1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * It can be very tempting to add handling for obscure cases here. 25 * In general any code for handling new cases should only be added iff: 26 * - You know how to test it. 27 * - You have a test that can be added to mce-test 28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 29 * - The case actually shows up as a frequent (top 10) page state in 30 * tools/vm/page-types when running a real workload. 31 * 32 * There are several operations here with exponential complexity because 33 * of unsuitable VM data structures. For example the operation to map back 34 * from RMAP chains to processes has to walk the complete process list and 35 * has non linear complexity with the number. But since memory corruptions 36 * are rare we hope to get away with this. This avoids impacting the core 37 * VM. 38 */ 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched.h> 44 #include <linux/ksm.h> 45 #include <linux/rmap.h> 46 #include <linux/export.h> 47 #include <linux/pagemap.h> 48 #include <linux/swap.h> 49 #include <linux/backing-dev.h> 50 #include <linux/migrate.h> 51 #include <linux/page-isolation.h> 52 #include <linux/suspend.h> 53 #include <linux/slab.h> 54 #include <linux/swapops.h> 55 #include <linux/hugetlb.h> 56 #include <linux/memory_hotplug.h> 57 #include <linux/mm_inline.h> 58 #include <linux/kfifo.h> 59 #include "internal.h" 60 #include "ras/ras_event.h" 61 62 int sysctl_memory_failure_early_kill __read_mostly = 0; 63 64 int sysctl_memory_failure_recovery __read_mostly = 1; 65 66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 67 68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 69 70 u32 hwpoison_filter_enable = 0; 71 u32 hwpoison_filter_dev_major = ~0U; 72 u32 hwpoison_filter_dev_minor = ~0U; 73 u64 hwpoison_filter_flags_mask; 74 u64 hwpoison_filter_flags_value; 75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 80 81 static int hwpoison_filter_dev(struct page *p) 82 { 83 struct address_space *mapping; 84 dev_t dev; 85 86 if (hwpoison_filter_dev_major == ~0U && 87 hwpoison_filter_dev_minor == ~0U) 88 return 0; 89 90 /* 91 * page_mapping() does not accept slab pages. 92 */ 93 if (PageSlab(p)) 94 return -EINVAL; 95 96 mapping = page_mapping(p); 97 if (mapping == NULL || mapping->host == NULL) 98 return -EINVAL; 99 100 dev = mapping->host->i_sb->s_dev; 101 if (hwpoison_filter_dev_major != ~0U && 102 hwpoison_filter_dev_major != MAJOR(dev)) 103 return -EINVAL; 104 if (hwpoison_filter_dev_minor != ~0U && 105 hwpoison_filter_dev_minor != MINOR(dev)) 106 return -EINVAL; 107 108 return 0; 109 } 110 111 static int hwpoison_filter_flags(struct page *p) 112 { 113 if (!hwpoison_filter_flags_mask) 114 return 0; 115 116 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 117 hwpoison_filter_flags_value) 118 return 0; 119 else 120 return -EINVAL; 121 } 122 123 /* 124 * This allows stress tests to limit test scope to a collection of tasks 125 * by putting them under some memcg. This prevents killing unrelated/important 126 * processes such as /sbin/init. Note that the target task may share clean 127 * pages with init (eg. libc text), which is harmless. If the target task 128 * share _dirty_ pages with another task B, the test scheme must make sure B 129 * is also included in the memcg. At last, due to race conditions this filter 130 * can only guarantee that the page either belongs to the memcg tasks, or is 131 * a freed page. 132 */ 133 #ifdef CONFIG_MEMCG 134 u64 hwpoison_filter_memcg; 135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 136 static int hwpoison_filter_task(struct page *p) 137 { 138 if (!hwpoison_filter_memcg) 139 return 0; 140 141 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 142 return -EINVAL; 143 144 return 0; 145 } 146 #else 147 static int hwpoison_filter_task(struct page *p) { return 0; } 148 #endif 149 150 int hwpoison_filter(struct page *p) 151 { 152 if (!hwpoison_filter_enable) 153 return 0; 154 155 if (hwpoison_filter_dev(p)) 156 return -EINVAL; 157 158 if (hwpoison_filter_flags(p)) 159 return -EINVAL; 160 161 if (hwpoison_filter_task(p)) 162 return -EINVAL; 163 164 return 0; 165 } 166 #else 167 int hwpoison_filter(struct page *p) 168 { 169 return 0; 170 } 171 #endif 172 173 EXPORT_SYMBOL_GPL(hwpoison_filter); 174 175 /* 176 * Send all the processes who have the page mapped a signal. 177 * ``action optional'' if they are not immediately affected by the error 178 * ``action required'' if error happened in current execution context 179 */ 180 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno, 181 unsigned long pfn, struct page *page, int flags) 182 { 183 struct siginfo si; 184 int ret; 185 186 printk(KERN_ERR 187 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n", 188 pfn, t->comm, t->pid); 189 si.si_signo = SIGBUS; 190 si.si_errno = 0; 191 si.si_addr = (void *)addr; 192 #ifdef __ARCH_SI_TRAPNO 193 si.si_trapno = trapno; 194 #endif 195 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; 196 197 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 198 si.si_code = BUS_MCEERR_AR; 199 ret = force_sig_info(SIGBUS, &si, current); 200 } else { 201 /* 202 * Don't use force here, it's convenient if the signal 203 * can be temporarily blocked. 204 * This could cause a loop when the user sets SIGBUS 205 * to SIG_IGN, but hopefully no one will do that? 206 */ 207 si.si_code = BUS_MCEERR_AO; 208 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 209 } 210 if (ret < 0) 211 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", 212 t->comm, t->pid, ret); 213 return ret; 214 } 215 216 /* 217 * When a unknown page type is encountered drain as many buffers as possible 218 * in the hope to turn the page into a LRU or free page, which we can handle. 219 */ 220 void shake_page(struct page *p, int access) 221 { 222 if (!PageSlab(p)) { 223 lru_add_drain_all(); 224 if (PageLRU(p)) 225 return; 226 drain_all_pages(page_zone(p)); 227 if (PageLRU(p) || is_free_buddy_page(p)) 228 return; 229 } 230 231 /* 232 * Only call shrink_node_slabs here (which would also shrink 233 * other caches) if access is not potentially fatal. 234 */ 235 if (access) 236 drop_slab_node(page_to_nid(p)); 237 } 238 EXPORT_SYMBOL_GPL(shake_page); 239 240 /* 241 * Kill all processes that have a poisoned page mapped and then isolate 242 * the page. 243 * 244 * General strategy: 245 * Find all processes having the page mapped and kill them. 246 * But we keep a page reference around so that the page is not 247 * actually freed yet. 248 * Then stash the page away 249 * 250 * There's no convenient way to get back to mapped processes 251 * from the VMAs. So do a brute-force search over all 252 * running processes. 253 * 254 * Remember that machine checks are not common (or rather 255 * if they are common you have other problems), so this shouldn't 256 * be a performance issue. 257 * 258 * Also there are some races possible while we get from the 259 * error detection to actually handle it. 260 */ 261 262 struct to_kill { 263 struct list_head nd; 264 struct task_struct *tsk; 265 unsigned long addr; 266 char addr_valid; 267 }; 268 269 /* 270 * Failure handling: if we can't find or can't kill a process there's 271 * not much we can do. We just print a message and ignore otherwise. 272 */ 273 274 /* 275 * Schedule a process for later kill. 276 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 277 * TBD would GFP_NOIO be enough? 278 */ 279 static void add_to_kill(struct task_struct *tsk, struct page *p, 280 struct vm_area_struct *vma, 281 struct list_head *to_kill, 282 struct to_kill **tkc) 283 { 284 struct to_kill *tk; 285 286 if (*tkc) { 287 tk = *tkc; 288 *tkc = NULL; 289 } else { 290 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 291 if (!tk) { 292 printk(KERN_ERR 293 "MCE: Out of memory while machine check handling\n"); 294 return; 295 } 296 } 297 tk->addr = page_address_in_vma(p, vma); 298 tk->addr_valid = 1; 299 300 /* 301 * In theory we don't have to kill when the page was 302 * munmaped. But it could be also a mremap. Since that's 303 * likely very rare kill anyways just out of paranoia, but use 304 * a SIGKILL because the error is not contained anymore. 305 */ 306 if (tk->addr == -EFAULT) { 307 pr_info("MCE: Unable to find user space address %lx in %s\n", 308 page_to_pfn(p), tsk->comm); 309 tk->addr_valid = 0; 310 } 311 get_task_struct(tsk); 312 tk->tsk = tsk; 313 list_add_tail(&tk->nd, to_kill); 314 } 315 316 /* 317 * Kill the processes that have been collected earlier. 318 * 319 * Only do anything when DOIT is set, otherwise just free the list 320 * (this is used for clean pages which do not need killing) 321 * Also when FAIL is set do a force kill because something went 322 * wrong earlier. 323 */ 324 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno, 325 int fail, struct page *page, unsigned long pfn, 326 int flags) 327 { 328 struct to_kill *tk, *next; 329 330 list_for_each_entry_safe (tk, next, to_kill, nd) { 331 if (forcekill) { 332 /* 333 * In case something went wrong with munmapping 334 * make sure the process doesn't catch the 335 * signal and then access the memory. Just kill it. 336 */ 337 if (fail || tk->addr_valid == 0) { 338 printk(KERN_ERR 339 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 340 pfn, tk->tsk->comm, tk->tsk->pid); 341 force_sig(SIGKILL, tk->tsk); 342 } 343 344 /* 345 * In theory the process could have mapped 346 * something else on the address in-between. We could 347 * check for that, but we need to tell the 348 * process anyways. 349 */ 350 else if (kill_proc(tk->tsk, tk->addr, trapno, 351 pfn, page, flags) < 0) 352 printk(KERN_ERR 353 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", 354 pfn, tk->tsk->comm, tk->tsk->pid); 355 } 356 put_task_struct(tk->tsk); 357 kfree(tk); 358 } 359 } 360 361 /* 362 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 363 * on behalf of the thread group. Return task_struct of the (first found) 364 * dedicated thread if found, and return NULL otherwise. 365 * 366 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 367 * have to call rcu_read_lock/unlock() in this function. 368 */ 369 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 370 { 371 struct task_struct *t; 372 373 for_each_thread(tsk, t) 374 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 375 return t; 376 return NULL; 377 } 378 379 /* 380 * Determine whether a given process is "early kill" process which expects 381 * to be signaled when some page under the process is hwpoisoned. 382 * Return task_struct of the dedicated thread (main thread unless explicitly 383 * specified) if the process is "early kill," and otherwise returns NULL. 384 */ 385 static struct task_struct *task_early_kill(struct task_struct *tsk, 386 int force_early) 387 { 388 struct task_struct *t; 389 if (!tsk->mm) 390 return NULL; 391 if (force_early) 392 return tsk; 393 t = find_early_kill_thread(tsk); 394 if (t) 395 return t; 396 if (sysctl_memory_failure_early_kill) 397 return tsk; 398 return NULL; 399 } 400 401 /* 402 * Collect processes when the error hit an anonymous page. 403 */ 404 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 405 struct to_kill **tkc, int force_early) 406 { 407 struct vm_area_struct *vma; 408 struct task_struct *tsk; 409 struct anon_vma *av; 410 pgoff_t pgoff; 411 412 av = page_lock_anon_vma_read(page); 413 if (av == NULL) /* Not actually mapped anymore */ 414 return; 415 416 pgoff = page_to_pgoff(page); 417 read_lock(&tasklist_lock); 418 for_each_process (tsk) { 419 struct anon_vma_chain *vmac; 420 struct task_struct *t = task_early_kill(tsk, force_early); 421 422 if (!t) 423 continue; 424 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 425 pgoff, pgoff) { 426 vma = vmac->vma; 427 if (!page_mapped_in_vma(page, vma)) 428 continue; 429 if (vma->vm_mm == t->mm) 430 add_to_kill(t, page, vma, to_kill, tkc); 431 } 432 } 433 read_unlock(&tasklist_lock); 434 page_unlock_anon_vma_read(av); 435 } 436 437 /* 438 * Collect processes when the error hit a file mapped page. 439 */ 440 static void collect_procs_file(struct page *page, struct list_head *to_kill, 441 struct to_kill **tkc, int force_early) 442 { 443 struct vm_area_struct *vma; 444 struct task_struct *tsk; 445 struct address_space *mapping = page->mapping; 446 447 i_mmap_lock_read(mapping); 448 read_lock(&tasklist_lock); 449 for_each_process(tsk) { 450 pgoff_t pgoff = page_to_pgoff(page); 451 struct task_struct *t = task_early_kill(tsk, force_early); 452 453 if (!t) 454 continue; 455 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 456 pgoff) { 457 /* 458 * Send early kill signal to tasks where a vma covers 459 * the page but the corrupted page is not necessarily 460 * mapped it in its pte. 461 * Assume applications who requested early kill want 462 * to be informed of all such data corruptions. 463 */ 464 if (vma->vm_mm == t->mm) 465 add_to_kill(t, page, vma, to_kill, tkc); 466 } 467 } 468 read_unlock(&tasklist_lock); 469 i_mmap_unlock_read(mapping); 470 } 471 472 /* 473 * Collect the processes who have the corrupted page mapped to kill. 474 * This is done in two steps for locking reasons. 475 * First preallocate one tokill structure outside the spin locks, 476 * so that we can kill at least one process reasonably reliable. 477 */ 478 static void collect_procs(struct page *page, struct list_head *tokill, 479 int force_early) 480 { 481 struct to_kill *tk; 482 483 if (!page->mapping) 484 return; 485 486 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 487 if (!tk) 488 return; 489 if (PageAnon(page)) 490 collect_procs_anon(page, tokill, &tk, force_early); 491 else 492 collect_procs_file(page, tokill, &tk, force_early); 493 kfree(tk); 494 } 495 496 static const char *action_name[] = { 497 [MF_IGNORED] = "Ignored", 498 [MF_FAILED] = "Failed", 499 [MF_DELAYED] = "Delayed", 500 [MF_RECOVERED] = "Recovered", 501 }; 502 503 static const char * const action_page_types[] = { 504 [MF_MSG_KERNEL] = "reserved kernel page", 505 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 506 [MF_MSG_SLAB] = "kernel slab page", 507 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 508 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 509 [MF_MSG_HUGE] = "huge page", 510 [MF_MSG_FREE_HUGE] = "free huge page", 511 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 512 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 513 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 514 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 515 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 516 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 517 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 518 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 519 [MF_MSG_CLEAN_LRU] = "clean LRU page", 520 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 521 [MF_MSG_BUDDY] = "free buddy page", 522 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 523 [MF_MSG_UNKNOWN] = "unknown page", 524 }; 525 526 /* 527 * XXX: It is possible that a page is isolated from LRU cache, 528 * and then kept in swap cache or failed to remove from page cache. 529 * The page count will stop it from being freed by unpoison. 530 * Stress tests should be aware of this memory leak problem. 531 */ 532 static int delete_from_lru_cache(struct page *p) 533 { 534 if (!isolate_lru_page(p)) { 535 /* 536 * Clear sensible page flags, so that the buddy system won't 537 * complain when the page is unpoison-and-freed. 538 */ 539 ClearPageActive(p); 540 ClearPageUnevictable(p); 541 /* 542 * drop the page count elevated by isolate_lru_page() 543 */ 544 page_cache_release(p); 545 return 0; 546 } 547 return -EIO; 548 } 549 550 /* 551 * Error hit kernel page. 552 * Do nothing, try to be lucky and not touch this instead. For a few cases we 553 * could be more sophisticated. 554 */ 555 static int me_kernel(struct page *p, unsigned long pfn) 556 { 557 return MF_IGNORED; 558 } 559 560 /* 561 * Page in unknown state. Do nothing. 562 */ 563 static int me_unknown(struct page *p, unsigned long pfn) 564 { 565 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); 566 return MF_FAILED; 567 } 568 569 /* 570 * Clean (or cleaned) page cache page. 571 */ 572 static int me_pagecache_clean(struct page *p, unsigned long pfn) 573 { 574 int err; 575 int ret = MF_FAILED; 576 struct address_space *mapping; 577 578 delete_from_lru_cache(p); 579 580 /* 581 * For anonymous pages we're done the only reference left 582 * should be the one m_f() holds. 583 */ 584 if (PageAnon(p)) 585 return MF_RECOVERED; 586 587 /* 588 * Now truncate the page in the page cache. This is really 589 * more like a "temporary hole punch" 590 * Don't do this for block devices when someone else 591 * has a reference, because it could be file system metadata 592 * and that's not safe to truncate. 593 */ 594 mapping = page_mapping(p); 595 if (!mapping) { 596 /* 597 * Page has been teared down in the meanwhile 598 */ 599 return MF_FAILED; 600 } 601 602 /* 603 * Truncation is a bit tricky. Enable it per file system for now. 604 * 605 * Open: to take i_mutex or not for this? Right now we don't. 606 */ 607 if (mapping->a_ops->error_remove_page) { 608 err = mapping->a_ops->error_remove_page(mapping, p); 609 if (err != 0) { 610 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", 611 pfn, err); 612 } else if (page_has_private(p) && 613 !try_to_release_page(p, GFP_NOIO)) { 614 pr_info("MCE %#lx: failed to release buffers\n", pfn); 615 } else { 616 ret = MF_RECOVERED; 617 } 618 } else { 619 /* 620 * If the file system doesn't support it just invalidate 621 * This fails on dirty or anything with private pages 622 */ 623 if (invalidate_inode_page(p)) 624 ret = MF_RECOVERED; 625 else 626 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", 627 pfn); 628 } 629 return ret; 630 } 631 632 /* 633 * Dirty pagecache page 634 * Issues: when the error hit a hole page the error is not properly 635 * propagated. 636 */ 637 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 638 { 639 struct address_space *mapping = page_mapping(p); 640 641 SetPageError(p); 642 /* TBD: print more information about the file. */ 643 if (mapping) { 644 /* 645 * IO error will be reported by write(), fsync(), etc. 646 * who check the mapping. 647 * This way the application knows that something went 648 * wrong with its dirty file data. 649 * 650 * There's one open issue: 651 * 652 * The EIO will be only reported on the next IO 653 * operation and then cleared through the IO map. 654 * Normally Linux has two mechanisms to pass IO error 655 * first through the AS_EIO flag in the address space 656 * and then through the PageError flag in the page. 657 * Since we drop pages on memory failure handling the 658 * only mechanism open to use is through AS_AIO. 659 * 660 * This has the disadvantage that it gets cleared on 661 * the first operation that returns an error, while 662 * the PageError bit is more sticky and only cleared 663 * when the page is reread or dropped. If an 664 * application assumes it will always get error on 665 * fsync, but does other operations on the fd before 666 * and the page is dropped between then the error 667 * will not be properly reported. 668 * 669 * This can already happen even without hwpoisoned 670 * pages: first on metadata IO errors (which only 671 * report through AS_EIO) or when the page is dropped 672 * at the wrong time. 673 * 674 * So right now we assume that the application DTRT on 675 * the first EIO, but we're not worse than other parts 676 * of the kernel. 677 */ 678 mapping_set_error(mapping, EIO); 679 } 680 681 return me_pagecache_clean(p, pfn); 682 } 683 684 /* 685 * Clean and dirty swap cache. 686 * 687 * Dirty swap cache page is tricky to handle. The page could live both in page 688 * cache and swap cache(ie. page is freshly swapped in). So it could be 689 * referenced concurrently by 2 types of PTEs: 690 * normal PTEs and swap PTEs. We try to handle them consistently by calling 691 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 692 * and then 693 * - clear dirty bit to prevent IO 694 * - remove from LRU 695 * - but keep in the swap cache, so that when we return to it on 696 * a later page fault, we know the application is accessing 697 * corrupted data and shall be killed (we installed simple 698 * interception code in do_swap_page to catch it). 699 * 700 * Clean swap cache pages can be directly isolated. A later page fault will 701 * bring in the known good data from disk. 702 */ 703 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 704 { 705 ClearPageDirty(p); 706 /* Trigger EIO in shmem: */ 707 ClearPageUptodate(p); 708 709 if (!delete_from_lru_cache(p)) 710 return MF_DELAYED; 711 else 712 return MF_FAILED; 713 } 714 715 static int me_swapcache_clean(struct page *p, unsigned long pfn) 716 { 717 delete_from_swap_cache(p); 718 719 if (!delete_from_lru_cache(p)) 720 return MF_RECOVERED; 721 else 722 return MF_FAILED; 723 } 724 725 /* 726 * Huge pages. Needs work. 727 * Issues: 728 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 729 * To narrow down kill region to one page, we need to break up pmd. 730 */ 731 static int me_huge_page(struct page *p, unsigned long pfn) 732 { 733 int res = 0; 734 struct page *hpage = compound_head(p); 735 736 if (!PageHuge(hpage)) 737 return MF_DELAYED; 738 739 /* 740 * We can safely recover from error on free or reserved (i.e. 741 * not in-use) hugepage by dequeuing it from freelist. 742 * To check whether a hugepage is in-use or not, we can't use 743 * page->lru because it can be used in other hugepage operations, 744 * such as __unmap_hugepage_range() and gather_surplus_pages(). 745 * So instead we use page_mapping() and PageAnon(). 746 * We assume that this function is called with page lock held, 747 * so there is no race between isolation and mapping/unmapping. 748 */ 749 if (!(page_mapping(hpage) || PageAnon(hpage))) { 750 res = dequeue_hwpoisoned_huge_page(hpage); 751 if (!res) 752 return MF_RECOVERED; 753 } 754 return MF_DELAYED; 755 } 756 757 /* 758 * Various page states we can handle. 759 * 760 * A page state is defined by its current page->flags bits. 761 * The table matches them in order and calls the right handler. 762 * 763 * This is quite tricky because we can access page at any time 764 * in its live cycle, so all accesses have to be extremely careful. 765 * 766 * This is not complete. More states could be added. 767 * For any missing state don't attempt recovery. 768 */ 769 770 #define dirty (1UL << PG_dirty) 771 #define sc (1UL << PG_swapcache) 772 #define unevict (1UL << PG_unevictable) 773 #define mlock (1UL << PG_mlocked) 774 #define writeback (1UL << PG_writeback) 775 #define lru (1UL << PG_lru) 776 #define swapbacked (1UL << PG_swapbacked) 777 #define head (1UL << PG_head) 778 #define tail (1UL << PG_tail) 779 #define compound (1UL << PG_compound) 780 #define slab (1UL << PG_slab) 781 #define reserved (1UL << PG_reserved) 782 783 static struct page_state { 784 unsigned long mask; 785 unsigned long res; 786 enum mf_action_page_type type; 787 int (*action)(struct page *p, unsigned long pfn); 788 } error_states[] = { 789 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 790 /* 791 * free pages are specially detected outside this table: 792 * PG_buddy pages only make a small fraction of all free pages. 793 */ 794 795 /* 796 * Could in theory check if slab page is free or if we can drop 797 * currently unused objects without touching them. But just 798 * treat it as standard kernel for now. 799 */ 800 { slab, slab, MF_MSG_SLAB, me_kernel }, 801 802 #ifdef CONFIG_PAGEFLAGS_EXTENDED 803 { head, head, MF_MSG_HUGE, me_huge_page }, 804 { tail, tail, MF_MSG_HUGE, me_huge_page }, 805 #else 806 { compound, compound, MF_MSG_HUGE, me_huge_page }, 807 #endif 808 809 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 810 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 811 812 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 813 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 814 815 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 816 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 817 818 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 819 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 820 821 /* 822 * Catchall entry: must be at end. 823 */ 824 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 825 }; 826 827 #undef dirty 828 #undef sc 829 #undef unevict 830 #undef mlock 831 #undef writeback 832 #undef lru 833 #undef swapbacked 834 #undef head 835 #undef tail 836 #undef compound 837 #undef slab 838 #undef reserved 839 840 /* 841 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 842 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 843 */ 844 static void action_result(unsigned long pfn, enum mf_action_page_type type, 845 enum mf_result result) 846 { 847 trace_memory_failure_event(pfn, type, result); 848 849 pr_err("MCE %#lx: recovery action for %s: %s\n", 850 pfn, action_page_types[type], action_name[result]); 851 } 852 853 static int page_action(struct page_state *ps, struct page *p, 854 unsigned long pfn) 855 { 856 int result; 857 int count; 858 859 result = ps->action(p, pfn); 860 861 count = page_count(p) - 1; 862 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 863 count--; 864 if (count != 0) { 865 printk(KERN_ERR 866 "MCE %#lx: %s still referenced by %d users\n", 867 pfn, action_page_types[ps->type], count); 868 result = MF_FAILED; 869 } 870 action_result(pfn, ps->type, result); 871 872 /* Could do more checks here if page looks ok */ 873 /* 874 * Could adjust zone counters here to correct for the missing page. 875 */ 876 877 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 878 } 879 880 /** 881 * get_hwpoison_page() - Get refcount for memory error handling: 882 * @page: raw error page (hit by memory error) 883 * 884 * Return: return 0 if failed to grab the refcount, otherwise true (some 885 * non-zero value.) 886 */ 887 int get_hwpoison_page(struct page *page) 888 { 889 struct page *head = compound_head(page); 890 891 if (PageHuge(head)) 892 return get_page_unless_zero(head); 893 894 /* 895 * Thp tail page has special refcounting rule (refcount of tail pages 896 * is stored in ->_mapcount,) so we can't call get_page_unless_zero() 897 * directly for tail pages. 898 */ 899 if (PageTransHuge(head)) { 900 /* 901 * Non anonymous thp exists only in allocation/free time. We 902 * can't handle such a case correctly, so let's give it up. 903 * This should be better than triggering BUG_ON when kernel 904 * tries to touch the "partially handled" page. 905 */ 906 if (!PageAnon(head)) { 907 pr_err("MCE: %#lx: non anonymous thp\n", 908 page_to_pfn(page)); 909 return 0; 910 } 911 912 if (get_page_unless_zero(head)) { 913 if (PageTail(page)) 914 get_page(page); 915 return 1; 916 } else { 917 return 0; 918 } 919 } 920 921 return get_page_unless_zero(page); 922 } 923 EXPORT_SYMBOL_GPL(get_hwpoison_page); 924 925 /** 926 * put_hwpoison_page() - Put refcount for memory error handling: 927 * @page: raw error page (hit by memory error) 928 */ 929 void put_hwpoison_page(struct page *page) 930 { 931 struct page *head = compound_head(page); 932 933 if (PageHuge(head)) { 934 put_page(head); 935 return; 936 } 937 938 if (PageTransHuge(head)) 939 if (page != head) 940 put_page(head); 941 942 put_page(page); 943 } 944 EXPORT_SYMBOL_GPL(put_hwpoison_page); 945 946 /* 947 * Do all that is necessary to remove user space mappings. Unmap 948 * the pages and send SIGBUS to the processes if the data was dirty. 949 */ 950 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 951 int trapno, int flags, struct page **hpagep) 952 { 953 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 954 struct address_space *mapping; 955 LIST_HEAD(tokill); 956 int ret; 957 int kill = 1, forcekill; 958 struct page *hpage = *hpagep; 959 960 /* 961 * Here we are interested only in user-mapped pages, so skip any 962 * other types of pages. 963 */ 964 if (PageReserved(p) || PageSlab(p)) 965 return SWAP_SUCCESS; 966 if (!(PageLRU(hpage) || PageHuge(p))) 967 return SWAP_SUCCESS; 968 969 /* 970 * This check implies we don't kill processes if their pages 971 * are in the swap cache early. Those are always late kills. 972 */ 973 if (!page_mapped(hpage)) 974 return SWAP_SUCCESS; 975 976 if (PageKsm(p)) { 977 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn); 978 return SWAP_FAIL; 979 } 980 981 if (PageSwapCache(p)) { 982 printk(KERN_ERR 983 "MCE %#lx: keeping poisoned page in swap cache\n", pfn); 984 ttu |= TTU_IGNORE_HWPOISON; 985 } 986 987 /* 988 * Propagate the dirty bit from PTEs to struct page first, because we 989 * need this to decide if we should kill or just drop the page. 990 * XXX: the dirty test could be racy: set_page_dirty() may not always 991 * be called inside page lock (it's recommended but not enforced). 992 */ 993 mapping = page_mapping(hpage); 994 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 995 mapping_cap_writeback_dirty(mapping)) { 996 if (page_mkclean(hpage)) { 997 SetPageDirty(hpage); 998 } else { 999 kill = 0; 1000 ttu |= TTU_IGNORE_HWPOISON; 1001 printk(KERN_INFO 1002 "MCE %#lx: corrupted page was clean: dropped without side effects\n", 1003 pfn); 1004 } 1005 } 1006 1007 /* 1008 * First collect all the processes that have the page 1009 * mapped in dirty form. This has to be done before try_to_unmap, 1010 * because ttu takes the rmap data structures down. 1011 * 1012 * Error handling: We ignore errors here because 1013 * there's nothing that can be done. 1014 */ 1015 if (kill) 1016 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1017 1018 ret = try_to_unmap(hpage, ttu); 1019 if (ret != SWAP_SUCCESS) 1020 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", 1021 pfn, page_mapcount(hpage)); 1022 1023 /* 1024 * Now that the dirty bit has been propagated to the 1025 * struct page and all unmaps done we can decide if 1026 * killing is needed or not. Only kill when the page 1027 * was dirty or the process is not restartable, 1028 * otherwise the tokill list is merely 1029 * freed. When there was a problem unmapping earlier 1030 * use a more force-full uncatchable kill to prevent 1031 * any accesses to the poisoned memory. 1032 */ 1033 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1034 kill_procs(&tokill, forcekill, trapno, 1035 ret != SWAP_SUCCESS, p, pfn, flags); 1036 1037 return ret; 1038 } 1039 1040 static void set_page_hwpoison_huge_page(struct page *hpage) 1041 { 1042 int i; 1043 int nr_pages = 1 << compound_order(hpage); 1044 for (i = 0; i < nr_pages; i++) 1045 SetPageHWPoison(hpage + i); 1046 } 1047 1048 static void clear_page_hwpoison_huge_page(struct page *hpage) 1049 { 1050 int i; 1051 int nr_pages = 1 << compound_order(hpage); 1052 for (i = 0; i < nr_pages; i++) 1053 ClearPageHWPoison(hpage + i); 1054 } 1055 1056 /** 1057 * memory_failure - Handle memory failure of a page. 1058 * @pfn: Page Number of the corrupted page 1059 * @trapno: Trap number reported in the signal to user space. 1060 * @flags: fine tune action taken 1061 * 1062 * This function is called by the low level machine check code 1063 * of an architecture when it detects hardware memory corruption 1064 * of a page. It tries its best to recover, which includes 1065 * dropping pages, killing processes etc. 1066 * 1067 * The function is primarily of use for corruptions that 1068 * happen outside the current execution context (e.g. when 1069 * detected by a background scrubber) 1070 * 1071 * Must run in process context (e.g. a work queue) with interrupts 1072 * enabled and no spinlocks hold. 1073 */ 1074 int memory_failure(unsigned long pfn, int trapno, int flags) 1075 { 1076 struct page_state *ps; 1077 struct page *p; 1078 struct page *hpage; 1079 struct page *orig_head; 1080 int res; 1081 unsigned int nr_pages; 1082 unsigned long page_flags; 1083 1084 if (!sysctl_memory_failure_recovery) 1085 panic("Memory failure from trap %d on page %lx", trapno, pfn); 1086 1087 if (!pfn_valid(pfn)) { 1088 printk(KERN_ERR 1089 "MCE %#lx: memory outside kernel control\n", 1090 pfn); 1091 return -ENXIO; 1092 } 1093 1094 p = pfn_to_page(pfn); 1095 orig_head = hpage = compound_head(p); 1096 if (TestSetPageHWPoison(p)) { 1097 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); 1098 return 0; 1099 } 1100 1101 /* 1102 * Currently errors on hugetlbfs pages are measured in hugepage units, 1103 * so nr_pages should be 1 << compound_order. OTOH when errors are on 1104 * transparent hugepages, they are supposed to be split and error 1105 * measurement is done in normal page units. So nr_pages should be one 1106 * in this case. 1107 */ 1108 if (PageHuge(p)) 1109 nr_pages = 1 << compound_order(hpage); 1110 else /* normal page or thp */ 1111 nr_pages = 1; 1112 num_poisoned_pages_add(nr_pages); 1113 1114 /* 1115 * We need/can do nothing about count=0 pages. 1116 * 1) it's a free page, and therefore in safe hand: 1117 * prep_new_page() will be the gate keeper. 1118 * 2) it's a free hugepage, which is also safe: 1119 * an affected hugepage will be dequeued from hugepage freelist, 1120 * so there's no concern about reusing it ever after. 1121 * 3) it's part of a non-compound high order page. 1122 * Implies some kernel user: cannot stop them from 1123 * R/W the page; let's pray that the page has been 1124 * used and will be freed some time later. 1125 * In fact it's dangerous to directly bump up page count from 0, 1126 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1127 */ 1128 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1129 if (is_free_buddy_page(p)) { 1130 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1131 return 0; 1132 } else if (PageHuge(hpage)) { 1133 /* 1134 * Check "filter hit" and "race with other subpage." 1135 */ 1136 lock_page(hpage); 1137 if (PageHWPoison(hpage)) { 1138 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1139 || (p != hpage && TestSetPageHWPoison(hpage))) { 1140 num_poisoned_pages_sub(nr_pages); 1141 unlock_page(hpage); 1142 return 0; 1143 } 1144 } 1145 set_page_hwpoison_huge_page(hpage); 1146 res = dequeue_hwpoisoned_huge_page(hpage); 1147 action_result(pfn, MF_MSG_FREE_HUGE, 1148 res ? MF_IGNORED : MF_DELAYED); 1149 unlock_page(hpage); 1150 return res; 1151 } else { 1152 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1153 return -EBUSY; 1154 } 1155 } 1156 1157 if (!PageHuge(p) && PageTransHuge(hpage)) { 1158 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) { 1159 if (!PageAnon(hpage)) 1160 pr_err("MCE: %#lx: non anonymous thp\n", pfn); 1161 else 1162 pr_err("MCE: %#lx: thp split failed\n", pfn); 1163 if (TestClearPageHWPoison(p)) 1164 num_poisoned_pages_sub(nr_pages); 1165 put_hwpoison_page(p); 1166 return -EBUSY; 1167 } 1168 VM_BUG_ON_PAGE(!page_count(p), p); 1169 hpage = compound_head(p); 1170 } 1171 1172 /* 1173 * We ignore non-LRU pages for good reasons. 1174 * - PG_locked is only well defined for LRU pages and a few others 1175 * - to avoid races with __set_page_locked() 1176 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1177 * The check (unnecessarily) ignores LRU pages being isolated and 1178 * walked by the page reclaim code, however that's not a big loss. 1179 */ 1180 if (!PageHuge(p)) { 1181 if (!PageLRU(p)) 1182 shake_page(p, 0); 1183 if (!PageLRU(p)) { 1184 /* 1185 * shake_page could have turned it free. 1186 */ 1187 if (is_free_buddy_page(p)) { 1188 if (flags & MF_COUNT_INCREASED) 1189 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1190 else 1191 action_result(pfn, MF_MSG_BUDDY_2ND, 1192 MF_DELAYED); 1193 return 0; 1194 } 1195 } 1196 } 1197 1198 lock_page(hpage); 1199 1200 /* 1201 * The page could have changed compound pages during the locking. 1202 * If this happens just bail out. 1203 */ 1204 if (PageCompound(p) && compound_head(p) != orig_head) { 1205 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1206 res = -EBUSY; 1207 goto out; 1208 } 1209 1210 /* 1211 * We use page flags to determine what action should be taken, but 1212 * the flags can be modified by the error containment action. One 1213 * example is an mlocked page, where PG_mlocked is cleared by 1214 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1215 * correctly, we save a copy of the page flags at this time. 1216 */ 1217 page_flags = p->flags; 1218 1219 /* 1220 * unpoison always clear PG_hwpoison inside page lock 1221 */ 1222 if (!PageHWPoison(p)) { 1223 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); 1224 num_poisoned_pages_sub(nr_pages); 1225 unlock_page(hpage); 1226 put_hwpoison_page(hpage); 1227 return 0; 1228 } 1229 if (hwpoison_filter(p)) { 1230 if (TestClearPageHWPoison(p)) 1231 num_poisoned_pages_sub(nr_pages); 1232 unlock_page(hpage); 1233 put_hwpoison_page(hpage); 1234 return 0; 1235 } 1236 1237 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p)) 1238 goto identify_page_state; 1239 1240 /* 1241 * For error on the tail page, we should set PG_hwpoison 1242 * on the head page to show that the hugepage is hwpoisoned 1243 */ 1244 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) { 1245 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED); 1246 unlock_page(hpage); 1247 put_hwpoison_page(hpage); 1248 return 0; 1249 } 1250 /* 1251 * Set PG_hwpoison on all pages in an error hugepage, 1252 * because containment is done in hugepage unit for now. 1253 * Since we have done TestSetPageHWPoison() for the head page with 1254 * page lock held, we can safely set PG_hwpoison bits on tail pages. 1255 */ 1256 if (PageHuge(p)) 1257 set_page_hwpoison_huge_page(hpage); 1258 1259 /* 1260 * It's very difficult to mess with pages currently under IO 1261 * and in many cases impossible, so we just avoid it here. 1262 */ 1263 wait_on_page_writeback(p); 1264 1265 /* 1266 * Now take care of user space mappings. 1267 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1268 * 1269 * When the raw error page is thp tail page, hpage points to the raw 1270 * page after thp split. 1271 */ 1272 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage) 1273 != SWAP_SUCCESS) { 1274 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1275 res = -EBUSY; 1276 goto out; 1277 } 1278 1279 /* 1280 * Torn down by someone else? 1281 */ 1282 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1283 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1284 res = -EBUSY; 1285 goto out; 1286 } 1287 1288 identify_page_state: 1289 res = -EBUSY; 1290 /* 1291 * The first check uses the current page flags which may not have any 1292 * relevant information. The second check with the saved page flagss is 1293 * carried out only if the first check can't determine the page status. 1294 */ 1295 for (ps = error_states;; ps++) 1296 if ((p->flags & ps->mask) == ps->res) 1297 break; 1298 1299 page_flags |= (p->flags & (1UL << PG_dirty)); 1300 1301 if (!ps->mask) 1302 for (ps = error_states;; ps++) 1303 if ((page_flags & ps->mask) == ps->res) 1304 break; 1305 res = page_action(ps, p, pfn); 1306 out: 1307 unlock_page(hpage); 1308 return res; 1309 } 1310 EXPORT_SYMBOL_GPL(memory_failure); 1311 1312 #define MEMORY_FAILURE_FIFO_ORDER 4 1313 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1314 1315 struct memory_failure_entry { 1316 unsigned long pfn; 1317 int trapno; 1318 int flags; 1319 }; 1320 1321 struct memory_failure_cpu { 1322 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1323 MEMORY_FAILURE_FIFO_SIZE); 1324 spinlock_t lock; 1325 struct work_struct work; 1326 }; 1327 1328 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1329 1330 /** 1331 * memory_failure_queue - Schedule handling memory failure of a page. 1332 * @pfn: Page Number of the corrupted page 1333 * @trapno: Trap number reported in the signal to user space. 1334 * @flags: Flags for memory failure handling 1335 * 1336 * This function is called by the low level hardware error handler 1337 * when it detects hardware memory corruption of a page. It schedules 1338 * the recovering of error page, including dropping pages, killing 1339 * processes etc. 1340 * 1341 * The function is primarily of use for corruptions that 1342 * happen outside the current execution context (e.g. when 1343 * detected by a background scrubber) 1344 * 1345 * Can run in IRQ context. 1346 */ 1347 void memory_failure_queue(unsigned long pfn, int trapno, int flags) 1348 { 1349 struct memory_failure_cpu *mf_cpu; 1350 unsigned long proc_flags; 1351 struct memory_failure_entry entry = { 1352 .pfn = pfn, 1353 .trapno = trapno, 1354 .flags = flags, 1355 }; 1356 1357 mf_cpu = &get_cpu_var(memory_failure_cpu); 1358 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1359 if (kfifo_put(&mf_cpu->fifo, entry)) 1360 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1361 else 1362 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1363 pfn); 1364 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1365 put_cpu_var(memory_failure_cpu); 1366 } 1367 EXPORT_SYMBOL_GPL(memory_failure_queue); 1368 1369 static void memory_failure_work_func(struct work_struct *work) 1370 { 1371 struct memory_failure_cpu *mf_cpu; 1372 struct memory_failure_entry entry = { 0, }; 1373 unsigned long proc_flags; 1374 int gotten; 1375 1376 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1377 for (;;) { 1378 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1379 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1380 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1381 if (!gotten) 1382 break; 1383 if (entry.flags & MF_SOFT_OFFLINE) 1384 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1385 else 1386 memory_failure(entry.pfn, entry.trapno, entry.flags); 1387 } 1388 } 1389 1390 static int __init memory_failure_init(void) 1391 { 1392 struct memory_failure_cpu *mf_cpu; 1393 int cpu; 1394 1395 for_each_possible_cpu(cpu) { 1396 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1397 spin_lock_init(&mf_cpu->lock); 1398 INIT_KFIFO(mf_cpu->fifo); 1399 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1400 } 1401 1402 return 0; 1403 } 1404 core_initcall(memory_failure_init); 1405 1406 /** 1407 * unpoison_memory - Unpoison a previously poisoned page 1408 * @pfn: Page number of the to be unpoisoned page 1409 * 1410 * Software-unpoison a page that has been poisoned by 1411 * memory_failure() earlier. 1412 * 1413 * This is only done on the software-level, so it only works 1414 * for linux injected failures, not real hardware failures 1415 * 1416 * Returns 0 for success, otherwise -errno. 1417 */ 1418 int unpoison_memory(unsigned long pfn) 1419 { 1420 struct page *page; 1421 struct page *p; 1422 int freeit = 0; 1423 unsigned int nr_pages; 1424 1425 if (!pfn_valid(pfn)) 1426 return -ENXIO; 1427 1428 p = pfn_to_page(pfn); 1429 page = compound_head(p); 1430 1431 if (!PageHWPoison(p)) { 1432 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn); 1433 return 0; 1434 } 1435 1436 if (page_count(page) > 1) { 1437 pr_info("MCE: Someone grabs the hwpoison page %#lx\n", pfn); 1438 return 0; 1439 } 1440 1441 if (page_mapped(page)) { 1442 pr_info("MCE: Someone maps the hwpoison page %#lx\n", pfn); 1443 return 0; 1444 } 1445 1446 if (page_mapping(page)) { 1447 pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n", 1448 pfn); 1449 return 0; 1450 } 1451 1452 /* 1453 * unpoison_memory() can encounter thp only when the thp is being 1454 * worked by memory_failure() and the page lock is not held yet. 1455 * In such case, we yield to memory_failure() and make unpoison fail. 1456 */ 1457 if (!PageHuge(page) && PageTransHuge(page)) { 1458 pr_info("MCE: Memory failure is now running on %#lx\n", pfn); 1459 return 0; 1460 } 1461 1462 nr_pages = 1 << compound_order(page); 1463 1464 if (!get_hwpoison_page(p)) { 1465 /* 1466 * Since HWPoisoned hugepage should have non-zero refcount, 1467 * race between memory failure and unpoison seems to happen. 1468 * In such case unpoison fails and memory failure runs 1469 * to the end. 1470 */ 1471 if (PageHuge(page)) { 1472 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn); 1473 return 0; 1474 } 1475 if (TestClearPageHWPoison(p)) 1476 num_poisoned_pages_dec(); 1477 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn); 1478 return 0; 1479 } 1480 1481 lock_page(page); 1482 /* 1483 * This test is racy because PG_hwpoison is set outside of page lock. 1484 * That's acceptable because that won't trigger kernel panic. Instead, 1485 * the PG_hwpoison page will be caught and isolated on the entrance to 1486 * the free buddy page pool. 1487 */ 1488 if (TestClearPageHWPoison(page)) { 1489 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn); 1490 num_poisoned_pages_sub(nr_pages); 1491 freeit = 1; 1492 if (PageHuge(page)) 1493 clear_page_hwpoison_huge_page(page); 1494 } 1495 unlock_page(page); 1496 1497 put_hwpoison_page(page); 1498 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1499 put_hwpoison_page(page); 1500 1501 return 0; 1502 } 1503 EXPORT_SYMBOL(unpoison_memory); 1504 1505 static struct page *new_page(struct page *p, unsigned long private, int **x) 1506 { 1507 int nid = page_to_nid(p); 1508 if (PageHuge(p)) 1509 return alloc_huge_page_node(page_hstate(compound_head(p)), 1510 nid); 1511 else 1512 return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1513 } 1514 1515 /* 1516 * Safely get reference count of an arbitrary page. 1517 * Returns 0 for a free page, -EIO for a zero refcount page 1518 * that is not free, and 1 for any other page type. 1519 * For 1 the page is returned with increased page count, otherwise not. 1520 */ 1521 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1522 { 1523 int ret; 1524 1525 if (flags & MF_COUNT_INCREASED) 1526 return 1; 1527 1528 /* 1529 * When the target page is a free hugepage, just remove it 1530 * from free hugepage list. 1531 */ 1532 if (!get_hwpoison_page(p)) { 1533 if (PageHuge(p)) { 1534 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1535 ret = 0; 1536 } else if (is_free_buddy_page(p)) { 1537 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1538 ret = 0; 1539 } else { 1540 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1541 __func__, pfn, p->flags); 1542 ret = -EIO; 1543 } 1544 } else { 1545 /* Not a free page */ 1546 ret = 1; 1547 } 1548 return ret; 1549 } 1550 1551 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1552 { 1553 int ret = __get_any_page(page, pfn, flags); 1554 1555 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) { 1556 /* 1557 * Try to free it. 1558 */ 1559 put_hwpoison_page(page); 1560 shake_page(page, 1); 1561 1562 /* 1563 * Did it turn free? 1564 */ 1565 ret = __get_any_page(page, pfn, 0); 1566 if (!PageLRU(page)) { 1567 /* Drop page reference which is from __get_any_page() */ 1568 put_hwpoison_page(page); 1569 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n", 1570 pfn, page->flags); 1571 return -EIO; 1572 } 1573 } 1574 return ret; 1575 } 1576 1577 static int soft_offline_huge_page(struct page *page, int flags) 1578 { 1579 int ret; 1580 unsigned long pfn = page_to_pfn(page); 1581 struct page *hpage = compound_head(page); 1582 LIST_HEAD(pagelist); 1583 1584 /* 1585 * This double-check of PageHWPoison is to avoid the race with 1586 * memory_failure(). See also comment in __soft_offline_page(). 1587 */ 1588 lock_page(hpage); 1589 if (PageHWPoison(hpage)) { 1590 unlock_page(hpage); 1591 put_hwpoison_page(hpage); 1592 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1593 return -EBUSY; 1594 } 1595 unlock_page(hpage); 1596 1597 ret = isolate_huge_page(hpage, &pagelist); 1598 /* 1599 * get_any_page() and isolate_huge_page() takes a refcount each, 1600 * so need to drop one here. 1601 */ 1602 put_hwpoison_page(hpage); 1603 if (!ret) { 1604 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1605 return -EBUSY; 1606 } 1607 1608 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1609 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1610 if (ret) { 1611 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1612 pfn, ret, page->flags); 1613 /* 1614 * We know that soft_offline_huge_page() tries to migrate 1615 * only one hugepage pointed to by hpage, so we need not 1616 * run through the pagelist here. 1617 */ 1618 putback_active_hugepage(hpage); 1619 if (ret > 0) 1620 ret = -EIO; 1621 } else { 1622 /* overcommit hugetlb page will be freed to buddy */ 1623 if (PageHuge(page)) { 1624 set_page_hwpoison_huge_page(hpage); 1625 dequeue_hwpoisoned_huge_page(hpage); 1626 num_poisoned_pages_add(1 << compound_order(hpage)); 1627 } else { 1628 SetPageHWPoison(page); 1629 num_poisoned_pages_inc(); 1630 } 1631 } 1632 return ret; 1633 } 1634 1635 static int __soft_offline_page(struct page *page, int flags) 1636 { 1637 int ret; 1638 unsigned long pfn = page_to_pfn(page); 1639 1640 /* 1641 * Check PageHWPoison again inside page lock because PageHWPoison 1642 * is set by memory_failure() outside page lock. Note that 1643 * memory_failure() also double-checks PageHWPoison inside page lock, 1644 * so there's no race between soft_offline_page() and memory_failure(). 1645 */ 1646 lock_page(page); 1647 wait_on_page_writeback(page); 1648 if (PageHWPoison(page)) { 1649 unlock_page(page); 1650 put_hwpoison_page(page); 1651 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1652 return -EBUSY; 1653 } 1654 /* 1655 * Try to invalidate first. This should work for 1656 * non dirty unmapped page cache pages. 1657 */ 1658 ret = invalidate_inode_page(page); 1659 unlock_page(page); 1660 /* 1661 * RED-PEN would be better to keep it isolated here, but we 1662 * would need to fix isolation locking first. 1663 */ 1664 if (ret == 1) { 1665 put_hwpoison_page(page); 1666 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1667 SetPageHWPoison(page); 1668 num_poisoned_pages_inc(); 1669 return 0; 1670 } 1671 1672 /* 1673 * Simple invalidation didn't work. 1674 * Try to migrate to a new page instead. migrate.c 1675 * handles a large number of cases for us. 1676 */ 1677 ret = isolate_lru_page(page); 1678 /* 1679 * Drop page reference which is came from get_any_page() 1680 * successful isolate_lru_page() already took another one. 1681 */ 1682 put_hwpoison_page(page); 1683 if (!ret) { 1684 LIST_HEAD(pagelist); 1685 inc_zone_page_state(page, NR_ISOLATED_ANON + 1686 page_is_file_cache(page)); 1687 list_add(&page->lru, &pagelist); 1688 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1689 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1690 if (ret) { 1691 if (!list_empty(&pagelist)) { 1692 list_del(&page->lru); 1693 dec_zone_page_state(page, NR_ISOLATED_ANON + 1694 page_is_file_cache(page)); 1695 putback_lru_page(page); 1696 } 1697 1698 pr_info("soft offline: %#lx: migration failed %d, type %lx\n", 1699 pfn, ret, page->flags); 1700 if (ret > 0) 1701 ret = -EIO; 1702 } 1703 } else { 1704 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1705 pfn, ret, page_count(page), page->flags); 1706 } 1707 return ret; 1708 } 1709 1710 /** 1711 * soft_offline_page - Soft offline a page. 1712 * @page: page to offline 1713 * @flags: flags. Same as memory_failure(). 1714 * 1715 * Returns 0 on success, otherwise negated errno. 1716 * 1717 * Soft offline a page, by migration or invalidation, 1718 * without killing anything. This is for the case when 1719 * a page is not corrupted yet (so it's still valid to access), 1720 * but has had a number of corrected errors and is better taken 1721 * out. 1722 * 1723 * The actual policy on when to do that is maintained by 1724 * user space. 1725 * 1726 * This should never impact any application or cause data loss, 1727 * however it might take some time. 1728 * 1729 * This is not a 100% solution for all memory, but tries to be 1730 * ``good enough'' for the majority of memory. 1731 */ 1732 int soft_offline_page(struct page *page, int flags) 1733 { 1734 int ret; 1735 unsigned long pfn = page_to_pfn(page); 1736 struct page *hpage = compound_head(page); 1737 1738 if (PageHWPoison(page)) { 1739 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1740 if (flags & MF_COUNT_INCREASED) 1741 put_hwpoison_page(page); 1742 return -EBUSY; 1743 } 1744 if (!PageHuge(page) && PageTransHuge(hpage)) { 1745 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) { 1746 pr_info("soft offline: %#lx: failed to split THP\n", 1747 pfn); 1748 if (flags & MF_COUNT_INCREASED) 1749 put_hwpoison_page(page); 1750 return -EBUSY; 1751 } 1752 } 1753 1754 get_online_mems(); 1755 1756 ret = get_any_page(page, pfn, flags); 1757 put_online_mems(); 1758 if (ret > 0) { /* for in-use pages */ 1759 if (PageHuge(page)) 1760 ret = soft_offline_huge_page(page, flags); 1761 else 1762 ret = __soft_offline_page(page, flags); 1763 } else if (ret == 0) { /* for free pages */ 1764 if (PageHuge(page)) { 1765 set_page_hwpoison_huge_page(hpage); 1766 if (!dequeue_hwpoisoned_huge_page(hpage)) 1767 num_poisoned_pages_add(1 << compound_order(hpage)); 1768 } else { 1769 if (!TestSetPageHWPoison(page)) 1770 num_poisoned_pages_inc(); 1771 } 1772 } 1773 return ret; 1774 } 1775