xref: /linux/mm/memory-failure.c (revision aa23aa55166c2865ac430168c4b9d405cf8c6980)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61 
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63 
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65 
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67 
68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69 
70 u32 hwpoison_filter_enable = 0;
71 u32 hwpoison_filter_dev_major = ~0U;
72 u32 hwpoison_filter_dev_minor = ~0U;
73 u64 hwpoison_filter_flags_mask;
74 u64 hwpoison_filter_flags_value;
75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
80 
81 static int hwpoison_filter_dev(struct page *p)
82 {
83 	struct address_space *mapping;
84 	dev_t dev;
85 
86 	if (hwpoison_filter_dev_major == ~0U &&
87 	    hwpoison_filter_dev_minor == ~0U)
88 		return 0;
89 
90 	/*
91 	 * page_mapping() does not accept slab pages.
92 	 */
93 	if (PageSlab(p))
94 		return -EINVAL;
95 
96 	mapping = page_mapping(p);
97 	if (mapping == NULL || mapping->host == NULL)
98 		return -EINVAL;
99 
100 	dev = mapping->host->i_sb->s_dev;
101 	if (hwpoison_filter_dev_major != ~0U &&
102 	    hwpoison_filter_dev_major != MAJOR(dev))
103 		return -EINVAL;
104 	if (hwpoison_filter_dev_minor != ~0U &&
105 	    hwpoison_filter_dev_minor != MINOR(dev))
106 		return -EINVAL;
107 
108 	return 0;
109 }
110 
111 static int hwpoison_filter_flags(struct page *p)
112 {
113 	if (!hwpoison_filter_flags_mask)
114 		return 0;
115 
116 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 				    hwpoison_filter_flags_value)
118 		return 0;
119 	else
120 		return -EINVAL;
121 }
122 
123 /*
124  * This allows stress tests to limit test scope to a collection of tasks
125  * by putting them under some memcg. This prevents killing unrelated/important
126  * processes such as /sbin/init. Note that the target task may share clean
127  * pages with init (eg. libc text), which is harmless. If the target task
128  * share _dirty_ pages with another task B, the test scheme must make sure B
129  * is also included in the memcg. At last, due to race conditions this filter
130  * can only guarantee that the page either belongs to the memcg tasks, or is
131  * a freed page.
132  */
133 #ifdef CONFIG_MEMCG
134 u64 hwpoison_filter_memcg;
135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136 static int hwpoison_filter_task(struct page *p)
137 {
138 	if (!hwpoison_filter_memcg)
139 		return 0;
140 
141 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
142 		return -EINVAL;
143 
144 	return 0;
145 }
146 #else
147 static int hwpoison_filter_task(struct page *p) { return 0; }
148 #endif
149 
150 int hwpoison_filter(struct page *p)
151 {
152 	if (!hwpoison_filter_enable)
153 		return 0;
154 
155 	if (hwpoison_filter_dev(p))
156 		return -EINVAL;
157 
158 	if (hwpoison_filter_flags(p))
159 		return -EINVAL;
160 
161 	if (hwpoison_filter_task(p))
162 		return -EINVAL;
163 
164 	return 0;
165 }
166 #else
167 int hwpoison_filter(struct page *p)
168 {
169 	return 0;
170 }
171 #endif
172 
173 EXPORT_SYMBOL_GPL(hwpoison_filter);
174 
175 /*
176  * Kill all processes that have a poisoned page mapped and then isolate
177  * the page.
178  *
179  * General strategy:
180  * Find all processes having the page mapped and kill them.
181  * But we keep a page reference around so that the page is not
182  * actually freed yet.
183  * Then stash the page away
184  *
185  * There's no convenient way to get back to mapped processes
186  * from the VMAs. So do a brute-force search over all
187  * running processes.
188  *
189  * Remember that machine checks are not common (or rather
190  * if they are common you have other problems), so this shouldn't
191  * be a performance issue.
192  *
193  * Also there are some races possible while we get from the
194  * error detection to actually handle it.
195  */
196 
197 struct to_kill {
198 	struct list_head nd;
199 	struct task_struct *tsk;
200 	unsigned long addr;
201 	short size_shift;
202 	char addr_valid;
203 };
204 
205 /*
206  * Send all the processes who have the page mapped a signal.
207  * ``action optional'' if they are not immediately affected by the error
208  * ``action required'' if error happened in current execution context
209  */
210 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
211 {
212 	struct task_struct *t = tk->tsk;
213 	short addr_lsb = tk->size_shift;
214 	int ret;
215 
216 	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
217 		pfn, t->comm, t->pid);
218 
219 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
220 		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
221 				       addr_lsb, current);
222 	} else {
223 		/*
224 		 * Don't use force here, it's convenient if the signal
225 		 * can be temporarily blocked.
226 		 * This could cause a loop when the user sets SIGBUS
227 		 * to SIG_IGN, but hopefully no one will do that?
228 		 */
229 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
230 				      addr_lsb, t);  /* synchronous? */
231 	}
232 	if (ret < 0)
233 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
234 			t->comm, t->pid, ret);
235 	return ret;
236 }
237 
238 /*
239  * When a unknown page type is encountered drain as many buffers as possible
240  * in the hope to turn the page into a LRU or free page, which we can handle.
241  */
242 void shake_page(struct page *p, int access)
243 {
244 	if (PageHuge(p))
245 		return;
246 
247 	if (!PageSlab(p)) {
248 		lru_add_drain_all();
249 		if (PageLRU(p))
250 			return;
251 		drain_all_pages(page_zone(p));
252 		if (PageLRU(p) || is_free_buddy_page(p))
253 			return;
254 	}
255 
256 	/*
257 	 * Only call shrink_node_slabs here (which would also shrink
258 	 * other caches) if access is not potentially fatal.
259 	 */
260 	if (access)
261 		drop_slab_node(page_to_nid(p));
262 }
263 EXPORT_SYMBOL_GPL(shake_page);
264 
265 static unsigned long dev_pagemap_mapping_shift(struct page *page,
266 		struct vm_area_struct *vma)
267 {
268 	unsigned long address = vma_address(page, vma);
269 	pgd_t *pgd;
270 	p4d_t *p4d;
271 	pud_t *pud;
272 	pmd_t *pmd;
273 	pte_t *pte;
274 
275 	pgd = pgd_offset(vma->vm_mm, address);
276 	if (!pgd_present(*pgd))
277 		return 0;
278 	p4d = p4d_offset(pgd, address);
279 	if (!p4d_present(*p4d))
280 		return 0;
281 	pud = pud_offset(p4d, address);
282 	if (!pud_present(*pud))
283 		return 0;
284 	if (pud_devmap(*pud))
285 		return PUD_SHIFT;
286 	pmd = pmd_offset(pud, address);
287 	if (!pmd_present(*pmd))
288 		return 0;
289 	if (pmd_devmap(*pmd))
290 		return PMD_SHIFT;
291 	pte = pte_offset_map(pmd, address);
292 	if (!pte_present(*pte))
293 		return 0;
294 	if (pte_devmap(*pte))
295 		return PAGE_SHIFT;
296 	return 0;
297 }
298 
299 /*
300  * Failure handling: if we can't find or can't kill a process there's
301  * not much we can do.	We just print a message and ignore otherwise.
302  */
303 
304 /*
305  * Schedule a process for later kill.
306  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
307  * TBD would GFP_NOIO be enough?
308  */
309 static void add_to_kill(struct task_struct *tsk, struct page *p,
310 		       struct vm_area_struct *vma,
311 		       struct list_head *to_kill,
312 		       struct to_kill **tkc)
313 {
314 	struct to_kill *tk;
315 
316 	if (*tkc) {
317 		tk = *tkc;
318 		*tkc = NULL;
319 	} else {
320 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
321 		if (!tk) {
322 			pr_err("Memory failure: Out of memory while machine check handling\n");
323 			return;
324 		}
325 	}
326 	tk->addr = page_address_in_vma(p, vma);
327 	tk->addr_valid = 1;
328 	if (is_zone_device_page(p))
329 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
330 	else
331 		tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
332 
333 	/*
334 	 * In theory we don't have to kill when the page was
335 	 * munmaped. But it could be also a mremap. Since that's
336 	 * likely very rare kill anyways just out of paranoia, but use
337 	 * a SIGKILL because the error is not contained anymore.
338 	 */
339 	if (tk->addr == -EFAULT || tk->size_shift == 0) {
340 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
341 			page_to_pfn(p), tsk->comm);
342 		tk->addr_valid = 0;
343 	}
344 	get_task_struct(tsk);
345 	tk->tsk = tsk;
346 	list_add_tail(&tk->nd, to_kill);
347 }
348 
349 /*
350  * Kill the processes that have been collected earlier.
351  *
352  * Only do anything when DOIT is set, otherwise just free the list
353  * (this is used for clean pages which do not need killing)
354  * Also when FAIL is set do a force kill because something went
355  * wrong earlier.
356  */
357 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
358 		unsigned long pfn, int flags)
359 {
360 	struct to_kill *tk, *next;
361 
362 	list_for_each_entry_safe (tk, next, to_kill, nd) {
363 		if (forcekill) {
364 			/*
365 			 * In case something went wrong with munmapping
366 			 * make sure the process doesn't catch the
367 			 * signal and then access the memory. Just kill it.
368 			 */
369 			if (fail || tk->addr_valid == 0) {
370 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
371 				       pfn, tk->tsk->comm, tk->tsk->pid);
372 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
373 						 tk->tsk, PIDTYPE_PID);
374 			}
375 
376 			/*
377 			 * In theory the process could have mapped
378 			 * something else on the address in-between. We could
379 			 * check for that, but we need to tell the
380 			 * process anyways.
381 			 */
382 			else if (kill_proc(tk, pfn, flags) < 0)
383 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
384 				       pfn, tk->tsk->comm, tk->tsk->pid);
385 		}
386 		put_task_struct(tk->tsk);
387 		kfree(tk);
388 	}
389 }
390 
391 /*
392  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
393  * on behalf of the thread group. Return task_struct of the (first found)
394  * dedicated thread if found, and return NULL otherwise.
395  *
396  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
397  * have to call rcu_read_lock/unlock() in this function.
398  */
399 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
400 {
401 	struct task_struct *t;
402 
403 	for_each_thread(tsk, t)
404 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
405 			return t;
406 	return NULL;
407 }
408 
409 /*
410  * Determine whether a given process is "early kill" process which expects
411  * to be signaled when some page under the process is hwpoisoned.
412  * Return task_struct of the dedicated thread (main thread unless explicitly
413  * specified) if the process is "early kill," and otherwise returns NULL.
414  */
415 static struct task_struct *task_early_kill(struct task_struct *tsk,
416 					   int force_early)
417 {
418 	struct task_struct *t;
419 	if (!tsk->mm)
420 		return NULL;
421 	if (force_early)
422 		return tsk;
423 	t = find_early_kill_thread(tsk);
424 	if (t)
425 		return t;
426 	if (sysctl_memory_failure_early_kill)
427 		return tsk;
428 	return NULL;
429 }
430 
431 /*
432  * Collect processes when the error hit an anonymous page.
433  */
434 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
435 			      struct to_kill **tkc, int force_early)
436 {
437 	struct vm_area_struct *vma;
438 	struct task_struct *tsk;
439 	struct anon_vma *av;
440 	pgoff_t pgoff;
441 
442 	av = page_lock_anon_vma_read(page);
443 	if (av == NULL)	/* Not actually mapped anymore */
444 		return;
445 
446 	pgoff = page_to_pgoff(page);
447 	read_lock(&tasklist_lock);
448 	for_each_process (tsk) {
449 		struct anon_vma_chain *vmac;
450 		struct task_struct *t = task_early_kill(tsk, force_early);
451 
452 		if (!t)
453 			continue;
454 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
455 					       pgoff, pgoff) {
456 			vma = vmac->vma;
457 			if (!page_mapped_in_vma(page, vma))
458 				continue;
459 			if (vma->vm_mm == t->mm)
460 				add_to_kill(t, page, vma, to_kill, tkc);
461 		}
462 	}
463 	read_unlock(&tasklist_lock);
464 	page_unlock_anon_vma_read(av);
465 }
466 
467 /*
468  * Collect processes when the error hit a file mapped page.
469  */
470 static void collect_procs_file(struct page *page, struct list_head *to_kill,
471 			      struct to_kill **tkc, int force_early)
472 {
473 	struct vm_area_struct *vma;
474 	struct task_struct *tsk;
475 	struct address_space *mapping = page->mapping;
476 
477 	i_mmap_lock_read(mapping);
478 	read_lock(&tasklist_lock);
479 	for_each_process(tsk) {
480 		pgoff_t pgoff = page_to_pgoff(page);
481 		struct task_struct *t = task_early_kill(tsk, force_early);
482 
483 		if (!t)
484 			continue;
485 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
486 				      pgoff) {
487 			/*
488 			 * Send early kill signal to tasks where a vma covers
489 			 * the page but the corrupted page is not necessarily
490 			 * mapped it in its pte.
491 			 * Assume applications who requested early kill want
492 			 * to be informed of all such data corruptions.
493 			 */
494 			if (vma->vm_mm == t->mm)
495 				add_to_kill(t, page, vma, to_kill, tkc);
496 		}
497 	}
498 	read_unlock(&tasklist_lock);
499 	i_mmap_unlock_read(mapping);
500 }
501 
502 /*
503  * Collect the processes who have the corrupted page mapped to kill.
504  * This is done in two steps for locking reasons.
505  * First preallocate one tokill structure outside the spin locks,
506  * so that we can kill at least one process reasonably reliable.
507  */
508 static void collect_procs(struct page *page, struct list_head *tokill,
509 				int force_early)
510 {
511 	struct to_kill *tk;
512 
513 	if (!page->mapping)
514 		return;
515 
516 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
517 	if (!tk)
518 		return;
519 	if (PageAnon(page))
520 		collect_procs_anon(page, tokill, &tk, force_early);
521 	else
522 		collect_procs_file(page, tokill, &tk, force_early);
523 	kfree(tk);
524 }
525 
526 static const char *action_name[] = {
527 	[MF_IGNORED] = "Ignored",
528 	[MF_FAILED] = "Failed",
529 	[MF_DELAYED] = "Delayed",
530 	[MF_RECOVERED] = "Recovered",
531 };
532 
533 static const char * const action_page_types[] = {
534 	[MF_MSG_KERNEL]			= "reserved kernel page",
535 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
536 	[MF_MSG_SLAB]			= "kernel slab page",
537 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
538 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
539 	[MF_MSG_HUGE]			= "huge page",
540 	[MF_MSG_FREE_HUGE]		= "free huge page",
541 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
542 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
543 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
544 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
545 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
546 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
547 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
548 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
549 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
550 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
551 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
552 	[MF_MSG_BUDDY]			= "free buddy page",
553 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
554 	[MF_MSG_DAX]			= "dax page",
555 	[MF_MSG_UNKNOWN]		= "unknown page",
556 };
557 
558 /*
559  * XXX: It is possible that a page is isolated from LRU cache,
560  * and then kept in swap cache or failed to remove from page cache.
561  * The page count will stop it from being freed by unpoison.
562  * Stress tests should be aware of this memory leak problem.
563  */
564 static int delete_from_lru_cache(struct page *p)
565 {
566 	if (!isolate_lru_page(p)) {
567 		/*
568 		 * Clear sensible page flags, so that the buddy system won't
569 		 * complain when the page is unpoison-and-freed.
570 		 */
571 		ClearPageActive(p);
572 		ClearPageUnevictable(p);
573 
574 		/*
575 		 * Poisoned page might never drop its ref count to 0 so we have
576 		 * to uncharge it manually from its memcg.
577 		 */
578 		mem_cgroup_uncharge(p);
579 
580 		/*
581 		 * drop the page count elevated by isolate_lru_page()
582 		 */
583 		put_page(p);
584 		return 0;
585 	}
586 	return -EIO;
587 }
588 
589 static int truncate_error_page(struct page *p, unsigned long pfn,
590 				struct address_space *mapping)
591 {
592 	int ret = MF_FAILED;
593 
594 	if (mapping->a_ops->error_remove_page) {
595 		int err = mapping->a_ops->error_remove_page(mapping, p);
596 
597 		if (err != 0) {
598 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
599 				pfn, err);
600 		} else if (page_has_private(p) &&
601 			   !try_to_release_page(p, GFP_NOIO)) {
602 			pr_info("Memory failure: %#lx: failed to release buffers\n",
603 				pfn);
604 		} else {
605 			ret = MF_RECOVERED;
606 		}
607 	} else {
608 		/*
609 		 * If the file system doesn't support it just invalidate
610 		 * This fails on dirty or anything with private pages
611 		 */
612 		if (invalidate_inode_page(p))
613 			ret = MF_RECOVERED;
614 		else
615 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
616 				pfn);
617 	}
618 
619 	return ret;
620 }
621 
622 /*
623  * Error hit kernel page.
624  * Do nothing, try to be lucky and not touch this instead. For a few cases we
625  * could be more sophisticated.
626  */
627 static int me_kernel(struct page *p, unsigned long pfn)
628 {
629 	return MF_IGNORED;
630 }
631 
632 /*
633  * Page in unknown state. Do nothing.
634  */
635 static int me_unknown(struct page *p, unsigned long pfn)
636 {
637 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
638 	return MF_FAILED;
639 }
640 
641 /*
642  * Clean (or cleaned) page cache page.
643  */
644 static int me_pagecache_clean(struct page *p, unsigned long pfn)
645 {
646 	struct address_space *mapping;
647 
648 	delete_from_lru_cache(p);
649 
650 	/*
651 	 * For anonymous pages we're done the only reference left
652 	 * should be the one m_f() holds.
653 	 */
654 	if (PageAnon(p))
655 		return MF_RECOVERED;
656 
657 	/*
658 	 * Now truncate the page in the page cache. This is really
659 	 * more like a "temporary hole punch"
660 	 * Don't do this for block devices when someone else
661 	 * has a reference, because it could be file system metadata
662 	 * and that's not safe to truncate.
663 	 */
664 	mapping = page_mapping(p);
665 	if (!mapping) {
666 		/*
667 		 * Page has been teared down in the meanwhile
668 		 */
669 		return MF_FAILED;
670 	}
671 
672 	/*
673 	 * Truncation is a bit tricky. Enable it per file system for now.
674 	 *
675 	 * Open: to take i_mutex or not for this? Right now we don't.
676 	 */
677 	return truncate_error_page(p, pfn, mapping);
678 }
679 
680 /*
681  * Dirty pagecache page
682  * Issues: when the error hit a hole page the error is not properly
683  * propagated.
684  */
685 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
686 {
687 	struct address_space *mapping = page_mapping(p);
688 
689 	SetPageError(p);
690 	/* TBD: print more information about the file. */
691 	if (mapping) {
692 		/*
693 		 * IO error will be reported by write(), fsync(), etc.
694 		 * who check the mapping.
695 		 * This way the application knows that something went
696 		 * wrong with its dirty file data.
697 		 *
698 		 * There's one open issue:
699 		 *
700 		 * The EIO will be only reported on the next IO
701 		 * operation and then cleared through the IO map.
702 		 * Normally Linux has two mechanisms to pass IO error
703 		 * first through the AS_EIO flag in the address space
704 		 * and then through the PageError flag in the page.
705 		 * Since we drop pages on memory failure handling the
706 		 * only mechanism open to use is through AS_AIO.
707 		 *
708 		 * This has the disadvantage that it gets cleared on
709 		 * the first operation that returns an error, while
710 		 * the PageError bit is more sticky and only cleared
711 		 * when the page is reread or dropped.  If an
712 		 * application assumes it will always get error on
713 		 * fsync, but does other operations on the fd before
714 		 * and the page is dropped between then the error
715 		 * will not be properly reported.
716 		 *
717 		 * This can already happen even without hwpoisoned
718 		 * pages: first on metadata IO errors (which only
719 		 * report through AS_EIO) or when the page is dropped
720 		 * at the wrong time.
721 		 *
722 		 * So right now we assume that the application DTRT on
723 		 * the first EIO, but we're not worse than other parts
724 		 * of the kernel.
725 		 */
726 		mapping_set_error(mapping, -EIO);
727 	}
728 
729 	return me_pagecache_clean(p, pfn);
730 }
731 
732 /*
733  * Clean and dirty swap cache.
734  *
735  * Dirty swap cache page is tricky to handle. The page could live both in page
736  * cache and swap cache(ie. page is freshly swapped in). So it could be
737  * referenced concurrently by 2 types of PTEs:
738  * normal PTEs and swap PTEs. We try to handle them consistently by calling
739  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
740  * and then
741  *      - clear dirty bit to prevent IO
742  *      - remove from LRU
743  *      - but keep in the swap cache, so that when we return to it on
744  *        a later page fault, we know the application is accessing
745  *        corrupted data and shall be killed (we installed simple
746  *        interception code in do_swap_page to catch it).
747  *
748  * Clean swap cache pages can be directly isolated. A later page fault will
749  * bring in the known good data from disk.
750  */
751 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
752 {
753 	ClearPageDirty(p);
754 	/* Trigger EIO in shmem: */
755 	ClearPageUptodate(p);
756 
757 	if (!delete_from_lru_cache(p))
758 		return MF_DELAYED;
759 	else
760 		return MF_FAILED;
761 }
762 
763 static int me_swapcache_clean(struct page *p, unsigned long pfn)
764 {
765 	delete_from_swap_cache(p);
766 
767 	if (!delete_from_lru_cache(p))
768 		return MF_RECOVERED;
769 	else
770 		return MF_FAILED;
771 }
772 
773 /*
774  * Huge pages. Needs work.
775  * Issues:
776  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
777  *   To narrow down kill region to one page, we need to break up pmd.
778  */
779 static int me_huge_page(struct page *p, unsigned long pfn)
780 {
781 	int res = 0;
782 	struct page *hpage = compound_head(p);
783 	struct address_space *mapping;
784 
785 	if (!PageHuge(hpage))
786 		return MF_DELAYED;
787 
788 	mapping = page_mapping(hpage);
789 	if (mapping) {
790 		res = truncate_error_page(hpage, pfn, mapping);
791 	} else {
792 		unlock_page(hpage);
793 		/*
794 		 * migration entry prevents later access on error anonymous
795 		 * hugepage, so we can free and dissolve it into buddy to
796 		 * save healthy subpages.
797 		 */
798 		if (PageAnon(hpage))
799 			put_page(hpage);
800 		dissolve_free_huge_page(p);
801 		res = MF_RECOVERED;
802 		lock_page(hpage);
803 	}
804 
805 	return res;
806 }
807 
808 /*
809  * Various page states we can handle.
810  *
811  * A page state is defined by its current page->flags bits.
812  * The table matches them in order and calls the right handler.
813  *
814  * This is quite tricky because we can access page at any time
815  * in its live cycle, so all accesses have to be extremely careful.
816  *
817  * This is not complete. More states could be added.
818  * For any missing state don't attempt recovery.
819  */
820 
821 #define dirty		(1UL << PG_dirty)
822 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
823 #define unevict		(1UL << PG_unevictable)
824 #define mlock		(1UL << PG_mlocked)
825 #define writeback	(1UL << PG_writeback)
826 #define lru		(1UL << PG_lru)
827 #define head		(1UL << PG_head)
828 #define slab		(1UL << PG_slab)
829 #define reserved	(1UL << PG_reserved)
830 
831 static struct page_state {
832 	unsigned long mask;
833 	unsigned long res;
834 	enum mf_action_page_type type;
835 	int (*action)(struct page *p, unsigned long pfn);
836 } error_states[] = {
837 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
838 	/*
839 	 * free pages are specially detected outside this table:
840 	 * PG_buddy pages only make a small fraction of all free pages.
841 	 */
842 
843 	/*
844 	 * Could in theory check if slab page is free or if we can drop
845 	 * currently unused objects without touching them. But just
846 	 * treat it as standard kernel for now.
847 	 */
848 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
849 
850 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
851 
852 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
853 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
854 
855 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
856 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
857 
858 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
859 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
860 
861 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
862 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
863 
864 	/*
865 	 * Catchall entry: must be at end.
866 	 */
867 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
868 };
869 
870 #undef dirty
871 #undef sc
872 #undef unevict
873 #undef mlock
874 #undef writeback
875 #undef lru
876 #undef head
877 #undef slab
878 #undef reserved
879 
880 /*
881  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
882  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
883  */
884 static void action_result(unsigned long pfn, enum mf_action_page_type type,
885 			  enum mf_result result)
886 {
887 	trace_memory_failure_event(pfn, type, result);
888 
889 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
890 		pfn, action_page_types[type], action_name[result]);
891 }
892 
893 static int page_action(struct page_state *ps, struct page *p,
894 			unsigned long pfn)
895 {
896 	int result;
897 	int count;
898 
899 	result = ps->action(p, pfn);
900 
901 	count = page_count(p) - 1;
902 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
903 		count--;
904 	if (count > 0) {
905 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
906 		       pfn, action_page_types[ps->type], count);
907 		result = MF_FAILED;
908 	}
909 	action_result(pfn, ps->type, result);
910 
911 	/* Could do more checks here if page looks ok */
912 	/*
913 	 * Could adjust zone counters here to correct for the missing page.
914 	 */
915 
916 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
917 }
918 
919 /**
920  * get_hwpoison_page() - Get refcount for memory error handling:
921  * @page:	raw error page (hit by memory error)
922  *
923  * Return: return 0 if failed to grab the refcount, otherwise true (some
924  * non-zero value.)
925  */
926 int get_hwpoison_page(struct page *page)
927 {
928 	struct page *head = compound_head(page);
929 
930 	if (!PageHuge(head) && PageTransHuge(head)) {
931 		/*
932 		 * Non anonymous thp exists only in allocation/free time. We
933 		 * can't handle such a case correctly, so let's give it up.
934 		 * This should be better than triggering BUG_ON when kernel
935 		 * tries to touch the "partially handled" page.
936 		 */
937 		if (!PageAnon(head)) {
938 			pr_err("Memory failure: %#lx: non anonymous thp\n",
939 				page_to_pfn(page));
940 			return 0;
941 		}
942 	}
943 
944 	if (get_page_unless_zero(head)) {
945 		if (head == compound_head(page))
946 			return 1;
947 
948 		pr_info("Memory failure: %#lx cannot catch tail\n",
949 			page_to_pfn(page));
950 		put_page(head);
951 	}
952 
953 	return 0;
954 }
955 EXPORT_SYMBOL_GPL(get_hwpoison_page);
956 
957 /*
958  * Do all that is necessary to remove user space mappings. Unmap
959  * the pages and send SIGBUS to the processes if the data was dirty.
960  */
961 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
962 				  int flags, struct page **hpagep)
963 {
964 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
965 	struct address_space *mapping;
966 	LIST_HEAD(tokill);
967 	bool unmap_success;
968 	int kill = 1, forcekill;
969 	struct page *hpage = *hpagep;
970 	bool mlocked = PageMlocked(hpage);
971 
972 	/*
973 	 * Here we are interested only in user-mapped pages, so skip any
974 	 * other types of pages.
975 	 */
976 	if (PageReserved(p) || PageSlab(p))
977 		return true;
978 	if (!(PageLRU(hpage) || PageHuge(p)))
979 		return true;
980 
981 	/*
982 	 * This check implies we don't kill processes if their pages
983 	 * are in the swap cache early. Those are always late kills.
984 	 */
985 	if (!page_mapped(hpage))
986 		return true;
987 
988 	if (PageKsm(p)) {
989 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
990 		return false;
991 	}
992 
993 	if (PageSwapCache(p)) {
994 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
995 			pfn);
996 		ttu |= TTU_IGNORE_HWPOISON;
997 	}
998 
999 	/*
1000 	 * Propagate the dirty bit from PTEs to struct page first, because we
1001 	 * need this to decide if we should kill or just drop the page.
1002 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1003 	 * be called inside page lock (it's recommended but not enforced).
1004 	 */
1005 	mapping = page_mapping(hpage);
1006 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1007 	    mapping_cap_writeback_dirty(mapping)) {
1008 		if (page_mkclean(hpage)) {
1009 			SetPageDirty(hpage);
1010 		} else {
1011 			kill = 0;
1012 			ttu |= TTU_IGNORE_HWPOISON;
1013 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1014 				pfn);
1015 		}
1016 	}
1017 
1018 	/*
1019 	 * First collect all the processes that have the page
1020 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1021 	 * because ttu takes the rmap data structures down.
1022 	 *
1023 	 * Error handling: We ignore errors here because
1024 	 * there's nothing that can be done.
1025 	 */
1026 	if (kill)
1027 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1028 
1029 	unmap_success = try_to_unmap(hpage, ttu);
1030 	if (!unmap_success)
1031 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1032 		       pfn, page_mapcount(hpage));
1033 
1034 	/*
1035 	 * try_to_unmap() might put mlocked page in lru cache, so call
1036 	 * shake_page() again to ensure that it's flushed.
1037 	 */
1038 	if (mlocked)
1039 		shake_page(hpage, 0);
1040 
1041 	/*
1042 	 * Now that the dirty bit has been propagated to the
1043 	 * struct page and all unmaps done we can decide if
1044 	 * killing is needed or not.  Only kill when the page
1045 	 * was dirty or the process is not restartable,
1046 	 * otherwise the tokill list is merely
1047 	 * freed.  When there was a problem unmapping earlier
1048 	 * use a more force-full uncatchable kill to prevent
1049 	 * any accesses to the poisoned memory.
1050 	 */
1051 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1052 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1053 
1054 	return unmap_success;
1055 }
1056 
1057 static int identify_page_state(unsigned long pfn, struct page *p,
1058 				unsigned long page_flags)
1059 {
1060 	struct page_state *ps;
1061 
1062 	/*
1063 	 * The first check uses the current page flags which may not have any
1064 	 * relevant information. The second check with the saved page flags is
1065 	 * carried out only if the first check can't determine the page status.
1066 	 */
1067 	for (ps = error_states;; ps++)
1068 		if ((p->flags & ps->mask) == ps->res)
1069 			break;
1070 
1071 	page_flags |= (p->flags & (1UL << PG_dirty));
1072 
1073 	if (!ps->mask)
1074 		for (ps = error_states;; ps++)
1075 			if ((page_flags & ps->mask) == ps->res)
1076 				break;
1077 	return page_action(ps, p, pfn);
1078 }
1079 
1080 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1081 {
1082 	struct page *p = pfn_to_page(pfn);
1083 	struct page *head = compound_head(p);
1084 	int res;
1085 	unsigned long page_flags;
1086 
1087 	if (TestSetPageHWPoison(head)) {
1088 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1089 		       pfn);
1090 		return 0;
1091 	}
1092 
1093 	num_poisoned_pages_inc();
1094 
1095 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1096 		/*
1097 		 * Check "filter hit" and "race with other subpage."
1098 		 */
1099 		lock_page(head);
1100 		if (PageHWPoison(head)) {
1101 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1102 			    || (p != head && TestSetPageHWPoison(head))) {
1103 				num_poisoned_pages_dec();
1104 				unlock_page(head);
1105 				return 0;
1106 			}
1107 		}
1108 		unlock_page(head);
1109 		dissolve_free_huge_page(p);
1110 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1111 		return 0;
1112 	}
1113 
1114 	lock_page(head);
1115 	page_flags = head->flags;
1116 
1117 	if (!PageHWPoison(head)) {
1118 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1119 		num_poisoned_pages_dec();
1120 		unlock_page(head);
1121 		put_hwpoison_page(head);
1122 		return 0;
1123 	}
1124 
1125 	/*
1126 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1127 	 * simply disable it. In order to make it work properly, we need
1128 	 * make sure that:
1129 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1130 	 *    entry properly works, and
1131 	 *  - other mm code walking over page table is aware of pud-aligned
1132 	 *    hwpoison entries.
1133 	 */
1134 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1135 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1136 		res = -EBUSY;
1137 		goto out;
1138 	}
1139 
1140 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1141 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1142 		res = -EBUSY;
1143 		goto out;
1144 	}
1145 
1146 	res = identify_page_state(pfn, p, page_flags);
1147 out:
1148 	unlock_page(head);
1149 	return res;
1150 }
1151 
1152 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1153 		struct dev_pagemap *pgmap)
1154 {
1155 	struct page *page = pfn_to_page(pfn);
1156 	const bool unmap_success = true;
1157 	unsigned long size = 0;
1158 	struct to_kill *tk;
1159 	LIST_HEAD(tokill);
1160 	int rc = -EBUSY;
1161 	loff_t start;
1162 	dax_entry_t cookie;
1163 
1164 	/*
1165 	 * Prevent the inode from being freed while we are interrogating
1166 	 * the address_space, typically this would be handled by
1167 	 * lock_page(), but dax pages do not use the page lock. This
1168 	 * also prevents changes to the mapping of this pfn until
1169 	 * poison signaling is complete.
1170 	 */
1171 	cookie = dax_lock_page(page);
1172 	if (!cookie)
1173 		goto out;
1174 
1175 	if (hwpoison_filter(page)) {
1176 		rc = 0;
1177 		goto unlock;
1178 	}
1179 
1180 	switch (pgmap->type) {
1181 	case MEMORY_DEVICE_PRIVATE:
1182 	case MEMORY_DEVICE_PUBLIC:
1183 		/*
1184 		 * TODO: Handle HMM pages which may need coordination
1185 		 * with device-side memory.
1186 		 */
1187 		goto unlock;
1188 	default:
1189 		break;
1190 	}
1191 
1192 	/*
1193 	 * Use this flag as an indication that the dax page has been
1194 	 * remapped UC to prevent speculative consumption of poison.
1195 	 */
1196 	SetPageHWPoison(page);
1197 
1198 	/*
1199 	 * Unlike System-RAM there is no possibility to swap in a
1200 	 * different physical page at a given virtual address, so all
1201 	 * userspace consumption of ZONE_DEVICE memory necessitates
1202 	 * SIGBUS (i.e. MF_MUST_KILL)
1203 	 */
1204 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1205 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1206 
1207 	list_for_each_entry(tk, &tokill, nd)
1208 		if (tk->size_shift)
1209 			size = max(size, 1UL << tk->size_shift);
1210 	if (size) {
1211 		/*
1212 		 * Unmap the largest mapping to avoid breaking up
1213 		 * device-dax mappings which are constant size. The
1214 		 * actual size of the mapping being torn down is
1215 		 * communicated in siginfo, see kill_proc()
1216 		 */
1217 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1218 		unmap_mapping_range(page->mapping, start, start + size, 0);
1219 	}
1220 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1221 	rc = 0;
1222 unlock:
1223 	dax_unlock_page(page, cookie);
1224 out:
1225 	/* drop pgmap ref acquired in caller */
1226 	put_dev_pagemap(pgmap);
1227 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1228 	return rc;
1229 }
1230 
1231 /**
1232  * memory_failure - Handle memory failure of a page.
1233  * @pfn: Page Number of the corrupted page
1234  * @flags: fine tune action taken
1235  *
1236  * This function is called by the low level machine check code
1237  * of an architecture when it detects hardware memory corruption
1238  * of a page. It tries its best to recover, which includes
1239  * dropping pages, killing processes etc.
1240  *
1241  * The function is primarily of use for corruptions that
1242  * happen outside the current execution context (e.g. when
1243  * detected by a background scrubber)
1244  *
1245  * Must run in process context (e.g. a work queue) with interrupts
1246  * enabled and no spinlocks hold.
1247  */
1248 int memory_failure(unsigned long pfn, int flags)
1249 {
1250 	struct page *p;
1251 	struct page *hpage;
1252 	struct page *orig_head;
1253 	struct dev_pagemap *pgmap;
1254 	int res;
1255 	unsigned long page_flags;
1256 
1257 	if (!sysctl_memory_failure_recovery)
1258 		panic("Memory failure on page %lx", pfn);
1259 
1260 	if (!pfn_valid(pfn)) {
1261 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1262 			pfn);
1263 		return -ENXIO;
1264 	}
1265 
1266 	pgmap = get_dev_pagemap(pfn, NULL);
1267 	if (pgmap)
1268 		return memory_failure_dev_pagemap(pfn, flags, pgmap);
1269 
1270 	p = pfn_to_page(pfn);
1271 	if (PageHuge(p))
1272 		return memory_failure_hugetlb(pfn, flags);
1273 	if (TestSetPageHWPoison(p)) {
1274 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1275 			pfn);
1276 		return 0;
1277 	}
1278 
1279 	orig_head = hpage = compound_head(p);
1280 	num_poisoned_pages_inc();
1281 
1282 	/*
1283 	 * We need/can do nothing about count=0 pages.
1284 	 * 1) it's a free page, and therefore in safe hand:
1285 	 *    prep_new_page() will be the gate keeper.
1286 	 * 2) it's part of a non-compound high order page.
1287 	 *    Implies some kernel user: cannot stop them from
1288 	 *    R/W the page; let's pray that the page has been
1289 	 *    used and will be freed some time later.
1290 	 * In fact it's dangerous to directly bump up page count from 0,
1291 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1292 	 */
1293 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1294 		if (is_free_buddy_page(p)) {
1295 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1296 			return 0;
1297 		} else {
1298 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1299 			return -EBUSY;
1300 		}
1301 	}
1302 
1303 	if (PageTransHuge(hpage)) {
1304 		lock_page(p);
1305 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1306 			unlock_page(p);
1307 			if (!PageAnon(p))
1308 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1309 					pfn);
1310 			else
1311 				pr_err("Memory failure: %#lx: thp split failed\n",
1312 					pfn);
1313 			if (TestClearPageHWPoison(p))
1314 				num_poisoned_pages_dec();
1315 			put_hwpoison_page(p);
1316 			return -EBUSY;
1317 		}
1318 		unlock_page(p);
1319 		VM_BUG_ON_PAGE(!page_count(p), p);
1320 		hpage = compound_head(p);
1321 	}
1322 
1323 	/*
1324 	 * We ignore non-LRU pages for good reasons.
1325 	 * - PG_locked is only well defined for LRU pages and a few others
1326 	 * - to avoid races with __SetPageLocked()
1327 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1328 	 * The check (unnecessarily) ignores LRU pages being isolated and
1329 	 * walked by the page reclaim code, however that's not a big loss.
1330 	 */
1331 	shake_page(p, 0);
1332 	/* shake_page could have turned it free. */
1333 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1334 		if (flags & MF_COUNT_INCREASED)
1335 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1336 		else
1337 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1338 		return 0;
1339 	}
1340 
1341 	lock_page(p);
1342 
1343 	/*
1344 	 * The page could have changed compound pages during the locking.
1345 	 * If this happens just bail out.
1346 	 */
1347 	if (PageCompound(p) && compound_head(p) != orig_head) {
1348 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1349 		res = -EBUSY;
1350 		goto out;
1351 	}
1352 
1353 	/*
1354 	 * We use page flags to determine what action should be taken, but
1355 	 * the flags can be modified by the error containment action.  One
1356 	 * example is an mlocked page, where PG_mlocked is cleared by
1357 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1358 	 * correctly, we save a copy of the page flags at this time.
1359 	 */
1360 	if (PageHuge(p))
1361 		page_flags = hpage->flags;
1362 	else
1363 		page_flags = p->flags;
1364 
1365 	/*
1366 	 * unpoison always clear PG_hwpoison inside page lock
1367 	 */
1368 	if (!PageHWPoison(p)) {
1369 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1370 		num_poisoned_pages_dec();
1371 		unlock_page(p);
1372 		put_hwpoison_page(p);
1373 		return 0;
1374 	}
1375 	if (hwpoison_filter(p)) {
1376 		if (TestClearPageHWPoison(p))
1377 			num_poisoned_pages_dec();
1378 		unlock_page(p);
1379 		put_hwpoison_page(p);
1380 		return 0;
1381 	}
1382 
1383 	if (!PageTransTail(p) && !PageLRU(p))
1384 		goto identify_page_state;
1385 
1386 	/*
1387 	 * It's very difficult to mess with pages currently under IO
1388 	 * and in many cases impossible, so we just avoid it here.
1389 	 */
1390 	wait_on_page_writeback(p);
1391 
1392 	/*
1393 	 * Now take care of user space mappings.
1394 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1395 	 *
1396 	 * When the raw error page is thp tail page, hpage points to the raw
1397 	 * page after thp split.
1398 	 */
1399 	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1400 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1401 		res = -EBUSY;
1402 		goto out;
1403 	}
1404 
1405 	/*
1406 	 * Torn down by someone else?
1407 	 */
1408 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1409 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1410 		res = -EBUSY;
1411 		goto out;
1412 	}
1413 
1414 identify_page_state:
1415 	res = identify_page_state(pfn, p, page_flags);
1416 out:
1417 	unlock_page(p);
1418 	return res;
1419 }
1420 EXPORT_SYMBOL_GPL(memory_failure);
1421 
1422 #define MEMORY_FAILURE_FIFO_ORDER	4
1423 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1424 
1425 struct memory_failure_entry {
1426 	unsigned long pfn;
1427 	int flags;
1428 };
1429 
1430 struct memory_failure_cpu {
1431 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1432 		      MEMORY_FAILURE_FIFO_SIZE);
1433 	spinlock_t lock;
1434 	struct work_struct work;
1435 };
1436 
1437 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1438 
1439 /**
1440  * memory_failure_queue - Schedule handling memory failure of a page.
1441  * @pfn: Page Number of the corrupted page
1442  * @flags: Flags for memory failure handling
1443  *
1444  * This function is called by the low level hardware error handler
1445  * when it detects hardware memory corruption of a page. It schedules
1446  * the recovering of error page, including dropping pages, killing
1447  * processes etc.
1448  *
1449  * The function is primarily of use for corruptions that
1450  * happen outside the current execution context (e.g. when
1451  * detected by a background scrubber)
1452  *
1453  * Can run in IRQ context.
1454  */
1455 void memory_failure_queue(unsigned long pfn, int flags)
1456 {
1457 	struct memory_failure_cpu *mf_cpu;
1458 	unsigned long proc_flags;
1459 	struct memory_failure_entry entry = {
1460 		.pfn =		pfn,
1461 		.flags =	flags,
1462 	};
1463 
1464 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1465 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1466 	if (kfifo_put(&mf_cpu->fifo, entry))
1467 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1468 	else
1469 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1470 		       pfn);
1471 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1472 	put_cpu_var(memory_failure_cpu);
1473 }
1474 EXPORT_SYMBOL_GPL(memory_failure_queue);
1475 
1476 static void memory_failure_work_func(struct work_struct *work)
1477 {
1478 	struct memory_failure_cpu *mf_cpu;
1479 	struct memory_failure_entry entry = { 0, };
1480 	unsigned long proc_flags;
1481 	int gotten;
1482 
1483 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1484 	for (;;) {
1485 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1486 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1487 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1488 		if (!gotten)
1489 			break;
1490 		if (entry.flags & MF_SOFT_OFFLINE)
1491 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1492 		else
1493 			memory_failure(entry.pfn, entry.flags);
1494 	}
1495 }
1496 
1497 static int __init memory_failure_init(void)
1498 {
1499 	struct memory_failure_cpu *mf_cpu;
1500 	int cpu;
1501 
1502 	for_each_possible_cpu(cpu) {
1503 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1504 		spin_lock_init(&mf_cpu->lock);
1505 		INIT_KFIFO(mf_cpu->fifo);
1506 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1507 	}
1508 
1509 	return 0;
1510 }
1511 core_initcall(memory_failure_init);
1512 
1513 #define unpoison_pr_info(fmt, pfn, rs)			\
1514 ({							\
1515 	if (__ratelimit(rs))				\
1516 		pr_info(fmt, pfn);			\
1517 })
1518 
1519 /**
1520  * unpoison_memory - Unpoison a previously poisoned page
1521  * @pfn: Page number of the to be unpoisoned page
1522  *
1523  * Software-unpoison a page that has been poisoned by
1524  * memory_failure() earlier.
1525  *
1526  * This is only done on the software-level, so it only works
1527  * for linux injected failures, not real hardware failures
1528  *
1529  * Returns 0 for success, otherwise -errno.
1530  */
1531 int unpoison_memory(unsigned long pfn)
1532 {
1533 	struct page *page;
1534 	struct page *p;
1535 	int freeit = 0;
1536 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1537 					DEFAULT_RATELIMIT_BURST);
1538 
1539 	if (!pfn_valid(pfn))
1540 		return -ENXIO;
1541 
1542 	p = pfn_to_page(pfn);
1543 	page = compound_head(p);
1544 
1545 	if (!PageHWPoison(p)) {
1546 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1547 				 pfn, &unpoison_rs);
1548 		return 0;
1549 	}
1550 
1551 	if (page_count(page) > 1) {
1552 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1553 				 pfn, &unpoison_rs);
1554 		return 0;
1555 	}
1556 
1557 	if (page_mapped(page)) {
1558 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1559 				 pfn, &unpoison_rs);
1560 		return 0;
1561 	}
1562 
1563 	if (page_mapping(page)) {
1564 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1565 				 pfn, &unpoison_rs);
1566 		return 0;
1567 	}
1568 
1569 	/*
1570 	 * unpoison_memory() can encounter thp only when the thp is being
1571 	 * worked by memory_failure() and the page lock is not held yet.
1572 	 * In such case, we yield to memory_failure() and make unpoison fail.
1573 	 */
1574 	if (!PageHuge(page) && PageTransHuge(page)) {
1575 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1576 				 pfn, &unpoison_rs);
1577 		return 0;
1578 	}
1579 
1580 	if (!get_hwpoison_page(p)) {
1581 		if (TestClearPageHWPoison(p))
1582 			num_poisoned_pages_dec();
1583 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1584 				 pfn, &unpoison_rs);
1585 		return 0;
1586 	}
1587 
1588 	lock_page(page);
1589 	/*
1590 	 * This test is racy because PG_hwpoison is set outside of page lock.
1591 	 * That's acceptable because that won't trigger kernel panic. Instead,
1592 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1593 	 * the free buddy page pool.
1594 	 */
1595 	if (TestClearPageHWPoison(page)) {
1596 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1597 				 pfn, &unpoison_rs);
1598 		num_poisoned_pages_dec();
1599 		freeit = 1;
1600 	}
1601 	unlock_page(page);
1602 
1603 	put_hwpoison_page(page);
1604 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1605 		put_hwpoison_page(page);
1606 
1607 	return 0;
1608 }
1609 EXPORT_SYMBOL(unpoison_memory);
1610 
1611 static struct page *new_page(struct page *p, unsigned long private)
1612 {
1613 	int nid = page_to_nid(p);
1614 
1615 	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1616 }
1617 
1618 /*
1619  * Safely get reference count of an arbitrary page.
1620  * Returns 0 for a free page, -EIO for a zero refcount page
1621  * that is not free, and 1 for any other page type.
1622  * For 1 the page is returned with increased page count, otherwise not.
1623  */
1624 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1625 {
1626 	int ret;
1627 
1628 	if (flags & MF_COUNT_INCREASED)
1629 		return 1;
1630 
1631 	/*
1632 	 * When the target page is a free hugepage, just remove it
1633 	 * from free hugepage list.
1634 	 */
1635 	if (!get_hwpoison_page(p)) {
1636 		if (PageHuge(p)) {
1637 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1638 			ret = 0;
1639 		} else if (is_free_buddy_page(p)) {
1640 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1641 			ret = 0;
1642 		} else {
1643 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1644 				__func__, pfn, p->flags);
1645 			ret = -EIO;
1646 		}
1647 	} else {
1648 		/* Not a free page */
1649 		ret = 1;
1650 	}
1651 	return ret;
1652 }
1653 
1654 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1655 {
1656 	int ret = __get_any_page(page, pfn, flags);
1657 
1658 	if (ret == 1 && !PageHuge(page) &&
1659 	    !PageLRU(page) && !__PageMovable(page)) {
1660 		/*
1661 		 * Try to free it.
1662 		 */
1663 		put_hwpoison_page(page);
1664 		shake_page(page, 1);
1665 
1666 		/*
1667 		 * Did it turn free?
1668 		 */
1669 		ret = __get_any_page(page, pfn, 0);
1670 		if (ret == 1 && !PageLRU(page)) {
1671 			/* Drop page reference which is from __get_any_page() */
1672 			put_hwpoison_page(page);
1673 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1674 				pfn, page->flags, &page->flags);
1675 			return -EIO;
1676 		}
1677 	}
1678 	return ret;
1679 }
1680 
1681 static int soft_offline_huge_page(struct page *page, int flags)
1682 {
1683 	int ret;
1684 	unsigned long pfn = page_to_pfn(page);
1685 	struct page *hpage = compound_head(page);
1686 	LIST_HEAD(pagelist);
1687 
1688 	/*
1689 	 * This double-check of PageHWPoison is to avoid the race with
1690 	 * memory_failure(). See also comment in __soft_offline_page().
1691 	 */
1692 	lock_page(hpage);
1693 	if (PageHWPoison(hpage)) {
1694 		unlock_page(hpage);
1695 		put_hwpoison_page(hpage);
1696 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1697 		return -EBUSY;
1698 	}
1699 	unlock_page(hpage);
1700 
1701 	ret = isolate_huge_page(hpage, &pagelist);
1702 	/*
1703 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1704 	 * so need to drop one here.
1705 	 */
1706 	put_hwpoison_page(hpage);
1707 	if (!ret) {
1708 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1709 		return -EBUSY;
1710 	}
1711 
1712 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1713 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1714 	if (ret) {
1715 		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1716 			pfn, ret, page->flags, &page->flags);
1717 		if (!list_empty(&pagelist))
1718 			putback_movable_pages(&pagelist);
1719 		if (ret > 0)
1720 			ret = -EIO;
1721 	} else {
1722 		/*
1723 		 * We set PG_hwpoison only when the migration source hugepage
1724 		 * was successfully dissolved, because otherwise hwpoisoned
1725 		 * hugepage remains on free hugepage list, then userspace will
1726 		 * find it as SIGBUS by allocation failure. That's not expected
1727 		 * in soft-offlining.
1728 		 */
1729 		ret = dissolve_free_huge_page(page);
1730 		if (!ret) {
1731 			if (set_hwpoison_free_buddy_page(page))
1732 				num_poisoned_pages_inc();
1733 		}
1734 	}
1735 	return ret;
1736 }
1737 
1738 static int __soft_offline_page(struct page *page, int flags)
1739 {
1740 	int ret;
1741 	unsigned long pfn = page_to_pfn(page);
1742 
1743 	/*
1744 	 * Check PageHWPoison again inside page lock because PageHWPoison
1745 	 * is set by memory_failure() outside page lock. Note that
1746 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1747 	 * so there's no race between soft_offline_page() and memory_failure().
1748 	 */
1749 	lock_page(page);
1750 	wait_on_page_writeback(page);
1751 	if (PageHWPoison(page)) {
1752 		unlock_page(page);
1753 		put_hwpoison_page(page);
1754 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1755 		return -EBUSY;
1756 	}
1757 	/*
1758 	 * Try to invalidate first. This should work for
1759 	 * non dirty unmapped page cache pages.
1760 	 */
1761 	ret = invalidate_inode_page(page);
1762 	unlock_page(page);
1763 	/*
1764 	 * RED-PEN would be better to keep it isolated here, but we
1765 	 * would need to fix isolation locking first.
1766 	 */
1767 	if (ret == 1) {
1768 		put_hwpoison_page(page);
1769 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1770 		SetPageHWPoison(page);
1771 		num_poisoned_pages_inc();
1772 		return 0;
1773 	}
1774 
1775 	/*
1776 	 * Simple invalidation didn't work.
1777 	 * Try to migrate to a new page instead. migrate.c
1778 	 * handles a large number of cases for us.
1779 	 */
1780 	if (PageLRU(page))
1781 		ret = isolate_lru_page(page);
1782 	else
1783 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1784 	/*
1785 	 * Drop page reference which is came from get_any_page()
1786 	 * successful isolate_lru_page() already took another one.
1787 	 */
1788 	put_hwpoison_page(page);
1789 	if (!ret) {
1790 		LIST_HEAD(pagelist);
1791 		/*
1792 		 * After isolated lru page, the PageLRU will be cleared,
1793 		 * so use !__PageMovable instead for LRU page's mapping
1794 		 * cannot have PAGE_MAPPING_MOVABLE.
1795 		 */
1796 		if (!__PageMovable(page))
1797 			inc_node_page_state(page, NR_ISOLATED_ANON +
1798 						page_is_file_cache(page));
1799 		list_add(&page->lru, &pagelist);
1800 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1801 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1802 		if (ret) {
1803 			if (!list_empty(&pagelist))
1804 				putback_movable_pages(&pagelist);
1805 
1806 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1807 				pfn, ret, page->flags, &page->flags);
1808 			if (ret > 0)
1809 				ret = -EIO;
1810 		}
1811 	} else {
1812 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1813 			pfn, ret, page_count(page), page->flags, &page->flags);
1814 	}
1815 	return ret;
1816 }
1817 
1818 static int soft_offline_in_use_page(struct page *page, int flags)
1819 {
1820 	int ret;
1821 	int mt;
1822 	struct page *hpage = compound_head(page);
1823 
1824 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1825 		lock_page(page);
1826 		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1827 			unlock_page(page);
1828 			if (!PageAnon(page))
1829 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1830 			else
1831 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1832 			put_hwpoison_page(page);
1833 			return -EBUSY;
1834 		}
1835 		unlock_page(page);
1836 	}
1837 
1838 	/*
1839 	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1840 	 * to free list immediately (not via pcplist) when released after
1841 	 * successful page migration. Otherwise we can't guarantee that the
1842 	 * page is really free after put_page() returns, so
1843 	 * set_hwpoison_free_buddy_page() highly likely fails.
1844 	 */
1845 	mt = get_pageblock_migratetype(page);
1846 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1847 	if (PageHuge(page))
1848 		ret = soft_offline_huge_page(page, flags);
1849 	else
1850 		ret = __soft_offline_page(page, flags);
1851 	set_pageblock_migratetype(page, mt);
1852 	return ret;
1853 }
1854 
1855 static int soft_offline_free_page(struct page *page)
1856 {
1857 	int rc = 0;
1858 	struct page *head = compound_head(page);
1859 
1860 	if (PageHuge(head))
1861 		rc = dissolve_free_huge_page(page);
1862 	if (!rc) {
1863 		if (set_hwpoison_free_buddy_page(page))
1864 			num_poisoned_pages_inc();
1865 		else
1866 			rc = -EBUSY;
1867 	}
1868 	return rc;
1869 }
1870 
1871 /**
1872  * soft_offline_page - Soft offline a page.
1873  * @page: page to offline
1874  * @flags: flags. Same as memory_failure().
1875  *
1876  * Returns 0 on success, otherwise negated errno.
1877  *
1878  * Soft offline a page, by migration or invalidation,
1879  * without killing anything. This is for the case when
1880  * a page is not corrupted yet (so it's still valid to access),
1881  * but has had a number of corrected errors and is better taken
1882  * out.
1883  *
1884  * The actual policy on when to do that is maintained by
1885  * user space.
1886  *
1887  * This should never impact any application or cause data loss,
1888  * however it might take some time.
1889  *
1890  * This is not a 100% solution for all memory, but tries to be
1891  * ``good enough'' for the majority of memory.
1892  */
1893 int soft_offline_page(struct page *page, int flags)
1894 {
1895 	int ret;
1896 	unsigned long pfn = page_to_pfn(page);
1897 
1898 	if (is_zone_device_page(page)) {
1899 		pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
1900 				pfn);
1901 		if (flags & MF_COUNT_INCREASED)
1902 			put_page(page);
1903 		return -EIO;
1904 	}
1905 
1906 	if (PageHWPoison(page)) {
1907 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1908 		if (flags & MF_COUNT_INCREASED)
1909 			put_hwpoison_page(page);
1910 		return -EBUSY;
1911 	}
1912 
1913 	get_online_mems();
1914 	ret = get_any_page(page, pfn, flags);
1915 	put_online_mems();
1916 
1917 	if (ret > 0)
1918 		ret = soft_offline_in_use_page(page, flags);
1919 	else if (ret == 0)
1920 		ret = soft_offline_free_page(page);
1921 
1922 	return ret;
1923 }
1924