1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * It can be very tempting to add handling for obscure cases here. 25 * In general any code for handling new cases should only be added iff: 26 * - You know how to test it. 27 * - You have a test that can be added to mce-test 28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 29 * - The case actually shows up as a frequent (top 10) page state in 30 * tools/vm/page-types when running a real workload. 31 * 32 * There are several operations here with exponential complexity because 33 * of unsuitable VM data structures. For example the operation to map back 34 * from RMAP chains to processes has to walk the complete process list and 35 * has non linear complexity with the number. But since memory corruptions 36 * are rare we hope to get away with this. This avoids impacting the core 37 * VM. 38 */ 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/suspend.h> 53 #include <linux/slab.h> 54 #include <linux/swapops.h> 55 #include <linux/hugetlb.h> 56 #include <linux/memory_hotplug.h> 57 #include <linux/mm_inline.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include <linux/page-isolation.h> 61 #include "internal.h" 62 #include "ras/ras_event.h" 63 64 int sysctl_memory_failure_early_kill __read_mostly = 0; 65 66 int sysctl_memory_failure_recovery __read_mostly = 1; 67 68 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 69 70 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 71 72 u32 hwpoison_filter_enable = 0; 73 u32 hwpoison_filter_dev_major = ~0U; 74 u32 hwpoison_filter_dev_minor = ~0U; 75 u64 hwpoison_filter_flags_mask; 76 u64 hwpoison_filter_flags_value; 77 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 82 83 static int hwpoison_filter_dev(struct page *p) 84 { 85 struct address_space *mapping; 86 dev_t dev; 87 88 if (hwpoison_filter_dev_major == ~0U && 89 hwpoison_filter_dev_minor == ~0U) 90 return 0; 91 92 /* 93 * page_mapping() does not accept slab pages. 94 */ 95 if (PageSlab(p)) 96 return -EINVAL; 97 98 mapping = page_mapping(p); 99 if (mapping == NULL || mapping->host == NULL) 100 return -EINVAL; 101 102 dev = mapping->host->i_sb->s_dev; 103 if (hwpoison_filter_dev_major != ~0U && 104 hwpoison_filter_dev_major != MAJOR(dev)) 105 return -EINVAL; 106 if (hwpoison_filter_dev_minor != ~0U && 107 hwpoison_filter_dev_minor != MINOR(dev)) 108 return -EINVAL; 109 110 return 0; 111 } 112 113 static int hwpoison_filter_flags(struct page *p) 114 { 115 if (!hwpoison_filter_flags_mask) 116 return 0; 117 118 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 119 hwpoison_filter_flags_value) 120 return 0; 121 else 122 return -EINVAL; 123 } 124 125 /* 126 * This allows stress tests to limit test scope to a collection of tasks 127 * by putting them under some memcg. This prevents killing unrelated/important 128 * processes such as /sbin/init. Note that the target task may share clean 129 * pages with init (eg. libc text), which is harmless. If the target task 130 * share _dirty_ pages with another task B, the test scheme must make sure B 131 * is also included in the memcg. At last, due to race conditions this filter 132 * can only guarantee that the page either belongs to the memcg tasks, or is 133 * a freed page. 134 */ 135 #ifdef CONFIG_MEMCG 136 u64 hwpoison_filter_memcg; 137 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 138 static int hwpoison_filter_task(struct page *p) 139 { 140 if (!hwpoison_filter_memcg) 141 return 0; 142 143 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 144 return -EINVAL; 145 146 return 0; 147 } 148 #else 149 static int hwpoison_filter_task(struct page *p) { return 0; } 150 #endif 151 152 int hwpoison_filter(struct page *p) 153 { 154 if (!hwpoison_filter_enable) 155 return 0; 156 157 if (hwpoison_filter_dev(p)) 158 return -EINVAL; 159 160 if (hwpoison_filter_flags(p)) 161 return -EINVAL; 162 163 if (hwpoison_filter_task(p)) 164 return -EINVAL; 165 166 return 0; 167 } 168 #else 169 int hwpoison_filter(struct page *p) 170 { 171 return 0; 172 } 173 #endif 174 175 EXPORT_SYMBOL_GPL(hwpoison_filter); 176 177 /* 178 * Send all the processes who have the page mapped a signal. 179 * ``action optional'' if they are not immediately affected by the error 180 * ``action required'' if error happened in current execution context 181 */ 182 static int kill_proc(struct task_struct *t, unsigned long addr, 183 unsigned long pfn, struct page *page, int flags) 184 { 185 short addr_lsb; 186 int ret; 187 188 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n", 189 pfn, t->comm, t->pid); 190 addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; 191 192 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 193 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, 194 addr_lsb, current); 195 } else { 196 /* 197 * Don't use force here, it's convenient if the signal 198 * can be temporarily blocked. 199 * This could cause a loop when the user sets SIGBUS 200 * to SIG_IGN, but hopefully no one will do that? 201 */ 202 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)addr, 203 addr_lsb, t); /* synchronous? */ 204 } 205 if (ret < 0) 206 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 207 t->comm, t->pid, ret); 208 return ret; 209 } 210 211 /* 212 * When a unknown page type is encountered drain as many buffers as possible 213 * in the hope to turn the page into a LRU or free page, which we can handle. 214 */ 215 void shake_page(struct page *p, int access) 216 { 217 if (PageHuge(p)) 218 return; 219 220 if (!PageSlab(p)) { 221 lru_add_drain_all(); 222 if (PageLRU(p)) 223 return; 224 drain_all_pages(page_zone(p)); 225 if (PageLRU(p) || is_free_buddy_page(p)) 226 return; 227 } 228 229 /* 230 * Only call shrink_node_slabs here (which would also shrink 231 * other caches) if access is not potentially fatal. 232 */ 233 if (access) 234 drop_slab_node(page_to_nid(p)); 235 } 236 EXPORT_SYMBOL_GPL(shake_page); 237 238 /* 239 * Kill all processes that have a poisoned page mapped and then isolate 240 * the page. 241 * 242 * General strategy: 243 * Find all processes having the page mapped and kill them. 244 * But we keep a page reference around so that the page is not 245 * actually freed yet. 246 * Then stash the page away 247 * 248 * There's no convenient way to get back to mapped processes 249 * from the VMAs. So do a brute-force search over all 250 * running processes. 251 * 252 * Remember that machine checks are not common (or rather 253 * if they are common you have other problems), so this shouldn't 254 * be a performance issue. 255 * 256 * Also there are some races possible while we get from the 257 * error detection to actually handle it. 258 */ 259 260 struct to_kill { 261 struct list_head nd; 262 struct task_struct *tsk; 263 unsigned long addr; 264 char addr_valid; 265 }; 266 267 /* 268 * Failure handling: if we can't find or can't kill a process there's 269 * not much we can do. We just print a message and ignore otherwise. 270 */ 271 272 /* 273 * Schedule a process for later kill. 274 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 275 * TBD would GFP_NOIO be enough? 276 */ 277 static void add_to_kill(struct task_struct *tsk, struct page *p, 278 struct vm_area_struct *vma, 279 struct list_head *to_kill, 280 struct to_kill **tkc) 281 { 282 struct to_kill *tk; 283 284 if (*tkc) { 285 tk = *tkc; 286 *tkc = NULL; 287 } else { 288 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 289 if (!tk) { 290 pr_err("Memory failure: Out of memory while machine check handling\n"); 291 return; 292 } 293 } 294 tk->addr = page_address_in_vma(p, vma); 295 tk->addr_valid = 1; 296 297 /* 298 * In theory we don't have to kill when the page was 299 * munmaped. But it could be also a mremap. Since that's 300 * likely very rare kill anyways just out of paranoia, but use 301 * a SIGKILL because the error is not contained anymore. 302 */ 303 if (tk->addr == -EFAULT) { 304 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 305 page_to_pfn(p), tsk->comm); 306 tk->addr_valid = 0; 307 } 308 get_task_struct(tsk); 309 tk->tsk = tsk; 310 list_add_tail(&tk->nd, to_kill); 311 } 312 313 /* 314 * Kill the processes that have been collected earlier. 315 * 316 * Only do anything when DOIT is set, otherwise just free the list 317 * (this is used for clean pages which do not need killing) 318 * Also when FAIL is set do a force kill because something went 319 * wrong earlier. 320 */ 321 static void kill_procs(struct list_head *to_kill, int forcekill, 322 bool fail, struct page *page, unsigned long pfn, 323 int flags) 324 { 325 struct to_kill *tk, *next; 326 327 list_for_each_entry_safe (tk, next, to_kill, nd) { 328 if (forcekill) { 329 /* 330 * In case something went wrong with munmapping 331 * make sure the process doesn't catch the 332 * signal and then access the memory. Just kill it. 333 */ 334 if (fail || tk->addr_valid == 0) { 335 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 336 pfn, tk->tsk->comm, tk->tsk->pid); 337 force_sig(SIGKILL, tk->tsk); 338 } 339 340 /* 341 * In theory the process could have mapped 342 * something else on the address in-between. We could 343 * check for that, but we need to tell the 344 * process anyways. 345 */ 346 else if (kill_proc(tk->tsk, tk->addr, 347 pfn, page, flags) < 0) 348 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 349 pfn, tk->tsk->comm, tk->tsk->pid); 350 } 351 put_task_struct(tk->tsk); 352 kfree(tk); 353 } 354 } 355 356 /* 357 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 358 * on behalf of the thread group. Return task_struct of the (first found) 359 * dedicated thread if found, and return NULL otherwise. 360 * 361 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 362 * have to call rcu_read_lock/unlock() in this function. 363 */ 364 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 365 { 366 struct task_struct *t; 367 368 for_each_thread(tsk, t) 369 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 370 return t; 371 return NULL; 372 } 373 374 /* 375 * Determine whether a given process is "early kill" process which expects 376 * to be signaled when some page under the process is hwpoisoned. 377 * Return task_struct of the dedicated thread (main thread unless explicitly 378 * specified) if the process is "early kill," and otherwise returns NULL. 379 */ 380 static struct task_struct *task_early_kill(struct task_struct *tsk, 381 int force_early) 382 { 383 struct task_struct *t; 384 if (!tsk->mm) 385 return NULL; 386 if (force_early) 387 return tsk; 388 t = find_early_kill_thread(tsk); 389 if (t) 390 return t; 391 if (sysctl_memory_failure_early_kill) 392 return tsk; 393 return NULL; 394 } 395 396 /* 397 * Collect processes when the error hit an anonymous page. 398 */ 399 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 400 struct to_kill **tkc, int force_early) 401 { 402 struct vm_area_struct *vma; 403 struct task_struct *tsk; 404 struct anon_vma *av; 405 pgoff_t pgoff; 406 407 av = page_lock_anon_vma_read(page); 408 if (av == NULL) /* Not actually mapped anymore */ 409 return; 410 411 pgoff = page_to_pgoff(page); 412 read_lock(&tasklist_lock); 413 for_each_process (tsk) { 414 struct anon_vma_chain *vmac; 415 struct task_struct *t = task_early_kill(tsk, force_early); 416 417 if (!t) 418 continue; 419 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 420 pgoff, pgoff) { 421 vma = vmac->vma; 422 if (!page_mapped_in_vma(page, vma)) 423 continue; 424 if (vma->vm_mm == t->mm) 425 add_to_kill(t, page, vma, to_kill, tkc); 426 } 427 } 428 read_unlock(&tasklist_lock); 429 page_unlock_anon_vma_read(av); 430 } 431 432 /* 433 * Collect processes when the error hit a file mapped page. 434 */ 435 static void collect_procs_file(struct page *page, struct list_head *to_kill, 436 struct to_kill **tkc, int force_early) 437 { 438 struct vm_area_struct *vma; 439 struct task_struct *tsk; 440 struct address_space *mapping = page->mapping; 441 442 i_mmap_lock_read(mapping); 443 read_lock(&tasklist_lock); 444 for_each_process(tsk) { 445 pgoff_t pgoff = page_to_pgoff(page); 446 struct task_struct *t = task_early_kill(tsk, force_early); 447 448 if (!t) 449 continue; 450 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 451 pgoff) { 452 /* 453 * Send early kill signal to tasks where a vma covers 454 * the page but the corrupted page is not necessarily 455 * mapped it in its pte. 456 * Assume applications who requested early kill want 457 * to be informed of all such data corruptions. 458 */ 459 if (vma->vm_mm == t->mm) 460 add_to_kill(t, page, vma, to_kill, tkc); 461 } 462 } 463 read_unlock(&tasklist_lock); 464 i_mmap_unlock_read(mapping); 465 } 466 467 /* 468 * Collect the processes who have the corrupted page mapped to kill. 469 * This is done in two steps for locking reasons. 470 * First preallocate one tokill structure outside the spin locks, 471 * so that we can kill at least one process reasonably reliable. 472 */ 473 static void collect_procs(struct page *page, struct list_head *tokill, 474 int force_early) 475 { 476 struct to_kill *tk; 477 478 if (!page->mapping) 479 return; 480 481 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 482 if (!tk) 483 return; 484 if (PageAnon(page)) 485 collect_procs_anon(page, tokill, &tk, force_early); 486 else 487 collect_procs_file(page, tokill, &tk, force_early); 488 kfree(tk); 489 } 490 491 static const char *action_name[] = { 492 [MF_IGNORED] = "Ignored", 493 [MF_FAILED] = "Failed", 494 [MF_DELAYED] = "Delayed", 495 [MF_RECOVERED] = "Recovered", 496 }; 497 498 static const char * const action_page_types[] = { 499 [MF_MSG_KERNEL] = "reserved kernel page", 500 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 501 [MF_MSG_SLAB] = "kernel slab page", 502 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 503 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 504 [MF_MSG_HUGE] = "huge page", 505 [MF_MSG_FREE_HUGE] = "free huge page", 506 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 507 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 508 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 509 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 510 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 511 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 512 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 513 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 514 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 515 [MF_MSG_CLEAN_LRU] = "clean LRU page", 516 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 517 [MF_MSG_BUDDY] = "free buddy page", 518 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 519 [MF_MSG_UNKNOWN] = "unknown page", 520 }; 521 522 /* 523 * XXX: It is possible that a page is isolated from LRU cache, 524 * and then kept in swap cache or failed to remove from page cache. 525 * The page count will stop it from being freed by unpoison. 526 * Stress tests should be aware of this memory leak problem. 527 */ 528 static int delete_from_lru_cache(struct page *p) 529 { 530 if (!isolate_lru_page(p)) { 531 /* 532 * Clear sensible page flags, so that the buddy system won't 533 * complain when the page is unpoison-and-freed. 534 */ 535 ClearPageActive(p); 536 ClearPageUnevictable(p); 537 538 /* 539 * Poisoned page might never drop its ref count to 0 so we have 540 * to uncharge it manually from its memcg. 541 */ 542 mem_cgroup_uncharge(p); 543 544 /* 545 * drop the page count elevated by isolate_lru_page() 546 */ 547 put_page(p); 548 return 0; 549 } 550 return -EIO; 551 } 552 553 static int truncate_error_page(struct page *p, unsigned long pfn, 554 struct address_space *mapping) 555 { 556 int ret = MF_FAILED; 557 558 if (mapping->a_ops->error_remove_page) { 559 int err = mapping->a_ops->error_remove_page(mapping, p); 560 561 if (err != 0) { 562 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 563 pfn, err); 564 } else if (page_has_private(p) && 565 !try_to_release_page(p, GFP_NOIO)) { 566 pr_info("Memory failure: %#lx: failed to release buffers\n", 567 pfn); 568 } else { 569 ret = MF_RECOVERED; 570 } 571 } else { 572 /* 573 * If the file system doesn't support it just invalidate 574 * This fails on dirty or anything with private pages 575 */ 576 if (invalidate_inode_page(p)) 577 ret = MF_RECOVERED; 578 else 579 pr_info("Memory failure: %#lx: Failed to invalidate\n", 580 pfn); 581 } 582 583 return ret; 584 } 585 586 /* 587 * Error hit kernel page. 588 * Do nothing, try to be lucky and not touch this instead. For a few cases we 589 * could be more sophisticated. 590 */ 591 static int me_kernel(struct page *p, unsigned long pfn) 592 { 593 return MF_IGNORED; 594 } 595 596 /* 597 * Page in unknown state. Do nothing. 598 */ 599 static int me_unknown(struct page *p, unsigned long pfn) 600 { 601 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 602 return MF_FAILED; 603 } 604 605 /* 606 * Clean (or cleaned) page cache page. 607 */ 608 static int me_pagecache_clean(struct page *p, unsigned long pfn) 609 { 610 struct address_space *mapping; 611 612 delete_from_lru_cache(p); 613 614 /* 615 * For anonymous pages we're done the only reference left 616 * should be the one m_f() holds. 617 */ 618 if (PageAnon(p)) 619 return MF_RECOVERED; 620 621 /* 622 * Now truncate the page in the page cache. This is really 623 * more like a "temporary hole punch" 624 * Don't do this for block devices when someone else 625 * has a reference, because it could be file system metadata 626 * and that's not safe to truncate. 627 */ 628 mapping = page_mapping(p); 629 if (!mapping) { 630 /* 631 * Page has been teared down in the meanwhile 632 */ 633 return MF_FAILED; 634 } 635 636 /* 637 * Truncation is a bit tricky. Enable it per file system for now. 638 * 639 * Open: to take i_mutex or not for this? Right now we don't. 640 */ 641 return truncate_error_page(p, pfn, mapping); 642 } 643 644 /* 645 * Dirty pagecache page 646 * Issues: when the error hit a hole page the error is not properly 647 * propagated. 648 */ 649 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 650 { 651 struct address_space *mapping = page_mapping(p); 652 653 SetPageError(p); 654 /* TBD: print more information about the file. */ 655 if (mapping) { 656 /* 657 * IO error will be reported by write(), fsync(), etc. 658 * who check the mapping. 659 * This way the application knows that something went 660 * wrong with its dirty file data. 661 * 662 * There's one open issue: 663 * 664 * The EIO will be only reported on the next IO 665 * operation and then cleared through the IO map. 666 * Normally Linux has two mechanisms to pass IO error 667 * first through the AS_EIO flag in the address space 668 * and then through the PageError flag in the page. 669 * Since we drop pages on memory failure handling the 670 * only mechanism open to use is through AS_AIO. 671 * 672 * This has the disadvantage that it gets cleared on 673 * the first operation that returns an error, while 674 * the PageError bit is more sticky and only cleared 675 * when the page is reread or dropped. If an 676 * application assumes it will always get error on 677 * fsync, but does other operations on the fd before 678 * and the page is dropped between then the error 679 * will not be properly reported. 680 * 681 * This can already happen even without hwpoisoned 682 * pages: first on metadata IO errors (which only 683 * report through AS_EIO) or when the page is dropped 684 * at the wrong time. 685 * 686 * So right now we assume that the application DTRT on 687 * the first EIO, but we're not worse than other parts 688 * of the kernel. 689 */ 690 mapping_set_error(mapping, -EIO); 691 } 692 693 return me_pagecache_clean(p, pfn); 694 } 695 696 /* 697 * Clean and dirty swap cache. 698 * 699 * Dirty swap cache page is tricky to handle. The page could live both in page 700 * cache and swap cache(ie. page is freshly swapped in). So it could be 701 * referenced concurrently by 2 types of PTEs: 702 * normal PTEs and swap PTEs. We try to handle them consistently by calling 703 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 704 * and then 705 * - clear dirty bit to prevent IO 706 * - remove from LRU 707 * - but keep in the swap cache, so that when we return to it on 708 * a later page fault, we know the application is accessing 709 * corrupted data and shall be killed (we installed simple 710 * interception code in do_swap_page to catch it). 711 * 712 * Clean swap cache pages can be directly isolated. A later page fault will 713 * bring in the known good data from disk. 714 */ 715 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 716 { 717 ClearPageDirty(p); 718 /* Trigger EIO in shmem: */ 719 ClearPageUptodate(p); 720 721 if (!delete_from_lru_cache(p)) 722 return MF_DELAYED; 723 else 724 return MF_FAILED; 725 } 726 727 static int me_swapcache_clean(struct page *p, unsigned long pfn) 728 { 729 delete_from_swap_cache(p); 730 731 if (!delete_from_lru_cache(p)) 732 return MF_RECOVERED; 733 else 734 return MF_FAILED; 735 } 736 737 /* 738 * Huge pages. Needs work. 739 * Issues: 740 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 741 * To narrow down kill region to one page, we need to break up pmd. 742 */ 743 static int me_huge_page(struct page *p, unsigned long pfn) 744 { 745 int res = 0; 746 struct page *hpage = compound_head(p); 747 struct address_space *mapping; 748 749 if (!PageHuge(hpage)) 750 return MF_DELAYED; 751 752 mapping = page_mapping(hpage); 753 if (mapping) { 754 res = truncate_error_page(hpage, pfn, mapping); 755 } else { 756 unlock_page(hpage); 757 /* 758 * migration entry prevents later access on error anonymous 759 * hugepage, so we can free and dissolve it into buddy to 760 * save healthy subpages. 761 */ 762 if (PageAnon(hpage)) 763 put_page(hpage); 764 dissolve_free_huge_page(p); 765 res = MF_RECOVERED; 766 lock_page(hpage); 767 } 768 769 return res; 770 } 771 772 /* 773 * Various page states we can handle. 774 * 775 * A page state is defined by its current page->flags bits. 776 * The table matches them in order and calls the right handler. 777 * 778 * This is quite tricky because we can access page at any time 779 * in its live cycle, so all accesses have to be extremely careful. 780 * 781 * This is not complete. More states could be added. 782 * For any missing state don't attempt recovery. 783 */ 784 785 #define dirty (1UL << PG_dirty) 786 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 787 #define unevict (1UL << PG_unevictable) 788 #define mlock (1UL << PG_mlocked) 789 #define writeback (1UL << PG_writeback) 790 #define lru (1UL << PG_lru) 791 #define head (1UL << PG_head) 792 #define slab (1UL << PG_slab) 793 #define reserved (1UL << PG_reserved) 794 795 static struct page_state { 796 unsigned long mask; 797 unsigned long res; 798 enum mf_action_page_type type; 799 int (*action)(struct page *p, unsigned long pfn); 800 } error_states[] = { 801 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 802 /* 803 * free pages are specially detected outside this table: 804 * PG_buddy pages only make a small fraction of all free pages. 805 */ 806 807 /* 808 * Could in theory check if slab page is free or if we can drop 809 * currently unused objects without touching them. But just 810 * treat it as standard kernel for now. 811 */ 812 { slab, slab, MF_MSG_SLAB, me_kernel }, 813 814 { head, head, MF_MSG_HUGE, me_huge_page }, 815 816 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 817 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 818 819 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 820 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 821 822 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 823 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 824 825 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 826 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 827 828 /* 829 * Catchall entry: must be at end. 830 */ 831 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 832 }; 833 834 #undef dirty 835 #undef sc 836 #undef unevict 837 #undef mlock 838 #undef writeback 839 #undef lru 840 #undef head 841 #undef slab 842 #undef reserved 843 844 /* 845 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 846 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 847 */ 848 static void action_result(unsigned long pfn, enum mf_action_page_type type, 849 enum mf_result result) 850 { 851 trace_memory_failure_event(pfn, type, result); 852 853 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 854 pfn, action_page_types[type], action_name[result]); 855 } 856 857 static int page_action(struct page_state *ps, struct page *p, 858 unsigned long pfn) 859 { 860 int result; 861 int count; 862 863 result = ps->action(p, pfn); 864 865 count = page_count(p) - 1; 866 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 867 count--; 868 if (count > 0) { 869 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 870 pfn, action_page_types[ps->type], count); 871 result = MF_FAILED; 872 } 873 action_result(pfn, ps->type, result); 874 875 /* Could do more checks here if page looks ok */ 876 /* 877 * Could adjust zone counters here to correct for the missing page. 878 */ 879 880 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 881 } 882 883 /** 884 * get_hwpoison_page() - Get refcount for memory error handling: 885 * @page: raw error page (hit by memory error) 886 * 887 * Return: return 0 if failed to grab the refcount, otherwise true (some 888 * non-zero value.) 889 */ 890 int get_hwpoison_page(struct page *page) 891 { 892 struct page *head = compound_head(page); 893 894 if (!PageHuge(head) && PageTransHuge(head)) { 895 /* 896 * Non anonymous thp exists only in allocation/free time. We 897 * can't handle such a case correctly, so let's give it up. 898 * This should be better than triggering BUG_ON when kernel 899 * tries to touch the "partially handled" page. 900 */ 901 if (!PageAnon(head)) { 902 pr_err("Memory failure: %#lx: non anonymous thp\n", 903 page_to_pfn(page)); 904 return 0; 905 } 906 } 907 908 if (get_page_unless_zero(head)) { 909 if (head == compound_head(page)) 910 return 1; 911 912 pr_info("Memory failure: %#lx cannot catch tail\n", 913 page_to_pfn(page)); 914 put_page(head); 915 } 916 917 return 0; 918 } 919 EXPORT_SYMBOL_GPL(get_hwpoison_page); 920 921 /* 922 * Do all that is necessary to remove user space mappings. Unmap 923 * the pages and send SIGBUS to the processes if the data was dirty. 924 */ 925 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 926 int flags, struct page **hpagep) 927 { 928 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 929 struct address_space *mapping; 930 LIST_HEAD(tokill); 931 bool unmap_success; 932 int kill = 1, forcekill; 933 struct page *hpage = *hpagep; 934 bool mlocked = PageMlocked(hpage); 935 936 /* 937 * Here we are interested only in user-mapped pages, so skip any 938 * other types of pages. 939 */ 940 if (PageReserved(p) || PageSlab(p)) 941 return true; 942 if (!(PageLRU(hpage) || PageHuge(p))) 943 return true; 944 945 /* 946 * This check implies we don't kill processes if their pages 947 * are in the swap cache early. Those are always late kills. 948 */ 949 if (!page_mapped(hpage)) 950 return true; 951 952 if (PageKsm(p)) { 953 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 954 return false; 955 } 956 957 if (PageSwapCache(p)) { 958 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 959 pfn); 960 ttu |= TTU_IGNORE_HWPOISON; 961 } 962 963 /* 964 * Propagate the dirty bit from PTEs to struct page first, because we 965 * need this to decide if we should kill or just drop the page. 966 * XXX: the dirty test could be racy: set_page_dirty() may not always 967 * be called inside page lock (it's recommended but not enforced). 968 */ 969 mapping = page_mapping(hpage); 970 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 971 mapping_cap_writeback_dirty(mapping)) { 972 if (page_mkclean(hpage)) { 973 SetPageDirty(hpage); 974 } else { 975 kill = 0; 976 ttu |= TTU_IGNORE_HWPOISON; 977 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 978 pfn); 979 } 980 } 981 982 /* 983 * First collect all the processes that have the page 984 * mapped in dirty form. This has to be done before try_to_unmap, 985 * because ttu takes the rmap data structures down. 986 * 987 * Error handling: We ignore errors here because 988 * there's nothing that can be done. 989 */ 990 if (kill) 991 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 992 993 unmap_success = try_to_unmap(hpage, ttu); 994 if (!unmap_success) 995 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 996 pfn, page_mapcount(hpage)); 997 998 /* 999 * try_to_unmap() might put mlocked page in lru cache, so call 1000 * shake_page() again to ensure that it's flushed. 1001 */ 1002 if (mlocked) 1003 shake_page(hpage, 0); 1004 1005 /* 1006 * Now that the dirty bit has been propagated to the 1007 * struct page and all unmaps done we can decide if 1008 * killing is needed or not. Only kill when the page 1009 * was dirty or the process is not restartable, 1010 * otherwise the tokill list is merely 1011 * freed. When there was a problem unmapping earlier 1012 * use a more force-full uncatchable kill to prevent 1013 * any accesses to the poisoned memory. 1014 */ 1015 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1016 kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags); 1017 1018 return unmap_success; 1019 } 1020 1021 static int identify_page_state(unsigned long pfn, struct page *p, 1022 unsigned long page_flags) 1023 { 1024 struct page_state *ps; 1025 1026 /* 1027 * The first check uses the current page flags which may not have any 1028 * relevant information. The second check with the saved page flags is 1029 * carried out only if the first check can't determine the page status. 1030 */ 1031 for (ps = error_states;; ps++) 1032 if ((p->flags & ps->mask) == ps->res) 1033 break; 1034 1035 page_flags |= (p->flags & (1UL << PG_dirty)); 1036 1037 if (!ps->mask) 1038 for (ps = error_states;; ps++) 1039 if ((page_flags & ps->mask) == ps->res) 1040 break; 1041 return page_action(ps, p, pfn); 1042 } 1043 1044 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1045 { 1046 struct page *p = pfn_to_page(pfn); 1047 struct page *head = compound_head(p); 1048 int res; 1049 unsigned long page_flags; 1050 1051 if (TestSetPageHWPoison(head)) { 1052 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1053 pfn); 1054 return 0; 1055 } 1056 1057 num_poisoned_pages_inc(); 1058 1059 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1060 /* 1061 * Check "filter hit" and "race with other subpage." 1062 */ 1063 lock_page(head); 1064 if (PageHWPoison(head)) { 1065 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1066 || (p != head && TestSetPageHWPoison(head))) { 1067 num_poisoned_pages_dec(); 1068 unlock_page(head); 1069 return 0; 1070 } 1071 } 1072 unlock_page(head); 1073 dissolve_free_huge_page(p); 1074 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED); 1075 return 0; 1076 } 1077 1078 lock_page(head); 1079 page_flags = head->flags; 1080 1081 if (!PageHWPoison(head)) { 1082 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1083 num_poisoned_pages_dec(); 1084 unlock_page(head); 1085 put_hwpoison_page(head); 1086 return 0; 1087 } 1088 1089 /* 1090 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1091 * simply disable it. In order to make it work properly, we need 1092 * make sure that: 1093 * - conversion of a pud that maps an error hugetlb into hwpoison 1094 * entry properly works, and 1095 * - other mm code walking over page table is aware of pud-aligned 1096 * hwpoison entries. 1097 */ 1098 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1099 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1100 res = -EBUSY; 1101 goto out; 1102 } 1103 1104 if (!hwpoison_user_mappings(p, pfn, flags, &head)) { 1105 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1106 res = -EBUSY; 1107 goto out; 1108 } 1109 1110 res = identify_page_state(pfn, p, page_flags); 1111 out: 1112 unlock_page(head); 1113 return res; 1114 } 1115 1116 /** 1117 * memory_failure - Handle memory failure of a page. 1118 * @pfn: Page Number of the corrupted page 1119 * @flags: fine tune action taken 1120 * 1121 * This function is called by the low level machine check code 1122 * of an architecture when it detects hardware memory corruption 1123 * of a page. It tries its best to recover, which includes 1124 * dropping pages, killing processes etc. 1125 * 1126 * The function is primarily of use for corruptions that 1127 * happen outside the current execution context (e.g. when 1128 * detected by a background scrubber) 1129 * 1130 * Must run in process context (e.g. a work queue) with interrupts 1131 * enabled and no spinlocks hold. 1132 */ 1133 int memory_failure(unsigned long pfn, int flags) 1134 { 1135 struct page *p; 1136 struct page *hpage; 1137 struct page *orig_head; 1138 int res; 1139 unsigned long page_flags; 1140 1141 if (!sysctl_memory_failure_recovery) 1142 panic("Memory failure on page %lx", pfn); 1143 1144 if (!pfn_valid(pfn)) { 1145 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1146 pfn); 1147 return -ENXIO; 1148 } 1149 1150 p = pfn_to_page(pfn); 1151 if (PageHuge(p)) 1152 return memory_failure_hugetlb(pfn, flags); 1153 if (TestSetPageHWPoison(p)) { 1154 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1155 pfn); 1156 return 0; 1157 } 1158 1159 orig_head = hpage = compound_head(p); 1160 num_poisoned_pages_inc(); 1161 1162 /* 1163 * We need/can do nothing about count=0 pages. 1164 * 1) it's a free page, and therefore in safe hand: 1165 * prep_new_page() will be the gate keeper. 1166 * 2) it's part of a non-compound high order page. 1167 * Implies some kernel user: cannot stop them from 1168 * R/W the page; let's pray that the page has been 1169 * used and will be freed some time later. 1170 * In fact it's dangerous to directly bump up page count from 0, 1171 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1172 */ 1173 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1174 if (is_free_buddy_page(p)) { 1175 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1176 return 0; 1177 } else { 1178 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1179 return -EBUSY; 1180 } 1181 } 1182 1183 if (PageTransHuge(hpage)) { 1184 lock_page(p); 1185 if (!PageAnon(p) || unlikely(split_huge_page(p))) { 1186 unlock_page(p); 1187 if (!PageAnon(p)) 1188 pr_err("Memory failure: %#lx: non anonymous thp\n", 1189 pfn); 1190 else 1191 pr_err("Memory failure: %#lx: thp split failed\n", 1192 pfn); 1193 if (TestClearPageHWPoison(p)) 1194 num_poisoned_pages_dec(); 1195 put_hwpoison_page(p); 1196 return -EBUSY; 1197 } 1198 unlock_page(p); 1199 VM_BUG_ON_PAGE(!page_count(p), p); 1200 hpage = compound_head(p); 1201 } 1202 1203 /* 1204 * We ignore non-LRU pages for good reasons. 1205 * - PG_locked is only well defined for LRU pages and a few others 1206 * - to avoid races with __SetPageLocked() 1207 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1208 * The check (unnecessarily) ignores LRU pages being isolated and 1209 * walked by the page reclaim code, however that's not a big loss. 1210 */ 1211 shake_page(p, 0); 1212 /* shake_page could have turned it free. */ 1213 if (!PageLRU(p) && is_free_buddy_page(p)) { 1214 if (flags & MF_COUNT_INCREASED) 1215 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1216 else 1217 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); 1218 return 0; 1219 } 1220 1221 lock_page(p); 1222 1223 /* 1224 * The page could have changed compound pages during the locking. 1225 * If this happens just bail out. 1226 */ 1227 if (PageCompound(p) && compound_head(p) != orig_head) { 1228 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1229 res = -EBUSY; 1230 goto out; 1231 } 1232 1233 /* 1234 * We use page flags to determine what action should be taken, but 1235 * the flags can be modified by the error containment action. One 1236 * example is an mlocked page, where PG_mlocked is cleared by 1237 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1238 * correctly, we save a copy of the page flags at this time. 1239 */ 1240 if (PageHuge(p)) 1241 page_flags = hpage->flags; 1242 else 1243 page_flags = p->flags; 1244 1245 /* 1246 * unpoison always clear PG_hwpoison inside page lock 1247 */ 1248 if (!PageHWPoison(p)) { 1249 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1250 num_poisoned_pages_dec(); 1251 unlock_page(p); 1252 put_hwpoison_page(p); 1253 return 0; 1254 } 1255 if (hwpoison_filter(p)) { 1256 if (TestClearPageHWPoison(p)) 1257 num_poisoned_pages_dec(); 1258 unlock_page(p); 1259 put_hwpoison_page(p); 1260 return 0; 1261 } 1262 1263 if (!PageTransTail(p) && !PageLRU(p)) 1264 goto identify_page_state; 1265 1266 /* 1267 * It's very difficult to mess with pages currently under IO 1268 * and in many cases impossible, so we just avoid it here. 1269 */ 1270 wait_on_page_writeback(p); 1271 1272 /* 1273 * Now take care of user space mappings. 1274 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1275 * 1276 * When the raw error page is thp tail page, hpage points to the raw 1277 * page after thp split. 1278 */ 1279 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) { 1280 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1281 res = -EBUSY; 1282 goto out; 1283 } 1284 1285 /* 1286 * Torn down by someone else? 1287 */ 1288 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1289 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1290 res = -EBUSY; 1291 goto out; 1292 } 1293 1294 identify_page_state: 1295 res = identify_page_state(pfn, p, page_flags); 1296 out: 1297 unlock_page(p); 1298 return res; 1299 } 1300 EXPORT_SYMBOL_GPL(memory_failure); 1301 1302 #define MEMORY_FAILURE_FIFO_ORDER 4 1303 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1304 1305 struct memory_failure_entry { 1306 unsigned long pfn; 1307 int flags; 1308 }; 1309 1310 struct memory_failure_cpu { 1311 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1312 MEMORY_FAILURE_FIFO_SIZE); 1313 spinlock_t lock; 1314 struct work_struct work; 1315 }; 1316 1317 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1318 1319 /** 1320 * memory_failure_queue - Schedule handling memory failure of a page. 1321 * @pfn: Page Number of the corrupted page 1322 * @flags: Flags for memory failure handling 1323 * 1324 * This function is called by the low level hardware error handler 1325 * when it detects hardware memory corruption of a page. It schedules 1326 * the recovering of error page, including dropping pages, killing 1327 * processes etc. 1328 * 1329 * The function is primarily of use for corruptions that 1330 * happen outside the current execution context (e.g. when 1331 * detected by a background scrubber) 1332 * 1333 * Can run in IRQ context. 1334 */ 1335 void memory_failure_queue(unsigned long pfn, int flags) 1336 { 1337 struct memory_failure_cpu *mf_cpu; 1338 unsigned long proc_flags; 1339 struct memory_failure_entry entry = { 1340 .pfn = pfn, 1341 .flags = flags, 1342 }; 1343 1344 mf_cpu = &get_cpu_var(memory_failure_cpu); 1345 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1346 if (kfifo_put(&mf_cpu->fifo, entry)) 1347 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1348 else 1349 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1350 pfn); 1351 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1352 put_cpu_var(memory_failure_cpu); 1353 } 1354 EXPORT_SYMBOL_GPL(memory_failure_queue); 1355 1356 static void memory_failure_work_func(struct work_struct *work) 1357 { 1358 struct memory_failure_cpu *mf_cpu; 1359 struct memory_failure_entry entry = { 0, }; 1360 unsigned long proc_flags; 1361 int gotten; 1362 1363 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1364 for (;;) { 1365 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1366 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1367 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1368 if (!gotten) 1369 break; 1370 if (entry.flags & MF_SOFT_OFFLINE) 1371 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1372 else 1373 memory_failure(entry.pfn, entry.flags); 1374 } 1375 } 1376 1377 static int __init memory_failure_init(void) 1378 { 1379 struct memory_failure_cpu *mf_cpu; 1380 int cpu; 1381 1382 for_each_possible_cpu(cpu) { 1383 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1384 spin_lock_init(&mf_cpu->lock); 1385 INIT_KFIFO(mf_cpu->fifo); 1386 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1387 } 1388 1389 return 0; 1390 } 1391 core_initcall(memory_failure_init); 1392 1393 #define unpoison_pr_info(fmt, pfn, rs) \ 1394 ({ \ 1395 if (__ratelimit(rs)) \ 1396 pr_info(fmt, pfn); \ 1397 }) 1398 1399 /** 1400 * unpoison_memory - Unpoison a previously poisoned page 1401 * @pfn: Page number of the to be unpoisoned page 1402 * 1403 * Software-unpoison a page that has been poisoned by 1404 * memory_failure() earlier. 1405 * 1406 * This is only done on the software-level, so it only works 1407 * for linux injected failures, not real hardware failures 1408 * 1409 * Returns 0 for success, otherwise -errno. 1410 */ 1411 int unpoison_memory(unsigned long pfn) 1412 { 1413 struct page *page; 1414 struct page *p; 1415 int freeit = 0; 1416 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1417 DEFAULT_RATELIMIT_BURST); 1418 1419 if (!pfn_valid(pfn)) 1420 return -ENXIO; 1421 1422 p = pfn_to_page(pfn); 1423 page = compound_head(p); 1424 1425 if (!PageHWPoison(p)) { 1426 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1427 pfn, &unpoison_rs); 1428 return 0; 1429 } 1430 1431 if (page_count(page) > 1) { 1432 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1433 pfn, &unpoison_rs); 1434 return 0; 1435 } 1436 1437 if (page_mapped(page)) { 1438 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1439 pfn, &unpoison_rs); 1440 return 0; 1441 } 1442 1443 if (page_mapping(page)) { 1444 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1445 pfn, &unpoison_rs); 1446 return 0; 1447 } 1448 1449 /* 1450 * unpoison_memory() can encounter thp only when the thp is being 1451 * worked by memory_failure() and the page lock is not held yet. 1452 * In such case, we yield to memory_failure() and make unpoison fail. 1453 */ 1454 if (!PageHuge(page) && PageTransHuge(page)) { 1455 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1456 pfn, &unpoison_rs); 1457 return 0; 1458 } 1459 1460 if (!get_hwpoison_page(p)) { 1461 if (TestClearPageHWPoison(p)) 1462 num_poisoned_pages_dec(); 1463 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1464 pfn, &unpoison_rs); 1465 return 0; 1466 } 1467 1468 lock_page(page); 1469 /* 1470 * This test is racy because PG_hwpoison is set outside of page lock. 1471 * That's acceptable because that won't trigger kernel panic. Instead, 1472 * the PG_hwpoison page will be caught and isolated on the entrance to 1473 * the free buddy page pool. 1474 */ 1475 if (TestClearPageHWPoison(page)) { 1476 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1477 pfn, &unpoison_rs); 1478 num_poisoned_pages_dec(); 1479 freeit = 1; 1480 } 1481 unlock_page(page); 1482 1483 put_hwpoison_page(page); 1484 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1485 put_hwpoison_page(page); 1486 1487 return 0; 1488 } 1489 EXPORT_SYMBOL(unpoison_memory); 1490 1491 static struct page *new_page(struct page *p, unsigned long private) 1492 { 1493 int nid = page_to_nid(p); 1494 1495 return new_page_nodemask(p, nid, &node_states[N_MEMORY]); 1496 } 1497 1498 /* 1499 * Safely get reference count of an arbitrary page. 1500 * Returns 0 for a free page, -EIO for a zero refcount page 1501 * that is not free, and 1 for any other page type. 1502 * For 1 the page is returned with increased page count, otherwise not. 1503 */ 1504 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1505 { 1506 int ret; 1507 1508 if (flags & MF_COUNT_INCREASED) 1509 return 1; 1510 1511 /* 1512 * When the target page is a free hugepage, just remove it 1513 * from free hugepage list. 1514 */ 1515 if (!get_hwpoison_page(p)) { 1516 if (PageHuge(p)) { 1517 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1518 ret = 0; 1519 } else if (is_free_buddy_page(p)) { 1520 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1521 ret = 0; 1522 } else { 1523 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1524 __func__, pfn, p->flags); 1525 ret = -EIO; 1526 } 1527 } else { 1528 /* Not a free page */ 1529 ret = 1; 1530 } 1531 return ret; 1532 } 1533 1534 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1535 { 1536 int ret = __get_any_page(page, pfn, flags); 1537 1538 if (ret == 1 && !PageHuge(page) && 1539 !PageLRU(page) && !__PageMovable(page)) { 1540 /* 1541 * Try to free it. 1542 */ 1543 put_hwpoison_page(page); 1544 shake_page(page, 1); 1545 1546 /* 1547 * Did it turn free? 1548 */ 1549 ret = __get_any_page(page, pfn, 0); 1550 if (ret == 1 && !PageLRU(page)) { 1551 /* Drop page reference which is from __get_any_page() */ 1552 put_hwpoison_page(page); 1553 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", 1554 pfn, page->flags, &page->flags); 1555 return -EIO; 1556 } 1557 } 1558 return ret; 1559 } 1560 1561 static int soft_offline_huge_page(struct page *page, int flags) 1562 { 1563 int ret; 1564 unsigned long pfn = page_to_pfn(page); 1565 struct page *hpage = compound_head(page); 1566 LIST_HEAD(pagelist); 1567 1568 /* 1569 * This double-check of PageHWPoison is to avoid the race with 1570 * memory_failure(). See also comment in __soft_offline_page(). 1571 */ 1572 lock_page(hpage); 1573 if (PageHWPoison(hpage)) { 1574 unlock_page(hpage); 1575 put_hwpoison_page(hpage); 1576 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1577 return -EBUSY; 1578 } 1579 unlock_page(hpage); 1580 1581 ret = isolate_huge_page(hpage, &pagelist); 1582 /* 1583 * get_any_page() and isolate_huge_page() takes a refcount each, 1584 * so need to drop one here. 1585 */ 1586 put_hwpoison_page(hpage); 1587 if (!ret) { 1588 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1589 return -EBUSY; 1590 } 1591 1592 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1593 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1594 if (ret) { 1595 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n", 1596 pfn, ret, page->flags, &page->flags); 1597 if (!list_empty(&pagelist)) 1598 putback_movable_pages(&pagelist); 1599 if (ret > 0) 1600 ret = -EIO; 1601 } else { 1602 /* 1603 * We set PG_hwpoison only when the migration source hugepage 1604 * was successfully dissolved, because otherwise hwpoisoned 1605 * hugepage remains on free hugepage list, then userspace will 1606 * find it as SIGBUS by allocation failure. That's not expected 1607 * in soft-offlining. 1608 */ 1609 ret = dissolve_free_huge_page(page); 1610 if (!ret) { 1611 if (set_hwpoison_free_buddy_page(page)) 1612 num_poisoned_pages_inc(); 1613 } 1614 } 1615 return ret; 1616 } 1617 1618 static int __soft_offline_page(struct page *page, int flags) 1619 { 1620 int ret; 1621 unsigned long pfn = page_to_pfn(page); 1622 1623 /* 1624 * Check PageHWPoison again inside page lock because PageHWPoison 1625 * is set by memory_failure() outside page lock. Note that 1626 * memory_failure() also double-checks PageHWPoison inside page lock, 1627 * so there's no race between soft_offline_page() and memory_failure(). 1628 */ 1629 lock_page(page); 1630 wait_on_page_writeback(page); 1631 if (PageHWPoison(page)) { 1632 unlock_page(page); 1633 put_hwpoison_page(page); 1634 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1635 return -EBUSY; 1636 } 1637 /* 1638 * Try to invalidate first. This should work for 1639 * non dirty unmapped page cache pages. 1640 */ 1641 ret = invalidate_inode_page(page); 1642 unlock_page(page); 1643 /* 1644 * RED-PEN would be better to keep it isolated here, but we 1645 * would need to fix isolation locking first. 1646 */ 1647 if (ret == 1) { 1648 put_hwpoison_page(page); 1649 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1650 SetPageHWPoison(page); 1651 num_poisoned_pages_inc(); 1652 return 0; 1653 } 1654 1655 /* 1656 * Simple invalidation didn't work. 1657 * Try to migrate to a new page instead. migrate.c 1658 * handles a large number of cases for us. 1659 */ 1660 if (PageLRU(page)) 1661 ret = isolate_lru_page(page); 1662 else 1663 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1664 /* 1665 * Drop page reference which is came from get_any_page() 1666 * successful isolate_lru_page() already took another one. 1667 */ 1668 put_hwpoison_page(page); 1669 if (!ret) { 1670 LIST_HEAD(pagelist); 1671 /* 1672 * After isolated lru page, the PageLRU will be cleared, 1673 * so use !__PageMovable instead for LRU page's mapping 1674 * cannot have PAGE_MAPPING_MOVABLE. 1675 */ 1676 if (!__PageMovable(page)) 1677 inc_node_page_state(page, NR_ISOLATED_ANON + 1678 page_is_file_cache(page)); 1679 list_add(&page->lru, &pagelist); 1680 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1681 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1682 if (ret) { 1683 if (!list_empty(&pagelist)) 1684 putback_movable_pages(&pagelist); 1685 1686 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", 1687 pfn, ret, page->flags, &page->flags); 1688 if (ret > 0) 1689 ret = -EIO; 1690 } 1691 } else { 1692 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n", 1693 pfn, ret, page_count(page), page->flags, &page->flags); 1694 } 1695 return ret; 1696 } 1697 1698 static int soft_offline_in_use_page(struct page *page, int flags) 1699 { 1700 int ret; 1701 int mt; 1702 struct page *hpage = compound_head(page); 1703 1704 if (!PageHuge(page) && PageTransHuge(hpage)) { 1705 lock_page(hpage); 1706 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) { 1707 unlock_page(hpage); 1708 if (!PageAnon(hpage)) 1709 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); 1710 else 1711 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); 1712 put_hwpoison_page(hpage); 1713 return -EBUSY; 1714 } 1715 unlock_page(hpage); 1716 get_hwpoison_page(page); 1717 put_hwpoison_page(hpage); 1718 } 1719 1720 /* 1721 * Setting MIGRATE_ISOLATE here ensures that the page will be linked 1722 * to free list immediately (not via pcplist) when released after 1723 * successful page migration. Otherwise we can't guarantee that the 1724 * page is really free after put_page() returns, so 1725 * set_hwpoison_free_buddy_page() highly likely fails. 1726 */ 1727 mt = get_pageblock_migratetype(page); 1728 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 1729 if (PageHuge(page)) 1730 ret = soft_offline_huge_page(page, flags); 1731 else 1732 ret = __soft_offline_page(page, flags); 1733 set_pageblock_migratetype(page, mt); 1734 return ret; 1735 } 1736 1737 static int soft_offline_free_page(struct page *page) 1738 { 1739 int rc = 0; 1740 struct page *head = compound_head(page); 1741 1742 if (PageHuge(head)) 1743 rc = dissolve_free_huge_page(page); 1744 if (!rc) { 1745 if (set_hwpoison_free_buddy_page(page)) 1746 num_poisoned_pages_inc(); 1747 else 1748 rc = -EBUSY; 1749 } 1750 return rc; 1751 } 1752 1753 /** 1754 * soft_offline_page - Soft offline a page. 1755 * @page: page to offline 1756 * @flags: flags. Same as memory_failure(). 1757 * 1758 * Returns 0 on success, otherwise negated errno. 1759 * 1760 * Soft offline a page, by migration or invalidation, 1761 * without killing anything. This is for the case when 1762 * a page is not corrupted yet (so it's still valid to access), 1763 * but has had a number of corrected errors and is better taken 1764 * out. 1765 * 1766 * The actual policy on when to do that is maintained by 1767 * user space. 1768 * 1769 * This should never impact any application or cause data loss, 1770 * however it might take some time. 1771 * 1772 * This is not a 100% solution for all memory, but tries to be 1773 * ``good enough'' for the majority of memory. 1774 */ 1775 int soft_offline_page(struct page *page, int flags) 1776 { 1777 int ret; 1778 unsigned long pfn = page_to_pfn(page); 1779 1780 if (PageHWPoison(page)) { 1781 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1782 if (flags & MF_COUNT_INCREASED) 1783 put_hwpoison_page(page); 1784 return -EBUSY; 1785 } 1786 1787 get_online_mems(); 1788 ret = get_any_page(page, pfn, flags); 1789 put_online_mems(); 1790 1791 if (ret > 0) 1792 ret = soft_offline_in_use_page(page, flags); 1793 else if (ret == 0) 1794 ret = soft_offline_free_page(page); 1795 1796 return ret; 1797 } 1798