1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 #include <linux/kernel.h> 37 #include <linux/mm.h> 38 #include <linux/page-flags.h> 39 #include <linux/kernel-page-flags.h> 40 #include <linux/sched/signal.h> 41 #include <linux/sched/task.h> 42 #include <linux/ksm.h> 43 #include <linux/rmap.h> 44 #include <linux/export.h> 45 #include <linux/pagemap.h> 46 #include <linux/swap.h> 47 #include <linux/backing-dev.h> 48 #include <linux/migrate.h> 49 #include <linux/suspend.h> 50 #include <linux/slab.h> 51 #include <linux/swapops.h> 52 #include <linux/hugetlb.h> 53 #include <linux/memory_hotplug.h> 54 #include <linux/mm_inline.h> 55 #include <linux/memremap.h> 56 #include <linux/kfifo.h> 57 #include <linux/ratelimit.h> 58 #include <linux/page-isolation.h> 59 #include "internal.h" 60 #include "ras/ras_event.h" 61 62 int sysctl_memory_failure_early_kill __read_mostly = 0; 63 64 int sysctl_memory_failure_recovery __read_mostly = 1; 65 66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 67 68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 69 70 u32 hwpoison_filter_enable = 0; 71 u32 hwpoison_filter_dev_major = ~0U; 72 u32 hwpoison_filter_dev_minor = ~0U; 73 u64 hwpoison_filter_flags_mask; 74 u64 hwpoison_filter_flags_value; 75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 80 81 static int hwpoison_filter_dev(struct page *p) 82 { 83 struct address_space *mapping; 84 dev_t dev; 85 86 if (hwpoison_filter_dev_major == ~0U && 87 hwpoison_filter_dev_minor == ~0U) 88 return 0; 89 90 /* 91 * page_mapping() does not accept slab pages. 92 */ 93 if (PageSlab(p)) 94 return -EINVAL; 95 96 mapping = page_mapping(p); 97 if (mapping == NULL || mapping->host == NULL) 98 return -EINVAL; 99 100 dev = mapping->host->i_sb->s_dev; 101 if (hwpoison_filter_dev_major != ~0U && 102 hwpoison_filter_dev_major != MAJOR(dev)) 103 return -EINVAL; 104 if (hwpoison_filter_dev_minor != ~0U && 105 hwpoison_filter_dev_minor != MINOR(dev)) 106 return -EINVAL; 107 108 return 0; 109 } 110 111 static int hwpoison_filter_flags(struct page *p) 112 { 113 if (!hwpoison_filter_flags_mask) 114 return 0; 115 116 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 117 hwpoison_filter_flags_value) 118 return 0; 119 else 120 return -EINVAL; 121 } 122 123 /* 124 * This allows stress tests to limit test scope to a collection of tasks 125 * by putting them under some memcg. This prevents killing unrelated/important 126 * processes such as /sbin/init. Note that the target task may share clean 127 * pages with init (eg. libc text), which is harmless. If the target task 128 * share _dirty_ pages with another task B, the test scheme must make sure B 129 * is also included in the memcg. At last, due to race conditions this filter 130 * can only guarantee that the page either belongs to the memcg tasks, or is 131 * a freed page. 132 */ 133 #ifdef CONFIG_MEMCG 134 u64 hwpoison_filter_memcg; 135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 136 static int hwpoison_filter_task(struct page *p) 137 { 138 if (!hwpoison_filter_memcg) 139 return 0; 140 141 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 142 return -EINVAL; 143 144 return 0; 145 } 146 #else 147 static int hwpoison_filter_task(struct page *p) { return 0; } 148 #endif 149 150 int hwpoison_filter(struct page *p) 151 { 152 if (!hwpoison_filter_enable) 153 return 0; 154 155 if (hwpoison_filter_dev(p)) 156 return -EINVAL; 157 158 if (hwpoison_filter_flags(p)) 159 return -EINVAL; 160 161 if (hwpoison_filter_task(p)) 162 return -EINVAL; 163 164 return 0; 165 } 166 #else 167 int hwpoison_filter(struct page *p) 168 { 169 return 0; 170 } 171 #endif 172 173 EXPORT_SYMBOL_GPL(hwpoison_filter); 174 175 /* 176 * Kill all processes that have a poisoned page mapped and then isolate 177 * the page. 178 * 179 * General strategy: 180 * Find all processes having the page mapped and kill them. 181 * But we keep a page reference around so that the page is not 182 * actually freed yet. 183 * Then stash the page away 184 * 185 * There's no convenient way to get back to mapped processes 186 * from the VMAs. So do a brute-force search over all 187 * running processes. 188 * 189 * Remember that machine checks are not common (or rather 190 * if they are common you have other problems), so this shouldn't 191 * be a performance issue. 192 * 193 * Also there are some races possible while we get from the 194 * error detection to actually handle it. 195 */ 196 197 struct to_kill { 198 struct list_head nd; 199 struct task_struct *tsk; 200 unsigned long addr; 201 short size_shift; 202 char addr_valid; 203 }; 204 205 /* 206 * Send all the processes who have the page mapped a signal. 207 * ``action optional'' if they are not immediately affected by the error 208 * ``action required'' if error happened in current execution context 209 */ 210 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 211 { 212 struct task_struct *t = tk->tsk; 213 short addr_lsb = tk->size_shift; 214 int ret; 215 216 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n", 217 pfn, t->comm, t->pid); 218 219 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 220 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr, 221 addr_lsb, current); 222 } else { 223 /* 224 * Don't use force here, it's convenient if the signal 225 * can be temporarily blocked. 226 * This could cause a loop when the user sets SIGBUS 227 * to SIG_IGN, but hopefully no one will do that? 228 */ 229 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 230 addr_lsb, t); /* synchronous? */ 231 } 232 if (ret < 0) 233 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 234 t->comm, t->pid, ret); 235 return ret; 236 } 237 238 /* 239 * When a unknown page type is encountered drain as many buffers as possible 240 * in the hope to turn the page into a LRU or free page, which we can handle. 241 */ 242 void shake_page(struct page *p, int access) 243 { 244 if (PageHuge(p)) 245 return; 246 247 if (!PageSlab(p)) { 248 lru_add_drain_all(); 249 if (PageLRU(p)) 250 return; 251 drain_all_pages(page_zone(p)); 252 if (PageLRU(p) || is_free_buddy_page(p)) 253 return; 254 } 255 256 /* 257 * Only call shrink_node_slabs here (which would also shrink 258 * other caches) if access is not potentially fatal. 259 */ 260 if (access) 261 drop_slab_node(page_to_nid(p)); 262 } 263 EXPORT_SYMBOL_GPL(shake_page); 264 265 static unsigned long dev_pagemap_mapping_shift(struct page *page, 266 struct vm_area_struct *vma) 267 { 268 unsigned long address = vma_address(page, vma); 269 pgd_t *pgd; 270 p4d_t *p4d; 271 pud_t *pud; 272 pmd_t *pmd; 273 pte_t *pte; 274 275 pgd = pgd_offset(vma->vm_mm, address); 276 if (!pgd_present(*pgd)) 277 return 0; 278 p4d = p4d_offset(pgd, address); 279 if (!p4d_present(*p4d)) 280 return 0; 281 pud = pud_offset(p4d, address); 282 if (!pud_present(*pud)) 283 return 0; 284 if (pud_devmap(*pud)) 285 return PUD_SHIFT; 286 pmd = pmd_offset(pud, address); 287 if (!pmd_present(*pmd)) 288 return 0; 289 if (pmd_devmap(*pmd)) 290 return PMD_SHIFT; 291 pte = pte_offset_map(pmd, address); 292 if (!pte_present(*pte)) 293 return 0; 294 if (pte_devmap(*pte)) 295 return PAGE_SHIFT; 296 return 0; 297 } 298 299 /* 300 * Failure handling: if we can't find or can't kill a process there's 301 * not much we can do. We just print a message and ignore otherwise. 302 */ 303 304 /* 305 * Schedule a process for later kill. 306 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 307 * TBD would GFP_NOIO be enough? 308 */ 309 static void add_to_kill(struct task_struct *tsk, struct page *p, 310 struct vm_area_struct *vma, 311 struct list_head *to_kill, 312 struct to_kill **tkc) 313 { 314 struct to_kill *tk; 315 316 if (*tkc) { 317 tk = *tkc; 318 *tkc = NULL; 319 } else { 320 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 321 if (!tk) { 322 pr_err("Memory failure: Out of memory while machine check handling\n"); 323 return; 324 } 325 } 326 tk->addr = page_address_in_vma(p, vma); 327 tk->addr_valid = 1; 328 if (is_zone_device_page(p)) 329 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 330 else 331 tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT; 332 333 /* 334 * In theory we don't have to kill when the page was 335 * munmaped. But it could be also a mremap. Since that's 336 * likely very rare kill anyways just out of paranoia, but use 337 * a SIGKILL because the error is not contained anymore. 338 */ 339 if (tk->addr == -EFAULT || tk->size_shift == 0) { 340 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 341 page_to_pfn(p), tsk->comm); 342 tk->addr_valid = 0; 343 } 344 get_task_struct(tsk); 345 tk->tsk = tsk; 346 list_add_tail(&tk->nd, to_kill); 347 } 348 349 /* 350 * Kill the processes that have been collected earlier. 351 * 352 * Only do anything when DOIT is set, otherwise just free the list 353 * (this is used for clean pages which do not need killing) 354 * Also when FAIL is set do a force kill because something went 355 * wrong earlier. 356 */ 357 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 358 unsigned long pfn, int flags) 359 { 360 struct to_kill *tk, *next; 361 362 list_for_each_entry_safe (tk, next, to_kill, nd) { 363 if (forcekill) { 364 /* 365 * In case something went wrong with munmapping 366 * make sure the process doesn't catch the 367 * signal and then access the memory. Just kill it. 368 */ 369 if (fail || tk->addr_valid == 0) { 370 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 371 pfn, tk->tsk->comm, tk->tsk->pid); 372 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 373 tk->tsk, PIDTYPE_PID); 374 } 375 376 /* 377 * In theory the process could have mapped 378 * something else on the address in-between. We could 379 * check for that, but we need to tell the 380 * process anyways. 381 */ 382 else if (kill_proc(tk, pfn, flags) < 0) 383 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 384 pfn, tk->tsk->comm, tk->tsk->pid); 385 } 386 put_task_struct(tk->tsk); 387 kfree(tk); 388 } 389 } 390 391 /* 392 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 393 * on behalf of the thread group. Return task_struct of the (first found) 394 * dedicated thread if found, and return NULL otherwise. 395 * 396 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 397 * have to call rcu_read_lock/unlock() in this function. 398 */ 399 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 400 { 401 struct task_struct *t; 402 403 for_each_thread(tsk, t) 404 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 405 return t; 406 return NULL; 407 } 408 409 /* 410 * Determine whether a given process is "early kill" process which expects 411 * to be signaled when some page under the process is hwpoisoned. 412 * Return task_struct of the dedicated thread (main thread unless explicitly 413 * specified) if the process is "early kill," and otherwise returns NULL. 414 */ 415 static struct task_struct *task_early_kill(struct task_struct *tsk, 416 int force_early) 417 { 418 struct task_struct *t; 419 if (!tsk->mm) 420 return NULL; 421 if (force_early) 422 return tsk; 423 t = find_early_kill_thread(tsk); 424 if (t) 425 return t; 426 if (sysctl_memory_failure_early_kill) 427 return tsk; 428 return NULL; 429 } 430 431 /* 432 * Collect processes when the error hit an anonymous page. 433 */ 434 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 435 struct to_kill **tkc, int force_early) 436 { 437 struct vm_area_struct *vma; 438 struct task_struct *tsk; 439 struct anon_vma *av; 440 pgoff_t pgoff; 441 442 av = page_lock_anon_vma_read(page); 443 if (av == NULL) /* Not actually mapped anymore */ 444 return; 445 446 pgoff = page_to_pgoff(page); 447 read_lock(&tasklist_lock); 448 for_each_process (tsk) { 449 struct anon_vma_chain *vmac; 450 struct task_struct *t = task_early_kill(tsk, force_early); 451 452 if (!t) 453 continue; 454 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 455 pgoff, pgoff) { 456 vma = vmac->vma; 457 if (!page_mapped_in_vma(page, vma)) 458 continue; 459 if (vma->vm_mm == t->mm) 460 add_to_kill(t, page, vma, to_kill, tkc); 461 } 462 } 463 read_unlock(&tasklist_lock); 464 page_unlock_anon_vma_read(av); 465 } 466 467 /* 468 * Collect processes when the error hit a file mapped page. 469 */ 470 static void collect_procs_file(struct page *page, struct list_head *to_kill, 471 struct to_kill **tkc, int force_early) 472 { 473 struct vm_area_struct *vma; 474 struct task_struct *tsk; 475 struct address_space *mapping = page->mapping; 476 477 i_mmap_lock_read(mapping); 478 read_lock(&tasklist_lock); 479 for_each_process(tsk) { 480 pgoff_t pgoff = page_to_pgoff(page); 481 struct task_struct *t = task_early_kill(tsk, force_early); 482 483 if (!t) 484 continue; 485 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 486 pgoff) { 487 /* 488 * Send early kill signal to tasks where a vma covers 489 * the page but the corrupted page is not necessarily 490 * mapped it in its pte. 491 * Assume applications who requested early kill want 492 * to be informed of all such data corruptions. 493 */ 494 if (vma->vm_mm == t->mm) 495 add_to_kill(t, page, vma, to_kill, tkc); 496 } 497 } 498 read_unlock(&tasklist_lock); 499 i_mmap_unlock_read(mapping); 500 } 501 502 /* 503 * Collect the processes who have the corrupted page mapped to kill. 504 * This is done in two steps for locking reasons. 505 * First preallocate one tokill structure outside the spin locks, 506 * so that we can kill at least one process reasonably reliable. 507 */ 508 static void collect_procs(struct page *page, struct list_head *tokill, 509 int force_early) 510 { 511 struct to_kill *tk; 512 513 if (!page->mapping) 514 return; 515 516 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 517 if (!tk) 518 return; 519 if (PageAnon(page)) 520 collect_procs_anon(page, tokill, &tk, force_early); 521 else 522 collect_procs_file(page, tokill, &tk, force_early); 523 kfree(tk); 524 } 525 526 static const char *action_name[] = { 527 [MF_IGNORED] = "Ignored", 528 [MF_FAILED] = "Failed", 529 [MF_DELAYED] = "Delayed", 530 [MF_RECOVERED] = "Recovered", 531 }; 532 533 static const char * const action_page_types[] = { 534 [MF_MSG_KERNEL] = "reserved kernel page", 535 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 536 [MF_MSG_SLAB] = "kernel slab page", 537 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 538 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 539 [MF_MSG_HUGE] = "huge page", 540 [MF_MSG_FREE_HUGE] = "free huge page", 541 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 542 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 543 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 544 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 545 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 546 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 547 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 548 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 549 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 550 [MF_MSG_CLEAN_LRU] = "clean LRU page", 551 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 552 [MF_MSG_BUDDY] = "free buddy page", 553 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 554 [MF_MSG_DAX] = "dax page", 555 [MF_MSG_UNKNOWN] = "unknown page", 556 }; 557 558 /* 559 * XXX: It is possible that a page is isolated from LRU cache, 560 * and then kept in swap cache or failed to remove from page cache. 561 * The page count will stop it from being freed by unpoison. 562 * Stress tests should be aware of this memory leak problem. 563 */ 564 static int delete_from_lru_cache(struct page *p) 565 { 566 if (!isolate_lru_page(p)) { 567 /* 568 * Clear sensible page flags, so that the buddy system won't 569 * complain when the page is unpoison-and-freed. 570 */ 571 ClearPageActive(p); 572 ClearPageUnevictable(p); 573 574 /* 575 * Poisoned page might never drop its ref count to 0 so we have 576 * to uncharge it manually from its memcg. 577 */ 578 mem_cgroup_uncharge(p); 579 580 /* 581 * drop the page count elevated by isolate_lru_page() 582 */ 583 put_page(p); 584 return 0; 585 } 586 return -EIO; 587 } 588 589 static int truncate_error_page(struct page *p, unsigned long pfn, 590 struct address_space *mapping) 591 { 592 int ret = MF_FAILED; 593 594 if (mapping->a_ops->error_remove_page) { 595 int err = mapping->a_ops->error_remove_page(mapping, p); 596 597 if (err != 0) { 598 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 599 pfn, err); 600 } else if (page_has_private(p) && 601 !try_to_release_page(p, GFP_NOIO)) { 602 pr_info("Memory failure: %#lx: failed to release buffers\n", 603 pfn); 604 } else { 605 ret = MF_RECOVERED; 606 } 607 } else { 608 /* 609 * If the file system doesn't support it just invalidate 610 * This fails on dirty or anything with private pages 611 */ 612 if (invalidate_inode_page(p)) 613 ret = MF_RECOVERED; 614 else 615 pr_info("Memory failure: %#lx: Failed to invalidate\n", 616 pfn); 617 } 618 619 return ret; 620 } 621 622 /* 623 * Error hit kernel page. 624 * Do nothing, try to be lucky and not touch this instead. For a few cases we 625 * could be more sophisticated. 626 */ 627 static int me_kernel(struct page *p, unsigned long pfn) 628 { 629 return MF_IGNORED; 630 } 631 632 /* 633 * Page in unknown state. Do nothing. 634 */ 635 static int me_unknown(struct page *p, unsigned long pfn) 636 { 637 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 638 return MF_FAILED; 639 } 640 641 /* 642 * Clean (or cleaned) page cache page. 643 */ 644 static int me_pagecache_clean(struct page *p, unsigned long pfn) 645 { 646 struct address_space *mapping; 647 648 delete_from_lru_cache(p); 649 650 /* 651 * For anonymous pages we're done the only reference left 652 * should be the one m_f() holds. 653 */ 654 if (PageAnon(p)) 655 return MF_RECOVERED; 656 657 /* 658 * Now truncate the page in the page cache. This is really 659 * more like a "temporary hole punch" 660 * Don't do this for block devices when someone else 661 * has a reference, because it could be file system metadata 662 * and that's not safe to truncate. 663 */ 664 mapping = page_mapping(p); 665 if (!mapping) { 666 /* 667 * Page has been teared down in the meanwhile 668 */ 669 return MF_FAILED; 670 } 671 672 /* 673 * Truncation is a bit tricky. Enable it per file system for now. 674 * 675 * Open: to take i_mutex or not for this? Right now we don't. 676 */ 677 return truncate_error_page(p, pfn, mapping); 678 } 679 680 /* 681 * Dirty pagecache page 682 * Issues: when the error hit a hole page the error is not properly 683 * propagated. 684 */ 685 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 686 { 687 struct address_space *mapping = page_mapping(p); 688 689 SetPageError(p); 690 /* TBD: print more information about the file. */ 691 if (mapping) { 692 /* 693 * IO error will be reported by write(), fsync(), etc. 694 * who check the mapping. 695 * This way the application knows that something went 696 * wrong with its dirty file data. 697 * 698 * There's one open issue: 699 * 700 * The EIO will be only reported on the next IO 701 * operation and then cleared through the IO map. 702 * Normally Linux has two mechanisms to pass IO error 703 * first through the AS_EIO flag in the address space 704 * and then through the PageError flag in the page. 705 * Since we drop pages on memory failure handling the 706 * only mechanism open to use is through AS_AIO. 707 * 708 * This has the disadvantage that it gets cleared on 709 * the first operation that returns an error, while 710 * the PageError bit is more sticky and only cleared 711 * when the page is reread or dropped. If an 712 * application assumes it will always get error on 713 * fsync, but does other operations on the fd before 714 * and the page is dropped between then the error 715 * will not be properly reported. 716 * 717 * This can already happen even without hwpoisoned 718 * pages: first on metadata IO errors (which only 719 * report through AS_EIO) or when the page is dropped 720 * at the wrong time. 721 * 722 * So right now we assume that the application DTRT on 723 * the first EIO, but we're not worse than other parts 724 * of the kernel. 725 */ 726 mapping_set_error(mapping, -EIO); 727 } 728 729 return me_pagecache_clean(p, pfn); 730 } 731 732 /* 733 * Clean and dirty swap cache. 734 * 735 * Dirty swap cache page is tricky to handle. The page could live both in page 736 * cache and swap cache(ie. page is freshly swapped in). So it could be 737 * referenced concurrently by 2 types of PTEs: 738 * normal PTEs and swap PTEs. We try to handle them consistently by calling 739 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 740 * and then 741 * - clear dirty bit to prevent IO 742 * - remove from LRU 743 * - but keep in the swap cache, so that when we return to it on 744 * a later page fault, we know the application is accessing 745 * corrupted data and shall be killed (we installed simple 746 * interception code in do_swap_page to catch it). 747 * 748 * Clean swap cache pages can be directly isolated. A later page fault will 749 * bring in the known good data from disk. 750 */ 751 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 752 { 753 ClearPageDirty(p); 754 /* Trigger EIO in shmem: */ 755 ClearPageUptodate(p); 756 757 if (!delete_from_lru_cache(p)) 758 return MF_DELAYED; 759 else 760 return MF_FAILED; 761 } 762 763 static int me_swapcache_clean(struct page *p, unsigned long pfn) 764 { 765 delete_from_swap_cache(p); 766 767 if (!delete_from_lru_cache(p)) 768 return MF_RECOVERED; 769 else 770 return MF_FAILED; 771 } 772 773 /* 774 * Huge pages. Needs work. 775 * Issues: 776 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 777 * To narrow down kill region to one page, we need to break up pmd. 778 */ 779 static int me_huge_page(struct page *p, unsigned long pfn) 780 { 781 int res = 0; 782 struct page *hpage = compound_head(p); 783 struct address_space *mapping; 784 785 if (!PageHuge(hpage)) 786 return MF_DELAYED; 787 788 mapping = page_mapping(hpage); 789 if (mapping) { 790 res = truncate_error_page(hpage, pfn, mapping); 791 } else { 792 unlock_page(hpage); 793 /* 794 * migration entry prevents later access on error anonymous 795 * hugepage, so we can free and dissolve it into buddy to 796 * save healthy subpages. 797 */ 798 if (PageAnon(hpage)) 799 put_page(hpage); 800 dissolve_free_huge_page(p); 801 res = MF_RECOVERED; 802 lock_page(hpage); 803 } 804 805 return res; 806 } 807 808 /* 809 * Various page states we can handle. 810 * 811 * A page state is defined by its current page->flags bits. 812 * The table matches them in order and calls the right handler. 813 * 814 * This is quite tricky because we can access page at any time 815 * in its live cycle, so all accesses have to be extremely careful. 816 * 817 * This is not complete. More states could be added. 818 * For any missing state don't attempt recovery. 819 */ 820 821 #define dirty (1UL << PG_dirty) 822 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 823 #define unevict (1UL << PG_unevictable) 824 #define mlock (1UL << PG_mlocked) 825 #define writeback (1UL << PG_writeback) 826 #define lru (1UL << PG_lru) 827 #define head (1UL << PG_head) 828 #define slab (1UL << PG_slab) 829 #define reserved (1UL << PG_reserved) 830 831 static struct page_state { 832 unsigned long mask; 833 unsigned long res; 834 enum mf_action_page_type type; 835 int (*action)(struct page *p, unsigned long pfn); 836 } error_states[] = { 837 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 838 /* 839 * free pages are specially detected outside this table: 840 * PG_buddy pages only make a small fraction of all free pages. 841 */ 842 843 /* 844 * Could in theory check if slab page is free or if we can drop 845 * currently unused objects without touching them. But just 846 * treat it as standard kernel for now. 847 */ 848 { slab, slab, MF_MSG_SLAB, me_kernel }, 849 850 { head, head, MF_MSG_HUGE, me_huge_page }, 851 852 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 853 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 854 855 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 856 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 857 858 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 859 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 860 861 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 862 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 863 864 /* 865 * Catchall entry: must be at end. 866 */ 867 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 868 }; 869 870 #undef dirty 871 #undef sc 872 #undef unevict 873 #undef mlock 874 #undef writeback 875 #undef lru 876 #undef head 877 #undef slab 878 #undef reserved 879 880 /* 881 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 882 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 883 */ 884 static void action_result(unsigned long pfn, enum mf_action_page_type type, 885 enum mf_result result) 886 { 887 trace_memory_failure_event(pfn, type, result); 888 889 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 890 pfn, action_page_types[type], action_name[result]); 891 } 892 893 static int page_action(struct page_state *ps, struct page *p, 894 unsigned long pfn) 895 { 896 int result; 897 int count; 898 899 result = ps->action(p, pfn); 900 901 count = page_count(p) - 1; 902 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 903 count--; 904 if (count > 0) { 905 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 906 pfn, action_page_types[ps->type], count); 907 result = MF_FAILED; 908 } 909 action_result(pfn, ps->type, result); 910 911 /* Could do more checks here if page looks ok */ 912 /* 913 * Could adjust zone counters here to correct for the missing page. 914 */ 915 916 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 917 } 918 919 /** 920 * get_hwpoison_page() - Get refcount for memory error handling: 921 * @page: raw error page (hit by memory error) 922 * 923 * Return: return 0 if failed to grab the refcount, otherwise true (some 924 * non-zero value.) 925 */ 926 int get_hwpoison_page(struct page *page) 927 { 928 struct page *head = compound_head(page); 929 930 if (!PageHuge(head) && PageTransHuge(head)) { 931 /* 932 * Non anonymous thp exists only in allocation/free time. We 933 * can't handle such a case correctly, so let's give it up. 934 * This should be better than triggering BUG_ON when kernel 935 * tries to touch the "partially handled" page. 936 */ 937 if (!PageAnon(head)) { 938 pr_err("Memory failure: %#lx: non anonymous thp\n", 939 page_to_pfn(page)); 940 return 0; 941 } 942 } 943 944 if (get_page_unless_zero(head)) { 945 if (head == compound_head(page)) 946 return 1; 947 948 pr_info("Memory failure: %#lx cannot catch tail\n", 949 page_to_pfn(page)); 950 put_page(head); 951 } 952 953 return 0; 954 } 955 EXPORT_SYMBOL_GPL(get_hwpoison_page); 956 957 /* 958 * Do all that is necessary to remove user space mappings. Unmap 959 * the pages and send SIGBUS to the processes if the data was dirty. 960 */ 961 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 962 int flags, struct page **hpagep) 963 { 964 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 965 struct address_space *mapping; 966 LIST_HEAD(tokill); 967 bool unmap_success; 968 int kill = 1, forcekill; 969 struct page *hpage = *hpagep; 970 bool mlocked = PageMlocked(hpage); 971 972 /* 973 * Here we are interested only in user-mapped pages, so skip any 974 * other types of pages. 975 */ 976 if (PageReserved(p) || PageSlab(p)) 977 return true; 978 if (!(PageLRU(hpage) || PageHuge(p))) 979 return true; 980 981 /* 982 * This check implies we don't kill processes if their pages 983 * are in the swap cache early. Those are always late kills. 984 */ 985 if (!page_mapped(hpage)) 986 return true; 987 988 if (PageKsm(p)) { 989 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 990 return false; 991 } 992 993 if (PageSwapCache(p)) { 994 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 995 pfn); 996 ttu |= TTU_IGNORE_HWPOISON; 997 } 998 999 /* 1000 * Propagate the dirty bit from PTEs to struct page first, because we 1001 * need this to decide if we should kill or just drop the page. 1002 * XXX: the dirty test could be racy: set_page_dirty() may not always 1003 * be called inside page lock (it's recommended but not enforced). 1004 */ 1005 mapping = page_mapping(hpage); 1006 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1007 mapping_cap_writeback_dirty(mapping)) { 1008 if (page_mkclean(hpage)) { 1009 SetPageDirty(hpage); 1010 } else { 1011 kill = 0; 1012 ttu |= TTU_IGNORE_HWPOISON; 1013 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1014 pfn); 1015 } 1016 } 1017 1018 /* 1019 * First collect all the processes that have the page 1020 * mapped in dirty form. This has to be done before try_to_unmap, 1021 * because ttu takes the rmap data structures down. 1022 * 1023 * Error handling: We ignore errors here because 1024 * there's nothing that can be done. 1025 */ 1026 if (kill) 1027 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1028 1029 unmap_success = try_to_unmap(hpage, ttu); 1030 if (!unmap_success) 1031 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1032 pfn, page_mapcount(hpage)); 1033 1034 /* 1035 * try_to_unmap() might put mlocked page in lru cache, so call 1036 * shake_page() again to ensure that it's flushed. 1037 */ 1038 if (mlocked) 1039 shake_page(hpage, 0); 1040 1041 /* 1042 * Now that the dirty bit has been propagated to the 1043 * struct page and all unmaps done we can decide if 1044 * killing is needed or not. Only kill when the page 1045 * was dirty or the process is not restartable, 1046 * otherwise the tokill list is merely 1047 * freed. When there was a problem unmapping earlier 1048 * use a more force-full uncatchable kill to prevent 1049 * any accesses to the poisoned memory. 1050 */ 1051 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1052 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1053 1054 return unmap_success; 1055 } 1056 1057 static int identify_page_state(unsigned long pfn, struct page *p, 1058 unsigned long page_flags) 1059 { 1060 struct page_state *ps; 1061 1062 /* 1063 * The first check uses the current page flags which may not have any 1064 * relevant information. The second check with the saved page flags is 1065 * carried out only if the first check can't determine the page status. 1066 */ 1067 for (ps = error_states;; ps++) 1068 if ((p->flags & ps->mask) == ps->res) 1069 break; 1070 1071 page_flags |= (p->flags & (1UL << PG_dirty)); 1072 1073 if (!ps->mask) 1074 for (ps = error_states;; ps++) 1075 if ((page_flags & ps->mask) == ps->res) 1076 break; 1077 return page_action(ps, p, pfn); 1078 } 1079 1080 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1081 { 1082 struct page *p = pfn_to_page(pfn); 1083 struct page *head = compound_head(p); 1084 int res; 1085 unsigned long page_flags; 1086 1087 if (TestSetPageHWPoison(head)) { 1088 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1089 pfn); 1090 return 0; 1091 } 1092 1093 num_poisoned_pages_inc(); 1094 1095 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1096 /* 1097 * Check "filter hit" and "race with other subpage." 1098 */ 1099 lock_page(head); 1100 if (PageHWPoison(head)) { 1101 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1102 || (p != head && TestSetPageHWPoison(head))) { 1103 num_poisoned_pages_dec(); 1104 unlock_page(head); 1105 return 0; 1106 } 1107 } 1108 unlock_page(head); 1109 dissolve_free_huge_page(p); 1110 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED); 1111 return 0; 1112 } 1113 1114 lock_page(head); 1115 page_flags = head->flags; 1116 1117 if (!PageHWPoison(head)) { 1118 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1119 num_poisoned_pages_dec(); 1120 unlock_page(head); 1121 put_hwpoison_page(head); 1122 return 0; 1123 } 1124 1125 /* 1126 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1127 * simply disable it. In order to make it work properly, we need 1128 * make sure that: 1129 * - conversion of a pud that maps an error hugetlb into hwpoison 1130 * entry properly works, and 1131 * - other mm code walking over page table is aware of pud-aligned 1132 * hwpoison entries. 1133 */ 1134 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1135 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1136 res = -EBUSY; 1137 goto out; 1138 } 1139 1140 if (!hwpoison_user_mappings(p, pfn, flags, &head)) { 1141 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1142 res = -EBUSY; 1143 goto out; 1144 } 1145 1146 res = identify_page_state(pfn, p, page_flags); 1147 out: 1148 unlock_page(head); 1149 return res; 1150 } 1151 1152 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1153 struct dev_pagemap *pgmap) 1154 { 1155 struct page *page = pfn_to_page(pfn); 1156 const bool unmap_success = true; 1157 unsigned long size = 0; 1158 struct to_kill *tk; 1159 LIST_HEAD(tokill); 1160 int rc = -EBUSY; 1161 loff_t start; 1162 dax_entry_t cookie; 1163 1164 /* 1165 * Prevent the inode from being freed while we are interrogating 1166 * the address_space, typically this would be handled by 1167 * lock_page(), but dax pages do not use the page lock. This 1168 * also prevents changes to the mapping of this pfn until 1169 * poison signaling is complete. 1170 */ 1171 cookie = dax_lock_page(page); 1172 if (!cookie) 1173 goto out; 1174 1175 if (hwpoison_filter(page)) { 1176 rc = 0; 1177 goto unlock; 1178 } 1179 1180 switch (pgmap->type) { 1181 case MEMORY_DEVICE_PRIVATE: 1182 case MEMORY_DEVICE_PUBLIC: 1183 /* 1184 * TODO: Handle HMM pages which may need coordination 1185 * with device-side memory. 1186 */ 1187 goto unlock; 1188 default: 1189 break; 1190 } 1191 1192 /* 1193 * Use this flag as an indication that the dax page has been 1194 * remapped UC to prevent speculative consumption of poison. 1195 */ 1196 SetPageHWPoison(page); 1197 1198 /* 1199 * Unlike System-RAM there is no possibility to swap in a 1200 * different physical page at a given virtual address, so all 1201 * userspace consumption of ZONE_DEVICE memory necessitates 1202 * SIGBUS (i.e. MF_MUST_KILL) 1203 */ 1204 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1205 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); 1206 1207 list_for_each_entry(tk, &tokill, nd) 1208 if (tk->size_shift) 1209 size = max(size, 1UL << tk->size_shift); 1210 if (size) { 1211 /* 1212 * Unmap the largest mapping to avoid breaking up 1213 * device-dax mappings which are constant size. The 1214 * actual size of the mapping being torn down is 1215 * communicated in siginfo, see kill_proc() 1216 */ 1217 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1218 unmap_mapping_range(page->mapping, start, start + size, 0); 1219 } 1220 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags); 1221 rc = 0; 1222 unlock: 1223 dax_unlock_page(page, cookie); 1224 out: 1225 /* drop pgmap ref acquired in caller */ 1226 put_dev_pagemap(pgmap); 1227 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1228 return rc; 1229 } 1230 1231 /** 1232 * memory_failure - Handle memory failure of a page. 1233 * @pfn: Page Number of the corrupted page 1234 * @flags: fine tune action taken 1235 * 1236 * This function is called by the low level machine check code 1237 * of an architecture when it detects hardware memory corruption 1238 * of a page. It tries its best to recover, which includes 1239 * dropping pages, killing processes etc. 1240 * 1241 * The function is primarily of use for corruptions that 1242 * happen outside the current execution context (e.g. when 1243 * detected by a background scrubber) 1244 * 1245 * Must run in process context (e.g. a work queue) with interrupts 1246 * enabled and no spinlocks hold. 1247 */ 1248 int memory_failure(unsigned long pfn, int flags) 1249 { 1250 struct page *p; 1251 struct page *hpage; 1252 struct page *orig_head; 1253 struct dev_pagemap *pgmap; 1254 int res; 1255 unsigned long page_flags; 1256 1257 if (!sysctl_memory_failure_recovery) 1258 panic("Memory failure on page %lx", pfn); 1259 1260 if (!pfn_valid(pfn)) { 1261 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1262 pfn); 1263 return -ENXIO; 1264 } 1265 1266 pgmap = get_dev_pagemap(pfn, NULL); 1267 if (pgmap) 1268 return memory_failure_dev_pagemap(pfn, flags, pgmap); 1269 1270 p = pfn_to_page(pfn); 1271 if (PageHuge(p)) 1272 return memory_failure_hugetlb(pfn, flags); 1273 if (TestSetPageHWPoison(p)) { 1274 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1275 pfn); 1276 return 0; 1277 } 1278 1279 orig_head = hpage = compound_head(p); 1280 num_poisoned_pages_inc(); 1281 1282 /* 1283 * We need/can do nothing about count=0 pages. 1284 * 1) it's a free page, and therefore in safe hand: 1285 * prep_new_page() will be the gate keeper. 1286 * 2) it's part of a non-compound high order page. 1287 * Implies some kernel user: cannot stop them from 1288 * R/W the page; let's pray that the page has been 1289 * used and will be freed some time later. 1290 * In fact it's dangerous to directly bump up page count from 0, 1291 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1292 */ 1293 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1294 if (is_free_buddy_page(p)) { 1295 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1296 return 0; 1297 } else { 1298 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1299 return -EBUSY; 1300 } 1301 } 1302 1303 if (PageTransHuge(hpage)) { 1304 lock_page(p); 1305 if (!PageAnon(p) || unlikely(split_huge_page(p))) { 1306 unlock_page(p); 1307 if (!PageAnon(p)) 1308 pr_err("Memory failure: %#lx: non anonymous thp\n", 1309 pfn); 1310 else 1311 pr_err("Memory failure: %#lx: thp split failed\n", 1312 pfn); 1313 if (TestClearPageHWPoison(p)) 1314 num_poisoned_pages_dec(); 1315 put_hwpoison_page(p); 1316 return -EBUSY; 1317 } 1318 unlock_page(p); 1319 VM_BUG_ON_PAGE(!page_count(p), p); 1320 hpage = compound_head(p); 1321 } 1322 1323 /* 1324 * We ignore non-LRU pages for good reasons. 1325 * - PG_locked is only well defined for LRU pages and a few others 1326 * - to avoid races with __SetPageLocked() 1327 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1328 * The check (unnecessarily) ignores LRU pages being isolated and 1329 * walked by the page reclaim code, however that's not a big loss. 1330 */ 1331 shake_page(p, 0); 1332 /* shake_page could have turned it free. */ 1333 if (!PageLRU(p) && is_free_buddy_page(p)) { 1334 if (flags & MF_COUNT_INCREASED) 1335 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1336 else 1337 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); 1338 return 0; 1339 } 1340 1341 lock_page(p); 1342 1343 /* 1344 * The page could have changed compound pages during the locking. 1345 * If this happens just bail out. 1346 */ 1347 if (PageCompound(p) && compound_head(p) != orig_head) { 1348 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1349 res = -EBUSY; 1350 goto out; 1351 } 1352 1353 /* 1354 * We use page flags to determine what action should be taken, but 1355 * the flags can be modified by the error containment action. One 1356 * example is an mlocked page, where PG_mlocked is cleared by 1357 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1358 * correctly, we save a copy of the page flags at this time. 1359 */ 1360 if (PageHuge(p)) 1361 page_flags = hpage->flags; 1362 else 1363 page_flags = p->flags; 1364 1365 /* 1366 * unpoison always clear PG_hwpoison inside page lock 1367 */ 1368 if (!PageHWPoison(p)) { 1369 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1370 num_poisoned_pages_dec(); 1371 unlock_page(p); 1372 put_hwpoison_page(p); 1373 return 0; 1374 } 1375 if (hwpoison_filter(p)) { 1376 if (TestClearPageHWPoison(p)) 1377 num_poisoned_pages_dec(); 1378 unlock_page(p); 1379 put_hwpoison_page(p); 1380 return 0; 1381 } 1382 1383 if (!PageTransTail(p) && !PageLRU(p)) 1384 goto identify_page_state; 1385 1386 /* 1387 * It's very difficult to mess with pages currently under IO 1388 * and in many cases impossible, so we just avoid it here. 1389 */ 1390 wait_on_page_writeback(p); 1391 1392 /* 1393 * Now take care of user space mappings. 1394 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1395 * 1396 * When the raw error page is thp tail page, hpage points to the raw 1397 * page after thp split. 1398 */ 1399 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) { 1400 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1401 res = -EBUSY; 1402 goto out; 1403 } 1404 1405 /* 1406 * Torn down by someone else? 1407 */ 1408 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1409 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1410 res = -EBUSY; 1411 goto out; 1412 } 1413 1414 identify_page_state: 1415 res = identify_page_state(pfn, p, page_flags); 1416 out: 1417 unlock_page(p); 1418 return res; 1419 } 1420 EXPORT_SYMBOL_GPL(memory_failure); 1421 1422 #define MEMORY_FAILURE_FIFO_ORDER 4 1423 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1424 1425 struct memory_failure_entry { 1426 unsigned long pfn; 1427 int flags; 1428 }; 1429 1430 struct memory_failure_cpu { 1431 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1432 MEMORY_FAILURE_FIFO_SIZE); 1433 spinlock_t lock; 1434 struct work_struct work; 1435 }; 1436 1437 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1438 1439 /** 1440 * memory_failure_queue - Schedule handling memory failure of a page. 1441 * @pfn: Page Number of the corrupted page 1442 * @flags: Flags for memory failure handling 1443 * 1444 * This function is called by the low level hardware error handler 1445 * when it detects hardware memory corruption of a page. It schedules 1446 * the recovering of error page, including dropping pages, killing 1447 * processes etc. 1448 * 1449 * The function is primarily of use for corruptions that 1450 * happen outside the current execution context (e.g. when 1451 * detected by a background scrubber) 1452 * 1453 * Can run in IRQ context. 1454 */ 1455 void memory_failure_queue(unsigned long pfn, int flags) 1456 { 1457 struct memory_failure_cpu *mf_cpu; 1458 unsigned long proc_flags; 1459 struct memory_failure_entry entry = { 1460 .pfn = pfn, 1461 .flags = flags, 1462 }; 1463 1464 mf_cpu = &get_cpu_var(memory_failure_cpu); 1465 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1466 if (kfifo_put(&mf_cpu->fifo, entry)) 1467 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1468 else 1469 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1470 pfn); 1471 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1472 put_cpu_var(memory_failure_cpu); 1473 } 1474 EXPORT_SYMBOL_GPL(memory_failure_queue); 1475 1476 static void memory_failure_work_func(struct work_struct *work) 1477 { 1478 struct memory_failure_cpu *mf_cpu; 1479 struct memory_failure_entry entry = { 0, }; 1480 unsigned long proc_flags; 1481 int gotten; 1482 1483 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1484 for (;;) { 1485 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1486 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1487 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1488 if (!gotten) 1489 break; 1490 if (entry.flags & MF_SOFT_OFFLINE) 1491 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1492 else 1493 memory_failure(entry.pfn, entry.flags); 1494 } 1495 } 1496 1497 static int __init memory_failure_init(void) 1498 { 1499 struct memory_failure_cpu *mf_cpu; 1500 int cpu; 1501 1502 for_each_possible_cpu(cpu) { 1503 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1504 spin_lock_init(&mf_cpu->lock); 1505 INIT_KFIFO(mf_cpu->fifo); 1506 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1507 } 1508 1509 return 0; 1510 } 1511 core_initcall(memory_failure_init); 1512 1513 #define unpoison_pr_info(fmt, pfn, rs) \ 1514 ({ \ 1515 if (__ratelimit(rs)) \ 1516 pr_info(fmt, pfn); \ 1517 }) 1518 1519 /** 1520 * unpoison_memory - Unpoison a previously poisoned page 1521 * @pfn: Page number of the to be unpoisoned page 1522 * 1523 * Software-unpoison a page that has been poisoned by 1524 * memory_failure() earlier. 1525 * 1526 * This is only done on the software-level, so it only works 1527 * for linux injected failures, not real hardware failures 1528 * 1529 * Returns 0 for success, otherwise -errno. 1530 */ 1531 int unpoison_memory(unsigned long pfn) 1532 { 1533 struct page *page; 1534 struct page *p; 1535 int freeit = 0; 1536 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1537 DEFAULT_RATELIMIT_BURST); 1538 1539 if (!pfn_valid(pfn)) 1540 return -ENXIO; 1541 1542 p = pfn_to_page(pfn); 1543 page = compound_head(p); 1544 1545 if (!PageHWPoison(p)) { 1546 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1547 pfn, &unpoison_rs); 1548 return 0; 1549 } 1550 1551 if (page_count(page) > 1) { 1552 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1553 pfn, &unpoison_rs); 1554 return 0; 1555 } 1556 1557 if (page_mapped(page)) { 1558 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1559 pfn, &unpoison_rs); 1560 return 0; 1561 } 1562 1563 if (page_mapping(page)) { 1564 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1565 pfn, &unpoison_rs); 1566 return 0; 1567 } 1568 1569 /* 1570 * unpoison_memory() can encounter thp only when the thp is being 1571 * worked by memory_failure() and the page lock is not held yet. 1572 * In such case, we yield to memory_failure() and make unpoison fail. 1573 */ 1574 if (!PageHuge(page) && PageTransHuge(page)) { 1575 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1576 pfn, &unpoison_rs); 1577 return 0; 1578 } 1579 1580 if (!get_hwpoison_page(p)) { 1581 if (TestClearPageHWPoison(p)) 1582 num_poisoned_pages_dec(); 1583 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1584 pfn, &unpoison_rs); 1585 return 0; 1586 } 1587 1588 lock_page(page); 1589 /* 1590 * This test is racy because PG_hwpoison is set outside of page lock. 1591 * That's acceptable because that won't trigger kernel panic. Instead, 1592 * the PG_hwpoison page will be caught and isolated on the entrance to 1593 * the free buddy page pool. 1594 */ 1595 if (TestClearPageHWPoison(page)) { 1596 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1597 pfn, &unpoison_rs); 1598 num_poisoned_pages_dec(); 1599 freeit = 1; 1600 } 1601 unlock_page(page); 1602 1603 put_hwpoison_page(page); 1604 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1605 put_hwpoison_page(page); 1606 1607 return 0; 1608 } 1609 EXPORT_SYMBOL(unpoison_memory); 1610 1611 static struct page *new_page(struct page *p, unsigned long private) 1612 { 1613 int nid = page_to_nid(p); 1614 1615 return new_page_nodemask(p, nid, &node_states[N_MEMORY]); 1616 } 1617 1618 /* 1619 * Safely get reference count of an arbitrary page. 1620 * Returns 0 for a free page, -EIO for a zero refcount page 1621 * that is not free, and 1 for any other page type. 1622 * For 1 the page is returned with increased page count, otherwise not. 1623 */ 1624 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1625 { 1626 int ret; 1627 1628 if (flags & MF_COUNT_INCREASED) 1629 return 1; 1630 1631 /* 1632 * When the target page is a free hugepage, just remove it 1633 * from free hugepage list. 1634 */ 1635 if (!get_hwpoison_page(p)) { 1636 if (PageHuge(p)) { 1637 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1638 ret = 0; 1639 } else if (is_free_buddy_page(p)) { 1640 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1641 ret = 0; 1642 } else { 1643 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1644 __func__, pfn, p->flags); 1645 ret = -EIO; 1646 } 1647 } else { 1648 /* Not a free page */ 1649 ret = 1; 1650 } 1651 return ret; 1652 } 1653 1654 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1655 { 1656 int ret = __get_any_page(page, pfn, flags); 1657 1658 if (ret == 1 && !PageHuge(page) && 1659 !PageLRU(page) && !__PageMovable(page)) { 1660 /* 1661 * Try to free it. 1662 */ 1663 put_hwpoison_page(page); 1664 shake_page(page, 1); 1665 1666 /* 1667 * Did it turn free? 1668 */ 1669 ret = __get_any_page(page, pfn, 0); 1670 if (ret == 1 && !PageLRU(page)) { 1671 /* Drop page reference which is from __get_any_page() */ 1672 put_hwpoison_page(page); 1673 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", 1674 pfn, page->flags, &page->flags); 1675 return -EIO; 1676 } 1677 } 1678 return ret; 1679 } 1680 1681 static int soft_offline_huge_page(struct page *page, int flags) 1682 { 1683 int ret; 1684 unsigned long pfn = page_to_pfn(page); 1685 struct page *hpage = compound_head(page); 1686 LIST_HEAD(pagelist); 1687 1688 /* 1689 * This double-check of PageHWPoison is to avoid the race with 1690 * memory_failure(). See also comment in __soft_offline_page(). 1691 */ 1692 lock_page(hpage); 1693 if (PageHWPoison(hpage)) { 1694 unlock_page(hpage); 1695 put_hwpoison_page(hpage); 1696 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1697 return -EBUSY; 1698 } 1699 unlock_page(hpage); 1700 1701 ret = isolate_huge_page(hpage, &pagelist); 1702 /* 1703 * get_any_page() and isolate_huge_page() takes a refcount each, 1704 * so need to drop one here. 1705 */ 1706 put_hwpoison_page(hpage); 1707 if (!ret) { 1708 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1709 return -EBUSY; 1710 } 1711 1712 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1713 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1714 if (ret) { 1715 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n", 1716 pfn, ret, page->flags, &page->flags); 1717 if (!list_empty(&pagelist)) 1718 putback_movable_pages(&pagelist); 1719 if (ret > 0) 1720 ret = -EIO; 1721 } else { 1722 /* 1723 * We set PG_hwpoison only when the migration source hugepage 1724 * was successfully dissolved, because otherwise hwpoisoned 1725 * hugepage remains on free hugepage list, then userspace will 1726 * find it as SIGBUS by allocation failure. That's not expected 1727 * in soft-offlining. 1728 */ 1729 ret = dissolve_free_huge_page(page); 1730 if (!ret) { 1731 if (set_hwpoison_free_buddy_page(page)) 1732 num_poisoned_pages_inc(); 1733 } 1734 } 1735 return ret; 1736 } 1737 1738 static int __soft_offline_page(struct page *page, int flags) 1739 { 1740 int ret; 1741 unsigned long pfn = page_to_pfn(page); 1742 1743 /* 1744 * Check PageHWPoison again inside page lock because PageHWPoison 1745 * is set by memory_failure() outside page lock. Note that 1746 * memory_failure() also double-checks PageHWPoison inside page lock, 1747 * so there's no race between soft_offline_page() and memory_failure(). 1748 */ 1749 lock_page(page); 1750 wait_on_page_writeback(page); 1751 if (PageHWPoison(page)) { 1752 unlock_page(page); 1753 put_hwpoison_page(page); 1754 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1755 return -EBUSY; 1756 } 1757 /* 1758 * Try to invalidate first. This should work for 1759 * non dirty unmapped page cache pages. 1760 */ 1761 ret = invalidate_inode_page(page); 1762 unlock_page(page); 1763 /* 1764 * RED-PEN would be better to keep it isolated here, but we 1765 * would need to fix isolation locking first. 1766 */ 1767 if (ret == 1) { 1768 put_hwpoison_page(page); 1769 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1770 SetPageHWPoison(page); 1771 num_poisoned_pages_inc(); 1772 return 0; 1773 } 1774 1775 /* 1776 * Simple invalidation didn't work. 1777 * Try to migrate to a new page instead. migrate.c 1778 * handles a large number of cases for us. 1779 */ 1780 if (PageLRU(page)) 1781 ret = isolate_lru_page(page); 1782 else 1783 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1784 /* 1785 * Drop page reference which is came from get_any_page() 1786 * successful isolate_lru_page() already took another one. 1787 */ 1788 put_hwpoison_page(page); 1789 if (!ret) { 1790 LIST_HEAD(pagelist); 1791 /* 1792 * After isolated lru page, the PageLRU will be cleared, 1793 * so use !__PageMovable instead for LRU page's mapping 1794 * cannot have PAGE_MAPPING_MOVABLE. 1795 */ 1796 if (!__PageMovable(page)) 1797 inc_node_page_state(page, NR_ISOLATED_ANON + 1798 page_is_file_cache(page)); 1799 list_add(&page->lru, &pagelist); 1800 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1801 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1802 if (ret) { 1803 if (!list_empty(&pagelist)) 1804 putback_movable_pages(&pagelist); 1805 1806 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", 1807 pfn, ret, page->flags, &page->flags); 1808 if (ret > 0) 1809 ret = -EIO; 1810 } 1811 } else { 1812 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n", 1813 pfn, ret, page_count(page), page->flags, &page->flags); 1814 } 1815 return ret; 1816 } 1817 1818 static int soft_offline_in_use_page(struct page *page, int flags) 1819 { 1820 int ret; 1821 int mt; 1822 struct page *hpage = compound_head(page); 1823 1824 if (!PageHuge(page) && PageTransHuge(hpage)) { 1825 lock_page(page); 1826 if (!PageAnon(page) || unlikely(split_huge_page(page))) { 1827 unlock_page(page); 1828 if (!PageAnon(page)) 1829 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); 1830 else 1831 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); 1832 put_hwpoison_page(page); 1833 return -EBUSY; 1834 } 1835 unlock_page(page); 1836 } 1837 1838 /* 1839 * Setting MIGRATE_ISOLATE here ensures that the page will be linked 1840 * to free list immediately (not via pcplist) when released after 1841 * successful page migration. Otherwise we can't guarantee that the 1842 * page is really free after put_page() returns, so 1843 * set_hwpoison_free_buddy_page() highly likely fails. 1844 */ 1845 mt = get_pageblock_migratetype(page); 1846 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 1847 if (PageHuge(page)) 1848 ret = soft_offline_huge_page(page, flags); 1849 else 1850 ret = __soft_offline_page(page, flags); 1851 set_pageblock_migratetype(page, mt); 1852 return ret; 1853 } 1854 1855 static int soft_offline_free_page(struct page *page) 1856 { 1857 int rc = 0; 1858 struct page *head = compound_head(page); 1859 1860 if (PageHuge(head)) 1861 rc = dissolve_free_huge_page(page); 1862 if (!rc) { 1863 if (set_hwpoison_free_buddy_page(page)) 1864 num_poisoned_pages_inc(); 1865 else 1866 rc = -EBUSY; 1867 } 1868 return rc; 1869 } 1870 1871 /** 1872 * soft_offline_page - Soft offline a page. 1873 * @page: page to offline 1874 * @flags: flags. Same as memory_failure(). 1875 * 1876 * Returns 0 on success, otherwise negated errno. 1877 * 1878 * Soft offline a page, by migration or invalidation, 1879 * without killing anything. This is for the case when 1880 * a page is not corrupted yet (so it's still valid to access), 1881 * but has had a number of corrected errors and is better taken 1882 * out. 1883 * 1884 * The actual policy on when to do that is maintained by 1885 * user space. 1886 * 1887 * This should never impact any application or cause data loss, 1888 * however it might take some time. 1889 * 1890 * This is not a 100% solution for all memory, but tries to be 1891 * ``good enough'' for the majority of memory. 1892 */ 1893 int soft_offline_page(struct page *page, int flags) 1894 { 1895 int ret; 1896 unsigned long pfn = page_to_pfn(page); 1897 1898 if (is_zone_device_page(page)) { 1899 pr_debug_ratelimited("soft_offline: %#lx page is device page\n", 1900 pfn); 1901 if (flags & MF_COUNT_INCREASED) 1902 put_page(page); 1903 return -EIO; 1904 } 1905 1906 if (PageHWPoison(page)) { 1907 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1908 if (flags & MF_COUNT_INCREASED) 1909 put_hwpoison_page(page); 1910 return -EBUSY; 1911 } 1912 1913 get_online_mems(); 1914 ret = get_any_page(page, pfn, flags); 1915 put_online_mems(); 1916 1917 if (ret > 0) 1918 ret = soft_offline_in_use_page(page, flags); 1919 else if (ret == 0) 1920 ret = soft_offline_free_page(page); 1921 1922 return ret; 1923 } 1924