xref: /linux/mm/memory-failure.c (revision cc3ae7b0af27118994c1e491382b253be3b762bf)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched.h>
44 #include <linux/ksm.h>
45 #include <linux/rmap.h>
46 #include <linux/export.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/backing-dev.h>
50 #include <linux/migrate.h>
51 #include <linux/page-isolation.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62 
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64 
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66 
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68 
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70 
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81 
82 static int hwpoison_filter_dev(struct page *p)
83 {
84 	struct address_space *mapping;
85 	dev_t dev;
86 
87 	if (hwpoison_filter_dev_major == ~0U &&
88 	    hwpoison_filter_dev_minor == ~0U)
89 		return 0;
90 
91 	/*
92 	 * page_mapping() does not accept slab pages.
93 	 */
94 	if (PageSlab(p))
95 		return -EINVAL;
96 
97 	mapping = page_mapping(p);
98 	if (mapping == NULL || mapping->host == NULL)
99 		return -EINVAL;
100 
101 	dev = mapping->host->i_sb->s_dev;
102 	if (hwpoison_filter_dev_major != ~0U &&
103 	    hwpoison_filter_dev_major != MAJOR(dev))
104 		return -EINVAL;
105 	if (hwpoison_filter_dev_minor != ~0U &&
106 	    hwpoison_filter_dev_minor != MINOR(dev))
107 		return -EINVAL;
108 
109 	return 0;
110 }
111 
112 static int hwpoison_filter_flags(struct page *p)
113 {
114 	if (!hwpoison_filter_flags_mask)
115 		return 0;
116 
117 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 				    hwpoison_filter_flags_value)
119 		return 0;
120 	else
121 		return -EINVAL;
122 }
123 
124 /*
125  * This allows stress tests to limit test scope to a collection of tasks
126  * by putting them under some memcg. This prevents killing unrelated/important
127  * processes such as /sbin/init. Note that the target task may share clean
128  * pages with init (eg. libc text), which is harmless. If the target task
129  * share _dirty_ pages with another task B, the test scheme must make sure B
130  * is also included in the memcg. At last, due to race conditions this filter
131  * can only guarantee that the page either belongs to the memcg tasks, or is
132  * a freed page.
133  */
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137 static int hwpoison_filter_task(struct page *p)
138 {
139 	if (!hwpoison_filter_memcg)
140 		return 0;
141 
142 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 		return -EINVAL;
144 
145 	return 0;
146 }
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150 
151 int hwpoison_filter(struct page *p)
152 {
153 	if (!hwpoison_filter_enable)
154 		return 0;
155 
156 	if (hwpoison_filter_dev(p))
157 		return -EINVAL;
158 
159 	if (hwpoison_filter_flags(p))
160 		return -EINVAL;
161 
162 	if (hwpoison_filter_task(p))
163 		return -EINVAL;
164 
165 	return 0;
166 }
167 #else
168 int hwpoison_filter(struct page *p)
169 {
170 	return 0;
171 }
172 #endif
173 
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
175 
176 /*
177  * Send all the processes who have the page mapped a signal.
178  * ``action optional'' if they are not immediately affected by the error
179  * ``action required'' if error happened in current execution context
180  */
181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 			unsigned long pfn, struct page *page, int flags)
183 {
184 	struct siginfo si;
185 	int ret;
186 
187 	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 		pfn, t->comm, t->pid);
189 	si.si_signo = SIGBUS;
190 	si.si_errno = 0;
191 	si.si_addr = (void *)addr;
192 #ifdef __ARCH_SI_TRAPNO
193 	si.si_trapno = trapno;
194 #endif
195 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
196 
197 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198 		si.si_code = BUS_MCEERR_AR;
199 		ret = force_sig_info(SIGBUS, &si, current);
200 	} else {
201 		/*
202 		 * Don't use force here, it's convenient if the signal
203 		 * can be temporarily blocked.
204 		 * This could cause a loop when the user sets SIGBUS
205 		 * to SIG_IGN, but hopefully no one will do that?
206 		 */
207 		si.si_code = BUS_MCEERR_AO;
208 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
209 	}
210 	if (ret < 0)
211 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
212 			t->comm, t->pid, ret);
213 	return ret;
214 }
215 
216 /*
217  * When a unknown page type is encountered drain as many buffers as possible
218  * in the hope to turn the page into a LRU or free page, which we can handle.
219  */
220 void shake_page(struct page *p, int access)
221 {
222 	if (!PageSlab(p)) {
223 		lru_add_drain_all();
224 		if (PageLRU(p))
225 			return;
226 		drain_all_pages(page_zone(p));
227 		if (PageLRU(p) || is_free_buddy_page(p))
228 			return;
229 	}
230 
231 	/*
232 	 * Only call shrink_node_slabs here (which would also shrink
233 	 * other caches) if access is not potentially fatal.
234 	 */
235 	if (access)
236 		drop_slab_node(page_to_nid(p));
237 }
238 EXPORT_SYMBOL_GPL(shake_page);
239 
240 /*
241  * Kill all processes that have a poisoned page mapped and then isolate
242  * the page.
243  *
244  * General strategy:
245  * Find all processes having the page mapped and kill them.
246  * But we keep a page reference around so that the page is not
247  * actually freed yet.
248  * Then stash the page away
249  *
250  * There's no convenient way to get back to mapped processes
251  * from the VMAs. So do a brute-force search over all
252  * running processes.
253  *
254  * Remember that machine checks are not common (or rather
255  * if they are common you have other problems), so this shouldn't
256  * be a performance issue.
257  *
258  * Also there are some races possible while we get from the
259  * error detection to actually handle it.
260  */
261 
262 struct to_kill {
263 	struct list_head nd;
264 	struct task_struct *tsk;
265 	unsigned long addr;
266 	char addr_valid;
267 };
268 
269 /*
270  * Failure handling: if we can't find or can't kill a process there's
271  * not much we can do.	We just print a message and ignore otherwise.
272  */
273 
274 /*
275  * Schedule a process for later kill.
276  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
277  * TBD would GFP_NOIO be enough?
278  */
279 static void add_to_kill(struct task_struct *tsk, struct page *p,
280 		       struct vm_area_struct *vma,
281 		       struct list_head *to_kill,
282 		       struct to_kill **tkc)
283 {
284 	struct to_kill *tk;
285 
286 	if (*tkc) {
287 		tk = *tkc;
288 		*tkc = NULL;
289 	} else {
290 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
291 		if (!tk) {
292 			pr_err("Memory failure: Out of memory while machine check handling\n");
293 			return;
294 		}
295 	}
296 	tk->addr = page_address_in_vma(p, vma);
297 	tk->addr_valid = 1;
298 
299 	/*
300 	 * In theory we don't have to kill when the page was
301 	 * munmaped. But it could be also a mremap. Since that's
302 	 * likely very rare kill anyways just out of paranoia, but use
303 	 * a SIGKILL because the error is not contained anymore.
304 	 */
305 	if (tk->addr == -EFAULT) {
306 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
307 			page_to_pfn(p), tsk->comm);
308 		tk->addr_valid = 0;
309 	}
310 	get_task_struct(tsk);
311 	tk->tsk = tsk;
312 	list_add_tail(&tk->nd, to_kill);
313 }
314 
315 /*
316  * Kill the processes that have been collected earlier.
317  *
318  * Only do anything when DOIT is set, otherwise just free the list
319  * (this is used for clean pages which do not need killing)
320  * Also when FAIL is set do a force kill because something went
321  * wrong earlier.
322  */
323 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
324 			  int fail, struct page *page, unsigned long pfn,
325 			  int flags)
326 {
327 	struct to_kill *tk, *next;
328 
329 	list_for_each_entry_safe (tk, next, to_kill, nd) {
330 		if (forcekill) {
331 			/*
332 			 * In case something went wrong with munmapping
333 			 * make sure the process doesn't catch the
334 			 * signal and then access the memory. Just kill it.
335 			 */
336 			if (fail || tk->addr_valid == 0) {
337 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
338 				       pfn, tk->tsk->comm, tk->tsk->pid);
339 				force_sig(SIGKILL, tk->tsk);
340 			}
341 
342 			/*
343 			 * In theory the process could have mapped
344 			 * something else on the address in-between. We could
345 			 * check for that, but we need to tell the
346 			 * process anyways.
347 			 */
348 			else if (kill_proc(tk->tsk, tk->addr, trapno,
349 					      pfn, page, flags) < 0)
350 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
351 				       pfn, tk->tsk->comm, tk->tsk->pid);
352 		}
353 		put_task_struct(tk->tsk);
354 		kfree(tk);
355 	}
356 }
357 
358 /*
359  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
360  * on behalf of the thread group. Return task_struct of the (first found)
361  * dedicated thread if found, and return NULL otherwise.
362  *
363  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
364  * have to call rcu_read_lock/unlock() in this function.
365  */
366 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
367 {
368 	struct task_struct *t;
369 
370 	for_each_thread(tsk, t)
371 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
372 			return t;
373 	return NULL;
374 }
375 
376 /*
377  * Determine whether a given process is "early kill" process which expects
378  * to be signaled when some page under the process is hwpoisoned.
379  * Return task_struct of the dedicated thread (main thread unless explicitly
380  * specified) if the process is "early kill," and otherwise returns NULL.
381  */
382 static struct task_struct *task_early_kill(struct task_struct *tsk,
383 					   int force_early)
384 {
385 	struct task_struct *t;
386 	if (!tsk->mm)
387 		return NULL;
388 	if (force_early)
389 		return tsk;
390 	t = find_early_kill_thread(tsk);
391 	if (t)
392 		return t;
393 	if (sysctl_memory_failure_early_kill)
394 		return tsk;
395 	return NULL;
396 }
397 
398 /*
399  * Collect processes when the error hit an anonymous page.
400  */
401 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
402 			      struct to_kill **tkc, int force_early)
403 {
404 	struct vm_area_struct *vma;
405 	struct task_struct *tsk;
406 	struct anon_vma *av;
407 	pgoff_t pgoff;
408 
409 	av = page_lock_anon_vma_read(page);
410 	if (av == NULL)	/* Not actually mapped anymore */
411 		return;
412 
413 	pgoff = page_to_pgoff(page);
414 	read_lock(&tasklist_lock);
415 	for_each_process (tsk) {
416 		struct anon_vma_chain *vmac;
417 		struct task_struct *t = task_early_kill(tsk, force_early);
418 
419 		if (!t)
420 			continue;
421 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
422 					       pgoff, pgoff) {
423 			vma = vmac->vma;
424 			if (!page_mapped_in_vma(page, vma))
425 				continue;
426 			if (vma->vm_mm == t->mm)
427 				add_to_kill(t, page, vma, to_kill, tkc);
428 		}
429 	}
430 	read_unlock(&tasklist_lock);
431 	page_unlock_anon_vma_read(av);
432 }
433 
434 /*
435  * Collect processes when the error hit a file mapped page.
436  */
437 static void collect_procs_file(struct page *page, struct list_head *to_kill,
438 			      struct to_kill **tkc, int force_early)
439 {
440 	struct vm_area_struct *vma;
441 	struct task_struct *tsk;
442 	struct address_space *mapping = page->mapping;
443 
444 	i_mmap_lock_read(mapping);
445 	read_lock(&tasklist_lock);
446 	for_each_process(tsk) {
447 		pgoff_t pgoff = page_to_pgoff(page);
448 		struct task_struct *t = task_early_kill(tsk, force_early);
449 
450 		if (!t)
451 			continue;
452 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
453 				      pgoff) {
454 			/*
455 			 * Send early kill signal to tasks where a vma covers
456 			 * the page but the corrupted page is not necessarily
457 			 * mapped it in its pte.
458 			 * Assume applications who requested early kill want
459 			 * to be informed of all such data corruptions.
460 			 */
461 			if (vma->vm_mm == t->mm)
462 				add_to_kill(t, page, vma, to_kill, tkc);
463 		}
464 	}
465 	read_unlock(&tasklist_lock);
466 	i_mmap_unlock_read(mapping);
467 }
468 
469 /*
470  * Collect the processes who have the corrupted page mapped to kill.
471  * This is done in two steps for locking reasons.
472  * First preallocate one tokill structure outside the spin locks,
473  * so that we can kill at least one process reasonably reliable.
474  */
475 static void collect_procs(struct page *page, struct list_head *tokill,
476 				int force_early)
477 {
478 	struct to_kill *tk;
479 
480 	if (!page->mapping)
481 		return;
482 
483 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
484 	if (!tk)
485 		return;
486 	if (PageAnon(page))
487 		collect_procs_anon(page, tokill, &tk, force_early);
488 	else
489 		collect_procs_file(page, tokill, &tk, force_early);
490 	kfree(tk);
491 }
492 
493 static const char *action_name[] = {
494 	[MF_IGNORED] = "Ignored",
495 	[MF_FAILED] = "Failed",
496 	[MF_DELAYED] = "Delayed",
497 	[MF_RECOVERED] = "Recovered",
498 };
499 
500 static const char * const action_page_types[] = {
501 	[MF_MSG_KERNEL]			= "reserved kernel page",
502 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
503 	[MF_MSG_SLAB]			= "kernel slab page",
504 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
505 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
506 	[MF_MSG_HUGE]			= "huge page",
507 	[MF_MSG_FREE_HUGE]		= "free huge page",
508 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
509 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
510 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
511 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
512 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
513 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
514 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
515 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
516 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
517 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
518 	[MF_MSG_BUDDY]			= "free buddy page",
519 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
520 	[MF_MSG_UNKNOWN]		= "unknown page",
521 };
522 
523 /*
524  * XXX: It is possible that a page is isolated from LRU cache,
525  * and then kept in swap cache or failed to remove from page cache.
526  * The page count will stop it from being freed by unpoison.
527  * Stress tests should be aware of this memory leak problem.
528  */
529 static int delete_from_lru_cache(struct page *p)
530 {
531 	if (!isolate_lru_page(p)) {
532 		/*
533 		 * Clear sensible page flags, so that the buddy system won't
534 		 * complain when the page is unpoison-and-freed.
535 		 */
536 		ClearPageActive(p);
537 		ClearPageUnevictable(p);
538 		/*
539 		 * drop the page count elevated by isolate_lru_page()
540 		 */
541 		put_page(p);
542 		return 0;
543 	}
544 	return -EIO;
545 }
546 
547 /*
548  * Error hit kernel page.
549  * Do nothing, try to be lucky and not touch this instead. For a few cases we
550  * could be more sophisticated.
551  */
552 static int me_kernel(struct page *p, unsigned long pfn)
553 {
554 	return MF_IGNORED;
555 }
556 
557 /*
558  * Page in unknown state. Do nothing.
559  */
560 static int me_unknown(struct page *p, unsigned long pfn)
561 {
562 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
563 	return MF_FAILED;
564 }
565 
566 /*
567  * Clean (or cleaned) page cache page.
568  */
569 static int me_pagecache_clean(struct page *p, unsigned long pfn)
570 {
571 	int err;
572 	int ret = MF_FAILED;
573 	struct address_space *mapping;
574 
575 	delete_from_lru_cache(p);
576 
577 	/*
578 	 * For anonymous pages we're done the only reference left
579 	 * should be the one m_f() holds.
580 	 */
581 	if (PageAnon(p))
582 		return MF_RECOVERED;
583 
584 	/*
585 	 * Now truncate the page in the page cache. This is really
586 	 * more like a "temporary hole punch"
587 	 * Don't do this for block devices when someone else
588 	 * has a reference, because it could be file system metadata
589 	 * and that's not safe to truncate.
590 	 */
591 	mapping = page_mapping(p);
592 	if (!mapping) {
593 		/*
594 		 * Page has been teared down in the meanwhile
595 		 */
596 		return MF_FAILED;
597 	}
598 
599 	/*
600 	 * Truncation is a bit tricky. Enable it per file system for now.
601 	 *
602 	 * Open: to take i_mutex or not for this? Right now we don't.
603 	 */
604 	if (mapping->a_ops->error_remove_page) {
605 		err = mapping->a_ops->error_remove_page(mapping, p);
606 		if (err != 0) {
607 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
608 				pfn, err);
609 		} else if (page_has_private(p) &&
610 				!try_to_release_page(p, GFP_NOIO)) {
611 			pr_info("Memory failure: %#lx: failed to release buffers\n",
612 				pfn);
613 		} else {
614 			ret = MF_RECOVERED;
615 		}
616 	} else {
617 		/*
618 		 * If the file system doesn't support it just invalidate
619 		 * This fails on dirty or anything with private pages
620 		 */
621 		if (invalidate_inode_page(p))
622 			ret = MF_RECOVERED;
623 		else
624 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
625 				pfn);
626 	}
627 	return ret;
628 }
629 
630 /*
631  * Dirty pagecache page
632  * Issues: when the error hit a hole page the error is not properly
633  * propagated.
634  */
635 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
636 {
637 	struct address_space *mapping = page_mapping(p);
638 
639 	SetPageError(p);
640 	/* TBD: print more information about the file. */
641 	if (mapping) {
642 		/*
643 		 * IO error will be reported by write(), fsync(), etc.
644 		 * who check the mapping.
645 		 * This way the application knows that something went
646 		 * wrong with its dirty file data.
647 		 *
648 		 * There's one open issue:
649 		 *
650 		 * The EIO will be only reported on the next IO
651 		 * operation and then cleared through the IO map.
652 		 * Normally Linux has two mechanisms to pass IO error
653 		 * first through the AS_EIO flag in the address space
654 		 * and then through the PageError flag in the page.
655 		 * Since we drop pages on memory failure handling the
656 		 * only mechanism open to use is through AS_AIO.
657 		 *
658 		 * This has the disadvantage that it gets cleared on
659 		 * the first operation that returns an error, while
660 		 * the PageError bit is more sticky and only cleared
661 		 * when the page is reread or dropped.  If an
662 		 * application assumes it will always get error on
663 		 * fsync, but does other operations on the fd before
664 		 * and the page is dropped between then the error
665 		 * will not be properly reported.
666 		 *
667 		 * This can already happen even without hwpoisoned
668 		 * pages: first on metadata IO errors (which only
669 		 * report through AS_EIO) or when the page is dropped
670 		 * at the wrong time.
671 		 *
672 		 * So right now we assume that the application DTRT on
673 		 * the first EIO, but we're not worse than other parts
674 		 * of the kernel.
675 		 */
676 		mapping_set_error(mapping, EIO);
677 	}
678 
679 	return me_pagecache_clean(p, pfn);
680 }
681 
682 /*
683  * Clean and dirty swap cache.
684  *
685  * Dirty swap cache page is tricky to handle. The page could live both in page
686  * cache and swap cache(ie. page is freshly swapped in). So it could be
687  * referenced concurrently by 2 types of PTEs:
688  * normal PTEs and swap PTEs. We try to handle them consistently by calling
689  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
690  * and then
691  *      - clear dirty bit to prevent IO
692  *      - remove from LRU
693  *      - but keep in the swap cache, so that when we return to it on
694  *        a later page fault, we know the application is accessing
695  *        corrupted data and shall be killed (we installed simple
696  *        interception code in do_swap_page to catch it).
697  *
698  * Clean swap cache pages can be directly isolated. A later page fault will
699  * bring in the known good data from disk.
700  */
701 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
702 {
703 	ClearPageDirty(p);
704 	/* Trigger EIO in shmem: */
705 	ClearPageUptodate(p);
706 
707 	if (!delete_from_lru_cache(p))
708 		return MF_DELAYED;
709 	else
710 		return MF_FAILED;
711 }
712 
713 static int me_swapcache_clean(struct page *p, unsigned long pfn)
714 {
715 	delete_from_swap_cache(p);
716 
717 	if (!delete_from_lru_cache(p))
718 		return MF_RECOVERED;
719 	else
720 		return MF_FAILED;
721 }
722 
723 /*
724  * Huge pages. Needs work.
725  * Issues:
726  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
727  *   To narrow down kill region to one page, we need to break up pmd.
728  */
729 static int me_huge_page(struct page *p, unsigned long pfn)
730 {
731 	int res = 0;
732 	struct page *hpage = compound_head(p);
733 
734 	if (!PageHuge(hpage))
735 		return MF_DELAYED;
736 
737 	/*
738 	 * We can safely recover from error on free or reserved (i.e.
739 	 * not in-use) hugepage by dequeuing it from freelist.
740 	 * To check whether a hugepage is in-use or not, we can't use
741 	 * page->lru because it can be used in other hugepage operations,
742 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
743 	 * So instead we use page_mapping() and PageAnon().
744 	 * We assume that this function is called with page lock held,
745 	 * so there is no race between isolation and mapping/unmapping.
746 	 */
747 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
748 		res = dequeue_hwpoisoned_huge_page(hpage);
749 		if (!res)
750 			return MF_RECOVERED;
751 	}
752 	return MF_DELAYED;
753 }
754 
755 /*
756  * Various page states we can handle.
757  *
758  * A page state is defined by its current page->flags bits.
759  * The table matches them in order and calls the right handler.
760  *
761  * This is quite tricky because we can access page at any time
762  * in its live cycle, so all accesses have to be extremely careful.
763  *
764  * This is not complete. More states could be added.
765  * For any missing state don't attempt recovery.
766  */
767 
768 #define dirty		(1UL << PG_dirty)
769 #define sc		(1UL << PG_swapcache)
770 #define unevict		(1UL << PG_unevictable)
771 #define mlock		(1UL << PG_mlocked)
772 #define writeback	(1UL << PG_writeback)
773 #define lru		(1UL << PG_lru)
774 #define swapbacked	(1UL << PG_swapbacked)
775 #define head		(1UL << PG_head)
776 #define slab		(1UL << PG_slab)
777 #define reserved	(1UL << PG_reserved)
778 
779 static struct page_state {
780 	unsigned long mask;
781 	unsigned long res;
782 	enum mf_action_page_type type;
783 	int (*action)(struct page *p, unsigned long pfn);
784 } error_states[] = {
785 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
786 	/*
787 	 * free pages are specially detected outside this table:
788 	 * PG_buddy pages only make a small fraction of all free pages.
789 	 */
790 
791 	/*
792 	 * Could in theory check if slab page is free or if we can drop
793 	 * currently unused objects without touching them. But just
794 	 * treat it as standard kernel for now.
795 	 */
796 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
797 
798 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
799 
800 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
801 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
802 
803 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
804 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
805 
806 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
807 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
808 
809 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
810 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
811 
812 	/*
813 	 * Catchall entry: must be at end.
814 	 */
815 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
816 };
817 
818 #undef dirty
819 #undef sc
820 #undef unevict
821 #undef mlock
822 #undef writeback
823 #undef lru
824 #undef swapbacked
825 #undef head
826 #undef slab
827 #undef reserved
828 
829 /*
830  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
831  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
832  */
833 static void action_result(unsigned long pfn, enum mf_action_page_type type,
834 			  enum mf_result result)
835 {
836 	trace_memory_failure_event(pfn, type, result);
837 
838 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
839 		pfn, action_page_types[type], action_name[result]);
840 }
841 
842 static int page_action(struct page_state *ps, struct page *p,
843 			unsigned long pfn)
844 {
845 	int result;
846 	int count;
847 
848 	result = ps->action(p, pfn);
849 
850 	count = page_count(p) - 1;
851 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
852 		count--;
853 	if (count != 0) {
854 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
855 		       pfn, action_page_types[ps->type], count);
856 		result = MF_FAILED;
857 	}
858 	action_result(pfn, ps->type, result);
859 
860 	/* Could do more checks here if page looks ok */
861 	/*
862 	 * Could adjust zone counters here to correct for the missing page.
863 	 */
864 
865 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
866 }
867 
868 /**
869  * get_hwpoison_page() - Get refcount for memory error handling:
870  * @page:	raw error page (hit by memory error)
871  *
872  * Return: return 0 if failed to grab the refcount, otherwise true (some
873  * non-zero value.)
874  */
875 int get_hwpoison_page(struct page *page)
876 {
877 	struct page *head = compound_head(page);
878 
879 	if (!PageHuge(head) && PageTransHuge(head)) {
880 		/*
881 		 * Non anonymous thp exists only in allocation/free time. We
882 		 * can't handle such a case correctly, so let's give it up.
883 		 * This should be better than triggering BUG_ON when kernel
884 		 * tries to touch the "partially handled" page.
885 		 */
886 		if (!PageAnon(head)) {
887 			pr_err("Memory failure: %#lx: non anonymous thp\n",
888 				page_to_pfn(page));
889 			return 0;
890 		}
891 	}
892 
893 	if (get_page_unless_zero(head)) {
894 		if (head == compound_head(page))
895 			return 1;
896 
897 		pr_info("Memory failure: %#lx cannot catch tail\n",
898 			page_to_pfn(page));
899 		put_page(head);
900 	}
901 
902 	return 0;
903 }
904 EXPORT_SYMBOL_GPL(get_hwpoison_page);
905 
906 /*
907  * Do all that is necessary to remove user space mappings. Unmap
908  * the pages and send SIGBUS to the processes if the data was dirty.
909  */
910 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
911 				  int trapno, int flags, struct page **hpagep)
912 {
913 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
914 	struct address_space *mapping;
915 	LIST_HEAD(tokill);
916 	int ret;
917 	int kill = 1, forcekill;
918 	struct page *hpage = *hpagep;
919 
920 	/*
921 	 * Here we are interested only in user-mapped pages, so skip any
922 	 * other types of pages.
923 	 */
924 	if (PageReserved(p) || PageSlab(p))
925 		return SWAP_SUCCESS;
926 	if (!(PageLRU(hpage) || PageHuge(p)))
927 		return SWAP_SUCCESS;
928 
929 	/*
930 	 * This check implies we don't kill processes if their pages
931 	 * are in the swap cache early. Those are always late kills.
932 	 */
933 	if (!page_mapped(hpage))
934 		return SWAP_SUCCESS;
935 
936 	if (PageKsm(p)) {
937 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
938 		return SWAP_FAIL;
939 	}
940 
941 	if (PageSwapCache(p)) {
942 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
943 			pfn);
944 		ttu |= TTU_IGNORE_HWPOISON;
945 	}
946 
947 	/*
948 	 * Propagate the dirty bit from PTEs to struct page first, because we
949 	 * need this to decide if we should kill or just drop the page.
950 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
951 	 * be called inside page lock (it's recommended but not enforced).
952 	 */
953 	mapping = page_mapping(hpage);
954 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
955 	    mapping_cap_writeback_dirty(mapping)) {
956 		if (page_mkclean(hpage)) {
957 			SetPageDirty(hpage);
958 		} else {
959 			kill = 0;
960 			ttu |= TTU_IGNORE_HWPOISON;
961 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
962 				pfn);
963 		}
964 	}
965 
966 	/*
967 	 * First collect all the processes that have the page
968 	 * mapped in dirty form.  This has to be done before try_to_unmap,
969 	 * because ttu takes the rmap data structures down.
970 	 *
971 	 * Error handling: We ignore errors here because
972 	 * there's nothing that can be done.
973 	 */
974 	if (kill)
975 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
976 
977 	ret = try_to_unmap(hpage, ttu);
978 	if (ret != SWAP_SUCCESS)
979 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
980 		       pfn, page_mapcount(hpage));
981 
982 	/*
983 	 * Now that the dirty bit has been propagated to the
984 	 * struct page and all unmaps done we can decide if
985 	 * killing is needed or not.  Only kill when the page
986 	 * was dirty or the process is not restartable,
987 	 * otherwise the tokill list is merely
988 	 * freed.  When there was a problem unmapping earlier
989 	 * use a more force-full uncatchable kill to prevent
990 	 * any accesses to the poisoned memory.
991 	 */
992 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
993 	kill_procs(&tokill, forcekill, trapno,
994 		      ret != SWAP_SUCCESS, p, pfn, flags);
995 
996 	return ret;
997 }
998 
999 static void set_page_hwpoison_huge_page(struct page *hpage)
1000 {
1001 	int i;
1002 	int nr_pages = 1 << compound_order(hpage);
1003 	for (i = 0; i < nr_pages; i++)
1004 		SetPageHWPoison(hpage + i);
1005 }
1006 
1007 static void clear_page_hwpoison_huge_page(struct page *hpage)
1008 {
1009 	int i;
1010 	int nr_pages = 1 << compound_order(hpage);
1011 	for (i = 0; i < nr_pages; i++)
1012 		ClearPageHWPoison(hpage + i);
1013 }
1014 
1015 /**
1016  * memory_failure - Handle memory failure of a page.
1017  * @pfn: Page Number of the corrupted page
1018  * @trapno: Trap number reported in the signal to user space.
1019  * @flags: fine tune action taken
1020  *
1021  * This function is called by the low level machine check code
1022  * of an architecture when it detects hardware memory corruption
1023  * of a page. It tries its best to recover, which includes
1024  * dropping pages, killing processes etc.
1025  *
1026  * The function is primarily of use for corruptions that
1027  * happen outside the current execution context (e.g. when
1028  * detected by a background scrubber)
1029  *
1030  * Must run in process context (e.g. a work queue) with interrupts
1031  * enabled and no spinlocks hold.
1032  */
1033 int memory_failure(unsigned long pfn, int trapno, int flags)
1034 {
1035 	struct page_state *ps;
1036 	struct page *p;
1037 	struct page *hpage;
1038 	struct page *orig_head;
1039 	int res;
1040 	unsigned int nr_pages;
1041 	unsigned long page_flags;
1042 
1043 	if (!sysctl_memory_failure_recovery)
1044 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1045 
1046 	if (!pfn_valid(pfn)) {
1047 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1048 			pfn);
1049 		return -ENXIO;
1050 	}
1051 
1052 	p = pfn_to_page(pfn);
1053 	orig_head = hpage = compound_head(p);
1054 	if (TestSetPageHWPoison(p)) {
1055 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1056 			pfn);
1057 		return 0;
1058 	}
1059 
1060 	/*
1061 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1062 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1063 	 * transparent hugepages, they are supposed to be split and error
1064 	 * measurement is done in normal page units.  So nr_pages should be one
1065 	 * in this case.
1066 	 */
1067 	if (PageHuge(p))
1068 		nr_pages = 1 << compound_order(hpage);
1069 	else /* normal page or thp */
1070 		nr_pages = 1;
1071 	num_poisoned_pages_add(nr_pages);
1072 
1073 	/*
1074 	 * We need/can do nothing about count=0 pages.
1075 	 * 1) it's a free page, and therefore in safe hand:
1076 	 *    prep_new_page() will be the gate keeper.
1077 	 * 2) it's a free hugepage, which is also safe:
1078 	 *    an affected hugepage will be dequeued from hugepage freelist,
1079 	 *    so there's no concern about reusing it ever after.
1080 	 * 3) it's part of a non-compound high order page.
1081 	 *    Implies some kernel user: cannot stop them from
1082 	 *    R/W the page; let's pray that the page has been
1083 	 *    used and will be freed some time later.
1084 	 * In fact it's dangerous to directly bump up page count from 0,
1085 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1086 	 */
1087 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1088 		if (is_free_buddy_page(p)) {
1089 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1090 			return 0;
1091 		} else if (PageHuge(hpage)) {
1092 			/*
1093 			 * Check "filter hit" and "race with other subpage."
1094 			 */
1095 			lock_page(hpage);
1096 			if (PageHWPoison(hpage)) {
1097 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1098 				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1099 					num_poisoned_pages_sub(nr_pages);
1100 					unlock_page(hpage);
1101 					return 0;
1102 				}
1103 			}
1104 			set_page_hwpoison_huge_page(hpage);
1105 			res = dequeue_hwpoisoned_huge_page(hpage);
1106 			action_result(pfn, MF_MSG_FREE_HUGE,
1107 				      res ? MF_IGNORED : MF_DELAYED);
1108 			unlock_page(hpage);
1109 			return res;
1110 		} else {
1111 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1112 			return -EBUSY;
1113 		}
1114 	}
1115 
1116 	if (!PageHuge(p) && PageTransHuge(hpage)) {
1117 		lock_page(hpage);
1118 		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1119 			unlock_page(hpage);
1120 			if (!PageAnon(hpage))
1121 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1122 					pfn);
1123 			else
1124 				pr_err("Memory failure: %#lx: thp split failed\n",
1125 					pfn);
1126 			if (TestClearPageHWPoison(p))
1127 				num_poisoned_pages_sub(nr_pages);
1128 			put_hwpoison_page(p);
1129 			return -EBUSY;
1130 		}
1131 		unlock_page(hpage);
1132 		get_hwpoison_page(p);
1133 		put_hwpoison_page(hpage);
1134 		VM_BUG_ON_PAGE(!page_count(p), p);
1135 		hpage = compound_head(p);
1136 	}
1137 
1138 	/*
1139 	 * We ignore non-LRU pages for good reasons.
1140 	 * - PG_locked is only well defined for LRU pages and a few others
1141 	 * - to avoid races with __SetPageLocked()
1142 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1143 	 * The check (unnecessarily) ignores LRU pages being isolated and
1144 	 * walked by the page reclaim code, however that's not a big loss.
1145 	 */
1146 	if (!PageHuge(p)) {
1147 		if (!PageLRU(p))
1148 			shake_page(p, 0);
1149 		if (!PageLRU(p)) {
1150 			/*
1151 			 * shake_page could have turned it free.
1152 			 */
1153 			if (is_free_buddy_page(p)) {
1154 				if (flags & MF_COUNT_INCREASED)
1155 					action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1156 				else
1157 					action_result(pfn, MF_MSG_BUDDY_2ND,
1158 						      MF_DELAYED);
1159 				return 0;
1160 			}
1161 		}
1162 	}
1163 
1164 	lock_page(hpage);
1165 
1166 	/*
1167 	 * The page could have changed compound pages during the locking.
1168 	 * If this happens just bail out.
1169 	 */
1170 	if (PageCompound(p) && compound_head(p) != orig_head) {
1171 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1172 		res = -EBUSY;
1173 		goto out;
1174 	}
1175 
1176 	/*
1177 	 * We use page flags to determine what action should be taken, but
1178 	 * the flags can be modified by the error containment action.  One
1179 	 * example is an mlocked page, where PG_mlocked is cleared by
1180 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1181 	 * correctly, we save a copy of the page flags at this time.
1182 	 */
1183 	page_flags = p->flags;
1184 
1185 	/*
1186 	 * unpoison always clear PG_hwpoison inside page lock
1187 	 */
1188 	if (!PageHWPoison(p)) {
1189 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1190 		num_poisoned_pages_sub(nr_pages);
1191 		unlock_page(hpage);
1192 		put_hwpoison_page(hpage);
1193 		return 0;
1194 	}
1195 	if (hwpoison_filter(p)) {
1196 		if (TestClearPageHWPoison(p))
1197 			num_poisoned_pages_sub(nr_pages);
1198 		unlock_page(hpage);
1199 		put_hwpoison_page(hpage);
1200 		return 0;
1201 	}
1202 
1203 	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1204 		goto identify_page_state;
1205 
1206 	/*
1207 	 * For error on the tail page, we should set PG_hwpoison
1208 	 * on the head page to show that the hugepage is hwpoisoned
1209 	 */
1210 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1211 		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1212 		unlock_page(hpage);
1213 		put_hwpoison_page(hpage);
1214 		return 0;
1215 	}
1216 	/*
1217 	 * Set PG_hwpoison on all pages in an error hugepage,
1218 	 * because containment is done in hugepage unit for now.
1219 	 * Since we have done TestSetPageHWPoison() for the head page with
1220 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1221 	 */
1222 	if (PageHuge(p))
1223 		set_page_hwpoison_huge_page(hpage);
1224 
1225 	/*
1226 	 * It's very difficult to mess with pages currently under IO
1227 	 * and in many cases impossible, so we just avoid it here.
1228 	 */
1229 	wait_on_page_writeback(p);
1230 
1231 	/*
1232 	 * Now take care of user space mappings.
1233 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1234 	 *
1235 	 * When the raw error page is thp tail page, hpage points to the raw
1236 	 * page after thp split.
1237 	 */
1238 	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1239 	    != SWAP_SUCCESS) {
1240 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1241 		res = -EBUSY;
1242 		goto out;
1243 	}
1244 
1245 	/*
1246 	 * Torn down by someone else?
1247 	 */
1248 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1249 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1250 		res = -EBUSY;
1251 		goto out;
1252 	}
1253 
1254 identify_page_state:
1255 	res = -EBUSY;
1256 	/*
1257 	 * The first check uses the current page flags which may not have any
1258 	 * relevant information. The second check with the saved page flagss is
1259 	 * carried out only if the first check can't determine the page status.
1260 	 */
1261 	for (ps = error_states;; ps++)
1262 		if ((p->flags & ps->mask) == ps->res)
1263 			break;
1264 
1265 	page_flags |= (p->flags & (1UL << PG_dirty));
1266 
1267 	if (!ps->mask)
1268 		for (ps = error_states;; ps++)
1269 			if ((page_flags & ps->mask) == ps->res)
1270 				break;
1271 	res = page_action(ps, p, pfn);
1272 out:
1273 	unlock_page(hpage);
1274 	return res;
1275 }
1276 EXPORT_SYMBOL_GPL(memory_failure);
1277 
1278 #define MEMORY_FAILURE_FIFO_ORDER	4
1279 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1280 
1281 struct memory_failure_entry {
1282 	unsigned long pfn;
1283 	int trapno;
1284 	int flags;
1285 };
1286 
1287 struct memory_failure_cpu {
1288 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1289 		      MEMORY_FAILURE_FIFO_SIZE);
1290 	spinlock_t lock;
1291 	struct work_struct work;
1292 };
1293 
1294 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1295 
1296 /**
1297  * memory_failure_queue - Schedule handling memory failure of a page.
1298  * @pfn: Page Number of the corrupted page
1299  * @trapno: Trap number reported in the signal to user space.
1300  * @flags: Flags for memory failure handling
1301  *
1302  * This function is called by the low level hardware error handler
1303  * when it detects hardware memory corruption of a page. It schedules
1304  * the recovering of error page, including dropping pages, killing
1305  * processes etc.
1306  *
1307  * The function is primarily of use for corruptions that
1308  * happen outside the current execution context (e.g. when
1309  * detected by a background scrubber)
1310  *
1311  * Can run in IRQ context.
1312  */
1313 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1314 {
1315 	struct memory_failure_cpu *mf_cpu;
1316 	unsigned long proc_flags;
1317 	struct memory_failure_entry entry = {
1318 		.pfn =		pfn,
1319 		.trapno =	trapno,
1320 		.flags =	flags,
1321 	};
1322 
1323 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1324 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1325 	if (kfifo_put(&mf_cpu->fifo, entry))
1326 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1327 	else
1328 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1329 		       pfn);
1330 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1331 	put_cpu_var(memory_failure_cpu);
1332 }
1333 EXPORT_SYMBOL_GPL(memory_failure_queue);
1334 
1335 static void memory_failure_work_func(struct work_struct *work)
1336 {
1337 	struct memory_failure_cpu *mf_cpu;
1338 	struct memory_failure_entry entry = { 0, };
1339 	unsigned long proc_flags;
1340 	int gotten;
1341 
1342 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1343 	for (;;) {
1344 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1345 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1346 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1347 		if (!gotten)
1348 			break;
1349 		if (entry.flags & MF_SOFT_OFFLINE)
1350 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1351 		else
1352 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1353 	}
1354 }
1355 
1356 static int __init memory_failure_init(void)
1357 {
1358 	struct memory_failure_cpu *mf_cpu;
1359 	int cpu;
1360 
1361 	for_each_possible_cpu(cpu) {
1362 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1363 		spin_lock_init(&mf_cpu->lock);
1364 		INIT_KFIFO(mf_cpu->fifo);
1365 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1366 	}
1367 
1368 	return 0;
1369 }
1370 core_initcall(memory_failure_init);
1371 
1372 #define unpoison_pr_info(fmt, pfn, rs)			\
1373 ({							\
1374 	if (__ratelimit(rs))				\
1375 		pr_info(fmt, pfn);			\
1376 })
1377 
1378 /**
1379  * unpoison_memory - Unpoison a previously poisoned page
1380  * @pfn: Page number of the to be unpoisoned page
1381  *
1382  * Software-unpoison a page that has been poisoned by
1383  * memory_failure() earlier.
1384  *
1385  * This is only done on the software-level, so it only works
1386  * for linux injected failures, not real hardware failures
1387  *
1388  * Returns 0 for success, otherwise -errno.
1389  */
1390 int unpoison_memory(unsigned long pfn)
1391 {
1392 	struct page *page;
1393 	struct page *p;
1394 	int freeit = 0;
1395 	unsigned int nr_pages;
1396 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1397 					DEFAULT_RATELIMIT_BURST);
1398 
1399 	if (!pfn_valid(pfn))
1400 		return -ENXIO;
1401 
1402 	p = pfn_to_page(pfn);
1403 	page = compound_head(p);
1404 
1405 	if (!PageHWPoison(p)) {
1406 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1407 				 pfn, &unpoison_rs);
1408 		return 0;
1409 	}
1410 
1411 	if (page_count(page) > 1) {
1412 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1413 				 pfn, &unpoison_rs);
1414 		return 0;
1415 	}
1416 
1417 	if (page_mapped(page)) {
1418 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1419 				 pfn, &unpoison_rs);
1420 		return 0;
1421 	}
1422 
1423 	if (page_mapping(page)) {
1424 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1425 				 pfn, &unpoison_rs);
1426 		return 0;
1427 	}
1428 
1429 	/*
1430 	 * unpoison_memory() can encounter thp only when the thp is being
1431 	 * worked by memory_failure() and the page lock is not held yet.
1432 	 * In such case, we yield to memory_failure() and make unpoison fail.
1433 	 */
1434 	if (!PageHuge(page) && PageTransHuge(page)) {
1435 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1436 				 pfn, &unpoison_rs);
1437 		return 0;
1438 	}
1439 
1440 	nr_pages = 1 << compound_order(page);
1441 
1442 	if (!get_hwpoison_page(p)) {
1443 		/*
1444 		 * Since HWPoisoned hugepage should have non-zero refcount,
1445 		 * race between memory failure and unpoison seems to happen.
1446 		 * In such case unpoison fails and memory failure runs
1447 		 * to the end.
1448 		 */
1449 		if (PageHuge(page)) {
1450 			unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1451 					 pfn, &unpoison_rs);
1452 			return 0;
1453 		}
1454 		if (TestClearPageHWPoison(p))
1455 			num_poisoned_pages_dec();
1456 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1457 				 pfn, &unpoison_rs);
1458 		return 0;
1459 	}
1460 
1461 	lock_page(page);
1462 	/*
1463 	 * This test is racy because PG_hwpoison is set outside of page lock.
1464 	 * That's acceptable because that won't trigger kernel panic. Instead,
1465 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1466 	 * the free buddy page pool.
1467 	 */
1468 	if (TestClearPageHWPoison(page)) {
1469 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1470 				 pfn, &unpoison_rs);
1471 		num_poisoned_pages_sub(nr_pages);
1472 		freeit = 1;
1473 		if (PageHuge(page))
1474 			clear_page_hwpoison_huge_page(page);
1475 	}
1476 	unlock_page(page);
1477 
1478 	put_hwpoison_page(page);
1479 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1480 		put_hwpoison_page(page);
1481 
1482 	return 0;
1483 }
1484 EXPORT_SYMBOL(unpoison_memory);
1485 
1486 static struct page *new_page(struct page *p, unsigned long private, int **x)
1487 {
1488 	int nid = page_to_nid(p);
1489 	if (PageHuge(p))
1490 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1491 						   nid);
1492 	else
1493 		return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1494 }
1495 
1496 /*
1497  * Safely get reference count of an arbitrary page.
1498  * Returns 0 for a free page, -EIO for a zero refcount page
1499  * that is not free, and 1 for any other page type.
1500  * For 1 the page is returned with increased page count, otherwise not.
1501  */
1502 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1503 {
1504 	int ret;
1505 
1506 	if (flags & MF_COUNT_INCREASED)
1507 		return 1;
1508 
1509 	/*
1510 	 * When the target page is a free hugepage, just remove it
1511 	 * from free hugepage list.
1512 	 */
1513 	if (!get_hwpoison_page(p)) {
1514 		if (PageHuge(p)) {
1515 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1516 			ret = 0;
1517 		} else if (is_free_buddy_page(p)) {
1518 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1519 			ret = 0;
1520 		} else {
1521 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1522 				__func__, pfn, p->flags);
1523 			ret = -EIO;
1524 		}
1525 	} else {
1526 		/* Not a free page */
1527 		ret = 1;
1528 	}
1529 	return ret;
1530 }
1531 
1532 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1533 {
1534 	int ret = __get_any_page(page, pfn, flags);
1535 
1536 	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1537 		/*
1538 		 * Try to free it.
1539 		 */
1540 		put_hwpoison_page(page);
1541 		shake_page(page, 1);
1542 
1543 		/*
1544 		 * Did it turn free?
1545 		 */
1546 		ret = __get_any_page(page, pfn, 0);
1547 		if (ret == 1 && !PageLRU(page)) {
1548 			/* Drop page reference which is from __get_any_page() */
1549 			put_hwpoison_page(page);
1550 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1551 				pfn, page->flags);
1552 			return -EIO;
1553 		}
1554 	}
1555 	return ret;
1556 }
1557 
1558 static int soft_offline_huge_page(struct page *page, int flags)
1559 {
1560 	int ret;
1561 	unsigned long pfn = page_to_pfn(page);
1562 	struct page *hpage = compound_head(page);
1563 	LIST_HEAD(pagelist);
1564 
1565 	/*
1566 	 * This double-check of PageHWPoison is to avoid the race with
1567 	 * memory_failure(). See also comment in __soft_offline_page().
1568 	 */
1569 	lock_page(hpage);
1570 	if (PageHWPoison(hpage)) {
1571 		unlock_page(hpage);
1572 		put_hwpoison_page(hpage);
1573 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1574 		return -EBUSY;
1575 	}
1576 	unlock_page(hpage);
1577 
1578 	ret = isolate_huge_page(hpage, &pagelist);
1579 	/*
1580 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1581 	 * so need to drop one here.
1582 	 */
1583 	put_hwpoison_page(hpage);
1584 	if (!ret) {
1585 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1586 		return -EBUSY;
1587 	}
1588 
1589 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1590 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1591 	if (ret) {
1592 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1593 			pfn, ret, page->flags);
1594 		/*
1595 		 * We know that soft_offline_huge_page() tries to migrate
1596 		 * only one hugepage pointed to by hpage, so we need not
1597 		 * run through the pagelist here.
1598 		 */
1599 		putback_active_hugepage(hpage);
1600 		if (ret > 0)
1601 			ret = -EIO;
1602 	} else {
1603 		/* overcommit hugetlb page will be freed to buddy */
1604 		if (PageHuge(page)) {
1605 			set_page_hwpoison_huge_page(hpage);
1606 			dequeue_hwpoisoned_huge_page(hpage);
1607 			num_poisoned_pages_add(1 << compound_order(hpage));
1608 		} else {
1609 			SetPageHWPoison(page);
1610 			num_poisoned_pages_inc();
1611 		}
1612 	}
1613 	return ret;
1614 }
1615 
1616 static int __soft_offline_page(struct page *page, int flags)
1617 {
1618 	int ret;
1619 	unsigned long pfn = page_to_pfn(page);
1620 
1621 	/*
1622 	 * Check PageHWPoison again inside page lock because PageHWPoison
1623 	 * is set by memory_failure() outside page lock. Note that
1624 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1625 	 * so there's no race between soft_offline_page() and memory_failure().
1626 	 */
1627 	lock_page(page);
1628 	wait_on_page_writeback(page);
1629 	if (PageHWPoison(page)) {
1630 		unlock_page(page);
1631 		put_hwpoison_page(page);
1632 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1633 		return -EBUSY;
1634 	}
1635 	/*
1636 	 * Try to invalidate first. This should work for
1637 	 * non dirty unmapped page cache pages.
1638 	 */
1639 	ret = invalidate_inode_page(page);
1640 	unlock_page(page);
1641 	/*
1642 	 * RED-PEN would be better to keep it isolated here, but we
1643 	 * would need to fix isolation locking first.
1644 	 */
1645 	if (ret == 1) {
1646 		put_hwpoison_page(page);
1647 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1648 		SetPageHWPoison(page);
1649 		num_poisoned_pages_inc();
1650 		return 0;
1651 	}
1652 
1653 	/*
1654 	 * Simple invalidation didn't work.
1655 	 * Try to migrate to a new page instead. migrate.c
1656 	 * handles a large number of cases for us.
1657 	 */
1658 	ret = isolate_lru_page(page);
1659 	/*
1660 	 * Drop page reference which is came from get_any_page()
1661 	 * successful isolate_lru_page() already took another one.
1662 	 */
1663 	put_hwpoison_page(page);
1664 	if (!ret) {
1665 		LIST_HEAD(pagelist);
1666 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1667 					page_is_file_cache(page));
1668 		list_add(&page->lru, &pagelist);
1669 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1670 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1671 		if (ret) {
1672 			if (!list_empty(&pagelist)) {
1673 				list_del(&page->lru);
1674 				dec_zone_page_state(page, NR_ISOLATED_ANON +
1675 						page_is_file_cache(page));
1676 				putback_lru_page(page);
1677 			}
1678 
1679 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1680 				pfn, ret, page->flags);
1681 			if (ret > 0)
1682 				ret = -EIO;
1683 		}
1684 	} else {
1685 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1686 			pfn, ret, page_count(page), page->flags);
1687 	}
1688 	return ret;
1689 }
1690 
1691 static int soft_offline_in_use_page(struct page *page, int flags)
1692 {
1693 	int ret;
1694 	struct page *hpage = compound_head(page);
1695 
1696 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1697 		lock_page(hpage);
1698 		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1699 			unlock_page(hpage);
1700 			if (!PageAnon(hpage))
1701 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1702 			else
1703 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1704 			put_hwpoison_page(hpage);
1705 			return -EBUSY;
1706 		}
1707 		unlock_page(hpage);
1708 		get_hwpoison_page(page);
1709 		put_hwpoison_page(hpage);
1710 	}
1711 
1712 	if (PageHuge(page))
1713 		ret = soft_offline_huge_page(page, flags);
1714 	else
1715 		ret = __soft_offline_page(page, flags);
1716 
1717 	return ret;
1718 }
1719 
1720 static void soft_offline_free_page(struct page *page)
1721 {
1722 	if (PageHuge(page)) {
1723 		struct page *hpage = compound_head(page);
1724 
1725 		set_page_hwpoison_huge_page(hpage);
1726 		if (!dequeue_hwpoisoned_huge_page(hpage))
1727 			num_poisoned_pages_add(1 << compound_order(hpage));
1728 	} else {
1729 		if (!TestSetPageHWPoison(page))
1730 			num_poisoned_pages_inc();
1731 	}
1732 }
1733 
1734 /**
1735  * soft_offline_page - Soft offline a page.
1736  * @page: page to offline
1737  * @flags: flags. Same as memory_failure().
1738  *
1739  * Returns 0 on success, otherwise negated errno.
1740  *
1741  * Soft offline a page, by migration or invalidation,
1742  * without killing anything. This is for the case when
1743  * a page is not corrupted yet (so it's still valid to access),
1744  * but has had a number of corrected errors and is better taken
1745  * out.
1746  *
1747  * The actual policy on when to do that is maintained by
1748  * user space.
1749  *
1750  * This should never impact any application or cause data loss,
1751  * however it might take some time.
1752  *
1753  * This is not a 100% solution for all memory, but tries to be
1754  * ``good enough'' for the majority of memory.
1755  */
1756 int soft_offline_page(struct page *page, int flags)
1757 {
1758 	int ret;
1759 	unsigned long pfn = page_to_pfn(page);
1760 
1761 	if (PageHWPoison(page)) {
1762 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1763 		if (flags & MF_COUNT_INCREASED)
1764 			put_hwpoison_page(page);
1765 		return -EBUSY;
1766 	}
1767 
1768 	get_online_mems();
1769 	ret = get_any_page(page, pfn, flags);
1770 	put_online_mems();
1771 
1772 	if (ret > 0)
1773 		ret = soft_offline_in_use_page(page, flags);
1774 	else if (ret == 0)
1775 		soft_offline_free_page(page);
1776 
1777 	return ret;
1778 }
1779