgdp = pgd_offset(current->mm, addr); 1373 if (!pgd_present(*pgdp)) 1374 return 0; 1375 pudp = pud_offset(pgdp, addr); 1376 pud = *pudp; 1377 if (!pud_present(pud) || pud_large(pud)) 1378 return 0; 1379 pmdp = pmd_offset(pudp, addr); 1380 pmd = *pmdp; 1381 if (!pmd_present(pmd) || pmd_large(pmd)) 1382 return 0; 1383 ptep = pte_offset_map(pmdp, addr); 1384 pte = *ptep; 1385 pte_unmap(ptep); 1386 if (!is_swap_pte(pte)) 1387 return 0; 1388 entry = pte_to_swp_entry(pte); 1389 return is_hwpoison_entry(entry); 1390 } 1391 EXPORT_SYMBOL_GPL(is_hwpoison_address); 1392