xref: /linux/mm/memory-failure.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/memremap.h>
59 #include <linux/kfifo.h>
60 #include <linux/ratelimit.h>
61 #include <linux/page-isolation.h>
62 #include "internal.h"
63 #include "ras/ras_event.h"
64 
65 int sysctl_memory_failure_early_kill __read_mostly = 0;
66 
67 int sysctl_memory_failure_recovery __read_mostly = 1;
68 
69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
70 
71 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
72 
73 u32 hwpoison_filter_enable = 0;
74 u32 hwpoison_filter_dev_major = ~0U;
75 u32 hwpoison_filter_dev_minor = ~0U;
76 u64 hwpoison_filter_flags_mask;
77 u64 hwpoison_filter_flags_value;
78 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
82 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
83 
84 static int hwpoison_filter_dev(struct page *p)
85 {
86 	struct address_space *mapping;
87 	dev_t dev;
88 
89 	if (hwpoison_filter_dev_major == ~0U &&
90 	    hwpoison_filter_dev_minor == ~0U)
91 		return 0;
92 
93 	/*
94 	 * page_mapping() does not accept slab pages.
95 	 */
96 	if (PageSlab(p))
97 		return -EINVAL;
98 
99 	mapping = page_mapping(p);
100 	if (mapping == NULL || mapping->host == NULL)
101 		return -EINVAL;
102 
103 	dev = mapping->host->i_sb->s_dev;
104 	if (hwpoison_filter_dev_major != ~0U &&
105 	    hwpoison_filter_dev_major != MAJOR(dev))
106 		return -EINVAL;
107 	if (hwpoison_filter_dev_minor != ~0U &&
108 	    hwpoison_filter_dev_minor != MINOR(dev))
109 		return -EINVAL;
110 
111 	return 0;
112 }
113 
114 static int hwpoison_filter_flags(struct page *p)
115 {
116 	if (!hwpoison_filter_flags_mask)
117 		return 0;
118 
119 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
120 				    hwpoison_filter_flags_value)
121 		return 0;
122 	else
123 		return -EINVAL;
124 }
125 
126 /*
127  * This allows stress tests to limit test scope to a collection of tasks
128  * by putting them under some memcg. This prevents killing unrelated/important
129  * processes such as /sbin/init. Note that the target task may share clean
130  * pages with init (eg. libc text), which is harmless. If the target task
131  * share _dirty_ pages with another task B, the test scheme must make sure B
132  * is also included in the memcg. At last, due to race conditions this filter
133  * can only guarantee that the page either belongs to the memcg tasks, or is
134  * a freed page.
135  */
136 #ifdef CONFIG_MEMCG
137 u64 hwpoison_filter_memcg;
138 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
139 static int hwpoison_filter_task(struct page *p)
140 {
141 	if (!hwpoison_filter_memcg)
142 		return 0;
143 
144 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
145 		return -EINVAL;
146 
147 	return 0;
148 }
149 #else
150 static int hwpoison_filter_task(struct page *p) { return 0; }
151 #endif
152 
153 int hwpoison_filter(struct page *p)
154 {
155 	if (!hwpoison_filter_enable)
156 		return 0;
157 
158 	if (hwpoison_filter_dev(p))
159 		return -EINVAL;
160 
161 	if (hwpoison_filter_flags(p))
162 		return -EINVAL;
163 
164 	if (hwpoison_filter_task(p))
165 		return -EINVAL;
166 
167 	return 0;
168 }
169 #else
170 int hwpoison_filter(struct page *p)
171 {
172 	return 0;
173 }
174 #endif
175 
176 EXPORT_SYMBOL_GPL(hwpoison_filter);
177 
178 /*
179  * Kill all processes that have a poisoned page mapped and then isolate
180  * the page.
181  *
182  * General strategy:
183  * Find all processes having the page mapped and kill them.
184  * But we keep a page reference around so that the page is not
185  * actually freed yet.
186  * Then stash the page away
187  *
188  * There's no convenient way to get back to mapped processes
189  * from the VMAs. So do a brute-force search over all
190  * running processes.
191  *
192  * Remember that machine checks are not common (or rather
193  * if they are common you have other problems), so this shouldn't
194  * be a performance issue.
195  *
196  * Also there are some races possible while we get from the
197  * error detection to actually handle it.
198  */
199 
200 struct to_kill {
201 	struct list_head nd;
202 	struct task_struct *tsk;
203 	unsigned long addr;
204 	short size_shift;
205 	char addr_valid;
206 };
207 
208 /*
209  * Send all the processes who have the page mapped a signal.
210  * ``action optional'' if they are not immediately affected by the error
211  * ``action required'' if error happened in current execution context
212  */
213 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
214 {
215 	struct task_struct *t = tk->tsk;
216 	short addr_lsb = tk->size_shift;
217 	int ret;
218 
219 	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
220 		pfn, t->comm, t->pid);
221 
222 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
223 		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
224 				       addr_lsb, current);
225 	} else {
226 		/*
227 		 * Don't use force here, it's convenient if the signal
228 		 * can be temporarily blocked.
229 		 * This could cause a loop when the user sets SIGBUS
230 		 * to SIG_IGN, but hopefully no one will do that?
231 		 */
232 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
233 				      addr_lsb, t);  /* synchronous? */
234 	}
235 	if (ret < 0)
236 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
237 			t->comm, t->pid, ret);
238 	return ret;
239 }
240 
241 /*
242  * When a unknown page type is encountered drain as many buffers as possible
243  * in the hope to turn the page into a LRU or free page, which we can handle.
244  */
245 void shake_page(struct page *p, int access)
246 {
247 	if (PageHuge(p))
248 		return;
249 
250 	if (!PageSlab(p)) {
251 		lru_add_drain_all();
252 		if (PageLRU(p))
253 			return;
254 		drain_all_pages(page_zone(p));
255 		if (PageLRU(p) || is_free_buddy_page(p))
256 			return;
257 	}
258 
259 	/*
260 	 * Only call shrink_node_slabs here (which would also shrink
261 	 * other caches) if access is not potentially fatal.
262 	 */
263 	if (access)
264 		drop_slab_node(page_to_nid(p));
265 }
266 EXPORT_SYMBOL_GPL(shake_page);
267 
268 static unsigned long dev_pagemap_mapping_shift(struct page *page,
269 		struct vm_area_struct *vma)
270 {
271 	unsigned long address = vma_address(page, vma);
272 	pgd_t *pgd;
273 	p4d_t *p4d;
274 	pud_t *pud;
275 	pmd_t *pmd;
276 	pte_t *pte;
277 
278 	pgd = pgd_offset(vma->vm_mm, address);
279 	if (!pgd_present(*pgd))
280 		return 0;
281 	p4d = p4d_offset(pgd, address);
282 	if (!p4d_present(*p4d))
283 		return 0;
284 	pud = pud_offset(p4d, address);
285 	if (!pud_present(*pud))
286 		return 0;
287 	if (pud_devmap(*pud))
288 		return PUD_SHIFT;
289 	pmd = pmd_offset(pud, address);
290 	if (!pmd_present(*pmd))
291 		return 0;
292 	if (pmd_devmap(*pmd))
293 		return PMD_SHIFT;
294 	pte = pte_offset_map(pmd, address);
295 	if (!pte_present(*pte))
296 		return 0;
297 	if (pte_devmap(*pte))
298 		return PAGE_SHIFT;
299 	return 0;
300 }
301 
302 /*
303  * Failure handling: if we can't find or can't kill a process there's
304  * not much we can do.	We just print a message and ignore otherwise.
305  */
306 
307 /*
308  * Schedule a process for later kill.
309  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
310  * TBD would GFP_NOIO be enough?
311  */
312 static void add_to_kill(struct task_struct *tsk, struct page *p,
313 		       struct vm_area_struct *vma,
314 		       struct list_head *to_kill,
315 		       struct to_kill **tkc)
316 {
317 	struct to_kill *tk;
318 
319 	if (*tkc) {
320 		tk = *tkc;
321 		*tkc = NULL;
322 	} else {
323 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
324 		if (!tk) {
325 			pr_err("Memory failure: Out of memory while machine check handling\n");
326 			return;
327 		}
328 	}
329 	tk->addr = page_address_in_vma(p, vma);
330 	tk->addr_valid = 1;
331 	if (is_zone_device_page(p))
332 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
333 	else
334 		tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
335 
336 	/*
337 	 * In theory we don't have to kill when the page was
338 	 * munmaped. But it could be also a mremap. Since that's
339 	 * likely very rare kill anyways just out of paranoia, but use
340 	 * a SIGKILL because the error is not contained anymore.
341 	 */
342 	if (tk->addr == -EFAULT || tk->size_shift == 0) {
343 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
344 			page_to_pfn(p), tsk->comm);
345 		tk->addr_valid = 0;
346 	}
347 	get_task_struct(tsk);
348 	tk->tsk = tsk;
349 	list_add_tail(&tk->nd, to_kill);
350 }
351 
352 /*
353  * Kill the processes that have been collected earlier.
354  *
355  * Only do anything when DOIT is set, otherwise just free the list
356  * (this is used for clean pages which do not need killing)
357  * Also when FAIL is set do a force kill because something went
358  * wrong earlier.
359  */
360 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
361 		unsigned long pfn, int flags)
362 {
363 	struct to_kill *tk, *next;
364 
365 	list_for_each_entry_safe (tk, next, to_kill, nd) {
366 		if (forcekill) {
367 			/*
368 			 * In case something went wrong with munmapping
369 			 * make sure the process doesn't catch the
370 			 * signal and then access the memory. Just kill it.
371 			 */
372 			if (fail || tk->addr_valid == 0) {
373 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
374 				       pfn, tk->tsk->comm, tk->tsk->pid);
375 				force_sig(SIGKILL, tk->tsk);
376 			}
377 
378 			/*
379 			 * In theory the process could have mapped
380 			 * something else on the address in-between. We could
381 			 * check for that, but we need to tell the
382 			 * process anyways.
383 			 */
384 			else if (kill_proc(tk, pfn, flags) < 0)
385 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
386 				       pfn, tk->tsk->comm, tk->tsk->pid);
387 		}
388 		put_task_struct(tk->tsk);
389 		kfree(tk);
390 	}
391 }
392 
393 /*
394  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
395  * on behalf of the thread group. Return task_struct of the (first found)
396  * dedicated thread if found, and return NULL otherwise.
397  *
398  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
399  * have to call rcu_read_lock/unlock() in this function.
400  */
401 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
402 {
403 	struct task_struct *t;
404 
405 	for_each_thread(tsk, t)
406 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
407 			return t;
408 	return NULL;
409 }
410 
411 /*
412  * Determine whether a given process is "early kill" process which expects
413  * to be signaled when some page under the process is hwpoisoned.
414  * Return task_struct of the dedicated thread (main thread unless explicitly
415  * specified) if the process is "early kill," and otherwise returns NULL.
416  */
417 static struct task_struct *task_early_kill(struct task_struct *tsk,
418 					   int force_early)
419 {
420 	struct task_struct *t;
421 	if (!tsk->mm)
422 		return NULL;
423 	if (force_early)
424 		return tsk;
425 	t = find_early_kill_thread(tsk);
426 	if (t)
427 		return t;
428 	if (sysctl_memory_failure_early_kill)
429 		return tsk;
430 	return NULL;
431 }
432 
433 /*
434  * Collect processes when the error hit an anonymous page.
435  */
436 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
437 			      struct to_kill **tkc, int force_early)
438 {
439 	struct vm_area_struct *vma;
440 	struct task_struct *tsk;
441 	struct anon_vma *av;
442 	pgoff_t pgoff;
443 
444 	av = page_lock_anon_vma_read(page);
445 	if (av == NULL)	/* Not actually mapped anymore */
446 		return;
447 
448 	pgoff = page_to_pgoff(page);
449 	read_lock(&tasklist_lock);
450 	for_each_process (tsk) {
451 		struct anon_vma_chain *vmac;
452 		struct task_struct *t = task_early_kill(tsk, force_early);
453 
454 		if (!t)
455 			continue;
456 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
457 					       pgoff, pgoff) {
458 			vma = vmac->vma;
459 			if (!page_mapped_in_vma(page, vma))
460 				continue;
461 			if (vma->vm_mm == t->mm)
462 				add_to_kill(t, page, vma, to_kill, tkc);
463 		}
464 	}
465 	read_unlock(&tasklist_lock);
466 	page_unlock_anon_vma_read(av);
467 }
468 
469 /*
470  * Collect processes when the error hit a file mapped page.
471  */
472 static void collect_procs_file(struct page *page, struct list_head *to_kill,
473 			      struct to_kill **tkc, int force_early)
474 {
475 	struct vm_area_struct *vma;
476 	struct task_struct *tsk;
477 	struct address_space *mapping = page->mapping;
478 
479 	i_mmap_lock_read(mapping);
480 	read_lock(&tasklist_lock);
481 	for_each_process(tsk) {
482 		pgoff_t pgoff = page_to_pgoff(page);
483 		struct task_struct *t = task_early_kill(tsk, force_early);
484 
485 		if (!t)
486 			continue;
487 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
488 				      pgoff) {
489 			/*
490 			 * Send early kill signal to tasks where a vma covers
491 			 * the page but the corrupted page is not necessarily
492 			 * mapped it in its pte.
493 			 * Assume applications who requested early kill want
494 			 * to be informed of all such data corruptions.
495 			 */
496 			if (vma->vm_mm == t->mm)
497 				add_to_kill(t, page, vma, to_kill, tkc);
498 		}
499 	}
500 	read_unlock(&tasklist_lock);
501 	i_mmap_unlock_read(mapping);
502 }
503 
504 /*
505  * Collect the processes who have the corrupted page mapped to kill.
506  * This is done in two steps for locking reasons.
507  * First preallocate one tokill structure outside the spin locks,
508  * so that we can kill at least one process reasonably reliable.
509  */
510 static void collect_procs(struct page *page, struct list_head *tokill,
511 				int force_early)
512 {
513 	struct to_kill *tk;
514 
515 	if (!page->mapping)
516 		return;
517 
518 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
519 	if (!tk)
520 		return;
521 	if (PageAnon(page))
522 		collect_procs_anon(page, tokill, &tk, force_early);
523 	else
524 		collect_procs_file(page, tokill, &tk, force_early);
525 	kfree(tk);
526 }
527 
528 static const char *action_name[] = {
529 	[MF_IGNORED] = "Ignored",
530 	[MF_FAILED] = "Failed",
531 	[MF_DELAYED] = "Delayed",
532 	[MF_RECOVERED] = "Recovered",
533 };
534 
535 static const char * const action_page_types[] = {
536 	[MF_MSG_KERNEL]			= "reserved kernel page",
537 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
538 	[MF_MSG_SLAB]			= "kernel slab page",
539 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
540 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
541 	[MF_MSG_HUGE]			= "huge page",
542 	[MF_MSG_FREE_HUGE]		= "free huge page",
543 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
544 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
545 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
546 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
547 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
548 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
549 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
550 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
551 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
552 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
553 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
554 	[MF_MSG_BUDDY]			= "free buddy page",
555 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
556 	[MF_MSG_DAX]			= "dax page",
557 	[MF_MSG_UNKNOWN]		= "unknown page",
558 };
559 
560 /*
561  * XXX: It is possible that a page is isolated from LRU cache,
562  * and then kept in swap cache or failed to remove from page cache.
563  * The page count will stop it from being freed by unpoison.
564  * Stress tests should be aware of this memory leak problem.
565  */
566 static int delete_from_lru_cache(struct page *p)
567 {
568 	if (!isolate_lru_page(p)) {
569 		/*
570 		 * Clear sensible page flags, so that the buddy system won't
571 		 * complain when the page is unpoison-and-freed.
572 		 */
573 		ClearPageActive(p);
574 		ClearPageUnevictable(p);
575 
576 		/*
577 		 * Poisoned page might never drop its ref count to 0 so we have
578 		 * to uncharge it manually from its memcg.
579 		 */
580 		mem_cgroup_uncharge(p);
581 
582 		/*
583 		 * drop the page count elevated by isolate_lru_page()
584 		 */
585 		put_page(p);
586 		return 0;
587 	}
588 	return -EIO;
589 }
590 
591 static int truncate_error_page(struct page *p, unsigned long pfn,
592 				struct address_space *mapping)
593 {
594 	int ret = MF_FAILED;
595 
596 	if (mapping->a_ops->error_remove_page) {
597 		int err = mapping->a_ops->error_remove_page(mapping, p);
598 
599 		if (err != 0) {
600 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
601 				pfn, err);
602 		} else if (page_has_private(p) &&
603 			   !try_to_release_page(p, GFP_NOIO)) {
604 			pr_info("Memory failure: %#lx: failed to release buffers\n",
605 				pfn);
606 		} else {
607 			ret = MF_RECOVERED;
608 		}
609 	} else {
610 		/*
611 		 * If the file system doesn't support it just invalidate
612 		 * This fails on dirty or anything with private pages
613 		 */
614 		if (invalidate_inode_page(p))
615 			ret = MF_RECOVERED;
616 		else
617 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
618 				pfn);
619 	}
620 
621 	return ret;
622 }
623 
624 /*
625  * Error hit kernel page.
626  * Do nothing, try to be lucky and not touch this instead. For a few cases we
627  * could be more sophisticated.
628  */
629 static int me_kernel(struct page *p, unsigned long pfn)
630 {
631 	return MF_IGNORED;
632 }
633 
634 /*
635  * Page in unknown state. Do nothing.
636  */
637 static int me_unknown(struct page *p, unsigned long pfn)
638 {
639 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
640 	return MF_FAILED;
641 }
642 
643 /*
644  * Clean (or cleaned) page cache page.
645  */
646 static int me_pagecache_clean(struct page *p, unsigned long pfn)
647 {
648 	struct address_space *mapping;
649 
650 	delete_from_lru_cache(p);
651 
652 	/*
653 	 * For anonymous pages we're done the only reference left
654 	 * should be the one m_f() holds.
655 	 */
656 	if (PageAnon(p))
657 		return MF_RECOVERED;
658 
659 	/*
660 	 * Now truncate the page in the page cache. This is really
661 	 * more like a "temporary hole punch"
662 	 * Don't do this for block devices when someone else
663 	 * has a reference, because it could be file system metadata
664 	 * and that's not safe to truncate.
665 	 */
666 	mapping = page_mapping(p);
667 	if (!mapping) {
668 		/*
669 		 * Page has been teared down in the meanwhile
670 		 */
671 		return MF_FAILED;
672 	}
673 
674 	/*
675 	 * Truncation is a bit tricky. Enable it per file system for now.
676 	 *
677 	 * Open: to take i_mutex or not for this? Right now we don't.
678 	 */
679 	return truncate_error_page(p, pfn, mapping);
680 }
681 
682 /*
683  * Dirty pagecache page
684  * Issues: when the error hit a hole page the error is not properly
685  * propagated.
686  */
687 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
688 {
689 	struct address_space *mapping = page_mapping(p);
690 
691 	SetPageError(p);
692 	/* TBD: print more information about the file. */
693 	if (mapping) {
694 		/*
695 		 * IO error will be reported by write(), fsync(), etc.
696 		 * who check the mapping.
697 		 * This way the application knows that something went
698 		 * wrong with its dirty file data.
699 		 *
700 		 * There's one open issue:
701 		 *
702 		 * The EIO will be only reported on the next IO
703 		 * operation and then cleared through the IO map.
704 		 * Normally Linux has two mechanisms to pass IO error
705 		 * first through the AS_EIO flag in the address space
706 		 * and then through the PageError flag in the page.
707 		 * Since we drop pages on memory failure handling the
708 		 * only mechanism open to use is through AS_AIO.
709 		 *
710 		 * This has the disadvantage that it gets cleared on
711 		 * the first operation that returns an error, while
712 		 * the PageError bit is more sticky and only cleared
713 		 * when the page is reread or dropped.  If an
714 		 * application assumes it will always get error on
715 		 * fsync, but does other operations on the fd before
716 		 * and the page is dropped between then the error
717 		 * will not be properly reported.
718 		 *
719 		 * This can already happen even without hwpoisoned
720 		 * pages: first on metadata IO errors (which only
721 		 * report through AS_EIO) or when the page is dropped
722 		 * at the wrong time.
723 		 *
724 		 * So right now we assume that the application DTRT on
725 		 * the first EIO, but we're not worse than other parts
726 		 * of the kernel.
727 		 */
728 		mapping_set_error(mapping, -EIO);
729 	}
730 
731 	return me_pagecache_clean(p, pfn);
732 }
733 
734 /*
735  * Clean and dirty swap cache.
736  *
737  * Dirty swap cache page is tricky to handle. The page could live both in page
738  * cache and swap cache(ie. page is freshly swapped in). So it could be
739  * referenced concurrently by 2 types of PTEs:
740  * normal PTEs and swap PTEs. We try to handle them consistently by calling
741  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
742  * and then
743  *      - clear dirty bit to prevent IO
744  *      - remove from LRU
745  *      - but keep in the swap cache, so that when we return to it on
746  *        a later page fault, we know the application is accessing
747  *        corrupted data and shall be killed (we installed simple
748  *        interception code in do_swap_page to catch it).
749  *
750  * Clean swap cache pages can be directly isolated. A later page fault will
751  * bring in the known good data from disk.
752  */
753 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
754 {
755 	ClearPageDirty(p);
756 	/* Trigger EIO in shmem: */
757 	ClearPageUptodate(p);
758 
759 	if (!delete_from_lru_cache(p))
760 		return MF_DELAYED;
761 	else
762 		return MF_FAILED;
763 }
764 
765 static int me_swapcache_clean(struct page *p, unsigned long pfn)
766 {
767 	delete_from_swap_cache(p);
768 
769 	if (!delete_from_lru_cache(p))
770 		return MF_RECOVERED;
771 	else
772 		return MF_FAILED;
773 }
774 
775 /*
776  * Huge pages. Needs work.
777  * Issues:
778  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
779  *   To narrow down kill region to one page, we need to break up pmd.
780  */
781 static int me_huge_page(struct page *p, unsigned long pfn)
782 {
783 	int res = 0;
784 	struct page *hpage = compound_head(p);
785 	struct address_space *mapping;
786 
787 	if (!PageHuge(hpage))
788 		return MF_DELAYED;
789 
790 	mapping = page_mapping(hpage);
791 	if (mapping) {
792 		res = truncate_error_page(hpage, pfn, mapping);
793 	} else {
794 		unlock_page(hpage);
795 		/*
796 		 * migration entry prevents later access on error anonymous
797 		 * hugepage, so we can free and dissolve it into buddy to
798 		 * save healthy subpages.
799 		 */
800 		if (PageAnon(hpage))
801 			put_page(hpage);
802 		dissolve_free_huge_page(p);
803 		res = MF_RECOVERED;
804 		lock_page(hpage);
805 	}
806 
807 	return res;
808 }
809 
810 /*
811  * Various page states we can handle.
812  *
813  * A page state is defined by its current page->flags bits.
814  * The table matches them in order and calls the right handler.
815  *
816  * This is quite tricky because we can access page at any time
817  * in its live cycle, so all accesses have to be extremely careful.
818  *
819  * This is not complete. More states could be added.
820  * For any missing state don't attempt recovery.
821  */
822 
823 #define dirty		(1UL << PG_dirty)
824 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
825 #define unevict		(1UL << PG_unevictable)
826 #define mlock		(1UL << PG_mlocked)
827 #define writeback	(1UL << PG_writeback)
828 #define lru		(1UL << PG_lru)
829 #define head		(1UL << PG_head)
830 #define slab		(1UL << PG_slab)
831 #define reserved	(1UL << PG_reserved)
832 
833 static struct page_state {
834 	unsigned long mask;
835 	unsigned long res;
836 	enum mf_action_page_type type;
837 	int (*action)(struct page *p, unsigned long pfn);
838 } error_states[] = {
839 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
840 	/*
841 	 * free pages are specially detected outside this table:
842 	 * PG_buddy pages only make a small fraction of all free pages.
843 	 */
844 
845 	/*
846 	 * Could in theory check if slab page is free or if we can drop
847 	 * currently unused objects without touching them. But just
848 	 * treat it as standard kernel for now.
849 	 */
850 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
851 
852 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
853 
854 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
855 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
856 
857 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
858 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
859 
860 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
861 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
862 
863 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
864 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
865 
866 	/*
867 	 * Catchall entry: must be at end.
868 	 */
869 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
870 };
871 
872 #undef dirty
873 #undef sc
874 #undef unevict
875 #undef mlock
876 #undef writeback
877 #undef lru
878 #undef head
879 #undef slab
880 #undef reserved
881 
882 /*
883  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
884  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
885  */
886 static void action_result(unsigned long pfn, enum mf_action_page_type type,
887 			  enum mf_result result)
888 {
889 	trace_memory_failure_event(pfn, type, result);
890 
891 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
892 		pfn, action_page_types[type], action_name[result]);
893 }
894 
895 static int page_action(struct page_state *ps, struct page *p,
896 			unsigned long pfn)
897 {
898 	int result;
899 	int count;
900 
901 	result = ps->action(p, pfn);
902 
903 	count = page_count(p) - 1;
904 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
905 		count--;
906 	if (count > 0) {
907 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
908 		       pfn, action_page_types[ps->type], count);
909 		result = MF_FAILED;
910 	}
911 	action_result(pfn, ps->type, result);
912 
913 	/* Could do more checks here if page looks ok */
914 	/*
915 	 * Could adjust zone counters here to correct for the missing page.
916 	 */
917 
918 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
919 }
920 
921 /**
922  * get_hwpoison_page() - Get refcount for memory error handling:
923  * @page:	raw error page (hit by memory error)
924  *
925  * Return: return 0 if failed to grab the refcount, otherwise true (some
926  * non-zero value.)
927  */
928 int get_hwpoison_page(struct page *page)
929 {
930 	struct page *head = compound_head(page);
931 
932 	if (!PageHuge(head) && PageTransHuge(head)) {
933 		/*
934 		 * Non anonymous thp exists only in allocation/free time. We
935 		 * can't handle such a case correctly, so let's give it up.
936 		 * This should be better than triggering BUG_ON when kernel
937 		 * tries to touch the "partially handled" page.
938 		 */
939 		if (!PageAnon(head)) {
940 			pr_err("Memory failure: %#lx: non anonymous thp\n",
941 				page_to_pfn(page));
942 			return 0;
943 		}
944 	}
945 
946 	if (get_page_unless_zero(head)) {
947 		if (head == compound_head(page))
948 			return 1;
949 
950 		pr_info("Memory failure: %#lx cannot catch tail\n",
951 			page_to_pfn(page));
952 		put_page(head);
953 	}
954 
955 	return 0;
956 }
957 EXPORT_SYMBOL_GPL(get_hwpoison_page);
958 
959 /*
960  * Do all that is necessary to remove user space mappings. Unmap
961  * the pages and send SIGBUS to the processes if the data was dirty.
962  */
963 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
964 				  int flags, struct page **hpagep)
965 {
966 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
967 	struct address_space *mapping;
968 	LIST_HEAD(tokill);
969 	bool unmap_success = true;
970 	int kill = 1, forcekill;
971 	struct page *hpage = *hpagep;
972 	bool mlocked = PageMlocked(hpage);
973 
974 	/*
975 	 * Here we are interested only in user-mapped pages, so skip any
976 	 * other types of pages.
977 	 */
978 	if (PageReserved(p) || PageSlab(p))
979 		return true;
980 	if (!(PageLRU(hpage) || PageHuge(p)))
981 		return true;
982 
983 	/*
984 	 * This check implies we don't kill processes if their pages
985 	 * are in the swap cache early. Those are always late kills.
986 	 */
987 	if (!page_mapped(hpage))
988 		return true;
989 
990 	if (PageKsm(p)) {
991 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
992 		return false;
993 	}
994 
995 	if (PageSwapCache(p)) {
996 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
997 			pfn);
998 		ttu |= TTU_IGNORE_HWPOISON;
999 	}
1000 
1001 	/*
1002 	 * Propagate the dirty bit from PTEs to struct page first, because we
1003 	 * need this to decide if we should kill or just drop the page.
1004 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1005 	 * be called inside page lock (it's recommended but not enforced).
1006 	 */
1007 	mapping = page_mapping(hpage);
1008 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1009 	    mapping_cap_writeback_dirty(mapping)) {
1010 		if (page_mkclean(hpage)) {
1011 			SetPageDirty(hpage);
1012 		} else {
1013 			kill = 0;
1014 			ttu |= TTU_IGNORE_HWPOISON;
1015 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1016 				pfn);
1017 		}
1018 	}
1019 
1020 	/*
1021 	 * First collect all the processes that have the page
1022 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1023 	 * because ttu takes the rmap data structures down.
1024 	 *
1025 	 * Error handling: We ignore errors here because
1026 	 * there's nothing that can be done.
1027 	 */
1028 	if (kill)
1029 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1030 
1031 	if (!PageHuge(hpage)) {
1032 		unmap_success = try_to_unmap(hpage, ttu);
1033 	} else if (mapping) {
1034 		/*
1035 		 * For hugetlb pages, try_to_unmap could potentially call
1036 		 * huge_pmd_unshare.  Because of this, take semaphore in
1037 		 * write mode here and set TTU_RMAP_LOCKED to indicate we
1038 		 * have taken the lock at this higer level.
1039 		 */
1040 		i_mmap_lock_write(mapping);
1041 		unmap_success = try_to_unmap(hpage, ttu|TTU_RMAP_LOCKED);
1042 		i_mmap_unlock_write(mapping);
1043 	}
1044 	if (!unmap_success)
1045 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1046 		       pfn, page_mapcount(hpage));
1047 
1048 	/*
1049 	 * try_to_unmap() might put mlocked page in lru cache, so call
1050 	 * shake_page() again to ensure that it's flushed.
1051 	 */
1052 	if (mlocked)
1053 		shake_page(hpage, 0);
1054 
1055 	/*
1056 	 * Now that the dirty bit has been propagated to the
1057 	 * struct page and all unmaps done we can decide if
1058 	 * killing is needed or not.  Only kill when the page
1059 	 * was dirty or the process is not restartable,
1060 	 * otherwise the tokill list is merely
1061 	 * freed.  When there was a problem unmapping earlier
1062 	 * use a more force-full uncatchable kill to prevent
1063 	 * any accesses to the poisoned memory.
1064 	 */
1065 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1066 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1067 
1068 	return unmap_success;
1069 }
1070 
1071 static int identify_page_state(unsigned long pfn, struct page *p,
1072 				unsigned long page_flags)
1073 {
1074 	struct page_state *ps;
1075 
1076 	/*
1077 	 * The first check uses the current page flags which may not have any
1078 	 * relevant information. The second check with the saved page flags is
1079 	 * carried out only if the first check can't determine the page status.
1080 	 */
1081 	for (ps = error_states;; ps++)
1082 		if ((p->flags & ps->mask) == ps->res)
1083 			break;
1084 
1085 	page_flags |= (p->flags & (1UL << PG_dirty));
1086 
1087 	if (!ps->mask)
1088 		for (ps = error_states;; ps++)
1089 			if ((page_flags & ps->mask) == ps->res)
1090 				break;
1091 	return page_action(ps, p, pfn);
1092 }
1093 
1094 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1095 {
1096 	struct page *p = pfn_to_page(pfn);
1097 	struct page *head = compound_head(p);
1098 	int res;
1099 	unsigned long page_flags;
1100 
1101 	if (TestSetPageHWPoison(head)) {
1102 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1103 		       pfn);
1104 		return 0;
1105 	}
1106 
1107 	num_poisoned_pages_inc();
1108 
1109 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1110 		/*
1111 		 * Check "filter hit" and "race with other subpage."
1112 		 */
1113 		lock_page(head);
1114 		if (PageHWPoison(head)) {
1115 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1116 			    || (p != head && TestSetPageHWPoison(head))) {
1117 				num_poisoned_pages_dec();
1118 				unlock_page(head);
1119 				return 0;
1120 			}
1121 		}
1122 		unlock_page(head);
1123 		dissolve_free_huge_page(p);
1124 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1125 		return 0;
1126 	}
1127 
1128 	lock_page(head);
1129 	page_flags = head->flags;
1130 
1131 	if (!PageHWPoison(head)) {
1132 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1133 		num_poisoned_pages_dec();
1134 		unlock_page(head);
1135 		put_hwpoison_page(head);
1136 		return 0;
1137 	}
1138 
1139 	/*
1140 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1141 	 * simply disable it. In order to make it work properly, we need
1142 	 * make sure that:
1143 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1144 	 *    entry properly works, and
1145 	 *  - other mm code walking over page table is aware of pud-aligned
1146 	 *    hwpoison entries.
1147 	 */
1148 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1149 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1150 		res = -EBUSY;
1151 		goto out;
1152 	}
1153 
1154 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1155 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1156 		res = -EBUSY;
1157 		goto out;
1158 	}
1159 
1160 	res = identify_page_state(pfn, p, page_flags);
1161 out:
1162 	unlock_page(head);
1163 	return res;
1164 }
1165 
1166 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1167 		struct dev_pagemap *pgmap)
1168 {
1169 	struct page *page = pfn_to_page(pfn);
1170 	const bool unmap_success = true;
1171 	unsigned long size = 0;
1172 	struct to_kill *tk;
1173 	LIST_HEAD(tokill);
1174 	int rc = -EBUSY;
1175 	loff_t start;
1176 	dax_entry_t cookie;
1177 
1178 	/*
1179 	 * Prevent the inode from being freed while we are interrogating
1180 	 * the address_space, typically this would be handled by
1181 	 * lock_page(), but dax pages do not use the page lock. This
1182 	 * also prevents changes to the mapping of this pfn until
1183 	 * poison signaling is complete.
1184 	 */
1185 	cookie = dax_lock_page(page);
1186 	if (!cookie)
1187 		goto out;
1188 
1189 	if (hwpoison_filter(page)) {
1190 		rc = 0;
1191 		goto unlock;
1192 	}
1193 
1194 	switch (pgmap->type) {
1195 	case MEMORY_DEVICE_PRIVATE:
1196 	case MEMORY_DEVICE_PUBLIC:
1197 		/*
1198 		 * TODO: Handle HMM pages which may need coordination
1199 		 * with device-side memory.
1200 		 */
1201 		goto unlock;
1202 	default:
1203 		break;
1204 	}
1205 
1206 	/*
1207 	 * Use this flag as an indication that the dax page has been
1208 	 * remapped UC to prevent speculative consumption of poison.
1209 	 */
1210 	SetPageHWPoison(page);
1211 
1212 	/*
1213 	 * Unlike System-RAM there is no possibility to swap in a
1214 	 * different physical page at a given virtual address, so all
1215 	 * userspace consumption of ZONE_DEVICE memory necessitates
1216 	 * SIGBUS (i.e. MF_MUST_KILL)
1217 	 */
1218 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1219 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1220 
1221 	list_for_each_entry(tk, &tokill, nd)
1222 		if (tk->size_shift)
1223 			size = max(size, 1UL << tk->size_shift);
1224 	if (size) {
1225 		/*
1226 		 * Unmap the largest mapping to avoid breaking up
1227 		 * device-dax mappings which are constant size. The
1228 		 * actual size of the mapping being torn down is
1229 		 * communicated in siginfo, see kill_proc()
1230 		 */
1231 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1232 		unmap_mapping_range(page->mapping, start, start + size, 0);
1233 	}
1234 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1235 	rc = 0;
1236 unlock:
1237 	dax_unlock_page(page, cookie);
1238 out:
1239 	/* drop pgmap ref acquired in caller */
1240 	put_dev_pagemap(pgmap);
1241 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1242 	return rc;
1243 }
1244 
1245 /**
1246  * memory_failure - Handle memory failure of a page.
1247  * @pfn: Page Number of the corrupted page
1248  * @flags: fine tune action taken
1249  *
1250  * This function is called by the low level machine check code
1251  * of an architecture when it detects hardware memory corruption
1252  * of a page. It tries its best to recover, which includes
1253  * dropping pages, killing processes etc.
1254  *
1255  * The function is primarily of use for corruptions that
1256  * happen outside the current execution context (e.g. when
1257  * detected by a background scrubber)
1258  *
1259  * Must run in process context (e.g. a work queue) with interrupts
1260  * enabled and no spinlocks hold.
1261  */
1262 int memory_failure(unsigned long pfn, int flags)
1263 {
1264 	struct page *p;
1265 	struct page *hpage;
1266 	struct page *orig_head;
1267 	struct dev_pagemap *pgmap;
1268 	int res;
1269 	unsigned long page_flags;
1270 
1271 	if (!sysctl_memory_failure_recovery)
1272 		panic("Memory failure on page %lx", pfn);
1273 
1274 	if (!pfn_valid(pfn)) {
1275 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1276 			pfn);
1277 		return -ENXIO;
1278 	}
1279 
1280 	pgmap = get_dev_pagemap(pfn, NULL);
1281 	if (pgmap)
1282 		return memory_failure_dev_pagemap(pfn, flags, pgmap);
1283 
1284 	p = pfn_to_page(pfn);
1285 	if (PageHuge(p))
1286 		return memory_failure_hugetlb(pfn, flags);
1287 	if (TestSetPageHWPoison(p)) {
1288 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1289 			pfn);
1290 		return 0;
1291 	}
1292 
1293 	orig_head = hpage = compound_head(p);
1294 	num_poisoned_pages_inc();
1295 
1296 	/*
1297 	 * We need/can do nothing about count=0 pages.
1298 	 * 1) it's a free page, and therefore in safe hand:
1299 	 *    prep_new_page() will be the gate keeper.
1300 	 * 2) it's part of a non-compound high order page.
1301 	 *    Implies some kernel user: cannot stop them from
1302 	 *    R/W the page; let's pray that the page has been
1303 	 *    used and will be freed some time later.
1304 	 * In fact it's dangerous to directly bump up page count from 0,
1305 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1306 	 */
1307 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1308 		if (is_free_buddy_page(p)) {
1309 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1310 			return 0;
1311 		} else {
1312 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1313 			return -EBUSY;
1314 		}
1315 	}
1316 
1317 	if (PageTransHuge(hpage)) {
1318 		lock_page(p);
1319 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1320 			unlock_page(p);
1321 			if (!PageAnon(p))
1322 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1323 					pfn);
1324 			else
1325 				pr_err("Memory failure: %#lx: thp split failed\n",
1326 					pfn);
1327 			if (TestClearPageHWPoison(p))
1328 				num_poisoned_pages_dec();
1329 			put_hwpoison_page(p);
1330 			return -EBUSY;
1331 		}
1332 		unlock_page(p);
1333 		VM_BUG_ON_PAGE(!page_count(p), p);
1334 		hpage = compound_head(p);
1335 	}
1336 
1337 	/*
1338 	 * We ignore non-LRU pages for good reasons.
1339 	 * - PG_locked is only well defined for LRU pages and a few others
1340 	 * - to avoid races with __SetPageLocked()
1341 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1342 	 * The check (unnecessarily) ignores LRU pages being isolated and
1343 	 * walked by the page reclaim code, however that's not a big loss.
1344 	 */
1345 	shake_page(p, 0);
1346 	/* shake_page could have turned it free. */
1347 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1348 		if (flags & MF_COUNT_INCREASED)
1349 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1350 		else
1351 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1352 		return 0;
1353 	}
1354 
1355 	lock_page(p);
1356 
1357 	/*
1358 	 * The page could have changed compound pages during the locking.
1359 	 * If this happens just bail out.
1360 	 */
1361 	if (PageCompound(p) && compound_head(p) != orig_head) {
1362 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1363 		res = -EBUSY;
1364 		goto out;
1365 	}
1366 
1367 	/*
1368 	 * We use page flags to determine what action should be taken, but
1369 	 * the flags can be modified by the error containment action.  One
1370 	 * example is an mlocked page, where PG_mlocked is cleared by
1371 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1372 	 * correctly, we save a copy of the page flags at this time.
1373 	 */
1374 	if (PageHuge(p))
1375 		page_flags = hpage->flags;
1376 	else
1377 		page_flags = p->flags;
1378 
1379 	/*
1380 	 * unpoison always clear PG_hwpoison inside page lock
1381 	 */
1382 	if (!PageHWPoison(p)) {
1383 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1384 		num_poisoned_pages_dec();
1385 		unlock_page(p);
1386 		put_hwpoison_page(p);
1387 		return 0;
1388 	}
1389 	if (hwpoison_filter(p)) {
1390 		if (TestClearPageHWPoison(p))
1391 			num_poisoned_pages_dec();
1392 		unlock_page(p);
1393 		put_hwpoison_page(p);
1394 		return 0;
1395 	}
1396 
1397 	if (!PageTransTail(p) && !PageLRU(p))
1398 		goto identify_page_state;
1399 
1400 	/*
1401 	 * It's very difficult to mess with pages currently under IO
1402 	 * and in many cases impossible, so we just avoid it here.
1403 	 */
1404 	wait_on_page_writeback(p);
1405 
1406 	/*
1407 	 * Now take care of user space mappings.
1408 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1409 	 *
1410 	 * When the raw error page is thp tail page, hpage points to the raw
1411 	 * page after thp split.
1412 	 */
1413 	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1414 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1415 		res = -EBUSY;
1416 		goto out;
1417 	}
1418 
1419 	/*
1420 	 * Torn down by someone else?
1421 	 */
1422 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1423 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1424 		res = -EBUSY;
1425 		goto out;
1426 	}
1427 
1428 identify_page_state:
1429 	res = identify_page_state(pfn, p, page_flags);
1430 out:
1431 	unlock_page(p);
1432 	return res;
1433 }
1434 EXPORT_SYMBOL_GPL(memory_failure);
1435 
1436 #define MEMORY_FAILURE_FIFO_ORDER	4
1437 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1438 
1439 struct memory_failure_entry {
1440 	unsigned long pfn;
1441 	int flags;
1442 };
1443 
1444 struct memory_failure_cpu {
1445 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1446 		      MEMORY_FAILURE_FIFO_SIZE);
1447 	spinlock_t lock;
1448 	struct work_struct work;
1449 };
1450 
1451 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1452 
1453 /**
1454  * memory_failure_queue - Schedule handling memory failure of a page.
1455  * @pfn: Page Number of the corrupted page
1456  * @flags: Flags for memory failure handling
1457  *
1458  * This function is called by the low level hardware error handler
1459  * when it detects hardware memory corruption of a page. It schedules
1460  * the recovering of error page, including dropping pages, killing
1461  * processes etc.
1462  *
1463  * The function is primarily of use for corruptions that
1464  * happen outside the current execution context (e.g. when
1465  * detected by a background scrubber)
1466  *
1467  * Can run in IRQ context.
1468  */
1469 void memory_failure_queue(unsigned long pfn, int flags)
1470 {
1471 	struct memory_failure_cpu *mf_cpu;
1472 	unsigned long proc_flags;
1473 	struct memory_failure_entry entry = {
1474 		.pfn =		pfn,
1475 		.flags =	flags,
1476 	};
1477 
1478 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1479 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1480 	if (kfifo_put(&mf_cpu->fifo, entry))
1481 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1482 	else
1483 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1484 		       pfn);
1485 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1486 	put_cpu_var(memory_failure_cpu);
1487 }
1488 EXPORT_SYMBOL_GPL(memory_failure_queue);
1489 
1490 static void memory_failure_work_func(struct work_struct *work)
1491 {
1492 	struct memory_failure_cpu *mf_cpu;
1493 	struct memory_failure_entry entry = { 0, };
1494 	unsigned long proc_flags;
1495 	int gotten;
1496 
1497 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1498 	for (;;) {
1499 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1500 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1501 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1502 		if (!gotten)
1503 			break;
1504 		if (entry.flags & MF_SOFT_OFFLINE)
1505 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1506 		else
1507 			memory_failure(entry.pfn, entry.flags);
1508 	}
1509 }
1510 
1511 static int __init memory_failure_init(void)
1512 {
1513 	struct memory_failure_cpu *mf_cpu;
1514 	int cpu;
1515 
1516 	for_each_possible_cpu(cpu) {
1517 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1518 		spin_lock_init(&mf_cpu->lock);
1519 		INIT_KFIFO(mf_cpu->fifo);
1520 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1521 	}
1522 
1523 	return 0;
1524 }
1525 core_initcall(memory_failure_init);
1526 
1527 #define unpoison_pr_info(fmt, pfn, rs)			\
1528 ({							\
1529 	if (__ratelimit(rs))				\
1530 		pr_info(fmt, pfn);			\
1531 })
1532 
1533 /**
1534  * unpoison_memory - Unpoison a previously poisoned page
1535  * @pfn: Page number of the to be unpoisoned page
1536  *
1537  * Software-unpoison a page that has been poisoned by
1538  * memory_failure() earlier.
1539  *
1540  * This is only done on the software-level, so it only works
1541  * for linux injected failures, not real hardware failures
1542  *
1543  * Returns 0 for success, otherwise -errno.
1544  */
1545 int unpoison_memory(unsigned long pfn)
1546 {
1547 	struct page *page;
1548 	struct page *p;
1549 	int freeit = 0;
1550 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1551 					DEFAULT_RATELIMIT_BURST);
1552 
1553 	if (!pfn_valid(pfn))
1554 		return -ENXIO;
1555 
1556 	p = pfn_to_page(pfn);
1557 	page = compound_head(p);
1558 
1559 	if (!PageHWPoison(p)) {
1560 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1561 				 pfn, &unpoison_rs);
1562 		return 0;
1563 	}
1564 
1565 	if (page_count(page) > 1) {
1566 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1567 				 pfn, &unpoison_rs);
1568 		return 0;
1569 	}
1570 
1571 	if (page_mapped(page)) {
1572 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1573 				 pfn, &unpoison_rs);
1574 		return 0;
1575 	}
1576 
1577 	if (page_mapping(page)) {
1578 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1579 				 pfn, &unpoison_rs);
1580 		return 0;
1581 	}
1582 
1583 	/*
1584 	 * unpoison_memory() can encounter thp only when the thp is being
1585 	 * worked by memory_failure() and the page lock is not held yet.
1586 	 * In such case, we yield to memory_failure() and make unpoison fail.
1587 	 */
1588 	if (!PageHuge(page) && PageTransHuge(page)) {
1589 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1590 				 pfn, &unpoison_rs);
1591 		return 0;
1592 	}
1593 
1594 	if (!get_hwpoison_page(p)) {
1595 		if (TestClearPageHWPoison(p))
1596 			num_poisoned_pages_dec();
1597 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1598 				 pfn, &unpoison_rs);
1599 		return 0;
1600 	}
1601 
1602 	lock_page(page);
1603 	/*
1604 	 * This test is racy because PG_hwpoison is set outside of page lock.
1605 	 * That's acceptable because that won't trigger kernel panic. Instead,
1606 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1607 	 * the free buddy page pool.
1608 	 */
1609 	if (TestClearPageHWPoison(page)) {
1610 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1611 				 pfn, &unpoison_rs);
1612 		num_poisoned_pages_dec();
1613 		freeit = 1;
1614 	}
1615 	unlock_page(page);
1616 
1617 	put_hwpoison_page(page);
1618 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1619 		put_hwpoison_page(page);
1620 
1621 	return 0;
1622 }
1623 EXPORT_SYMBOL(unpoison_memory);
1624 
1625 static struct page *new_page(struct page *p, unsigned long private)
1626 {
1627 	int nid = page_to_nid(p);
1628 
1629 	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1630 }
1631 
1632 /*
1633  * Safely get reference count of an arbitrary page.
1634  * Returns 0 for a free page, -EIO for a zero refcount page
1635  * that is not free, and 1 for any other page type.
1636  * For 1 the page is returned with increased page count, otherwise not.
1637  */
1638 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1639 {
1640 	int ret;
1641 
1642 	if (flags & MF_COUNT_INCREASED)
1643 		return 1;
1644 
1645 	/*
1646 	 * When the target page is a free hugepage, just remove it
1647 	 * from free hugepage list.
1648 	 */
1649 	if (!get_hwpoison_page(p)) {
1650 		if (PageHuge(p)) {
1651 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1652 			ret = 0;
1653 		} else if (is_free_buddy_page(p)) {
1654 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1655 			ret = 0;
1656 		} else {
1657 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1658 				__func__, pfn, p->flags);
1659 			ret = -EIO;
1660 		}
1661 	} else {
1662 		/* Not a free page */
1663 		ret = 1;
1664 	}
1665 	return ret;
1666 }
1667 
1668 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1669 {
1670 	int ret = __get_any_page(page, pfn, flags);
1671 
1672 	if (ret == 1 && !PageHuge(page) &&
1673 	    !PageLRU(page) && !__PageMovable(page)) {
1674 		/*
1675 		 * Try to free it.
1676 		 */
1677 		put_hwpoison_page(page);
1678 		shake_page(page, 1);
1679 
1680 		/*
1681 		 * Did it turn free?
1682 		 */
1683 		ret = __get_any_page(page, pfn, 0);
1684 		if (ret == 1 && !PageLRU(page)) {
1685 			/* Drop page reference which is from __get_any_page() */
1686 			put_hwpoison_page(page);
1687 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1688 				pfn, page->flags, &page->flags);
1689 			return -EIO;
1690 		}
1691 	}
1692 	return ret;
1693 }
1694 
1695 static int soft_offline_huge_page(struct page *page, int flags)
1696 {
1697 	int ret;
1698 	unsigned long pfn = page_to_pfn(page);
1699 	struct page *hpage = compound_head(page);
1700 	LIST_HEAD(pagelist);
1701 
1702 	/*
1703 	 * This double-check of PageHWPoison is to avoid the race with
1704 	 * memory_failure(). See also comment in __soft_offline_page().
1705 	 */
1706 	lock_page(hpage);
1707 	if (PageHWPoison(hpage)) {
1708 		unlock_page(hpage);
1709 		put_hwpoison_page(hpage);
1710 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1711 		return -EBUSY;
1712 	}
1713 	unlock_page(hpage);
1714 
1715 	ret = isolate_huge_page(hpage, &pagelist);
1716 	/*
1717 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1718 	 * so need to drop one here.
1719 	 */
1720 	put_hwpoison_page(hpage);
1721 	if (!ret) {
1722 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1723 		return -EBUSY;
1724 	}
1725 
1726 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1727 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1728 	if (ret) {
1729 		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1730 			pfn, ret, page->flags, &page->flags);
1731 		if (!list_empty(&pagelist))
1732 			putback_movable_pages(&pagelist);
1733 		if (ret > 0)
1734 			ret = -EIO;
1735 	} else {
1736 		/*
1737 		 * We set PG_hwpoison only when the migration source hugepage
1738 		 * was successfully dissolved, because otherwise hwpoisoned
1739 		 * hugepage remains on free hugepage list, then userspace will
1740 		 * find it as SIGBUS by allocation failure. That's not expected
1741 		 * in soft-offlining.
1742 		 */
1743 		ret = dissolve_free_huge_page(page);
1744 		if (!ret) {
1745 			if (set_hwpoison_free_buddy_page(page))
1746 				num_poisoned_pages_inc();
1747 		}
1748 	}
1749 	return ret;
1750 }
1751 
1752 static int __soft_offline_page(struct page *page, int flags)
1753 {
1754 	int ret;
1755 	unsigned long pfn = page_to_pfn(page);
1756 
1757 	/*
1758 	 * Check PageHWPoison again inside page lock because PageHWPoison
1759 	 * is set by memory_failure() outside page lock. Note that
1760 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1761 	 * so there's no race between soft_offline_page() and memory_failure().
1762 	 */
1763 	lock_page(page);
1764 	wait_on_page_writeback(page);
1765 	if (PageHWPoison(page)) {
1766 		unlock_page(page);
1767 		put_hwpoison_page(page);
1768 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1769 		return -EBUSY;
1770 	}
1771 	/*
1772 	 * Try to invalidate first. This should work for
1773 	 * non dirty unmapped page cache pages.
1774 	 */
1775 	ret = invalidate_inode_page(page);
1776 	unlock_page(page);
1777 	/*
1778 	 * RED-PEN would be better to keep it isolated here, but we
1779 	 * would need to fix isolation locking first.
1780 	 */
1781 	if (ret == 1) {
1782 		put_hwpoison_page(page);
1783 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1784 		SetPageHWPoison(page);
1785 		num_poisoned_pages_inc();
1786 		return 0;
1787 	}
1788 
1789 	/*
1790 	 * Simple invalidation didn't work.
1791 	 * Try to migrate to a new page instead. migrate.c
1792 	 * handles a large number of cases for us.
1793 	 */
1794 	if (PageLRU(page))
1795 		ret = isolate_lru_page(page);
1796 	else
1797 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1798 	/*
1799 	 * Drop page reference which is came from get_any_page()
1800 	 * successful isolate_lru_page() already took another one.
1801 	 */
1802 	put_hwpoison_page(page);
1803 	if (!ret) {
1804 		LIST_HEAD(pagelist);
1805 		/*
1806 		 * After isolated lru page, the PageLRU will be cleared,
1807 		 * so use !__PageMovable instead for LRU page's mapping
1808 		 * cannot have PAGE_MAPPING_MOVABLE.
1809 		 */
1810 		if (!__PageMovable(page))
1811 			inc_node_page_state(page, NR_ISOLATED_ANON +
1812 						page_is_file_cache(page));
1813 		list_add(&page->lru, &pagelist);
1814 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1815 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1816 		if (ret) {
1817 			if (!list_empty(&pagelist))
1818 				putback_movable_pages(&pagelist);
1819 
1820 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1821 				pfn, ret, page->flags, &page->flags);
1822 			if (ret > 0)
1823 				ret = -EIO;
1824 		}
1825 	} else {
1826 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1827 			pfn, ret, page_count(page), page->flags, &page->flags);
1828 	}
1829 	return ret;
1830 }
1831 
1832 static int soft_offline_in_use_page(struct page *page, int flags)
1833 {
1834 	int ret;
1835 	int mt;
1836 	struct page *hpage = compound_head(page);
1837 
1838 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1839 		lock_page(hpage);
1840 		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1841 			unlock_page(hpage);
1842 			if (!PageAnon(hpage))
1843 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1844 			else
1845 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1846 			put_hwpoison_page(hpage);
1847 			return -EBUSY;
1848 		}
1849 		unlock_page(hpage);
1850 		get_hwpoison_page(page);
1851 		put_hwpoison_page(hpage);
1852 	}
1853 
1854 	/*
1855 	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1856 	 * to free list immediately (not via pcplist) when released after
1857 	 * successful page migration. Otherwise we can't guarantee that the
1858 	 * page is really free after put_page() returns, so
1859 	 * set_hwpoison_free_buddy_page() highly likely fails.
1860 	 */
1861 	mt = get_pageblock_migratetype(page);
1862 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1863 	if (PageHuge(page))
1864 		ret = soft_offline_huge_page(page, flags);
1865 	else
1866 		ret = __soft_offline_page(page, flags);
1867 	set_pageblock_migratetype(page, mt);
1868 	return ret;
1869 }
1870 
1871 static int soft_offline_free_page(struct page *page)
1872 {
1873 	int rc = 0;
1874 	struct page *head = compound_head(page);
1875 
1876 	if (PageHuge(head))
1877 		rc = dissolve_free_huge_page(page);
1878 	if (!rc) {
1879 		if (set_hwpoison_free_buddy_page(page))
1880 			num_poisoned_pages_inc();
1881 		else
1882 			rc = -EBUSY;
1883 	}
1884 	return rc;
1885 }
1886 
1887 /**
1888  * soft_offline_page - Soft offline a page.
1889  * @page: page to offline
1890  * @flags: flags. Same as memory_failure().
1891  *
1892  * Returns 0 on success, otherwise negated errno.
1893  *
1894  * Soft offline a page, by migration or invalidation,
1895  * without killing anything. This is for the case when
1896  * a page is not corrupted yet (so it's still valid to access),
1897  * but has had a number of corrected errors and is better taken
1898  * out.
1899  *
1900  * The actual policy on when to do that is maintained by
1901  * user space.
1902  *
1903  * This should never impact any application or cause data loss,
1904  * however it might take some time.
1905  *
1906  * This is not a 100% solution for all memory, but tries to be
1907  * ``good enough'' for the majority of memory.
1908  */
1909 int soft_offline_page(struct page *page, int flags)
1910 {
1911 	int ret;
1912 	unsigned long pfn = page_to_pfn(page);
1913 
1914 	if (is_zone_device_page(page)) {
1915 		pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
1916 				pfn);
1917 		if (flags & MF_COUNT_INCREASED)
1918 			put_page(page);
1919 		return -EIO;
1920 	}
1921 
1922 	if (PageHWPoison(page)) {
1923 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1924 		if (flags & MF_COUNT_INCREASED)
1925 			put_hwpoison_page(page);
1926 		return -EBUSY;
1927 	}
1928 
1929 	get_online_mems();
1930 	ret = get_any_page(page, pfn, flags);
1931 	put_online_mems();
1932 
1933 	if (ret > 0)
1934 		ret = soft_offline_in_use_page(page, flags);
1935 	else if (ret == 0)
1936 		ret = soft_offline_free_page(page);
1937 
1938 	return ret;
1939 }
1940