1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/dax.h> 46 #include <linux/ksm.h> 47 #include <linux/rmap.h> 48 #include <linux/export.h> 49 #include <linux/pagemap.h> 50 #include <linux/swap.h> 51 #include <linux/backing-dev.h> 52 #include <linux/migrate.h> 53 #include <linux/suspend.h> 54 #include <linux/slab.h> 55 #include <linux/swapops.h> 56 #include <linux/hugetlb.h> 57 #include <linux/memory_hotplug.h> 58 #include <linux/mm_inline.h> 59 #include <linux/memremap.h> 60 #include <linux/kfifo.h> 61 #include <linux/ratelimit.h> 62 #include <linux/page-isolation.h> 63 #include <linux/pagewalk.h> 64 #include <linux/shmem_fs.h> 65 #include <linux/sysctl.h> 66 #include "swap.h" 67 #include "internal.h" 68 #include "ras/ras_event.h" 69 70 static int sysctl_memory_failure_early_kill __read_mostly; 71 72 static int sysctl_memory_failure_recovery __read_mostly = 1; 73 74 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 75 76 static bool hw_memory_failure __read_mostly = false; 77 78 void num_poisoned_pages_inc(unsigned long pfn) 79 { 80 atomic_long_inc(&num_poisoned_pages); 81 memblk_nr_poison_inc(pfn); 82 } 83 84 void num_poisoned_pages_sub(unsigned long pfn, long i) 85 { 86 atomic_long_sub(i, &num_poisoned_pages); 87 if (pfn != -1UL) 88 memblk_nr_poison_sub(pfn, i); 89 } 90 91 /** 92 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 93 * @_name: name of the file in the per NUMA sysfs directory. 94 */ 95 #define MF_ATTR_RO(_name) \ 96 static ssize_t _name##_show(struct device *dev, \ 97 struct device_attribute *attr, \ 98 char *buf) \ 99 { \ 100 struct memory_failure_stats *mf_stats = \ 101 &NODE_DATA(dev->id)->mf_stats; \ 102 return sprintf(buf, "%lu\n", mf_stats->_name); \ 103 } \ 104 static DEVICE_ATTR_RO(_name) 105 106 MF_ATTR_RO(total); 107 MF_ATTR_RO(ignored); 108 MF_ATTR_RO(failed); 109 MF_ATTR_RO(delayed); 110 MF_ATTR_RO(recovered); 111 112 static struct attribute *memory_failure_attr[] = { 113 &dev_attr_total.attr, 114 &dev_attr_ignored.attr, 115 &dev_attr_failed.attr, 116 &dev_attr_delayed.attr, 117 &dev_attr_recovered.attr, 118 NULL, 119 }; 120 121 const struct attribute_group memory_failure_attr_group = { 122 .name = "memory_failure", 123 .attrs = memory_failure_attr, 124 }; 125 126 static struct ctl_table memory_failure_table[] = { 127 { 128 .procname = "memory_failure_early_kill", 129 .data = &sysctl_memory_failure_early_kill, 130 .maxlen = sizeof(sysctl_memory_failure_early_kill), 131 .mode = 0644, 132 .proc_handler = proc_dointvec_minmax, 133 .extra1 = SYSCTL_ZERO, 134 .extra2 = SYSCTL_ONE, 135 }, 136 { 137 .procname = "memory_failure_recovery", 138 .data = &sysctl_memory_failure_recovery, 139 .maxlen = sizeof(sysctl_memory_failure_recovery), 140 .mode = 0644, 141 .proc_handler = proc_dointvec_minmax, 142 .extra1 = SYSCTL_ZERO, 143 .extra2 = SYSCTL_ONE, 144 }, 145 { } 146 }; 147 148 /* 149 * Return values: 150 * 1: the page is dissolved (if needed) and taken off from buddy, 151 * 0: the page is dissolved (if needed) and not taken off from buddy, 152 * < 0: failed to dissolve. 153 */ 154 static int __page_handle_poison(struct page *page) 155 { 156 int ret; 157 158 zone_pcp_disable(page_zone(page)); 159 ret = dissolve_free_huge_page(page); 160 if (!ret) 161 ret = take_page_off_buddy(page); 162 zone_pcp_enable(page_zone(page)); 163 164 return ret; 165 } 166 167 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 168 { 169 if (hugepage_or_freepage) { 170 /* 171 * Doing this check for free pages is also fine since dissolve_free_huge_page 172 * returns 0 for non-hugetlb pages as well. 173 */ 174 if (__page_handle_poison(page) <= 0) 175 /* 176 * We could fail to take off the target page from buddy 177 * for example due to racy page allocation, but that's 178 * acceptable because soft-offlined page is not broken 179 * and if someone really want to use it, they should 180 * take it. 181 */ 182 return false; 183 } 184 185 SetPageHWPoison(page); 186 if (release) 187 put_page(page); 188 page_ref_inc(page); 189 num_poisoned_pages_inc(page_to_pfn(page)); 190 191 return true; 192 } 193 194 #if IS_ENABLED(CONFIG_HWPOISON_INJECT) 195 196 u32 hwpoison_filter_enable = 0; 197 u32 hwpoison_filter_dev_major = ~0U; 198 u32 hwpoison_filter_dev_minor = ~0U; 199 u64 hwpoison_filter_flags_mask; 200 u64 hwpoison_filter_flags_value; 201 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 202 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 203 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 204 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 205 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 206 207 static int hwpoison_filter_dev(struct page *p) 208 { 209 struct address_space *mapping; 210 dev_t dev; 211 212 if (hwpoison_filter_dev_major == ~0U && 213 hwpoison_filter_dev_minor == ~0U) 214 return 0; 215 216 mapping = page_mapping(p); 217 if (mapping == NULL || mapping->host == NULL) 218 return -EINVAL; 219 220 dev = mapping->host->i_sb->s_dev; 221 if (hwpoison_filter_dev_major != ~0U && 222 hwpoison_filter_dev_major != MAJOR(dev)) 223 return -EINVAL; 224 if (hwpoison_filter_dev_minor != ~0U && 225 hwpoison_filter_dev_minor != MINOR(dev)) 226 return -EINVAL; 227 228 return 0; 229 } 230 231 static int hwpoison_filter_flags(struct page *p) 232 { 233 if (!hwpoison_filter_flags_mask) 234 return 0; 235 236 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 237 hwpoison_filter_flags_value) 238 return 0; 239 else 240 return -EINVAL; 241 } 242 243 /* 244 * This allows stress tests to limit test scope to a collection of tasks 245 * by putting them under some memcg. This prevents killing unrelated/important 246 * processes such as /sbin/init. Note that the target task may share clean 247 * pages with init (eg. libc text), which is harmless. If the target task 248 * share _dirty_ pages with another task B, the test scheme must make sure B 249 * is also included in the memcg. At last, due to race conditions this filter 250 * can only guarantee that the page either belongs to the memcg tasks, or is 251 * a freed page. 252 */ 253 #ifdef CONFIG_MEMCG 254 u64 hwpoison_filter_memcg; 255 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 256 static int hwpoison_filter_task(struct page *p) 257 { 258 if (!hwpoison_filter_memcg) 259 return 0; 260 261 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 262 return -EINVAL; 263 264 return 0; 265 } 266 #else 267 static int hwpoison_filter_task(struct page *p) { return 0; } 268 #endif 269 270 int hwpoison_filter(struct page *p) 271 { 272 if (!hwpoison_filter_enable) 273 return 0; 274 275 if (hwpoison_filter_dev(p)) 276 return -EINVAL; 277 278 if (hwpoison_filter_flags(p)) 279 return -EINVAL; 280 281 if (hwpoison_filter_task(p)) 282 return -EINVAL; 283 284 return 0; 285 } 286 #else 287 int hwpoison_filter(struct page *p) 288 { 289 return 0; 290 } 291 #endif 292 293 EXPORT_SYMBOL_GPL(hwpoison_filter); 294 295 /* 296 * Kill all processes that have a poisoned page mapped and then isolate 297 * the page. 298 * 299 * General strategy: 300 * Find all processes having the page mapped and kill them. 301 * But we keep a page reference around so that the page is not 302 * actually freed yet. 303 * Then stash the page away 304 * 305 * There's no convenient way to get back to mapped processes 306 * from the VMAs. So do a brute-force search over all 307 * running processes. 308 * 309 * Remember that machine checks are not common (or rather 310 * if they are common you have other problems), so this shouldn't 311 * be a performance issue. 312 * 313 * Also there are some races possible while we get from the 314 * error detection to actually handle it. 315 */ 316 317 struct to_kill { 318 struct list_head nd; 319 struct task_struct *tsk; 320 unsigned long addr; 321 short size_shift; 322 }; 323 324 /* 325 * Send all the processes who have the page mapped a signal. 326 * ``action optional'' if they are not immediately affected by the error 327 * ``action required'' if error happened in current execution context 328 */ 329 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 330 { 331 struct task_struct *t = tk->tsk; 332 short addr_lsb = tk->size_shift; 333 int ret = 0; 334 335 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 336 pfn, t->comm, t->pid); 337 338 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 339 ret = force_sig_mceerr(BUS_MCEERR_AR, 340 (void __user *)tk->addr, addr_lsb); 341 else 342 /* 343 * Signal other processes sharing the page if they have 344 * PF_MCE_EARLY set. 345 * Don't use force here, it's convenient if the signal 346 * can be temporarily blocked. 347 * This could cause a loop when the user sets SIGBUS 348 * to SIG_IGN, but hopefully no one will do that? 349 */ 350 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 351 addr_lsb, t); 352 if (ret < 0) 353 pr_info("Error sending signal to %s:%d: %d\n", 354 t->comm, t->pid, ret); 355 return ret; 356 } 357 358 /* 359 * Unknown page type encountered. Try to check whether it can turn PageLRU by 360 * lru_add_drain_all. 361 */ 362 void shake_page(struct page *p) 363 { 364 if (PageHuge(p)) 365 return; 366 /* 367 * TODO: Could shrink slab caches here if a lightweight range-based 368 * shrinker will be available. 369 */ 370 if (PageSlab(p)) 371 return; 372 373 lru_add_drain_all(); 374 } 375 EXPORT_SYMBOL_GPL(shake_page); 376 377 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 378 unsigned long address) 379 { 380 unsigned long ret = 0; 381 pgd_t *pgd; 382 p4d_t *p4d; 383 pud_t *pud; 384 pmd_t *pmd; 385 pte_t *pte; 386 pte_t ptent; 387 388 VM_BUG_ON_VMA(address == -EFAULT, vma); 389 pgd = pgd_offset(vma->vm_mm, address); 390 if (!pgd_present(*pgd)) 391 return 0; 392 p4d = p4d_offset(pgd, address); 393 if (!p4d_present(*p4d)) 394 return 0; 395 pud = pud_offset(p4d, address); 396 if (!pud_present(*pud)) 397 return 0; 398 if (pud_devmap(*pud)) 399 return PUD_SHIFT; 400 pmd = pmd_offset(pud, address); 401 if (!pmd_present(*pmd)) 402 return 0; 403 if (pmd_devmap(*pmd)) 404 return PMD_SHIFT; 405 pte = pte_offset_map(pmd, address); 406 if (!pte) 407 return 0; 408 ptent = ptep_get(pte); 409 if (pte_present(ptent) && pte_devmap(ptent)) 410 ret = PAGE_SHIFT; 411 pte_unmap(pte); 412 return ret; 413 } 414 415 /* 416 * Failure handling: if we can't find or can't kill a process there's 417 * not much we can do. We just print a message and ignore otherwise. 418 */ 419 420 #define FSDAX_INVALID_PGOFF ULONG_MAX 421 422 /* 423 * Schedule a process for later kill. 424 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 425 * 426 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a 427 * filesystem with a memory failure handler has claimed the 428 * memory_failure event. In all other cases, page->index and 429 * page->mapping are sufficient for mapping the page back to its 430 * corresponding user virtual address. 431 */ 432 static void __add_to_kill(struct task_struct *tsk, struct page *p, 433 struct vm_area_struct *vma, struct list_head *to_kill, 434 unsigned long ksm_addr, pgoff_t fsdax_pgoff) 435 { 436 struct to_kill *tk; 437 438 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 439 if (!tk) { 440 pr_err("Out of memory while machine check handling\n"); 441 return; 442 } 443 444 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma); 445 if (is_zone_device_page(p)) { 446 if (fsdax_pgoff != FSDAX_INVALID_PGOFF) 447 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma); 448 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 449 } else 450 tk->size_shift = page_shift(compound_head(p)); 451 452 /* 453 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 454 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 455 * so "tk->size_shift == 0" effectively checks no mapping on 456 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 457 * to a process' address space, it's possible not all N VMAs 458 * contain mappings for the page, but at least one VMA does. 459 * Only deliver SIGBUS with payload derived from the VMA that 460 * has a mapping for the page. 461 */ 462 if (tk->addr == -EFAULT) { 463 pr_info("Unable to find user space address %lx in %s\n", 464 page_to_pfn(p), tsk->comm); 465 } else if (tk->size_shift == 0) { 466 kfree(tk); 467 return; 468 } 469 470 get_task_struct(tsk); 471 tk->tsk = tsk; 472 list_add_tail(&tk->nd, to_kill); 473 } 474 475 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p, 476 struct vm_area_struct *vma, 477 struct list_head *to_kill) 478 { 479 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF); 480 } 481 482 #ifdef CONFIG_KSM 483 static bool task_in_to_kill_list(struct list_head *to_kill, 484 struct task_struct *tsk) 485 { 486 struct to_kill *tk, *next; 487 488 list_for_each_entry_safe(tk, next, to_kill, nd) { 489 if (tk->tsk == tsk) 490 return true; 491 } 492 493 return false; 494 } 495 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 496 struct vm_area_struct *vma, struct list_head *to_kill, 497 unsigned long ksm_addr) 498 { 499 if (!task_in_to_kill_list(to_kill, tsk)) 500 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF); 501 } 502 #endif 503 /* 504 * Kill the processes that have been collected earlier. 505 * 506 * Only do anything when FORCEKILL is set, otherwise just free the 507 * list (this is used for clean pages which do not need killing) 508 * Also when FAIL is set do a force kill because something went 509 * wrong earlier. 510 */ 511 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 512 unsigned long pfn, int flags) 513 { 514 struct to_kill *tk, *next; 515 516 list_for_each_entry_safe(tk, next, to_kill, nd) { 517 if (forcekill) { 518 /* 519 * In case something went wrong with munmapping 520 * make sure the process doesn't catch the 521 * signal and then access the memory. Just kill it. 522 */ 523 if (fail || tk->addr == -EFAULT) { 524 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 525 pfn, tk->tsk->comm, tk->tsk->pid); 526 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 527 tk->tsk, PIDTYPE_PID); 528 } 529 530 /* 531 * In theory the process could have mapped 532 * something else on the address in-between. We could 533 * check for that, but we need to tell the 534 * process anyways. 535 */ 536 else if (kill_proc(tk, pfn, flags) < 0) 537 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 538 pfn, tk->tsk->comm, tk->tsk->pid); 539 } 540 list_del(&tk->nd); 541 put_task_struct(tk->tsk); 542 kfree(tk); 543 } 544 } 545 546 /* 547 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 548 * on behalf of the thread group. Return task_struct of the (first found) 549 * dedicated thread if found, and return NULL otherwise. 550 * 551 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 552 * have to call rcu_read_lock/unlock() in this function. 553 */ 554 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 555 { 556 struct task_struct *t; 557 558 for_each_thread(tsk, t) { 559 if (t->flags & PF_MCE_PROCESS) { 560 if (t->flags & PF_MCE_EARLY) 561 return t; 562 } else { 563 if (sysctl_memory_failure_early_kill) 564 return t; 565 } 566 } 567 return NULL; 568 } 569 570 /* 571 * Determine whether a given process is "early kill" process which expects 572 * to be signaled when some page under the process is hwpoisoned. 573 * Return task_struct of the dedicated thread (main thread unless explicitly 574 * specified) if the process is "early kill" and otherwise returns NULL. 575 * 576 * Note that the above is true for Action Optional case. For Action Required 577 * case, it's only meaningful to the current thread which need to be signaled 578 * with SIGBUS, this error is Action Optional for other non current 579 * processes sharing the same error page,if the process is "early kill", the 580 * task_struct of the dedicated thread will also be returned. 581 */ 582 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 583 { 584 if (!tsk->mm) 585 return NULL; 586 /* 587 * Comparing ->mm here because current task might represent 588 * a subthread, while tsk always points to the main thread. 589 */ 590 if (force_early && tsk->mm == current->mm) 591 return current; 592 593 return find_early_kill_thread(tsk); 594 } 595 596 /* 597 * Collect processes when the error hit an anonymous page. 598 */ 599 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 600 int force_early) 601 { 602 struct folio *folio = page_folio(page); 603 struct vm_area_struct *vma; 604 struct task_struct *tsk; 605 struct anon_vma *av; 606 pgoff_t pgoff; 607 608 av = folio_lock_anon_vma_read(folio, NULL); 609 if (av == NULL) /* Not actually mapped anymore */ 610 return; 611 612 pgoff = page_to_pgoff(page); 613 read_lock(&tasklist_lock); 614 for_each_process (tsk) { 615 struct anon_vma_chain *vmac; 616 struct task_struct *t = task_early_kill(tsk, force_early); 617 618 if (!t) 619 continue; 620 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 621 pgoff, pgoff) { 622 vma = vmac->vma; 623 if (vma->vm_mm != t->mm) 624 continue; 625 if (!page_mapped_in_vma(page, vma)) 626 continue; 627 add_to_kill_anon_file(t, page, vma, to_kill); 628 } 629 } 630 read_unlock(&tasklist_lock); 631 anon_vma_unlock_read(av); 632 } 633 634 /* 635 * Collect processes when the error hit a file mapped page. 636 */ 637 static void collect_procs_file(struct page *page, struct list_head *to_kill, 638 int force_early) 639 { 640 struct vm_area_struct *vma; 641 struct task_struct *tsk; 642 struct address_space *mapping = page->mapping; 643 pgoff_t pgoff; 644 645 i_mmap_lock_read(mapping); 646 read_lock(&tasklist_lock); 647 pgoff = page_to_pgoff(page); 648 for_each_process(tsk) { 649 struct task_struct *t = task_early_kill(tsk, force_early); 650 651 if (!t) 652 continue; 653 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 654 pgoff) { 655 /* 656 * Send early kill signal to tasks where a vma covers 657 * the page but the corrupted page is not necessarily 658 * mapped it in its pte. 659 * Assume applications who requested early kill want 660 * to be informed of all such data corruptions. 661 */ 662 if (vma->vm_mm == t->mm) 663 add_to_kill_anon_file(t, page, vma, to_kill); 664 } 665 } 666 read_unlock(&tasklist_lock); 667 i_mmap_unlock_read(mapping); 668 } 669 670 #ifdef CONFIG_FS_DAX 671 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p, 672 struct vm_area_struct *vma, 673 struct list_head *to_kill, pgoff_t pgoff) 674 { 675 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff); 676 } 677 678 /* 679 * Collect processes when the error hit a fsdax page. 680 */ 681 static void collect_procs_fsdax(struct page *page, 682 struct address_space *mapping, pgoff_t pgoff, 683 struct list_head *to_kill) 684 { 685 struct vm_area_struct *vma; 686 struct task_struct *tsk; 687 688 i_mmap_lock_read(mapping); 689 read_lock(&tasklist_lock); 690 for_each_process(tsk) { 691 struct task_struct *t = task_early_kill(tsk, true); 692 693 if (!t) 694 continue; 695 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 696 if (vma->vm_mm == t->mm) 697 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 698 } 699 } 700 read_unlock(&tasklist_lock); 701 i_mmap_unlock_read(mapping); 702 } 703 #endif /* CONFIG_FS_DAX */ 704 705 /* 706 * Collect the processes who have the corrupted page mapped to kill. 707 */ 708 static void collect_procs(struct page *page, struct list_head *tokill, 709 int force_early) 710 { 711 if (!page->mapping) 712 return; 713 if (unlikely(PageKsm(page))) 714 collect_procs_ksm(page, tokill, force_early); 715 else if (PageAnon(page)) 716 collect_procs_anon(page, tokill, force_early); 717 else 718 collect_procs_file(page, tokill, force_early); 719 } 720 721 struct hwp_walk { 722 struct to_kill tk; 723 unsigned long pfn; 724 int flags; 725 }; 726 727 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 728 { 729 tk->addr = addr; 730 tk->size_shift = shift; 731 } 732 733 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 734 unsigned long poisoned_pfn, struct to_kill *tk) 735 { 736 unsigned long pfn = 0; 737 738 if (pte_present(pte)) { 739 pfn = pte_pfn(pte); 740 } else { 741 swp_entry_t swp = pte_to_swp_entry(pte); 742 743 if (is_hwpoison_entry(swp)) 744 pfn = swp_offset_pfn(swp); 745 } 746 747 if (!pfn || pfn != poisoned_pfn) 748 return 0; 749 750 set_to_kill(tk, addr, shift); 751 return 1; 752 } 753 754 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 755 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 756 struct hwp_walk *hwp) 757 { 758 pmd_t pmd = *pmdp; 759 unsigned long pfn; 760 unsigned long hwpoison_vaddr; 761 762 if (!pmd_present(pmd)) 763 return 0; 764 pfn = pmd_pfn(pmd); 765 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 766 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 767 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 768 return 1; 769 } 770 return 0; 771 } 772 #else 773 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 774 struct hwp_walk *hwp) 775 { 776 return 0; 777 } 778 #endif 779 780 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 781 unsigned long end, struct mm_walk *walk) 782 { 783 struct hwp_walk *hwp = walk->private; 784 int ret = 0; 785 pte_t *ptep, *mapped_pte; 786 spinlock_t *ptl; 787 788 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 789 if (ptl) { 790 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 791 spin_unlock(ptl); 792 goto out; 793 } 794 795 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 796 addr, &ptl); 797 if (!ptep) 798 goto out; 799 800 for (; addr != end; ptep++, addr += PAGE_SIZE) { 801 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, 802 hwp->pfn, &hwp->tk); 803 if (ret == 1) 804 break; 805 } 806 pte_unmap_unlock(mapped_pte, ptl); 807 out: 808 cond_resched(); 809 return ret; 810 } 811 812 #ifdef CONFIG_HUGETLB_PAGE 813 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 814 unsigned long addr, unsigned long end, 815 struct mm_walk *walk) 816 { 817 struct hwp_walk *hwp = walk->private; 818 pte_t pte = huge_ptep_get(ptep); 819 struct hstate *h = hstate_vma(walk->vma); 820 821 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 822 hwp->pfn, &hwp->tk); 823 } 824 #else 825 #define hwpoison_hugetlb_range NULL 826 #endif 827 828 static const struct mm_walk_ops hwp_walk_ops = { 829 .pmd_entry = hwpoison_pte_range, 830 .hugetlb_entry = hwpoison_hugetlb_range, 831 }; 832 833 /* 834 * Sends SIGBUS to the current process with error info. 835 * 836 * This function is intended to handle "Action Required" MCEs on already 837 * hardware poisoned pages. They could happen, for example, when 838 * memory_failure() failed to unmap the error page at the first call, or 839 * when multiple local machine checks happened on different CPUs. 840 * 841 * MCE handler currently has no easy access to the error virtual address, 842 * so this function walks page table to find it. The returned virtual address 843 * is proper in most cases, but it could be wrong when the application 844 * process has multiple entries mapping the error page. 845 */ 846 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 847 int flags) 848 { 849 int ret; 850 struct hwp_walk priv = { 851 .pfn = pfn, 852 }; 853 priv.tk.tsk = p; 854 855 if (!p->mm) 856 return -EFAULT; 857 858 mmap_read_lock(p->mm); 859 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 860 (void *)&priv); 861 if (ret == 1 && priv.tk.addr) 862 kill_proc(&priv.tk, pfn, flags); 863 else 864 ret = 0; 865 mmap_read_unlock(p->mm); 866 return ret > 0 ? -EHWPOISON : -EFAULT; 867 } 868 869 static const char *action_name[] = { 870 [MF_IGNORED] = "Ignored", 871 [MF_FAILED] = "Failed", 872 [MF_DELAYED] = "Delayed", 873 [MF_RECOVERED] = "Recovered", 874 }; 875 876 static const char * const action_page_types[] = { 877 [MF_MSG_KERNEL] = "reserved kernel page", 878 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 879 [MF_MSG_SLAB] = "kernel slab page", 880 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 881 [MF_MSG_HUGE] = "huge page", 882 [MF_MSG_FREE_HUGE] = "free huge page", 883 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 884 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 885 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 886 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 887 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 888 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 889 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 890 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 891 [MF_MSG_CLEAN_LRU] = "clean LRU page", 892 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 893 [MF_MSG_BUDDY] = "free buddy page", 894 [MF_MSG_DAX] = "dax page", 895 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 896 [MF_MSG_UNKNOWN] = "unknown page", 897 }; 898 899 /* 900 * XXX: It is possible that a page is isolated from LRU cache, 901 * and then kept in swap cache or failed to remove from page cache. 902 * The page count will stop it from being freed by unpoison. 903 * Stress tests should be aware of this memory leak problem. 904 */ 905 static int delete_from_lru_cache(struct page *p) 906 { 907 if (isolate_lru_page(p)) { 908 /* 909 * Clear sensible page flags, so that the buddy system won't 910 * complain when the page is unpoison-and-freed. 911 */ 912 ClearPageActive(p); 913 ClearPageUnevictable(p); 914 915 /* 916 * Poisoned page might never drop its ref count to 0 so we have 917 * to uncharge it manually from its memcg. 918 */ 919 mem_cgroup_uncharge(page_folio(p)); 920 921 /* 922 * drop the page count elevated by isolate_lru_page() 923 */ 924 put_page(p); 925 return 0; 926 } 927 return -EIO; 928 } 929 930 static int truncate_error_page(struct page *p, unsigned long pfn, 931 struct address_space *mapping) 932 { 933 int ret = MF_FAILED; 934 935 if (mapping->a_ops->error_remove_page) { 936 struct folio *folio = page_folio(p); 937 int err = mapping->a_ops->error_remove_page(mapping, p); 938 939 if (err != 0) { 940 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 941 } else if (folio_has_private(folio) && 942 !filemap_release_folio(folio, GFP_NOIO)) { 943 pr_info("%#lx: failed to release buffers\n", pfn); 944 } else { 945 ret = MF_RECOVERED; 946 } 947 } else { 948 /* 949 * If the file system doesn't support it just invalidate 950 * This fails on dirty or anything with private pages 951 */ 952 if (invalidate_inode_page(p)) 953 ret = MF_RECOVERED; 954 else 955 pr_info("%#lx: Failed to invalidate\n", pfn); 956 } 957 958 return ret; 959 } 960 961 struct page_state { 962 unsigned long mask; 963 unsigned long res; 964 enum mf_action_page_type type; 965 966 /* Callback ->action() has to unlock the relevant page inside it. */ 967 int (*action)(struct page_state *ps, struct page *p); 968 }; 969 970 /* 971 * Return true if page is still referenced by others, otherwise return 972 * false. 973 * 974 * The extra_pins is true when one extra refcount is expected. 975 */ 976 static bool has_extra_refcount(struct page_state *ps, struct page *p, 977 bool extra_pins) 978 { 979 int count = page_count(p) - 1; 980 981 if (extra_pins) 982 count -= 1; 983 984 if (count > 0) { 985 pr_err("%#lx: %s still referenced by %d users\n", 986 page_to_pfn(p), action_page_types[ps->type], count); 987 return true; 988 } 989 990 return false; 991 } 992 993 /* 994 * Error hit kernel page. 995 * Do nothing, try to be lucky and not touch this instead. For a few cases we 996 * could be more sophisticated. 997 */ 998 static int me_kernel(struct page_state *ps, struct page *p) 999 { 1000 unlock_page(p); 1001 return MF_IGNORED; 1002 } 1003 1004 /* 1005 * Page in unknown state. Do nothing. 1006 */ 1007 static int me_unknown(struct page_state *ps, struct page *p) 1008 { 1009 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1010 unlock_page(p); 1011 return MF_FAILED; 1012 } 1013 1014 /* 1015 * Clean (or cleaned) page cache page. 1016 */ 1017 static int me_pagecache_clean(struct page_state *ps, struct page *p) 1018 { 1019 int ret; 1020 struct address_space *mapping; 1021 bool extra_pins; 1022 1023 delete_from_lru_cache(p); 1024 1025 /* 1026 * For anonymous pages we're done the only reference left 1027 * should be the one m_f() holds. 1028 */ 1029 if (PageAnon(p)) { 1030 ret = MF_RECOVERED; 1031 goto out; 1032 } 1033 1034 /* 1035 * Now truncate the page in the page cache. This is really 1036 * more like a "temporary hole punch" 1037 * Don't do this for block devices when someone else 1038 * has a reference, because it could be file system metadata 1039 * and that's not safe to truncate. 1040 */ 1041 mapping = page_mapping(p); 1042 if (!mapping) { 1043 /* 1044 * Page has been teared down in the meanwhile 1045 */ 1046 ret = MF_FAILED; 1047 goto out; 1048 } 1049 1050 /* 1051 * The shmem page is kept in page cache instead of truncating 1052 * so is expected to have an extra refcount after error-handling. 1053 */ 1054 extra_pins = shmem_mapping(mapping); 1055 1056 /* 1057 * Truncation is a bit tricky. Enable it per file system for now. 1058 * 1059 * Open: to take i_rwsem or not for this? Right now we don't. 1060 */ 1061 ret = truncate_error_page(p, page_to_pfn(p), mapping); 1062 if (has_extra_refcount(ps, p, extra_pins)) 1063 ret = MF_FAILED; 1064 1065 out: 1066 unlock_page(p); 1067 1068 return ret; 1069 } 1070 1071 /* 1072 * Dirty pagecache page 1073 * Issues: when the error hit a hole page the error is not properly 1074 * propagated. 1075 */ 1076 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1077 { 1078 struct address_space *mapping = page_mapping(p); 1079 1080 SetPageError(p); 1081 /* TBD: print more information about the file. */ 1082 if (mapping) { 1083 /* 1084 * IO error will be reported by write(), fsync(), etc. 1085 * who check the mapping. 1086 * This way the application knows that something went 1087 * wrong with its dirty file data. 1088 * 1089 * There's one open issue: 1090 * 1091 * The EIO will be only reported on the next IO 1092 * operation and then cleared through the IO map. 1093 * Normally Linux has two mechanisms to pass IO error 1094 * first through the AS_EIO flag in the address space 1095 * and then through the PageError flag in the page. 1096 * Since we drop pages on memory failure handling the 1097 * only mechanism open to use is through AS_AIO. 1098 * 1099 * This has the disadvantage that it gets cleared on 1100 * the first operation that returns an error, while 1101 * the PageError bit is more sticky and only cleared 1102 * when the page is reread or dropped. If an 1103 * application assumes it will always get error on 1104 * fsync, but does other operations on the fd before 1105 * and the page is dropped between then the error 1106 * will not be properly reported. 1107 * 1108 * This can already happen even without hwpoisoned 1109 * pages: first on metadata IO errors (which only 1110 * report through AS_EIO) or when the page is dropped 1111 * at the wrong time. 1112 * 1113 * So right now we assume that the application DTRT on 1114 * the first EIO, but we're not worse than other parts 1115 * of the kernel. 1116 */ 1117 mapping_set_error(mapping, -EIO); 1118 } 1119 1120 return me_pagecache_clean(ps, p); 1121 } 1122 1123 /* 1124 * Clean and dirty swap cache. 1125 * 1126 * Dirty swap cache page is tricky to handle. The page could live both in page 1127 * cache and swap cache(ie. page is freshly swapped in). So it could be 1128 * referenced concurrently by 2 types of PTEs: 1129 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1130 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1131 * and then 1132 * - clear dirty bit to prevent IO 1133 * - remove from LRU 1134 * - but keep in the swap cache, so that when we return to it on 1135 * a later page fault, we know the application is accessing 1136 * corrupted data and shall be killed (we installed simple 1137 * interception code in do_swap_page to catch it). 1138 * 1139 * Clean swap cache pages can be directly isolated. A later page fault will 1140 * bring in the known good data from disk. 1141 */ 1142 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1143 { 1144 int ret; 1145 bool extra_pins = false; 1146 1147 ClearPageDirty(p); 1148 /* Trigger EIO in shmem: */ 1149 ClearPageUptodate(p); 1150 1151 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 1152 unlock_page(p); 1153 1154 if (ret == MF_DELAYED) 1155 extra_pins = true; 1156 1157 if (has_extra_refcount(ps, p, extra_pins)) 1158 ret = MF_FAILED; 1159 1160 return ret; 1161 } 1162 1163 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1164 { 1165 struct folio *folio = page_folio(p); 1166 int ret; 1167 1168 delete_from_swap_cache(folio); 1169 1170 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1171 folio_unlock(folio); 1172 1173 if (has_extra_refcount(ps, p, false)) 1174 ret = MF_FAILED; 1175 1176 return ret; 1177 } 1178 1179 /* 1180 * Huge pages. Needs work. 1181 * Issues: 1182 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1183 * To narrow down kill region to one page, we need to break up pmd. 1184 */ 1185 static int me_huge_page(struct page_state *ps, struct page *p) 1186 { 1187 int res; 1188 struct page *hpage = compound_head(p); 1189 struct address_space *mapping; 1190 bool extra_pins = false; 1191 1192 if (!PageHuge(hpage)) 1193 return MF_DELAYED; 1194 1195 mapping = page_mapping(hpage); 1196 if (mapping) { 1197 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1198 /* The page is kept in page cache. */ 1199 extra_pins = true; 1200 unlock_page(hpage); 1201 } else { 1202 unlock_page(hpage); 1203 /* 1204 * migration entry prevents later access on error hugepage, 1205 * so we can free and dissolve it into buddy to save healthy 1206 * subpages. 1207 */ 1208 put_page(hpage); 1209 if (__page_handle_poison(p) >= 0) { 1210 page_ref_inc(p); 1211 res = MF_RECOVERED; 1212 } else { 1213 res = MF_FAILED; 1214 } 1215 } 1216 1217 if (has_extra_refcount(ps, p, extra_pins)) 1218 res = MF_FAILED; 1219 1220 return res; 1221 } 1222 1223 /* 1224 * Various page states we can handle. 1225 * 1226 * A page state is defined by its current page->flags bits. 1227 * The table matches them in order and calls the right handler. 1228 * 1229 * This is quite tricky because we can access page at any time 1230 * in its live cycle, so all accesses have to be extremely careful. 1231 * 1232 * This is not complete. More states could be added. 1233 * For any missing state don't attempt recovery. 1234 */ 1235 1236 #define dirty (1UL << PG_dirty) 1237 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1238 #define unevict (1UL << PG_unevictable) 1239 #define mlock (1UL << PG_mlocked) 1240 #define lru (1UL << PG_lru) 1241 #define head (1UL << PG_head) 1242 #define slab (1UL << PG_slab) 1243 #define reserved (1UL << PG_reserved) 1244 1245 static struct page_state error_states[] = { 1246 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1247 /* 1248 * free pages are specially detected outside this table: 1249 * PG_buddy pages only make a small fraction of all free pages. 1250 */ 1251 1252 /* 1253 * Could in theory check if slab page is free or if we can drop 1254 * currently unused objects without touching them. But just 1255 * treat it as standard kernel for now. 1256 */ 1257 { slab, slab, MF_MSG_SLAB, me_kernel }, 1258 1259 { head, head, MF_MSG_HUGE, me_huge_page }, 1260 1261 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1262 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1263 1264 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1265 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1266 1267 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1268 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1269 1270 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1271 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1272 1273 /* 1274 * Catchall entry: must be at end. 1275 */ 1276 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1277 }; 1278 1279 #undef dirty 1280 #undef sc 1281 #undef unevict 1282 #undef mlock 1283 #undef lru 1284 #undef head 1285 #undef slab 1286 #undef reserved 1287 1288 static void update_per_node_mf_stats(unsigned long pfn, 1289 enum mf_result result) 1290 { 1291 int nid = MAX_NUMNODES; 1292 struct memory_failure_stats *mf_stats = NULL; 1293 1294 nid = pfn_to_nid(pfn); 1295 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1296 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1297 return; 1298 } 1299 1300 mf_stats = &NODE_DATA(nid)->mf_stats; 1301 switch (result) { 1302 case MF_IGNORED: 1303 ++mf_stats->ignored; 1304 break; 1305 case MF_FAILED: 1306 ++mf_stats->failed; 1307 break; 1308 case MF_DELAYED: 1309 ++mf_stats->delayed; 1310 break; 1311 case MF_RECOVERED: 1312 ++mf_stats->recovered; 1313 break; 1314 default: 1315 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1316 break; 1317 } 1318 ++mf_stats->total; 1319 } 1320 1321 /* 1322 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1323 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1324 */ 1325 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1326 enum mf_result result) 1327 { 1328 trace_memory_failure_event(pfn, type, result); 1329 1330 num_poisoned_pages_inc(pfn); 1331 1332 update_per_node_mf_stats(pfn, result); 1333 1334 pr_err("%#lx: recovery action for %s: %s\n", 1335 pfn, action_page_types[type], action_name[result]); 1336 1337 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1338 } 1339 1340 static int page_action(struct page_state *ps, struct page *p, 1341 unsigned long pfn) 1342 { 1343 int result; 1344 1345 /* page p should be unlocked after returning from ps->action(). */ 1346 result = ps->action(ps, p); 1347 1348 /* Could do more checks here if page looks ok */ 1349 /* 1350 * Could adjust zone counters here to correct for the missing page. 1351 */ 1352 1353 return action_result(pfn, ps->type, result); 1354 } 1355 1356 static inline bool PageHWPoisonTakenOff(struct page *page) 1357 { 1358 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1359 } 1360 1361 void SetPageHWPoisonTakenOff(struct page *page) 1362 { 1363 set_page_private(page, MAGIC_HWPOISON); 1364 } 1365 1366 void ClearPageHWPoisonTakenOff(struct page *page) 1367 { 1368 if (PageHWPoison(page)) 1369 set_page_private(page, 0); 1370 } 1371 1372 /* 1373 * Return true if a page type of a given page is supported by hwpoison 1374 * mechanism (while handling could fail), otherwise false. This function 1375 * does not return true for hugetlb or device memory pages, so it's assumed 1376 * to be called only in the context where we never have such pages. 1377 */ 1378 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1379 { 1380 /* Soft offline could migrate non-LRU movable pages */ 1381 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1382 return true; 1383 1384 return PageLRU(page) || is_free_buddy_page(page); 1385 } 1386 1387 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1388 { 1389 struct folio *folio = page_folio(page); 1390 int ret = 0; 1391 bool hugetlb = false; 1392 1393 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1394 if (hugetlb) 1395 return ret; 1396 1397 /* 1398 * This check prevents from calling folio_try_get() for any 1399 * unsupported type of folio in order to reduce the risk of unexpected 1400 * races caused by taking a folio refcount. 1401 */ 1402 if (!HWPoisonHandlable(&folio->page, flags)) 1403 return -EBUSY; 1404 1405 if (folio_try_get(folio)) { 1406 if (folio == page_folio(page)) 1407 return 1; 1408 1409 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1410 folio_put(folio); 1411 } 1412 1413 return 0; 1414 } 1415 1416 static int get_any_page(struct page *p, unsigned long flags) 1417 { 1418 int ret = 0, pass = 0; 1419 bool count_increased = false; 1420 1421 if (flags & MF_COUNT_INCREASED) 1422 count_increased = true; 1423 1424 try_again: 1425 if (!count_increased) { 1426 ret = __get_hwpoison_page(p, flags); 1427 if (!ret) { 1428 if (page_count(p)) { 1429 /* We raced with an allocation, retry. */ 1430 if (pass++ < 3) 1431 goto try_again; 1432 ret = -EBUSY; 1433 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1434 /* We raced with put_page, retry. */ 1435 if (pass++ < 3) 1436 goto try_again; 1437 ret = -EIO; 1438 } 1439 goto out; 1440 } else if (ret == -EBUSY) { 1441 /* 1442 * We raced with (possibly temporary) unhandlable 1443 * page, retry. 1444 */ 1445 if (pass++ < 3) { 1446 shake_page(p); 1447 goto try_again; 1448 } 1449 ret = -EIO; 1450 goto out; 1451 } 1452 } 1453 1454 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1455 ret = 1; 1456 } else { 1457 /* 1458 * A page we cannot handle. Check whether we can turn 1459 * it into something we can handle. 1460 */ 1461 if (pass++ < 3) { 1462 put_page(p); 1463 shake_page(p); 1464 count_increased = false; 1465 goto try_again; 1466 } 1467 put_page(p); 1468 ret = -EIO; 1469 } 1470 out: 1471 if (ret == -EIO) 1472 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1473 1474 return ret; 1475 } 1476 1477 static int __get_unpoison_page(struct page *page) 1478 { 1479 struct folio *folio = page_folio(page); 1480 int ret = 0; 1481 bool hugetlb = false; 1482 1483 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1484 if (hugetlb) 1485 return ret; 1486 1487 /* 1488 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1489 * but also isolated from buddy freelist, so need to identify the 1490 * state and have to cancel both operations to unpoison. 1491 */ 1492 if (PageHWPoisonTakenOff(page)) 1493 return -EHWPOISON; 1494 1495 return get_page_unless_zero(page) ? 1 : 0; 1496 } 1497 1498 /** 1499 * get_hwpoison_page() - Get refcount for memory error handling 1500 * @p: Raw error page (hit by memory error) 1501 * @flags: Flags controlling behavior of error handling 1502 * 1503 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1504 * error on it, after checking that the error page is in a well-defined state 1505 * (defined as a page-type we can successfully handle the memory error on it, 1506 * such as LRU page and hugetlb page). 1507 * 1508 * Memory error handling could be triggered at any time on any type of page, 1509 * so it's prone to race with typical memory management lifecycle (like 1510 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1511 * extra care for the error page's state (as done in __get_hwpoison_page()), 1512 * and has some retry logic in get_any_page(). 1513 * 1514 * When called from unpoison_memory(), the caller should already ensure that 1515 * the given page has PG_hwpoison. So it's never reused for other page 1516 * allocations, and __get_unpoison_page() never races with them. 1517 * 1518 * Return: 0 on failure, 1519 * 1 on success for in-use pages in a well-defined state, 1520 * -EIO for pages on which we can not handle memory errors, 1521 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1522 * operations like allocation and free, 1523 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1524 */ 1525 static int get_hwpoison_page(struct page *p, unsigned long flags) 1526 { 1527 int ret; 1528 1529 zone_pcp_disable(page_zone(p)); 1530 if (flags & MF_UNPOISON) 1531 ret = __get_unpoison_page(p); 1532 else 1533 ret = get_any_page(p, flags); 1534 zone_pcp_enable(page_zone(p)); 1535 1536 return ret; 1537 } 1538 1539 /* 1540 * Do all that is necessary to remove user space mappings. Unmap 1541 * the pages and send SIGBUS to the processes if the data was dirty. 1542 */ 1543 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1544 int flags, struct page *hpage) 1545 { 1546 struct folio *folio = page_folio(hpage); 1547 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1548 struct address_space *mapping; 1549 LIST_HEAD(tokill); 1550 bool unmap_success; 1551 int forcekill; 1552 bool mlocked = PageMlocked(hpage); 1553 1554 /* 1555 * Here we are interested only in user-mapped pages, so skip any 1556 * other types of pages. 1557 */ 1558 if (PageReserved(p) || PageSlab(p) || PageTable(p)) 1559 return true; 1560 if (!(PageLRU(hpage) || PageHuge(p))) 1561 return true; 1562 1563 /* 1564 * This check implies we don't kill processes if their pages 1565 * are in the swap cache early. Those are always late kills. 1566 */ 1567 if (!page_mapped(hpage)) 1568 return true; 1569 1570 if (PageSwapCache(p)) { 1571 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1572 ttu &= ~TTU_HWPOISON; 1573 } 1574 1575 /* 1576 * Propagate the dirty bit from PTEs to struct page first, because we 1577 * need this to decide if we should kill or just drop the page. 1578 * XXX: the dirty test could be racy: set_page_dirty() may not always 1579 * be called inside page lock (it's recommended but not enforced). 1580 */ 1581 mapping = page_mapping(hpage); 1582 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1583 mapping_can_writeback(mapping)) { 1584 if (page_mkclean(hpage)) { 1585 SetPageDirty(hpage); 1586 } else { 1587 ttu &= ~TTU_HWPOISON; 1588 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1589 pfn); 1590 } 1591 } 1592 1593 /* 1594 * First collect all the processes that have the page 1595 * mapped in dirty form. This has to be done before try_to_unmap, 1596 * because ttu takes the rmap data structures down. 1597 */ 1598 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1599 1600 if (PageHuge(hpage) && !PageAnon(hpage)) { 1601 /* 1602 * For hugetlb pages in shared mappings, try_to_unmap 1603 * could potentially call huge_pmd_unshare. Because of 1604 * this, take semaphore in write mode here and set 1605 * TTU_RMAP_LOCKED to indicate we have taken the lock 1606 * at this higher level. 1607 */ 1608 mapping = hugetlb_page_mapping_lock_write(hpage); 1609 if (mapping) { 1610 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1611 i_mmap_unlock_write(mapping); 1612 } else 1613 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); 1614 } else { 1615 try_to_unmap(folio, ttu); 1616 } 1617 1618 unmap_success = !page_mapped(hpage); 1619 if (!unmap_success) 1620 pr_err("%#lx: failed to unmap page (mapcount=%d)\n", 1621 pfn, page_mapcount(hpage)); 1622 1623 /* 1624 * try_to_unmap() might put mlocked page in lru cache, so call 1625 * shake_page() again to ensure that it's flushed. 1626 */ 1627 if (mlocked) 1628 shake_page(hpage); 1629 1630 /* 1631 * Now that the dirty bit has been propagated to the 1632 * struct page and all unmaps done we can decide if 1633 * killing is needed or not. Only kill when the page 1634 * was dirty or the process is not restartable, 1635 * otherwise the tokill list is merely 1636 * freed. When there was a problem unmapping earlier 1637 * use a more force-full uncatchable kill to prevent 1638 * any accesses to the poisoned memory. 1639 */ 1640 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) || 1641 !unmap_success; 1642 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1643 1644 return unmap_success; 1645 } 1646 1647 static int identify_page_state(unsigned long pfn, struct page *p, 1648 unsigned long page_flags) 1649 { 1650 struct page_state *ps; 1651 1652 /* 1653 * The first check uses the current page flags which may not have any 1654 * relevant information. The second check with the saved page flags is 1655 * carried out only if the first check can't determine the page status. 1656 */ 1657 for (ps = error_states;; ps++) 1658 if ((p->flags & ps->mask) == ps->res) 1659 break; 1660 1661 page_flags |= (p->flags & (1UL << PG_dirty)); 1662 1663 if (!ps->mask) 1664 for (ps = error_states;; ps++) 1665 if ((page_flags & ps->mask) == ps->res) 1666 break; 1667 return page_action(ps, p, pfn); 1668 } 1669 1670 static int try_to_split_thp_page(struct page *page) 1671 { 1672 int ret; 1673 1674 lock_page(page); 1675 ret = split_huge_page(page); 1676 unlock_page(page); 1677 1678 if (unlikely(ret)) 1679 put_page(page); 1680 1681 return ret; 1682 } 1683 1684 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1685 struct address_space *mapping, pgoff_t index, int flags) 1686 { 1687 struct to_kill *tk; 1688 unsigned long size = 0; 1689 1690 list_for_each_entry(tk, to_kill, nd) 1691 if (tk->size_shift) 1692 size = max(size, 1UL << tk->size_shift); 1693 1694 if (size) { 1695 /* 1696 * Unmap the largest mapping to avoid breaking up device-dax 1697 * mappings which are constant size. The actual size of the 1698 * mapping being torn down is communicated in siginfo, see 1699 * kill_proc() 1700 */ 1701 loff_t start = (index << PAGE_SHIFT) & ~(size - 1); 1702 1703 unmap_mapping_range(mapping, start, size, 0); 1704 } 1705 1706 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); 1707 } 1708 1709 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1710 struct dev_pagemap *pgmap) 1711 { 1712 struct page *page = pfn_to_page(pfn); 1713 LIST_HEAD(to_kill); 1714 dax_entry_t cookie; 1715 int rc = 0; 1716 1717 /* 1718 * Pages instantiated by device-dax (not filesystem-dax) 1719 * may be compound pages. 1720 */ 1721 page = compound_head(page); 1722 1723 /* 1724 * Prevent the inode from being freed while we are interrogating 1725 * the address_space, typically this would be handled by 1726 * lock_page(), but dax pages do not use the page lock. This 1727 * also prevents changes to the mapping of this pfn until 1728 * poison signaling is complete. 1729 */ 1730 cookie = dax_lock_page(page); 1731 if (!cookie) 1732 return -EBUSY; 1733 1734 if (hwpoison_filter(page)) { 1735 rc = -EOPNOTSUPP; 1736 goto unlock; 1737 } 1738 1739 switch (pgmap->type) { 1740 case MEMORY_DEVICE_PRIVATE: 1741 case MEMORY_DEVICE_COHERENT: 1742 /* 1743 * TODO: Handle device pages which may need coordination 1744 * with device-side memory. 1745 */ 1746 rc = -ENXIO; 1747 goto unlock; 1748 default: 1749 break; 1750 } 1751 1752 /* 1753 * Use this flag as an indication that the dax page has been 1754 * remapped UC to prevent speculative consumption of poison. 1755 */ 1756 SetPageHWPoison(page); 1757 1758 /* 1759 * Unlike System-RAM there is no possibility to swap in a 1760 * different physical page at a given virtual address, so all 1761 * userspace consumption of ZONE_DEVICE memory necessitates 1762 * SIGBUS (i.e. MF_MUST_KILL) 1763 */ 1764 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1765 collect_procs(page, &to_kill, true); 1766 1767 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags); 1768 unlock: 1769 dax_unlock_page(page, cookie); 1770 return rc; 1771 } 1772 1773 #ifdef CONFIG_FS_DAX 1774 /** 1775 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1776 * @mapping: address_space of the file in use 1777 * @index: start pgoff of the range within the file 1778 * @count: length of the range, in unit of PAGE_SIZE 1779 * @mf_flags: memory failure flags 1780 */ 1781 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1782 unsigned long count, int mf_flags) 1783 { 1784 LIST_HEAD(to_kill); 1785 dax_entry_t cookie; 1786 struct page *page; 1787 size_t end = index + count; 1788 1789 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1790 1791 for (; index < end; index++) { 1792 page = NULL; 1793 cookie = dax_lock_mapping_entry(mapping, index, &page); 1794 if (!cookie) 1795 return -EBUSY; 1796 if (!page) 1797 goto unlock; 1798 1799 SetPageHWPoison(page); 1800 1801 collect_procs_fsdax(page, mapping, index, &to_kill); 1802 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1803 index, mf_flags); 1804 unlock: 1805 dax_unlock_mapping_entry(mapping, index, cookie); 1806 } 1807 return 0; 1808 } 1809 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1810 #endif /* CONFIG_FS_DAX */ 1811 1812 #ifdef CONFIG_HUGETLB_PAGE 1813 /* 1814 * Struct raw_hwp_page represents information about "raw error page", 1815 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1816 */ 1817 struct raw_hwp_page { 1818 struct llist_node node; 1819 struct page *page; 1820 }; 1821 1822 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1823 { 1824 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1825 } 1826 1827 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1828 { 1829 struct llist_head *head; 1830 struct llist_node *t, *tnode; 1831 unsigned long count = 0; 1832 1833 head = raw_hwp_list_head(folio); 1834 llist_for_each_safe(tnode, t, head->first) { 1835 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1836 1837 if (move_flag) 1838 SetPageHWPoison(p->page); 1839 else 1840 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1841 kfree(p); 1842 count++; 1843 } 1844 llist_del_all(head); 1845 return count; 1846 } 1847 1848 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1849 { 1850 struct llist_head *head; 1851 struct raw_hwp_page *raw_hwp; 1852 struct llist_node *t, *tnode; 1853 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1854 1855 /* 1856 * Once the hwpoison hugepage has lost reliable raw error info, 1857 * there is little meaning to keep additional error info precisely, 1858 * so skip to add additional raw error info. 1859 */ 1860 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1861 return -EHWPOISON; 1862 head = raw_hwp_list_head(folio); 1863 llist_for_each_safe(tnode, t, head->first) { 1864 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1865 1866 if (p->page == page) 1867 return -EHWPOISON; 1868 } 1869 1870 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1871 if (raw_hwp) { 1872 raw_hwp->page = page; 1873 llist_add(&raw_hwp->node, head); 1874 /* the first error event will be counted in action_result(). */ 1875 if (ret) 1876 num_poisoned_pages_inc(page_to_pfn(page)); 1877 } else { 1878 /* 1879 * Failed to save raw error info. We no longer trace all 1880 * hwpoisoned subpages, and we need refuse to free/dissolve 1881 * this hwpoisoned hugepage. 1882 */ 1883 folio_set_hugetlb_raw_hwp_unreliable(folio); 1884 /* 1885 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1886 * used any more, so free it. 1887 */ 1888 __folio_free_raw_hwp(folio, false); 1889 } 1890 return ret; 1891 } 1892 1893 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1894 { 1895 /* 1896 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1897 * pages for tail pages are required but they don't exist. 1898 */ 1899 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1900 return 0; 1901 1902 /* 1903 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1904 * definition. 1905 */ 1906 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1907 return 0; 1908 1909 return __folio_free_raw_hwp(folio, move_flag); 1910 } 1911 1912 void folio_clear_hugetlb_hwpoison(struct folio *folio) 1913 { 1914 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1915 return; 1916 folio_clear_hwpoison(folio); 1917 folio_free_raw_hwp(folio, true); 1918 } 1919 1920 /* 1921 * Called from hugetlb code with hugetlb_lock held. 1922 * 1923 * Return values: 1924 * 0 - free hugepage 1925 * 1 - in-use hugepage 1926 * 2 - not a hugepage 1927 * -EBUSY - the hugepage is busy (try to retry) 1928 * -EHWPOISON - the hugepage is already hwpoisoned 1929 */ 1930 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 1931 bool *migratable_cleared) 1932 { 1933 struct page *page = pfn_to_page(pfn); 1934 struct folio *folio = page_folio(page); 1935 int ret = 2; /* fallback to normal page handling */ 1936 bool count_increased = false; 1937 1938 if (!folio_test_hugetlb(folio)) 1939 goto out; 1940 1941 if (flags & MF_COUNT_INCREASED) { 1942 ret = 1; 1943 count_increased = true; 1944 } else if (folio_test_hugetlb_freed(folio)) { 1945 ret = 0; 1946 } else if (folio_test_hugetlb_migratable(folio)) { 1947 ret = folio_try_get(folio); 1948 if (ret) 1949 count_increased = true; 1950 } else { 1951 ret = -EBUSY; 1952 if (!(flags & MF_NO_RETRY)) 1953 goto out; 1954 } 1955 1956 if (folio_set_hugetlb_hwpoison(folio, page)) { 1957 ret = -EHWPOISON; 1958 goto out; 1959 } 1960 1961 /* 1962 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 1963 * from being migrated by memory hotremove. 1964 */ 1965 if (count_increased && folio_test_hugetlb_migratable(folio)) { 1966 folio_clear_hugetlb_migratable(folio); 1967 *migratable_cleared = true; 1968 } 1969 1970 return ret; 1971 out: 1972 if (count_increased) 1973 folio_put(folio); 1974 return ret; 1975 } 1976 1977 /* 1978 * Taking refcount of hugetlb pages needs extra care about race conditions 1979 * with basic operations like hugepage allocation/free/demotion. 1980 * So some of prechecks for hwpoison (pinning, and testing/setting 1981 * PageHWPoison) should be done in single hugetlb_lock range. 1982 */ 1983 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1984 { 1985 int res; 1986 struct page *p = pfn_to_page(pfn); 1987 struct folio *folio; 1988 unsigned long page_flags; 1989 bool migratable_cleared = false; 1990 1991 *hugetlb = 1; 1992 retry: 1993 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 1994 if (res == 2) { /* fallback to normal page handling */ 1995 *hugetlb = 0; 1996 return 0; 1997 } else if (res == -EHWPOISON) { 1998 pr_err("%#lx: already hardware poisoned\n", pfn); 1999 if (flags & MF_ACTION_REQUIRED) { 2000 folio = page_folio(p); 2001 res = kill_accessing_process(current, folio_pfn(folio), flags); 2002 } 2003 return res; 2004 } else if (res == -EBUSY) { 2005 if (!(flags & MF_NO_RETRY)) { 2006 flags |= MF_NO_RETRY; 2007 goto retry; 2008 } 2009 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2010 } 2011 2012 folio = page_folio(p); 2013 folio_lock(folio); 2014 2015 if (hwpoison_filter(p)) { 2016 folio_clear_hugetlb_hwpoison(folio); 2017 if (migratable_cleared) 2018 folio_set_hugetlb_migratable(folio); 2019 folio_unlock(folio); 2020 if (res == 1) 2021 folio_put(folio); 2022 return -EOPNOTSUPP; 2023 } 2024 2025 /* 2026 * Handling free hugepage. The possible race with hugepage allocation 2027 * or demotion can be prevented by PageHWPoison flag. 2028 */ 2029 if (res == 0) { 2030 folio_unlock(folio); 2031 if (__page_handle_poison(p) >= 0) { 2032 page_ref_inc(p); 2033 res = MF_RECOVERED; 2034 } else { 2035 res = MF_FAILED; 2036 } 2037 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2038 } 2039 2040 page_flags = folio->flags; 2041 2042 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) { 2043 folio_unlock(folio); 2044 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2045 } 2046 2047 return identify_page_state(pfn, p, page_flags); 2048 } 2049 2050 #else 2051 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2052 { 2053 return 0; 2054 } 2055 2056 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2057 { 2058 return 0; 2059 } 2060 #endif /* CONFIG_HUGETLB_PAGE */ 2061 2062 /* Drop the extra refcount in case we come from madvise() */ 2063 static void put_ref_page(unsigned long pfn, int flags) 2064 { 2065 struct page *page; 2066 2067 if (!(flags & MF_COUNT_INCREASED)) 2068 return; 2069 2070 page = pfn_to_page(pfn); 2071 if (page) 2072 put_page(page); 2073 } 2074 2075 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2076 struct dev_pagemap *pgmap) 2077 { 2078 int rc = -ENXIO; 2079 2080 put_ref_page(pfn, flags); 2081 2082 /* device metadata space is not recoverable */ 2083 if (!pgmap_pfn_valid(pgmap, pfn)) 2084 goto out; 2085 2086 /* 2087 * Call driver's implementation to handle the memory failure, otherwise 2088 * fall back to generic handler. 2089 */ 2090 if (pgmap_has_memory_failure(pgmap)) { 2091 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2092 /* 2093 * Fall back to generic handler too if operation is not 2094 * supported inside the driver/device/filesystem. 2095 */ 2096 if (rc != -EOPNOTSUPP) 2097 goto out; 2098 } 2099 2100 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2101 out: 2102 /* drop pgmap ref acquired in caller */ 2103 put_dev_pagemap(pgmap); 2104 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2105 return rc; 2106 } 2107 2108 static DEFINE_MUTEX(mf_mutex); 2109 2110 /** 2111 * memory_failure - Handle memory failure of a page. 2112 * @pfn: Page Number of the corrupted page 2113 * @flags: fine tune action taken 2114 * 2115 * This function is called by the low level machine check code 2116 * of an architecture when it detects hardware memory corruption 2117 * of a page. It tries its best to recover, which includes 2118 * dropping pages, killing processes etc. 2119 * 2120 * The function is primarily of use for corruptions that 2121 * happen outside the current execution context (e.g. when 2122 * detected by a background scrubber) 2123 * 2124 * Must run in process context (e.g. a work queue) with interrupts 2125 * enabled and no spinlocks hold. 2126 * 2127 * Return: 0 for successfully handled the memory error, 2128 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 2129 * < 0(except -EOPNOTSUPP) on failure. 2130 */ 2131 int memory_failure(unsigned long pfn, int flags) 2132 { 2133 struct page *p; 2134 struct page *hpage; 2135 struct dev_pagemap *pgmap; 2136 int res = 0; 2137 unsigned long page_flags; 2138 bool retry = true; 2139 int hugetlb = 0; 2140 2141 if (!sysctl_memory_failure_recovery) 2142 panic("Memory failure on page %lx", pfn); 2143 2144 mutex_lock(&mf_mutex); 2145 2146 if (!(flags & MF_SW_SIMULATED)) 2147 hw_memory_failure = true; 2148 2149 p = pfn_to_online_page(pfn); 2150 if (!p) { 2151 res = arch_memory_failure(pfn, flags); 2152 if (res == 0) 2153 goto unlock_mutex; 2154 2155 if (pfn_valid(pfn)) { 2156 pgmap = get_dev_pagemap(pfn, NULL); 2157 if (pgmap) { 2158 res = memory_failure_dev_pagemap(pfn, flags, 2159 pgmap); 2160 goto unlock_mutex; 2161 } 2162 } 2163 pr_err("%#lx: memory outside kernel control\n", pfn); 2164 res = -ENXIO; 2165 goto unlock_mutex; 2166 } 2167 2168 try_again: 2169 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2170 if (hugetlb) 2171 goto unlock_mutex; 2172 2173 if (TestSetPageHWPoison(p)) { 2174 pr_err("%#lx: already hardware poisoned\n", pfn); 2175 res = -EHWPOISON; 2176 if (flags & MF_ACTION_REQUIRED) 2177 res = kill_accessing_process(current, pfn, flags); 2178 if (flags & MF_COUNT_INCREASED) 2179 put_page(p); 2180 goto unlock_mutex; 2181 } 2182 2183 hpage = compound_head(p); 2184 2185 /* 2186 * We need/can do nothing about count=0 pages. 2187 * 1) it's a free page, and therefore in safe hand: 2188 * check_new_page() will be the gate keeper. 2189 * 2) it's part of a non-compound high order page. 2190 * Implies some kernel user: cannot stop them from 2191 * R/W the page; let's pray that the page has been 2192 * used and will be freed some time later. 2193 * In fact it's dangerous to directly bump up page count from 0, 2194 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2195 */ 2196 if (!(flags & MF_COUNT_INCREASED)) { 2197 res = get_hwpoison_page(p, flags); 2198 if (!res) { 2199 if (is_free_buddy_page(p)) { 2200 if (take_page_off_buddy(p)) { 2201 page_ref_inc(p); 2202 res = MF_RECOVERED; 2203 } else { 2204 /* We lost the race, try again */ 2205 if (retry) { 2206 ClearPageHWPoison(p); 2207 retry = false; 2208 goto try_again; 2209 } 2210 res = MF_FAILED; 2211 } 2212 res = action_result(pfn, MF_MSG_BUDDY, res); 2213 } else { 2214 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2215 } 2216 goto unlock_mutex; 2217 } else if (res < 0) { 2218 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2219 goto unlock_mutex; 2220 } 2221 } 2222 2223 if (PageTransHuge(hpage)) { 2224 /* 2225 * The flag must be set after the refcount is bumped 2226 * otherwise it may race with THP split. 2227 * And the flag can't be set in get_hwpoison_page() since 2228 * it is called by soft offline too and it is just called 2229 * for !MF_COUNT_INCREASE. So here seems to be the best 2230 * place. 2231 * 2232 * Don't need care about the above error handling paths for 2233 * get_hwpoison_page() since they handle either free page 2234 * or unhandlable page. The refcount is bumped iff the 2235 * page is a valid handlable page. 2236 */ 2237 SetPageHasHWPoisoned(hpage); 2238 if (try_to_split_thp_page(p) < 0) { 2239 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 2240 goto unlock_mutex; 2241 } 2242 VM_BUG_ON_PAGE(!page_count(p), p); 2243 } 2244 2245 /* 2246 * We ignore non-LRU pages for good reasons. 2247 * - PG_locked is only well defined for LRU pages and a few others 2248 * - to avoid races with __SetPageLocked() 2249 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2250 * The check (unnecessarily) ignores LRU pages being isolated and 2251 * walked by the page reclaim code, however that's not a big loss. 2252 */ 2253 shake_page(p); 2254 2255 lock_page(p); 2256 2257 /* 2258 * We're only intended to deal with the non-Compound page here. 2259 * However, the page could have changed compound pages due to 2260 * race window. If this happens, we could try again to hopefully 2261 * handle the page next round. 2262 */ 2263 if (PageCompound(p)) { 2264 if (retry) { 2265 ClearPageHWPoison(p); 2266 unlock_page(p); 2267 put_page(p); 2268 flags &= ~MF_COUNT_INCREASED; 2269 retry = false; 2270 goto try_again; 2271 } 2272 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 2273 goto unlock_page; 2274 } 2275 2276 /* 2277 * We use page flags to determine what action should be taken, but 2278 * the flags can be modified by the error containment action. One 2279 * example is an mlocked page, where PG_mlocked is cleared by 2280 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 2281 * correctly, we save a copy of the page flags at this time. 2282 */ 2283 page_flags = p->flags; 2284 2285 if (hwpoison_filter(p)) { 2286 ClearPageHWPoison(p); 2287 unlock_page(p); 2288 put_page(p); 2289 res = -EOPNOTSUPP; 2290 goto unlock_mutex; 2291 } 2292 2293 /* 2294 * __munlock_folio() may clear a writeback page's LRU flag without 2295 * page_lock. We need wait writeback completion for this page or it 2296 * may trigger vfs BUG while evict inode. 2297 */ 2298 if (!PageLRU(p) && !PageWriteback(p)) 2299 goto identify_page_state; 2300 2301 /* 2302 * It's very difficult to mess with pages currently under IO 2303 * and in many cases impossible, so we just avoid it here. 2304 */ 2305 wait_on_page_writeback(p); 2306 2307 /* 2308 * Now take care of user space mappings. 2309 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2310 */ 2311 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 2312 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2313 goto unlock_page; 2314 } 2315 2316 /* 2317 * Torn down by someone else? 2318 */ 2319 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 2320 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2321 goto unlock_page; 2322 } 2323 2324 identify_page_state: 2325 res = identify_page_state(pfn, p, page_flags); 2326 mutex_unlock(&mf_mutex); 2327 return res; 2328 unlock_page: 2329 unlock_page(p); 2330 unlock_mutex: 2331 mutex_unlock(&mf_mutex); 2332 return res; 2333 } 2334 EXPORT_SYMBOL_GPL(memory_failure); 2335 2336 #define MEMORY_FAILURE_FIFO_ORDER 4 2337 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2338 2339 struct memory_failure_entry { 2340 unsigned long pfn; 2341 int flags; 2342 }; 2343 2344 struct memory_failure_cpu { 2345 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2346 MEMORY_FAILURE_FIFO_SIZE); 2347 spinlock_t lock; 2348 struct work_struct work; 2349 }; 2350 2351 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2352 2353 /** 2354 * memory_failure_queue - Schedule handling memory failure of a page. 2355 * @pfn: Page Number of the corrupted page 2356 * @flags: Flags for memory failure handling 2357 * 2358 * This function is called by the low level hardware error handler 2359 * when it detects hardware memory corruption of a page. It schedules 2360 * the recovering of error page, including dropping pages, killing 2361 * processes etc. 2362 * 2363 * The function is primarily of use for corruptions that 2364 * happen outside the current execution context (e.g. when 2365 * detected by a background scrubber) 2366 * 2367 * Can run in IRQ context. 2368 */ 2369 void memory_failure_queue(unsigned long pfn, int flags) 2370 { 2371 struct memory_failure_cpu *mf_cpu; 2372 unsigned long proc_flags; 2373 struct memory_failure_entry entry = { 2374 .pfn = pfn, 2375 .flags = flags, 2376 }; 2377 2378 mf_cpu = &get_cpu_var(memory_failure_cpu); 2379 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2380 if (kfifo_put(&mf_cpu->fifo, entry)) 2381 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2382 else 2383 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2384 pfn); 2385 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2386 put_cpu_var(memory_failure_cpu); 2387 } 2388 EXPORT_SYMBOL_GPL(memory_failure_queue); 2389 2390 static void memory_failure_work_func(struct work_struct *work) 2391 { 2392 struct memory_failure_cpu *mf_cpu; 2393 struct memory_failure_entry entry = { 0, }; 2394 unsigned long proc_flags; 2395 int gotten; 2396 2397 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2398 for (;;) { 2399 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2400 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2401 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2402 if (!gotten) 2403 break; 2404 if (entry.flags & MF_SOFT_OFFLINE) 2405 soft_offline_page(entry.pfn, entry.flags); 2406 else 2407 memory_failure(entry.pfn, entry.flags); 2408 } 2409 } 2410 2411 /* 2412 * Process memory_failure work queued on the specified CPU. 2413 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2414 */ 2415 void memory_failure_queue_kick(int cpu) 2416 { 2417 struct memory_failure_cpu *mf_cpu; 2418 2419 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2420 cancel_work_sync(&mf_cpu->work); 2421 memory_failure_work_func(&mf_cpu->work); 2422 } 2423 2424 static int __init memory_failure_init(void) 2425 { 2426 struct memory_failure_cpu *mf_cpu; 2427 int cpu; 2428 2429 for_each_possible_cpu(cpu) { 2430 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2431 spin_lock_init(&mf_cpu->lock); 2432 INIT_KFIFO(mf_cpu->fifo); 2433 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2434 } 2435 2436 register_sysctl_init("vm", memory_failure_table); 2437 2438 return 0; 2439 } 2440 core_initcall(memory_failure_init); 2441 2442 #undef pr_fmt 2443 #define pr_fmt(fmt) "" fmt 2444 #define unpoison_pr_info(fmt, pfn, rs) \ 2445 ({ \ 2446 if (__ratelimit(rs)) \ 2447 pr_info(fmt, pfn); \ 2448 }) 2449 2450 /** 2451 * unpoison_memory - Unpoison a previously poisoned page 2452 * @pfn: Page number of the to be unpoisoned page 2453 * 2454 * Software-unpoison a page that has been poisoned by 2455 * memory_failure() earlier. 2456 * 2457 * This is only done on the software-level, so it only works 2458 * for linux injected failures, not real hardware failures 2459 * 2460 * Returns 0 for success, otherwise -errno. 2461 */ 2462 int unpoison_memory(unsigned long pfn) 2463 { 2464 struct folio *folio; 2465 struct page *p; 2466 int ret = -EBUSY; 2467 unsigned long count = 1; 2468 bool huge = false; 2469 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2470 DEFAULT_RATELIMIT_BURST); 2471 2472 if (!pfn_valid(pfn)) 2473 return -ENXIO; 2474 2475 p = pfn_to_page(pfn); 2476 folio = page_folio(p); 2477 2478 mutex_lock(&mf_mutex); 2479 2480 if (hw_memory_failure) { 2481 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", 2482 pfn, &unpoison_rs); 2483 ret = -EOPNOTSUPP; 2484 goto unlock_mutex; 2485 } 2486 2487 if (!PageHWPoison(p)) { 2488 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2489 pfn, &unpoison_rs); 2490 goto unlock_mutex; 2491 } 2492 2493 if (folio_ref_count(folio) > 1) { 2494 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2495 pfn, &unpoison_rs); 2496 goto unlock_mutex; 2497 } 2498 2499 if (folio_mapped(folio)) { 2500 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2501 pfn, &unpoison_rs); 2502 goto unlock_mutex; 2503 } 2504 2505 if (folio_mapping(folio)) { 2506 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2507 pfn, &unpoison_rs); 2508 goto unlock_mutex; 2509 } 2510 2511 if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio)) 2512 goto unlock_mutex; 2513 2514 ret = get_hwpoison_page(p, MF_UNPOISON); 2515 if (!ret) { 2516 if (PageHuge(p)) { 2517 huge = true; 2518 count = folio_free_raw_hwp(folio, false); 2519 if (count == 0) { 2520 ret = -EBUSY; 2521 goto unlock_mutex; 2522 } 2523 } 2524 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2525 } else if (ret < 0) { 2526 if (ret == -EHWPOISON) { 2527 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2528 } else 2529 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2530 pfn, &unpoison_rs); 2531 } else { 2532 if (PageHuge(p)) { 2533 huge = true; 2534 count = folio_free_raw_hwp(folio, false); 2535 if (count == 0) { 2536 ret = -EBUSY; 2537 folio_put(folio); 2538 goto unlock_mutex; 2539 } 2540 } 2541 2542 folio_put(folio); 2543 if (TestClearPageHWPoison(p)) { 2544 folio_put(folio); 2545 ret = 0; 2546 } 2547 } 2548 2549 unlock_mutex: 2550 mutex_unlock(&mf_mutex); 2551 if (!ret) { 2552 if (!huge) 2553 num_poisoned_pages_sub(pfn, 1); 2554 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2555 page_to_pfn(p), &unpoison_rs); 2556 } 2557 return ret; 2558 } 2559 EXPORT_SYMBOL(unpoison_memory); 2560 2561 static bool isolate_page(struct page *page, struct list_head *pagelist) 2562 { 2563 bool isolated = false; 2564 2565 if (PageHuge(page)) { 2566 isolated = isolate_hugetlb(page_folio(page), pagelist); 2567 } else { 2568 bool lru = !__PageMovable(page); 2569 2570 if (lru) 2571 isolated = isolate_lru_page(page); 2572 else 2573 isolated = isolate_movable_page(page, 2574 ISOLATE_UNEVICTABLE); 2575 2576 if (isolated) { 2577 list_add(&page->lru, pagelist); 2578 if (lru) 2579 inc_node_page_state(page, NR_ISOLATED_ANON + 2580 page_is_file_lru(page)); 2581 } 2582 } 2583 2584 /* 2585 * If we succeed to isolate the page, we grabbed another refcount on 2586 * the page, so we can safely drop the one we got from get_any_pages(). 2587 * If we failed to isolate the page, it means that we cannot go further 2588 * and we will return an error, so drop the reference we got from 2589 * get_any_pages() as well. 2590 */ 2591 put_page(page); 2592 return isolated; 2593 } 2594 2595 /* 2596 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2597 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2598 * If the page is mapped, it migrates the contents over. 2599 */ 2600 static int soft_offline_in_use_page(struct page *page) 2601 { 2602 long ret = 0; 2603 unsigned long pfn = page_to_pfn(page); 2604 struct page *hpage = compound_head(page); 2605 char const *msg_page[] = {"page", "hugepage"}; 2606 bool huge = PageHuge(page); 2607 LIST_HEAD(pagelist); 2608 struct migration_target_control mtc = { 2609 .nid = NUMA_NO_NODE, 2610 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2611 }; 2612 2613 if (!huge && PageTransHuge(hpage)) { 2614 if (try_to_split_thp_page(page)) { 2615 pr_info("soft offline: %#lx: thp split failed\n", pfn); 2616 return -EBUSY; 2617 } 2618 hpage = page; 2619 } 2620 2621 lock_page(page); 2622 if (!PageHuge(page)) 2623 wait_on_page_writeback(page); 2624 if (PageHWPoison(page)) { 2625 unlock_page(page); 2626 put_page(page); 2627 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2628 return 0; 2629 } 2630 2631 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page)) 2632 /* 2633 * Try to invalidate first. This should work for 2634 * non dirty unmapped page cache pages. 2635 */ 2636 ret = invalidate_inode_page(page); 2637 unlock_page(page); 2638 2639 if (ret) { 2640 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2641 page_handle_poison(page, false, true); 2642 return 0; 2643 } 2644 2645 if (isolate_page(hpage, &pagelist)) { 2646 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2647 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2648 if (!ret) { 2649 bool release = !huge; 2650 2651 if (!page_handle_poison(page, huge, release)) 2652 ret = -EBUSY; 2653 } else { 2654 if (!list_empty(&pagelist)) 2655 putback_movable_pages(&pagelist); 2656 2657 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2658 pfn, msg_page[huge], ret, &page->flags); 2659 if (ret > 0) 2660 ret = -EBUSY; 2661 } 2662 } else { 2663 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2664 pfn, msg_page[huge], page_count(page), &page->flags); 2665 ret = -EBUSY; 2666 } 2667 return ret; 2668 } 2669 2670 /** 2671 * soft_offline_page - Soft offline a page. 2672 * @pfn: pfn to soft-offline 2673 * @flags: flags. Same as memory_failure(). 2674 * 2675 * Returns 0 on success 2676 * -EOPNOTSUPP for hwpoison_filter() filtered the error event 2677 * < 0 otherwise negated errno. 2678 * 2679 * Soft offline a page, by migration or invalidation, 2680 * without killing anything. This is for the case when 2681 * a page is not corrupted yet (so it's still valid to access), 2682 * but has had a number of corrected errors and is better taken 2683 * out. 2684 * 2685 * The actual policy on when to do that is maintained by 2686 * user space. 2687 * 2688 * This should never impact any application or cause data loss, 2689 * however it might take some time. 2690 * 2691 * This is not a 100% solution for all memory, but tries to be 2692 * ``good enough'' for the majority of memory. 2693 */ 2694 int soft_offline_page(unsigned long pfn, int flags) 2695 { 2696 int ret; 2697 bool try_again = true; 2698 struct page *page; 2699 2700 if (!pfn_valid(pfn)) { 2701 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2702 return -ENXIO; 2703 } 2704 2705 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2706 page = pfn_to_online_page(pfn); 2707 if (!page) { 2708 put_ref_page(pfn, flags); 2709 return -EIO; 2710 } 2711 2712 mutex_lock(&mf_mutex); 2713 2714 if (PageHWPoison(page)) { 2715 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2716 put_ref_page(pfn, flags); 2717 mutex_unlock(&mf_mutex); 2718 return 0; 2719 } 2720 2721 retry: 2722 get_online_mems(); 2723 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2724 put_online_mems(); 2725 2726 if (hwpoison_filter(page)) { 2727 if (ret > 0) 2728 put_page(page); 2729 2730 mutex_unlock(&mf_mutex); 2731 return -EOPNOTSUPP; 2732 } 2733 2734 if (ret > 0) { 2735 ret = soft_offline_in_use_page(page); 2736 } else if (ret == 0) { 2737 if (!page_handle_poison(page, true, false) && try_again) { 2738 try_again = false; 2739 flags &= ~MF_COUNT_INCREASED; 2740 goto retry; 2741 } 2742 } 2743 2744 mutex_unlock(&mf_mutex); 2745 2746 return ret; 2747 } 2748