xref: /linux/mm/memory-failure.c (revision b7e32ae6664285e156e9f0cd821e63e19798baf7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66 
67 static int sysctl_memory_failure_early_kill __read_mostly;
68 
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70 
71 static int sysctl_enable_soft_offline __read_mostly = 1;
72 
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74 
75 static bool hw_memory_failure __read_mostly = false;
76 
77 static DEFINE_MUTEX(mf_mutex);
78 
79 void num_poisoned_pages_inc(unsigned long pfn)
80 {
81 	atomic_long_inc(&num_poisoned_pages);
82 	memblk_nr_poison_inc(pfn);
83 }
84 
85 void num_poisoned_pages_sub(unsigned long pfn, long i)
86 {
87 	atomic_long_sub(i, &num_poisoned_pages);
88 	if (pfn != -1UL)
89 		memblk_nr_poison_sub(pfn, i);
90 }
91 
92 /**
93  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94  * @_name: name of the file in the per NUMA sysfs directory.
95  */
96 #define MF_ATTR_RO(_name)					\
97 static ssize_t _name##_show(struct device *dev,			\
98 			    struct device_attribute *attr,	\
99 			    char *buf)				\
100 {								\
101 	struct memory_failure_stats *mf_stats =			\
102 		&NODE_DATA(dev->id)->mf_stats;			\
103 	return sysfs_emit(buf, "%lu\n", mf_stats->_name);	\
104 }								\
105 static DEVICE_ATTR_RO(_name)
106 
107 MF_ATTR_RO(total);
108 MF_ATTR_RO(ignored);
109 MF_ATTR_RO(failed);
110 MF_ATTR_RO(delayed);
111 MF_ATTR_RO(recovered);
112 
113 static struct attribute *memory_failure_attr[] = {
114 	&dev_attr_total.attr,
115 	&dev_attr_ignored.attr,
116 	&dev_attr_failed.attr,
117 	&dev_attr_delayed.attr,
118 	&dev_attr_recovered.attr,
119 	NULL,
120 };
121 
122 const struct attribute_group memory_failure_attr_group = {
123 	.name = "memory_failure",
124 	.attrs = memory_failure_attr,
125 };
126 
127 static const struct ctl_table memory_failure_table[] = {
128 	{
129 		.procname	= "memory_failure_early_kill",
130 		.data		= &sysctl_memory_failure_early_kill,
131 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
132 		.mode		= 0644,
133 		.proc_handler	= proc_dointvec_minmax,
134 		.extra1		= SYSCTL_ZERO,
135 		.extra2		= SYSCTL_ONE,
136 	},
137 	{
138 		.procname	= "memory_failure_recovery",
139 		.data		= &sysctl_memory_failure_recovery,
140 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
141 		.mode		= 0644,
142 		.proc_handler	= proc_dointvec_minmax,
143 		.extra1		= SYSCTL_ZERO,
144 		.extra2		= SYSCTL_ONE,
145 	},
146 	{
147 		.procname	= "enable_soft_offline",
148 		.data		= &sysctl_enable_soft_offline,
149 		.maxlen		= sizeof(sysctl_enable_soft_offline),
150 		.mode		= 0644,
151 		.proc_handler	= proc_dointvec_minmax,
152 		.extra1		= SYSCTL_ZERO,
153 		.extra2		= SYSCTL_ONE,
154 	}
155 };
156 
157 /*
158  * Return values:
159  *   1:   the page is dissolved (if needed) and taken off from buddy,
160  *   0:   the page is dissolved (if needed) and not taken off from buddy,
161  *   < 0: failed to dissolve.
162  */
163 static int __page_handle_poison(struct page *page)
164 {
165 	int ret;
166 
167 	/*
168 	 * zone_pcp_disable() can't be used here. It will
169 	 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 	 * optimization is enabled. This will break current lock dependency
172 	 * chain and leads to deadlock.
173 	 * Disabling pcp before dissolving the page was a deterministic
174 	 * approach because we made sure that those pages cannot end up in any
175 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 	 * but nothing guarantees that those pages do not get back to a PCP
177 	 * queue if we need to refill those.
178 	 */
179 	ret = dissolve_free_hugetlb_folio(page_folio(page));
180 	if (!ret) {
181 		drain_all_pages(page_zone(page));
182 		ret = take_page_off_buddy(page);
183 	}
184 
185 	return ret;
186 }
187 
188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
189 {
190 	if (hugepage_or_freepage) {
191 		/*
192 		 * Doing this check for free pages is also fine since
193 		 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
194 		 */
195 		if (__page_handle_poison(page) <= 0)
196 			/*
197 			 * We could fail to take off the target page from buddy
198 			 * for example due to racy page allocation, but that's
199 			 * acceptable because soft-offlined page is not broken
200 			 * and if someone really want to use it, they should
201 			 * take it.
202 			 */
203 			return false;
204 	}
205 
206 	SetPageHWPoison(page);
207 	if (release)
208 		put_page(page);
209 	page_ref_inc(page);
210 	num_poisoned_pages_inc(page_to_pfn(page));
211 
212 	return true;
213 }
214 
215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
216 
217 u32 hwpoison_filter_enable = 0;
218 u32 hwpoison_filter_dev_major = ~0U;
219 u32 hwpoison_filter_dev_minor = ~0U;
220 u64 hwpoison_filter_flags_mask;
221 u64 hwpoison_filter_flags_value;
222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
227 
228 static int hwpoison_filter_dev(struct page *p)
229 {
230 	struct folio *folio = page_folio(p);
231 	struct address_space *mapping;
232 	dev_t dev;
233 
234 	if (hwpoison_filter_dev_major == ~0U &&
235 	    hwpoison_filter_dev_minor == ~0U)
236 		return 0;
237 
238 	mapping = folio_mapping(folio);
239 	if (mapping == NULL || mapping->host == NULL)
240 		return -EINVAL;
241 
242 	dev = mapping->host->i_sb->s_dev;
243 	if (hwpoison_filter_dev_major != ~0U &&
244 	    hwpoison_filter_dev_major != MAJOR(dev))
245 		return -EINVAL;
246 	if (hwpoison_filter_dev_minor != ~0U &&
247 	    hwpoison_filter_dev_minor != MINOR(dev))
248 		return -EINVAL;
249 
250 	return 0;
251 }
252 
253 static int hwpoison_filter_flags(struct page *p)
254 {
255 	if (!hwpoison_filter_flags_mask)
256 		return 0;
257 
258 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 				    hwpoison_filter_flags_value)
260 		return 0;
261 	else
262 		return -EINVAL;
263 }
264 
265 /*
266  * This allows stress tests to limit test scope to a collection of tasks
267  * by putting them under some memcg. This prevents killing unrelated/important
268  * processes such as /sbin/init. Note that the target task may share clean
269  * pages with init (eg. libc text), which is harmless. If the target task
270  * share _dirty_ pages with another task B, the test scheme must make sure B
271  * is also included in the memcg. At last, due to race conditions this filter
272  * can only guarantee that the page either belongs to the memcg tasks, or is
273  * a freed page.
274  */
275 #ifdef CONFIG_MEMCG
276 u64 hwpoison_filter_memcg;
277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
278 static int hwpoison_filter_task(struct page *p)
279 {
280 	if (!hwpoison_filter_memcg)
281 		return 0;
282 
283 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
284 		return -EINVAL;
285 
286 	return 0;
287 }
288 #else
289 static int hwpoison_filter_task(struct page *p) { return 0; }
290 #endif
291 
292 int hwpoison_filter(struct page *p)
293 {
294 	if (!hwpoison_filter_enable)
295 		return 0;
296 
297 	if (hwpoison_filter_dev(p))
298 		return -EINVAL;
299 
300 	if (hwpoison_filter_flags(p))
301 		return -EINVAL;
302 
303 	if (hwpoison_filter_task(p))
304 		return -EINVAL;
305 
306 	return 0;
307 }
308 EXPORT_SYMBOL_GPL(hwpoison_filter);
309 #else
310 int hwpoison_filter(struct page *p)
311 {
312 	return 0;
313 }
314 #endif
315 
316 /*
317  * Kill all processes that have a poisoned page mapped and then isolate
318  * the page.
319  *
320  * General strategy:
321  * Find all processes having the page mapped and kill them.
322  * But we keep a page reference around so that the page is not
323  * actually freed yet.
324  * Then stash the page away
325  *
326  * There's no convenient way to get back to mapped processes
327  * from the VMAs. So do a brute-force search over all
328  * running processes.
329  *
330  * Remember that machine checks are not common (or rather
331  * if they are common you have other problems), so this shouldn't
332  * be a performance issue.
333  *
334  * Also there are some races possible while we get from the
335  * error detection to actually handle it.
336  */
337 
338 struct to_kill {
339 	struct list_head nd;
340 	struct task_struct *tsk;
341 	unsigned long addr;
342 	short size_shift;
343 };
344 
345 /*
346  * Send all the processes who have the page mapped a signal.
347  * ``action optional'' if they are not immediately affected by the error
348  * ``action required'' if error happened in current execution context
349  */
350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
351 {
352 	struct task_struct *t = tk->tsk;
353 	short addr_lsb = tk->size_shift;
354 	int ret = 0;
355 
356 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357 			pfn, t->comm, task_pid_nr(t));
358 
359 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 		ret = force_sig_mceerr(BUS_MCEERR_AR,
361 				 (void __user *)tk->addr, addr_lsb);
362 	else
363 		/*
364 		 * Signal other processes sharing the page if they have
365 		 * PF_MCE_EARLY set.
366 		 * Don't use force here, it's convenient if the signal
367 		 * can be temporarily blocked.
368 		 */
369 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
370 				      addr_lsb, t);
371 	if (ret < 0)
372 		pr_info("Error sending signal to %s:%d: %d\n",
373 			t->comm, task_pid_nr(t), ret);
374 	return ret;
375 }
376 
377 /*
378  * Unknown page type encountered. Try to check whether it can turn PageLRU by
379  * lru_add_drain_all.
380  */
381 void shake_folio(struct folio *folio)
382 {
383 	if (folio_test_hugetlb(folio))
384 		return;
385 	/*
386 	 * TODO: Could shrink slab caches here if a lightweight range-based
387 	 * shrinker will be available.
388 	 */
389 	if (folio_test_slab(folio))
390 		return;
391 
392 	lru_add_drain_all();
393 }
394 EXPORT_SYMBOL_GPL(shake_folio);
395 
396 static void shake_page(struct page *page)
397 {
398 	shake_folio(page_folio(page));
399 }
400 
401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 		unsigned long address)
403 {
404 	unsigned long ret = 0;
405 	pgd_t *pgd;
406 	p4d_t *p4d;
407 	pud_t *pud;
408 	pmd_t *pmd;
409 	pte_t *pte;
410 	pte_t ptent;
411 
412 	VM_BUG_ON_VMA(address == -EFAULT, vma);
413 	pgd = pgd_offset(vma->vm_mm, address);
414 	if (!pgd_present(*pgd))
415 		return 0;
416 	p4d = p4d_offset(pgd, address);
417 	if (!p4d_present(*p4d))
418 		return 0;
419 	pud = pud_offset(p4d, address);
420 	if (!pud_present(*pud))
421 		return 0;
422 	if (pud_trans_huge(*pud))
423 		return PUD_SHIFT;
424 	pmd = pmd_offset(pud, address);
425 	if (!pmd_present(*pmd))
426 		return 0;
427 	if (pmd_trans_huge(*pmd))
428 		return PMD_SHIFT;
429 	pte = pte_offset_map(pmd, address);
430 	if (!pte)
431 		return 0;
432 	ptent = ptep_get(pte);
433 	if (pte_present(ptent))
434 		ret = PAGE_SHIFT;
435 	pte_unmap(pte);
436 	return ret;
437 }
438 
439 /*
440  * Failure handling: if we can't find or can't kill a process there's
441  * not much we can do.	We just print a message and ignore otherwise.
442  */
443 
444 /*
445  * Schedule a process for later kill.
446  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
447  */
448 static void __add_to_kill(struct task_struct *tsk, const struct page *p,
449 			  struct vm_area_struct *vma, struct list_head *to_kill,
450 			  unsigned long addr)
451 {
452 	struct to_kill *tk;
453 
454 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455 	if (!tk) {
456 		pr_err("Out of memory while machine check handling\n");
457 		return;
458 	}
459 
460 	tk->addr = addr;
461 	if (is_zone_device_page(p))
462 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
463 	else
464 		tk->size_shift = folio_shift(page_folio(p));
465 
466 	/*
467 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 	 * so "tk->size_shift == 0" effectively checks no mapping on
470 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 	 * to a process' address space, it's possible not all N VMAs
472 	 * contain mappings for the page, but at least one VMA does.
473 	 * Only deliver SIGBUS with payload derived from the VMA that
474 	 * has a mapping for the page.
475 	 */
476 	if (tk->addr == -EFAULT) {
477 		pr_info("Unable to find user space address %lx in %s\n",
478 			page_to_pfn(p), tsk->comm);
479 	} else if (tk->size_shift == 0) {
480 		kfree(tk);
481 		return;
482 	}
483 
484 	get_task_struct(tsk);
485 	tk->tsk = tsk;
486 	list_add_tail(&tk->nd, to_kill);
487 }
488 
489 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
490 		struct vm_area_struct *vma, struct list_head *to_kill,
491 		unsigned long addr)
492 {
493 	if (addr == -EFAULT)
494 		return;
495 	__add_to_kill(tsk, p, vma, to_kill, addr);
496 }
497 
498 #ifdef CONFIG_KSM
499 static bool task_in_to_kill_list(struct list_head *to_kill,
500 				 struct task_struct *tsk)
501 {
502 	struct to_kill *tk, *next;
503 
504 	list_for_each_entry_safe(tk, next, to_kill, nd) {
505 		if (tk->tsk == tsk)
506 			return true;
507 	}
508 
509 	return false;
510 }
511 
512 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
513 		     struct vm_area_struct *vma, struct list_head *to_kill,
514 		     unsigned long addr)
515 {
516 	if (!task_in_to_kill_list(to_kill, tsk))
517 		__add_to_kill(tsk, p, vma, to_kill, addr);
518 }
519 #endif
520 /*
521  * Kill the processes that have been collected earlier.
522  *
523  * Only do anything when FORCEKILL is set, otherwise just free the
524  * list (this is used for clean pages which do not need killing)
525  */
526 static void kill_procs(struct list_head *to_kill, int forcekill,
527 		unsigned long pfn, int flags)
528 {
529 	struct to_kill *tk, *next;
530 
531 	list_for_each_entry_safe(tk, next, to_kill, nd) {
532 		if (forcekill) {
533 			if (tk->addr == -EFAULT) {
534 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 						 tk->tsk, PIDTYPE_PID);
538 			}
539 
540 			/*
541 			 * In theory the process could have mapped
542 			 * something else on the address in-between. We could
543 			 * check for that, but we need to tell the
544 			 * process anyways.
545 			 */
546 			else if (kill_proc(tk, pfn, flags) < 0)
547 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
549 		}
550 		list_del(&tk->nd);
551 		put_task_struct(tk->tsk);
552 		kfree(tk);
553 	}
554 }
555 
556 /*
557  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558  * on behalf of the thread group. Return task_struct of the (first found)
559  * dedicated thread if found, and return NULL otherwise.
560  *
561  * We already hold rcu lock in the caller, so we don't have to call
562  * rcu_read_lock/unlock() in this function.
563  */
564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
565 {
566 	struct task_struct *t;
567 
568 	for_each_thread(tsk, t) {
569 		if (t->flags & PF_MCE_PROCESS) {
570 			if (t->flags & PF_MCE_EARLY)
571 				return t;
572 		} else {
573 			if (sysctl_memory_failure_early_kill)
574 				return t;
575 		}
576 	}
577 	return NULL;
578 }
579 
580 /*
581  * Determine whether a given process is "early kill" process which expects
582  * to be signaled when some page under the process is hwpoisoned.
583  * Return task_struct of the dedicated thread (main thread unless explicitly
584  * specified) if the process is "early kill" and otherwise returns NULL.
585  *
586  * Note that the above is true for Action Optional case. For Action Required
587  * case, it's only meaningful to the current thread which need to be signaled
588  * with SIGBUS, this error is Action Optional for other non current
589  * processes sharing the same error page,if the process is "early kill", the
590  * task_struct of the dedicated thread will also be returned.
591  */
592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
593 {
594 	if (!tsk->mm)
595 		return NULL;
596 	/*
597 	 * Comparing ->mm here because current task might represent
598 	 * a subthread, while tsk always points to the main thread.
599 	 */
600 	if (force_early && tsk->mm == current->mm)
601 		return current;
602 
603 	return find_early_kill_thread(tsk);
604 }
605 
606 /*
607  * Collect processes when the error hit an anonymous page.
608  */
609 static void collect_procs_anon(const struct folio *folio,
610 		const struct page *page, struct list_head *to_kill,
611 		int force_early)
612 {
613 	struct task_struct *tsk;
614 	struct anon_vma *av;
615 	pgoff_t pgoff;
616 
617 	av = folio_lock_anon_vma_read(folio, NULL);
618 	if (av == NULL)	/* Not actually mapped anymore */
619 		return;
620 
621 	pgoff = page_pgoff(folio, page);
622 	rcu_read_lock();
623 	for_each_process(tsk) {
624 		struct vm_area_struct *vma;
625 		struct anon_vma_chain *vmac;
626 		struct task_struct *t = task_early_kill(tsk, force_early);
627 		unsigned long addr;
628 
629 		if (!t)
630 			continue;
631 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
632 					       pgoff, pgoff) {
633 			vma = vmac->vma;
634 			if (vma->vm_mm != t->mm)
635 				continue;
636 			addr = page_mapped_in_vma(page, vma);
637 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
638 		}
639 	}
640 	rcu_read_unlock();
641 	anon_vma_unlock_read(av);
642 }
643 
644 /*
645  * Collect processes when the error hit a file mapped page.
646  */
647 static void collect_procs_file(const struct folio *folio,
648 		const struct page *page, struct list_head *to_kill,
649 		int force_early)
650 {
651 	struct vm_area_struct *vma;
652 	struct task_struct *tsk;
653 	struct address_space *mapping = folio->mapping;
654 	pgoff_t pgoff;
655 
656 	i_mmap_lock_read(mapping);
657 	rcu_read_lock();
658 	pgoff = page_pgoff(folio, page);
659 	for_each_process(tsk) {
660 		struct task_struct *t = task_early_kill(tsk, force_early);
661 		unsigned long addr;
662 
663 		if (!t)
664 			continue;
665 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
666 				      pgoff) {
667 			/*
668 			 * Send early kill signal to tasks where a vma covers
669 			 * the page but the corrupted page is not necessarily
670 			 * mapped in its pte.
671 			 * Assume applications who requested early kill want
672 			 * to be informed of all such data corruptions.
673 			 */
674 			if (vma->vm_mm != t->mm)
675 				continue;
676 			addr = page_address_in_vma(folio, page, vma);
677 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
678 		}
679 	}
680 	rcu_read_unlock();
681 	i_mmap_unlock_read(mapping);
682 }
683 
684 #ifdef CONFIG_FS_DAX
685 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
686 			      struct vm_area_struct *vma,
687 			      struct list_head *to_kill, pgoff_t pgoff)
688 {
689 	unsigned long addr = vma_address(vma, pgoff, 1);
690 	__add_to_kill(tsk, p, vma, to_kill, addr);
691 }
692 
693 /*
694  * Collect processes when the error hit a fsdax page.
695  */
696 static void collect_procs_fsdax(const struct page *page,
697 		struct address_space *mapping, pgoff_t pgoff,
698 		struct list_head *to_kill, bool pre_remove)
699 {
700 	struct vm_area_struct *vma;
701 	struct task_struct *tsk;
702 
703 	i_mmap_lock_read(mapping);
704 	rcu_read_lock();
705 	for_each_process(tsk) {
706 		struct task_struct *t = tsk;
707 
708 		/*
709 		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
710 		 * the current may not be the one accessing the fsdax page.
711 		 * Otherwise, search for the current task.
712 		 */
713 		if (!pre_remove)
714 			t = task_early_kill(tsk, true);
715 		if (!t)
716 			continue;
717 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
718 			if (vma->vm_mm == t->mm)
719 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
720 		}
721 	}
722 	rcu_read_unlock();
723 	i_mmap_unlock_read(mapping);
724 }
725 #endif /* CONFIG_FS_DAX */
726 
727 /*
728  * Collect the processes who have the corrupted page mapped to kill.
729  */
730 static void collect_procs(const struct folio *folio, const struct page *page,
731 		struct list_head *tokill, int force_early)
732 {
733 	if (!folio->mapping)
734 		return;
735 	if (unlikely(folio_test_ksm(folio)))
736 		collect_procs_ksm(folio, page, tokill, force_early);
737 	else if (folio_test_anon(folio))
738 		collect_procs_anon(folio, page, tokill, force_early);
739 	else
740 		collect_procs_file(folio, page, tokill, force_early);
741 }
742 
743 struct hwpoison_walk {
744 	struct to_kill tk;
745 	unsigned long pfn;
746 	int flags;
747 };
748 
749 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
750 {
751 	tk->addr = addr;
752 	tk->size_shift = shift;
753 }
754 
755 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
756 				unsigned long poisoned_pfn, struct to_kill *tk)
757 {
758 	unsigned long pfn = 0;
759 
760 	if (pte_present(pte)) {
761 		pfn = pte_pfn(pte);
762 	} else {
763 		swp_entry_t swp = pte_to_swp_entry(pte);
764 
765 		if (is_hwpoison_entry(swp))
766 			pfn = swp_offset_pfn(swp);
767 	}
768 
769 	if (!pfn || pfn != poisoned_pfn)
770 		return 0;
771 
772 	set_to_kill(tk, addr, shift);
773 	return 1;
774 }
775 
776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
777 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
778 				      struct hwpoison_walk *hwp)
779 {
780 	pmd_t pmd = *pmdp;
781 	unsigned long pfn;
782 	unsigned long hwpoison_vaddr;
783 
784 	if (!pmd_present(pmd))
785 		return 0;
786 	pfn = pmd_pfn(pmd);
787 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
788 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
789 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
790 		return 1;
791 	}
792 	return 0;
793 }
794 #else
795 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
796 				      struct hwpoison_walk *hwp)
797 {
798 	return 0;
799 }
800 #endif
801 
802 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
803 			      unsigned long end, struct mm_walk *walk)
804 {
805 	struct hwpoison_walk *hwp = walk->private;
806 	int ret = 0;
807 	pte_t *ptep, *mapped_pte;
808 	spinlock_t *ptl;
809 
810 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
811 	if (ptl) {
812 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
813 		spin_unlock(ptl);
814 		goto out;
815 	}
816 
817 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
818 						addr, &ptl);
819 	if (!ptep)
820 		goto out;
821 
822 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
823 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
824 					     hwp->pfn, &hwp->tk);
825 		if (ret == 1)
826 			break;
827 	}
828 	pte_unmap_unlock(mapped_pte, ptl);
829 out:
830 	cond_resched();
831 	return ret;
832 }
833 
834 #ifdef CONFIG_HUGETLB_PAGE
835 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
836 			    unsigned long addr, unsigned long end,
837 			    struct mm_walk *walk)
838 {
839 	struct hwpoison_walk *hwp = walk->private;
840 	struct hstate *h = hstate_vma(walk->vma);
841 	spinlock_t *ptl;
842 	pte_t pte;
843 	int ret;
844 
845 	ptl = huge_pte_lock(h, walk->mm, ptep);
846 	pte = huge_ptep_get(walk->mm, addr, ptep);
847 	ret = check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
848 					hwp->pfn, &hwp->tk);
849 	spin_unlock(ptl);
850 	return ret;
851 }
852 #else
853 #define hwpoison_hugetlb_range	NULL
854 #endif
855 
856 static int hwpoison_test_walk(unsigned long start, unsigned long end,
857 			     struct mm_walk *walk)
858 {
859 	/* We also want to consider pages mapped into VM_PFNMAP. */
860 	return 0;
861 }
862 
863 static const struct mm_walk_ops hwpoison_walk_ops = {
864 	.pmd_entry = hwpoison_pte_range,
865 	.hugetlb_entry = hwpoison_hugetlb_range,
866 	.test_walk = hwpoison_test_walk,
867 	.walk_lock = PGWALK_RDLOCK,
868 };
869 
870 /*
871  * Sends SIGBUS to the current process with error info.
872  *
873  * This function is intended to handle "Action Required" MCEs on already
874  * hardware poisoned pages. They could happen, for example, when
875  * memory_failure() failed to unmap the error page at the first call, or
876  * when multiple local machine checks happened on different CPUs.
877  *
878  * MCE handler currently has no easy access to the error virtual address,
879  * so this function walks page table to find it. The returned virtual address
880  * is proper in most cases, but it could be wrong when the application
881  * process has multiple entries mapping the error page.
882  */
883 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
884 				  int flags)
885 {
886 	int ret;
887 	struct hwpoison_walk priv = {
888 		.pfn = pfn,
889 	};
890 	priv.tk.tsk = p;
891 
892 	if (!p->mm)
893 		return -EFAULT;
894 
895 	mmap_read_lock(p->mm);
896 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
897 			      (void *)&priv);
898 	/*
899 	 * ret = 1 when CMCI wins, regardless of whether try_to_unmap()
900 	 * succeeds or fails, then kill the process with SIGBUS.
901 	 * ret = 0 when poison page is a clean page and it's dropped, no
902 	 * SIGBUS is needed.
903 	 */
904 	if (ret == 1 && priv.tk.addr)
905 		kill_proc(&priv.tk, pfn, flags);
906 	mmap_read_unlock(p->mm);
907 
908 	return ret > 0 ? -EHWPOISON : 0;
909 }
910 
911 /*
912  * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
913  * But it could not do more to isolate the page from being accessed again,
914  * nor does it kill the process. This is extremely rare and one of the
915  * potential causes is that the page state has been changed due to
916  * underlying race condition. This is the most severe outcomes.
917  *
918  * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
919  * It should have killed the process, but it can't isolate the page,
920  * due to conditions such as extra pin, unmap failure, etc. Accessing
921  * the page again may trigger another MCE and the process will be killed
922  * by the m-f() handler immediately.
923  *
924  * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
925  * The page is unmapped, and is removed from the LRU or file mapping.
926  * An attempt to access the page again will trigger page fault and the
927  * PF handler will kill the process.
928  *
929  * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
930  * The page has been completely isolated, that is, unmapped, taken out of
931  * the buddy system, or hole-punnched out of the file mapping.
932  */
933 static const char *action_name[] = {
934 	[MF_IGNORED] = "Ignored",
935 	[MF_FAILED] = "Failed",
936 	[MF_DELAYED] = "Delayed",
937 	[MF_RECOVERED] = "Recovered",
938 };
939 
940 static const char * const action_page_types[] = {
941 	[MF_MSG_KERNEL]			= "reserved kernel page",
942 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
943 	[MF_MSG_HUGE]			= "huge page",
944 	[MF_MSG_FREE_HUGE]		= "free huge page",
945 	[MF_MSG_GET_HWPOISON]		= "get hwpoison page",
946 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
947 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
948 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
949 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
950 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
951 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
952 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
953 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
954 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
955 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
956 	[MF_MSG_BUDDY]			= "free buddy page",
957 	[MF_MSG_DAX]			= "dax page",
958 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
959 	[MF_MSG_ALREADY_POISONED]	= "already poisoned page",
960 	[MF_MSG_UNKNOWN]		= "unknown page",
961 };
962 
963 /*
964  * XXX: It is possible that a page is isolated from LRU cache,
965  * and then kept in swap cache or failed to remove from page cache.
966  * The page count will stop it from being freed by unpoison.
967  * Stress tests should be aware of this memory leak problem.
968  */
969 static int delete_from_lru_cache(struct folio *folio)
970 {
971 	if (folio_isolate_lru(folio)) {
972 		/*
973 		 * Clear sensible page flags, so that the buddy system won't
974 		 * complain when the folio is unpoison-and-freed.
975 		 */
976 		folio_clear_active(folio);
977 		folio_clear_unevictable(folio);
978 
979 		/*
980 		 * Poisoned page might never drop its ref count to 0 so we have
981 		 * to uncharge it manually from its memcg.
982 		 */
983 		mem_cgroup_uncharge(folio);
984 
985 		/*
986 		 * drop the refcount elevated by folio_isolate_lru()
987 		 */
988 		folio_put(folio);
989 		return 0;
990 	}
991 	return -EIO;
992 }
993 
994 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
995 				struct address_space *mapping)
996 {
997 	int ret = MF_FAILED;
998 
999 	if (mapping->a_ops->error_remove_folio) {
1000 		int err = mapping->a_ops->error_remove_folio(mapping, folio);
1001 
1002 		if (err != 0)
1003 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
1004 		else if (!filemap_release_folio(folio, GFP_NOIO))
1005 			pr_info("%#lx: failed to release buffers\n", pfn);
1006 		else
1007 			ret = MF_RECOVERED;
1008 	} else {
1009 		/*
1010 		 * If the file system doesn't support it just invalidate
1011 		 * This fails on dirty or anything with private pages
1012 		 */
1013 		if (mapping_evict_folio(mapping, folio))
1014 			ret = MF_RECOVERED;
1015 		else
1016 			pr_info("%#lx: Failed to invalidate\n",	pfn);
1017 	}
1018 
1019 	return ret;
1020 }
1021 
1022 struct page_state {
1023 	unsigned long mask;
1024 	unsigned long res;
1025 	enum mf_action_page_type type;
1026 
1027 	/* Callback ->action() has to unlock the relevant page inside it. */
1028 	int (*action)(struct page_state *ps, struct page *p);
1029 };
1030 
1031 /*
1032  * Return true if page is still referenced by others, otherwise return
1033  * false.
1034  *
1035  * The extra_pins is true when one extra refcount is expected.
1036  */
1037 static bool has_extra_refcount(struct page_state *ps, struct page *p,
1038 			       bool extra_pins)
1039 {
1040 	int count = page_count(p) - 1;
1041 
1042 	if (extra_pins)
1043 		count -= folio_nr_pages(page_folio(p));
1044 
1045 	if (count > 0) {
1046 		pr_err("%#lx: %s still referenced by %d users\n",
1047 		       page_to_pfn(p), action_page_types[ps->type], count);
1048 		return true;
1049 	}
1050 
1051 	return false;
1052 }
1053 
1054 /*
1055  * Error hit kernel page.
1056  * Do nothing, try to be lucky and not touch this instead. For a few cases we
1057  * could be more sophisticated.
1058  */
1059 static int me_kernel(struct page_state *ps, struct page *p)
1060 {
1061 	unlock_page(p);
1062 	return MF_IGNORED;
1063 }
1064 
1065 /*
1066  * Page in unknown state. Do nothing.
1067  * This is a catch-all in case we fail to make sense of the page state.
1068  */
1069 static int me_unknown(struct page_state *ps, struct page *p)
1070 {
1071 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1072 	unlock_page(p);
1073 	return MF_IGNORED;
1074 }
1075 
1076 /*
1077  * Clean (or cleaned) page cache page.
1078  */
1079 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1080 {
1081 	struct folio *folio = page_folio(p);
1082 	int ret;
1083 	struct address_space *mapping;
1084 	bool extra_pins;
1085 
1086 	delete_from_lru_cache(folio);
1087 
1088 	/*
1089 	 * For anonymous folios the only reference left
1090 	 * should be the one m_f() holds.
1091 	 */
1092 	if (folio_test_anon(folio)) {
1093 		ret = MF_RECOVERED;
1094 		goto out;
1095 	}
1096 
1097 	/*
1098 	 * Now truncate the page in the page cache. This is really
1099 	 * more like a "temporary hole punch"
1100 	 * Don't do this for block devices when someone else
1101 	 * has a reference, because it could be file system metadata
1102 	 * and that's not safe to truncate.
1103 	 */
1104 	mapping = folio_mapping(folio);
1105 	if (!mapping) {
1106 		/* Folio has been torn down in the meantime */
1107 		ret = MF_FAILED;
1108 		goto out;
1109 	}
1110 
1111 	/*
1112 	 * The shmem page is kept in page cache instead of truncating
1113 	 * so is expected to have an extra refcount after error-handling.
1114 	 */
1115 	extra_pins = shmem_mapping(mapping);
1116 
1117 	/*
1118 	 * Truncation is a bit tricky. Enable it per file system for now.
1119 	 *
1120 	 * Open: to take i_rwsem or not for this? Right now we don't.
1121 	 */
1122 	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1123 	if (has_extra_refcount(ps, p, extra_pins))
1124 		ret = MF_FAILED;
1125 
1126 out:
1127 	folio_unlock(folio);
1128 
1129 	return ret;
1130 }
1131 
1132 /*
1133  * Dirty pagecache page
1134  * Issues: when the error hit a hole page the error is not properly
1135  * propagated.
1136  */
1137 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1138 {
1139 	struct folio *folio = page_folio(p);
1140 	struct address_space *mapping = folio_mapping(folio);
1141 
1142 	/* TBD: print more information about the file. */
1143 	if (mapping) {
1144 		/*
1145 		 * IO error will be reported by write(), fsync(), etc.
1146 		 * who check the mapping.
1147 		 * This way the application knows that something went
1148 		 * wrong with its dirty file data.
1149 		 */
1150 		mapping_set_error(mapping, -EIO);
1151 	}
1152 
1153 	return me_pagecache_clean(ps, p);
1154 }
1155 
1156 /*
1157  * Clean and dirty swap cache.
1158  *
1159  * Dirty swap cache page is tricky to handle. The page could live both in page
1160  * table and swap cache(ie. page is freshly swapped in). So it could be
1161  * referenced concurrently by 2 types of PTEs:
1162  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1163  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1164  * and then
1165  *      - clear dirty bit to prevent IO
1166  *      - remove from LRU
1167  *      - but keep in the swap cache, so that when we return to it on
1168  *        a later page fault, we know the application is accessing
1169  *        corrupted data and shall be killed (we installed simple
1170  *        interception code in do_swap_page to catch it).
1171  *
1172  * Clean swap cache pages can be directly isolated. A later page fault will
1173  * bring in the known good data from disk.
1174  */
1175 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1176 {
1177 	struct folio *folio = page_folio(p);
1178 	int ret;
1179 	bool extra_pins = false;
1180 
1181 	folio_clear_dirty(folio);
1182 	/* Trigger EIO in shmem: */
1183 	folio_clear_uptodate(folio);
1184 
1185 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1186 	folio_unlock(folio);
1187 
1188 	if (ret == MF_DELAYED)
1189 		extra_pins = true;
1190 
1191 	if (has_extra_refcount(ps, p, extra_pins))
1192 		ret = MF_FAILED;
1193 
1194 	return ret;
1195 }
1196 
1197 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1198 {
1199 	struct folio *folio = page_folio(p);
1200 	int ret;
1201 
1202 	delete_from_swap_cache(folio);
1203 
1204 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1205 	folio_unlock(folio);
1206 
1207 	if (has_extra_refcount(ps, p, false))
1208 		ret = MF_FAILED;
1209 
1210 	return ret;
1211 }
1212 
1213 /*
1214  * Huge pages. Needs work.
1215  * Issues:
1216  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1217  *   To narrow down kill region to one page, we need to break up pmd.
1218  */
1219 static int me_huge_page(struct page_state *ps, struct page *p)
1220 {
1221 	struct folio *folio = page_folio(p);
1222 	int res;
1223 	struct address_space *mapping;
1224 	bool extra_pins = false;
1225 
1226 	mapping = folio_mapping(folio);
1227 	if (mapping) {
1228 		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1229 		/* The page is kept in page cache. */
1230 		extra_pins = true;
1231 		folio_unlock(folio);
1232 	} else {
1233 		folio_unlock(folio);
1234 		/*
1235 		 * migration entry prevents later access on error hugepage,
1236 		 * so we can free and dissolve it into buddy to save healthy
1237 		 * subpages.
1238 		 */
1239 		folio_put(folio);
1240 		if (__page_handle_poison(p) > 0) {
1241 			page_ref_inc(p);
1242 			res = MF_RECOVERED;
1243 		} else {
1244 			res = MF_FAILED;
1245 		}
1246 	}
1247 
1248 	if (has_extra_refcount(ps, p, extra_pins))
1249 		res = MF_FAILED;
1250 
1251 	return res;
1252 }
1253 
1254 /*
1255  * Various page states we can handle.
1256  *
1257  * A page state is defined by its current page->flags bits.
1258  * The table matches them in order and calls the right handler.
1259  *
1260  * This is quite tricky because we can access page at any time
1261  * in its live cycle, so all accesses have to be extremely careful.
1262  *
1263  * This is not complete. More states could be added.
1264  * For any missing state don't attempt recovery.
1265  */
1266 
1267 #define dirty		(1UL << PG_dirty)
1268 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1269 #define unevict		(1UL << PG_unevictable)
1270 #define mlock		(1UL << PG_mlocked)
1271 #define lru		(1UL << PG_lru)
1272 #define head		(1UL << PG_head)
1273 #define reserved	(1UL << PG_reserved)
1274 
1275 static struct page_state error_states[] = {
1276 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1277 	/*
1278 	 * free pages are specially detected outside this table:
1279 	 * PG_buddy pages only make a small fraction of all free pages.
1280 	 */
1281 
1282 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1283 
1284 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1285 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1286 
1287 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1288 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1289 
1290 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1291 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1292 
1293 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1294 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1295 
1296 	/*
1297 	 * Catchall entry: must be at end.
1298 	 */
1299 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1300 };
1301 
1302 #undef dirty
1303 #undef sc
1304 #undef unevict
1305 #undef mlock
1306 #undef lru
1307 #undef head
1308 #undef reserved
1309 
1310 static void update_per_node_mf_stats(unsigned long pfn,
1311 				     enum mf_result result)
1312 {
1313 	int nid = MAX_NUMNODES;
1314 	struct memory_failure_stats *mf_stats = NULL;
1315 
1316 	nid = pfn_to_nid(pfn);
1317 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1318 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1319 		return;
1320 	}
1321 
1322 	mf_stats = &NODE_DATA(nid)->mf_stats;
1323 	switch (result) {
1324 	case MF_IGNORED:
1325 		++mf_stats->ignored;
1326 		break;
1327 	case MF_FAILED:
1328 		++mf_stats->failed;
1329 		break;
1330 	case MF_DELAYED:
1331 		++mf_stats->delayed;
1332 		break;
1333 	case MF_RECOVERED:
1334 		++mf_stats->recovered;
1335 		break;
1336 	default:
1337 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1338 		break;
1339 	}
1340 	++mf_stats->total;
1341 }
1342 
1343 /*
1344  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1345  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1346  */
1347 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1348 			 enum mf_result result)
1349 {
1350 	trace_memory_failure_event(pfn, type, result);
1351 
1352 	if (type != MF_MSG_ALREADY_POISONED) {
1353 		num_poisoned_pages_inc(pfn);
1354 		update_per_node_mf_stats(pfn, result);
1355 	}
1356 
1357 	pr_err("%#lx: recovery action for %s: %s\n",
1358 		pfn, action_page_types[type], action_name[result]);
1359 
1360 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1361 }
1362 
1363 static int page_action(struct page_state *ps, struct page *p,
1364 			unsigned long pfn)
1365 {
1366 	int result;
1367 
1368 	/* page p should be unlocked after returning from ps->action().  */
1369 	result = ps->action(ps, p);
1370 
1371 	/* Could do more checks here if page looks ok */
1372 	/*
1373 	 * Could adjust zone counters here to correct for the missing page.
1374 	 */
1375 
1376 	return action_result(pfn, ps->type, result);
1377 }
1378 
1379 static inline bool PageHWPoisonTakenOff(struct page *page)
1380 {
1381 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1382 }
1383 
1384 void SetPageHWPoisonTakenOff(struct page *page)
1385 {
1386 	set_page_private(page, MAGIC_HWPOISON);
1387 }
1388 
1389 void ClearPageHWPoisonTakenOff(struct page *page)
1390 {
1391 	if (PageHWPoison(page))
1392 		set_page_private(page, 0);
1393 }
1394 
1395 /*
1396  * Return true if a page type of a given page is supported by hwpoison
1397  * mechanism (while handling could fail), otherwise false.  This function
1398  * does not return true for hugetlb or device memory pages, so it's assumed
1399  * to be called only in the context where we never have such pages.
1400  */
1401 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1402 {
1403 	if (PageSlab(page))
1404 		return false;
1405 
1406 	/* Soft offline could migrate movable_ops pages */
1407 	if ((flags & MF_SOFT_OFFLINE) && page_has_movable_ops(page))
1408 		return true;
1409 
1410 	return PageLRU(page) || is_free_buddy_page(page);
1411 }
1412 
1413 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1414 {
1415 	struct folio *folio = page_folio(page);
1416 	int ret = 0;
1417 	bool hugetlb = false;
1418 
1419 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1420 	if (hugetlb) {
1421 		/* Make sure hugetlb demotion did not happen from under us. */
1422 		if (folio == page_folio(page))
1423 			return ret;
1424 		if (ret > 0) {
1425 			folio_put(folio);
1426 			folio = page_folio(page);
1427 		}
1428 	}
1429 
1430 	/*
1431 	 * This check prevents from calling folio_try_get() for any
1432 	 * unsupported type of folio in order to reduce the risk of unexpected
1433 	 * races caused by taking a folio refcount.
1434 	 */
1435 	if (!HWPoisonHandlable(&folio->page, flags))
1436 		return -EBUSY;
1437 
1438 	if (folio_try_get(folio)) {
1439 		if (folio == page_folio(page))
1440 			return 1;
1441 
1442 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1443 		folio_put(folio);
1444 	}
1445 
1446 	return 0;
1447 }
1448 
1449 #define GET_PAGE_MAX_RETRY_NUM 3
1450 
1451 static int get_any_page(struct page *p, unsigned long flags)
1452 {
1453 	int ret = 0, pass = 0;
1454 	bool count_increased = false;
1455 
1456 	if (flags & MF_COUNT_INCREASED)
1457 		count_increased = true;
1458 
1459 try_again:
1460 	if (!count_increased) {
1461 		ret = __get_hwpoison_page(p, flags);
1462 		if (!ret) {
1463 			if (page_count(p)) {
1464 				/* We raced with an allocation, retry. */
1465 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1466 					goto try_again;
1467 				ret = -EBUSY;
1468 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1469 				/* We raced with put_page, retry. */
1470 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1471 					goto try_again;
1472 				ret = -EIO;
1473 			}
1474 			goto out;
1475 		} else if (ret == -EBUSY) {
1476 			/*
1477 			 * We raced with (possibly temporary) unhandlable
1478 			 * page, retry.
1479 			 */
1480 			if (pass++ < 3) {
1481 				shake_page(p);
1482 				goto try_again;
1483 			}
1484 			ret = -EIO;
1485 			goto out;
1486 		}
1487 	}
1488 
1489 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1490 		ret = 1;
1491 	} else {
1492 		/*
1493 		 * A page we cannot handle. Check whether we can turn
1494 		 * it into something we can handle.
1495 		 */
1496 		if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1497 			put_page(p);
1498 			shake_page(p);
1499 			count_increased = false;
1500 			goto try_again;
1501 		}
1502 		put_page(p);
1503 		ret = -EIO;
1504 	}
1505 out:
1506 	if (ret == -EIO)
1507 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1508 
1509 	return ret;
1510 }
1511 
1512 static int __get_unpoison_page(struct page *page)
1513 {
1514 	struct folio *folio = page_folio(page);
1515 	int ret = 0;
1516 	bool hugetlb = false;
1517 
1518 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1519 	if (hugetlb) {
1520 		/* Make sure hugetlb demotion did not happen from under us. */
1521 		if (folio == page_folio(page))
1522 			return ret;
1523 		if (ret > 0)
1524 			folio_put(folio);
1525 	}
1526 
1527 	/*
1528 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1529 	 * but also isolated from buddy freelist, so need to identify the
1530 	 * state and have to cancel both operations to unpoison.
1531 	 */
1532 	if (PageHWPoisonTakenOff(page))
1533 		return -EHWPOISON;
1534 
1535 	return get_page_unless_zero(page) ? 1 : 0;
1536 }
1537 
1538 /**
1539  * get_hwpoison_page() - Get refcount for memory error handling
1540  * @p:		Raw error page (hit by memory error)
1541  * @flags:	Flags controlling behavior of error handling
1542  *
1543  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1544  * error on it, after checking that the error page is in a well-defined state
1545  * (defined as a page-type we can successfully handle the memory error on it,
1546  * such as LRU page and hugetlb page).
1547  *
1548  * Memory error handling could be triggered at any time on any type of page,
1549  * so it's prone to race with typical memory management lifecycle (like
1550  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1551  * extra care for the error page's state (as done in __get_hwpoison_page()),
1552  * and has some retry logic in get_any_page().
1553  *
1554  * When called from unpoison_memory(), the caller should already ensure that
1555  * the given page has PG_hwpoison. So it's never reused for other page
1556  * allocations, and __get_unpoison_page() never races with them.
1557  *
1558  * Return: 0 on failure or free buddy (hugetlb) page,
1559  *         1 on success for in-use pages in a well-defined state,
1560  *         -EIO for pages on which we can not handle memory errors,
1561  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1562  *         operations like allocation and free,
1563  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1564  */
1565 static int get_hwpoison_page(struct page *p, unsigned long flags)
1566 {
1567 	int ret;
1568 
1569 	zone_pcp_disable(page_zone(p));
1570 	if (flags & MF_UNPOISON)
1571 		ret = __get_unpoison_page(p);
1572 	else
1573 		ret = get_any_page(p, flags);
1574 	zone_pcp_enable(page_zone(p));
1575 
1576 	return ret;
1577 }
1578 
1579 /*
1580  * The caller must guarantee the folio isn't large folio, except hugetlb.
1581  * try_to_unmap() can't handle it.
1582  */
1583 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill)
1584 {
1585 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1586 	struct address_space *mapping;
1587 
1588 	if (folio_test_swapcache(folio)) {
1589 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1590 		ttu &= ~TTU_HWPOISON;
1591 	}
1592 
1593 	/*
1594 	 * Propagate the dirty bit from PTEs to struct page first, because we
1595 	 * need this to decide if we should kill or just drop the page.
1596 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1597 	 * be called inside page lock (it's recommended but not enforced).
1598 	 */
1599 	mapping = folio_mapping(folio);
1600 	if (!must_kill && !folio_test_dirty(folio) && mapping &&
1601 	    mapping_can_writeback(mapping)) {
1602 		if (folio_mkclean(folio)) {
1603 			folio_set_dirty(folio);
1604 		} else {
1605 			ttu &= ~TTU_HWPOISON;
1606 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1607 				pfn);
1608 		}
1609 	}
1610 
1611 	if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1612 		/*
1613 		 * For hugetlb folios in shared mappings, try_to_unmap
1614 		 * could potentially call huge_pmd_unshare.  Because of
1615 		 * this, take semaphore in write mode here and set
1616 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1617 		 * at this higher level.
1618 		 */
1619 		mapping = hugetlb_folio_mapping_lock_write(folio);
1620 		if (!mapping) {
1621 			pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1622 				folio_pfn(folio));
1623 			return -EBUSY;
1624 		}
1625 
1626 		try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1627 		i_mmap_unlock_write(mapping);
1628 	} else {
1629 		try_to_unmap(folio, ttu);
1630 	}
1631 
1632 	return folio_mapped(folio) ? -EBUSY : 0;
1633 }
1634 
1635 /*
1636  * Do all that is necessary to remove user space mappings. Unmap
1637  * the pages and send SIGBUS to the processes if the data was dirty.
1638  */
1639 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1640 		unsigned long pfn, int flags)
1641 {
1642 	LIST_HEAD(tokill);
1643 	bool unmap_success;
1644 	int forcekill;
1645 	bool mlocked = folio_test_mlocked(folio);
1646 
1647 	/*
1648 	 * Here we are interested only in user-mapped pages, so skip any
1649 	 * other types of pages.
1650 	 */
1651 	if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1652 	    folio_test_pgtable(folio) || folio_test_offline(folio))
1653 		return true;
1654 	if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1655 		return true;
1656 
1657 	/*
1658 	 * This check implies we don't kill processes if their pages
1659 	 * are in the swap cache early. Those are always late kills.
1660 	 */
1661 	if (!folio_mapped(folio))
1662 		return true;
1663 
1664 	/*
1665 	 * First collect all the processes that have the page
1666 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1667 	 * because ttu takes the rmap data structures down.
1668 	 */
1669 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1670 
1671 	unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL);
1672 	if (!unmap_success)
1673 		pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1674 		       pfn, folio_mapcount(folio));
1675 
1676 	/*
1677 	 * try_to_unmap() might put mlocked page in lru cache, so call
1678 	 * shake_page() again to ensure that it's flushed.
1679 	 */
1680 	if (mlocked)
1681 		shake_folio(folio);
1682 
1683 	/*
1684 	 * Now that the dirty bit has been propagated to the
1685 	 * struct page and all unmaps done we can decide if
1686 	 * killing is needed or not.  Only kill when the page
1687 	 * was dirty or the process is not restartable,
1688 	 * otherwise the tokill list is merely
1689 	 * freed.  When there was a problem unmapping earlier
1690 	 * use a more force-full uncatchable kill to prevent
1691 	 * any accesses to the poisoned memory.
1692 	 */
1693 	forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1694 		    !unmap_success;
1695 	kill_procs(&tokill, forcekill, pfn, flags);
1696 
1697 	return unmap_success;
1698 }
1699 
1700 static int identify_page_state(unsigned long pfn, struct page *p,
1701 				unsigned long page_flags)
1702 {
1703 	struct page_state *ps;
1704 
1705 	/*
1706 	 * The first check uses the current page flags which may not have any
1707 	 * relevant information. The second check with the saved page flags is
1708 	 * carried out only if the first check can't determine the page status.
1709 	 */
1710 	for (ps = error_states;; ps++)
1711 		if ((p->flags & ps->mask) == ps->res)
1712 			break;
1713 
1714 	page_flags |= (p->flags & (1UL << PG_dirty));
1715 
1716 	if (!ps->mask)
1717 		for (ps = error_states;; ps++)
1718 			if ((page_flags & ps->mask) == ps->res)
1719 				break;
1720 	return page_action(ps, p, pfn);
1721 }
1722 
1723 /*
1724  * When 'release' is 'false', it means that if thp split has failed,
1725  * there is still more to do, hence the page refcount we took earlier
1726  * is still needed.
1727  */
1728 static int try_to_split_thp_page(struct page *page, bool release)
1729 {
1730 	int ret;
1731 
1732 	lock_page(page);
1733 	ret = split_huge_page(page);
1734 	unlock_page(page);
1735 
1736 	if (ret && release)
1737 		put_page(page);
1738 
1739 	return ret;
1740 }
1741 
1742 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1743 		struct address_space *mapping, pgoff_t index, int flags)
1744 {
1745 	struct to_kill *tk;
1746 	unsigned long size = 0;
1747 
1748 	list_for_each_entry(tk, to_kill, nd)
1749 		if (tk->size_shift)
1750 			size = max(size, 1UL << tk->size_shift);
1751 
1752 	if (size) {
1753 		/*
1754 		 * Unmap the largest mapping to avoid breaking up device-dax
1755 		 * mappings which are constant size. The actual size of the
1756 		 * mapping being torn down is communicated in siginfo, see
1757 		 * kill_proc()
1758 		 */
1759 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1760 
1761 		unmap_mapping_range(mapping, start, size, 0);
1762 	}
1763 
1764 	kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1765 }
1766 
1767 /*
1768  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1769  * either do not claim or fails to claim a hwpoison event, or devdax.
1770  * The fsdax pages are initialized per base page, and the devdax pages
1771  * could be initialized either as base pages, or as compound pages with
1772  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1773  * hwpoison, such that, if a subpage of a compound page is poisoned,
1774  * simply mark the compound head page is by far sufficient.
1775  */
1776 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1777 		struct dev_pagemap *pgmap)
1778 {
1779 	struct folio *folio = pfn_folio(pfn);
1780 	LIST_HEAD(to_kill);
1781 	dax_entry_t cookie;
1782 	int rc = 0;
1783 
1784 	/*
1785 	 * Prevent the inode from being freed while we are interrogating
1786 	 * the address_space, typically this would be handled by
1787 	 * lock_page(), but dax pages do not use the page lock. This
1788 	 * also prevents changes to the mapping of this pfn until
1789 	 * poison signaling is complete.
1790 	 */
1791 	cookie = dax_lock_folio(folio);
1792 	if (!cookie)
1793 		return -EBUSY;
1794 
1795 	if (hwpoison_filter(&folio->page)) {
1796 		rc = -EOPNOTSUPP;
1797 		goto unlock;
1798 	}
1799 
1800 	switch (pgmap->type) {
1801 	case MEMORY_DEVICE_PRIVATE:
1802 	case MEMORY_DEVICE_COHERENT:
1803 		/*
1804 		 * TODO: Handle device pages which may need coordination
1805 		 * with device-side memory.
1806 		 */
1807 		rc = -ENXIO;
1808 		goto unlock;
1809 	default:
1810 		break;
1811 	}
1812 
1813 	/*
1814 	 * Use this flag as an indication that the dax page has been
1815 	 * remapped UC to prevent speculative consumption of poison.
1816 	 */
1817 	SetPageHWPoison(&folio->page);
1818 
1819 	/*
1820 	 * Unlike System-RAM there is no possibility to swap in a
1821 	 * different physical page at a given virtual address, so all
1822 	 * userspace consumption of ZONE_DEVICE memory necessitates
1823 	 * SIGBUS (i.e. MF_MUST_KILL)
1824 	 */
1825 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1826 	collect_procs(folio, &folio->page, &to_kill, true);
1827 
1828 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1829 unlock:
1830 	dax_unlock_folio(folio, cookie);
1831 	return rc;
1832 }
1833 
1834 #ifdef CONFIG_FS_DAX
1835 /**
1836  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1837  * @mapping:	address_space of the file in use
1838  * @index:	start pgoff of the range within the file
1839  * @count:	length of the range, in unit of PAGE_SIZE
1840  * @mf_flags:	memory failure flags
1841  */
1842 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1843 		unsigned long count, int mf_flags)
1844 {
1845 	LIST_HEAD(to_kill);
1846 	dax_entry_t cookie;
1847 	struct page *page;
1848 	size_t end = index + count;
1849 	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1850 
1851 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1852 
1853 	for (; index < end; index++) {
1854 		page = NULL;
1855 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1856 		if (!cookie)
1857 			return -EBUSY;
1858 		if (!page)
1859 			goto unlock;
1860 
1861 		if (!pre_remove)
1862 			SetPageHWPoison(page);
1863 
1864 		/*
1865 		 * The pre_remove case is revoking access, the memory is still
1866 		 * good and could theoretically be put back into service.
1867 		 */
1868 		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1869 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1870 				index, mf_flags);
1871 unlock:
1872 		dax_unlock_mapping_entry(mapping, index, cookie);
1873 	}
1874 	return 0;
1875 }
1876 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1877 #endif /* CONFIG_FS_DAX */
1878 
1879 #ifdef CONFIG_HUGETLB_PAGE
1880 
1881 /*
1882  * Struct raw_hwp_page represents information about "raw error page",
1883  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1884  */
1885 struct raw_hwp_page {
1886 	struct llist_node node;
1887 	struct page *page;
1888 };
1889 
1890 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1891 {
1892 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1893 }
1894 
1895 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1896 {
1897 	struct llist_head *raw_hwp_head;
1898 	struct raw_hwp_page *p;
1899 	struct folio *folio = page_folio(page);
1900 	bool ret = false;
1901 
1902 	if (!folio_test_hwpoison(folio))
1903 		return false;
1904 
1905 	if (!folio_test_hugetlb(folio))
1906 		return PageHWPoison(page);
1907 
1908 	/*
1909 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1910 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1911 	 */
1912 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1913 		return true;
1914 
1915 	mutex_lock(&mf_mutex);
1916 
1917 	raw_hwp_head = raw_hwp_list_head(folio);
1918 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1919 		if (page == p->page) {
1920 			ret = true;
1921 			break;
1922 		}
1923 	}
1924 
1925 	mutex_unlock(&mf_mutex);
1926 
1927 	return ret;
1928 }
1929 
1930 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1931 {
1932 	struct llist_node *head;
1933 	struct raw_hwp_page *p, *next;
1934 	unsigned long count = 0;
1935 
1936 	head = llist_del_all(raw_hwp_list_head(folio));
1937 	llist_for_each_entry_safe(p, next, head, node) {
1938 		if (move_flag)
1939 			SetPageHWPoison(p->page);
1940 		else
1941 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1942 		kfree(p);
1943 		count++;
1944 	}
1945 	return count;
1946 }
1947 
1948 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1949 {
1950 	struct llist_head *head;
1951 	struct raw_hwp_page *raw_hwp;
1952 	struct raw_hwp_page *p;
1953 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1954 
1955 	/*
1956 	 * Once the hwpoison hugepage has lost reliable raw error info,
1957 	 * there is little meaning to keep additional error info precisely,
1958 	 * so skip to add additional raw error info.
1959 	 */
1960 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1961 		return -EHWPOISON;
1962 	head = raw_hwp_list_head(folio);
1963 	llist_for_each_entry(p, head->first, node) {
1964 		if (p->page == page)
1965 			return -EHWPOISON;
1966 	}
1967 
1968 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1969 	if (raw_hwp) {
1970 		raw_hwp->page = page;
1971 		llist_add(&raw_hwp->node, head);
1972 		/* the first error event will be counted in action_result(). */
1973 		if (ret)
1974 			num_poisoned_pages_inc(page_to_pfn(page));
1975 	} else {
1976 		/*
1977 		 * Failed to save raw error info.  We no longer trace all
1978 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1979 		 * this hwpoisoned hugepage.
1980 		 */
1981 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1982 		/*
1983 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1984 		 * used any more, so free it.
1985 		 */
1986 		__folio_free_raw_hwp(folio, false);
1987 	}
1988 	return ret;
1989 }
1990 
1991 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1992 {
1993 	/*
1994 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1995 	 * pages for tail pages are required but they don't exist.
1996 	 */
1997 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1998 		return 0;
1999 
2000 	/*
2001 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
2002 	 * definition.
2003 	 */
2004 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
2005 		return 0;
2006 
2007 	return __folio_free_raw_hwp(folio, move_flag);
2008 }
2009 
2010 void folio_clear_hugetlb_hwpoison(struct folio *folio)
2011 {
2012 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
2013 		return;
2014 	if (folio_test_hugetlb_vmemmap_optimized(folio))
2015 		return;
2016 	folio_clear_hwpoison(folio);
2017 	folio_free_raw_hwp(folio, true);
2018 }
2019 
2020 /*
2021  * Called from hugetlb code with hugetlb_lock held.
2022  *
2023  * Return values:
2024  *   0             - free hugepage
2025  *   1             - in-use hugepage
2026  *   2             - not a hugepage
2027  *   -EBUSY        - the hugepage is busy (try to retry)
2028  *   -EHWPOISON    - the hugepage is already hwpoisoned
2029  */
2030 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2031 				 bool *migratable_cleared)
2032 {
2033 	struct page *page = pfn_to_page(pfn);
2034 	struct folio *folio = page_folio(page);
2035 	int ret = 2;	/* fallback to normal page handling */
2036 	bool count_increased = false;
2037 
2038 	if (!folio_test_hugetlb(folio))
2039 		goto out;
2040 
2041 	if (flags & MF_COUNT_INCREASED) {
2042 		ret = 1;
2043 		count_increased = true;
2044 	} else if (folio_test_hugetlb_freed(folio)) {
2045 		ret = 0;
2046 	} else if (folio_test_hugetlb_migratable(folio)) {
2047 		ret = folio_try_get(folio);
2048 		if (ret)
2049 			count_increased = true;
2050 	} else {
2051 		ret = -EBUSY;
2052 		if (!(flags & MF_NO_RETRY))
2053 			goto out;
2054 	}
2055 
2056 	if (folio_set_hugetlb_hwpoison(folio, page)) {
2057 		ret = -EHWPOISON;
2058 		goto out;
2059 	}
2060 
2061 	/*
2062 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2063 	 * from being migrated by memory hotremove.
2064 	 */
2065 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2066 		folio_clear_hugetlb_migratable(folio);
2067 		*migratable_cleared = true;
2068 	}
2069 
2070 	return ret;
2071 out:
2072 	if (count_increased)
2073 		folio_put(folio);
2074 	return ret;
2075 }
2076 
2077 /*
2078  * Taking refcount of hugetlb pages needs extra care about race conditions
2079  * with basic operations like hugepage allocation/free/demotion.
2080  * So some of prechecks for hwpoison (pinning, and testing/setting
2081  * PageHWPoison) should be done in single hugetlb_lock range.
2082  */
2083 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2084 {
2085 	int res;
2086 	struct page *p = pfn_to_page(pfn);
2087 	struct folio *folio;
2088 	unsigned long page_flags;
2089 	bool migratable_cleared = false;
2090 
2091 	*hugetlb = 1;
2092 retry:
2093 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2094 	if (res == 2) { /* fallback to normal page handling */
2095 		*hugetlb = 0;
2096 		return 0;
2097 	} else if (res == -EHWPOISON) {
2098 		if (flags & MF_ACTION_REQUIRED) {
2099 			folio = page_folio(p);
2100 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2101 		}
2102 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2103 		return res;
2104 	} else if (res == -EBUSY) {
2105 		if (!(flags & MF_NO_RETRY)) {
2106 			flags |= MF_NO_RETRY;
2107 			goto retry;
2108 		}
2109 		return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2110 	}
2111 
2112 	folio = page_folio(p);
2113 	folio_lock(folio);
2114 
2115 	if (hwpoison_filter(p)) {
2116 		folio_clear_hugetlb_hwpoison(folio);
2117 		if (migratable_cleared)
2118 			folio_set_hugetlb_migratable(folio);
2119 		folio_unlock(folio);
2120 		if (res == 1)
2121 			folio_put(folio);
2122 		return -EOPNOTSUPP;
2123 	}
2124 
2125 	/*
2126 	 * Handling free hugepage.  The possible race with hugepage allocation
2127 	 * or demotion can be prevented by PageHWPoison flag.
2128 	 */
2129 	if (res == 0) {
2130 		folio_unlock(folio);
2131 		if (__page_handle_poison(p) > 0) {
2132 			page_ref_inc(p);
2133 			res = MF_RECOVERED;
2134 		} else {
2135 			res = MF_FAILED;
2136 		}
2137 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2138 	}
2139 
2140 	page_flags = folio->flags;
2141 
2142 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2143 		folio_unlock(folio);
2144 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2145 	}
2146 
2147 	return identify_page_state(pfn, p, page_flags);
2148 }
2149 
2150 #else
2151 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2152 {
2153 	return 0;
2154 }
2155 
2156 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2157 {
2158 	return 0;
2159 }
2160 #endif	/* CONFIG_HUGETLB_PAGE */
2161 
2162 /* Drop the extra refcount in case we come from madvise() */
2163 static void put_ref_page(unsigned long pfn, int flags)
2164 {
2165 	if (!(flags & MF_COUNT_INCREASED))
2166 		return;
2167 
2168 	put_page(pfn_to_page(pfn));
2169 }
2170 
2171 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2172 		struct dev_pagemap *pgmap)
2173 {
2174 	int rc = -ENXIO;
2175 
2176 	/* device metadata space is not recoverable */
2177 	if (!pgmap_pfn_valid(pgmap, pfn))
2178 		goto out;
2179 
2180 	/*
2181 	 * Call driver's implementation to handle the memory failure, otherwise
2182 	 * fall back to generic handler.
2183 	 */
2184 	if (pgmap_has_memory_failure(pgmap)) {
2185 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2186 		/*
2187 		 * Fall back to generic handler too if operation is not
2188 		 * supported inside the driver/device/filesystem.
2189 		 */
2190 		if (rc != -EOPNOTSUPP)
2191 			goto out;
2192 	}
2193 
2194 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2195 out:
2196 	/* drop pgmap ref acquired in caller */
2197 	put_dev_pagemap(pgmap);
2198 	if (rc != -EOPNOTSUPP)
2199 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2200 	return rc;
2201 }
2202 
2203 /*
2204  * The calling condition is as such: thp split failed, page might have
2205  * been RDMA pinned, not much can be done for recovery.
2206  * But a SIGBUS should be delivered with vaddr provided so that the user
2207  * application has a chance to recover. Also, application processes'
2208  * election for MCE early killed will be honored.
2209  */
2210 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2211 				struct folio *folio)
2212 {
2213 	LIST_HEAD(tokill);
2214 
2215 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2216 	kill_procs(&tokill, true, pfn, flags);
2217 }
2218 
2219 /**
2220  * memory_failure - Handle memory failure of a page.
2221  * @pfn: Page Number of the corrupted page
2222  * @flags: fine tune action taken
2223  *
2224  * This function is called by the low level machine check code
2225  * of an architecture when it detects hardware memory corruption
2226  * of a page. It tries its best to recover, which includes
2227  * dropping pages, killing processes etc.
2228  *
2229  * The function is primarily of use for corruptions that
2230  * happen outside the current execution context (e.g. when
2231  * detected by a background scrubber)
2232  *
2233  * Must run in process context (e.g. a work queue) with interrupts
2234  * enabled and no spinlocks held.
2235  *
2236  * Return:
2237  *   0             - success,
2238  *   -ENXIO        - memory not managed by the kernel
2239  *   -EOPNOTSUPP   - hwpoison_filter() filtered the error event,
2240  *   -EHWPOISON    - the page was already poisoned, potentially
2241  *                   kill process,
2242  *   other negative values - failure.
2243  */
2244 int memory_failure(unsigned long pfn, int flags)
2245 {
2246 	struct page *p;
2247 	struct folio *folio;
2248 	struct dev_pagemap *pgmap;
2249 	int res = 0;
2250 	unsigned long page_flags;
2251 	bool retry = true;
2252 	int hugetlb = 0;
2253 
2254 	if (!sysctl_memory_failure_recovery)
2255 		panic("Memory failure on page %lx", pfn);
2256 
2257 	mutex_lock(&mf_mutex);
2258 
2259 	if (!(flags & MF_SW_SIMULATED))
2260 		hw_memory_failure = true;
2261 
2262 	p = pfn_to_online_page(pfn);
2263 	if (!p) {
2264 		res = arch_memory_failure(pfn, flags);
2265 		if (res == 0)
2266 			goto unlock_mutex;
2267 
2268 		if (pfn_valid(pfn)) {
2269 			pgmap = get_dev_pagemap(pfn, NULL);
2270 			put_ref_page(pfn, flags);
2271 			if (pgmap) {
2272 				res = memory_failure_dev_pagemap(pfn, flags,
2273 								 pgmap);
2274 				goto unlock_mutex;
2275 			}
2276 		}
2277 		pr_err("%#lx: memory outside kernel control\n", pfn);
2278 		res = -ENXIO;
2279 		goto unlock_mutex;
2280 	}
2281 
2282 try_again:
2283 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2284 	if (hugetlb)
2285 		goto unlock_mutex;
2286 
2287 	if (TestSetPageHWPoison(p)) {
2288 		res = -EHWPOISON;
2289 		if (flags & MF_ACTION_REQUIRED)
2290 			res = kill_accessing_process(current, pfn, flags);
2291 		if (flags & MF_COUNT_INCREASED)
2292 			put_page(p);
2293 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2294 		goto unlock_mutex;
2295 	}
2296 
2297 	/*
2298 	 * We need/can do nothing about count=0 pages.
2299 	 * 1) it's a free page, and therefore in safe hand:
2300 	 *    check_new_page() will be the gate keeper.
2301 	 * 2) it's part of a non-compound high order page.
2302 	 *    Implies some kernel user: cannot stop them from
2303 	 *    R/W the page; let's pray that the page has been
2304 	 *    used and will be freed some time later.
2305 	 * In fact it's dangerous to directly bump up page count from 0,
2306 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2307 	 */
2308 	if (!(flags & MF_COUNT_INCREASED)) {
2309 		res = get_hwpoison_page(p, flags);
2310 		if (!res) {
2311 			if (is_free_buddy_page(p)) {
2312 				if (take_page_off_buddy(p)) {
2313 					page_ref_inc(p);
2314 					res = MF_RECOVERED;
2315 				} else {
2316 					/* We lost the race, try again */
2317 					if (retry) {
2318 						ClearPageHWPoison(p);
2319 						retry = false;
2320 						goto try_again;
2321 					}
2322 					res = MF_FAILED;
2323 				}
2324 				res = action_result(pfn, MF_MSG_BUDDY, res);
2325 			} else {
2326 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2327 			}
2328 			goto unlock_mutex;
2329 		} else if (res < 0) {
2330 			res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2331 			goto unlock_mutex;
2332 		}
2333 	}
2334 
2335 	folio = page_folio(p);
2336 
2337 	/* filter pages that are protected from hwpoison test by users */
2338 	folio_lock(folio);
2339 	if (hwpoison_filter(p)) {
2340 		ClearPageHWPoison(p);
2341 		folio_unlock(folio);
2342 		folio_put(folio);
2343 		res = -EOPNOTSUPP;
2344 		goto unlock_mutex;
2345 	}
2346 	folio_unlock(folio);
2347 
2348 	if (folio_test_large(folio)) {
2349 		/*
2350 		 * The flag must be set after the refcount is bumped
2351 		 * otherwise it may race with THP split.
2352 		 * And the flag can't be set in get_hwpoison_page() since
2353 		 * it is called by soft offline too and it is just called
2354 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2355 		 * place.
2356 		 *
2357 		 * Don't need care about the above error handling paths for
2358 		 * get_hwpoison_page() since they handle either free page
2359 		 * or unhandlable page.  The refcount is bumped iff the
2360 		 * page is a valid handlable page.
2361 		 */
2362 		folio_set_has_hwpoisoned(folio);
2363 		if (try_to_split_thp_page(p, false) < 0) {
2364 			res = -EHWPOISON;
2365 			kill_procs_now(p, pfn, flags, folio);
2366 			put_page(p);
2367 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2368 			goto unlock_mutex;
2369 		}
2370 		VM_BUG_ON_PAGE(!page_count(p), p);
2371 		folio = page_folio(p);
2372 	}
2373 
2374 	/*
2375 	 * We ignore non-LRU pages for good reasons.
2376 	 * - PG_locked is only well defined for LRU pages and a few others
2377 	 * - to avoid races with __SetPageLocked()
2378 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2379 	 * The check (unnecessarily) ignores LRU pages being isolated and
2380 	 * walked by the page reclaim code, however that's not a big loss.
2381 	 */
2382 	shake_folio(folio);
2383 
2384 	folio_lock(folio);
2385 
2386 	/*
2387 	 * We're only intended to deal with the non-Compound page here.
2388 	 * The page cannot become compound pages again as folio has been
2389 	 * splited and extra refcnt is held.
2390 	 */
2391 	WARN_ON(folio_test_large(folio));
2392 
2393 	/*
2394 	 * We use page flags to determine what action should be taken, but
2395 	 * the flags can be modified by the error containment action.  One
2396 	 * example is an mlocked page, where PG_mlocked is cleared by
2397 	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2398 	 * status correctly, we save a copy of the page flags at this time.
2399 	 */
2400 	page_flags = folio->flags;
2401 
2402 	/*
2403 	 * __munlock_folio() may clear a writeback folio's LRU flag without
2404 	 * the folio lock. We need to wait for writeback completion for this
2405 	 * folio or it may trigger a vfs BUG while evicting inode.
2406 	 */
2407 	if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2408 		goto identify_page_state;
2409 
2410 	/*
2411 	 * It's very difficult to mess with pages currently under IO
2412 	 * and in many cases impossible, so we just avoid it here.
2413 	 */
2414 	folio_wait_writeback(folio);
2415 
2416 	/*
2417 	 * Now take care of user space mappings.
2418 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2419 	 */
2420 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2421 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2422 		goto unlock_page;
2423 	}
2424 
2425 	/*
2426 	 * Torn down by someone else?
2427 	 */
2428 	if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2429 	    folio->mapping == NULL) {
2430 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2431 		goto unlock_page;
2432 	}
2433 
2434 identify_page_state:
2435 	res = identify_page_state(pfn, p, page_flags);
2436 	mutex_unlock(&mf_mutex);
2437 	return res;
2438 unlock_page:
2439 	folio_unlock(folio);
2440 unlock_mutex:
2441 	mutex_unlock(&mf_mutex);
2442 	return res;
2443 }
2444 EXPORT_SYMBOL_GPL(memory_failure);
2445 
2446 #define MEMORY_FAILURE_FIFO_ORDER	4
2447 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2448 
2449 struct memory_failure_entry {
2450 	unsigned long pfn;
2451 	int flags;
2452 };
2453 
2454 struct memory_failure_cpu {
2455 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2456 		      MEMORY_FAILURE_FIFO_SIZE);
2457 	raw_spinlock_t lock;
2458 	struct work_struct work;
2459 };
2460 
2461 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2462 
2463 /**
2464  * memory_failure_queue - Schedule handling memory failure of a page.
2465  * @pfn: Page Number of the corrupted page
2466  * @flags: Flags for memory failure handling
2467  *
2468  * This function is called by the low level hardware error handler
2469  * when it detects hardware memory corruption of a page. It schedules
2470  * the recovering of error page, including dropping pages, killing
2471  * processes etc.
2472  *
2473  * The function is primarily of use for corruptions that
2474  * happen outside the current execution context (e.g. when
2475  * detected by a background scrubber)
2476  *
2477  * Can run in IRQ context.
2478  */
2479 void memory_failure_queue(unsigned long pfn, int flags)
2480 {
2481 	struct memory_failure_cpu *mf_cpu;
2482 	unsigned long proc_flags;
2483 	bool buffer_overflow;
2484 	struct memory_failure_entry entry = {
2485 		.pfn =		pfn,
2486 		.flags =	flags,
2487 	};
2488 
2489 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2490 	raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2491 	buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2492 	if (!buffer_overflow)
2493 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2494 	raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2495 	put_cpu_var(memory_failure_cpu);
2496 	if (buffer_overflow)
2497 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2498 		       pfn);
2499 }
2500 EXPORT_SYMBOL_GPL(memory_failure_queue);
2501 
2502 static void memory_failure_work_func(struct work_struct *work)
2503 {
2504 	struct memory_failure_cpu *mf_cpu;
2505 	struct memory_failure_entry entry = { 0, };
2506 	unsigned long proc_flags;
2507 	int gotten;
2508 
2509 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2510 	for (;;) {
2511 		raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2512 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2513 		raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2514 		if (!gotten)
2515 			break;
2516 		if (entry.flags & MF_SOFT_OFFLINE)
2517 			soft_offline_page(entry.pfn, entry.flags);
2518 		else
2519 			memory_failure(entry.pfn, entry.flags);
2520 	}
2521 }
2522 
2523 static int __init memory_failure_init(void)
2524 {
2525 	struct memory_failure_cpu *mf_cpu;
2526 	int cpu;
2527 
2528 	for_each_possible_cpu(cpu) {
2529 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2530 		raw_spin_lock_init(&mf_cpu->lock);
2531 		INIT_KFIFO(mf_cpu->fifo);
2532 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2533 	}
2534 
2535 	register_sysctl_init("vm", memory_failure_table);
2536 
2537 	return 0;
2538 }
2539 core_initcall(memory_failure_init);
2540 
2541 #undef pr_fmt
2542 #define pr_fmt(fmt)	"Unpoison: " fmt
2543 #define unpoison_pr_info(fmt, pfn, rs)			\
2544 ({							\
2545 	if (__ratelimit(rs))				\
2546 		pr_info(fmt, pfn);			\
2547 })
2548 
2549 /**
2550  * unpoison_memory - Unpoison a previously poisoned page
2551  * @pfn: Page number of the to be unpoisoned page
2552  *
2553  * Software-unpoison a page that has been poisoned by
2554  * memory_failure() earlier.
2555  *
2556  * This is only done on the software-level, so it only works
2557  * for linux injected failures, not real hardware failures
2558  *
2559  * Returns 0 for success, otherwise -errno.
2560  */
2561 int unpoison_memory(unsigned long pfn)
2562 {
2563 	struct folio *folio;
2564 	struct page *p;
2565 	int ret = -EBUSY, ghp;
2566 	unsigned long count;
2567 	bool huge = false;
2568 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2569 					DEFAULT_RATELIMIT_BURST);
2570 
2571 	p = pfn_to_online_page(pfn);
2572 	if (!p)
2573 		return -EIO;
2574 	folio = page_folio(p);
2575 
2576 	mutex_lock(&mf_mutex);
2577 
2578 	if (hw_memory_failure) {
2579 		unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2580 				 pfn, &unpoison_rs);
2581 		ret = -EOPNOTSUPP;
2582 		goto unlock_mutex;
2583 	}
2584 
2585 	if (is_huge_zero_folio(folio)) {
2586 		unpoison_pr_info("%#lx: huge zero page is not supported\n",
2587 				 pfn, &unpoison_rs);
2588 		ret = -EOPNOTSUPP;
2589 		goto unlock_mutex;
2590 	}
2591 
2592 	if (!PageHWPoison(p)) {
2593 		unpoison_pr_info("%#lx: page was already unpoisoned\n",
2594 				 pfn, &unpoison_rs);
2595 		goto unlock_mutex;
2596 	}
2597 
2598 	if (folio_ref_count(folio) > 1) {
2599 		unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2600 				 pfn, &unpoison_rs);
2601 		goto unlock_mutex;
2602 	}
2603 
2604 	if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2605 	    folio_test_reserved(folio) || folio_test_offline(folio))
2606 		goto unlock_mutex;
2607 
2608 	if (folio_mapped(folio)) {
2609 		unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2610 				 pfn, &unpoison_rs);
2611 		goto unlock_mutex;
2612 	}
2613 
2614 	if (folio_mapping(folio)) {
2615 		unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2616 				 pfn, &unpoison_rs);
2617 		goto unlock_mutex;
2618 	}
2619 
2620 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2621 	if (!ghp) {
2622 		if (folio_test_hugetlb(folio)) {
2623 			huge = true;
2624 			count = folio_free_raw_hwp(folio, false);
2625 			if (count == 0)
2626 				goto unlock_mutex;
2627 		}
2628 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2629 	} else if (ghp < 0) {
2630 		if (ghp == -EHWPOISON) {
2631 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2632 		} else {
2633 			ret = ghp;
2634 			unpoison_pr_info("%#lx: failed to grab page\n",
2635 					 pfn, &unpoison_rs);
2636 		}
2637 	} else {
2638 		if (folio_test_hugetlb(folio)) {
2639 			huge = true;
2640 			count = folio_free_raw_hwp(folio, false);
2641 			if (count == 0) {
2642 				folio_put(folio);
2643 				goto unlock_mutex;
2644 			}
2645 		}
2646 
2647 		folio_put(folio);
2648 		if (TestClearPageHWPoison(p)) {
2649 			folio_put(folio);
2650 			ret = 0;
2651 		}
2652 	}
2653 
2654 unlock_mutex:
2655 	mutex_unlock(&mf_mutex);
2656 	if (!ret) {
2657 		if (!huge)
2658 			num_poisoned_pages_sub(pfn, 1);
2659 		unpoison_pr_info("%#lx: software-unpoisoned page\n",
2660 				 page_to_pfn(p), &unpoison_rs);
2661 	}
2662 	return ret;
2663 }
2664 EXPORT_SYMBOL(unpoison_memory);
2665 
2666 #undef pr_fmt
2667 #define pr_fmt(fmt) "Soft offline: " fmt
2668 
2669 /*
2670  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2671  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2672  * If the page is mapped, it migrates the contents over.
2673  */
2674 static int soft_offline_in_use_page(struct page *page)
2675 {
2676 	long ret = 0;
2677 	unsigned long pfn = page_to_pfn(page);
2678 	struct folio *folio = page_folio(page);
2679 	char const *msg_page[] = {"page", "hugepage"};
2680 	bool huge = folio_test_hugetlb(folio);
2681 	bool isolated;
2682 	LIST_HEAD(pagelist);
2683 	struct migration_target_control mtc = {
2684 		.nid = NUMA_NO_NODE,
2685 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2686 		.reason = MR_MEMORY_FAILURE,
2687 	};
2688 
2689 	if (!huge && folio_test_large(folio)) {
2690 		if (try_to_split_thp_page(page, true)) {
2691 			pr_info("%#lx: thp split failed\n", pfn);
2692 			return -EBUSY;
2693 		}
2694 		folio = page_folio(page);
2695 	}
2696 
2697 	folio_lock(folio);
2698 	if (!huge)
2699 		folio_wait_writeback(folio);
2700 	if (PageHWPoison(page)) {
2701 		folio_unlock(folio);
2702 		folio_put(folio);
2703 		pr_info("%#lx: page already poisoned\n", pfn);
2704 		return 0;
2705 	}
2706 
2707 	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2708 		/*
2709 		 * Try to invalidate first. This should work for
2710 		 * non dirty unmapped page cache pages.
2711 		 */
2712 		ret = mapping_evict_folio(folio_mapping(folio), folio);
2713 	folio_unlock(folio);
2714 
2715 	if (ret) {
2716 		pr_info("%#lx: invalidated\n", pfn);
2717 		page_handle_poison(page, false, true);
2718 		return 0;
2719 	}
2720 
2721 	isolated = isolate_folio_to_list(folio, &pagelist);
2722 
2723 	/*
2724 	 * If we succeed to isolate the folio, we grabbed another refcount on
2725 	 * the folio, so we can safely drop the one we got from get_any_page().
2726 	 * If we failed to isolate the folio, it means that we cannot go further
2727 	 * and we will return an error, so drop the reference we got from
2728 	 * get_any_page() as well.
2729 	 */
2730 	folio_put(folio);
2731 
2732 	if (isolated) {
2733 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2734 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2735 		if (!ret) {
2736 			bool release = !huge;
2737 
2738 			if (!page_handle_poison(page, huge, release))
2739 				ret = -EBUSY;
2740 		} else {
2741 			if (!list_empty(&pagelist))
2742 				putback_movable_pages(&pagelist);
2743 
2744 			pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2745 				pfn, msg_page[huge], ret, &page->flags);
2746 			if (ret > 0)
2747 				ret = -EBUSY;
2748 		}
2749 	} else {
2750 		pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2751 			pfn, msg_page[huge], page_count(page), &page->flags);
2752 		ret = -EBUSY;
2753 	}
2754 	return ret;
2755 }
2756 
2757 /**
2758  * soft_offline_page - Soft offline a page.
2759  * @pfn: pfn to soft-offline
2760  * @flags: flags. Same as memory_failure().
2761  *
2762  * Returns 0 on success,
2763  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2764  *         disabled by /proc/sys/vm/enable_soft_offline,
2765  *         < 0 otherwise negated errno.
2766  *
2767  * Soft offline a page, by migration or invalidation,
2768  * without killing anything. This is for the case when
2769  * a page is not corrupted yet (so it's still valid to access),
2770  * but has had a number of corrected errors and is better taken
2771  * out.
2772  *
2773  * The actual policy on when to do that is maintained by
2774  * user space.
2775  *
2776  * This should never impact any application or cause data loss,
2777  * however it might take some time.
2778  *
2779  * This is not a 100% solution for all memory, but tries to be
2780  * ``good enough'' for the majority of memory.
2781  */
2782 int soft_offline_page(unsigned long pfn, int flags)
2783 {
2784 	int ret;
2785 	bool try_again = true;
2786 	struct page *page;
2787 
2788 	if (!pfn_valid(pfn)) {
2789 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2790 		return -ENXIO;
2791 	}
2792 
2793 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2794 	page = pfn_to_online_page(pfn);
2795 	if (!page) {
2796 		put_ref_page(pfn, flags);
2797 		return -EIO;
2798 	}
2799 
2800 	if (!sysctl_enable_soft_offline) {
2801 		pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2802 		put_ref_page(pfn, flags);
2803 		return -EOPNOTSUPP;
2804 	}
2805 
2806 	mutex_lock(&mf_mutex);
2807 
2808 	if (PageHWPoison(page)) {
2809 		pr_info("%#lx: page already poisoned\n", pfn);
2810 		put_ref_page(pfn, flags);
2811 		mutex_unlock(&mf_mutex);
2812 		return 0;
2813 	}
2814 
2815 retry:
2816 	get_online_mems();
2817 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2818 	put_online_mems();
2819 
2820 	if (hwpoison_filter(page)) {
2821 		if (ret > 0)
2822 			put_page(page);
2823 
2824 		mutex_unlock(&mf_mutex);
2825 		return -EOPNOTSUPP;
2826 	}
2827 
2828 	if (ret > 0) {
2829 		ret = soft_offline_in_use_page(page);
2830 	} else if (ret == 0) {
2831 		if (!page_handle_poison(page, true, false)) {
2832 			if (try_again) {
2833 				try_again = false;
2834 				flags &= ~MF_COUNT_INCREASED;
2835 				goto retry;
2836 			}
2837 			ret = -EBUSY;
2838 		}
2839 	}
2840 
2841 	mutex_unlock(&mf_mutex);
2842 
2843 	return ret;
2844 }
2845