xref: /linux/mm/memory-failure.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a 2bit ECC memory or cache
11  * failure.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronous to other VM
15  * users, because memory failures could happen anytime and anywhere,
16  * possibly violating some of their assumptions. This is why this code
17  * has to be extremely careful. Generally it tries to use normal locking
18  * rules, as in get the standard locks, even if that means the
19  * error handling takes potentially a long time.
20  *
21  * The operation to map back from RMAP chains to processes has to walk
22  * the complete process list and has non linear complexity with the number
23  * mappings. In short it can be quite slow. But since memory corruptions
24  * are rare we hope to get away with this.
25  */
26 
27 /*
28  * Notebook:
29  * - hugetlb needs more code
30  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31  * - pass bad pages to kdump next kernel
32  */
33 #define DEBUG 1		/* remove me in 2.6.34 */
34 #include <linux/kernel.h>
35 #include <linux/mm.h>
36 #include <linux/page-flags.h>
37 #include <linux/kernel-page-flags.h>
38 #include <linux/sched.h>
39 #include <linux/ksm.h>
40 #include <linux/rmap.h>
41 #include <linux/pagemap.h>
42 #include <linux/swap.h>
43 #include <linux/backing-dev.h>
44 #include <linux/migrate.h>
45 #include <linux/page-isolation.h>
46 #include <linux/suspend.h>
47 #include <linux/slab.h>
48 #include <linux/swapops.h>
49 #include "internal.h"
50 
51 int sysctl_memory_failure_early_kill __read_mostly = 0;
52 
53 int sysctl_memory_failure_recovery __read_mostly = 1;
54 
55 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
56 
57 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
58 
59 u32 hwpoison_filter_enable = 0;
60 u32 hwpoison_filter_dev_major = ~0U;
61 u32 hwpoison_filter_dev_minor = ~0U;
62 u64 hwpoison_filter_flags_mask;
63 u64 hwpoison_filter_flags_value;
64 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
65 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
66 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
67 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
68 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
69 
70 static int hwpoison_filter_dev(struct page *p)
71 {
72 	struct address_space *mapping;
73 	dev_t dev;
74 
75 	if (hwpoison_filter_dev_major == ~0U &&
76 	    hwpoison_filter_dev_minor == ~0U)
77 		return 0;
78 
79 	/*
80 	 * page_mapping() does not accept slab page
81 	 */
82 	if (PageSlab(p))
83 		return -EINVAL;
84 
85 	mapping = page_mapping(p);
86 	if (mapping == NULL || mapping->host == NULL)
87 		return -EINVAL;
88 
89 	dev = mapping->host->i_sb->s_dev;
90 	if (hwpoison_filter_dev_major != ~0U &&
91 	    hwpoison_filter_dev_major != MAJOR(dev))
92 		return -EINVAL;
93 	if (hwpoison_filter_dev_minor != ~0U &&
94 	    hwpoison_filter_dev_minor != MINOR(dev))
95 		return -EINVAL;
96 
97 	return 0;
98 }
99 
100 static int hwpoison_filter_flags(struct page *p)
101 {
102 	if (!hwpoison_filter_flags_mask)
103 		return 0;
104 
105 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
106 				    hwpoison_filter_flags_value)
107 		return 0;
108 	else
109 		return -EINVAL;
110 }
111 
112 /*
113  * This allows stress tests to limit test scope to a collection of tasks
114  * by putting them under some memcg. This prevents killing unrelated/important
115  * processes such as /sbin/init. Note that the target task may share clean
116  * pages with init (eg. libc text), which is harmless. If the target task
117  * share _dirty_ pages with another task B, the test scheme must make sure B
118  * is also included in the memcg. At last, due to race conditions this filter
119  * can only guarantee that the page either belongs to the memcg tasks, or is
120  * a freed page.
121  */
122 #ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
123 u64 hwpoison_filter_memcg;
124 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
125 static int hwpoison_filter_task(struct page *p)
126 {
127 	struct mem_cgroup *mem;
128 	struct cgroup_subsys_state *css;
129 	unsigned long ino;
130 
131 	if (!hwpoison_filter_memcg)
132 		return 0;
133 
134 	mem = try_get_mem_cgroup_from_page(p);
135 	if (!mem)
136 		return -EINVAL;
137 
138 	css = mem_cgroup_css(mem);
139 	/* root_mem_cgroup has NULL dentries */
140 	if (!css->cgroup->dentry)
141 		return -EINVAL;
142 
143 	ino = css->cgroup->dentry->d_inode->i_ino;
144 	css_put(css);
145 
146 	if (ino != hwpoison_filter_memcg)
147 		return -EINVAL;
148 
149 	return 0;
150 }
151 #else
152 static int hwpoison_filter_task(struct page *p) { return 0; }
153 #endif
154 
155 int hwpoison_filter(struct page *p)
156 {
157 	if (!hwpoison_filter_enable)
158 		return 0;
159 
160 	if (hwpoison_filter_dev(p))
161 		return -EINVAL;
162 
163 	if (hwpoison_filter_flags(p))
164 		return -EINVAL;
165 
166 	if (hwpoison_filter_task(p))
167 		return -EINVAL;
168 
169 	return 0;
170 }
171 #else
172 int hwpoison_filter(struct page *p)
173 {
174 	return 0;
175 }
176 #endif
177 
178 EXPORT_SYMBOL_GPL(hwpoison_filter);
179 
180 /*
181  * Send all the processes who have the page mapped an ``action optional''
182  * signal.
183  */
184 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
185 			unsigned long pfn)
186 {
187 	struct siginfo si;
188 	int ret;
189 
190 	printk(KERN_ERR
191 		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
192 		pfn, t->comm, t->pid);
193 	si.si_signo = SIGBUS;
194 	si.si_errno = 0;
195 	si.si_code = BUS_MCEERR_AO;
196 	si.si_addr = (void *)addr;
197 #ifdef __ARCH_SI_TRAPNO
198 	si.si_trapno = trapno;
199 #endif
200 	si.si_addr_lsb = PAGE_SHIFT;
201 	/*
202 	 * Don't use force here, it's convenient if the signal
203 	 * can be temporarily blocked.
204 	 * This could cause a loop when the user sets SIGBUS
205 	 * to SIG_IGN, but hopefully noone will do that?
206 	 */
207 	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
208 	if (ret < 0)
209 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
210 		       t->comm, t->pid, ret);
211 	return ret;
212 }
213 
214 /*
215  * When a unknown page type is encountered drain as many buffers as possible
216  * in the hope to turn the page into a LRU or free page, which we can handle.
217  */
218 void shake_page(struct page *p, int access)
219 {
220 	if (!PageSlab(p)) {
221 		lru_add_drain_all();
222 		if (PageLRU(p))
223 			return;
224 		drain_all_pages();
225 		if (PageLRU(p) || is_free_buddy_page(p))
226 			return;
227 	}
228 
229 	/*
230 	 * Only all shrink_slab here (which would also
231 	 * shrink other caches) if access is not potentially fatal.
232 	 */
233 	if (access) {
234 		int nr;
235 		do {
236 			nr = shrink_slab(1000, GFP_KERNEL, 1000);
237 			if (page_count(p) == 0)
238 				break;
239 		} while (nr > 10);
240 	}
241 }
242 EXPORT_SYMBOL_GPL(shake_page);
243 
244 /*
245  * Kill all processes that have a poisoned page mapped and then isolate
246  * the page.
247  *
248  * General strategy:
249  * Find all processes having the page mapped and kill them.
250  * But we keep a page reference around so that the page is not
251  * actually freed yet.
252  * Then stash the page away
253  *
254  * There's no convenient way to get back to mapped processes
255  * from the VMAs. So do a brute-force search over all
256  * running processes.
257  *
258  * Remember that machine checks are not common (or rather
259  * if they are common you have other problems), so this shouldn't
260  * be a performance issue.
261  *
262  * Also there are some races possible while we get from the
263  * error detection to actually handle it.
264  */
265 
266 struct to_kill {
267 	struct list_head nd;
268 	struct task_struct *tsk;
269 	unsigned long addr;
270 	unsigned addr_valid:1;
271 };
272 
273 /*
274  * Failure handling: if we can't find or can't kill a process there's
275  * not much we can do.	We just print a message and ignore otherwise.
276  */
277 
278 /*
279  * Schedule a process for later kill.
280  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
281  * TBD would GFP_NOIO be enough?
282  */
283 static void add_to_kill(struct task_struct *tsk, struct page *p,
284 		       struct vm_area_struct *vma,
285 		       struct list_head *to_kill,
286 		       struct to_kill **tkc)
287 {
288 	struct to_kill *tk;
289 
290 	if (*tkc) {
291 		tk = *tkc;
292 		*tkc = NULL;
293 	} else {
294 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
295 		if (!tk) {
296 			printk(KERN_ERR
297 		"MCE: Out of memory while machine check handling\n");
298 			return;
299 		}
300 	}
301 	tk->addr = page_address_in_vma(p, vma);
302 	tk->addr_valid = 1;
303 
304 	/*
305 	 * In theory we don't have to kill when the page was
306 	 * munmaped. But it could be also a mremap. Since that's
307 	 * likely very rare kill anyways just out of paranoia, but use
308 	 * a SIGKILL because the error is not contained anymore.
309 	 */
310 	if (tk->addr == -EFAULT) {
311 		pr_debug("MCE: Unable to find user space address %lx in %s\n",
312 			page_to_pfn(p), tsk->comm);
313 		tk->addr_valid = 0;
314 	}
315 	get_task_struct(tsk);
316 	tk->tsk = tsk;
317 	list_add_tail(&tk->nd, to_kill);
318 }
319 
320 /*
321  * Kill the processes that have been collected earlier.
322  *
323  * Only do anything when DOIT is set, otherwise just free the list
324  * (this is used for clean pages which do not need killing)
325  * Also when FAIL is set do a force kill because something went
326  * wrong earlier.
327  */
328 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
329 			  int fail, unsigned long pfn)
330 {
331 	struct to_kill *tk, *next;
332 
333 	list_for_each_entry_safe (tk, next, to_kill, nd) {
334 		if (doit) {
335 			/*
336 			 * In case something went wrong with munmapping
337 			 * make sure the process doesn't catch the
338 			 * signal and then access the memory. Just kill it.
339 			 */
340 			if (fail || tk->addr_valid == 0) {
341 				printk(KERN_ERR
342 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
343 					pfn, tk->tsk->comm, tk->tsk->pid);
344 				force_sig(SIGKILL, tk->tsk);
345 			}
346 
347 			/*
348 			 * In theory the process could have mapped
349 			 * something else on the address in-between. We could
350 			 * check for that, but we need to tell the
351 			 * process anyways.
352 			 */
353 			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
354 					      pfn) < 0)
355 				printk(KERN_ERR
356 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
357 					pfn, tk->tsk->comm, tk->tsk->pid);
358 		}
359 		put_task_struct(tk->tsk);
360 		kfree(tk);
361 	}
362 }
363 
364 static int task_early_kill(struct task_struct *tsk)
365 {
366 	if (!tsk->mm)
367 		return 0;
368 	if (tsk->flags & PF_MCE_PROCESS)
369 		return !!(tsk->flags & PF_MCE_EARLY);
370 	return sysctl_memory_failure_early_kill;
371 }
372 
373 /*
374  * Collect processes when the error hit an anonymous page.
375  */
376 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
377 			      struct to_kill **tkc)
378 {
379 	struct vm_area_struct *vma;
380 	struct task_struct *tsk;
381 	struct anon_vma *av;
382 
383 	read_lock(&tasklist_lock);
384 	av = page_lock_anon_vma(page);
385 	if (av == NULL)	/* Not actually mapped anymore */
386 		goto out;
387 	for_each_process (tsk) {
388 		struct anon_vma_chain *vmac;
389 
390 		if (!task_early_kill(tsk))
391 			continue;
392 		list_for_each_entry(vmac, &av->head, same_anon_vma) {
393 			vma = vmac->vma;
394 			if (!page_mapped_in_vma(page, vma))
395 				continue;
396 			if (vma->vm_mm == tsk->mm)
397 				add_to_kill(tsk, page, vma, to_kill, tkc);
398 		}
399 	}
400 	page_unlock_anon_vma(av);
401 out:
402 	read_unlock(&tasklist_lock);
403 }
404 
405 /*
406  * Collect processes when the error hit a file mapped page.
407  */
408 static void collect_procs_file(struct page *page, struct list_head *to_kill,
409 			      struct to_kill **tkc)
410 {
411 	struct vm_area_struct *vma;
412 	struct task_struct *tsk;
413 	struct prio_tree_iter iter;
414 	struct address_space *mapping = page->mapping;
415 
416 	/*
417 	 * A note on the locking order between the two locks.
418 	 * We don't rely on this particular order.
419 	 * If you have some other code that needs a different order
420 	 * feel free to switch them around. Or add a reverse link
421 	 * from mm_struct to task_struct, then this could be all
422 	 * done without taking tasklist_lock and looping over all tasks.
423 	 */
424 
425 	read_lock(&tasklist_lock);
426 	spin_lock(&mapping->i_mmap_lock);
427 	for_each_process(tsk) {
428 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
429 
430 		if (!task_early_kill(tsk))
431 			continue;
432 
433 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
434 				      pgoff) {
435 			/*
436 			 * Send early kill signal to tasks where a vma covers
437 			 * the page but the corrupted page is not necessarily
438 			 * mapped it in its pte.
439 			 * Assume applications who requested early kill want
440 			 * to be informed of all such data corruptions.
441 			 */
442 			if (vma->vm_mm == tsk->mm)
443 				add_to_kill(tsk, page, vma, to_kill, tkc);
444 		}
445 	}
446 	spin_unlock(&mapping->i_mmap_lock);
447 	read_unlock(&tasklist_lock);
448 }
449 
450 /*
451  * Collect the processes who have the corrupted page mapped to kill.
452  * This is done in two steps for locking reasons.
453  * First preallocate one tokill structure outside the spin locks,
454  * so that we can kill at least one process reasonably reliable.
455  */
456 static void collect_procs(struct page *page, struct list_head *tokill)
457 {
458 	struct to_kill *tk;
459 
460 	if (!page->mapping)
461 		return;
462 
463 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
464 	if (!tk)
465 		return;
466 	if (PageAnon(page))
467 		collect_procs_anon(page, tokill, &tk);
468 	else
469 		collect_procs_file(page, tokill, &tk);
470 	kfree(tk);
471 }
472 
473 /*
474  * Error handlers for various types of pages.
475  */
476 
477 enum outcome {
478 	IGNORED,	/* Error: cannot be handled */
479 	FAILED,		/* Error: handling failed */
480 	DELAYED,	/* Will be handled later */
481 	RECOVERED,	/* Successfully recovered */
482 };
483 
484 static const char *action_name[] = {
485 	[IGNORED] = "Ignored",
486 	[FAILED] = "Failed",
487 	[DELAYED] = "Delayed",
488 	[RECOVERED] = "Recovered",
489 };
490 
491 /*
492  * XXX: It is possible that a page is isolated from LRU cache,
493  * and then kept in swap cache or failed to remove from page cache.
494  * The page count will stop it from being freed by unpoison.
495  * Stress tests should be aware of this memory leak problem.
496  */
497 static int delete_from_lru_cache(struct page *p)
498 {
499 	if (!isolate_lru_page(p)) {
500 		/*
501 		 * Clear sensible page flags, so that the buddy system won't
502 		 * complain when the page is unpoison-and-freed.
503 		 */
504 		ClearPageActive(p);
505 		ClearPageUnevictable(p);
506 		/*
507 		 * drop the page count elevated by isolate_lru_page()
508 		 */
509 		page_cache_release(p);
510 		return 0;
511 	}
512 	return -EIO;
513 }
514 
515 /*
516  * Error hit kernel page.
517  * Do nothing, try to be lucky and not touch this instead. For a few cases we
518  * could be more sophisticated.
519  */
520 static int me_kernel(struct page *p, unsigned long pfn)
521 {
522 	return IGNORED;
523 }
524 
525 /*
526  * Page in unknown state. Do nothing.
527  */
528 static int me_unknown(struct page *p, unsigned long pfn)
529 {
530 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
531 	return FAILED;
532 }
533 
534 /*
535  * Clean (or cleaned) page cache page.
536  */
537 static int me_pagecache_clean(struct page *p, unsigned long pfn)
538 {
539 	int err;
540 	int ret = FAILED;
541 	struct address_space *mapping;
542 
543 	delete_from_lru_cache(p);
544 
545 	/*
546 	 * For anonymous pages we're done the only reference left
547 	 * should be the one m_f() holds.
548 	 */
549 	if (PageAnon(p))
550 		return RECOVERED;
551 
552 	/*
553 	 * Now truncate the page in the page cache. This is really
554 	 * more like a "temporary hole punch"
555 	 * Don't do this for block devices when someone else
556 	 * has a reference, because it could be file system metadata
557 	 * and that's not safe to truncate.
558 	 */
559 	mapping = page_mapping(p);
560 	if (!mapping) {
561 		/*
562 		 * Page has been teared down in the meanwhile
563 		 */
564 		return FAILED;
565 	}
566 
567 	/*
568 	 * Truncation is a bit tricky. Enable it per file system for now.
569 	 *
570 	 * Open: to take i_mutex or not for this? Right now we don't.
571 	 */
572 	if (mapping->a_ops->error_remove_page) {
573 		err = mapping->a_ops->error_remove_page(mapping, p);
574 		if (err != 0) {
575 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
576 					pfn, err);
577 		} else if (page_has_private(p) &&
578 				!try_to_release_page(p, GFP_NOIO)) {
579 			pr_debug("MCE %#lx: failed to release buffers\n", pfn);
580 		} else {
581 			ret = RECOVERED;
582 		}
583 	} else {
584 		/*
585 		 * If the file system doesn't support it just invalidate
586 		 * This fails on dirty or anything with private pages
587 		 */
588 		if (invalidate_inode_page(p))
589 			ret = RECOVERED;
590 		else
591 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
592 				pfn);
593 	}
594 	return ret;
595 }
596 
597 /*
598  * Dirty cache page page
599  * Issues: when the error hit a hole page the error is not properly
600  * propagated.
601  */
602 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
603 {
604 	struct address_space *mapping = page_mapping(p);
605 
606 	SetPageError(p);
607 	/* TBD: print more information about the file. */
608 	if (mapping) {
609 		/*
610 		 * IO error will be reported by write(), fsync(), etc.
611 		 * who check the mapping.
612 		 * This way the application knows that something went
613 		 * wrong with its dirty file data.
614 		 *
615 		 * There's one open issue:
616 		 *
617 		 * The EIO will be only reported on the next IO
618 		 * operation and then cleared through the IO map.
619 		 * Normally Linux has two mechanisms to pass IO error
620 		 * first through the AS_EIO flag in the address space
621 		 * and then through the PageError flag in the page.
622 		 * Since we drop pages on memory failure handling the
623 		 * only mechanism open to use is through AS_AIO.
624 		 *
625 		 * This has the disadvantage that it gets cleared on
626 		 * the first operation that returns an error, while
627 		 * the PageError bit is more sticky and only cleared
628 		 * when the page is reread or dropped.  If an
629 		 * application assumes it will always get error on
630 		 * fsync, but does other operations on the fd before
631 		 * and the page is dropped inbetween then the error
632 		 * will not be properly reported.
633 		 *
634 		 * This can already happen even without hwpoisoned
635 		 * pages: first on metadata IO errors (which only
636 		 * report through AS_EIO) or when the page is dropped
637 		 * at the wrong time.
638 		 *
639 		 * So right now we assume that the application DTRT on
640 		 * the first EIO, but we're not worse than other parts
641 		 * of the kernel.
642 		 */
643 		mapping_set_error(mapping, EIO);
644 	}
645 
646 	return me_pagecache_clean(p, pfn);
647 }
648 
649 /*
650  * Clean and dirty swap cache.
651  *
652  * Dirty swap cache page is tricky to handle. The page could live both in page
653  * cache and swap cache(ie. page is freshly swapped in). So it could be
654  * referenced concurrently by 2 types of PTEs:
655  * normal PTEs and swap PTEs. We try to handle them consistently by calling
656  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
657  * and then
658  *      - clear dirty bit to prevent IO
659  *      - remove from LRU
660  *      - but keep in the swap cache, so that when we return to it on
661  *        a later page fault, we know the application is accessing
662  *        corrupted data and shall be killed (we installed simple
663  *        interception code in do_swap_page to catch it).
664  *
665  * Clean swap cache pages can be directly isolated. A later page fault will
666  * bring in the known good data from disk.
667  */
668 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
669 {
670 	ClearPageDirty(p);
671 	/* Trigger EIO in shmem: */
672 	ClearPageUptodate(p);
673 
674 	if (!delete_from_lru_cache(p))
675 		return DELAYED;
676 	else
677 		return FAILED;
678 }
679 
680 static int me_swapcache_clean(struct page *p, unsigned long pfn)
681 {
682 	delete_from_swap_cache(p);
683 
684 	if (!delete_from_lru_cache(p))
685 		return RECOVERED;
686 	else
687 		return FAILED;
688 }
689 
690 /*
691  * Huge pages. Needs work.
692  * Issues:
693  * No rmap support so we cannot find the original mapper. In theory could walk
694  * all MMs and look for the mappings, but that would be non atomic and racy.
695  * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
696  * like just walking the current process and hoping it has it mapped (that
697  * should be usually true for the common "shared database cache" case)
698  * Should handle free huge pages and dequeue them too, but this needs to
699  * handle huge page accounting correctly.
700  */
701 static int me_huge_page(struct page *p, unsigned long pfn)
702 {
703 	return FAILED;
704 }
705 
706 /*
707  * Various page states we can handle.
708  *
709  * A page state is defined by its current page->flags bits.
710  * The table matches them in order and calls the right handler.
711  *
712  * This is quite tricky because we can access page at any time
713  * in its live cycle, so all accesses have to be extremly careful.
714  *
715  * This is not complete. More states could be added.
716  * For any missing state don't attempt recovery.
717  */
718 
719 #define dirty		(1UL << PG_dirty)
720 #define sc		(1UL << PG_swapcache)
721 #define unevict		(1UL << PG_unevictable)
722 #define mlock		(1UL << PG_mlocked)
723 #define writeback	(1UL << PG_writeback)
724 #define lru		(1UL << PG_lru)
725 #define swapbacked	(1UL << PG_swapbacked)
726 #define head		(1UL << PG_head)
727 #define tail		(1UL << PG_tail)
728 #define compound	(1UL << PG_compound)
729 #define slab		(1UL << PG_slab)
730 #define reserved	(1UL << PG_reserved)
731 
732 static struct page_state {
733 	unsigned long mask;
734 	unsigned long res;
735 	char *msg;
736 	int (*action)(struct page *p, unsigned long pfn);
737 } error_states[] = {
738 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
739 	/*
740 	 * free pages are specially detected outside this table:
741 	 * PG_buddy pages only make a small fraction of all free pages.
742 	 */
743 
744 	/*
745 	 * Could in theory check if slab page is free or if we can drop
746 	 * currently unused objects without touching them. But just
747 	 * treat it as standard kernel for now.
748 	 */
749 	{ slab,		slab,		"kernel slab",	me_kernel },
750 
751 #ifdef CONFIG_PAGEFLAGS_EXTENDED
752 	{ head,		head,		"huge",		me_huge_page },
753 	{ tail,		tail,		"huge",		me_huge_page },
754 #else
755 	{ compound,	compound,	"huge",		me_huge_page },
756 #endif
757 
758 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
759 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
760 
761 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
762 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
763 
764 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
765 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
766 
767 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
768 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
769 
770 	/*
771 	 * Catchall entry: must be at end.
772 	 */
773 	{ 0,		0,		"unknown page state",	me_unknown },
774 };
775 
776 #undef dirty
777 #undef sc
778 #undef unevict
779 #undef mlock
780 #undef writeback
781 #undef lru
782 #undef swapbacked
783 #undef head
784 #undef tail
785 #undef compound
786 #undef slab
787 #undef reserved
788 
789 static void action_result(unsigned long pfn, char *msg, int result)
790 {
791 	struct page *page = pfn_to_page(pfn);
792 
793 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
794 		pfn,
795 		PageDirty(page) ? "dirty " : "",
796 		msg, action_name[result]);
797 }
798 
799 static int page_action(struct page_state *ps, struct page *p,
800 			unsigned long pfn)
801 {
802 	int result;
803 	int count;
804 
805 	result = ps->action(p, pfn);
806 	action_result(pfn, ps->msg, result);
807 
808 	count = page_count(p) - 1;
809 	if (ps->action == me_swapcache_dirty && result == DELAYED)
810 		count--;
811 	if (count != 0) {
812 		printk(KERN_ERR
813 		       "MCE %#lx: %s page still referenced by %d users\n",
814 		       pfn, ps->msg, count);
815 		result = FAILED;
816 	}
817 
818 	/* Could do more checks here if page looks ok */
819 	/*
820 	 * Could adjust zone counters here to correct for the missing page.
821 	 */
822 
823 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
824 }
825 
826 #define N_UNMAP_TRIES 5
827 
828 /*
829  * Do all that is necessary to remove user space mappings. Unmap
830  * the pages and send SIGBUS to the processes if the data was dirty.
831  */
832 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
833 				  int trapno)
834 {
835 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
836 	struct address_space *mapping;
837 	LIST_HEAD(tokill);
838 	int ret;
839 	int i;
840 	int kill = 1;
841 
842 	if (PageReserved(p) || PageSlab(p))
843 		return SWAP_SUCCESS;
844 
845 	/*
846 	 * This check implies we don't kill processes if their pages
847 	 * are in the swap cache early. Those are always late kills.
848 	 */
849 	if (!page_mapped(p))
850 		return SWAP_SUCCESS;
851 
852 	if (PageCompound(p) || PageKsm(p))
853 		return SWAP_FAIL;
854 
855 	if (PageSwapCache(p)) {
856 		printk(KERN_ERR
857 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
858 		ttu |= TTU_IGNORE_HWPOISON;
859 	}
860 
861 	/*
862 	 * Propagate the dirty bit from PTEs to struct page first, because we
863 	 * need this to decide if we should kill or just drop the page.
864 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
865 	 * be called inside page lock (it's recommended but not enforced).
866 	 */
867 	mapping = page_mapping(p);
868 	if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
869 		if (page_mkclean(p)) {
870 			SetPageDirty(p);
871 		} else {
872 			kill = 0;
873 			ttu |= TTU_IGNORE_HWPOISON;
874 			printk(KERN_INFO
875 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
876 				pfn);
877 		}
878 	}
879 
880 	/*
881 	 * First collect all the processes that have the page
882 	 * mapped in dirty form.  This has to be done before try_to_unmap,
883 	 * because ttu takes the rmap data structures down.
884 	 *
885 	 * Error handling: We ignore errors here because
886 	 * there's nothing that can be done.
887 	 */
888 	if (kill)
889 		collect_procs(p, &tokill);
890 
891 	/*
892 	 * try_to_unmap can fail temporarily due to races.
893 	 * Try a few times (RED-PEN better strategy?)
894 	 */
895 	for (i = 0; i < N_UNMAP_TRIES; i++) {
896 		ret = try_to_unmap(p, ttu);
897 		if (ret == SWAP_SUCCESS)
898 			break;
899 		pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn,  ret);
900 	}
901 
902 	if (ret != SWAP_SUCCESS)
903 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
904 				pfn, page_mapcount(p));
905 
906 	/*
907 	 * Now that the dirty bit has been propagated to the
908 	 * struct page and all unmaps done we can decide if
909 	 * killing is needed or not.  Only kill when the page
910 	 * was dirty, otherwise the tokill list is merely
911 	 * freed.  When there was a problem unmapping earlier
912 	 * use a more force-full uncatchable kill to prevent
913 	 * any accesses to the poisoned memory.
914 	 */
915 	kill_procs_ao(&tokill, !!PageDirty(p), trapno,
916 		      ret != SWAP_SUCCESS, pfn);
917 
918 	return ret;
919 }
920 
921 int __memory_failure(unsigned long pfn, int trapno, int flags)
922 {
923 	struct page_state *ps;
924 	struct page *p;
925 	int res;
926 
927 	if (!sysctl_memory_failure_recovery)
928 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
929 
930 	if (!pfn_valid(pfn)) {
931 		printk(KERN_ERR
932 		       "MCE %#lx: memory outside kernel control\n",
933 		       pfn);
934 		return -ENXIO;
935 	}
936 
937 	p = pfn_to_page(pfn);
938 	if (TestSetPageHWPoison(p)) {
939 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
940 		return 0;
941 	}
942 
943 	atomic_long_add(1, &mce_bad_pages);
944 
945 	/*
946 	 * We need/can do nothing about count=0 pages.
947 	 * 1) it's a free page, and therefore in safe hand:
948 	 *    prep_new_page() will be the gate keeper.
949 	 * 2) it's part of a non-compound high order page.
950 	 *    Implies some kernel user: cannot stop them from
951 	 *    R/W the page; let's pray that the page has been
952 	 *    used and will be freed some time later.
953 	 * In fact it's dangerous to directly bump up page count from 0,
954 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
955 	 */
956 	if (!(flags & MF_COUNT_INCREASED) &&
957 		!get_page_unless_zero(compound_head(p))) {
958 		if (is_free_buddy_page(p)) {
959 			action_result(pfn, "free buddy", DELAYED);
960 			return 0;
961 		} else {
962 			action_result(pfn, "high order kernel", IGNORED);
963 			return -EBUSY;
964 		}
965 	}
966 
967 	/*
968 	 * We ignore non-LRU pages for good reasons.
969 	 * - PG_locked is only well defined for LRU pages and a few others
970 	 * - to avoid races with __set_page_locked()
971 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
972 	 * The check (unnecessarily) ignores LRU pages being isolated and
973 	 * walked by the page reclaim code, however that's not a big loss.
974 	 */
975 	if (!PageLRU(p))
976 		shake_page(p, 0);
977 	if (!PageLRU(p)) {
978 		/*
979 		 * shake_page could have turned it free.
980 		 */
981 		if (is_free_buddy_page(p)) {
982 			action_result(pfn, "free buddy, 2nd try", DELAYED);
983 			return 0;
984 		}
985 		action_result(pfn, "non LRU", IGNORED);
986 		put_page(p);
987 		return -EBUSY;
988 	}
989 
990 	/*
991 	 * Lock the page and wait for writeback to finish.
992 	 * It's very difficult to mess with pages currently under IO
993 	 * and in many cases impossible, so we just avoid it here.
994 	 */
995 	lock_page_nosync(p);
996 
997 	/*
998 	 * unpoison always clear PG_hwpoison inside page lock
999 	 */
1000 	if (!PageHWPoison(p)) {
1001 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1002 		res = 0;
1003 		goto out;
1004 	}
1005 	if (hwpoison_filter(p)) {
1006 		if (TestClearPageHWPoison(p))
1007 			atomic_long_dec(&mce_bad_pages);
1008 		unlock_page(p);
1009 		put_page(p);
1010 		return 0;
1011 	}
1012 
1013 	wait_on_page_writeback(p);
1014 
1015 	/*
1016 	 * Now take care of user space mappings.
1017 	 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
1018 	 */
1019 	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1020 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1021 		res = -EBUSY;
1022 		goto out;
1023 	}
1024 
1025 	/*
1026 	 * Torn down by someone else?
1027 	 */
1028 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1029 		action_result(pfn, "already truncated LRU", IGNORED);
1030 		res = -EBUSY;
1031 		goto out;
1032 	}
1033 
1034 	res = -EBUSY;
1035 	for (ps = error_states;; ps++) {
1036 		if ((p->flags & ps->mask) == ps->res) {
1037 			res = page_action(ps, p, pfn);
1038 			break;
1039 		}
1040 	}
1041 out:
1042 	unlock_page(p);
1043 	return res;
1044 }
1045 EXPORT_SYMBOL_GPL(__memory_failure);
1046 
1047 /**
1048  * memory_failure - Handle memory failure of a page.
1049  * @pfn: Page Number of the corrupted page
1050  * @trapno: Trap number reported in the signal to user space.
1051  *
1052  * This function is called by the low level machine check code
1053  * of an architecture when it detects hardware memory corruption
1054  * of a page. It tries its best to recover, which includes
1055  * dropping pages, killing processes etc.
1056  *
1057  * The function is primarily of use for corruptions that
1058  * happen outside the current execution context (e.g. when
1059  * detected by a background scrubber)
1060  *
1061  * Must run in process context (e.g. a work queue) with interrupts
1062  * enabled and no spinlocks hold.
1063  */
1064 void memory_failure(unsigned long pfn, int trapno)
1065 {
1066 	__memory_failure(pfn, trapno, 0);
1067 }
1068 
1069 /**
1070  * unpoison_memory - Unpoison a previously poisoned page
1071  * @pfn: Page number of the to be unpoisoned page
1072  *
1073  * Software-unpoison a page that has been poisoned by
1074  * memory_failure() earlier.
1075  *
1076  * This is only done on the software-level, so it only works
1077  * for linux injected failures, not real hardware failures
1078  *
1079  * Returns 0 for success, otherwise -errno.
1080  */
1081 int unpoison_memory(unsigned long pfn)
1082 {
1083 	struct page *page;
1084 	struct page *p;
1085 	int freeit = 0;
1086 
1087 	if (!pfn_valid(pfn))
1088 		return -ENXIO;
1089 
1090 	p = pfn_to_page(pfn);
1091 	page = compound_head(p);
1092 
1093 	if (!PageHWPoison(p)) {
1094 		pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
1095 		return 0;
1096 	}
1097 
1098 	if (!get_page_unless_zero(page)) {
1099 		if (TestClearPageHWPoison(p))
1100 			atomic_long_dec(&mce_bad_pages);
1101 		pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
1102 		return 0;
1103 	}
1104 
1105 	lock_page_nosync(page);
1106 	/*
1107 	 * This test is racy because PG_hwpoison is set outside of page lock.
1108 	 * That's acceptable because that won't trigger kernel panic. Instead,
1109 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1110 	 * the free buddy page pool.
1111 	 */
1112 	if (TestClearPageHWPoison(p)) {
1113 		pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
1114 		atomic_long_dec(&mce_bad_pages);
1115 		freeit = 1;
1116 	}
1117 	unlock_page(page);
1118 
1119 	put_page(page);
1120 	if (freeit)
1121 		put_page(page);
1122 
1123 	return 0;
1124 }
1125 EXPORT_SYMBOL(unpoison_memory);
1126 
1127 static struct page *new_page(struct page *p, unsigned long private, int **x)
1128 {
1129 	int nid = page_to_nid(p);
1130 	return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1131 }
1132 
1133 /*
1134  * Safely get reference count of an arbitrary page.
1135  * Returns 0 for a free page, -EIO for a zero refcount page
1136  * that is not free, and 1 for any other page type.
1137  * For 1 the page is returned with increased page count, otherwise not.
1138  */
1139 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1140 {
1141 	int ret;
1142 
1143 	if (flags & MF_COUNT_INCREASED)
1144 		return 1;
1145 
1146 	/*
1147 	 * The lock_system_sleep prevents a race with memory hotplug,
1148 	 * because the isolation assumes there's only a single user.
1149 	 * This is a big hammer, a better would be nicer.
1150 	 */
1151 	lock_system_sleep();
1152 
1153 	/*
1154 	 * Isolate the page, so that it doesn't get reallocated if it
1155 	 * was free.
1156 	 */
1157 	set_migratetype_isolate(p);
1158 	if (!get_page_unless_zero(compound_head(p))) {
1159 		if (is_free_buddy_page(p)) {
1160 			pr_debug("get_any_page: %#lx free buddy page\n", pfn);
1161 			/* Set hwpoison bit while page is still isolated */
1162 			SetPageHWPoison(p);
1163 			ret = 0;
1164 		} else {
1165 			pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1166 				pfn, p->flags);
1167 			ret = -EIO;
1168 		}
1169 	} else {
1170 		/* Not a free page */
1171 		ret = 1;
1172 	}
1173 	unset_migratetype_isolate(p);
1174 	unlock_system_sleep();
1175 	return ret;
1176 }
1177 
1178 /**
1179  * soft_offline_page - Soft offline a page.
1180  * @page: page to offline
1181  * @flags: flags. Same as memory_failure().
1182  *
1183  * Returns 0 on success, otherwise negated errno.
1184  *
1185  * Soft offline a page, by migration or invalidation,
1186  * without killing anything. This is for the case when
1187  * a page is not corrupted yet (so it's still valid to access),
1188  * but has had a number of corrected errors and is better taken
1189  * out.
1190  *
1191  * The actual policy on when to do that is maintained by
1192  * user space.
1193  *
1194  * This should never impact any application or cause data loss,
1195  * however it might take some time.
1196  *
1197  * This is not a 100% solution for all memory, but tries to be
1198  * ``good enough'' for the majority of memory.
1199  */
1200 int soft_offline_page(struct page *page, int flags)
1201 {
1202 	int ret;
1203 	unsigned long pfn = page_to_pfn(page);
1204 
1205 	ret = get_any_page(page, pfn, flags);
1206 	if (ret < 0)
1207 		return ret;
1208 	if (ret == 0)
1209 		goto done;
1210 
1211 	/*
1212 	 * Page cache page we can handle?
1213 	 */
1214 	if (!PageLRU(page)) {
1215 		/*
1216 		 * Try to free it.
1217 		 */
1218 		put_page(page);
1219 		shake_page(page, 1);
1220 
1221 		/*
1222 		 * Did it turn free?
1223 		 */
1224 		ret = get_any_page(page, pfn, 0);
1225 		if (ret < 0)
1226 			return ret;
1227 		if (ret == 0)
1228 			goto done;
1229 	}
1230 	if (!PageLRU(page)) {
1231 		pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
1232 				pfn, page->flags);
1233 		return -EIO;
1234 	}
1235 
1236 	lock_page(page);
1237 	wait_on_page_writeback(page);
1238 
1239 	/*
1240 	 * Synchronized using the page lock with memory_failure()
1241 	 */
1242 	if (PageHWPoison(page)) {
1243 		unlock_page(page);
1244 		put_page(page);
1245 		pr_debug("soft offline: %#lx page already poisoned\n", pfn);
1246 		return -EBUSY;
1247 	}
1248 
1249 	/*
1250 	 * Try to invalidate first. This should work for
1251 	 * non dirty unmapped page cache pages.
1252 	 */
1253 	ret = invalidate_inode_page(page);
1254 	unlock_page(page);
1255 
1256 	/*
1257 	 * Drop count because page migration doesn't like raised
1258 	 * counts. The page could get re-allocated, but if it becomes
1259 	 * LRU the isolation will just fail.
1260 	 * RED-PEN would be better to keep it isolated here, but we
1261 	 * would need to fix isolation locking first.
1262 	 */
1263 	put_page(page);
1264 	if (ret == 1) {
1265 		ret = 0;
1266 		pr_debug("soft_offline: %#lx: invalidated\n", pfn);
1267 		goto done;
1268 	}
1269 
1270 	/*
1271 	 * Simple invalidation didn't work.
1272 	 * Try to migrate to a new page instead. migrate.c
1273 	 * handles a large number of cases for us.
1274 	 */
1275 	ret = isolate_lru_page(page);
1276 	if (!ret) {
1277 		LIST_HEAD(pagelist);
1278 
1279 		list_add(&page->lru, &pagelist);
1280 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1281 		if (ret) {
1282 			pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1283 				pfn, ret, page->flags);
1284 			if (ret > 0)
1285 				ret = -EIO;
1286 		}
1287 	} else {
1288 		pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1289 				pfn, ret, page_count(page), page->flags);
1290 	}
1291 	if (ret)
1292 		return ret;
1293 
1294 done:
1295 	atomic_long_add(1, &mce_bad_pages);
1296 	SetPageHWPoison(page);
1297 	/* keep elevated page count for bad page */
1298 	return ret;
1299 }
1300 
1301 /*
1302  * The caller must hold current->mm->mmap_sem in read mode.
1303  */
1304 int is_hwpoison_address(unsigned long addr)
1305 {
1306 	pgd_t *pgdp;
1307 	pud_t pud, *pudp;
1308 	pmd_t pmd, *pmdp;
1309 	pte_t pte, *ptep;
1310 	swp_entry_t entry;
1311 
1312 	pgdp = pgd_offset(current->mm, addr);
1313 	if (!pgd_present(*pgdp))
1314 		return 0;
1315 	pudp = pud_offset(pgdp, addr);
1316 	pud = *pudp;
1317 	if (!pud_present(pud) || pud_large(pud))
1318 		return 0;
1319 	pmdp = pmd_offset(pudp, addr);
1320 	pmd = *pmdp;
1321 	if (!pmd_present(pmd) || pmd_large(pmd))
1322 		return 0;
1323 	ptep = pte_offset_map(pmdp, addr);
1324 	pte = *ptep;
1325 	pte_unmap(ptep);
1326 	if (!is_swap_pte(pte))
1327 		return 0;
1328 	entry = pte_to_swp_entry(pte);
1329 	return is_hwpoison_entry(entry);
1330 }
1331 EXPORT_SYMBOL_GPL(is_hwpoison_address);
1332