xref: /linux/mm/memory-failure.c (revision a7f7f6248d9740d710fd6bd190293fe5e16410ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61 
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63 
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65 
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67 
68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69 
70 u32 hwpoison_filter_enable = 0;
71 u32 hwpoison_filter_dev_major = ~0U;
72 u32 hwpoison_filter_dev_minor = ~0U;
73 u64 hwpoison_filter_flags_mask;
74 u64 hwpoison_filter_flags_value;
75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
80 
81 static int hwpoison_filter_dev(struct page *p)
82 {
83 	struct address_space *mapping;
84 	dev_t dev;
85 
86 	if (hwpoison_filter_dev_major == ~0U &&
87 	    hwpoison_filter_dev_minor == ~0U)
88 		return 0;
89 
90 	/*
91 	 * page_mapping() does not accept slab pages.
92 	 */
93 	if (PageSlab(p))
94 		return -EINVAL;
95 
96 	mapping = page_mapping(p);
97 	if (mapping == NULL || mapping->host == NULL)
98 		return -EINVAL;
99 
100 	dev = mapping->host->i_sb->s_dev;
101 	if (hwpoison_filter_dev_major != ~0U &&
102 	    hwpoison_filter_dev_major != MAJOR(dev))
103 		return -EINVAL;
104 	if (hwpoison_filter_dev_minor != ~0U &&
105 	    hwpoison_filter_dev_minor != MINOR(dev))
106 		return -EINVAL;
107 
108 	return 0;
109 }
110 
111 static int hwpoison_filter_flags(struct page *p)
112 {
113 	if (!hwpoison_filter_flags_mask)
114 		return 0;
115 
116 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 				    hwpoison_filter_flags_value)
118 		return 0;
119 	else
120 		return -EINVAL;
121 }
122 
123 /*
124  * This allows stress tests to limit test scope to a collection of tasks
125  * by putting them under some memcg. This prevents killing unrelated/important
126  * processes such as /sbin/init. Note that the target task may share clean
127  * pages with init (eg. libc text), which is harmless. If the target task
128  * share _dirty_ pages with another task B, the test scheme must make sure B
129  * is also included in the memcg. At last, due to race conditions this filter
130  * can only guarantee that the page either belongs to the memcg tasks, or is
131  * a freed page.
132  */
133 #ifdef CONFIG_MEMCG
134 u64 hwpoison_filter_memcg;
135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136 static int hwpoison_filter_task(struct page *p)
137 {
138 	if (!hwpoison_filter_memcg)
139 		return 0;
140 
141 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
142 		return -EINVAL;
143 
144 	return 0;
145 }
146 #else
147 static int hwpoison_filter_task(struct page *p) { return 0; }
148 #endif
149 
150 int hwpoison_filter(struct page *p)
151 {
152 	if (!hwpoison_filter_enable)
153 		return 0;
154 
155 	if (hwpoison_filter_dev(p))
156 		return -EINVAL;
157 
158 	if (hwpoison_filter_flags(p))
159 		return -EINVAL;
160 
161 	if (hwpoison_filter_task(p))
162 		return -EINVAL;
163 
164 	return 0;
165 }
166 #else
167 int hwpoison_filter(struct page *p)
168 {
169 	return 0;
170 }
171 #endif
172 
173 EXPORT_SYMBOL_GPL(hwpoison_filter);
174 
175 /*
176  * Kill all processes that have a poisoned page mapped and then isolate
177  * the page.
178  *
179  * General strategy:
180  * Find all processes having the page mapped and kill them.
181  * But we keep a page reference around so that the page is not
182  * actually freed yet.
183  * Then stash the page away
184  *
185  * There's no convenient way to get back to mapped processes
186  * from the VMAs. So do a brute-force search over all
187  * running processes.
188  *
189  * Remember that machine checks are not common (or rather
190  * if they are common you have other problems), so this shouldn't
191  * be a performance issue.
192  *
193  * Also there are some races possible while we get from the
194  * error detection to actually handle it.
195  */
196 
197 struct to_kill {
198 	struct list_head nd;
199 	struct task_struct *tsk;
200 	unsigned long addr;
201 	short size_shift;
202 };
203 
204 /*
205  * Send all the processes who have the page mapped a signal.
206  * ``action optional'' if they are not immediately affected by the error
207  * ``action required'' if error happened in current execution context
208  */
209 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
210 {
211 	struct task_struct *t = tk->tsk;
212 	short addr_lsb = tk->size_shift;
213 	int ret = 0;
214 
215 	if ((t->mm == current->mm) || !(flags & MF_ACTION_REQUIRED))
216 		pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
217 			pfn, t->comm, t->pid);
218 
219 	if (flags & MF_ACTION_REQUIRED) {
220 		if (t->mm == current->mm)
221 			ret = force_sig_mceerr(BUS_MCEERR_AR,
222 					 (void __user *)tk->addr, addr_lsb);
223 		/* send no signal to non-current processes */
224 	} else {
225 		/*
226 		 * Don't use force here, it's convenient if the signal
227 		 * can be temporarily blocked.
228 		 * This could cause a loop when the user sets SIGBUS
229 		 * to SIG_IGN, but hopefully no one will do that?
230 		 */
231 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
232 				      addr_lsb, t);  /* synchronous? */
233 	}
234 	if (ret < 0)
235 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
236 			t->comm, t->pid, ret);
237 	return ret;
238 }
239 
240 /*
241  * When a unknown page type is encountered drain as many buffers as possible
242  * in the hope to turn the page into a LRU or free page, which we can handle.
243  */
244 void shake_page(struct page *p, int access)
245 {
246 	if (PageHuge(p))
247 		return;
248 
249 	if (!PageSlab(p)) {
250 		lru_add_drain_all();
251 		if (PageLRU(p))
252 			return;
253 		drain_all_pages(page_zone(p));
254 		if (PageLRU(p) || is_free_buddy_page(p))
255 			return;
256 	}
257 
258 	/*
259 	 * Only call shrink_node_slabs here (which would also shrink
260 	 * other caches) if access is not potentially fatal.
261 	 */
262 	if (access)
263 		drop_slab_node(page_to_nid(p));
264 }
265 EXPORT_SYMBOL_GPL(shake_page);
266 
267 static unsigned long dev_pagemap_mapping_shift(struct page *page,
268 		struct vm_area_struct *vma)
269 {
270 	unsigned long address = vma_address(page, vma);
271 	pgd_t *pgd;
272 	p4d_t *p4d;
273 	pud_t *pud;
274 	pmd_t *pmd;
275 	pte_t *pte;
276 
277 	pgd = pgd_offset(vma->vm_mm, address);
278 	if (!pgd_present(*pgd))
279 		return 0;
280 	p4d = p4d_offset(pgd, address);
281 	if (!p4d_present(*p4d))
282 		return 0;
283 	pud = pud_offset(p4d, address);
284 	if (!pud_present(*pud))
285 		return 0;
286 	if (pud_devmap(*pud))
287 		return PUD_SHIFT;
288 	pmd = pmd_offset(pud, address);
289 	if (!pmd_present(*pmd))
290 		return 0;
291 	if (pmd_devmap(*pmd))
292 		return PMD_SHIFT;
293 	pte = pte_offset_map(pmd, address);
294 	if (!pte_present(*pte))
295 		return 0;
296 	if (pte_devmap(*pte))
297 		return PAGE_SHIFT;
298 	return 0;
299 }
300 
301 /*
302  * Failure handling: if we can't find or can't kill a process there's
303  * not much we can do.	We just print a message and ignore otherwise.
304  */
305 
306 /*
307  * Schedule a process for later kill.
308  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
309  */
310 static void add_to_kill(struct task_struct *tsk, struct page *p,
311 		       struct vm_area_struct *vma,
312 		       struct list_head *to_kill)
313 {
314 	struct to_kill *tk;
315 
316 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
317 	if (!tk) {
318 		pr_err("Memory failure: Out of memory while machine check handling\n");
319 		return;
320 	}
321 
322 	tk->addr = page_address_in_vma(p, vma);
323 	if (is_zone_device_page(p))
324 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
325 	else
326 		tk->size_shift = page_shift(compound_head(p));
327 
328 	/*
329 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
330 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
331 	 * so "tk->size_shift == 0" effectively checks no mapping on
332 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
333 	 * to a process' address space, it's possible not all N VMAs
334 	 * contain mappings for the page, but at least one VMA does.
335 	 * Only deliver SIGBUS with payload derived from the VMA that
336 	 * has a mapping for the page.
337 	 */
338 	if (tk->addr == -EFAULT) {
339 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
340 			page_to_pfn(p), tsk->comm);
341 	} else if (tk->size_shift == 0) {
342 		kfree(tk);
343 		return;
344 	}
345 
346 	get_task_struct(tsk);
347 	tk->tsk = tsk;
348 	list_add_tail(&tk->nd, to_kill);
349 }
350 
351 /*
352  * Kill the processes that have been collected earlier.
353  *
354  * Only do anything when DOIT is set, otherwise just free the list
355  * (this is used for clean pages which do not need killing)
356  * Also when FAIL is set do a force kill because something went
357  * wrong earlier.
358  */
359 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
360 		unsigned long pfn, int flags)
361 {
362 	struct to_kill *tk, *next;
363 
364 	list_for_each_entry_safe (tk, next, to_kill, nd) {
365 		if (forcekill) {
366 			/*
367 			 * In case something went wrong with munmapping
368 			 * make sure the process doesn't catch the
369 			 * signal and then access the memory. Just kill it.
370 			 */
371 			if (fail || tk->addr == -EFAULT) {
372 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
373 				       pfn, tk->tsk->comm, tk->tsk->pid);
374 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
375 						 tk->tsk, PIDTYPE_PID);
376 			}
377 
378 			/*
379 			 * In theory the process could have mapped
380 			 * something else on the address in-between. We could
381 			 * check for that, but we need to tell the
382 			 * process anyways.
383 			 */
384 			else if (kill_proc(tk, pfn, flags) < 0)
385 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
386 				       pfn, tk->tsk->comm, tk->tsk->pid);
387 		}
388 		put_task_struct(tk->tsk);
389 		kfree(tk);
390 	}
391 }
392 
393 /*
394  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
395  * on behalf of the thread group. Return task_struct of the (first found)
396  * dedicated thread if found, and return NULL otherwise.
397  *
398  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
399  * have to call rcu_read_lock/unlock() in this function.
400  */
401 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
402 {
403 	struct task_struct *t;
404 
405 	for_each_thread(tsk, t)
406 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
407 			return t;
408 	return NULL;
409 }
410 
411 /*
412  * Determine whether a given process is "early kill" process which expects
413  * to be signaled when some page under the process is hwpoisoned.
414  * Return task_struct of the dedicated thread (main thread unless explicitly
415  * specified) if the process is "early kill," and otherwise returns NULL.
416  */
417 static struct task_struct *task_early_kill(struct task_struct *tsk,
418 					   int force_early)
419 {
420 	struct task_struct *t;
421 	if (!tsk->mm)
422 		return NULL;
423 	if (force_early)
424 		return tsk;
425 	t = find_early_kill_thread(tsk);
426 	if (t)
427 		return t;
428 	if (sysctl_memory_failure_early_kill)
429 		return tsk;
430 	return NULL;
431 }
432 
433 /*
434  * Collect processes when the error hit an anonymous page.
435  */
436 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
437 				int force_early)
438 {
439 	struct vm_area_struct *vma;
440 	struct task_struct *tsk;
441 	struct anon_vma *av;
442 	pgoff_t pgoff;
443 
444 	av = page_lock_anon_vma_read(page);
445 	if (av == NULL)	/* Not actually mapped anymore */
446 		return;
447 
448 	pgoff = page_to_pgoff(page);
449 	read_lock(&tasklist_lock);
450 	for_each_process (tsk) {
451 		struct anon_vma_chain *vmac;
452 		struct task_struct *t = task_early_kill(tsk, force_early);
453 
454 		if (!t)
455 			continue;
456 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
457 					       pgoff, pgoff) {
458 			vma = vmac->vma;
459 			if (!page_mapped_in_vma(page, vma))
460 				continue;
461 			if (vma->vm_mm == t->mm)
462 				add_to_kill(t, page, vma, to_kill);
463 		}
464 	}
465 	read_unlock(&tasklist_lock);
466 	page_unlock_anon_vma_read(av);
467 }
468 
469 /*
470  * Collect processes when the error hit a file mapped page.
471  */
472 static void collect_procs_file(struct page *page, struct list_head *to_kill,
473 				int force_early)
474 {
475 	struct vm_area_struct *vma;
476 	struct task_struct *tsk;
477 	struct address_space *mapping = page->mapping;
478 
479 	i_mmap_lock_read(mapping);
480 	read_lock(&tasklist_lock);
481 	for_each_process(tsk) {
482 		pgoff_t pgoff = page_to_pgoff(page);
483 		struct task_struct *t = task_early_kill(tsk, force_early);
484 
485 		if (!t)
486 			continue;
487 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
488 				      pgoff) {
489 			/*
490 			 * Send early kill signal to tasks where a vma covers
491 			 * the page but the corrupted page is not necessarily
492 			 * mapped it in its pte.
493 			 * Assume applications who requested early kill want
494 			 * to be informed of all such data corruptions.
495 			 */
496 			if (vma->vm_mm == t->mm)
497 				add_to_kill(t, page, vma, to_kill);
498 		}
499 	}
500 	read_unlock(&tasklist_lock);
501 	i_mmap_unlock_read(mapping);
502 }
503 
504 /*
505  * Collect the processes who have the corrupted page mapped to kill.
506  */
507 static void collect_procs(struct page *page, struct list_head *tokill,
508 				int force_early)
509 {
510 	if (!page->mapping)
511 		return;
512 
513 	if (PageAnon(page))
514 		collect_procs_anon(page, tokill, force_early);
515 	else
516 		collect_procs_file(page, tokill, force_early);
517 }
518 
519 static const char *action_name[] = {
520 	[MF_IGNORED] = "Ignored",
521 	[MF_FAILED] = "Failed",
522 	[MF_DELAYED] = "Delayed",
523 	[MF_RECOVERED] = "Recovered",
524 };
525 
526 static const char * const action_page_types[] = {
527 	[MF_MSG_KERNEL]			= "reserved kernel page",
528 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
529 	[MF_MSG_SLAB]			= "kernel slab page",
530 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
531 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
532 	[MF_MSG_HUGE]			= "huge page",
533 	[MF_MSG_FREE_HUGE]		= "free huge page",
534 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
535 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
536 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
537 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
538 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
539 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
540 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
541 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
542 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
543 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
544 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
545 	[MF_MSG_BUDDY]			= "free buddy page",
546 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
547 	[MF_MSG_DAX]			= "dax page",
548 	[MF_MSG_UNKNOWN]		= "unknown page",
549 };
550 
551 /*
552  * XXX: It is possible that a page is isolated from LRU cache,
553  * and then kept in swap cache or failed to remove from page cache.
554  * The page count will stop it from being freed by unpoison.
555  * Stress tests should be aware of this memory leak problem.
556  */
557 static int delete_from_lru_cache(struct page *p)
558 {
559 	if (!isolate_lru_page(p)) {
560 		/*
561 		 * Clear sensible page flags, so that the buddy system won't
562 		 * complain when the page is unpoison-and-freed.
563 		 */
564 		ClearPageActive(p);
565 		ClearPageUnevictable(p);
566 
567 		/*
568 		 * Poisoned page might never drop its ref count to 0 so we have
569 		 * to uncharge it manually from its memcg.
570 		 */
571 		mem_cgroup_uncharge(p);
572 
573 		/*
574 		 * drop the page count elevated by isolate_lru_page()
575 		 */
576 		put_page(p);
577 		return 0;
578 	}
579 	return -EIO;
580 }
581 
582 static int truncate_error_page(struct page *p, unsigned long pfn,
583 				struct address_space *mapping)
584 {
585 	int ret = MF_FAILED;
586 
587 	if (mapping->a_ops->error_remove_page) {
588 		int err = mapping->a_ops->error_remove_page(mapping, p);
589 
590 		if (err != 0) {
591 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
592 				pfn, err);
593 		} else if (page_has_private(p) &&
594 			   !try_to_release_page(p, GFP_NOIO)) {
595 			pr_info("Memory failure: %#lx: failed to release buffers\n",
596 				pfn);
597 		} else {
598 			ret = MF_RECOVERED;
599 		}
600 	} else {
601 		/*
602 		 * If the file system doesn't support it just invalidate
603 		 * This fails on dirty or anything with private pages
604 		 */
605 		if (invalidate_inode_page(p))
606 			ret = MF_RECOVERED;
607 		else
608 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
609 				pfn);
610 	}
611 
612 	return ret;
613 }
614 
615 /*
616  * Error hit kernel page.
617  * Do nothing, try to be lucky and not touch this instead. For a few cases we
618  * could be more sophisticated.
619  */
620 static int me_kernel(struct page *p, unsigned long pfn)
621 {
622 	return MF_IGNORED;
623 }
624 
625 /*
626  * Page in unknown state. Do nothing.
627  */
628 static int me_unknown(struct page *p, unsigned long pfn)
629 {
630 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
631 	return MF_FAILED;
632 }
633 
634 /*
635  * Clean (or cleaned) page cache page.
636  */
637 static int me_pagecache_clean(struct page *p, unsigned long pfn)
638 {
639 	struct address_space *mapping;
640 
641 	delete_from_lru_cache(p);
642 
643 	/*
644 	 * For anonymous pages we're done the only reference left
645 	 * should be the one m_f() holds.
646 	 */
647 	if (PageAnon(p))
648 		return MF_RECOVERED;
649 
650 	/*
651 	 * Now truncate the page in the page cache. This is really
652 	 * more like a "temporary hole punch"
653 	 * Don't do this for block devices when someone else
654 	 * has a reference, because it could be file system metadata
655 	 * and that's not safe to truncate.
656 	 */
657 	mapping = page_mapping(p);
658 	if (!mapping) {
659 		/*
660 		 * Page has been teared down in the meanwhile
661 		 */
662 		return MF_FAILED;
663 	}
664 
665 	/*
666 	 * Truncation is a bit tricky. Enable it per file system for now.
667 	 *
668 	 * Open: to take i_mutex or not for this? Right now we don't.
669 	 */
670 	return truncate_error_page(p, pfn, mapping);
671 }
672 
673 /*
674  * Dirty pagecache page
675  * Issues: when the error hit a hole page the error is not properly
676  * propagated.
677  */
678 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
679 {
680 	struct address_space *mapping = page_mapping(p);
681 
682 	SetPageError(p);
683 	/* TBD: print more information about the file. */
684 	if (mapping) {
685 		/*
686 		 * IO error will be reported by write(), fsync(), etc.
687 		 * who check the mapping.
688 		 * This way the application knows that something went
689 		 * wrong with its dirty file data.
690 		 *
691 		 * There's one open issue:
692 		 *
693 		 * The EIO will be only reported on the next IO
694 		 * operation and then cleared through the IO map.
695 		 * Normally Linux has two mechanisms to pass IO error
696 		 * first through the AS_EIO flag in the address space
697 		 * and then through the PageError flag in the page.
698 		 * Since we drop pages on memory failure handling the
699 		 * only mechanism open to use is through AS_AIO.
700 		 *
701 		 * This has the disadvantage that it gets cleared on
702 		 * the first operation that returns an error, while
703 		 * the PageError bit is more sticky and only cleared
704 		 * when the page is reread or dropped.  If an
705 		 * application assumes it will always get error on
706 		 * fsync, but does other operations on the fd before
707 		 * and the page is dropped between then the error
708 		 * will not be properly reported.
709 		 *
710 		 * This can already happen even without hwpoisoned
711 		 * pages: first on metadata IO errors (which only
712 		 * report through AS_EIO) or when the page is dropped
713 		 * at the wrong time.
714 		 *
715 		 * So right now we assume that the application DTRT on
716 		 * the first EIO, but we're not worse than other parts
717 		 * of the kernel.
718 		 */
719 		mapping_set_error(mapping, -EIO);
720 	}
721 
722 	return me_pagecache_clean(p, pfn);
723 }
724 
725 /*
726  * Clean and dirty swap cache.
727  *
728  * Dirty swap cache page is tricky to handle. The page could live both in page
729  * cache and swap cache(ie. page is freshly swapped in). So it could be
730  * referenced concurrently by 2 types of PTEs:
731  * normal PTEs and swap PTEs. We try to handle them consistently by calling
732  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
733  * and then
734  *      - clear dirty bit to prevent IO
735  *      - remove from LRU
736  *      - but keep in the swap cache, so that when we return to it on
737  *        a later page fault, we know the application is accessing
738  *        corrupted data and shall be killed (we installed simple
739  *        interception code in do_swap_page to catch it).
740  *
741  * Clean swap cache pages can be directly isolated. A later page fault will
742  * bring in the known good data from disk.
743  */
744 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
745 {
746 	ClearPageDirty(p);
747 	/* Trigger EIO in shmem: */
748 	ClearPageUptodate(p);
749 
750 	if (!delete_from_lru_cache(p))
751 		return MF_DELAYED;
752 	else
753 		return MF_FAILED;
754 }
755 
756 static int me_swapcache_clean(struct page *p, unsigned long pfn)
757 {
758 	delete_from_swap_cache(p);
759 
760 	if (!delete_from_lru_cache(p))
761 		return MF_RECOVERED;
762 	else
763 		return MF_FAILED;
764 }
765 
766 /*
767  * Huge pages. Needs work.
768  * Issues:
769  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
770  *   To narrow down kill region to one page, we need to break up pmd.
771  */
772 static int me_huge_page(struct page *p, unsigned long pfn)
773 {
774 	int res = 0;
775 	struct page *hpage = compound_head(p);
776 	struct address_space *mapping;
777 
778 	if (!PageHuge(hpage))
779 		return MF_DELAYED;
780 
781 	mapping = page_mapping(hpage);
782 	if (mapping) {
783 		res = truncate_error_page(hpage, pfn, mapping);
784 	} else {
785 		unlock_page(hpage);
786 		/*
787 		 * migration entry prevents later access on error anonymous
788 		 * hugepage, so we can free and dissolve it into buddy to
789 		 * save healthy subpages.
790 		 */
791 		if (PageAnon(hpage))
792 			put_page(hpage);
793 		dissolve_free_huge_page(p);
794 		res = MF_RECOVERED;
795 		lock_page(hpage);
796 	}
797 
798 	return res;
799 }
800 
801 /*
802  * Various page states we can handle.
803  *
804  * A page state is defined by its current page->flags bits.
805  * The table matches them in order and calls the right handler.
806  *
807  * This is quite tricky because we can access page at any time
808  * in its live cycle, so all accesses have to be extremely careful.
809  *
810  * This is not complete. More states could be added.
811  * For any missing state don't attempt recovery.
812  */
813 
814 #define dirty		(1UL << PG_dirty)
815 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
816 #define unevict		(1UL << PG_unevictable)
817 #define mlock		(1UL << PG_mlocked)
818 #define writeback	(1UL << PG_writeback)
819 #define lru		(1UL << PG_lru)
820 #define head		(1UL << PG_head)
821 #define slab		(1UL << PG_slab)
822 #define reserved	(1UL << PG_reserved)
823 
824 static struct page_state {
825 	unsigned long mask;
826 	unsigned long res;
827 	enum mf_action_page_type type;
828 	int (*action)(struct page *p, unsigned long pfn);
829 } error_states[] = {
830 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
831 	/*
832 	 * free pages are specially detected outside this table:
833 	 * PG_buddy pages only make a small fraction of all free pages.
834 	 */
835 
836 	/*
837 	 * Could in theory check if slab page is free or if we can drop
838 	 * currently unused objects without touching them. But just
839 	 * treat it as standard kernel for now.
840 	 */
841 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
842 
843 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
844 
845 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
846 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
847 
848 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
849 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
850 
851 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
852 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
853 
854 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
855 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
856 
857 	/*
858 	 * Catchall entry: must be at end.
859 	 */
860 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
861 };
862 
863 #undef dirty
864 #undef sc
865 #undef unevict
866 #undef mlock
867 #undef writeback
868 #undef lru
869 #undef head
870 #undef slab
871 #undef reserved
872 
873 /*
874  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
875  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
876  */
877 static void action_result(unsigned long pfn, enum mf_action_page_type type,
878 			  enum mf_result result)
879 {
880 	trace_memory_failure_event(pfn, type, result);
881 
882 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
883 		pfn, action_page_types[type], action_name[result]);
884 }
885 
886 static int page_action(struct page_state *ps, struct page *p,
887 			unsigned long pfn)
888 {
889 	int result;
890 	int count;
891 
892 	result = ps->action(p, pfn);
893 
894 	count = page_count(p) - 1;
895 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
896 		count--;
897 	if (count > 0) {
898 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
899 		       pfn, action_page_types[ps->type], count);
900 		result = MF_FAILED;
901 	}
902 	action_result(pfn, ps->type, result);
903 
904 	/* Could do more checks here if page looks ok */
905 	/*
906 	 * Could adjust zone counters here to correct for the missing page.
907 	 */
908 
909 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
910 }
911 
912 /**
913  * get_hwpoison_page() - Get refcount for memory error handling:
914  * @page:	raw error page (hit by memory error)
915  *
916  * Return: return 0 if failed to grab the refcount, otherwise true (some
917  * non-zero value.)
918  */
919 int get_hwpoison_page(struct page *page)
920 {
921 	struct page *head = compound_head(page);
922 
923 	if (!PageHuge(head) && PageTransHuge(head)) {
924 		/*
925 		 * Non anonymous thp exists only in allocation/free time. We
926 		 * can't handle such a case correctly, so let's give it up.
927 		 * This should be better than triggering BUG_ON when kernel
928 		 * tries to touch the "partially handled" page.
929 		 */
930 		if (!PageAnon(head)) {
931 			pr_err("Memory failure: %#lx: non anonymous thp\n",
932 				page_to_pfn(page));
933 			return 0;
934 		}
935 	}
936 
937 	if (get_page_unless_zero(head)) {
938 		if (head == compound_head(page))
939 			return 1;
940 
941 		pr_info("Memory failure: %#lx cannot catch tail\n",
942 			page_to_pfn(page));
943 		put_page(head);
944 	}
945 
946 	return 0;
947 }
948 EXPORT_SYMBOL_GPL(get_hwpoison_page);
949 
950 /*
951  * Do all that is necessary to remove user space mappings. Unmap
952  * the pages and send SIGBUS to the processes if the data was dirty.
953  */
954 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
955 				  int flags, struct page **hpagep)
956 {
957 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
958 	struct address_space *mapping;
959 	LIST_HEAD(tokill);
960 	bool unmap_success = true;
961 	int kill = 1, forcekill;
962 	struct page *hpage = *hpagep;
963 	bool mlocked = PageMlocked(hpage);
964 
965 	/*
966 	 * Here we are interested only in user-mapped pages, so skip any
967 	 * other types of pages.
968 	 */
969 	if (PageReserved(p) || PageSlab(p))
970 		return true;
971 	if (!(PageLRU(hpage) || PageHuge(p)))
972 		return true;
973 
974 	/*
975 	 * This check implies we don't kill processes if their pages
976 	 * are in the swap cache early. Those are always late kills.
977 	 */
978 	if (!page_mapped(hpage))
979 		return true;
980 
981 	if (PageKsm(p)) {
982 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
983 		return false;
984 	}
985 
986 	if (PageSwapCache(p)) {
987 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
988 			pfn);
989 		ttu |= TTU_IGNORE_HWPOISON;
990 	}
991 
992 	/*
993 	 * Propagate the dirty bit from PTEs to struct page first, because we
994 	 * need this to decide if we should kill or just drop the page.
995 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
996 	 * be called inside page lock (it's recommended but not enforced).
997 	 */
998 	mapping = page_mapping(hpage);
999 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1000 	    mapping_cap_writeback_dirty(mapping)) {
1001 		if (page_mkclean(hpage)) {
1002 			SetPageDirty(hpage);
1003 		} else {
1004 			kill = 0;
1005 			ttu |= TTU_IGNORE_HWPOISON;
1006 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1007 				pfn);
1008 		}
1009 	}
1010 
1011 	/*
1012 	 * First collect all the processes that have the page
1013 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1014 	 * because ttu takes the rmap data structures down.
1015 	 *
1016 	 * Error handling: We ignore errors here because
1017 	 * there's nothing that can be done.
1018 	 */
1019 	if (kill)
1020 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1021 
1022 	if (!PageHuge(hpage)) {
1023 		unmap_success = try_to_unmap(hpage, ttu);
1024 	} else {
1025 		/*
1026 		 * For hugetlb pages, try_to_unmap could potentially call
1027 		 * huge_pmd_unshare.  Because of this, take semaphore in
1028 		 * write mode here and set TTU_RMAP_LOCKED to indicate we
1029 		 * have taken the lock at this higer level.
1030 		 *
1031 		 * Note that the call to hugetlb_page_mapping_lock_write
1032 		 * is necessary even if mapping is already set.  It handles
1033 		 * ugliness of potentially having to drop page lock to obtain
1034 		 * i_mmap_rwsem.
1035 		 */
1036 		mapping = hugetlb_page_mapping_lock_write(hpage);
1037 
1038 		if (mapping) {
1039 			unmap_success = try_to_unmap(hpage,
1040 						     ttu|TTU_RMAP_LOCKED);
1041 			i_mmap_unlock_write(mapping);
1042 		} else {
1043 			pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n",
1044 				pfn);
1045 			unmap_success = false;
1046 		}
1047 	}
1048 	if (!unmap_success)
1049 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1050 		       pfn, page_mapcount(hpage));
1051 
1052 	/*
1053 	 * try_to_unmap() might put mlocked page in lru cache, so call
1054 	 * shake_page() again to ensure that it's flushed.
1055 	 */
1056 	if (mlocked)
1057 		shake_page(hpage, 0);
1058 
1059 	/*
1060 	 * Now that the dirty bit has been propagated to the
1061 	 * struct page and all unmaps done we can decide if
1062 	 * killing is needed or not.  Only kill when the page
1063 	 * was dirty or the process is not restartable,
1064 	 * otherwise the tokill list is merely
1065 	 * freed.  When there was a problem unmapping earlier
1066 	 * use a more force-full uncatchable kill to prevent
1067 	 * any accesses to the poisoned memory.
1068 	 */
1069 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1070 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1071 
1072 	return unmap_success;
1073 }
1074 
1075 static int identify_page_state(unsigned long pfn, struct page *p,
1076 				unsigned long page_flags)
1077 {
1078 	struct page_state *ps;
1079 
1080 	/*
1081 	 * The first check uses the current page flags which may not have any
1082 	 * relevant information. The second check with the saved page flags is
1083 	 * carried out only if the first check can't determine the page status.
1084 	 */
1085 	for (ps = error_states;; ps++)
1086 		if ((p->flags & ps->mask) == ps->res)
1087 			break;
1088 
1089 	page_flags |= (p->flags & (1UL << PG_dirty));
1090 
1091 	if (!ps->mask)
1092 		for (ps = error_states;; ps++)
1093 			if ((page_flags & ps->mask) == ps->res)
1094 				break;
1095 	return page_action(ps, p, pfn);
1096 }
1097 
1098 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1099 {
1100 	struct page *p = pfn_to_page(pfn);
1101 	struct page *head = compound_head(p);
1102 	int res;
1103 	unsigned long page_flags;
1104 
1105 	if (TestSetPageHWPoison(head)) {
1106 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1107 		       pfn);
1108 		return 0;
1109 	}
1110 
1111 	num_poisoned_pages_inc();
1112 
1113 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1114 		/*
1115 		 * Check "filter hit" and "race with other subpage."
1116 		 */
1117 		lock_page(head);
1118 		if (PageHWPoison(head)) {
1119 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1120 			    || (p != head && TestSetPageHWPoison(head))) {
1121 				num_poisoned_pages_dec();
1122 				unlock_page(head);
1123 				return 0;
1124 			}
1125 		}
1126 		unlock_page(head);
1127 		dissolve_free_huge_page(p);
1128 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1129 		return 0;
1130 	}
1131 
1132 	lock_page(head);
1133 	page_flags = head->flags;
1134 
1135 	if (!PageHWPoison(head)) {
1136 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1137 		num_poisoned_pages_dec();
1138 		unlock_page(head);
1139 		put_hwpoison_page(head);
1140 		return 0;
1141 	}
1142 
1143 	/*
1144 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1145 	 * simply disable it. In order to make it work properly, we need
1146 	 * make sure that:
1147 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1148 	 *    entry properly works, and
1149 	 *  - other mm code walking over page table is aware of pud-aligned
1150 	 *    hwpoison entries.
1151 	 */
1152 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1153 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1154 		res = -EBUSY;
1155 		goto out;
1156 	}
1157 
1158 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1159 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1160 		res = -EBUSY;
1161 		goto out;
1162 	}
1163 
1164 	res = identify_page_state(pfn, p, page_flags);
1165 out:
1166 	unlock_page(head);
1167 	return res;
1168 }
1169 
1170 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1171 		struct dev_pagemap *pgmap)
1172 {
1173 	struct page *page = pfn_to_page(pfn);
1174 	const bool unmap_success = true;
1175 	unsigned long size = 0;
1176 	struct to_kill *tk;
1177 	LIST_HEAD(tokill);
1178 	int rc = -EBUSY;
1179 	loff_t start;
1180 	dax_entry_t cookie;
1181 
1182 	/*
1183 	 * Prevent the inode from being freed while we are interrogating
1184 	 * the address_space, typically this would be handled by
1185 	 * lock_page(), but dax pages do not use the page lock. This
1186 	 * also prevents changes to the mapping of this pfn until
1187 	 * poison signaling is complete.
1188 	 */
1189 	cookie = dax_lock_page(page);
1190 	if (!cookie)
1191 		goto out;
1192 
1193 	if (hwpoison_filter(page)) {
1194 		rc = 0;
1195 		goto unlock;
1196 	}
1197 
1198 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1199 		/*
1200 		 * TODO: Handle HMM pages which may need coordination
1201 		 * with device-side memory.
1202 		 */
1203 		goto unlock;
1204 	}
1205 
1206 	/*
1207 	 * Use this flag as an indication that the dax page has been
1208 	 * remapped UC to prevent speculative consumption of poison.
1209 	 */
1210 	SetPageHWPoison(page);
1211 
1212 	/*
1213 	 * Unlike System-RAM there is no possibility to swap in a
1214 	 * different physical page at a given virtual address, so all
1215 	 * userspace consumption of ZONE_DEVICE memory necessitates
1216 	 * SIGBUS (i.e. MF_MUST_KILL)
1217 	 */
1218 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1219 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1220 
1221 	list_for_each_entry(tk, &tokill, nd)
1222 		if (tk->size_shift)
1223 			size = max(size, 1UL << tk->size_shift);
1224 	if (size) {
1225 		/*
1226 		 * Unmap the largest mapping to avoid breaking up
1227 		 * device-dax mappings which are constant size. The
1228 		 * actual size of the mapping being torn down is
1229 		 * communicated in siginfo, see kill_proc()
1230 		 */
1231 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1232 		unmap_mapping_range(page->mapping, start, start + size, 0);
1233 	}
1234 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1235 	rc = 0;
1236 unlock:
1237 	dax_unlock_page(page, cookie);
1238 out:
1239 	/* drop pgmap ref acquired in caller */
1240 	put_dev_pagemap(pgmap);
1241 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1242 	return rc;
1243 }
1244 
1245 /**
1246  * memory_failure - Handle memory failure of a page.
1247  * @pfn: Page Number of the corrupted page
1248  * @flags: fine tune action taken
1249  *
1250  * This function is called by the low level machine check code
1251  * of an architecture when it detects hardware memory corruption
1252  * of a page. It tries its best to recover, which includes
1253  * dropping pages, killing processes etc.
1254  *
1255  * The function is primarily of use for corruptions that
1256  * happen outside the current execution context (e.g. when
1257  * detected by a background scrubber)
1258  *
1259  * Must run in process context (e.g. a work queue) with interrupts
1260  * enabled and no spinlocks hold.
1261  */
1262 int memory_failure(unsigned long pfn, int flags)
1263 {
1264 	struct page *p;
1265 	struct page *hpage;
1266 	struct page *orig_head;
1267 	struct dev_pagemap *pgmap;
1268 	int res;
1269 	unsigned long page_flags;
1270 
1271 	if (!sysctl_memory_failure_recovery)
1272 		panic("Memory failure on page %lx", pfn);
1273 
1274 	p = pfn_to_online_page(pfn);
1275 	if (!p) {
1276 		if (pfn_valid(pfn)) {
1277 			pgmap = get_dev_pagemap(pfn, NULL);
1278 			if (pgmap)
1279 				return memory_failure_dev_pagemap(pfn, flags,
1280 								  pgmap);
1281 		}
1282 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1283 			pfn);
1284 		return -ENXIO;
1285 	}
1286 
1287 	if (PageHuge(p))
1288 		return memory_failure_hugetlb(pfn, flags);
1289 	if (TestSetPageHWPoison(p)) {
1290 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1291 			pfn);
1292 		return 0;
1293 	}
1294 
1295 	orig_head = hpage = compound_head(p);
1296 	num_poisoned_pages_inc();
1297 
1298 	/*
1299 	 * We need/can do nothing about count=0 pages.
1300 	 * 1) it's a free page, and therefore in safe hand:
1301 	 *    prep_new_page() will be the gate keeper.
1302 	 * 2) it's part of a non-compound high order page.
1303 	 *    Implies some kernel user: cannot stop them from
1304 	 *    R/W the page; let's pray that the page has been
1305 	 *    used and will be freed some time later.
1306 	 * In fact it's dangerous to directly bump up page count from 0,
1307 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1308 	 */
1309 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1310 		if (is_free_buddy_page(p)) {
1311 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1312 			return 0;
1313 		} else {
1314 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1315 			return -EBUSY;
1316 		}
1317 	}
1318 
1319 	if (PageTransHuge(hpage)) {
1320 		lock_page(p);
1321 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1322 			unlock_page(p);
1323 			if (!PageAnon(p))
1324 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1325 					pfn);
1326 			else
1327 				pr_err("Memory failure: %#lx: thp split failed\n",
1328 					pfn);
1329 			if (TestClearPageHWPoison(p))
1330 				num_poisoned_pages_dec();
1331 			put_hwpoison_page(p);
1332 			return -EBUSY;
1333 		}
1334 		unlock_page(p);
1335 		VM_BUG_ON_PAGE(!page_count(p), p);
1336 		hpage = compound_head(p);
1337 	}
1338 
1339 	/*
1340 	 * We ignore non-LRU pages for good reasons.
1341 	 * - PG_locked is only well defined for LRU pages and a few others
1342 	 * - to avoid races with __SetPageLocked()
1343 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1344 	 * The check (unnecessarily) ignores LRU pages being isolated and
1345 	 * walked by the page reclaim code, however that's not a big loss.
1346 	 */
1347 	shake_page(p, 0);
1348 	/* shake_page could have turned it free. */
1349 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1350 		if (flags & MF_COUNT_INCREASED)
1351 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1352 		else
1353 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1354 		return 0;
1355 	}
1356 
1357 	lock_page(p);
1358 
1359 	/*
1360 	 * The page could have changed compound pages during the locking.
1361 	 * If this happens just bail out.
1362 	 */
1363 	if (PageCompound(p) && compound_head(p) != orig_head) {
1364 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1365 		res = -EBUSY;
1366 		goto out;
1367 	}
1368 
1369 	/*
1370 	 * We use page flags to determine what action should be taken, but
1371 	 * the flags can be modified by the error containment action.  One
1372 	 * example is an mlocked page, where PG_mlocked is cleared by
1373 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1374 	 * correctly, we save a copy of the page flags at this time.
1375 	 */
1376 	if (PageHuge(p))
1377 		page_flags = hpage->flags;
1378 	else
1379 		page_flags = p->flags;
1380 
1381 	/*
1382 	 * unpoison always clear PG_hwpoison inside page lock
1383 	 */
1384 	if (!PageHWPoison(p)) {
1385 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1386 		num_poisoned_pages_dec();
1387 		unlock_page(p);
1388 		put_hwpoison_page(p);
1389 		return 0;
1390 	}
1391 	if (hwpoison_filter(p)) {
1392 		if (TestClearPageHWPoison(p))
1393 			num_poisoned_pages_dec();
1394 		unlock_page(p);
1395 		put_hwpoison_page(p);
1396 		return 0;
1397 	}
1398 
1399 	if (!PageTransTail(p) && !PageLRU(p))
1400 		goto identify_page_state;
1401 
1402 	/*
1403 	 * It's very difficult to mess with pages currently under IO
1404 	 * and in many cases impossible, so we just avoid it here.
1405 	 */
1406 	wait_on_page_writeback(p);
1407 
1408 	/*
1409 	 * Now take care of user space mappings.
1410 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1411 	 *
1412 	 * When the raw error page is thp tail page, hpage points to the raw
1413 	 * page after thp split.
1414 	 */
1415 	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1416 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1417 		res = -EBUSY;
1418 		goto out;
1419 	}
1420 
1421 	/*
1422 	 * Torn down by someone else?
1423 	 */
1424 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1425 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1426 		res = -EBUSY;
1427 		goto out;
1428 	}
1429 
1430 identify_page_state:
1431 	res = identify_page_state(pfn, p, page_flags);
1432 out:
1433 	unlock_page(p);
1434 	return res;
1435 }
1436 EXPORT_SYMBOL_GPL(memory_failure);
1437 
1438 #define MEMORY_FAILURE_FIFO_ORDER	4
1439 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1440 
1441 struct memory_failure_entry {
1442 	unsigned long pfn;
1443 	int flags;
1444 };
1445 
1446 struct memory_failure_cpu {
1447 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1448 		      MEMORY_FAILURE_FIFO_SIZE);
1449 	spinlock_t lock;
1450 	struct work_struct work;
1451 };
1452 
1453 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1454 
1455 /**
1456  * memory_failure_queue - Schedule handling memory failure of a page.
1457  * @pfn: Page Number of the corrupted page
1458  * @flags: Flags for memory failure handling
1459  *
1460  * This function is called by the low level hardware error handler
1461  * when it detects hardware memory corruption of a page. It schedules
1462  * the recovering of error page, including dropping pages, killing
1463  * processes etc.
1464  *
1465  * The function is primarily of use for corruptions that
1466  * happen outside the current execution context (e.g. when
1467  * detected by a background scrubber)
1468  *
1469  * Can run in IRQ context.
1470  */
1471 void memory_failure_queue(unsigned long pfn, int flags)
1472 {
1473 	struct memory_failure_cpu *mf_cpu;
1474 	unsigned long proc_flags;
1475 	struct memory_failure_entry entry = {
1476 		.pfn =		pfn,
1477 		.flags =	flags,
1478 	};
1479 
1480 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1481 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1482 	if (kfifo_put(&mf_cpu->fifo, entry))
1483 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1484 	else
1485 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1486 		       pfn);
1487 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1488 	put_cpu_var(memory_failure_cpu);
1489 }
1490 EXPORT_SYMBOL_GPL(memory_failure_queue);
1491 
1492 static void memory_failure_work_func(struct work_struct *work)
1493 {
1494 	struct memory_failure_cpu *mf_cpu;
1495 	struct memory_failure_entry entry = { 0, };
1496 	unsigned long proc_flags;
1497 	int gotten;
1498 
1499 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
1500 	for (;;) {
1501 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1502 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1503 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1504 		if (!gotten)
1505 			break;
1506 		if (entry.flags & MF_SOFT_OFFLINE)
1507 			soft_offline_page(entry.pfn, entry.flags);
1508 		else
1509 			memory_failure(entry.pfn, entry.flags);
1510 	}
1511 }
1512 
1513 /*
1514  * Process memory_failure work queued on the specified CPU.
1515  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
1516  */
1517 void memory_failure_queue_kick(int cpu)
1518 {
1519 	struct memory_failure_cpu *mf_cpu;
1520 
1521 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1522 	cancel_work_sync(&mf_cpu->work);
1523 	memory_failure_work_func(&mf_cpu->work);
1524 }
1525 
1526 static int __init memory_failure_init(void)
1527 {
1528 	struct memory_failure_cpu *mf_cpu;
1529 	int cpu;
1530 
1531 	for_each_possible_cpu(cpu) {
1532 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1533 		spin_lock_init(&mf_cpu->lock);
1534 		INIT_KFIFO(mf_cpu->fifo);
1535 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1536 	}
1537 
1538 	return 0;
1539 }
1540 core_initcall(memory_failure_init);
1541 
1542 #define unpoison_pr_info(fmt, pfn, rs)			\
1543 ({							\
1544 	if (__ratelimit(rs))				\
1545 		pr_info(fmt, pfn);			\
1546 })
1547 
1548 /**
1549  * unpoison_memory - Unpoison a previously poisoned page
1550  * @pfn: Page number of the to be unpoisoned page
1551  *
1552  * Software-unpoison a page that has been poisoned by
1553  * memory_failure() earlier.
1554  *
1555  * This is only done on the software-level, so it only works
1556  * for linux injected failures, not real hardware failures
1557  *
1558  * Returns 0 for success, otherwise -errno.
1559  */
1560 int unpoison_memory(unsigned long pfn)
1561 {
1562 	struct page *page;
1563 	struct page *p;
1564 	int freeit = 0;
1565 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1566 					DEFAULT_RATELIMIT_BURST);
1567 
1568 	if (!pfn_valid(pfn))
1569 		return -ENXIO;
1570 
1571 	p = pfn_to_page(pfn);
1572 	page = compound_head(p);
1573 
1574 	if (!PageHWPoison(p)) {
1575 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1576 				 pfn, &unpoison_rs);
1577 		return 0;
1578 	}
1579 
1580 	if (page_count(page) > 1) {
1581 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1582 				 pfn, &unpoison_rs);
1583 		return 0;
1584 	}
1585 
1586 	if (page_mapped(page)) {
1587 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1588 				 pfn, &unpoison_rs);
1589 		return 0;
1590 	}
1591 
1592 	if (page_mapping(page)) {
1593 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1594 				 pfn, &unpoison_rs);
1595 		return 0;
1596 	}
1597 
1598 	/*
1599 	 * unpoison_memory() can encounter thp only when the thp is being
1600 	 * worked by memory_failure() and the page lock is not held yet.
1601 	 * In such case, we yield to memory_failure() and make unpoison fail.
1602 	 */
1603 	if (!PageHuge(page) && PageTransHuge(page)) {
1604 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1605 				 pfn, &unpoison_rs);
1606 		return 0;
1607 	}
1608 
1609 	if (!get_hwpoison_page(p)) {
1610 		if (TestClearPageHWPoison(p))
1611 			num_poisoned_pages_dec();
1612 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1613 				 pfn, &unpoison_rs);
1614 		return 0;
1615 	}
1616 
1617 	lock_page(page);
1618 	/*
1619 	 * This test is racy because PG_hwpoison is set outside of page lock.
1620 	 * That's acceptable because that won't trigger kernel panic. Instead,
1621 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1622 	 * the free buddy page pool.
1623 	 */
1624 	if (TestClearPageHWPoison(page)) {
1625 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1626 				 pfn, &unpoison_rs);
1627 		num_poisoned_pages_dec();
1628 		freeit = 1;
1629 	}
1630 	unlock_page(page);
1631 
1632 	put_hwpoison_page(page);
1633 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1634 		put_hwpoison_page(page);
1635 
1636 	return 0;
1637 }
1638 EXPORT_SYMBOL(unpoison_memory);
1639 
1640 static struct page *new_page(struct page *p, unsigned long private)
1641 {
1642 	int nid = page_to_nid(p);
1643 
1644 	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1645 }
1646 
1647 /*
1648  * Safely get reference count of an arbitrary page.
1649  * Returns 0 for a free page, -EIO for a zero refcount page
1650  * that is not free, and 1 for any other page type.
1651  * For 1 the page is returned with increased page count, otherwise not.
1652  */
1653 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1654 {
1655 	int ret;
1656 
1657 	if (flags & MF_COUNT_INCREASED)
1658 		return 1;
1659 
1660 	/*
1661 	 * When the target page is a free hugepage, just remove it
1662 	 * from free hugepage list.
1663 	 */
1664 	if (!get_hwpoison_page(p)) {
1665 		if (PageHuge(p)) {
1666 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1667 			ret = 0;
1668 		} else if (is_free_buddy_page(p)) {
1669 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1670 			ret = 0;
1671 		} else {
1672 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1673 				__func__, pfn, p->flags);
1674 			ret = -EIO;
1675 		}
1676 	} else {
1677 		/* Not a free page */
1678 		ret = 1;
1679 	}
1680 	return ret;
1681 }
1682 
1683 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1684 {
1685 	int ret = __get_any_page(page, pfn, flags);
1686 
1687 	if (ret == 1 && !PageHuge(page) &&
1688 	    !PageLRU(page) && !__PageMovable(page)) {
1689 		/*
1690 		 * Try to free it.
1691 		 */
1692 		put_hwpoison_page(page);
1693 		shake_page(page, 1);
1694 
1695 		/*
1696 		 * Did it turn free?
1697 		 */
1698 		ret = __get_any_page(page, pfn, 0);
1699 		if (ret == 1 && !PageLRU(page)) {
1700 			/* Drop page reference which is from __get_any_page() */
1701 			put_hwpoison_page(page);
1702 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1703 				pfn, page->flags, &page->flags);
1704 			return -EIO;
1705 		}
1706 	}
1707 	return ret;
1708 }
1709 
1710 static int soft_offline_huge_page(struct page *page, int flags)
1711 {
1712 	int ret;
1713 	unsigned long pfn = page_to_pfn(page);
1714 	struct page *hpage = compound_head(page);
1715 	LIST_HEAD(pagelist);
1716 
1717 	/*
1718 	 * This double-check of PageHWPoison is to avoid the race with
1719 	 * memory_failure(). See also comment in __soft_offline_page().
1720 	 */
1721 	lock_page(hpage);
1722 	if (PageHWPoison(hpage)) {
1723 		unlock_page(hpage);
1724 		put_hwpoison_page(hpage);
1725 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1726 		return -EBUSY;
1727 	}
1728 	unlock_page(hpage);
1729 
1730 	ret = isolate_huge_page(hpage, &pagelist);
1731 	/*
1732 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1733 	 * so need to drop one here.
1734 	 */
1735 	put_hwpoison_page(hpage);
1736 	if (!ret) {
1737 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1738 		return -EBUSY;
1739 	}
1740 
1741 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1742 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1743 	if (ret) {
1744 		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1745 			pfn, ret, page->flags, &page->flags);
1746 		if (!list_empty(&pagelist))
1747 			putback_movable_pages(&pagelist);
1748 		if (ret > 0)
1749 			ret = -EIO;
1750 	} else {
1751 		/*
1752 		 * We set PG_hwpoison only when the migration source hugepage
1753 		 * was successfully dissolved, because otherwise hwpoisoned
1754 		 * hugepage remains on free hugepage list, then userspace will
1755 		 * find it as SIGBUS by allocation failure. That's not expected
1756 		 * in soft-offlining.
1757 		 */
1758 		ret = dissolve_free_huge_page(page);
1759 		if (!ret) {
1760 			if (set_hwpoison_free_buddy_page(page))
1761 				num_poisoned_pages_inc();
1762 			else
1763 				ret = -EBUSY;
1764 		}
1765 	}
1766 	return ret;
1767 }
1768 
1769 static int __soft_offline_page(struct page *page, int flags)
1770 {
1771 	int ret;
1772 	unsigned long pfn = page_to_pfn(page);
1773 
1774 	/*
1775 	 * Check PageHWPoison again inside page lock because PageHWPoison
1776 	 * is set by memory_failure() outside page lock. Note that
1777 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1778 	 * so there's no race between soft_offline_page() and memory_failure().
1779 	 */
1780 	lock_page(page);
1781 	wait_on_page_writeback(page);
1782 	if (PageHWPoison(page)) {
1783 		unlock_page(page);
1784 		put_hwpoison_page(page);
1785 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1786 		return -EBUSY;
1787 	}
1788 	/*
1789 	 * Try to invalidate first. This should work for
1790 	 * non dirty unmapped page cache pages.
1791 	 */
1792 	ret = invalidate_inode_page(page);
1793 	unlock_page(page);
1794 	/*
1795 	 * RED-PEN would be better to keep it isolated here, but we
1796 	 * would need to fix isolation locking first.
1797 	 */
1798 	if (ret == 1) {
1799 		put_hwpoison_page(page);
1800 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1801 		SetPageHWPoison(page);
1802 		num_poisoned_pages_inc();
1803 		return 0;
1804 	}
1805 
1806 	/*
1807 	 * Simple invalidation didn't work.
1808 	 * Try to migrate to a new page instead. migrate.c
1809 	 * handles a large number of cases for us.
1810 	 */
1811 	if (PageLRU(page))
1812 		ret = isolate_lru_page(page);
1813 	else
1814 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1815 	/*
1816 	 * Drop page reference which is came from get_any_page()
1817 	 * successful isolate_lru_page() already took another one.
1818 	 */
1819 	put_hwpoison_page(page);
1820 	if (!ret) {
1821 		LIST_HEAD(pagelist);
1822 		/*
1823 		 * After isolated lru page, the PageLRU will be cleared,
1824 		 * so use !__PageMovable instead for LRU page's mapping
1825 		 * cannot have PAGE_MAPPING_MOVABLE.
1826 		 */
1827 		if (!__PageMovable(page))
1828 			inc_node_page_state(page, NR_ISOLATED_ANON +
1829 						page_is_file_lru(page));
1830 		list_add(&page->lru, &pagelist);
1831 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1832 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1833 		if (ret) {
1834 			if (!list_empty(&pagelist))
1835 				putback_movable_pages(&pagelist);
1836 
1837 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1838 				pfn, ret, page->flags, &page->flags);
1839 			if (ret > 0)
1840 				ret = -EIO;
1841 		}
1842 	} else {
1843 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1844 			pfn, ret, page_count(page), page->flags, &page->flags);
1845 	}
1846 	return ret;
1847 }
1848 
1849 static int soft_offline_in_use_page(struct page *page, int flags)
1850 {
1851 	int ret;
1852 	int mt;
1853 	struct page *hpage = compound_head(page);
1854 
1855 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1856 		lock_page(page);
1857 		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1858 			unlock_page(page);
1859 			if (!PageAnon(page))
1860 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1861 			else
1862 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1863 			put_hwpoison_page(page);
1864 			return -EBUSY;
1865 		}
1866 		unlock_page(page);
1867 	}
1868 
1869 	/*
1870 	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1871 	 * to free list immediately (not via pcplist) when released after
1872 	 * successful page migration. Otherwise we can't guarantee that the
1873 	 * page is really free after put_page() returns, so
1874 	 * set_hwpoison_free_buddy_page() highly likely fails.
1875 	 */
1876 	mt = get_pageblock_migratetype(page);
1877 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1878 	if (PageHuge(page))
1879 		ret = soft_offline_huge_page(page, flags);
1880 	else
1881 		ret = __soft_offline_page(page, flags);
1882 	set_pageblock_migratetype(page, mt);
1883 	return ret;
1884 }
1885 
1886 static int soft_offline_free_page(struct page *page)
1887 {
1888 	int rc = dissolve_free_huge_page(page);
1889 
1890 	if (!rc) {
1891 		if (set_hwpoison_free_buddy_page(page))
1892 			num_poisoned_pages_inc();
1893 		else
1894 			rc = -EBUSY;
1895 	}
1896 	return rc;
1897 }
1898 
1899 /**
1900  * soft_offline_page - Soft offline a page.
1901  * @pfn: pfn to soft-offline
1902  * @flags: flags. Same as memory_failure().
1903  *
1904  * Returns 0 on success, otherwise negated errno.
1905  *
1906  * Soft offline a page, by migration or invalidation,
1907  * without killing anything. This is for the case when
1908  * a page is not corrupted yet (so it's still valid to access),
1909  * but has had a number of corrected errors and is better taken
1910  * out.
1911  *
1912  * The actual policy on when to do that is maintained by
1913  * user space.
1914  *
1915  * This should never impact any application or cause data loss,
1916  * however it might take some time.
1917  *
1918  * This is not a 100% solution for all memory, but tries to be
1919  * ``good enough'' for the majority of memory.
1920  */
1921 int soft_offline_page(unsigned long pfn, int flags)
1922 {
1923 	int ret;
1924 	struct page *page;
1925 
1926 	if (!pfn_valid(pfn))
1927 		return -ENXIO;
1928 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1929 	page = pfn_to_online_page(pfn);
1930 	if (!page)
1931 		return -EIO;
1932 
1933 	if (PageHWPoison(page)) {
1934 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1935 		if (flags & MF_COUNT_INCREASED)
1936 			put_hwpoison_page(page);
1937 		return -EBUSY;
1938 	}
1939 
1940 	get_online_mems();
1941 	ret = get_any_page(page, pfn, flags);
1942 	put_online_mems();
1943 
1944 	if (ret > 0)
1945 		ret = soft_offline_in_use_page(page, flags);
1946 	else if (ret == 0)
1947 		ret = soft_offline_free_page(page);
1948 
1949 	return ret;
1950 }
1951