xref: /linux/mm/memory-failure.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a 2bit ECC memory or cache
11  * failure.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronous to other VM
15  * users, because memory failures could happen anytime and anywhere,
16  * possibly violating some of their assumptions. This is why this code
17  * has to be extremely careful. Generally it tries to use normal locking
18  * rules, as in get the standard locks, even if that means the
19  * error handling takes potentially a long time.
20  *
21  * The operation to map back from RMAP chains to processes has to walk
22  * the complete process list and has non linear complexity with the number
23  * mappings. In short it can be quite slow. But since memory corruptions
24  * are rare we hope to get away with this.
25  */
26 
27 /*
28  * Notebook:
29  * - hugetlb needs more code
30  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31  * - pass bad pages to kdump next kernel
32  */
33 #define DEBUG 1		/* remove me in 2.6.34 */
34 #include <linux/kernel.h>
35 #include <linux/mm.h>
36 #include <linux/page-flags.h>
37 #include <linux/kernel-page-flags.h>
38 #include <linux/sched.h>
39 #include <linux/ksm.h>
40 #include <linux/rmap.h>
41 #include <linux/pagemap.h>
42 #include <linux/swap.h>
43 #include <linux/backing-dev.h>
44 #include <linux/migrate.h>
45 #include <linux/page-isolation.h>
46 #include <linux/suspend.h>
47 #include <linux/slab.h>
48 #include <linux/swapops.h>
49 #include <linux/hugetlb.h>
50 #include "internal.h"
51 
52 int sysctl_memory_failure_early_kill __read_mostly = 0;
53 
54 int sysctl_memory_failure_recovery __read_mostly = 1;
55 
56 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
57 
58 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
59 
60 u32 hwpoison_filter_enable = 0;
61 u32 hwpoison_filter_dev_major = ~0U;
62 u32 hwpoison_filter_dev_minor = ~0U;
63 u64 hwpoison_filter_flags_mask;
64 u64 hwpoison_filter_flags_value;
65 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
66 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
67 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
68 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
69 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
70 
71 static int hwpoison_filter_dev(struct page *p)
72 {
73 	struct address_space *mapping;
74 	dev_t dev;
75 
76 	if (hwpoison_filter_dev_major == ~0U &&
77 	    hwpoison_filter_dev_minor == ~0U)
78 		return 0;
79 
80 	/*
81 	 * page_mapping() does not accept slab page
82 	 */
83 	if (PageSlab(p))
84 		return -EINVAL;
85 
86 	mapping = page_mapping(p);
87 	if (mapping == NULL || mapping->host == NULL)
88 		return -EINVAL;
89 
90 	dev = mapping->host->i_sb->s_dev;
91 	if (hwpoison_filter_dev_major != ~0U &&
92 	    hwpoison_filter_dev_major != MAJOR(dev))
93 		return -EINVAL;
94 	if (hwpoison_filter_dev_minor != ~0U &&
95 	    hwpoison_filter_dev_minor != MINOR(dev))
96 		return -EINVAL;
97 
98 	return 0;
99 }
100 
101 static int hwpoison_filter_flags(struct page *p)
102 {
103 	if (!hwpoison_filter_flags_mask)
104 		return 0;
105 
106 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
107 				    hwpoison_filter_flags_value)
108 		return 0;
109 	else
110 		return -EINVAL;
111 }
112 
113 /*
114  * This allows stress tests to limit test scope to a collection of tasks
115  * by putting them under some memcg. This prevents killing unrelated/important
116  * processes such as /sbin/init. Note that the target task may share clean
117  * pages with init (eg. libc text), which is harmless. If the target task
118  * share _dirty_ pages with another task B, the test scheme must make sure B
119  * is also included in the memcg. At last, due to race conditions this filter
120  * can only guarantee that the page either belongs to the memcg tasks, or is
121  * a freed page.
122  */
123 #ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
124 u64 hwpoison_filter_memcg;
125 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
126 static int hwpoison_filter_task(struct page *p)
127 {
128 	struct mem_cgroup *mem;
129 	struct cgroup_subsys_state *css;
130 	unsigned long ino;
131 
132 	if (!hwpoison_filter_memcg)
133 		return 0;
134 
135 	mem = try_get_mem_cgroup_from_page(p);
136 	if (!mem)
137 		return -EINVAL;
138 
139 	css = mem_cgroup_css(mem);
140 	/* root_mem_cgroup has NULL dentries */
141 	if (!css->cgroup->dentry)
142 		return -EINVAL;
143 
144 	ino = css->cgroup->dentry->d_inode->i_ino;
145 	css_put(css);
146 
147 	if (ino != hwpoison_filter_memcg)
148 		return -EINVAL;
149 
150 	return 0;
151 }
152 #else
153 static int hwpoison_filter_task(struct page *p) { return 0; }
154 #endif
155 
156 int hwpoison_filter(struct page *p)
157 {
158 	if (!hwpoison_filter_enable)
159 		return 0;
160 
161 	if (hwpoison_filter_dev(p))
162 		return -EINVAL;
163 
164 	if (hwpoison_filter_flags(p))
165 		return -EINVAL;
166 
167 	if (hwpoison_filter_task(p))
168 		return -EINVAL;
169 
170 	return 0;
171 }
172 #else
173 int hwpoison_filter(struct page *p)
174 {
175 	return 0;
176 }
177 #endif
178 
179 EXPORT_SYMBOL_GPL(hwpoison_filter);
180 
181 /*
182  * Send all the processes who have the page mapped an ``action optional''
183  * signal.
184  */
185 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
186 			unsigned long pfn)
187 {
188 	struct siginfo si;
189 	int ret;
190 
191 	printk(KERN_ERR
192 		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
193 		pfn, t->comm, t->pid);
194 	si.si_signo = SIGBUS;
195 	si.si_errno = 0;
196 	si.si_code = BUS_MCEERR_AO;
197 	si.si_addr = (void *)addr;
198 #ifdef __ARCH_SI_TRAPNO
199 	si.si_trapno = trapno;
200 #endif
201 	si.si_addr_lsb = PAGE_SHIFT;
202 	/*
203 	 * Don't use force here, it's convenient if the signal
204 	 * can be temporarily blocked.
205 	 * This could cause a loop when the user sets SIGBUS
206 	 * to SIG_IGN, but hopefully noone will do that?
207 	 */
208 	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
209 	if (ret < 0)
210 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
211 		       t->comm, t->pid, ret);
212 	return ret;
213 }
214 
215 /*
216  * When a unknown page type is encountered drain as many buffers as possible
217  * in the hope to turn the page into a LRU or free page, which we can handle.
218  */
219 void shake_page(struct page *p, int access)
220 {
221 	if (!PageSlab(p)) {
222 		lru_add_drain_all();
223 		if (PageLRU(p))
224 			return;
225 		drain_all_pages();
226 		if (PageLRU(p) || is_free_buddy_page(p))
227 			return;
228 	}
229 
230 	/*
231 	 * Only all shrink_slab here (which would also
232 	 * shrink other caches) if access is not potentially fatal.
233 	 */
234 	if (access) {
235 		int nr;
236 		do {
237 			nr = shrink_slab(1000, GFP_KERNEL, 1000);
238 			if (page_count(p) == 0)
239 				break;
240 		} while (nr > 10);
241 	}
242 }
243 EXPORT_SYMBOL_GPL(shake_page);
244 
245 /*
246  * Kill all processes that have a poisoned page mapped and then isolate
247  * the page.
248  *
249  * General strategy:
250  * Find all processes having the page mapped and kill them.
251  * But we keep a page reference around so that the page is not
252  * actually freed yet.
253  * Then stash the page away
254  *
255  * There's no convenient way to get back to mapped processes
256  * from the VMAs. So do a brute-force search over all
257  * running processes.
258  *
259  * Remember that machine checks are not common (or rather
260  * if they are common you have other problems), so this shouldn't
261  * be a performance issue.
262  *
263  * Also there are some races possible while we get from the
264  * error detection to actually handle it.
265  */
266 
267 struct to_kill {
268 	struct list_head nd;
269 	struct task_struct *tsk;
270 	unsigned long addr;
271 	unsigned addr_valid:1;
272 };
273 
274 /*
275  * Failure handling: if we can't find or can't kill a process there's
276  * not much we can do.	We just print a message and ignore otherwise.
277  */
278 
279 /*
280  * Schedule a process for later kill.
281  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
282  * TBD would GFP_NOIO be enough?
283  */
284 static void add_to_kill(struct task_struct *tsk, struct page *p,
285 		       struct vm_area_struct *vma,
286 		       struct list_head *to_kill,
287 		       struct to_kill **tkc)
288 {
289 	struct to_kill *tk;
290 
291 	if (*tkc) {
292 		tk = *tkc;
293 		*tkc = NULL;
294 	} else {
295 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
296 		if (!tk) {
297 			printk(KERN_ERR
298 		"MCE: Out of memory while machine check handling\n");
299 			return;
300 		}
301 	}
302 	tk->addr = page_address_in_vma(p, vma);
303 	tk->addr_valid = 1;
304 
305 	/*
306 	 * In theory we don't have to kill when the page was
307 	 * munmaped. But it could be also a mremap. Since that's
308 	 * likely very rare kill anyways just out of paranoia, but use
309 	 * a SIGKILL because the error is not contained anymore.
310 	 */
311 	if (tk->addr == -EFAULT) {
312 		pr_debug("MCE: Unable to find user space address %lx in %s\n",
313 			page_to_pfn(p), tsk->comm);
314 		tk->addr_valid = 0;
315 	}
316 	get_task_struct(tsk);
317 	tk->tsk = tsk;
318 	list_add_tail(&tk->nd, to_kill);
319 }
320 
321 /*
322  * Kill the processes that have been collected earlier.
323  *
324  * Only do anything when DOIT is set, otherwise just free the list
325  * (this is used for clean pages which do not need killing)
326  * Also when FAIL is set do a force kill because something went
327  * wrong earlier.
328  */
329 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
330 			  int fail, unsigned long pfn)
331 {
332 	struct to_kill *tk, *next;
333 
334 	list_for_each_entry_safe (tk, next, to_kill, nd) {
335 		if (doit) {
336 			/*
337 			 * In case something went wrong with munmapping
338 			 * make sure the process doesn't catch the
339 			 * signal and then access the memory. Just kill it.
340 			 */
341 			if (fail || tk->addr_valid == 0) {
342 				printk(KERN_ERR
343 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
344 					pfn, tk->tsk->comm, tk->tsk->pid);
345 				force_sig(SIGKILL, tk->tsk);
346 			}
347 
348 			/*
349 			 * In theory the process could have mapped
350 			 * something else on the address in-between. We could
351 			 * check for that, but we need to tell the
352 			 * process anyways.
353 			 */
354 			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
355 					      pfn) < 0)
356 				printk(KERN_ERR
357 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
358 					pfn, tk->tsk->comm, tk->tsk->pid);
359 		}
360 		put_task_struct(tk->tsk);
361 		kfree(tk);
362 	}
363 }
364 
365 static int task_early_kill(struct task_struct *tsk)
366 {
367 	if (!tsk->mm)
368 		return 0;
369 	if (tsk->flags & PF_MCE_PROCESS)
370 		return !!(tsk->flags & PF_MCE_EARLY);
371 	return sysctl_memory_failure_early_kill;
372 }
373 
374 /*
375  * Collect processes when the error hit an anonymous page.
376  */
377 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
378 			      struct to_kill **tkc)
379 {
380 	struct vm_area_struct *vma;
381 	struct task_struct *tsk;
382 	struct anon_vma *av;
383 
384 	read_lock(&tasklist_lock);
385 	av = page_lock_anon_vma(page);
386 	if (av == NULL)	/* Not actually mapped anymore */
387 		goto out;
388 	for_each_process (tsk) {
389 		struct anon_vma_chain *vmac;
390 
391 		if (!task_early_kill(tsk))
392 			continue;
393 		list_for_each_entry(vmac, &av->head, same_anon_vma) {
394 			vma = vmac->vma;
395 			if (!page_mapped_in_vma(page, vma))
396 				continue;
397 			if (vma->vm_mm == tsk->mm)
398 				add_to_kill(tsk, page, vma, to_kill, tkc);
399 		}
400 	}
401 	page_unlock_anon_vma(av);
402 out:
403 	read_unlock(&tasklist_lock);
404 }
405 
406 /*
407  * Collect processes when the error hit a file mapped page.
408  */
409 static void collect_procs_file(struct page *page, struct list_head *to_kill,
410 			      struct to_kill **tkc)
411 {
412 	struct vm_area_struct *vma;
413 	struct task_struct *tsk;
414 	struct prio_tree_iter iter;
415 	struct address_space *mapping = page->mapping;
416 
417 	/*
418 	 * A note on the locking order between the two locks.
419 	 * We don't rely on this particular order.
420 	 * If you have some other code that needs a different order
421 	 * feel free to switch them around. Or add a reverse link
422 	 * from mm_struct to task_struct, then this could be all
423 	 * done without taking tasklist_lock and looping over all tasks.
424 	 */
425 
426 	read_lock(&tasklist_lock);
427 	spin_lock(&mapping->i_mmap_lock);
428 	for_each_process(tsk) {
429 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
430 
431 		if (!task_early_kill(tsk))
432 			continue;
433 
434 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
435 				      pgoff) {
436 			/*
437 			 * Send early kill signal to tasks where a vma covers
438 			 * the page but the corrupted page is not necessarily
439 			 * mapped it in its pte.
440 			 * Assume applications who requested early kill want
441 			 * to be informed of all such data corruptions.
442 			 */
443 			if (vma->vm_mm == tsk->mm)
444 				add_to_kill(tsk, page, vma, to_kill, tkc);
445 		}
446 	}
447 	spin_unlock(&mapping->i_mmap_lock);
448 	read_unlock(&tasklist_lock);
449 }
450 
451 /*
452  * Collect the processes who have the corrupted page mapped to kill.
453  * This is done in two steps for locking reasons.
454  * First preallocate one tokill structure outside the spin locks,
455  * so that we can kill at least one process reasonably reliable.
456  */
457 static void collect_procs(struct page *page, struct list_head *tokill)
458 {
459 	struct to_kill *tk;
460 
461 	if (!page->mapping)
462 		return;
463 
464 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
465 	if (!tk)
466 		return;
467 	if (PageAnon(page))
468 		collect_procs_anon(page, tokill, &tk);
469 	else
470 		collect_procs_file(page, tokill, &tk);
471 	kfree(tk);
472 }
473 
474 /*
475  * Error handlers for various types of pages.
476  */
477 
478 enum outcome {
479 	IGNORED,	/* Error: cannot be handled */
480 	FAILED,		/* Error: handling failed */
481 	DELAYED,	/* Will be handled later */
482 	RECOVERED,	/* Successfully recovered */
483 };
484 
485 static const char *action_name[] = {
486 	[IGNORED] = "Ignored",
487 	[FAILED] = "Failed",
488 	[DELAYED] = "Delayed",
489 	[RECOVERED] = "Recovered",
490 };
491 
492 /*
493  * XXX: It is possible that a page is isolated from LRU cache,
494  * and then kept in swap cache or failed to remove from page cache.
495  * The page count will stop it from being freed by unpoison.
496  * Stress tests should be aware of this memory leak problem.
497  */
498 static int delete_from_lru_cache(struct page *p)
499 {
500 	if (!isolate_lru_page(p)) {
501 		/*
502 		 * Clear sensible page flags, so that the buddy system won't
503 		 * complain when the page is unpoison-and-freed.
504 		 */
505 		ClearPageActive(p);
506 		ClearPageUnevictable(p);
507 		/*
508 		 * drop the page count elevated by isolate_lru_page()
509 		 */
510 		page_cache_release(p);
511 		return 0;
512 	}
513 	return -EIO;
514 }
515 
516 /*
517  * Error hit kernel page.
518  * Do nothing, try to be lucky and not touch this instead. For a few cases we
519  * could be more sophisticated.
520  */
521 static int me_kernel(struct page *p, unsigned long pfn)
522 {
523 	return IGNORED;
524 }
525 
526 /*
527  * Page in unknown state. Do nothing.
528  */
529 static int me_unknown(struct page *p, unsigned long pfn)
530 {
531 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
532 	return FAILED;
533 }
534 
535 /*
536  * Clean (or cleaned) page cache page.
537  */
538 static int me_pagecache_clean(struct page *p, unsigned long pfn)
539 {
540 	int err;
541 	int ret = FAILED;
542 	struct address_space *mapping;
543 
544 	delete_from_lru_cache(p);
545 
546 	/*
547 	 * For anonymous pages we're done the only reference left
548 	 * should be the one m_f() holds.
549 	 */
550 	if (PageAnon(p))
551 		return RECOVERED;
552 
553 	/*
554 	 * Now truncate the page in the page cache. This is really
555 	 * more like a "temporary hole punch"
556 	 * Don't do this for block devices when someone else
557 	 * has a reference, because it could be file system metadata
558 	 * and that's not safe to truncate.
559 	 */
560 	mapping = page_mapping(p);
561 	if (!mapping) {
562 		/*
563 		 * Page has been teared down in the meanwhile
564 		 */
565 		return FAILED;
566 	}
567 
568 	/*
569 	 * Truncation is a bit tricky. Enable it per file system for now.
570 	 *
571 	 * Open: to take i_mutex or not for this? Right now we don't.
572 	 */
573 	if (mapping->a_ops->error_remove_page) {
574 		err = mapping->a_ops->error_remove_page(mapping, p);
575 		if (err != 0) {
576 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
577 					pfn, err);
578 		} else if (page_has_private(p) &&
579 				!try_to_release_page(p, GFP_NOIO)) {
580 			pr_debug("MCE %#lx: failed to release buffers\n", pfn);
581 		} else {
582 			ret = RECOVERED;
583 		}
584 	} else {
585 		/*
586 		 * If the file system doesn't support it just invalidate
587 		 * This fails on dirty or anything with private pages
588 		 */
589 		if (invalidate_inode_page(p))
590 			ret = RECOVERED;
591 		else
592 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
593 				pfn);
594 	}
595 	return ret;
596 }
597 
598 /*
599  * Dirty cache page page
600  * Issues: when the error hit a hole page the error is not properly
601  * propagated.
602  */
603 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
604 {
605 	struct address_space *mapping = page_mapping(p);
606 
607 	SetPageError(p);
608 	/* TBD: print more information about the file. */
609 	if (mapping) {
610 		/*
611 		 * IO error will be reported by write(), fsync(), etc.
612 		 * who check the mapping.
613 		 * This way the application knows that something went
614 		 * wrong with its dirty file data.
615 		 *
616 		 * There's one open issue:
617 		 *
618 		 * The EIO will be only reported on the next IO
619 		 * operation and then cleared through the IO map.
620 		 * Normally Linux has two mechanisms to pass IO error
621 		 * first through the AS_EIO flag in the address space
622 		 * and then through the PageError flag in the page.
623 		 * Since we drop pages on memory failure handling the
624 		 * only mechanism open to use is through AS_AIO.
625 		 *
626 		 * This has the disadvantage that it gets cleared on
627 		 * the first operation that returns an error, while
628 		 * the PageError bit is more sticky and only cleared
629 		 * when the page is reread or dropped.  If an
630 		 * application assumes it will always get error on
631 		 * fsync, but does other operations on the fd before
632 		 * and the page is dropped inbetween then the error
633 		 * will not be properly reported.
634 		 *
635 		 * This can already happen even without hwpoisoned
636 		 * pages: first on metadata IO errors (which only
637 		 * report through AS_EIO) or when the page is dropped
638 		 * at the wrong time.
639 		 *
640 		 * So right now we assume that the application DTRT on
641 		 * the first EIO, but we're not worse than other parts
642 		 * of the kernel.
643 		 */
644 		mapping_set_error(mapping, EIO);
645 	}
646 
647 	return me_pagecache_clean(p, pfn);
648 }
649 
650 /*
651  * Clean and dirty swap cache.
652  *
653  * Dirty swap cache page is tricky to handle. The page could live both in page
654  * cache and swap cache(ie. page is freshly swapped in). So it could be
655  * referenced concurrently by 2 types of PTEs:
656  * normal PTEs and swap PTEs. We try to handle them consistently by calling
657  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
658  * and then
659  *      - clear dirty bit to prevent IO
660  *      - remove from LRU
661  *      - but keep in the swap cache, so that when we return to it on
662  *        a later page fault, we know the application is accessing
663  *        corrupted data and shall be killed (we installed simple
664  *        interception code in do_swap_page to catch it).
665  *
666  * Clean swap cache pages can be directly isolated. A later page fault will
667  * bring in the known good data from disk.
668  */
669 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
670 {
671 	ClearPageDirty(p);
672 	/* Trigger EIO in shmem: */
673 	ClearPageUptodate(p);
674 
675 	if (!delete_from_lru_cache(p))
676 		return DELAYED;
677 	else
678 		return FAILED;
679 }
680 
681 static int me_swapcache_clean(struct page *p, unsigned long pfn)
682 {
683 	delete_from_swap_cache(p);
684 
685 	if (!delete_from_lru_cache(p))
686 		return RECOVERED;
687 	else
688 		return FAILED;
689 }
690 
691 /*
692  * Huge pages. Needs work.
693  * Issues:
694  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
695  *   To narrow down kill region to one page, we need to break up pmd.
696  * - To support soft-offlining for hugepage, we need to support hugepage
697  *   migration.
698  */
699 static int me_huge_page(struct page *p, unsigned long pfn)
700 {
701 	struct page *hpage = compound_head(p);
702 	/*
703 	 * We can safely recover from error on free or reserved (i.e.
704 	 * not in-use) hugepage by dequeuing it from freelist.
705 	 * To check whether a hugepage is in-use or not, we can't use
706 	 * page->lru because it can be used in other hugepage operations,
707 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
708 	 * So instead we use page_mapping() and PageAnon().
709 	 * We assume that this function is called with page lock held,
710 	 * so there is no race between isolation and mapping/unmapping.
711 	 */
712 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
713 		__isolate_hwpoisoned_huge_page(hpage);
714 		return RECOVERED;
715 	}
716 	return DELAYED;
717 }
718 
719 /*
720  * Various page states we can handle.
721  *
722  * A page state is defined by its current page->flags bits.
723  * The table matches them in order and calls the right handler.
724  *
725  * This is quite tricky because we can access page at any time
726  * in its live cycle, so all accesses have to be extremly careful.
727  *
728  * This is not complete. More states could be added.
729  * For any missing state don't attempt recovery.
730  */
731 
732 #define dirty		(1UL << PG_dirty)
733 #define sc		(1UL << PG_swapcache)
734 #define unevict		(1UL << PG_unevictable)
735 #define mlock		(1UL << PG_mlocked)
736 #define writeback	(1UL << PG_writeback)
737 #define lru		(1UL << PG_lru)
738 #define swapbacked	(1UL << PG_swapbacked)
739 #define head		(1UL << PG_head)
740 #define tail		(1UL << PG_tail)
741 #define compound	(1UL << PG_compound)
742 #define slab		(1UL << PG_slab)
743 #define reserved	(1UL << PG_reserved)
744 
745 static struct page_state {
746 	unsigned long mask;
747 	unsigned long res;
748 	char *msg;
749 	int (*action)(struct page *p, unsigned long pfn);
750 } error_states[] = {
751 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
752 	/*
753 	 * free pages are specially detected outside this table:
754 	 * PG_buddy pages only make a small fraction of all free pages.
755 	 */
756 
757 	/*
758 	 * Could in theory check if slab page is free or if we can drop
759 	 * currently unused objects without touching them. But just
760 	 * treat it as standard kernel for now.
761 	 */
762 	{ slab,		slab,		"kernel slab",	me_kernel },
763 
764 #ifdef CONFIG_PAGEFLAGS_EXTENDED
765 	{ head,		head,		"huge",		me_huge_page },
766 	{ tail,		tail,		"huge",		me_huge_page },
767 #else
768 	{ compound,	compound,	"huge",		me_huge_page },
769 #endif
770 
771 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
772 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
773 
774 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
775 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
776 
777 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
778 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
779 
780 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
781 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
782 
783 	/*
784 	 * Catchall entry: must be at end.
785 	 */
786 	{ 0,		0,		"unknown page state",	me_unknown },
787 };
788 
789 #undef dirty
790 #undef sc
791 #undef unevict
792 #undef mlock
793 #undef writeback
794 #undef lru
795 #undef swapbacked
796 #undef head
797 #undef tail
798 #undef compound
799 #undef slab
800 #undef reserved
801 
802 static void action_result(unsigned long pfn, char *msg, int result)
803 {
804 	struct page *page = pfn_to_page(pfn);
805 
806 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
807 		pfn,
808 		PageDirty(page) ? "dirty " : "",
809 		msg, action_name[result]);
810 }
811 
812 static int page_action(struct page_state *ps, struct page *p,
813 			unsigned long pfn)
814 {
815 	int result;
816 	int count;
817 
818 	result = ps->action(p, pfn);
819 	action_result(pfn, ps->msg, result);
820 
821 	count = page_count(p) - 1;
822 	if (ps->action == me_swapcache_dirty && result == DELAYED)
823 		count--;
824 	if (count != 0) {
825 		printk(KERN_ERR
826 		       "MCE %#lx: %s page still referenced by %d users\n",
827 		       pfn, ps->msg, count);
828 		result = FAILED;
829 	}
830 
831 	/* Could do more checks here if page looks ok */
832 	/*
833 	 * Could adjust zone counters here to correct for the missing page.
834 	 */
835 
836 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
837 }
838 
839 #define N_UNMAP_TRIES 5
840 
841 /*
842  * Do all that is necessary to remove user space mappings. Unmap
843  * the pages and send SIGBUS to the processes if the data was dirty.
844  */
845 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
846 				  int trapno)
847 {
848 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
849 	struct address_space *mapping;
850 	LIST_HEAD(tokill);
851 	int ret;
852 	int i;
853 	int kill = 1;
854 	struct page *hpage = compound_head(p);
855 
856 	if (PageReserved(p) || PageSlab(p))
857 		return SWAP_SUCCESS;
858 
859 	/*
860 	 * This check implies we don't kill processes if their pages
861 	 * are in the swap cache early. Those are always late kills.
862 	 */
863 	if (!page_mapped(hpage))
864 		return SWAP_SUCCESS;
865 
866 	if (PageKsm(p))
867 		return SWAP_FAIL;
868 
869 	if (PageSwapCache(p)) {
870 		printk(KERN_ERR
871 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
872 		ttu |= TTU_IGNORE_HWPOISON;
873 	}
874 
875 	/*
876 	 * Propagate the dirty bit from PTEs to struct page first, because we
877 	 * need this to decide if we should kill or just drop the page.
878 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
879 	 * be called inside page lock (it's recommended but not enforced).
880 	 */
881 	mapping = page_mapping(hpage);
882 	if (!PageDirty(hpage) && mapping &&
883 	    mapping_cap_writeback_dirty(mapping)) {
884 		if (page_mkclean(hpage)) {
885 			SetPageDirty(hpage);
886 		} else {
887 			kill = 0;
888 			ttu |= TTU_IGNORE_HWPOISON;
889 			printk(KERN_INFO
890 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
891 				pfn);
892 		}
893 	}
894 
895 	/*
896 	 * First collect all the processes that have the page
897 	 * mapped in dirty form.  This has to be done before try_to_unmap,
898 	 * because ttu takes the rmap data structures down.
899 	 *
900 	 * Error handling: We ignore errors here because
901 	 * there's nothing that can be done.
902 	 */
903 	if (kill)
904 		collect_procs(hpage, &tokill);
905 
906 	/*
907 	 * try_to_unmap can fail temporarily due to races.
908 	 * Try a few times (RED-PEN better strategy?)
909 	 */
910 	for (i = 0; i < N_UNMAP_TRIES; i++) {
911 		ret = try_to_unmap(hpage, ttu);
912 		if (ret == SWAP_SUCCESS)
913 			break;
914 		pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn,  ret);
915 	}
916 
917 	if (ret != SWAP_SUCCESS)
918 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
919 				pfn, page_mapcount(hpage));
920 
921 	/*
922 	 * Now that the dirty bit has been propagated to the
923 	 * struct page and all unmaps done we can decide if
924 	 * killing is needed or not.  Only kill when the page
925 	 * was dirty, otherwise the tokill list is merely
926 	 * freed.  When there was a problem unmapping earlier
927 	 * use a more force-full uncatchable kill to prevent
928 	 * any accesses to the poisoned memory.
929 	 */
930 	kill_procs_ao(&tokill, !!PageDirty(hpage), trapno,
931 		      ret != SWAP_SUCCESS, pfn);
932 
933 	return ret;
934 }
935 
936 static void set_page_hwpoison_huge_page(struct page *hpage)
937 {
938 	int i;
939 	int nr_pages = 1 << compound_order(hpage);
940 	for (i = 0; i < nr_pages; i++)
941 		SetPageHWPoison(hpage + i);
942 }
943 
944 static void clear_page_hwpoison_huge_page(struct page *hpage)
945 {
946 	int i;
947 	int nr_pages = 1 << compound_order(hpage);
948 	for (i = 0; i < nr_pages; i++)
949 		ClearPageHWPoison(hpage + i);
950 }
951 
952 int __memory_failure(unsigned long pfn, int trapno, int flags)
953 {
954 	struct page_state *ps;
955 	struct page *p;
956 	struct page *hpage;
957 	int res;
958 	unsigned int nr_pages;
959 
960 	if (!sysctl_memory_failure_recovery)
961 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
962 
963 	if (!pfn_valid(pfn)) {
964 		printk(KERN_ERR
965 		       "MCE %#lx: memory outside kernel control\n",
966 		       pfn);
967 		return -ENXIO;
968 	}
969 
970 	p = pfn_to_page(pfn);
971 	hpage = compound_head(p);
972 	if (TestSetPageHWPoison(p)) {
973 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
974 		return 0;
975 	}
976 
977 	nr_pages = 1 << compound_order(hpage);
978 	atomic_long_add(nr_pages, &mce_bad_pages);
979 
980 	/*
981 	 * We need/can do nothing about count=0 pages.
982 	 * 1) it's a free page, and therefore in safe hand:
983 	 *    prep_new_page() will be the gate keeper.
984 	 * 2) it's part of a non-compound high order page.
985 	 *    Implies some kernel user: cannot stop them from
986 	 *    R/W the page; let's pray that the page has been
987 	 *    used and will be freed some time later.
988 	 * In fact it's dangerous to directly bump up page count from 0,
989 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
990 	 */
991 	if (!(flags & MF_COUNT_INCREASED) &&
992 		!get_page_unless_zero(hpage)) {
993 		if (is_free_buddy_page(p)) {
994 			action_result(pfn, "free buddy", DELAYED);
995 			return 0;
996 		} else {
997 			action_result(pfn, "high order kernel", IGNORED);
998 			return -EBUSY;
999 		}
1000 	}
1001 
1002 	/*
1003 	 * We ignore non-LRU pages for good reasons.
1004 	 * - PG_locked is only well defined for LRU pages and a few others
1005 	 * - to avoid races with __set_page_locked()
1006 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1007 	 * The check (unnecessarily) ignores LRU pages being isolated and
1008 	 * walked by the page reclaim code, however that's not a big loss.
1009 	 */
1010 	if (!PageLRU(p) && !PageHuge(p))
1011 		shake_page(p, 0);
1012 	if (!PageLRU(p) && !PageHuge(p)) {
1013 		/*
1014 		 * shake_page could have turned it free.
1015 		 */
1016 		if (is_free_buddy_page(p)) {
1017 			action_result(pfn, "free buddy, 2nd try", DELAYED);
1018 			return 0;
1019 		}
1020 		action_result(pfn, "non LRU", IGNORED);
1021 		put_page(p);
1022 		return -EBUSY;
1023 	}
1024 
1025 	/*
1026 	 * Lock the page and wait for writeback to finish.
1027 	 * It's very difficult to mess with pages currently under IO
1028 	 * and in many cases impossible, so we just avoid it here.
1029 	 */
1030 	lock_page_nosync(hpage);
1031 
1032 	/*
1033 	 * unpoison always clear PG_hwpoison inside page lock
1034 	 */
1035 	if (!PageHWPoison(p)) {
1036 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1037 		res = 0;
1038 		goto out;
1039 	}
1040 	if (hwpoison_filter(p)) {
1041 		if (TestClearPageHWPoison(p))
1042 			atomic_long_sub(nr_pages, &mce_bad_pages);
1043 		unlock_page(hpage);
1044 		put_page(hpage);
1045 		return 0;
1046 	}
1047 
1048 	/*
1049 	 * For error on the tail page, we should set PG_hwpoison
1050 	 * on the head page to show that the hugepage is hwpoisoned
1051 	 */
1052 	if (PageTail(p) && TestSetPageHWPoison(hpage)) {
1053 		action_result(pfn, "hugepage already hardware poisoned",
1054 				IGNORED);
1055 		unlock_page(hpage);
1056 		put_page(hpage);
1057 		return 0;
1058 	}
1059 	/*
1060 	 * Set PG_hwpoison on all pages in an error hugepage,
1061 	 * because containment is done in hugepage unit for now.
1062 	 * Since we have done TestSetPageHWPoison() for the head page with
1063 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1064 	 */
1065 	if (PageHuge(p))
1066 		set_page_hwpoison_huge_page(hpage);
1067 
1068 	wait_on_page_writeback(p);
1069 
1070 	/*
1071 	 * Now take care of user space mappings.
1072 	 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
1073 	 */
1074 	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1075 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1076 		res = -EBUSY;
1077 		goto out;
1078 	}
1079 
1080 	/*
1081 	 * Torn down by someone else?
1082 	 */
1083 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1084 		action_result(pfn, "already truncated LRU", IGNORED);
1085 		res = -EBUSY;
1086 		goto out;
1087 	}
1088 
1089 	res = -EBUSY;
1090 	for (ps = error_states;; ps++) {
1091 		if ((p->flags & ps->mask) == ps->res) {
1092 			res = page_action(ps, p, pfn);
1093 			break;
1094 		}
1095 	}
1096 out:
1097 	unlock_page(hpage);
1098 	return res;
1099 }
1100 EXPORT_SYMBOL_GPL(__memory_failure);
1101 
1102 /**
1103  * memory_failure - Handle memory failure of a page.
1104  * @pfn: Page Number of the corrupted page
1105  * @trapno: Trap number reported in the signal to user space.
1106  *
1107  * This function is called by the low level machine check code
1108  * of an architecture when it detects hardware memory corruption
1109  * of a page. It tries its best to recover, which includes
1110  * dropping pages, killing processes etc.
1111  *
1112  * The function is primarily of use for corruptions that
1113  * happen outside the current execution context (e.g. when
1114  * detected by a background scrubber)
1115  *
1116  * Must run in process context (e.g. a work queue) with interrupts
1117  * enabled and no spinlocks hold.
1118  */
1119 void memory_failure(unsigned long pfn, int trapno)
1120 {
1121 	__memory_failure(pfn, trapno, 0);
1122 }
1123 
1124 /**
1125  * unpoison_memory - Unpoison a previously poisoned page
1126  * @pfn: Page number of the to be unpoisoned page
1127  *
1128  * Software-unpoison a page that has been poisoned by
1129  * memory_failure() earlier.
1130  *
1131  * This is only done on the software-level, so it only works
1132  * for linux injected failures, not real hardware failures
1133  *
1134  * Returns 0 for success, otherwise -errno.
1135  */
1136 int unpoison_memory(unsigned long pfn)
1137 {
1138 	struct page *page;
1139 	struct page *p;
1140 	int freeit = 0;
1141 	unsigned int nr_pages;
1142 
1143 	if (!pfn_valid(pfn))
1144 		return -ENXIO;
1145 
1146 	p = pfn_to_page(pfn);
1147 	page = compound_head(p);
1148 
1149 	if (!PageHWPoison(p)) {
1150 		pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
1151 		return 0;
1152 	}
1153 
1154 	nr_pages = 1 << compound_order(page);
1155 
1156 	if (!get_page_unless_zero(page)) {
1157 		if (TestClearPageHWPoison(p))
1158 			atomic_long_sub(nr_pages, &mce_bad_pages);
1159 		pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
1160 		return 0;
1161 	}
1162 
1163 	lock_page_nosync(page);
1164 	/*
1165 	 * This test is racy because PG_hwpoison is set outside of page lock.
1166 	 * That's acceptable because that won't trigger kernel panic. Instead,
1167 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1168 	 * the free buddy page pool.
1169 	 */
1170 	if (TestClearPageHWPoison(page)) {
1171 		pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
1172 		atomic_long_sub(nr_pages, &mce_bad_pages);
1173 		freeit = 1;
1174 	}
1175 	if (PageHuge(p))
1176 		clear_page_hwpoison_huge_page(page);
1177 	unlock_page(page);
1178 
1179 	put_page(page);
1180 	if (freeit)
1181 		put_page(page);
1182 
1183 	return 0;
1184 }
1185 EXPORT_SYMBOL(unpoison_memory);
1186 
1187 static struct page *new_page(struct page *p, unsigned long private, int **x)
1188 {
1189 	int nid = page_to_nid(p);
1190 	return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1191 }
1192 
1193 /*
1194  * Safely get reference count of an arbitrary page.
1195  * Returns 0 for a free page, -EIO for a zero refcount page
1196  * that is not free, and 1 for any other page type.
1197  * For 1 the page is returned with increased page count, otherwise not.
1198  */
1199 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1200 {
1201 	int ret;
1202 
1203 	if (flags & MF_COUNT_INCREASED)
1204 		return 1;
1205 
1206 	/*
1207 	 * The lock_system_sleep prevents a race with memory hotplug,
1208 	 * because the isolation assumes there's only a single user.
1209 	 * This is a big hammer, a better would be nicer.
1210 	 */
1211 	lock_system_sleep();
1212 
1213 	/*
1214 	 * Isolate the page, so that it doesn't get reallocated if it
1215 	 * was free.
1216 	 */
1217 	set_migratetype_isolate(p);
1218 	if (!get_page_unless_zero(compound_head(p))) {
1219 		if (is_free_buddy_page(p)) {
1220 			pr_debug("get_any_page: %#lx free buddy page\n", pfn);
1221 			/* Set hwpoison bit while page is still isolated */
1222 			SetPageHWPoison(p);
1223 			ret = 0;
1224 		} else {
1225 			pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1226 				pfn, p->flags);
1227 			ret = -EIO;
1228 		}
1229 	} else {
1230 		/* Not a free page */
1231 		ret = 1;
1232 	}
1233 	unset_migratetype_isolate(p);
1234 	unlock_system_sleep();
1235 	return ret;
1236 }
1237 
1238 /**
1239  * soft_offline_page - Soft offline a page.
1240  * @page: page to offline
1241  * @flags: flags. Same as memory_failure().
1242  *
1243  * Returns 0 on success, otherwise negated errno.
1244  *
1245  * Soft offline a page, by migration or invalidation,
1246  * without killing anything. This is for the case when
1247  * a page is not corrupted yet (so it's still valid to access),
1248  * but has had a number of corrected errors and is better taken
1249  * out.
1250  *
1251  * The actual policy on when to do that is maintained by
1252  * user space.
1253  *
1254  * This should never impact any application or cause data loss,
1255  * however it might take some time.
1256  *
1257  * This is not a 100% solution for all memory, but tries to be
1258  * ``good enough'' for the majority of memory.
1259  */
1260 int soft_offline_page(struct page *page, int flags)
1261 {
1262 	int ret;
1263 	unsigned long pfn = page_to_pfn(page);
1264 
1265 	ret = get_any_page(page, pfn, flags);
1266 	if (ret < 0)
1267 		return ret;
1268 	if (ret == 0)
1269 		goto done;
1270 
1271 	/*
1272 	 * Page cache page we can handle?
1273 	 */
1274 	if (!PageLRU(page)) {
1275 		/*
1276 		 * Try to free it.
1277 		 */
1278 		put_page(page);
1279 		shake_page(page, 1);
1280 
1281 		/*
1282 		 * Did it turn free?
1283 		 */
1284 		ret = get_any_page(page, pfn, 0);
1285 		if (ret < 0)
1286 			return ret;
1287 		if (ret == 0)
1288 			goto done;
1289 	}
1290 	if (!PageLRU(page)) {
1291 		pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
1292 				pfn, page->flags);
1293 		return -EIO;
1294 	}
1295 
1296 	lock_page(page);
1297 	wait_on_page_writeback(page);
1298 
1299 	/*
1300 	 * Synchronized using the page lock with memory_failure()
1301 	 */
1302 	if (PageHWPoison(page)) {
1303 		unlock_page(page);
1304 		put_page(page);
1305 		pr_debug("soft offline: %#lx page already poisoned\n", pfn);
1306 		return -EBUSY;
1307 	}
1308 
1309 	/*
1310 	 * Try to invalidate first. This should work for
1311 	 * non dirty unmapped page cache pages.
1312 	 */
1313 	ret = invalidate_inode_page(page);
1314 	unlock_page(page);
1315 
1316 	/*
1317 	 * Drop count because page migration doesn't like raised
1318 	 * counts. The page could get re-allocated, but if it becomes
1319 	 * LRU the isolation will just fail.
1320 	 * RED-PEN would be better to keep it isolated here, but we
1321 	 * would need to fix isolation locking first.
1322 	 */
1323 	put_page(page);
1324 	if (ret == 1) {
1325 		ret = 0;
1326 		pr_debug("soft_offline: %#lx: invalidated\n", pfn);
1327 		goto done;
1328 	}
1329 
1330 	/*
1331 	 * Simple invalidation didn't work.
1332 	 * Try to migrate to a new page instead. migrate.c
1333 	 * handles a large number of cases for us.
1334 	 */
1335 	ret = isolate_lru_page(page);
1336 	if (!ret) {
1337 		LIST_HEAD(pagelist);
1338 
1339 		list_add(&page->lru, &pagelist);
1340 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1341 		if (ret) {
1342 			pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1343 				pfn, ret, page->flags);
1344 			if (ret > 0)
1345 				ret = -EIO;
1346 		}
1347 	} else {
1348 		pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1349 				pfn, ret, page_count(page), page->flags);
1350 	}
1351 	if (ret)
1352 		return ret;
1353 
1354 done:
1355 	atomic_long_add(1, &mce_bad_pages);
1356 	SetPageHWPoison(page);
1357 	/* keep elevated page count for bad page */
1358 	return ret;
1359 }
1360 
1361 /*
1362  * The caller must hold current->mm->mmap_sem in read mode.
1363  */
1364 int is_hwpoison_address(unsigned long addr)
1365 {
1366 	pgd_t *pgdp;
1367 	pud_t pud, *pudp;
1368 	pmd_t pmd, *pmdp;
1369 	pte_t pte, *ptep;
1370 	swp_entry_t entry;
1371 
1372 	pgdp = pgd_offset(current->mm, addr);
1373 	if (!pgd_present(*pgdp))
1374 		return 0;
1375 	pudp = pud_offset(pgdp, addr);
1376 	pud = *pudp;
1377 	if (!pud_present(pud) || pud_large(pud))
1378 		return 0;
1379 	pmdp = pmd_offset(pudp, addr);
1380 	pmd = *pmdp;
1381 	if (!pmd_present(pmd) || pmd_large(pmd))
1382 		return 0;
1383 	ptep = pte_offset_map(pmdp, addr);
1384 	pte = *ptep;
1385 	pte_unmap(ptep);
1386 	if (!is_swap_pte(pte))
1387 		return 0;
1388 	entry = pte_to_swp_entry(pte);
1389 	return is_hwpoison_entry(entry);
1390 }
1391 EXPORT_SYMBOL_GPL(is_hwpoison_address);
1392