xref: /linux/mm/memory-failure.c (revision badbbcd76545c58eff64bb1548f7f834a30dc52a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/memremap.h>
60 #include <linux/kfifo.h>
61 #include <linux/ratelimit.h>
62 #include <linux/page-isolation.h>
63 #include <linux/pagewalk.h>
64 #include <linux/shmem_fs.h>
65 #include <linux/sysctl.h>
66 #include "swap.h"
67 #include "internal.h"
68 #include "ras/ras_event.h"
69 
70 static int sysctl_memory_failure_early_kill __read_mostly;
71 
72 static int sysctl_memory_failure_recovery __read_mostly = 1;
73 
74 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
75 
76 static bool hw_memory_failure __read_mostly = false;
77 
78 void num_poisoned_pages_inc(unsigned long pfn)
79 {
80 	atomic_long_inc(&num_poisoned_pages);
81 	memblk_nr_poison_inc(pfn);
82 }
83 
84 void num_poisoned_pages_sub(unsigned long pfn, long i)
85 {
86 	atomic_long_sub(i, &num_poisoned_pages);
87 	if (pfn != -1UL)
88 		memblk_nr_poison_sub(pfn, i);
89 }
90 
91 /**
92  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
93  * @_name: name of the file in the per NUMA sysfs directory.
94  */
95 #define MF_ATTR_RO(_name)					\
96 static ssize_t _name##_show(struct device *dev,			\
97 			    struct device_attribute *attr,	\
98 			    char *buf)				\
99 {								\
100 	struct memory_failure_stats *mf_stats =			\
101 		&NODE_DATA(dev->id)->mf_stats;			\
102 	return sprintf(buf, "%lu\n", mf_stats->_name);		\
103 }								\
104 static DEVICE_ATTR_RO(_name)
105 
106 MF_ATTR_RO(total);
107 MF_ATTR_RO(ignored);
108 MF_ATTR_RO(failed);
109 MF_ATTR_RO(delayed);
110 MF_ATTR_RO(recovered);
111 
112 static struct attribute *memory_failure_attr[] = {
113 	&dev_attr_total.attr,
114 	&dev_attr_ignored.attr,
115 	&dev_attr_failed.attr,
116 	&dev_attr_delayed.attr,
117 	&dev_attr_recovered.attr,
118 	NULL,
119 };
120 
121 const struct attribute_group memory_failure_attr_group = {
122 	.name = "memory_failure",
123 	.attrs = memory_failure_attr,
124 };
125 
126 static struct ctl_table memory_failure_table[] = {
127 	{
128 		.procname	= "memory_failure_early_kill",
129 		.data		= &sysctl_memory_failure_early_kill,
130 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
131 		.mode		= 0644,
132 		.proc_handler	= proc_dointvec_minmax,
133 		.extra1		= SYSCTL_ZERO,
134 		.extra2		= SYSCTL_ONE,
135 	},
136 	{
137 		.procname	= "memory_failure_recovery",
138 		.data		= &sysctl_memory_failure_recovery,
139 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
140 		.mode		= 0644,
141 		.proc_handler	= proc_dointvec_minmax,
142 		.extra1		= SYSCTL_ZERO,
143 		.extra2		= SYSCTL_ONE,
144 	},
145 	{ }
146 };
147 
148 /*
149  * Return values:
150  *   1:   the page is dissolved (if needed) and taken off from buddy,
151  *   0:   the page is dissolved (if needed) and not taken off from buddy,
152  *   < 0: failed to dissolve.
153  */
154 static int __page_handle_poison(struct page *page)
155 {
156 	int ret;
157 
158 	zone_pcp_disable(page_zone(page));
159 	ret = dissolve_free_huge_page(page);
160 	if (!ret)
161 		ret = take_page_off_buddy(page);
162 	zone_pcp_enable(page_zone(page));
163 
164 	return ret;
165 }
166 
167 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
168 {
169 	if (hugepage_or_freepage) {
170 		/*
171 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
172 		 * returns 0 for non-hugetlb pages as well.
173 		 */
174 		if (__page_handle_poison(page) <= 0)
175 			/*
176 			 * We could fail to take off the target page from buddy
177 			 * for example due to racy page allocation, but that's
178 			 * acceptable because soft-offlined page is not broken
179 			 * and if someone really want to use it, they should
180 			 * take it.
181 			 */
182 			return false;
183 	}
184 
185 	SetPageHWPoison(page);
186 	if (release)
187 		put_page(page);
188 	page_ref_inc(page);
189 	num_poisoned_pages_inc(page_to_pfn(page));
190 
191 	return true;
192 }
193 
194 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
195 
196 u32 hwpoison_filter_enable = 0;
197 u32 hwpoison_filter_dev_major = ~0U;
198 u32 hwpoison_filter_dev_minor = ~0U;
199 u64 hwpoison_filter_flags_mask;
200 u64 hwpoison_filter_flags_value;
201 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
202 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
203 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
204 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
205 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
206 
207 static int hwpoison_filter_dev(struct page *p)
208 {
209 	struct address_space *mapping;
210 	dev_t dev;
211 
212 	if (hwpoison_filter_dev_major == ~0U &&
213 	    hwpoison_filter_dev_minor == ~0U)
214 		return 0;
215 
216 	mapping = page_mapping(p);
217 	if (mapping == NULL || mapping->host == NULL)
218 		return -EINVAL;
219 
220 	dev = mapping->host->i_sb->s_dev;
221 	if (hwpoison_filter_dev_major != ~0U &&
222 	    hwpoison_filter_dev_major != MAJOR(dev))
223 		return -EINVAL;
224 	if (hwpoison_filter_dev_minor != ~0U &&
225 	    hwpoison_filter_dev_minor != MINOR(dev))
226 		return -EINVAL;
227 
228 	return 0;
229 }
230 
231 static int hwpoison_filter_flags(struct page *p)
232 {
233 	if (!hwpoison_filter_flags_mask)
234 		return 0;
235 
236 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
237 				    hwpoison_filter_flags_value)
238 		return 0;
239 	else
240 		return -EINVAL;
241 }
242 
243 /*
244  * This allows stress tests to limit test scope to a collection of tasks
245  * by putting them under some memcg. This prevents killing unrelated/important
246  * processes such as /sbin/init. Note that the target task may share clean
247  * pages with init (eg. libc text), which is harmless. If the target task
248  * share _dirty_ pages with another task B, the test scheme must make sure B
249  * is also included in the memcg. At last, due to race conditions this filter
250  * can only guarantee that the page either belongs to the memcg tasks, or is
251  * a freed page.
252  */
253 #ifdef CONFIG_MEMCG
254 u64 hwpoison_filter_memcg;
255 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
256 static int hwpoison_filter_task(struct page *p)
257 {
258 	if (!hwpoison_filter_memcg)
259 		return 0;
260 
261 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
262 		return -EINVAL;
263 
264 	return 0;
265 }
266 #else
267 static int hwpoison_filter_task(struct page *p) { return 0; }
268 #endif
269 
270 int hwpoison_filter(struct page *p)
271 {
272 	if (!hwpoison_filter_enable)
273 		return 0;
274 
275 	if (hwpoison_filter_dev(p))
276 		return -EINVAL;
277 
278 	if (hwpoison_filter_flags(p))
279 		return -EINVAL;
280 
281 	if (hwpoison_filter_task(p))
282 		return -EINVAL;
283 
284 	return 0;
285 }
286 #else
287 int hwpoison_filter(struct page *p)
288 {
289 	return 0;
290 }
291 #endif
292 
293 EXPORT_SYMBOL_GPL(hwpoison_filter);
294 
295 /*
296  * Kill all processes that have a poisoned page mapped and then isolate
297  * the page.
298  *
299  * General strategy:
300  * Find all processes having the page mapped and kill them.
301  * But we keep a page reference around so that the page is not
302  * actually freed yet.
303  * Then stash the page away
304  *
305  * There's no convenient way to get back to mapped processes
306  * from the VMAs. So do a brute-force search over all
307  * running processes.
308  *
309  * Remember that machine checks are not common (or rather
310  * if they are common you have other problems), so this shouldn't
311  * be a performance issue.
312  *
313  * Also there are some races possible while we get from the
314  * error detection to actually handle it.
315  */
316 
317 struct to_kill {
318 	struct list_head nd;
319 	struct task_struct *tsk;
320 	unsigned long addr;
321 	short size_shift;
322 };
323 
324 /*
325  * Send all the processes who have the page mapped a signal.
326  * ``action optional'' if they are not immediately affected by the error
327  * ``action required'' if error happened in current execution context
328  */
329 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
330 {
331 	struct task_struct *t = tk->tsk;
332 	short addr_lsb = tk->size_shift;
333 	int ret = 0;
334 
335 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
336 			pfn, t->comm, t->pid);
337 
338 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
339 		ret = force_sig_mceerr(BUS_MCEERR_AR,
340 				 (void __user *)tk->addr, addr_lsb);
341 	else
342 		/*
343 		 * Signal other processes sharing the page if they have
344 		 * PF_MCE_EARLY set.
345 		 * Don't use force here, it's convenient if the signal
346 		 * can be temporarily blocked.
347 		 * This could cause a loop when the user sets SIGBUS
348 		 * to SIG_IGN, but hopefully no one will do that?
349 		 */
350 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
351 				      addr_lsb, t);
352 	if (ret < 0)
353 		pr_info("Error sending signal to %s:%d: %d\n",
354 			t->comm, t->pid, ret);
355 	return ret;
356 }
357 
358 /*
359  * Unknown page type encountered. Try to check whether it can turn PageLRU by
360  * lru_add_drain_all.
361  */
362 void shake_page(struct page *p)
363 {
364 	if (PageHuge(p))
365 		return;
366 	/*
367 	 * TODO: Could shrink slab caches here if a lightweight range-based
368 	 * shrinker will be available.
369 	 */
370 	if (PageSlab(p))
371 		return;
372 
373 	lru_add_drain_all();
374 }
375 EXPORT_SYMBOL_GPL(shake_page);
376 
377 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
378 		unsigned long address)
379 {
380 	unsigned long ret = 0;
381 	pgd_t *pgd;
382 	p4d_t *p4d;
383 	pud_t *pud;
384 	pmd_t *pmd;
385 	pte_t *pte;
386 	pte_t ptent;
387 
388 	VM_BUG_ON_VMA(address == -EFAULT, vma);
389 	pgd = pgd_offset(vma->vm_mm, address);
390 	if (!pgd_present(*pgd))
391 		return 0;
392 	p4d = p4d_offset(pgd, address);
393 	if (!p4d_present(*p4d))
394 		return 0;
395 	pud = pud_offset(p4d, address);
396 	if (!pud_present(*pud))
397 		return 0;
398 	if (pud_devmap(*pud))
399 		return PUD_SHIFT;
400 	pmd = pmd_offset(pud, address);
401 	if (!pmd_present(*pmd))
402 		return 0;
403 	if (pmd_devmap(*pmd))
404 		return PMD_SHIFT;
405 	pte = pte_offset_map(pmd, address);
406 	if (!pte)
407 		return 0;
408 	ptent = ptep_get(pte);
409 	if (pte_present(ptent) && pte_devmap(ptent))
410 		ret = PAGE_SHIFT;
411 	pte_unmap(pte);
412 	return ret;
413 }
414 
415 /*
416  * Failure handling: if we can't find or can't kill a process there's
417  * not much we can do.	We just print a message and ignore otherwise.
418  */
419 
420 #define FSDAX_INVALID_PGOFF ULONG_MAX
421 
422 /*
423  * Schedule a process for later kill.
424  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
425  *
426  * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
427  * filesystem with a memory failure handler has claimed the
428  * memory_failure event. In all other cases, page->index and
429  * page->mapping are sufficient for mapping the page back to its
430  * corresponding user virtual address.
431  */
432 static void __add_to_kill(struct task_struct *tsk, struct page *p,
433 			  struct vm_area_struct *vma, struct list_head *to_kill,
434 			  unsigned long ksm_addr, pgoff_t fsdax_pgoff)
435 {
436 	struct to_kill *tk;
437 
438 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
439 	if (!tk) {
440 		pr_err("Out of memory while machine check handling\n");
441 		return;
442 	}
443 
444 	tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
445 	if (is_zone_device_page(p)) {
446 		if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
447 			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
448 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
449 	} else
450 		tk->size_shift = page_shift(compound_head(p));
451 
452 	/*
453 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
454 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
455 	 * so "tk->size_shift == 0" effectively checks no mapping on
456 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
457 	 * to a process' address space, it's possible not all N VMAs
458 	 * contain mappings for the page, but at least one VMA does.
459 	 * Only deliver SIGBUS with payload derived from the VMA that
460 	 * has a mapping for the page.
461 	 */
462 	if (tk->addr == -EFAULT) {
463 		pr_info("Unable to find user space address %lx in %s\n",
464 			page_to_pfn(p), tsk->comm);
465 	} else if (tk->size_shift == 0) {
466 		kfree(tk);
467 		return;
468 	}
469 
470 	get_task_struct(tsk);
471 	tk->tsk = tsk;
472 	list_add_tail(&tk->nd, to_kill);
473 }
474 
475 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
476 				  struct vm_area_struct *vma,
477 				  struct list_head *to_kill)
478 {
479 	__add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
480 }
481 
482 #ifdef CONFIG_KSM
483 static bool task_in_to_kill_list(struct list_head *to_kill,
484 				 struct task_struct *tsk)
485 {
486 	struct to_kill *tk, *next;
487 
488 	list_for_each_entry_safe(tk, next, to_kill, nd) {
489 		if (tk->tsk == tsk)
490 			return true;
491 	}
492 
493 	return false;
494 }
495 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
496 		     struct vm_area_struct *vma, struct list_head *to_kill,
497 		     unsigned long ksm_addr)
498 {
499 	if (!task_in_to_kill_list(to_kill, tsk))
500 		__add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
501 }
502 #endif
503 /*
504  * Kill the processes that have been collected earlier.
505  *
506  * Only do anything when FORCEKILL is set, otherwise just free the
507  * list (this is used for clean pages which do not need killing)
508  * Also when FAIL is set do a force kill because something went
509  * wrong earlier.
510  */
511 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
512 		unsigned long pfn, int flags)
513 {
514 	struct to_kill *tk, *next;
515 
516 	list_for_each_entry_safe(tk, next, to_kill, nd) {
517 		if (forcekill) {
518 			/*
519 			 * In case something went wrong with munmapping
520 			 * make sure the process doesn't catch the
521 			 * signal and then access the memory. Just kill it.
522 			 */
523 			if (fail || tk->addr == -EFAULT) {
524 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
525 				       pfn, tk->tsk->comm, tk->tsk->pid);
526 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
527 						 tk->tsk, PIDTYPE_PID);
528 			}
529 
530 			/*
531 			 * In theory the process could have mapped
532 			 * something else on the address in-between. We could
533 			 * check for that, but we need to tell the
534 			 * process anyways.
535 			 */
536 			else if (kill_proc(tk, pfn, flags) < 0)
537 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
538 				       pfn, tk->tsk->comm, tk->tsk->pid);
539 		}
540 		list_del(&tk->nd);
541 		put_task_struct(tk->tsk);
542 		kfree(tk);
543 	}
544 }
545 
546 /*
547  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
548  * on behalf of the thread group. Return task_struct of the (first found)
549  * dedicated thread if found, and return NULL otherwise.
550  *
551  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
552  * have to call rcu_read_lock/unlock() in this function.
553  */
554 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
555 {
556 	struct task_struct *t;
557 
558 	for_each_thread(tsk, t) {
559 		if (t->flags & PF_MCE_PROCESS) {
560 			if (t->flags & PF_MCE_EARLY)
561 				return t;
562 		} else {
563 			if (sysctl_memory_failure_early_kill)
564 				return t;
565 		}
566 	}
567 	return NULL;
568 }
569 
570 /*
571  * Determine whether a given process is "early kill" process which expects
572  * to be signaled when some page under the process is hwpoisoned.
573  * Return task_struct of the dedicated thread (main thread unless explicitly
574  * specified) if the process is "early kill" and otherwise returns NULL.
575  *
576  * Note that the above is true for Action Optional case. For Action Required
577  * case, it's only meaningful to the current thread which need to be signaled
578  * with SIGBUS, this error is Action Optional for other non current
579  * processes sharing the same error page,if the process is "early kill", the
580  * task_struct of the dedicated thread will also be returned.
581  */
582 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
583 {
584 	if (!tsk->mm)
585 		return NULL;
586 	/*
587 	 * Comparing ->mm here because current task might represent
588 	 * a subthread, while tsk always points to the main thread.
589 	 */
590 	if (force_early && tsk->mm == current->mm)
591 		return current;
592 
593 	return find_early_kill_thread(tsk);
594 }
595 
596 /*
597  * Collect processes when the error hit an anonymous page.
598  */
599 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
600 				int force_early)
601 {
602 	struct folio *folio = page_folio(page);
603 	struct vm_area_struct *vma;
604 	struct task_struct *tsk;
605 	struct anon_vma *av;
606 	pgoff_t pgoff;
607 
608 	av = folio_lock_anon_vma_read(folio, NULL);
609 	if (av == NULL)	/* Not actually mapped anymore */
610 		return;
611 
612 	pgoff = page_to_pgoff(page);
613 	read_lock(&tasklist_lock);
614 	for_each_process (tsk) {
615 		struct anon_vma_chain *vmac;
616 		struct task_struct *t = task_early_kill(tsk, force_early);
617 
618 		if (!t)
619 			continue;
620 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
621 					       pgoff, pgoff) {
622 			vma = vmac->vma;
623 			if (vma->vm_mm != t->mm)
624 				continue;
625 			if (!page_mapped_in_vma(page, vma))
626 				continue;
627 			add_to_kill_anon_file(t, page, vma, to_kill);
628 		}
629 	}
630 	read_unlock(&tasklist_lock);
631 	anon_vma_unlock_read(av);
632 }
633 
634 /*
635  * Collect processes when the error hit a file mapped page.
636  */
637 static void collect_procs_file(struct page *page, struct list_head *to_kill,
638 				int force_early)
639 {
640 	struct vm_area_struct *vma;
641 	struct task_struct *tsk;
642 	struct address_space *mapping = page->mapping;
643 	pgoff_t pgoff;
644 
645 	i_mmap_lock_read(mapping);
646 	read_lock(&tasklist_lock);
647 	pgoff = page_to_pgoff(page);
648 	for_each_process(tsk) {
649 		struct task_struct *t = task_early_kill(tsk, force_early);
650 
651 		if (!t)
652 			continue;
653 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
654 				      pgoff) {
655 			/*
656 			 * Send early kill signal to tasks where a vma covers
657 			 * the page but the corrupted page is not necessarily
658 			 * mapped it in its pte.
659 			 * Assume applications who requested early kill want
660 			 * to be informed of all such data corruptions.
661 			 */
662 			if (vma->vm_mm == t->mm)
663 				add_to_kill_anon_file(t, page, vma, to_kill);
664 		}
665 	}
666 	read_unlock(&tasklist_lock);
667 	i_mmap_unlock_read(mapping);
668 }
669 
670 #ifdef CONFIG_FS_DAX
671 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
672 			      struct vm_area_struct *vma,
673 			      struct list_head *to_kill, pgoff_t pgoff)
674 {
675 	__add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
676 }
677 
678 /*
679  * Collect processes when the error hit a fsdax page.
680  */
681 static void collect_procs_fsdax(struct page *page,
682 		struct address_space *mapping, pgoff_t pgoff,
683 		struct list_head *to_kill)
684 {
685 	struct vm_area_struct *vma;
686 	struct task_struct *tsk;
687 
688 	i_mmap_lock_read(mapping);
689 	read_lock(&tasklist_lock);
690 	for_each_process(tsk) {
691 		struct task_struct *t = task_early_kill(tsk, true);
692 
693 		if (!t)
694 			continue;
695 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
696 			if (vma->vm_mm == t->mm)
697 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
698 		}
699 	}
700 	read_unlock(&tasklist_lock);
701 	i_mmap_unlock_read(mapping);
702 }
703 #endif /* CONFIG_FS_DAX */
704 
705 /*
706  * Collect the processes who have the corrupted page mapped to kill.
707  */
708 static void collect_procs(struct page *page, struct list_head *tokill,
709 				int force_early)
710 {
711 	if (!page->mapping)
712 		return;
713 	if (unlikely(PageKsm(page)))
714 		collect_procs_ksm(page, tokill, force_early);
715 	else if (PageAnon(page))
716 		collect_procs_anon(page, tokill, force_early);
717 	else
718 		collect_procs_file(page, tokill, force_early);
719 }
720 
721 struct hwp_walk {
722 	struct to_kill tk;
723 	unsigned long pfn;
724 	int flags;
725 };
726 
727 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
728 {
729 	tk->addr = addr;
730 	tk->size_shift = shift;
731 }
732 
733 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
734 				unsigned long poisoned_pfn, struct to_kill *tk)
735 {
736 	unsigned long pfn = 0;
737 
738 	if (pte_present(pte)) {
739 		pfn = pte_pfn(pte);
740 	} else {
741 		swp_entry_t swp = pte_to_swp_entry(pte);
742 
743 		if (is_hwpoison_entry(swp))
744 			pfn = swp_offset_pfn(swp);
745 	}
746 
747 	if (!pfn || pfn != poisoned_pfn)
748 		return 0;
749 
750 	set_to_kill(tk, addr, shift);
751 	return 1;
752 }
753 
754 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
755 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
756 				      struct hwp_walk *hwp)
757 {
758 	pmd_t pmd = *pmdp;
759 	unsigned long pfn;
760 	unsigned long hwpoison_vaddr;
761 
762 	if (!pmd_present(pmd))
763 		return 0;
764 	pfn = pmd_pfn(pmd);
765 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
766 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
767 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
768 		return 1;
769 	}
770 	return 0;
771 }
772 #else
773 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
774 				      struct hwp_walk *hwp)
775 {
776 	return 0;
777 }
778 #endif
779 
780 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
781 			      unsigned long end, struct mm_walk *walk)
782 {
783 	struct hwp_walk *hwp = walk->private;
784 	int ret = 0;
785 	pte_t *ptep, *mapped_pte;
786 	spinlock_t *ptl;
787 
788 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
789 	if (ptl) {
790 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
791 		spin_unlock(ptl);
792 		goto out;
793 	}
794 
795 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
796 						addr, &ptl);
797 	if (!ptep)
798 		goto out;
799 
800 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
801 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
802 					     hwp->pfn, &hwp->tk);
803 		if (ret == 1)
804 			break;
805 	}
806 	pte_unmap_unlock(mapped_pte, ptl);
807 out:
808 	cond_resched();
809 	return ret;
810 }
811 
812 #ifdef CONFIG_HUGETLB_PAGE
813 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
814 			    unsigned long addr, unsigned long end,
815 			    struct mm_walk *walk)
816 {
817 	struct hwp_walk *hwp = walk->private;
818 	pte_t pte = huge_ptep_get(ptep);
819 	struct hstate *h = hstate_vma(walk->vma);
820 
821 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
822 				      hwp->pfn, &hwp->tk);
823 }
824 #else
825 #define hwpoison_hugetlb_range	NULL
826 #endif
827 
828 static const struct mm_walk_ops hwp_walk_ops = {
829 	.pmd_entry = hwpoison_pte_range,
830 	.hugetlb_entry = hwpoison_hugetlb_range,
831 };
832 
833 /*
834  * Sends SIGBUS to the current process with error info.
835  *
836  * This function is intended to handle "Action Required" MCEs on already
837  * hardware poisoned pages. They could happen, for example, when
838  * memory_failure() failed to unmap the error page at the first call, or
839  * when multiple local machine checks happened on different CPUs.
840  *
841  * MCE handler currently has no easy access to the error virtual address,
842  * so this function walks page table to find it. The returned virtual address
843  * is proper in most cases, but it could be wrong when the application
844  * process has multiple entries mapping the error page.
845  */
846 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
847 				  int flags)
848 {
849 	int ret;
850 	struct hwp_walk priv = {
851 		.pfn = pfn,
852 	};
853 	priv.tk.tsk = p;
854 
855 	if (!p->mm)
856 		return -EFAULT;
857 
858 	mmap_read_lock(p->mm);
859 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
860 			      (void *)&priv);
861 	if (ret == 1 && priv.tk.addr)
862 		kill_proc(&priv.tk, pfn, flags);
863 	else
864 		ret = 0;
865 	mmap_read_unlock(p->mm);
866 	return ret > 0 ? -EHWPOISON : -EFAULT;
867 }
868 
869 static const char *action_name[] = {
870 	[MF_IGNORED] = "Ignored",
871 	[MF_FAILED] = "Failed",
872 	[MF_DELAYED] = "Delayed",
873 	[MF_RECOVERED] = "Recovered",
874 };
875 
876 static const char * const action_page_types[] = {
877 	[MF_MSG_KERNEL]			= "reserved kernel page",
878 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
879 	[MF_MSG_SLAB]			= "kernel slab page",
880 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
881 	[MF_MSG_HUGE]			= "huge page",
882 	[MF_MSG_FREE_HUGE]		= "free huge page",
883 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
884 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
885 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
886 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
887 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
888 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
889 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
890 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
891 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
892 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
893 	[MF_MSG_BUDDY]			= "free buddy page",
894 	[MF_MSG_DAX]			= "dax page",
895 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
896 	[MF_MSG_UNKNOWN]		= "unknown page",
897 };
898 
899 /*
900  * XXX: It is possible that a page is isolated from LRU cache,
901  * and then kept in swap cache or failed to remove from page cache.
902  * The page count will stop it from being freed by unpoison.
903  * Stress tests should be aware of this memory leak problem.
904  */
905 static int delete_from_lru_cache(struct page *p)
906 {
907 	if (isolate_lru_page(p)) {
908 		/*
909 		 * Clear sensible page flags, so that the buddy system won't
910 		 * complain when the page is unpoison-and-freed.
911 		 */
912 		ClearPageActive(p);
913 		ClearPageUnevictable(p);
914 
915 		/*
916 		 * Poisoned page might never drop its ref count to 0 so we have
917 		 * to uncharge it manually from its memcg.
918 		 */
919 		mem_cgroup_uncharge(page_folio(p));
920 
921 		/*
922 		 * drop the page count elevated by isolate_lru_page()
923 		 */
924 		put_page(p);
925 		return 0;
926 	}
927 	return -EIO;
928 }
929 
930 static int truncate_error_page(struct page *p, unsigned long pfn,
931 				struct address_space *mapping)
932 {
933 	int ret = MF_FAILED;
934 
935 	if (mapping->a_ops->error_remove_page) {
936 		struct folio *folio = page_folio(p);
937 		int err = mapping->a_ops->error_remove_page(mapping, p);
938 
939 		if (err != 0) {
940 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
941 		} else if (folio_has_private(folio) &&
942 			   !filemap_release_folio(folio, GFP_NOIO)) {
943 			pr_info("%#lx: failed to release buffers\n", pfn);
944 		} else {
945 			ret = MF_RECOVERED;
946 		}
947 	} else {
948 		/*
949 		 * If the file system doesn't support it just invalidate
950 		 * This fails on dirty or anything with private pages
951 		 */
952 		if (invalidate_inode_page(p))
953 			ret = MF_RECOVERED;
954 		else
955 			pr_info("%#lx: Failed to invalidate\n",	pfn);
956 	}
957 
958 	return ret;
959 }
960 
961 struct page_state {
962 	unsigned long mask;
963 	unsigned long res;
964 	enum mf_action_page_type type;
965 
966 	/* Callback ->action() has to unlock the relevant page inside it. */
967 	int (*action)(struct page_state *ps, struct page *p);
968 };
969 
970 /*
971  * Return true if page is still referenced by others, otherwise return
972  * false.
973  *
974  * The extra_pins is true when one extra refcount is expected.
975  */
976 static bool has_extra_refcount(struct page_state *ps, struct page *p,
977 			       bool extra_pins)
978 {
979 	int count = page_count(p) - 1;
980 
981 	if (extra_pins)
982 		count -= 1;
983 
984 	if (count > 0) {
985 		pr_err("%#lx: %s still referenced by %d users\n",
986 		       page_to_pfn(p), action_page_types[ps->type], count);
987 		return true;
988 	}
989 
990 	return false;
991 }
992 
993 /*
994  * Error hit kernel page.
995  * Do nothing, try to be lucky and not touch this instead. For a few cases we
996  * could be more sophisticated.
997  */
998 static int me_kernel(struct page_state *ps, struct page *p)
999 {
1000 	unlock_page(p);
1001 	return MF_IGNORED;
1002 }
1003 
1004 /*
1005  * Page in unknown state. Do nothing.
1006  */
1007 static int me_unknown(struct page_state *ps, struct page *p)
1008 {
1009 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1010 	unlock_page(p);
1011 	return MF_FAILED;
1012 }
1013 
1014 /*
1015  * Clean (or cleaned) page cache page.
1016  */
1017 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1018 {
1019 	int ret;
1020 	struct address_space *mapping;
1021 	bool extra_pins;
1022 
1023 	delete_from_lru_cache(p);
1024 
1025 	/*
1026 	 * For anonymous pages we're done the only reference left
1027 	 * should be the one m_f() holds.
1028 	 */
1029 	if (PageAnon(p)) {
1030 		ret = MF_RECOVERED;
1031 		goto out;
1032 	}
1033 
1034 	/*
1035 	 * Now truncate the page in the page cache. This is really
1036 	 * more like a "temporary hole punch"
1037 	 * Don't do this for block devices when someone else
1038 	 * has a reference, because it could be file system metadata
1039 	 * and that's not safe to truncate.
1040 	 */
1041 	mapping = page_mapping(p);
1042 	if (!mapping) {
1043 		/*
1044 		 * Page has been teared down in the meanwhile
1045 		 */
1046 		ret = MF_FAILED;
1047 		goto out;
1048 	}
1049 
1050 	/*
1051 	 * The shmem page is kept in page cache instead of truncating
1052 	 * so is expected to have an extra refcount after error-handling.
1053 	 */
1054 	extra_pins = shmem_mapping(mapping);
1055 
1056 	/*
1057 	 * Truncation is a bit tricky. Enable it per file system for now.
1058 	 *
1059 	 * Open: to take i_rwsem or not for this? Right now we don't.
1060 	 */
1061 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
1062 	if (has_extra_refcount(ps, p, extra_pins))
1063 		ret = MF_FAILED;
1064 
1065 out:
1066 	unlock_page(p);
1067 
1068 	return ret;
1069 }
1070 
1071 /*
1072  * Dirty pagecache page
1073  * Issues: when the error hit a hole page the error is not properly
1074  * propagated.
1075  */
1076 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1077 {
1078 	struct address_space *mapping = page_mapping(p);
1079 
1080 	SetPageError(p);
1081 	/* TBD: print more information about the file. */
1082 	if (mapping) {
1083 		/*
1084 		 * IO error will be reported by write(), fsync(), etc.
1085 		 * who check the mapping.
1086 		 * This way the application knows that something went
1087 		 * wrong with its dirty file data.
1088 		 *
1089 		 * There's one open issue:
1090 		 *
1091 		 * The EIO will be only reported on the next IO
1092 		 * operation and then cleared through the IO map.
1093 		 * Normally Linux has two mechanisms to pass IO error
1094 		 * first through the AS_EIO flag in the address space
1095 		 * and then through the PageError flag in the page.
1096 		 * Since we drop pages on memory failure handling the
1097 		 * only mechanism open to use is through AS_AIO.
1098 		 *
1099 		 * This has the disadvantage that it gets cleared on
1100 		 * the first operation that returns an error, while
1101 		 * the PageError bit is more sticky and only cleared
1102 		 * when the page is reread or dropped.  If an
1103 		 * application assumes it will always get error on
1104 		 * fsync, but does other operations on the fd before
1105 		 * and the page is dropped between then the error
1106 		 * will not be properly reported.
1107 		 *
1108 		 * This can already happen even without hwpoisoned
1109 		 * pages: first on metadata IO errors (which only
1110 		 * report through AS_EIO) or when the page is dropped
1111 		 * at the wrong time.
1112 		 *
1113 		 * So right now we assume that the application DTRT on
1114 		 * the first EIO, but we're not worse than other parts
1115 		 * of the kernel.
1116 		 */
1117 		mapping_set_error(mapping, -EIO);
1118 	}
1119 
1120 	return me_pagecache_clean(ps, p);
1121 }
1122 
1123 /*
1124  * Clean and dirty swap cache.
1125  *
1126  * Dirty swap cache page is tricky to handle. The page could live both in page
1127  * cache and swap cache(ie. page is freshly swapped in). So it could be
1128  * referenced concurrently by 2 types of PTEs:
1129  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1130  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1131  * and then
1132  *      - clear dirty bit to prevent IO
1133  *      - remove from LRU
1134  *      - but keep in the swap cache, so that when we return to it on
1135  *        a later page fault, we know the application is accessing
1136  *        corrupted data and shall be killed (we installed simple
1137  *        interception code in do_swap_page to catch it).
1138  *
1139  * Clean swap cache pages can be directly isolated. A later page fault will
1140  * bring in the known good data from disk.
1141  */
1142 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1143 {
1144 	int ret;
1145 	bool extra_pins = false;
1146 
1147 	ClearPageDirty(p);
1148 	/* Trigger EIO in shmem: */
1149 	ClearPageUptodate(p);
1150 
1151 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1152 	unlock_page(p);
1153 
1154 	if (ret == MF_DELAYED)
1155 		extra_pins = true;
1156 
1157 	if (has_extra_refcount(ps, p, extra_pins))
1158 		ret = MF_FAILED;
1159 
1160 	return ret;
1161 }
1162 
1163 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1164 {
1165 	struct folio *folio = page_folio(p);
1166 	int ret;
1167 
1168 	delete_from_swap_cache(folio);
1169 
1170 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1171 	folio_unlock(folio);
1172 
1173 	if (has_extra_refcount(ps, p, false))
1174 		ret = MF_FAILED;
1175 
1176 	return ret;
1177 }
1178 
1179 /*
1180  * Huge pages. Needs work.
1181  * Issues:
1182  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1183  *   To narrow down kill region to one page, we need to break up pmd.
1184  */
1185 static int me_huge_page(struct page_state *ps, struct page *p)
1186 {
1187 	int res;
1188 	struct page *hpage = compound_head(p);
1189 	struct address_space *mapping;
1190 	bool extra_pins = false;
1191 
1192 	if (!PageHuge(hpage))
1193 		return MF_DELAYED;
1194 
1195 	mapping = page_mapping(hpage);
1196 	if (mapping) {
1197 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1198 		/* The page is kept in page cache. */
1199 		extra_pins = true;
1200 		unlock_page(hpage);
1201 	} else {
1202 		unlock_page(hpage);
1203 		/*
1204 		 * migration entry prevents later access on error hugepage,
1205 		 * so we can free and dissolve it into buddy to save healthy
1206 		 * subpages.
1207 		 */
1208 		put_page(hpage);
1209 		if (__page_handle_poison(p) >= 0) {
1210 			page_ref_inc(p);
1211 			res = MF_RECOVERED;
1212 		} else {
1213 			res = MF_FAILED;
1214 		}
1215 	}
1216 
1217 	if (has_extra_refcount(ps, p, extra_pins))
1218 		res = MF_FAILED;
1219 
1220 	return res;
1221 }
1222 
1223 /*
1224  * Various page states we can handle.
1225  *
1226  * A page state is defined by its current page->flags bits.
1227  * The table matches them in order and calls the right handler.
1228  *
1229  * This is quite tricky because we can access page at any time
1230  * in its live cycle, so all accesses have to be extremely careful.
1231  *
1232  * This is not complete. More states could be added.
1233  * For any missing state don't attempt recovery.
1234  */
1235 
1236 #define dirty		(1UL << PG_dirty)
1237 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1238 #define unevict		(1UL << PG_unevictable)
1239 #define mlock		(1UL << PG_mlocked)
1240 #define lru		(1UL << PG_lru)
1241 #define head		(1UL << PG_head)
1242 #define slab		(1UL << PG_slab)
1243 #define reserved	(1UL << PG_reserved)
1244 
1245 static struct page_state error_states[] = {
1246 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1247 	/*
1248 	 * free pages are specially detected outside this table:
1249 	 * PG_buddy pages only make a small fraction of all free pages.
1250 	 */
1251 
1252 	/*
1253 	 * Could in theory check if slab page is free or if we can drop
1254 	 * currently unused objects without touching them. But just
1255 	 * treat it as standard kernel for now.
1256 	 */
1257 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1258 
1259 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1260 
1261 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1262 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1263 
1264 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1265 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1266 
1267 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1268 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1269 
1270 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1271 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1272 
1273 	/*
1274 	 * Catchall entry: must be at end.
1275 	 */
1276 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1277 };
1278 
1279 #undef dirty
1280 #undef sc
1281 #undef unevict
1282 #undef mlock
1283 #undef lru
1284 #undef head
1285 #undef slab
1286 #undef reserved
1287 
1288 static void update_per_node_mf_stats(unsigned long pfn,
1289 				     enum mf_result result)
1290 {
1291 	int nid = MAX_NUMNODES;
1292 	struct memory_failure_stats *mf_stats = NULL;
1293 
1294 	nid = pfn_to_nid(pfn);
1295 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1296 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1297 		return;
1298 	}
1299 
1300 	mf_stats = &NODE_DATA(nid)->mf_stats;
1301 	switch (result) {
1302 	case MF_IGNORED:
1303 		++mf_stats->ignored;
1304 		break;
1305 	case MF_FAILED:
1306 		++mf_stats->failed;
1307 		break;
1308 	case MF_DELAYED:
1309 		++mf_stats->delayed;
1310 		break;
1311 	case MF_RECOVERED:
1312 		++mf_stats->recovered;
1313 		break;
1314 	default:
1315 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1316 		break;
1317 	}
1318 	++mf_stats->total;
1319 }
1320 
1321 /*
1322  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1323  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1324  */
1325 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1326 			 enum mf_result result)
1327 {
1328 	trace_memory_failure_event(pfn, type, result);
1329 
1330 	num_poisoned_pages_inc(pfn);
1331 
1332 	update_per_node_mf_stats(pfn, result);
1333 
1334 	pr_err("%#lx: recovery action for %s: %s\n",
1335 		pfn, action_page_types[type], action_name[result]);
1336 
1337 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1338 }
1339 
1340 static int page_action(struct page_state *ps, struct page *p,
1341 			unsigned long pfn)
1342 {
1343 	int result;
1344 
1345 	/* page p should be unlocked after returning from ps->action().  */
1346 	result = ps->action(ps, p);
1347 
1348 	/* Could do more checks here if page looks ok */
1349 	/*
1350 	 * Could adjust zone counters here to correct for the missing page.
1351 	 */
1352 
1353 	return action_result(pfn, ps->type, result);
1354 }
1355 
1356 static inline bool PageHWPoisonTakenOff(struct page *page)
1357 {
1358 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1359 }
1360 
1361 void SetPageHWPoisonTakenOff(struct page *page)
1362 {
1363 	set_page_private(page, MAGIC_HWPOISON);
1364 }
1365 
1366 void ClearPageHWPoisonTakenOff(struct page *page)
1367 {
1368 	if (PageHWPoison(page))
1369 		set_page_private(page, 0);
1370 }
1371 
1372 /*
1373  * Return true if a page type of a given page is supported by hwpoison
1374  * mechanism (while handling could fail), otherwise false.  This function
1375  * does not return true for hugetlb or device memory pages, so it's assumed
1376  * to be called only in the context where we never have such pages.
1377  */
1378 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1379 {
1380 	/* Soft offline could migrate non-LRU movable pages */
1381 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1382 		return true;
1383 
1384 	return PageLRU(page) || is_free_buddy_page(page);
1385 }
1386 
1387 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1388 {
1389 	struct folio *folio = page_folio(page);
1390 	int ret = 0;
1391 	bool hugetlb = false;
1392 
1393 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1394 	if (hugetlb)
1395 		return ret;
1396 
1397 	/*
1398 	 * This check prevents from calling folio_try_get() for any
1399 	 * unsupported type of folio in order to reduce the risk of unexpected
1400 	 * races caused by taking a folio refcount.
1401 	 */
1402 	if (!HWPoisonHandlable(&folio->page, flags))
1403 		return -EBUSY;
1404 
1405 	if (folio_try_get(folio)) {
1406 		if (folio == page_folio(page))
1407 			return 1;
1408 
1409 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1410 		folio_put(folio);
1411 	}
1412 
1413 	return 0;
1414 }
1415 
1416 static int get_any_page(struct page *p, unsigned long flags)
1417 {
1418 	int ret = 0, pass = 0;
1419 	bool count_increased = false;
1420 
1421 	if (flags & MF_COUNT_INCREASED)
1422 		count_increased = true;
1423 
1424 try_again:
1425 	if (!count_increased) {
1426 		ret = __get_hwpoison_page(p, flags);
1427 		if (!ret) {
1428 			if (page_count(p)) {
1429 				/* We raced with an allocation, retry. */
1430 				if (pass++ < 3)
1431 					goto try_again;
1432 				ret = -EBUSY;
1433 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1434 				/* We raced with put_page, retry. */
1435 				if (pass++ < 3)
1436 					goto try_again;
1437 				ret = -EIO;
1438 			}
1439 			goto out;
1440 		} else if (ret == -EBUSY) {
1441 			/*
1442 			 * We raced with (possibly temporary) unhandlable
1443 			 * page, retry.
1444 			 */
1445 			if (pass++ < 3) {
1446 				shake_page(p);
1447 				goto try_again;
1448 			}
1449 			ret = -EIO;
1450 			goto out;
1451 		}
1452 	}
1453 
1454 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1455 		ret = 1;
1456 	} else {
1457 		/*
1458 		 * A page we cannot handle. Check whether we can turn
1459 		 * it into something we can handle.
1460 		 */
1461 		if (pass++ < 3) {
1462 			put_page(p);
1463 			shake_page(p);
1464 			count_increased = false;
1465 			goto try_again;
1466 		}
1467 		put_page(p);
1468 		ret = -EIO;
1469 	}
1470 out:
1471 	if (ret == -EIO)
1472 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1473 
1474 	return ret;
1475 }
1476 
1477 static int __get_unpoison_page(struct page *page)
1478 {
1479 	struct folio *folio = page_folio(page);
1480 	int ret = 0;
1481 	bool hugetlb = false;
1482 
1483 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1484 	if (hugetlb)
1485 		return ret;
1486 
1487 	/*
1488 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1489 	 * but also isolated from buddy freelist, so need to identify the
1490 	 * state and have to cancel both operations to unpoison.
1491 	 */
1492 	if (PageHWPoisonTakenOff(page))
1493 		return -EHWPOISON;
1494 
1495 	return get_page_unless_zero(page) ? 1 : 0;
1496 }
1497 
1498 /**
1499  * get_hwpoison_page() - Get refcount for memory error handling
1500  * @p:		Raw error page (hit by memory error)
1501  * @flags:	Flags controlling behavior of error handling
1502  *
1503  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1504  * error on it, after checking that the error page is in a well-defined state
1505  * (defined as a page-type we can successfully handle the memory error on it,
1506  * such as LRU page and hugetlb page).
1507  *
1508  * Memory error handling could be triggered at any time on any type of page,
1509  * so it's prone to race with typical memory management lifecycle (like
1510  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1511  * extra care for the error page's state (as done in __get_hwpoison_page()),
1512  * and has some retry logic in get_any_page().
1513  *
1514  * When called from unpoison_memory(), the caller should already ensure that
1515  * the given page has PG_hwpoison. So it's never reused for other page
1516  * allocations, and __get_unpoison_page() never races with them.
1517  *
1518  * Return: 0 on failure,
1519  *         1 on success for in-use pages in a well-defined state,
1520  *         -EIO for pages on which we can not handle memory errors,
1521  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1522  *         operations like allocation and free,
1523  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1524  */
1525 static int get_hwpoison_page(struct page *p, unsigned long flags)
1526 {
1527 	int ret;
1528 
1529 	zone_pcp_disable(page_zone(p));
1530 	if (flags & MF_UNPOISON)
1531 		ret = __get_unpoison_page(p);
1532 	else
1533 		ret = get_any_page(p, flags);
1534 	zone_pcp_enable(page_zone(p));
1535 
1536 	return ret;
1537 }
1538 
1539 /*
1540  * Do all that is necessary to remove user space mappings. Unmap
1541  * the pages and send SIGBUS to the processes if the data was dirty.
1542  */
1543 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1544 				  int flags, struct page *hpage)
1545 {
1546 	struct folio *folio = page_folio(hpage);
1547 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1548 	struct address_space *mapping;
1549 	LIST_HEAD(tokill);
1550 	bool unmap_success;
1551 	int forcekill;
1552 	bool mlocked = PageMlocked(hpage);
1553 
1554 	/*
1555 	 * Here we are interested only in user-mapped pages, so skip any
1556 	 * other types of pages.
1557 	 */
1558 	if (PageReserved(p) || PageSlab(p) || PageTable(p))
1559 		return true;
1560 	if (!(PageLRU(hpage) || PageHuge(p)))
1561 		return true;
1562 
1563 	/*
1564 	 * This check implies we don't kill processes if their pages
1565 	 * are in the swap cache early. Those are always late kills.
1566 	 */
1567 	if (!page_mapped(hpage))
1568 		return true;
1569 
1570 	if (PageSwapCache(p)) {
1571 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1572 		ttu &= ~TTU_HWPOISON;
1573 	}
1574 
1575 	/*
1576 	 * Propagate the dirty bit from PTEs to struct page first, because we
1577 	 * need this to decide if we should kill or just drop the page.
1578 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1579 	 * be called inside page lock (it's recommended but not enforced).
1580 	 */
1581 	mapping = page_mapping(hpage);
1582 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1583 	    mapping_can_writeback(mapping)) {
1584 		if (page_mkclean(hpage)) {
1585 			SetPageDirty(hpage);
1586 		} else {
1587 			ttu &= ~TTU_HWPOISON;
1588 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1589 				pfn);
1590 		}
1591 	}
1592 
1593 	/*
1594 	 * First collect all the processes that have the page
1595 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1596 	 * because ttu takes the rmap data structures down.
1597 	 */
1598 	collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1599 
1600 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1601 		/*
1602 		 * For hugetlb pages in shared mappings, try_to_unmap
1603 		 * could potentially call huge_pmd_unshare.  Because of
1604 		 * this, take semaphore in write mode here and set
1605 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1606 		 * at this higher level.
1607 		 */
1608 		mapping = hugetlb_page_mapping_lock_write(hpage);
1609 		if (mapping) {
1610 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1611 			i_mmap_unlock_write(mapping);
1612 		} else
1613 			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1614 	} else {
1615 		try_to_unmap(folio, ttu);
1616 	}
1617 
1618 	unmap_success = !page_mapped(hpage);
1619 	if (!unmap_success)
1620 		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1621 		       pfn, page_mapcount(hpage));
1622 
1623 	/*
1624 	 * try_to_unmap() might put mlocked page in lru cache, so call
1625 	 * shake_page() again to ensure that it's flushed.
1626 	 */
1627 	if (mlocked)
1628 		shake_page(hpage);
1629 
1630 	/*
1631 	 * Now that the dirty bit has been propagated to the
1632 	 * struct page and all unmaps done we can decide if
1633 	 * killing is needed or not.  Only kill when the page
1634 	 * was dirty or the process is not restartable,
1635 	 * otherwise the tokill list is merely
1636 	 * freed.  When there was a problem unmapping earlier
1637 	 * use a more force-full uncatchable kill to prevent
1638 	 * any accesses to the poisoned memory.
1639 	 */
1640 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1641 		    !unmap_success;
1642 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1643 
1644 	return unmap_success;
1645 }
1646 
1647 static int identify_page_state(unsigned long pfn, struct page *p,
1648 				unsigned long page_flags)
1649 {
1650 	struct page_state *ps;
1651 
1652 	/*
1653 	 * The first check uses the current page flags which may not have any
1654 	 * relevant information. The second check with the saved page flags is
1655 	 * carried out only if the first check can't determine the page status.
1656 	 */
1657 	for (ps = error_states;; ps++)
1658 		if ((p->flags & ps->mask) == ps->res)
1659 			break;
1660 
1661 	page_flags |= (p->flags & (1UL << PG_dirty));
1662 
1663 	if (!ps->mask)
1664 		for (ps = error_states;; ps++)
1665 			if ((page_flags & ps->mask) == ps->res)
1666 				break;
1667 	return page_action(ps, p, pfn);
1668 }
1669 
1670 static int try_to_split_thp_page(struct page *page)
1671 {
1672 	int ret;
1673 
1674 	lock_page(page);
1675 	ret = split_huge_page(page);
1676 	unlock_page(page);
1677 
1678 	if (unlikely(ret))
1679 		put_page(page);
1680 
1681 	return ret;
1682 }
1683 
1684 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1685 		struct address_space *mapping, pgoff_t index, int flags)
1686 {
1687 	struct to_kill *tk;
1688 	unsigned long size = 0;
1689 
1690 	list_for_each_entry(tk, to_kill, nd)
1691 		if (tk->size_shift)
1692 			size = max(size, 1UL << tk->size_shift);
1693 
1694 	if (size) {
1695 		/*
1696 		 * Unmap the largest mapping to avoid breaking up device-dax
1697 		 * mappings which are constant size. The actual size of the
1698 		 * mapping being torn down is communicated in siginfo, see
1699 		 * kill_proc()
1700 		 */
1701 		loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1702 
1703 		unmap_mapping_range(mapping, start, size, 0);
1704 	}
1705 
1706 	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1707 }
1708 
1709 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1710 		struct dev_pagemap *pgmap)
1711 {
1712 	struct page *page = pfn_to_page(pfn);
1713 	LIST_HEAD(to_kill);
1714 	dax_entry_t cookie;
1715 	int rc = 0;
1716 
1717 	/*
1718 	 * Pages instantiated by device-dax (not filesystem-dax)
1719 	 * may be compound pages.
1720 	 */
1721 	page = compound_head(page);
1722 
1723 	/*
1724 	 * Prevent the inode from being freed while we are interrogating
1725 	 * the address_space, typically this would be handled by
1726 	 * lock_page(), but dax pages do not use the page lock. This
1727 	 * also prevents changes to the mapping of this pfn until
1728 	 * poison signaling is complete.
1729 	 */
1730 	cookie = dax_lock_page(page);
1731 	if (!cookie)
1732 		return -EBUSY;
1733 
1734 	if (hwpoison_filter(page)) {
1735 		rc = -EOPNOTSUPP;
1736 		goto unlock;
1737 	}
1738 
1739 	switch (pgmap->type) {
1740 	case MEMORY_DEVICE_PRIVATE:
1741 	case MEMORY_DEVICE_COHERENT:
1742 		/*
1743 		 * TODO: Handle device pages which may need coordination
1744 		 * with device-side memory.
1745 		 */
1746 		rc = -ENXIO;
1747 		goto unlock;
1748 	default:
1749 		break;
1750 	}
1751 
1752 	/*
1753 	 * Use this flag as an indication that the dax page has been
1754 	 * remapped UC to prevent speculative consumption of poison.
1755 	 */
1756 	SetPageHWPoison(page);
1757 
1758 	/*
1759 	 * Unlike System-RAM there is no possibility to swap in a
1760 	 * different physical page at a given virtual address, so all
1761 	 * userspace consumption of ZONE_DEVICE memory necessitates
1762 	 * SIGBUS (i.e. MF_MUST_KILL)
1763 	 */
1764 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1765 	collect_procs(page, &to_kill, true);
1766 
1767 	unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1768 unlock:
1769 	dax_unlock_page(page, cookie);
1770 	return rc;
1771 }
1772 
1773 #ifdef CONFIG_FS_DAX
1774 /**
1775  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1776  * @mapping:	address_space of the file in use
1777  * @index:	start pgoff of the range within the file
1778  * @count:	length of the range, in unit of PAGE_SIZE
1779  * @mf_flags:	memory failure flags
1780  */
1781 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1782 		unsigned long count, int mf_flags)
1783 {
1784 	LIST_HEAD(to_kill);
1785 	dax_entry_t cookie;
1786 	struct page *page;
1787 	size_t end = index + count;
1788 
1789 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1790 
1791 	for (; index < end; index++) {
1792 		page = NULL;
1793 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1794 		if (!cookie)
1795 			return -EBUSY;
1796 		if (!page)
1797 			goto unlock;
1798 
1799 		SetPageHWPoison(page);
1800 
1801 		collect_procs_fsdax(page, mapping, index, &to_kill);
1802 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1803 				index, mf_flags);
1804 unlock:
1805 		dax_unlock_mapping_entry(mapping, index, cookie);
1806 	}
1807 	return 0;
1808 }
1809 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1810 #endif /* CONFIG_FS_DAX */
1811 
1812 #ifdef CONFIG_HUGETLB_PAGE
1813 /*
1814  * Struct raw_hwp_page represents information about "raw error page",
1815  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1816  */
1817 struct raw_hwp_page {
1818 	struct llist_node node;
1819 	struct page *page;
1820 };
1821 
1822 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1823 {
1824 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1825 }
1826 
1827 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1828 {
1829 	struct llist_head *head;
1830 	struct llist_node *t, *tnode;
1831 	unsigned long count = 0;
1832 
1833 	head = raw_hwp_list_head(folio);
1834 	llist_for_each_safe(tnode, t, head->first) {
1835 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1836 
1837 		if (move_flag)
1838 			SetPageHWPoison(p->page);
1839 		else
1840 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1841 		kfree(p);
1842 		count++;
1843 	}
1844 	llist_del_all(head);
1845 	return count;
1846 }
1847 
1848 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1849 {
1850 	struct llist_head *head;
1851 	struct raw_hwp_page *raw_hwp;
1852 	struct llist_node *t, *tnode;
1853 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1854 
1855 	/*
1856 	 * Once the hwpoison hugepage has lost reliable raw error info,
1857 	 * there is little meaning to keep additional error info precisely,
1858 	 * so skip to add additional raw error info.
1859 	 */
1860 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1861 		return -EHWPOISON;
1862 	head = raw_hwp_list_head(folio);
1863 	llist_for_each_safe(tnode, t, head->first) {
1864 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1865 
1866 		if (p->page == page)
1867 			return -EHWPOISON;
1868 	}
1869 
1870 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1871 	if (raw_hwp) {
1872 		raw_hwp->page = page;
1873 		llist_add(&raw_hwp->node, head);
1874 		/* the first error event will be counted in action_result(). */
1875 		if (ret)
1876 			num_poisoned_pages_inc(page_to_pfn(page));
1877 	} else {
1878 		/*
1879 		 * Failed to save raw error info.  We no longer trace all
1880 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1881 		 * this hwpoisoned hugepage.
1882 		 */
1883 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1884 		/*
1885 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1886 		 * used any more, so free it.
1887 		 */
1888 		__folio_free_raw_hwp(folio, false);
1889 	}
1890 	return ret;
1891 }
1892 
1893 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1894 {
1895 	/*
1896 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1897 	 * pages for tail pages are required but they don't exist.
1898 	 */
1899 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1900 		return 0;
1901 
1902 	/*
1903 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1904 	 * definition.
1905 	 */
1906 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1907 		return 0;
1908 
1909 	return __folio_free_raw_hwp(folio, move_flag);
1910 }
1911 
1912 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1913 {
1914 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1915 		return;
1916 	folio_clear_hwpoison(folio);
1917 	folio_free_raw_hwp(folio, true);
1918 }
1919 
1920 /*
1921  * Called from hugetlb code with hugetlb_lock held.
1922  *
1923  * Return values:
1924  *   0             - free hugepage
1925  *   1             - in-use hugepage
1926  *   2             - not a hugepage
1927  *   -EBUSY        - the hugepage is busy (try to retry)
1928  *   -EHWPOISON    - the hugepage is already hwpoisoned
1929  */
1930 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1931 				 bool *migratable_cleared)
1932 {
1933 	struct page *page = pfn_to_page(pfn);
1934 	struct folio *folio = page_folio(page);
1935 	int ret = 2;	/* fallback to normal page handling */
1936 	bool count_increased = false;
1937 
1938 	if (!folio_test_hugetlb(folio))
1939 		goto out;
1940 
1941 	if (flags & MF_COUNT_INCREASED) {
1942 		ret = 1;
1943 		count_increased = true;
1944 	} else if (folio_test_hugetlb_freed(folio)) {
1945 		ret = 0;
1946 	} else if (folio_test_hugetlb_migratable(folio)) {
1947 		ret = folio_try_get(folio);
1948 		if (ret)
1949 			count_increased = true;
1950 	} else {
1951 		ret = -EBUSY;
1952 		if (!(flags & MF_NO_RETRY))
1953 			goto out;
1954 	}
1955 
1956 	if (folio_set_hugetlb_hwpoison(folio, page)) {
1957 		ret = -EHWPOISON;
1958 		goto out;
1959 	}
1960 
1961 	/*
1962 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
1963 	 * from being migrated by memory hotremove.
1964 	 */
1965 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
1966 		folio_clear_hugetlb_migratable(folio);
1967 		*migratable_cleared = true;
1968 	}
1969 
1970 	return ret;
1971 out:
1972 	if (count_increased)
1973 		folio_put(folio);
1974 	return ret;
1975 }
1976 
1977 /*
1978  * Taking refcount of hugetlb pages needs extra care about race conditions
1979  * with basic operations like hugepage allocation/free/demotion.
1980  * So some of prechecks for hwpoison (pinning, and testing/setting
1981  * PageHWPoison) should be done in single hugetlb_lock range.
1982  */
1983 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1984 {
1985 	int res;
1986 	struct page *p = pfn_to_page(pfn);
1987 	struct folio *folio;
1988 	unsigned long page_flags;
1989 	bool migratable_cleared = false;
1990 
1991 	*hugetlb = 1;
1992 retry:
1993 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
1994 	if (res == 2) { /* fallback to normal page handling */
1995 		*hugetlb = 0;
1996 		return 0;
1997 	} else if (res == -EHWPOISON) {
1998 		pr_err("%#lx: already hardware poisoned\n", pfn);
1999 		if (flags & MF_ACTION_REQUIRED) {
2000 			folio = page_folio(p);
2001 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2002 		}
2003 		return res;
2004 	} else if (res == -EBUSY) {
2005 		if (!(flags & MF_NO_RETRY)) {
2006 			flags |= MF_NO_RETRY;
2007 			goto retry;
2008 		}
2009 		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2010 	}
2011 
2012 	folio = page_folio(p);
2013 	folio_lock(folio);
2014 
2015 	if (hwpoison_filter(p)) {
2016 		folio_clear_hugetlb_hwpoison(folio);
2017 		if (migratable_cleared)
2018 			folio_set_hugetlb_migratable(folio);
2019 		folio_unlock(folio);
2020 		if (res == 1)
2021 			folio_put(folio);
2022 		return -EOPNOTSUPP;
2023 	}
2024 
2025 	/*
2026 	 * Handling free hugepage.  The possible race with hugepage allocation
2027 	 * or demotion can be prevented by PageHWPoison flag.
2028 	 */
2029 	if (res == 0) {
2030 		folio_unlock(folio);
2031 		if (__page_handle_poison(p) >= 0) {
2032 			page_ref_inc(p);
2033 			res = MF_RECOVERED;
2034 		} else {
2035 			res = MF_FAILED;
2036 		}
2037 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2038 	}
2039 
2040 	page_flags = folio->flags;
2041 
2042 	if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2043 		folio_unlock(folio);
2044 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2045 	}
2046 
2047 	return identify_page_state(pfn, p, page_flags);
2048 }
2049 
2050 #else
2051 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2052 {
2053 	return 0;
2054 }
2055 
2056 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2057 {
2058 	return 0;
2059 }
2060 #endif	/* CONFIG_HUGETLB_PAGE */
2061 
2062 /* Drop the extra refcount in case we come from madvise() */
2063 static void put_ref_page(unsigned long pfn, int flags)
2064 {
2065 	struct page *page;
2066 
2067 	if (!(flags & MF_COUNT_INCREASED))
2068 		return;
2069 
2070 	page = pfn_to_page(pfn);
2071 	if (page)
2072 		put_page(page);
2073 }
2074 
2075 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2076 		struct dev_pagemap *pgmap)
2077 {
2078 	int rc = -ENXIO;
2079 
2080 	put_ref_page(pfn, flags);
2081 
2082 	/* device metadata space is not recoverable */
2083 	if (!pgmap_pfn_valid(pgmap, pfn))
2084 		goto out;
2085 
2086 	/*
2087 	 * Call driver's implementation to handle the memory failure, otherwise
2088 	 * fall back to generic handler.
2089 	 */
2090 	if (pgmap_has_memory_failure(pgmap)) {
2091 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2092 		/*
2093 		 * Fall back to generic handler too if operation is not
2094 		 * supported inside the driver/device/filesystem.
2095 		 */
2096 		if (rc != -EOPNOTSUPP)
2097 			goto out;
2098 	}
2099 
2100 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2101 out:
2102 	/* drop pgmap ref acquired in caller */
2103 	put_dev_pagemap(pgmap);
2104 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2105 	return rc;
2106 }
2107 
2108 static DEFINE_MUTEX(mf_mutex);
2109 
2110 /**
2111  * memory_failure - Handle memory failure of a page.
2112  * @pfn: Page Number of the corrupted page
2113  * @flags: fine tune action taken
2114  *
2115  * This function is called by the low level machine check code
2116  * of an architecture when it detects hardware memory corruption
2117  * of a page. It tries its best to recover, which includes
2118  * dropping pages, killing processes etc.
2119  *
2120  * The function is primarily of use for corruptions that
2121  * happen outside the current execution context (e.g. when
2122  * detected by a background scrubber)
2123  *
2124  * Must run in process context (e.g. a work queue) with interrupts
2125  * enabled and no spinlocks hold.
2126  *
2127  * Return: 0 for successfully handled the memory error,
2128  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2129  *         < 0(except -EOPNOTSUPP) on failure.
2130  */
2131 int memory_failure(unsigned long pfn, int flags)
2132 {
2133 	struct page *p;
2134 	struct page *hpage;
2135 	struct dev_pagemap *pgmap;
2136 	int res = 0;
2137 	unsigned long page_flags;
2138 	bool retry = true;
2139 	int hugetlb = 0;
2140 
2141 	if (!sysctl_memory_failure_recovery)
2142 		panic("Memory failure on page %lx", pfn);
2143 
2144 	mutex_lock(&mf_mutex);
2145 
2146 	if (!(flags & MF_SW_SIMULATED))
2147 		hw_memory_failure = true;
2148 
2149 	p = pfn_to_online_page(pfn);
2150 	if (!p) {
2151 		res = arch_memory_failure(pfn, flags);
2152 		if (res == 0)
2153 			goto unlock_mutex;
2154 
2155 		if (pfn_valid(pfn)) {
2156 			pgmap = get_dev_pagemap(pfn, NULL);
2157 			if (pgmap) {
2158 				res = memory_failure_dev_pagemap(pfn, flags,
2159 								 pgmap);
2160 				goto unlock_mutex;
2161 			}
2162 		}
2163 		pr_err("%#lx: memory outside kernel control\n", pfn);
2164 		res = -ENXIO;
2165 		goto unlock_mutex;
2166 	}
2167 
2168 try_again:
2169 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2170 	if (hugetlb)
2171 		goto unlock_mutex;
2172 
2173 	if (TestSetPageHWPoison(p)) {
2174 		pr_err("%#lx: already hardware poisoned\n", pfn);
2175 		res = -EHWPOISON;
2176 		if (flags & MF_ACTION_REQUIRED)
2177 			res = kill_accessing_process(current, pfn, flags);
2178 		if (flags & MF_COUNT_INCREASED)
2179 			put_page(p);
2180 		goto unlock_mutex;
2181 	}
2182 
2183 	hpage = compound_head(p);
2184 
2185 	/*
2186 	 * We need/can do nothing about count=0 pages.
2187 	 * 1) it's a free page, and therefore in safe hand:
2188 	 *    check_new_page() will be the gate keeper.
2189 	 * 2) it's part of a non-compound high order page.
2190 	 *    Implies some kernel user: cannot stop them from
2191 	 *    R/W the page; let's pray that the page has been
2192 	 *    used and will be freed some time later.
2193 	 * In fact it's dangerous to directly bump up page count from 0,
2194 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2195 	 */
2196 	if (!(flags & MF_COUNT_INCREASED)) {
2197 		res = get_hwpoison_page(p, flags);
2198 		if (!res) {
2199 			if (is_free_buddy_page(p)) {
2200 				if (take_page_off_buddy(p)) {
2201 					page_ref_inc(p);
2202 					res = MF_RECOVERED;
2203 				} else {
2204 					/* We lost the race, try again */
2205 					if (retry) {
2206 						ClearPageHWPoison(p);
2207 						retry = false;
2208 						goto try_again;
2209 					}
2210 					res = MF_FAILED;
2211 				}
2212 				res = action_result(pfn, MF_MSG_BUDDY, res);
2213 			} else {
2214 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2215 			}
2216 			goto unlock_mutex;
2217 		} else if (res < 0) {
2218 			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2219 			goto unlock_mutex;
2220 		}
2221 	}
2222 
2223 	if (PageTransHuge(hpage)) {
2224 		/*
2225 		 * The flag must be set after the refcount is bumped
2226 		 * otherwise it may race with THP split.
2227 		 * And the flag can't be set in get_hwpoison_page() since
2228 		 * it is called by soft offline too and it is just called
2229 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
2230 		 * place.
2231 		 *
2232 		 * Don't need care about the above error handling paths for
2233 		 * get_hwpoison_page() since they handle either free page
2234 		 * or unhandlable page.  The refcount is bumped iff the
2235 		 * page is a valid handlable page.
2236 		 */
2237 		SetPageHasHWPoisoned(hpage);
2238 		if (try_to_split_thp_page(p) < 0) {
2239 			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2240 			goto unlock_mutex;
2241 		}
2242 		VM_BUG_ON_PAGE(!page_count(p), p);
2243 	}
2244 
2245 	/*
2246 	 * We ignore non-LRU pages for good reasons.
2247 	 * - PG_locked is only well defined for LRU pages and a few others
2248 	 * - to avoid races with __SetPageLocked()
2249 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2250 	 * The check (unnecessarily) ignores LRU pages being isolated and
2251 	 * walked by the page reclaim code, however that's not a big loss.
2252 	 */
2253 	shake_page(p);
2254 
2255 	lock_page(p);
2256 
2257 	/*
2258 	 * We're only intended to deal with the non-Compound page here.
2259 	 * However, the page could have changed compound pages due to
2260 	 * race window. If this happens, we could try again to hopefully
2261 	 * handle the page next round.
2262 	 */
2263 	if (PageCompound(p)) {
2264 		if (retry) {
2265 			ClearPageHWPoison(p);
2266 			unlock_page(p);
2267 			put_page(p);
2268 			flags &= ~MF_COUNT_INCREASED;
2269 			retry = false;
2270 			goto try_again;
2271 		}
2272 		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2273 		goto unlock_page;
2274 	}
2275 
2276 	/*
2277 	 * We use page flags to determine what action should be taken, but
2278 	 * the flags can be modified by the error containment action.  One
2279 	 * example is an mlocked page, where PG_mlocked is cleared by
2280 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2281 	 * correctly, we save a copy of the page flags at this time.
2282 	 */
2283 	page_flags = p->flags;
2284 
2285 	if (hwpoison_filter(p)) {
2286 		ClearPageHWPoison(p);
2287 		unlock_page(p);
2288 		put_page(p);
2289 		res = -EOPNOTSUPP;
2290 		goto unlock_mutex;
2291 	}
2292 
2293 	/*
2294 	 * __munlock_folio() may clear a writeback page's LRU flag without
2295 	 * page_lock. We need wait writeback completion for this page or it
2296 	 * may trigger vfs BUG while evict inode.
2297 	 */
2298 	if (!PageLRU(p) && !PageWriteback(p))
2299 		goto identify_page_state;
2300 
2301 	/*
2302 	 * It's very difficult to mess with pages currently under IO
2303 	 * and in many cases impossible, so we just avoid it here.
2304 	 */
2305 	wait_on_page_writeback(p);
2306 
2307 	/*
2308 	 * Now take care of user space mappings.
2309 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2310 	 */
2311 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2312 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2313 		goto unlock_page;
2314 	}
2315 
2316 	/*
2317 	 * Torn down by someone else?
2318 	 */
2319 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2320 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2321 		goto unlock_page;
2322 	}
2323 
2324 identify_page_state:
2325 	res = identify_page_state(pfn, p, page_flags);
2326 	mutex_unlock(&mf_mutex);
2327 	return res;
2328 unlock_page:
2329 	unlock_page(p);
2330 unlock_mutex:
2331 	mutex_unlock(&mf_mutex);
2332 	return res;
2333 }
2334 EXPORT_SYMBOL_GPL(memory_failure);
2335 
2336 #define MEMORY_FAILURE_FIFO_ORDER	4
2337 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2338 
2339 struct memory_failure_entry {
2340 	unsigned long pfn;
2341 	int flags;
2342 };
2343 
2344 struct memory_failure_cpu {
2345 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2346 		      MEMORY_FAILURE_FIFO_SIZE);
2347 	spinlock_t lock;
2348 	struct work_struct work;
2349 };
2350 
2351 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2352 
2353 /**
2354  * memory_failure_queue - Schedule handling memory failure of a page.
2355  * @pfn: Page Number of the corrupted page
2356  * @flags: Flags for memory failure handling
2357  *
2358  * This function is called by the low level hardware error handler
2359  * when it detects hardware memory corruption of a page. It schedules
2360  * the recovering of error page, including dropping pages, killing
2361  * processes etc.
2362  *
2363  * The function is primarily of use for corruptions that
2364  * happen outside the current execution context (e.g. when
2365  * detected by a background scrubber)
2366  *
2367  * Can run in IRQ context.
2368  */
2369 void memory_failure_queue(unsigned long pfn, int flags)
2370 {
2371 	struct memory_failure_cpu *mf_cpu;
2372 	unsigned long proc_flags;
2373 	struct memory_failure_entry entry = {
2374 		.pfn =		pfn,
2375 		.flags =	flags,
2376 	};
2377 
2378 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2379 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2380 	if (kfifo_put(&mf_cpu->fifo, entry))
2381 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2382 	else
2383 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2384 		       pfn);
2385 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2386 	put_cpu_var(memory_failure_cpu);
2387 }
2388 EXPORT_SYMBOL_GPL(memory_failure_queue);
2389 
2390 static void memory_failure_work_func(struct work_struct *work)
2391 {
2392 	struct memory_failure_cpu *mf_cpu;
2393 	struct memory_failure_entry entry = { 0, };
2394 	unsigned long proc_flags;
2395 	int gotten;
2396 
2397 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2398 	for (;;) {
2399 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2400 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2401 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2402 		if (!gotten)
2403 			break;
2404 		if (entry.flags & MF_SOFT_OFFLINE)
2405 			soft_offline_page(entry.pfn, entry.flags);
2406 		else
2407 			memory_failure(entry.pfn, entry.flags);
2408 	}
2409 }
2410 
2411 /*
2412  * Process memory_failure work queued on the specified CPU.
2413  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2414  */
2415 void memory_failure_queue_kick(int cpu)
2416 {
2417 	struct memory_failure_cpu *mf_cpu;
2418 
2419 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2420 	cancel_work_sync(&mf_cpu->work);
2421 	memory_failure_work_func(&mf_cpu->work);
2422 }
2423 
2424 static int __init memory_failure_init(void)
2425 {
2426 	struct memory_failure_cpu *mf_cpu;
2427 	int cpu;
2428 
2429 	for_each_possible_cpu(cpu) {
2430 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2431 		spin_lock_init(&mf_cpu->lock);
2432 		INIT_KFIFO(mf_cpu->fifo);
2433 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2434 	}
2435 
2436 	register_sysctl_init("vm", memory_failure_table);
2437 
2438 	return 0;
2439 }
2440 core_initcall(memory_failure_init);
2441 
2442 #undef pr_fmt
2443 #define pr_fmt(fmt)	"" fmt
2444 #define unpoison_pr_info(fmt, pfn, rs)			\
2445 ({							\
2446 	if (__ratelimit(rs))				\
2447 		pr_info(fmt, pfn);			\
2448 })
2449 
2450 /**
2451  * unpoison_memory - Unpoison a previously poisoned page
2452  * @pfn: Page number of the to be unpoisoned page
2453  *
2454  * Software-unpoison a page that has been poisoned by
2455  * memory_failure() earlier.
2456  *
2457  * This is only done on the software-level, so it only works
2458  * for linux injected failures, not real hardware failures
2459  *
2460  * Returns 0 for success, otherwise -errno.
2461  */
2462 int unpoison_memory(unsigned long pfn)
2463 {
2464 	struct folio *folio;
2465 	struct page *p;
2466 	int ret = -EBUSY;
2467 	unsigned long count = 1;
2468 	bool huge = false;
2469 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2470 					DEFAULT_RATELIMIT_BURST);
2471 
2472 	if (!pfn_valid(pfn))
2473 		return -ENXIO;
2474 
2475 	p = pfn_to_page(pfn);
2476 	folio = page_folio(p);
2477 
2478 	mutex_lock(&mf_mutex);
2479 
2480 	if (hw_memory_failure) {
2481 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2482 				 pfn, &unpoison_rs);
2483 		ret = -EOPNOTSUPP;
2484 		goto unlock_mutex;
2485 	}
2486 
2487 	if (!PageHWPoison(p)) {
2488 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2489 				 pfn, &unpoison_rs);
2490 		goto unlock_mutex;
2491 	}
2492 
2493 	if (folio_ref_count(folio) > 1) {
2494 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2495 				 pfn, &unpoison_rs);
2496 		goto unlock_mutex;
2497 	}
2498 
2499 	if (folio_mapped(folio)) {
2500 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2501 				 pfn, &unpoison_rs);
2502 		goto unlock_mutex;
2503 	}
2504 
2505 	if (folio_mapping(folio)) {
2506 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2507 				 pfn, &unpoison_rs);
2508 		goto unlock_mutex;
2509 	}
2510 
2511 	if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio))
2512 		goto unlock_mutex;
2513 
2514 	ret = get_hwpoison_page(p, MF_UNPOISON);
2515 	if (!ret) {
2516 		if (PageHuge(p)) {
2517 			huge = true;
2518 			count = folio_free_raw_hwp(folio, false);
2519 			if (count == 0) {
2520 				ret = -EBUSY;
2521 				goto unlock_mutex;
2522 			}
2523 		}
2524 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2525 	} else if (ret < 0) {
2526 		if (ret == -EHWPOISON) {
2527 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2528 		} else
2529 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2530 					 pfn, &unpoison_rs);
2531 	} else {
2532 		if (PageHuge(p)) {
2533 			huge = true;
2534 			count = folio_free_raw_hwp(folio, false);
2535 			if (count == 0) {
2536 				ret = -EBUSY;
2537 				folio_put(folio);
2538 				goto unlock_mutex;
2539 			}
2540 		}
2541 
2542 		folio_put(folio);
2543 		if (TestClearPageHWPoison(p)) {
2544 			folio_put(folio);
2545 			ret = 0;
2546 		}
2547 	}
2548 
2549 unlock_mutex:
2550 	mutex_unlock(&mf_mutex);
2551 	if (!ret) {
2552 		if (!huge)
2553 			num_poisoned_pages_sub(pfn, 1);
2554 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2555 				 page_to_pfn(p), &unpoison_rs);
2556 	}
2557 	return ret;
2558 }
2559 EXPORT_SYMBOL(unpoison_memory);
2560 
2561 static bool isolate_page(struct page *page, struct list_head *pagelist)
2562 {
2563 	bool isolated = false;
2564 
2565 	if (PageHuge(page)) {
2566 		isolated = isolate_hugetlb(page_folio(page), pagelist);
2567 	} else {
2568 		bool lru = !__PageMovable(page);
2569 
2570 		if (lru)
2571 			isolated = isolate_lru_page(page);
2572 		else
2573 			isolated = isolate_movable_page(page,
2574 							ISOLATE_UNEVICTABLE);
2575 
2576 		if (isolated) {
2577 			list_add(&page->lru, pagelist);
2578 			if (lru)
2579 				inc_node_page_state(page, NR_ISOLATED_ANON +
2580 						    page_is_file_lru(page));
2581 		}
2582 	}
2583 
2584 	/*
2585 	 * If we succeed to isolate the page, we grabbed another refcount on
2586 	 * the page, so we can safely drop the one we got from get_any_pages().
2587 	 * If we failed to isolate the page, it means that we cannot go further
2588 	 * and we will return an error, so drop the reference we got from
2589 	 * get_any_pages() as well.
2590 	 */
2591 	put_page(page);
2592 	return isolated;
2593 }
2594 
2595 /*
2596  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2597  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2598  * If the page is mapped, it migrates the contents over.
2599  */
2600 static int soft_offline_in_use_page(struct page *page)
2601 {
2602 	long ret = 0;
2603 	unsigned long pfn = page_to_pfn(page);
2604 	struct page *hpage = compound_head(page);
2605 	char const *msg_page[] = {"page", "hugepage"};
2606 	bool huge = PageHuge(page);
2607 	LIST_HEAD(pagelist);
2608 	struct migration_target_control mtc = {
2609 		.nid = NUMA_NO_NODE,
2610 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2611 	};
2612 
2613 	if (!huge && PageTransHuge(hpage)) {
2614 		if (try_to_split_thp_page(page)) {
2615 			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2616 			return -EBUSY;
2617 		}
2618 		hpage = page;
2619 	}
2620 
2621 	lock_page(page);
2622 	if (!PageHuge(page))
2623 		wait_on_page_writeback(page);
2624 	if (PageHWPoison(page)) {
2625 		unlock_page(page);
2626 		put_page(page);
2627 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2628 		return 0;
2629 	}
2630 
2631 	if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2632 		/*
2633 		 * Try to invalidate first. This should work for
2634 		 * non dirty unmapped page cache pages.
2635 		 */
2636 		ret = invalidate_inode_page(page);
2637 	unlock_page(page);
2638 
2639 	if (ret) {
2640 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2641 		page_handle_poison(page, false, true);
2642 		return 0;
2643 	}
2644 
2645 	if (isolate_page(hpage, &pagelist)) {
2646 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2647 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2648 		if (!ret) {
2649 			bool release = !huge;
2650 
2651 			if (!page_handle_poison(page, huge, release))
2652 				ret = -EBUSY;
2653 		} else {
2654 			if (!list_empty(&pagelist))
2655 				putback_movable_pages(&pagelist);
2656 
2657 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2658 				pfn, msg_page[huge], ret, &page->flags);
2659 			if (ret > 0)
2660 				ret = -EBUSY;
2661 		}
2662 	} else {
2663 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2664 			pfn, msg_page[huge], page_count(page), &page->flags);
2665 		ret = -EBUSY;
2666 	}
2667 	return ret;
2668 }
2669 
2670 /**
2671  * soft_offline_page - Soft offline a page.
2672  * @pfn: pfn to soft-offline
2673  * @flags: flags. Same as memory_failure().
2674  *
2675  * Returns 0 on success
2676  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2677  *         < 0 otherwise negated errno.
2678  *
2679  * Soft offline a page, by migration or invalidation,
2680  * without killing anything. This is for the case when
2681  * a page is not corrupted yet (so it's still valid to access),
2682  * but has had a number of corrected errors and is better taken
2683  * out.
2684  *
2685  * The actual policy on when to do that is maintained by
2686  * user space.
2687  *
2688  * This should never impact any application or cause data loss,
2689  * however it might take some time.
2690  *
2691  * This is not a 100% solution for all memory, but tries to be
2692  * ``good enough'' for the majority of memory.
2693  */
2694 int soft_offline_page(unsigned long pfn, int flags)
2695 {
2696 	int ret;
2697 	bool try_again = true;
2698 	struct page *page;
2699 
2700 	if (!pfn_valid(pfn)) {
2701 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2702 		return -ENXIO;
2703 	}
2704 
2705 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2706 	page = pfn_to_online_page(pfn);
2707 	if (!page) {
2708 		put_ref_page(pfn, flags);
2709 		return -EIO;
2710 	}
2711 
2712 	mutex_lock(&mf_mutex);
2713 
2714 	if (PageHWPoison(page)) {
2715 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2716 		put_ref_page(pfn, flags);
2717 		mutex_unlock(&mf_mutex);
2718 		return 0;
2719 	}
2720 
2721 retry:
2722 	get_online_mems();
2723 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2724 	put_online_mems();
2725 
2726 	if (hwpoison_filter(page)) {
2727 		if (ret > 0)
2728 			put_page(page);
2729 
2730 		mutex_unlock(&mf_mutex);
2731 		return -EOPNOTSUPP;
2732 	}
2733 
2734 	if (ret > 0) {
2735 		ret = soft_offline_in_use_page(page);
2736 	} else if (ret == 0) {
2737 		if (!page_handle_poison(page, true, false) && try_again) {
2738 			try_again = false;
2739 			flags &= ~MF_COUNT_INCREASED;
2740 			goto retry;
2741 		}
2742 	}
2743 
2744 	mutex_unlock(&mf_mutex);
2745 
2746 	return ret;
2747 }
2748