xref: /linux/mm/memory-failure.c (revision a99237afc12ba697159ca313525dc390737dd52f)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/page-isolation.h>
61 #include "internal.h"
62 #include "ras/ras_event.h"
63 
64 int sysctl_memory_failure_early_kill __read_mostly = 0;
65 
66 int sysctl_memory_failure_recovery __read_mostly = 1;
67 
68 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
69 
70 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
71 
72 u32 hwpoison_filter_enable = 0;
73 u32 hwpoison_filter_dev_major = ~0U;
74 u32 hwpoison_filter_dev_minor = ~0U;
75 u64 hwpoison_filter_flags_mask;
76 u64 hwpoison_filter_flags_value;
77 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
82 
83 static int hwpoison_filter_dev(struct page *p)
84 {
85 	struct address_space *mapping;
86 	dev_t dev;
87 
88 	if (hwpoison_filter_dev_major == ~0U &&
89 	    hwpoison_filter_dev_minor == ~0U)
90 		return 0;
91 
92 	/*
93 	 * page_mapping() does not accept slab pages.
94 	 */
95 	if (PageSlab(p))
96 		return -EINVAL;
97 
98 	mapping = page_mapping(p);
99 	if (mapping == NULL || mapping->host == NULL)
100 		return -EINVAL;
101 
102 	dev = mapping->host->i_sb->s_dev;
103 	if (hwpoison_filter_dev_major != ~0U &&
104 	    hwpoison_filter_dev_major != MAJOR(dev))
105 		return -EINVAL;
106 	if (hwpoison_filter_dev_minor != ~0U &&
107 	    hwpoison_filter_dev_minor != MINOR(dev))
108 		return -EINVAL;
109 
110 	return 0;
111 }
112 
113 static int hwpoison_filter_flags(struct page *p)
114 {
115 	if (!hwpoison_filter_flags_mask)
116 		return 0;
117 
118 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
119 				    hwpoison_filter_flags_value)
120 		return 0;
121 	else
122 		return -EINVAL;
123 }
124 
125 /*
126  * This allows stress tests to limit test scope to a collection of tasks
127  * by putting them under some memcg. This prevents killing unrelated/important
128  * processes such as /sbin/init. Note that the target task may share clean
129  * pages with init (eg. libc text), which is harmless. If the target task
130  * share _dirty_ pages with another task B, the test scheme must make sure B
131  * is also included in the memcg. At last, due to race conditions this filter
132  * can only guarantee that the page either belongs to the memcg tasks, or is
133  * a freed page.
134  */
135 #ifdef CONFIG_MEMCG
136 u64 hwpoison_filter_memcg;
137 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
138 static int hwpoison_filter_task(struct page *p)
139 {
140 	if (!hwpoison_filter_memcg)
141 		return 0;
142 
143 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
144 		return -EINVAL;
145 
146 	return 0;
147 }
148 #else
149 static int hwpoison_filter_task(struct page *p) { return 0; }
150 #endif
151 
152 int hwpoison_filter(struct page *p)
153 {
154 	if (!hwpoison_filter_enable)
155 		return 0;
156 
157 	if (hwpoison_filter_dev(p))
158 		return -EINVAL;
159 
160 	if (hwpoison_filter_flags(p))
161 		return -EINVAL;
162 
163 	if (hwpoison_filter_task(p))
164 		return -EINVAL;
165 
166 	return 0;
167 }
168 #else
169 int hwpoison_filter(struct page *p)
170 {
171 	return 0;
172 }
173 #endif
174 
175 EXPORT_SYMBOL_GPL(hwpoison_filter);
176 
177 /*
178  * Send all the processes who have the page mapped a signal.
179  * ``action optional'' if they are not immediately affected by the error
180  * ``action required'' if error happened in current execution context
181  */
182 static int kill_proc(struct task_struct *t, unsigned long addr,
183 			unsigned long pfn, struct page *page, int flags)
184 {
185 	short addr_lsb;
186 	int ret;
187 
188 	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
189 		pfn, t->comm, t->pid);
190 	addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
191 
192 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
193 		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr,
194 				       addr_lsb, current);
195 	} else {
196 		/*
197 		 * Don't use force here, it's convenient if the signal
198 		 * can be temporarily blocked.
199 		 * This could cause a loop when the user sets SIGBUS
200 		 * to SIG_IGN, but hopefully no one will do that?
201 		 */
202 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)addr,
203 				      addr_lsb, t);  /* synchronous? */
204 	}
205 	if (ret < 0)
206 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
207 			t->comm, t->pid, ret);
208 	return ret;
209 }
210 
211 /*
212  * When a unknown page type is encountered drain as many buffers as possible
213  * in the hope to turn the page into a LRU or free page, which we can handle.
214  */
215 void shake_page(struct page *p, int access)
216 {
217 	if (PageHuge(p))
218 		return;
219 
220 	if (!PageSlab(p)) {
221 		lru_add_drain_all();
222 		if (PageLRU(p))
223 			return;
224 		drain_all_pages(page_zone(p));
225 		if (PageLRU(p) || is_free_buddy_page(p))
226 			return;
227 	}
228 
229 	/*
230 	 * Only call shrink_node_slabs here (which would also shrink
231 	 * other caches) if access is not potentially fatal.
232 	 */
233 	if (access)
234 		drop_slab_node(page_to_nid(p));
235 }
236 EXPORT_SYMBOL_GPL(shake_page);
237 
238 /*
239  * Kill all processes that have a poisoned page mapped and then isolate
240  * the page.
241  *
242  * General strategy:
243  * Find all processes having the page mapped and kill them.
244  * But we keep a page reference around so that the page is not
245  * actually freed yet.
246  * Then stash the page away
247  *
248  * There's no convenient way to get back to mapped processes
249  * from the VMAs. So do a brute-force search over all
250  * running processes.
251  *
252  * Remember that machine checks are not common (or rather
253  * if they are common you have other problems), so this shouldn't
254  * be a performance issue.
255  *
256  * Also there are some races possible while we get from the
257  * error detection to actually handle it.
258  */
259 
260 struct to_kill {
261 	struct list_head nd;
262 	struct task_struct *tsk;
263 	unsigned long addr;
264 	char addr_valid;
265 };
266 
267 /*
268  * Failure handling: if we can't find or can't kill a process there's
269  * not much we can do.	We just print a message and ignore otherwise.
270  */
271 
272 /*
273  * Schedule a process for later kill.
274  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
275  * TBD would GFP_NOIO be enough?
276  */
277 static void add_to_kill(struct task_struct *tsk, struct page *p,
278 		       struct vm_area_struct *vma,
279 		       struct list_head *to_kill,
280 		       struct to_kill **tkc)
281 {
282 	struct to_kill *tk;
283 
284 	if (*tkc) {
285 		tk = *tkc;
286 		*tkc = NULL;
287 	} else {
288 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
289 		if (!tk) {
290 			pr_err("Memory failure: Out of memory while machine check handling\n");
291 			return;
292 		}
293 	}
294 	tk->addr = page_address_in_vma(p, vma);
295 	tk->addr_valid = 1;
296 
297 	/*
298 	 * In theory we don't have to kill when the page was
299 	 * munmaped. But it could be also a mremap. Since that's
300 	 * likely very rare kill anyways just out of paranoia, but use
301 	 * a SIGKILL because the error is not contained anymore.
302 	 */
303 	if (tk->addr == -EFAULT) {
304 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
305 			page_to_pfn(p), tsk->comm);
306 		tk->addr_valid = 0;
307 	}
308 	get_task_struct(tsk);
309 	tk->tsk = tsk;
310 	list_add_tail(&tk->nd, to_kill);
311 }
312 
313 /*
314  * Kill the processes that have been collected earlier.
315  *
316  * Only do anything when DOIT is set, otherwise just free the list
317  * (this is used for clean pages which do not need killing)
318  * Also when FAIL is set do a force kill because something went
319  * wrong earlier.
320  */
321 static void kill_procs(struct list_head *to_kill, int forcekill,
322 			  bool fail, struct page *page, unsigned long pfn,
323 			  int flags)
324 {
325 	struct to_kill *tk, *next;
326 
327 	list_for_each_entry_safe (tk, next, to_kill, nd) {
328 		if (forcekill) {
329 			/*
330 			 * In case something went wrong with munmapping
331 			 * make sure the process doesn't catch the
332 			 * signal and then access the memory. Just kill it.
333 			 */
334 			if (fail || tk->addr_valid == 0) {
335 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
336 				       pfn, tk->tsk->comm, tk->tsk->pid);
337 				force_sig(SIGKILL, tk->tsk);
338 			}
339 
340 			/*
341 			 * In theory the process could have mapped
342 			 * something else on the address in-between. We could
343 			 * check for that, but we need to tell the
344 			 * process anyways.
345 			 */
346 			else if (kill_proc(tk->tsk, tk->addr,
347 					      pfn, page, flags) < 0)
348 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
349 				       pfn, tk->tsk->comm, tk->tsk->pid);
350 		}
351 		put_task_struct(tk->tsk);
352 		kfree(tk);
353 	}
354 }
355 
356 /*
357  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
358  * on behalf of the thread group. Return task_struct of the (first found)
359  * dedicated thread if found, and return NULL otherwise.
360  *
361  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
362  * have to call rcu_read_lock/unlock() in this function.
363  */
364 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
365 {
366 	struct task_struct *t;
367 
368 	for_each_thread(tsk, t)
369 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
370 			return t;
371 	return NULL;
372 }
373 
374 /*
375  * Determine whether a given process is "early kill" process which expects
376  * to be signaled when some page under the process is hwpoisoned.
377  * Return task_struct of the dedicated thread (main thread unless explicitly
378  * specified) if the process is "early kill," and otherwise returns NULL.
379  */
380 static struct task_struct *task_early_kill(struct task_struct *tsk,
381 					   int force_early)
382 {
383 	struct task_struct *t;
384 	if (!tsk->mm)
385 		return NULL;
386 	if (force_early)
387 		return tsk;
388 	t = find_early_kill_thread(tsk);
389 	if (t)
390 		return t;
391 	if (sysctl_memory_failure_early_kill)
392 		return tsk;
393 	return NULL;
394 }
395 
396 /*
397  * Collect processes when the error hit an anonymous page.
398  */
399 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
400 			      struct to_kill **tkc, int force_early)
401 {
402 	struct vm_area_struct *vma;
403 	struct task_struct *tsk;
404 	struct anon_vma *av;
405 	pgoff_t pgoff;
406 
407 	av = page_lock_anon_vma_read(page);
408 	if (av == NULL)	/* Not actually mapped anymore */
409 		return;
410 
411 	pgoff = page_to_pgoff(page);
412 	read_lock(&tasklist_lock);
413 	for_each_process (tsk) {
414 		struct anon_vma_chain *vmac;
415 		struct task_struct *t = task_early_kill(tsk, force_early);
416 
417 		if (!t)
418 			continue;
419 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
420 					       pgoff, pgoff) {
421 			vma = vmac->vma;
422 			if (!page_mapped_in_vma(page, vma))
423 				continue;
424 			if (vma->vm_mm == t->mm)
425 				add_to_kill(t, page, vma, to_kill, tkc);
426 		}
427 	}
428 	read_unlock(&tasklist_lock);
429 	page_unlock_anon_vma_read(av);
430 }
431 
432 /*
433  * Collect processes when the error hit a file mapped page.
434  */
435 static void collect_procs_file(struct page *page, struct list_head *to_kill,
436 			      struct to_kill **tkc, int force_early)
437 {
438 	struct vm_area_struct *vma;
439 	struct task_struct *tsk;
440 	struct address_space *mapping = page->mapping;
441 
442 	i_mmap_lock_read(mapping);
443 	read_lock(&tasklist_lock);
444 	for_each_process(tsk) {
445 		pgoff_t pgoff = page_to_pgoff(page);
446 		struct task_struct *t = task_early_kill(tsk, force_early);
447 
448 		if (!t)
449 			continue;
450 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
451 				      pgoff) {
452 			/*
453 			 * Send early kill signal to tasks where a vma covers
454 			 * the page but the corrupted page is not necessarily
455 			 * mapped it in its pte.
456 			 * Assume applications who requested early kill want
457 			 * to be informed of all such data corruptions.
458 			 */
459 			if (vma->vm_mm == t->mm)
460 				add_to_kill(t, page, vma, to_kill, tkc);
461 		}
462 	}
463 	read_unlock(&tasklist_lock);
464 	i_mmap_unlock_read(mapping);
465 }
466 
467 /*
468  * Collect the processes who have the corrupted page mapped to kill.
469  * This is done in two steps for locking reasons.
470  * First preallocate one tokill structure outside the spin locks,
471  * so that we can kill at least one process reasonably reliable.
472  */
473 static void collect_procs(struct page *page, struct list_head *tokill,
474 				int force_early)
475 {
476 	struct to_kill *tk;
477 
478 	if (!page->mapping)
479 		return;
480 
481 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
482 	if (!tk)
483 		return;
484 	if (PageAnon(page))
485 		collect_procs_anon(page, tokill, &tk, force_early);
486 	else
487 		collect_procs_file(page, tokill, &tk, force_early);
488 	kfree(tk);
489 }
490 
491 static const char *action_name[] = {
492 	[MF_IGNORED] = "Ignored",
493 	[MF_FAILED] = "Failed",
494 	[MF_DELAYED] = "Delayed",
495 	[MF_RECOVERED] = "Recovered",
496 };
497 
498 static const char * const action_page_types[] = {
499 	[MF_MSG_KERNEL]			= "reserved kernel page",
500 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
501 	[MF_MSG_SLAB]			= "kernel slab page",
502 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
503 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
504 	[MF_MSG_HUGE]			= "huge page",
505 	[MF_MSG_FREE_HUGE]		= "free huge page",
506 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
507 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
508 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
509 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
510 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
511 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
512 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
513 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
514 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
515 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
516 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
517 	[MF_MSG_BUDDY]			= "free buddy page",
518 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
519 	[MF_MSG_UNKNOWN]		= "unknown page",
520 };
521 
522 /*
523  * XXX: It is possible that a page is isolated from LRU cache,
524  * and then kept in swap cache or failed to remove from page cache.
525  * The page count will stop it from being freed by unpoison.
526  * Stress tests should be aware of this memory leak problem.
527  */
528 static int delete_from_lru_cache(struct page *p)
529 {
530 	if (!isolate_lru_page(p)) {
531 		/*
532 		 * Clear sensible page flags, so that the buddy system won't
533 		 * complain when the page is unpoison-and-freed.
534 		 */
535 		ClearPageActive(p);
536 		ClearPageUnevictable(p);
537 
538 		/*
539 		 * Poisoned page might never drop its ref count to 0 so we have
540 		 * to uncharge it manually from its memcg.
541 		 */
542 		mem_cgroup_uncharge(p);
543 
544 		/*
545 		 * drop the page count elevated by isolate_lru_page()
546 		 */
547 		put_page(p);
548 		return 0;
549 	}
550 	return -EIO;
551 }
552 
553 static int truncate_error_page(struct page *p, unsigned long pfn,
554 				struct address_space *mapping)
555 {
556 	int ret = MF_FAILED;
557 
558 	if (mapping->a_ops->error_remove_page) {
559 		int err = mapping->a_ops->error_remove_page(mapping, p);
560 
561 		if (err != 0) {
562 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
563 				pfn, err);
564 		} else if (page_has_private(p) &&
565 			   !try_to_release_page(p, GFP_NOIO)) {
566 			pr_info("Memory failure: %#lx: failed to release buffers\n",
567 				pfn);
568 		} else {
569 			ret = MF_RECOVERED;
570 		}
571 	} else {
572 		/*
573 		 * If the file system doesn't support it just invalidate
574 		 * This fails on dirty or anything with private pages
575 		 */
576 		if (invalidate_inode_page(p))
577 			ret = MF_RECOVERED;
578 		else
579 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
580 				pfn);
581 	}
582 
583 	return ret;
584 }
585 
586 /*
587  * Error hit kernel page.
588  * Do nothing, try to be lucky and not touch this instead. For a few cases we
589  * could be more sophisticated.
590  */
591 static int me_kernel(struct page *p, unsigned long pfn)
592 {
593 	return MF_IGNORED;
594 }
595 
596 /*
597  * Page in unknown state. Do nothing.
598  */
599 static int me_unknown(struct page *p, unsigned long pfn)
600 {
601 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
602 	return MF_FAILED;
603 }
604 
605 /*
606  * Clean (or cleaned) page cache page.
607  */
608 static int me_pagecache_clean(struct page *p, unsigned long pfn)
609 {
610 	struct address_space *mapping;
611 
612 	delete_from_lru_cache(p);
613 
614 	/*
615 	 * For anonymous pages we're done the only reference left
616 	 * should be the one m_f() holds.
617 	 */
618 	if (PageAnon(p))
619 		return MF_RECOVERED;
620 
621 	/*
622 	 * Now truncate the page in the page cache. This is really
623 	 * more like a "temporary hole punch"
624 	 * Don't do this for block devices when someone else
625 	 * has a reference, because it could be file system metadata
626 	 * and that's not safe to truncate.
627 	 */
628 	mapping = page_mapping(p);
629 	if (!mapping) {
630 		/*
631 		 * Page has been teared down in the meanwhile
632 		 */
633 		return MF_FAILED;
634 	}
635 
636 	/*
637 	 * Truncation is a bit tricky. Enable it per file system for now.
638 	 *
639 	 * Open: to take i_mutex or not for this? Right now we don't.
640 	 */
641 	return truncate_error_page(p, pfn, mapping);
642 }
643 
644 /*
645  * Dirty pagecache page
646  * Issues: when the error hit a hole page the error is not properly
647  * propagated.
648  */
649 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
650 {
651 	struct address_space *mapping = page_mapping(p);
652 
653 	SetPageError(p);
654 	/* TBD: print more information about the file. */
655 	if (mapping) {
656 		/*
657 		 * IO error will be reported by write(), fsync(), etc.
658 		 * who check the mapping.
659 		 * This way the application knows that something went
660 		 * wrong with its dirty file data.
661 		 *
662 		 * There's one open issue:
663 		 *
664 		 * The EIO will be only reported on the next IO
665 		 * operation and then cleared through the IO map.
666 		 * Normally Linux has two mechanisms to pass IO error
667 		 * first through the AS_EIO flag in the address space
668 		 * and then through the PageError flag in the page.
669 		 * Since we drop pages on memory failure handling the
670 		 * only mechanism open to use is through AS_AIO.
671 		 *
672 		 * This has the disadvantage that it gets cleared on
673 		 * the first operation that returns an error, while
674 		 * the PageError bit is more sticky and only cleared
675 		 * when the page is reread or dropped.  If an
676 		 * application assumes it will always get error on
677 		 * fsync, but does other operations on the fd before
678 		 * and the page is dropped between then the error
679 		 * will not be properly reported.
680 		 *
681 		 * This can already happen even without hwpoisoned
682 		 * pages: first on metadata IO errors (which only
683 		 * report through AS_EIO) or when the page is dropped
684 		 * at the wrong time.
685 		 *
686 		 * So right now we assume that the application DTRT on
687 		 * the first EIO, but we're not worse than other parts
688 		 * of the kernel.
689 		 */
690 		mapping_set_error(mapping, -EIO);
691 	}
692 
693 	return me_pagecache_clean(p, pfn);
694 }
695 
696 /*
697  * Clean and dirty swap cache.
698  *
699  * Dirty swap cache page is tricky to handle. The page could live both in page
700  * cache and swap cache(ie. page is freshly swapped in). So it could be
701  * referenced concurrently by 2 types of PTEs:
702  * normal PTEs and swap PTEs. We try to handle them consistently by calling
703  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
704  * and then
705  *      - clear dirty bit to prevent IO
706  *      - remove from LRU
707  *      - but keep in the swap cache, so that when we return to it on
708  *        a later page fault, we know the application is accessing
709  *        corrupted data and shall be killed (we installed simple
710  *        interception code in do_swap_page to catch it).
711  *
712  * Clean swap cache pages can be directly isolated. A later page fault will
713  * bring in the known good data from disk.
714  */
715 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
716 {
717 	ClearPageDirty(p);
718 	/* Trigger EIO in shmem: */
719 	ClearPageUptodate(p);
720 
721 	if (!delete_from_lru_cache(p))
722 		return MF_DELAYED;
723 	else
724 		return MF_FAILED;
725 }
726 
727 static int me_swapcache_clean(struct page *p, unsigned long pfn)
728 {
729 	delete_from_swap_cache(p);
730 
731 	if (!delete_from_lru_cache(p))
732 		return MF_RECOVERED;
733 	else
734 		return MF_FAILED;
735 }
736 
737 /*
738  * Huge pages. Needs work.
739  * Issues:
740  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
741  *   To narrow down kill region to one page, we need to break up pmd.
742  */
743 static int me_huge_page(struct page *p, unsigned long pfn)
744 {
745 	int res = 0;
746 	struct page *hpage = compound_head(p);
747 	struct address_space *mapping;
748 
749 	if (!PageHuge(hpage))
750 		return MF_DELAYED;
751 
752 	mapping = page_mapping(hpage);
753 	if (mapping) {
754 		res = truncate_error_page(hpage, pfn, mapping);
755 	} else {
756 		unlock_page(hpage);
757 		/*
758 		 * migration entry prevents later access on error anonymous
759 		 * hugepage, so we can free and dissolve it into buddy to
760 		 * save healthy subpages.
761 		 */
762 		if (PageAnon(hpage))
763 			put_page(hpage);
764 		dissolve_free_huge_page(p);
765 		res = MF_RECOVERED;
766 		lock_page(hpage);
767 	}
768 
769 	return res;
770 }
771 
772 /*
773  * Various page states we can handle.
774  *
775  * A page state is defined by its current page->flags bits.
776  * The table matches them in order and calls the right handler.
777  *
778  * This is quite tricky because we can access page at any time
779  * in its live cycle, so all accesses have to be extremely careful.
780  *
781  * This is not complete. More states could be added.
782  * For any missing state don't attempt recovery.
783  */
784 
785 #define dirty		(1UL << PG_dirty)
786 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
787 #define unevict		(1UL << PG_unevictable)
788 #define mlock		(1UL << PG_mlocked)
789 #define writeback	(1UL << PG_writeback)
790 #define lru		(1UL << PG_lru)
791 #define head		(1UL << PG_head)
792 #define slab		(1UL << PG_slab)
793 #define reserved	(1UL << PG_reserved)
794 
795 static struct page_state {
796 	unsigned long mask;
797 	unsigned long res;
798 	enum mf_action_page_type type;
799 	int (*action)(struct page *p, unsigned long pfn);
800 } error_states[] = {
801 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
802 	/*
803 	 * free pages are specially detected outside this table:
804 	 * PG_buddy pages only make a small fraction of all free pages.
805 	 */
806 
807 	/*
808 	 * Could in theory check if slab page is free or if we can drop
809 	 * currently unused objects without touching them. But just
810 	 * treat it as standard kernel for now.
811 	 */
812 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
813 
814 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
815 
816 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
817 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
818 
819 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
820 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
821 
822 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
823 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
824 
825 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
826 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
827 
828 	/*
829 	 * Catchall entry: must be at end.
830 	 */
831 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
832 };
833 
834 #undef dirty
835 #undef sc
836 #undef unevict
837 #undef mlock
838 #undef writeback
839 #undef lru
840 #undef head
841 #undef slab
842 #undef reserved
843 
844 /*
845  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
846  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
847  */
848 static void action_result(unsigned long pfn, enum mf_action_page_type type,
849 			  enum mf_result result)
850 {
851 	trace_memory_failure_event(pfn, type, result);
852 
853 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
854 		pfn, action_page_types[type], action_name[result]);
855 }
856 
857 static int page_action(struct page_state *ps, struct page *p,
858 			unsigned long pfn)
859 {
860 	int result;
861 	int count;
862 
863 	result = ps->action(p, pfn);
864 
865 	count = page_count(p) - 1;
866 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
867 		count--;
868 	if (count > 0) {
869 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
870 		       pfn, action_page_types[ps->type], count);
871 		result = MF_FAILED;
872 	}
873 	action_result(pfn, ps->type, result);
874 
875 	/* Could do more checks here if page looks ok */
876 	/*
877 	 * Could adjust zone counters here to correct for the missing page.
878 	 */
879 
880 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
881 }
882 
883 /**
884  * get_hwpoison_page() - Get refcount for memory error handling:
885  * @page:	raw error page (hit by memory error)
886  *
887  * Return: return 0 if failed to grab the refcount, otherwise true (some
888  * non-zero value.)
889  */
890 int get_hwpoison_page(struct page *page)
891 {
892 	struct page *head = compound_head(page);
893 
894 	if (!PageHuge(head) && PageTransHuge(head)) {
895 		/*
896 		 * Non anonymous thp exists only in allocation/free time. We
897 		 * can't handle such a case correctly, so let's give it up.
898 		 * This should be better than triggering BUG_ON when kernel
899 		 * tries to touch the "partially handled" page.
900 		 */
901 		if (!PageAnon(head)) {
902 			pr_err("Memory failure: %#lx: non anonymous thp\n",
903 				page_to_pfn(page));
904 			return 0;
905 		}
906 	}
907 
908 	if (get_page_unless_zero(head)) {
909 		if (head == compound_head(page))
910 			return 1;
911 
912 		pr_info("Memory failure: %#lx cannot catch tail\n",
913 			page_to_pfn(page));
914 		put_page(head);
915 	}
916 
917 	return 0;
918 }
919 EXPORT_SYMBOL_GPL(get_hwpoison_page);
920 
921 /*
922  * Do all that is necessary to remove user space mappings. Unmap
923  * the pages and send SIGBUS to the processes if the data was dirty.
924  */
925 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
926 				  int flags, struct page **hpagep)
927 {
928 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
929 	struct address_space *mapping;
930 	LIST_HEAD(tokill);
931 	bool unmap_success;
932 	int kill = 1, forcekill;
933 	struct page *hpage = *hpagep;
934 	bool mlocked = PageMlocked(hpage);
935 
936 	/*
937 	 * Here we are interested only in user-mapped pages, so skip any
938 	 * other types of pages.
939 	 */
940 	if (PageReserved(p) || PageSlab(p))
941 		return true;
942 	if (!(PageLRU(hpage) || PageHuge(p)))
943 		return true;
944 
945 	/*
946 	 * This check implies we don't kill processes if their pages
947 	 * are in the swap cache early. Those are always late kills.
948 	 */
949 	if (!page_mapped(hpage))
950 		return true;
951 
952 	if (PageKsm(p)) {
953 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
954 		return false;
955 	}
956 
957 	if (PageSwapCache(p)) {
958 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
959 			pfn);
960 		ttu |= TTU_IGNORE_HWPOISON;
961 	}
962 
963 	/*
964 	 * Propagate the dirty bit from PTEs to struct page first, because we
965 	 * need this to decide if we should kill or just drop the page.
966 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
967 	 * be called inside page lock (it's recommended but not enforced).
968 	 */
969 	mapping = page_mapping(hpage);
970 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
971 	    mapping_cap_writeback_dirty(mapping)) {
972 		if (page_mkclean(hpage)) {
973 			SetPageDirty(hpage);
974 		} else {
975 			kill = 0;
976 			ttu |= TTU_IGNORE_HWPOISON;
977 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
978 				pfn);
979 		}
980 	}
981 
982 	/*
983 	 * First collect all the processes that have the page
984 	 * mapped in dirty form.  This has to be done before try_to_unmap,
985 	 * because ttu takes the rmap data structures down.
986 	 *
987 	 * Error handling: We ignore errors here because
988 	 * there's nothing that can be done.
989 	 */
990 	if (kill)
991 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
992 
993 	unmap_success = try_to_unmap(hpage, ttu);
994 	if (!unmap_success)
995 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
996 		       pfn, page_mapcount(hpage));
997 
998 	/*
999 	 * try_to_unmap() might put mlocked page in lru cache, so call
1000 	 * shake_page() again to ensure that it's flushed.
1001 	 */
1002 	if (mlocked)
1003 		shake_page(hpage, 0);
1004 
1005 	/*
1006 	 * Now that the dirty bit has been propagated to the
1007 	 * struct page and all unmaps done we can decide if
1008 	 * killing is needed or not.  Only kill when the page
1009 	 * was dirty or the process is not restartable,
1010 	 * otherwise the tokill list is merely
1011 	 * freed.  When there was a problem unmapping earlier
1012 	 * use a more force-full uncatchable kill to prevent
1013 	 * any accesses to the poisoned memory.
1014 	 */
1015 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1016 	kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags);
1017 
1018 	return unmap_success;
1019 }
1020 
1021 static int identify_page_state(unsigned long pfn, struct page *p,
1022 				unsigned long page_flags)
1023 {
1024 	struct page_state *ps;
1025 
1026 	/*
1027 	 * The first check uses the current page flags which may not have any
1028 	 * relevant information. The second check with the saved page flags is
1029 	 * carried out only if the first check can't determine the page status.
1030 	 */
1031 	for (ps = error_states;; ps++)
1032 		if ((p->flags & ps->mask) == ps->res)
1033 			break;
1034 
1035 	page_flags |= (p->flags & (1UL << PG_dirty));
1036 
1037 	if (!ps->mask)
1038 		for (ps = error_states;; ps++)
1039 			if ((page_flags & ps->mask) == ps->res)
1040 				break;
1041 	return page_action(ps, p, pfn);
1042 }
1043 
1044 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1045 {
1046 	struct page *p = pfn_to_page(pfn);
1047 	struct page *head = compound_head(p);
1048 	int res;
1049 	unsigned long page_flags;
1050 
1051 	if (TestSetPageHWPoison(head)) {
1052 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1053 		       pfn);
1054 		return 0;
1055 	}
1056 
1057 	num_poisoned_pages_inc();
1058 
1059 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1060 		/*
1061 		 * Check "filter hit" and "race with other subpage."
1062 		 */
1063 		lock_page(head);
1064 		if (PageHWPoison(head)) {
1065 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1066 			    || (p != head && TestSetPageHWPoison(head))) {
1067 				num_poisoned_pages_dec();
1068 				unlock_page(head);
1069 				return 0;
1070 			}
1071 		}
1072 		unlock_page(head);
1073 		dissolve_free_huge_page(p);
1074 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1075 		return 0;
1076 	}
1077 
1078 	lock_page(head);
1079 	page_flags = head->flags;
1080 
1081 	if (!PageHWPoison(head)) {
1082 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1083 		num_poisoned_pages_dec();
1084 		unlock_page(head);
1085 		put_hwpoison_page(head);
1086 		return 0;
1087 	}
1088 
1089 	/*
1090 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1091 	 * simply disable it. In order to make it work properly, we need
1092 	 * make sure that:
1093 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1094 	 *    entry properly works, and
1095 	 *  - other mm code walking over page table is aware of pud-aligned
1096 	 *    hwpoison entries.
1097 	 */
1098 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1099 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1100 		res = -EBUSY;
1101 		goto out;
1102 	}
1103 
1104 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1105 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1106 		res = -EBUSY;
1107 		goto out;
1108 	}
1109 
1110 	res = identify_page_state(pfn, p, page_flags);
1111 out:
1112 	unlock_page(head);
1113 	return res;
1114 }
1115 
1116 /**
1117  * memory_failure - Handle memory failure of a page.
1118  * @pfn: Page Number of the corrupted page
1119  * @flags: fine tune action taken
1120  *
1121  * This function is called by the low level machine check code
1122  * of an architecture when it detects hardware memory corruption
1123  * of a page. It tries its best to recover, which includes
1124  * dropping pages, killing processes etc.
1125  *
1126  * The function is primarily of use for corruptions that
1127  * happen outside the current execution context (e.g. when
1128  * detected by a background scrubber)
1129  *
1130  * Must run in process context (e.g. a work queue) with interrupts
1131  * enabled and no spinlocks hold.
1132  */
1133 int memory_failure(unsigned long pfn, int flags)
1134 {
1135 	struct page *p;
1136 	struct page *hpage;
1137 	struct page *orig_head;
1138 	int res;
1139 	unsigned long page_flags;
1140 
1141 	if (!sysctl_memory_failure_recovery)
1142 		panic("Memory failure on page %lx", pfn);
1143 
1144 	if (!pfn_valid(pfn)) {
1145 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1146 			pfn);
1147 		return -ENXIO;
1148 	}
1149 
1150 	p = pfn_to_page(pfn);
1151 	if (PageHuge(p))
1152 		return memory_failure_hugetlb(pfn, flags);
1153 	if (TestSetPageHWPoison(p)) {
1154 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1155 			pfn);
1156 		return 0;
1157 	}
1158 
1159 	orig_head = hpage = compound_head(p);
1160 	num_poisoned_pages_inc();
1161 
1162 	/*
1163 	 * We need/can do nothing about count=0 pages.
1164 	 * 1) it's a free page, and therefore in safe hand:
1165 	 *    prep_new_page() will be the gate keeper.
1166 	 * 2) it's part of a non-compound high order page.
1167 	 *    Implies some kernel user: cannot stop them from
1168 	 *    R/W the page; let's pray that the page has been
1169 	 *    used and will be freed some time later.
1170 	 * In fact it's dangerous to directly bump up page count from 0,
1171 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1172 	 */
1173 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1174 		if (is_free_buddy_page(p)) {
1175 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1176 			return 0;
1177 		} else {
1178 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1179 			return -EBUSY;
1180 		}
1181 	}
1182 
1183 	if (PageTransHuge(hpage)) {
1184 		lock_page(p);
1185 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1186 			unlock_page(p);
1187 			if (!PageAnon(p))
1188 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1189 					pfn);
1190 			else
1191 				pr_err("Memory failure: %#lx: thp split failed\n",
1192 					pfn);
1193 			if (TestClearPageHWPoison(p))
1194 				num_poisoned_pages_dec();
1195 			put_hwpoison_page(p);
1196 			return -EBUSY;
1197 		}
1198 		unlock_page(p);
1199 		VM_BUG_ON_PAGE(!page_count(p), p);
1200 		hpage = compound_head(p);
1201 	}
1202 
1203 	/*
1204 	 * We ignore non-LRU pages for good reasons.
1205 	 * - PG_locked is only well defined for LRU pages and a few others
1206 	 * - to avoid races with __SetPageLocked()
1207 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1208 	 * The check (unnecessarily) ignores LRU pages being isolated and
1209 	 * walked by the page reclaim code, however that's not a big loss.
1210 	 */
1211 	shake_page(p, 0);
1212 	/* shake_page could have turned it free. */
1213 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1214 		if (flags & MF_COUNT_INCREASED)
1215 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1216 		else
1217 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1218 		return 0;
1219 	}
1220 
1221 	lock_page(p);
1222 
1223 	/*
1224 	 * The page could have changed compound pages during the locking.
1225 	 * If this happens just bail out.
1226 	 */
1227 	if (PageCompound(p) && compound_head(p) != orig_head) {
1228 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1229 		res = -EBUSY;
1230 		goto out;
1231 	}
1232 
1233 	/*
1234 	 * We use page flags to determine what action should be taken, but
1235 	 * the flags can be modified by the error containment action.  One
1236 	 * example is an mlocked page, where PG_mlocked is cleared by
1237 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1238 	 * correctly, we save a copy of the page flags at this time.
1239 	 */
1240 	if (PageHuge(p))
1241 		page_flags = hpage->flags;
1242 	else
1243 		page_flags = p->flags;
1244 
1245 	/*
1246 	 * unpoison always clear PG_hwpoison inside page lock
1247 	 */
1248 	if (!PageHWPoison(p)) {
1249 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1250 		num_poisoned_pages_dec();
1251 		unlock_page(p);
1252 		put_hwpoison_page(p);
1253 		return 0;
1254 	}
1255 	if (hwpoison_filter(p)) {
1256 		if (TestClearPageHWPoison(p))
1257 			num_poisoned_pages_dec();
1258 		unlock_page(p);
1259 		put_hwpoison_page(p);
1260 		return 0;
1261 	}
1262 
1263 	if (!PageTransTail(p) && !PageLRU(p))
1264 		goto identify_page_state;
1265 
1266 	/*
1267 	 * It's very difficult to mess with pages currently under IO
1268 	 * and in many cases impossible, so we just avoid it here.
1269 	 */
1270 	wait_on_page_writeback(p);
1271 
1272 	/*
1273 	 * Now take care of user space mappings.
1274 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1275 	 *
1276 	 * When the raw error page is thp tail page, hpage points to the raw
1277 	 * page after thp split.
1278 	 */
1279 	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1280 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1281 		res = -EBUSY;
1282 		goto out;
1283 	}
1284 
1285 	/*
1286 	 * Torn down by someone else?
1287 	 */
1288 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1289 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1290 		res = -EBUSY;
1291 		goto out;
1292 	}
1293 
1294 identify_page_state:
1295 	res = identify_page_state(pfn, p, page_flags);
1296 out:
1297 	unlock_page(p);
1298 	return res;
1299 }
1300 EXPORT_SYMBOL_GPL(memory_failure);
1301 
1302 #define MEMORY_FAILURE_FIFO_ORDER	4
1303 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1304 
1305 struct memory_failure_entry {
1306 	unsigned long pfn;
1307 	int flags;
1308 };
1309 
1310 struct memory_failure_cpu {
1311 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1312 		      MEMORY_FAILURE_FIFO_SIZE);
1313 	spinlock_t lock;
1314 	struct work_struct work;
1315 };
1316 
1317 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1318 
1319 /**
1320  * memory_failure_queue - Schedule handling memory failure of a page.
1321  * @pfn: Page Number of the corrupted page
1322  * @flags: Flags for memory failure handling
1323  *
1324  * This function is called by the low level hardware error handler
1325  * when it detects hardware memory corruption of a page. It schedules
1326  * the recovering of error page, including dropping pages, killing
1327  * processes etc.
1328  *
1329  * The function is primarily of use for corruptions that
1330  * happen outside the current execution context (e.g. when
1331  * detected by a background scrubber)
1332  *
1333  * Can run in IRQ context.
1334  */
1335 void memory_failure_queue(unsigned long pfn, int flags)
1336 {
1337 	struct memory_failure_cpu *mf_cpu;
1338 	unsigned long proc_flags;
1339 	struct memory_failure_entry entry = {
1340 		.pfn =		pfn,
1341 		.flags =	flags,
1342 	};
1343 
1344 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1345 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1346 	if (kfifo_put(&mf_cpu->fifo, entry))
1347 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1348 	else
1349 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1350 		       pfn);
1351 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1352 	put_cpu_var(memory_failure_cpu);
1353 }
1354 EXPORT_SYMBOL_GPL(memory_failure_queue);
1355 
1356 static void memory_failure_work_func(struct work_struct *work)
1357 {
1358 	struct memory_failure_cpu *mf_cpu;
1359 	struct memory_failure_entry entry = { 0, };
1360 	unsigned long proc_flags;
1361 	int gotten;
1362 
1363 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1364 	for (;;) {
1365 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1366 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1367 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1368 		if (!gotten)
1369 			break;
1370 		if (entry.flags & MF_SOFT_OFFLINE)
1371 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1372 		else
1373 			memory_failure(entry.pfn, entry.flags);
1374 	}
1375 }
1376 
1377 static int __init memory_failure_init(void)
1378 {
1379 	struct memory_failure_cpu *mf_cpu;
1380 	int cpu;
1381 
1382 	for_each_possible_cpu(cpu) {
1383 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1384 		spin_lock_init(&mf_cpu->lock);
1385 		INIT_KFIFO(mf_cpu->fifo);
1386 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1387 	}
1388 
1389 	return 0;
1390 }
1391 core_initcall(memory_failure_init);
1392 
1393 #define unpoison_pr_info(fmt, pfn, rs)			\
1394 ({							\
1395 	if (__ratelimit(rs))				\
1396 		pr_info(fmt, pfn);			\
1397 })
1398 
1399 /**
1400  * unpoison_memory - Unpoison a previously poisoned page
1401  * @pfn: Page number of the to be unpoisoned page
1402  *
1403  * Software-unpoison a page that has been poisoned by
1404  * memory_failure() earlier.
1405  *
1406  * This is only done on the software-level, so it only works
1407  * for linux injected failures, not real hardware failures
1408  *
1409  * Returns 0 for success, otherwise -errno.
1410  */
1411 int unpoison_memory(unsigned long pfn)
1412 {
1413 	struct page *page;
1414 	struct page *p;
1415 	int freeit = 0;
1416 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1417 					DEFAULT_RATELIMIT_BURST);
1418 
1419 	if (!pfn_valid(pfn))
1420 		return -ENXIO;
1421 
1422 	p = pfn_to_page(pfn);
1423 	page = compound_head(p);
1424 
1425 	if (!PageHWPoison(p)) {
1426 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1427 				 pfn, &unpoison_rs);
1428 		return 0;
1429 	}
1430 
1431 	if (page_count(page) > 1) {
1432 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1433 				 pfn, &unpoison_rs);
1434 		return 0;
1435 	}
1436 
1437 	if (page_mapped(page)) {
1438 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1439 				 pfn, &unpoison_rs);
1440 		return 0;
1441 	}
1442 
1443 	if (page_mapping(page)) {
1444 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1445 				 pfn, &unpoison_rs);
1446 		return 0;
1447 	}
1448 
1449 	/*
1450 	 * unpoison_memory() can encounter thp only when the thp is being
1451 	 * worked by memory_failure() and the page lock is not held yet.
1452 	 * In such case, we yield to memory_failure() and make unpoison fail.
1453 	 */
1454 	if (!PageHuge(page) && PageTransHuge(page)) {
1455 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1456 				 pfn, &unpoison_rs);
1457 		return 0;
1458 	}
1459 
1460 	if (!get_hwpoison_page(p)) {
1461 		if (TestClearPageHWPoison(p))
1462 			num_poisoned_pages_dec();
1463 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1464 				 pfn, &unpoison_rs);
1465 		return 0;
1466 	}
1467 
1468 	lock_page(page);
1469 	/*
1470 	 * This test is racy because PG_hwpoison is set outside of page lock.
1471 	 * That's acceptable because that won't trigger kernel panic. Instead,
1472 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1473 	 * the free buddy page pool.
1474 	 */
1475 	if (TestClearPageHWPoison(page)) {
1476 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1477 				 pfn, &unpoison_rs);
1478 		num_poisoned_pages_dec();
1479 		freeit = 1;
1480 	}
1481 	unlock_page(page);
1482 
1483 	put_hwpoison_page(page);
1484 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1485 		put_hwpoison_page(page);
1486 
1487 	return 0;
1488 }
1489 EXPORT_SYMBOL(unpoison_memory);
1490 
1491 static struct page *new_page(struct page *p, unsigned long private)
1492 {
1493 	int nid = page_to_nid(p);
1494 
1495 	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1496 }
1497 
1498 /*
1499  * Safely get reference count of an arbitrary page.
1500  * Returns 0 for a free page, -EIO for a zero refcount page
1501  * that is not free, and 1 for any other page type.
1502  * For 1 the page is returned with increased page count, otherwise not.
1503  */
1504 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1505 {
1506 	int ret;
1507 
1508 	if (flags & MF_COUNT_INCREASED)
1509 		return 1;
1510 
1511 	/*
1512 	 * When the target page is a free hugepage, just remove it
1513 	 * from free hugepage list.
1514 	 */
1515 	if (!get_hwpoison_page(p)) {
1516 		if (PageHuge(p)) {
1517 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1518 			ret = 0;
1519 		} else if (is_free_buddy_page(p)) {
1520 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1521 			ret = 0;
1522 		} else {
1523 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1524 				__func__, pfn, p->flags);
1525 			ret = -EIO;
1526 		}
1527 	} else {
1528 		/* Not a free page */
1529 		ret = 1;
1530 	}
1531 	return ret;
1532 }
1533 
1534 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1535 {
1536 	int ret = __get_any_page(page, pfn, flags);
1537 
1538 	if (ret == 1 && !PageHuge(page) &&
1539 	    !PageLRU(page) && !__PageMovable(page)) {
1540 		/*
1541 		 * Try to free it.
1542 		 */
1543 		put_hwpoison_page(page);
1544 		shake_page(page, 1);
1545 
1546 		/*
1547 		 * Did it turn free?
1548 		 */
1549 		ret = __get_any_page(page, pfn, 0);
1550 		if (ret == 1 && !PageLRU(page)) {
1551 			/* Drop page reference which is from __get_any_page() */
1552 			put_hwpoison_page(page);
1553 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1554 				pfn, page->flags, &page->flags);
1555 			return -EIO;
1556 		}
1557 	}
1558 	return ret;
1559 }
1560 
1561 static int soft_offline_huge_page(struct page *page, int flags)
1562 {
1563 	int ret;
1564 	unsigned long pfn = page_to_pfn(page);
1565 	struct page *hpage = compound_head(page);
1566 	LIST_HEAD(pagelist);
1567 
1568 	/*
1569 	 * This double-check of PageHWPoison is to avoid the race with
1570 	 * memory_failure(). See also comment in __soft_offline_page().
1571 	 */
1572 	lock_page(hpage);
1573 	if (PageHWPoison(hpage)) {
1574 		unlock_page(hpage);
1575 		put_hwpoison_page(hpage);
1576 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1577 		return -EBUSY;
1578 	}
1579 	unlock_page(hpage);
1580 
1581 	ret = isolate_huge_page(hpage, &pagelist);
1582 	/*
1583 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1584 	 * so need to drop one here.
1585 	 */
1586 	put_hwpoison_page(hpage);
1587 	if (!ret) {
1588 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1589 		return -EBUSY;
1590 	}
1591 
1592 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1593 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1594 	if (ret) {
1595 		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1596 			pfn, ret, page->flags, &page->flags);
1597 		if (!list_empty(&pagelist))
1598 			putback_movable_pages(&pagelist);
1599 		if (ret > 0)
1600 			ret = -EIO;
1601 	} else {
1602 		/*
1603 		 * We set PG_hwpoison only when the migration source hugepage
1604 		 * was successfully dissolved, because otherwise hwpoisoned
1605 		 * hugepage remains on free hugepage list, then userspace will
1606 		 * find it as SIGBUS by allocation failure. That's not expected
1607 		 * in soft-offlining.
1608 		 */
1609 		ret = dissolve_free_huge_page(page);
1610 		if (!ret) {
1611 			if (set_hwpoison_free_buddy_page(page))
1612 				num_poisoned_pages_inc();
1613 		}
1614 	}
1615 	return ret;
1616 }
1617 
1618 static int __soft_offline_page(struct page *page, int flags)
1619 {
1620 	int ret;
1621 	unsigned long pfn = page_to_pfn(page);
1622 
1623 	/*
1624 	 * Check PageHWPoison again inside page lock because PageHWPoison
1625 	 * is set by memory_failure() outside page lock. Note that
1626 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1627 	 * so there's no race between soft_offline_page() and memory_failure().
1628 	 */
1629 	lock_page(page);
1630 	wait_on_page_writeback(page);
1631 	if (PageHWPoison(page)) {
1632 		unlock_page(page);
1633 		put_hwpoison_page(page);
1634 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1635 		return -EBUSY;
1636 	}
1637 	/*
1638 	 * Try to invalidate first. This should work for
1639 	 * non dirty unmapped page cache pages.
1640 	 */
1641 	ret = invalidate_inode_page(page);
1642 	unlock_page(page);
1643 	/*
1644 	 * RED-PEN would be better to keep it isolated here, but we
1645 	 * would need to fix isolation locking first.
1646 	 */
1647 	if (ret == 1) {
1648 		put_hwpoison_page(page);
1649 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1650 		SetPageHWPoison(page);
1651 		num_poisoned_pages_inc();
1652 		return 0;
1653 	}
1654 
1655 	/*
1656 	 * Simple invalidation didn't work.
1657 	 * Try to migrate to a new page instead. migrate.c
1658 	 * handles a large number of cases for us.
1659 	 */
1660 	if (PageLRU(page))
1661 		ret = isolate_lru_page(page);
1662 	else
1663 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1664 	/*
1665 	 * Drop page reference which is came from get_any_page()
1666 	 * successful isolate_lru_page() already took another one.
1667 	 */
1668 	put_hwpoison_page(page);
1669 	if (!ret) {
1670 		LIST_HEAD(pagelist);
1671 		/*
1672 		 * After isolated lru page, the PageLRU will be cleared,
1673 		 * so use !__PageMovable instead for LRU page's mapping
1674 		 * cannot have PAGE_MAPPING_MOVABLE.
1675 		 */
1676 		if (!__PageMovable(page))
1677 			inc_node_page_state(page, NR_ISOLATED_ANON +
1678 						page_is_file_cache(page));
1679 		list_add(&page->lru, &pagelist);
1680 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1681 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1682 		if (ret) {
1683 			if (!list_empty(&pagelist))
1684 				putback_movable_pages(&pagelist);
1685 
1686 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1687 				pfn, ret, page->flags, &page->flags);
1688 			if (ret > 0)
1689 				ret = -EIO;
1690 		}
1691 	} else {
1692 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1693 			pfn, ret, page_count(page), page->flags, &page->flags);
1694 	}
1695 	return ret;
1696 }
1697 
1698 static int soft_offline_in_use_page(struct page *page, int flags)
1699 {
1700 	int ret;
1701 	int mt;
1702 	struct page *hpage = compound_head(page);
1703 
1704 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1705 		lock_page(hpage);
1706 		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1707 			unlock_page(hpage);
1708 			if (!PageAnon(hpage))
1709 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1710 			else
1711 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1712 			put_hwpoison_page(hpage);
1713 			return -EBUSY;
1714 		}
1715 		unlock_page(hpage);
1716 		get_hwpoison_page(page);
1717 		put_hwpoison_page(hpage);
1718 	}
1719 
1720 	/*
1721 	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1722 	 * to free list immediately (not via pcplist) when released after
1723 	 * successful page migration. Otherwise we can't guarantee that the
1724 	 * page is really free after put_page() returns, so
1725 	 * set_hwpoison_free_buddy_page() highly likely fails.
1726 	 */
1727 	mt = get_pageblock_migratetype(page);
1728 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1729 	if (PageHuge(page))
1730 		ret = soft_offline_huge_page(page, flags);
1731 	else
1732 		ret = __soft_offline_page(page, flags);
1733 	set_pageblock_migratetype(page, mt);
1734 	return ret;
1735 }
1736 
1737 static int soft_offline_free_page(struct page *page)
1738 {
1739 	int rc = 0;
1740 	struct page *head = compound_head(page);
1741 
1742 	if (PageHuge(head))
1743 		rc = dissolve_free_huge_page(page);
1744 	if (!rc) {
1745 		if (set_hwpoison_free_buddy_page(page))
1746 			num_poisoned_pages_inc();
1747 		else
1748 			rc = -EBUSY;
1749 	}
1750 	return rc;
1751 }
1752 
1753 /**
1754  * soft_offline_page - Soft offline a page.
1755  * @page: page to offline
1756  * @flags: flags. Same as memory_failure().
1757  *
1758  * Returns 0 on success, otherwise negated errno.
1759  *
1760  * Soft offline a page, by migration or invalidation,
1761  * without killing anything. This is for the case when
1762  * a page is not corrupted yet (so it's still valid to access),
1763  * but has had a number of corrected errors and is better taken
1764  * out.
1765  *
1766  * The actual policy on when to do that is maintained by
1767  * user space.
1768  *
1769  * This should never impact any application or cause data loss,
1770  * however it might take some time.
1771  *
1772  * This is not a 100% solution for all memory, but tries to be
1773  * ``good enough'' for the majority of memory.
1774  */
1775 int soft_offline_page(struct page *page, int flags)
1776 {
1777 	int ret;
1778 	unsigned long pfn = page_to_pfn(page);
1779 
1780 	if (PageHWPoison(page)) {
1781 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1782 		if (flags & MF_COUNT_INCREASED)
1783 			put_hwpoison_page(page);
1784 		return -EBUSY;
1785 	}
1786 
1787 	get_online_mems();
1788 	ret = get_any_page(page, pfn, flags);
1789 	put_online_mems();
1790 
1791 	if (ret > 0)
1792 		ret = soft_offline_in_use_page(page, flags);
1793 	else if (ret == 0)
1794 		ret = soft_offline_free_page(page);
1795 
1796 	return ret;
1797 }
1798