xref: /linux/mm/memory-failure.c (revision a674fefd17324fc467f043568e738b80ca22f2b4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66 
67 static int sysctl_memory_failure_early_kill __read_mostly;
68 
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70 
71 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
72 
73 static bool hw_memory_failure __read_mostly = false;
74 
75 static DEFINE_MUTEX(mf_mutex);
76 
77 void num_poisoned_pages_inc(unsigned long pfn)
78 {
79 	atomic_long_inc(&num_poisoned_pages);
80 	memblk_nr_poison_inc(pfn);
81 }
82 
83 void num_poisoned_pages_sub(unsigned long pfn, long i)
84 {
85 	atomic_long_sub(i, &num_poisoned_pages);
86 	if (pfn != -1UL)
87 		memblk_nr_poison_sub(pfn, i);
88 }
89 
90 /**
91  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92  * @_name: name of the file in the per NUMA sysfs directory.
93  */
94 #define MF_ATTR_RO(_name)					\
95 static ssize_t _name##_show(struct device *dev,			\
96 			    struct device_attribute *attr,	\
97 			    char *buf)				\
98 {								\
99 	struct memory_failure_stats *mf_stats =			\
100 		&NODE_DATA(dev->id)->mf_stats;			\
101 	return sprintf(buf, "%lu\n", mf_stats->_name);		\
102 }								\
103 static DEVICE_ATTR_RO(_name)
104 
105 MF_ATTR_RO(total);
106 MF_ATTR_RO(ignored);
107 MF_ATTR_RO(failed);
108 MF_ATTR_RO(delayed);
109 MF_ATTR_RO(recovered);
110 
111 static struct attribute *memory_failure_attr[] = {
112 	&dev_attr_total.attr,
113 	&dev_attr_ignored.attr,
114 	&dev_attr_failed.attr,
115 	&dev_attr_delayed.attr,
116 	&dev_attr_recovered.attr,
117 	NULL,
118 };
119 
120 const struct attribute_group memory_failure_attr_group = {
121 	.name = "memory_failure",
122 	.attrs = memory_failure_attr,
123 };
124 
125 static struct ctl_table memory_failure_table[] = {
126 	{
127 		.procname	= "memory_failure_early_kill",
128 		.data		= &sysctl_memory_failure_early_kill,
129 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
130 		.mode		= 0644,
131 		.proc_handler	= proc_dointvec_minmax,
132 		.extra1		= SYSCTL_ZERO,
133 		.extra2		= SYSCTL_ONE,
134 	},
135 	{
136 		.procname	= "memory_failure_recovery",
137 		.data		= &sysctl_memory_failure_recovery,
138 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
139 		.mode		= 0644,
140 		.proc_handler	= proc_dointvec_minmax,
141 		.extra1		= SYSCTL_ZERO,
142 		.extra2		= SYSCTL_ONE,
143 	},
144 };
145 
146 /*
147  * Return values:
148  *   1:   the page is dissolved (if needed) and taken off from buddy,
149  *   0:   the page is dissolved (if needed) and not taken off from buddy,
150  *   < 0: failed to dissolve.
151  */
152 static int __page_handle_poison(struct page *page)
153 {
154 	int ret;
155 
156 	/*
157 	 * zone_pcp_disable() can't be used here. It will
158 	 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
159 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
160 	 * optimization is enabled. This will break current lock dependency
161 	 * chain and leads to deadlock.
162 	 * Disabling pcp before dissolving the page was a deterministic
163 	 * approach because we made sure that those pages cannot end up in any
164 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
165 	 * but nothing guarantees that those pages do not get back to a PCP
166 	 * queue if we need to refill those.
167 	 */
168 	ret = dissolve_free_hugetlb_folio(page_folio(page));
169 	if (!ret) {
170 		drain_all_pages(page_zone(page));
171 		ret = take_page_off_buddy(page);
172 	}
173 
174 	return ret;
175 }
176 
177 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
178 {
179 	if (hugepage_or_freepage) {
180 		/*
181 		 * Doing this check for free pages is also fine since
182 		 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
183 		 */
184 		if (__page_handle_poison(page) <= 0)
185 			/*
186 			 * We could fail to take off the target page from buddy
187 			 * for example due to racy page allocation, but that's
188 			 * acceptable because soft-offlined page is not broken
189 			 * and if someone really want to use it, they should
190 			 * take it.
191 			 */
192 			return false;
193 	}
194 
195 	SetPageHWPoison(page);
196 	if (release)
197 		put_page(page);
198 	page_ref_inc(page);
199 	num_poisoned_pages_inc(page_to_pfn(page));
200 
201 	return true;
202 }
203 
204 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
205 
206 u32 hwpoison_filter_enable = 0;
207 u32 hwpoison_filter_dev_major = ~0U;
208 u32 hwpoison_filter_dev_minor = ~0U;
209 u64 hwpoison_filter_flags_mask;
210 u64 hwpoison_filter_flags_value;
211 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
212 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
213 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
214 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
215 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
216 
217 static int hwpoison_filter_dev(struct page *p)
218 {
219 	struct folio *folio = page_folio(p);
220 	struct address_space *mapping;
221 	dev_t dev;
222 
223 	if (hwpoison_filter_dev_major == ~0U &&
224 	    hwpoison_filter_dev_minor == ~0U)
225 		return 0;
226 
227 	mapping = folio_mapping(folio);
228 	if (mapping == NULL || mapping->host == NULL)
229 		return -EINVAL;
230 
231 	dev = mapping->host->i_sb->s_dev;
232 	if (hwpoison_filter_dev_major != ~0U &&
233 	    hwpoison_filter_dev_major != MAJOR(dev))
234 		return -EINVAL;
235 	if (hwpoison_filter_dev_minor != ~0U &&
236 	    hwpoison_filter_dev_minor != MINOR(dev))
237 		return -EINVAL;
238 
239 	return 0;
240 }
241 
242 static int hwpoison_filter_flags(struct page *p)
243 {
244 	if (!hwpoison_filter_flags_mask)
245 		return 0;
246 
247 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
248 				    hwpoison_filter_flags_value)
249 		return 0;
250 	else
251 		return -EINVAL;
252 }
253 
254 /*
255  * This allows stress tests to limit test scope to a collection of tasks
256  * by putting them under some memcg. This prevents killing unrelated/important
257  * processes such as /sbin/init. Note that the target task may share clean
258  * pages with init (eg. libc text), which is harmless. If the target task
259  * share _dirty_ pages with another task B, the test scheme must make sure B
260  * is also included in the memcg. At last, due to race conditions this filter
261  * can only guarantee that the page either belongs to the memcg tasks, or is
262  * a freed page.
263  */
264 #ifdef CONFIG_MEMCG
265 u64 hwpoison_filter_memcg;
266 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
267 static int hwpoison_filter_task(struct page *p)
268 {
269 	if (!hwpoison_filter_memcg)
270 		return 0;
271 
272 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
273 		return -EINVAL;
274 
275 	return 0;
276 }
277 #else
278 static int hwpoison_filter_task(struct page *p) { return 0; }
279 #endif
280 
281 int hwpoison_filter(struct page *p)
282 {
283 	if (!hwpoison_filter_enable)
284 		return 0;
285 
286 	if (hwpoison_filter_dev(p))
287 		return -EINVAL;
288 
289 	if (hwpoison_filter_flags(p))
290 		return -EINVAL;
291 
292 	if (hwpoison_filter_task(p))
293 		return -EINVAL;
294 
295 	return 0;
296 }
297 #else
298 int hwpoison_filter(struct page *p)
299 {
300 	return 0;
301 }
302 #endif
303 
304 EXPORT_SYMBOL_GPL(hwpoison_filter);
305 
306 /*
307  * Kill all processes that have a poisoned page mapped and then isolate
308  * the page.
309  *
310  * General strategy:
311  * Find all processes having the page mapped and kill them.
312  * But we keep a page reference around so that the page is not
313  * actually freed yet.
314  * Then stash the page away
315  *
316  * There's no convenient way to get back to mapped processes
317  * from the VMAs. So do a brute-force search over all
318  * running processes.
319  *
320  * Remember that machine checks are not common (or rather
321  * if they are common you have other problems), so this shouldn't
322  * be a performance issue.
323  *
324  * Also there are some races possible while we get from the
325  * error detection to actually handle it.
326  */
327 
328 struct to_kill {
329 	struct list_head nd;
330 	struct task_struct *tsk;
331 	unsigned long addr;
332 	short size_shift;
333 };
334 
335 /*
336  * Send all the processes who have the page mapped a signal.
337  * ``action optional'' if they are not immediately affected by the error
338  * ``action required'' if error happened in current execution context
339  */
340 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
341 {
342 	struct task_struct *t = tk->tsk;
343 	short addr_lsb = tk->size_shift;
344 	int ret = 0;
345 
346 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
347 			pfn, t->comm, t->pid);
348 
349 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
350 		ret = force_sig_mceerr(BUS_MCEERR_AR,
351 				 (void __user *)tk->addr, addr_lsb);
352 	else
353 		/*
354 		 * Signal other processes sharing the page if they have
355 		 * PF_MCE_EARLY set.
356 		 * Don't use force here, it's convenient if the signal
357 		 * can be temporarily blocked.
358 		 * This could cause a loop when the user sets SIGBUS
359 		 * to SIG_IGN, but hopefully no one will do that?
360 		 */
361 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
362 				      addr_lsb, t);
363 	if (ret < 0)
364 		pr_info("Error sending signal to %s:%d: %d\n",
365 			t->comm, t->pid, ret);
366 	return ret;
367 }
368 
369 /*
370  * Unknown page type encountered. Try to check whether it can turn PageLRU by
371  * lru_add_drain_all.
372  */
373 void shake_folio(struct folio *folio)
374 {
375 	if (folio_test_hugetlb(folio))
376 		return;
377 	/*
378 	 * TODO: Could shrink slab caches here if a lightweight range-based
379 	 * shrinker will be available.
380 	 */
381 	if (folio_test_slab(folio))
382 		return;
383 
384 	lru_add_drain_all();
385 }
386 EXPORT_SYMBOL_GPL(shake_folio);
387 
388 static void shake_page(struct page *page)
389 {
390 	shake_folio(page_folio(page));
391 }
392 
393 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
394 		unsigned long address)
395 {
396 	unsigned long ret = 0;
397 	pgd_t *pgd;
398 	p4d_t *p4d;
399 	pud_t *pud;
400 	pmd_t *pmd;
401 	pte_t *pte;
402 	pte_t ptent;
403 
404 	VM_BUG_ON_VMA(address == -EFAULT, vma);
405 	pgd = pgd_offset(vma->vm_mm, address);
406 	if (!pgd_present(*pgd))
407 		return 0;
408 	p4d = p4d_offset(pgd, address);
409 	if (!p4d_present(*p4d))
410 		return 0;
411 	pud = pud_offset(p4d, address);
412 	if (!pud_present(*pud))
413 		return 0;
414 	if (pud_devmap(*pud))
415 		return PUD_SHIFT;
416 	pmd = pmd_offset(pud, address);
417 	if (!pmd_present(*pmd))
418 		return 0;
419 	if (pmd_devmap(*pmd))
420 		return PMD_SHIFT;
421 	pte = pte_offset_map(pmd, address);
422 	if (!pte)
423 		return 0;
424 	ptent = ptep_get(pte);
425 	if (pte_present(ptent) && pte_devmap(ptent))
426 		ret = PAGE_SHIFT;
427 	pte_unmap(pte);
428 	return ret;
429 }
430 
431 /*
432  * Failure handling: if we can't find or can't kill a process there's
433  * not much we can do.	We just print a message and ignore otherwise.
434  */
435 
436 /*
437  * Schedule a process for later kill.
438  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
439  */
440 static void __add_to_kill(struct task_struct *tsk, struct page *p,
441 			  struct vm_area_struct *vma, struct list_head *to_kill,
442 			  unsigned long addr)
443 {
444 	struct to_kill *tk;
445 
446 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
447 	if (!tk) {
448 		pr_err("Out of memory while machine check handling\n");
449 		return;
450 	}
451 
452 	tk->addr = addr;
453 	if (is_zone_device_page(p))
454 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
455 	else
456 		tk->size_shift = page_shift(compound_head(p));
457 
458 	/*
459 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
460 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
461 	 * so "tk->size_shift == 0" effectively checks no mapping on
462 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
463 	 * to a process' address space, it's possible not all N VMAs
464 	 * contain mappings for the page, but at least one VMA does.
465 	 * Only deliver SIGBUS with payload derived from the VMA that
466 	 * has a mapping for the page.
467 	 */
468 	if (tk->addr == -EFAULT) {
469 		pr_info("Unable to find user space address %lx in %s\n",
470 			page_to_pfn(p), tsk->comm);
471 	} else if (tk->size_shift == 0) {
472 		kfree(tk);
473 		return;
474 	}
475 
476 	get_task_struct(tsk);
477 	tk->tsk = tsk;
478 	list_add_tail(&tk->nd, to_kill);
479 }
480 
481 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
482 		struct vm_area_struct *vma, struct list_head *to_kill,
483 		unsigned long addr)
484 {
485 	if (addr == -EFAULT)
486 		return;
487 	__add_to_kill(tsk, p, vma, to_kill, addr);
488 }
489 
490 #ifdef CONFIG_KSM
491 static bool task_in_to_kill_list(struct list_head *to_kill,
492 				 struct task_struct *tsk)
493 {
494 	struct to_kill *tk, *next;
495 
496 	list_for_each_entry_safe(tk, next, to_kill, nd) {
497 		if (tk->tsk == tsk)
498 			return true;
499 	}
500 
501 	return false;
502 }
503 
504 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
505 		     struct vm_area_struct *vma, struct list_head *to_kill,
506 		     unsigned long addr)
507 {
508 	if (!task_in_to_kill_list(to_kill, tsk))
509 		__add_to_kill(tsk, p, vma, to_kill, addr);
510 }
511 #endif
512 /*
513  * Kill the processes that have been collected earlier.
514  *
515  * Only do anything when FORCEKILL is set, otherwise just free the
516  * list (this is used for clean pages which do not need killing)
517  * Also when FAIL is set do a force kill because something went
518  * wrong earlier.
519  */
520 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
521 		unsigned long pfn, int flags)
522 {
523 	struct to_kill *tk, *next;
524 
525 	list_for_each_entry_safe(tk, next, to_kill, nd) {
526 		if (forcekill) {
527 			/*
528 			 * In case something went wrong with munmapping
529 			 * make sure the process doesn't catch the
530 			 * signal and then access the memory. Just kill it.
531 			 */
532 			if (fail || tk->addr == -EFAULT) {
533 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
534 				       pfn, tk->tsk->comm, tk->tsk->pid);
535 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
536 						 tk->tsk, PIDTYPE_PID);
537 			}
538 
539 			/*
540 			 * In theory the process could have mapped
541 			 * something else on the address in-between. We could
542 			 * check for that, but we need to tell the
543 			 * process anyways.
544 			 */
545 			else if (kill_proc(tk, pfn, flags) < 0)
546 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
547 				       pfn, tk->tsk->comm, tk->tsk->pid);
548 		}
549 		list_del(&tk->nd);
550 		put_task_struct(tk->tsk);
551 		kfree(tk);
552 	}
553 }
554 
555 /*
556  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
557  * on behalf of the thread group. Return task_struct of the (first found)
558  * dedicated thread if found, and return NULL otherwise.
559  *
560  * We already hold rcu lock in the caller, so we don't have to call
561  * rcu_read_lock/unlock() in this function.
562  */
563 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
564 {
565 	struct task_struct *t;
566 
567 	for_each_thread(tsk, t) {
568 		if (t->flags & PF_MCE_PROCESS) {
569 			if (t->flags & PF_MCE_EARLY)
570 				return t;
571 		} else {
572 			if (sysctl_memory_failure_early_kill)
573 				return t;
574 		}
575 	}
576 	return NULL;
577 }
578 
579 /*
580  * Determine whether a given process is "early kill" process which expects
581  * to be signaled when some page under the process is hwpoisoned.
582  * Return task_struct of the dedicated thread (main thread unless explicitly
583  * specified) if the process is "early kill" and otherwise returns NULL.
584  *
585  * Note that the above is true for Action Optional case. For Action Required
586  * case, it's only meaningful to the current thread which need to be signaled
587  * with SIGBUS, this error is Action Optional for other non current
588  * processes sharing the same error page,if the process is "early kill", the
589  * task_struct of the dedicated thread will also be returned.
590  */
591 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
592 {
593 	if (!tsk->mm)
594 		return NULL;
595 	/*
596 	 * Comparing ->mm here because current task might represent
597 	 * a subthread, while tsk always points to the main thread.
598 	 */
599 	if (force_early && tsk->mm == current->mm)
600 		return current;
601 
602 	return find_early_kill_thread(tsk);
603 }
604 
605 /*
606  * Collect processes when the error hit an anonymous page.
607  */
608 static void collect_procs_anon(struct folio *folio, struct page *page,
609 		struct list_head *to_kill, int force_early)
610 {
611 	struct task_struct *tsk;
612 	struct anon_vma *av;
613 	pgoff_t pgoff;
614 
615 	av = folio_lock_anon_vma_read(folio, NULL);
616 	if (av == NULL)	/* Not actually mapped anymore */
617 		return;
618 
619 	pgoff = page_to_pgoff(page);
620 	rcu_read_lock();
621 	for_each_process(tsk) {
622 		struct vm_area_struct *vma;
623 		struct anon_vma_chain *vmac;
624 		struct task_struct *t = task_early_kill(tsk, force_early);
625 		unsigned long addr;
626 
627 		if (!t)
628 			continue;
629 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
630 					       pgoff, pgoff) {
631 			vma = vmac->vma;
632 			if (vma->vm_mm != t->mm)
633 				continue;
634 			addr = page_mapped_in_vma(page, vma);
635 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
636 		}
637 	}
638 	rcu_read_unlock();
639 	anon_vma_unlock_read(av);
640 }
641 
642 /*
643  * Collect processes when the error hit a file mapped page.
644  */
645 static void collect_procs_file(struct folio *folio, struct page *page,
646 		struct list_head *to_kill, int force_early)
647 {
648 	struct vm_area_struct *vma;
649 	struct task_struct *tsk;
650 	struct address_space *mapping = folio->mapping;
651 	pgoff_t pgoff;
652 
653 	i_mmap_lock_read(mapping);
654 	rcu_read_lock();
655 	pgoff = page_to_pgoff(page);
656 	for_each_process(tsk) {
657 		struct task_struct *t = task_early_kill(tsk, force_early);
658 		unsigned long addr;
659 
660 		if (!t)
661 			continue;
662 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
663 				      pgoff) {
664 			/*
665 			 * Send early kill signal to tasks where a vma covers
666 			 * the page but the corrupted page is not necessarily
667 			 * mapped in its pte.
668 			 * Assume applications who requested early kill want
669 			 * to be informed of all such data corruptions.
670 			 */
671 			if (vma->vm_mm != t->mm)
672 				continue;
673 			addr = page_address_in_vma(page, vma);
674 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
675 		}
676 	}
677 	rcu_read_unlock();
678 	i_mmap_unlock_read(mapping);
679 }
680 
681 #ifdef CONFIG_FS_DAX
682 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
683 			      struct vm_area_struct *vma,
684 			      struct list_head *to_kill, pgoff_t pgoff)
685 {
686 	unsigned long addr = vma_address(vma, pgoff, 1);
687 	__add_to_kill(tsk, p, vma, to_kill, addr);
688 }
689 
690 /*
691  * Collect processes when the error hit a fsdax page.
692  */
693 static void collect_procs_fsdax(struct page *page,
694 		struct address_space *mapping, pgoff_t pgoff,
695 		struct list_head *to_kill, bool pre_remove)
696 {
697 	struct vm_area_struct *vma;
698 	struct task_struct *tsk;
699 
700 	i_mmap_lock_read(mapping);
701 	rcu_read_lock();
702 	for_each_process(tsk) {
703 		struct task_struct *t = tsk;
704 
705 		/*
706 		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
707 		 * the current may not be the one accessing the fsdax page.
708 		 * Otherwise, search for the current task.
709 		 */
710 		if (!pre_remove)
711 			t = task_early_kill(tsk, true);
712 		if (!t)
713 			continue;
714 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
715 			if (vma->vm_mm == t->mm)
716 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
717 		}
718 	}
719 	rcu_read_unlock();
720 	i_mmap_unlock_read(mapping);
721 }
722 #endif /* CONFIG_FS_DAX */
723 
724 /*
725  * Collect the processes who have the corrupted page mapped to kill.
726  */
727 static void collect_procs(struct folio *folio, struct page *page,
728 		struct list_head *tokill, int force_early)
729 {
730 	if (!folio->mapping)
731 		return;
732 	if (unlikely(folio_test_ksm(folio)))
733 		collect_procs_ksm(folio, page, tokill, force_early);
734 	else if (folio_test_anon(folio))
735 		collect_procs_anon(folio, page, tokill, force_early);
736 	else
737 		collect_procs_file(folio, page, tokill, force_early);
738 }
739 
740 struct hwpoison_walk {
741 	struct to_kill tk;
742 	unsigned long pfn;
743 	int flags;
744 };
745 
746 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
747 {
748 	tk->addr = addr;
749 	tk->size_shift = shift;
750 }
751 
752 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
753 				unsigned long poisoned_pfn, struct to_kill *tk)
754 {
755 	unsigned long pfn = 0;
756 
757 	if (pte_present(pte)) {
758 		pfn = pte_pfn(pte);
759 	} else {
760 		swp_entry_t swp = pte_to_swp_entry(pte);
761 
762 		if (is_hwpoison_entry(swp))
763 			pfn = swp_offset_pfn(swp);
764 	}
765 
766 	if (!pfn || pfn != poisoned_pfn)
767 		return 0;
768 
769 	set_to_kill(tk, addr, shift);
770 	return 1;
771 }
772 
773 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
774 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
775 				      struct hwpoison_walk *hwp)
776 {
777 	pmd_t pmd = *pmdp;
778 	unsigned long pfn;
779 	unsigned long hwpoison_vaddr;
780 
781 	if (!pmd_present(pmd))
782 		return 0;
783 	pfn = pmd_pfn(pmd);
784 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
785 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
786 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
787 		return 1;
788 	}
789 	return 0;
790 }
791 #else
792 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
793 				      struct hwpoison_walk *hwp)
794 {
795 	return 0;
796 }
797 #endif
798 
799 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
800 			      unsigned long end, struct mm_walk *walk)
801 {
802 	struct hwpoison_walk *hwp = walk->private;
803 	int ret = 0;
804 	pte_t *ptep, *mapped_pte;
805 	spinlock_t *ptl;
806 
807 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
808 	if (ptl) {
809 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
810 		spin_unlock(ptl);
811 		goto out;
812 	}
813 
814 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
815 						addr, &ptl);
816 	if (!ptep)
817 		goto out;
818 
819 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
820 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
821 					     hwp->pfn, &hwp->tk);
822 		if (ret == 1)
823 			break;
824 	}
825 	pte_unmap_unlock(mapped_pte, ptl);
826 out:
827 	cond_resched();
828 	return ret;
829 }
830 
831 #ifdef CONFIG_HUGETLB_PAGE
832 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
833 			    unsigned long addr, unsigned long end,
834 			    struct mm_walk *walk)
835 {
836 	struct hwpoison_walk *hwp = walk->private;
837 	pte_t pte = huge_ptep_get(ptep);
838 	struct hstate *h = hstate_vma(walk->vma);
839 
840 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
841 				      hwp->pfn, &hwp->tk);
842 }
843 #else
844 #define hwpoison_hugetlb_range	NULL
845 #endif
846 
847 static const struct mm_walk_ops hwpoison_walk_ops = {
848 	.pmd_entry = hwpoison_pte_range,
849 	.hugetlb_entry = hwpoison_hugetlb_range,
850 	.walk_lock = PGWALK_RDLOCK,
851 };
852 
853 /*
854  * Sends SIGBUS to the current process with error info.
855  *
856  * This function is intended to handle "Action Required" MCEs on already
857  * hardware poisoned pages. They could happen, for example, when
858  * memory_failure() failed to unmap the error page at the first call, or
859  * when multiple local machine checks happened on different CPUs.
860  *
861  * MCE handler currently has no easy access to the error virtual address,
862  * so this function walks page table to find it. The returned virtual address
863  * is proper in most cases, but it could be wrong when the application
864  * process has multiple entries mapping the error page.
865  */
866 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
867 				  int flags)
868 {
869 	int ret;
870 	struct hwpoison_walk priv = {
871 		.pfn = pfn,
872 	};
873 	priv.tk.tsk = p;
874 
875 	if (!p->mm)
876 		return -EFAULT;
877 
878 	mmap_read_lock(p->mm);
879 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
880 			      (void *)&priv);
881 	if (ret == 1 && priv.tk.addr)
882 		kill_proc(&priv.tk, pfn, flags);
883 	else
884 		ret = 0;
885 	mmap_read_unlock(p->mm);
886 	return ret > 0 ? -EHWPOISON : -EFAULT;
887 }
888 
889 static const char *action_name[] = {
890 	[MF_IGNORED] = "Ignored",
891 	[MF_FAILED] = "Failed",
892 	[MF_DELAYED] = "Delayed",
893 	[MF_RECOVERED] = "Recovered",
894 };
895 
896 static const char * const action_page_types[] = {
897 	[MF_MSG_KERNEL]			= "reserved kernel page",
898 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
899 	[MF_MSG_SLAB]			= "kernel slab page",
900 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
901 	[MF_MSG_HUGE]			= "huge page",
902 	[MF_MSG_FREE_HUGE]		= "free huge page",
903 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
904 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
905 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
906 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
907 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
908 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
909 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
910 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
911 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
912 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
913 	[MF_MSG_BUDDY]			= "free buddy page",
914 	[MF_MSG_DAX]			= "dax page",
915 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
916 	[MF_MSG_UNKNOWN]		= "unknown page",
917 };
918 
919 /*
920  * XXX: It is possible that a page is isolated from LRU cache,
921  * and then kept in swap cache or failed to remove from page cache.
922  * The page count will stop it from being freed by unpoison.
923  * Stress tests should be aware of this memory leak problem.
924  */
925 static int delete_from_lru_cache(struct folio *folio)
926 {
927 	if (folio_isolate_lru(folio)) {
928 		/*
929 		 * Clear sensible page flags, so that the buddy system won't
930 		 * complain when the folio is unpoison-and-freed.
931 		 */
932 		folio_clear_active(folio);
933 		folio_clear_unevictable(folio);
934 
935 		/*
936 		 * Poisoned page might never drop its ref count to 0 so we have
937 		 * to uncharge it manually from its memcg.
938 		 */
939 		mem_cgroup_uncharge(folio);
940 
941 		/*
942 		 * drop the refcount elevated by folio_isolate_lru()
943 		 */
944 		folio_put(folio);
945 		return 0;
946 	}
947 	return -EIO;
948 }
949 
950 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
951 				struct address_space *mapping)
952 {
953 	int ret = MF_FAILED;
954 
955 	if (mapping->a_ops->error_remove_folio) {
956 		int err = mapping->a_ops->error_remove_folio(mapping, folio);
957 
958 		if (err != 0)
959 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
960 		else if (!filemap_release_folio(folio, GFP_NOIO))
961 			pr_info("%#lx: failed to release buffers\n", pfn);
962 		else
963 			ret = MF_RECOVERED;
964 	} else {
965 		/*
966 		 * If the file system doesn't support it just invalidate
967 		 * This fails on dirty or anything with private pages
968 		 */
969 		if (mapping_evict_folio(mapping, folio))
970 			ret = MF_RECOVERED;
971 		else
972 			pr_info("%#lx: Failed to invalidate\n",	pfn);
973 	}
974 
975 	return ret;
976 }
977 
978 struct page_state {
979 	unsigned long mask;
980 	unsigned long res;
981 	enum mf_action_page_type type;
982 
983 	/* Callback ->action() has to unlock the relevant page inside it. */
984 	int (*action)(struct page_state *ps, struct page *p);
985 };
986 
987 /*
988  * Return true if page is still referenced by others, otherwise return
989  * false.
990  *
991  * The extra_pins is true when one extra refcount is expected.
992  */
993 static bool has_extra_refcount(struct page_state *ps, struct page *p,
994 			       bool extra_pins)
995 {
996 	int count = page_count(p) - 1;
997 
998 	if (extra_pins)
999 		count -= folio_nr_pages(page_folio(p));
1000 
1001 	if (count > 0) {
1002 		pr_err("%#lx: %s still referenced by %d users\n",
1003 		       page_to_pfn(p), action_page_types[ps->type], count);
1004 		return true;
1005 	}
1006 
1007 	return false;
1008 }
1009 
1010 /*
1011  * Error hit kernel page.
1012  * Do nothing, try to be lucky and not touch this instead. For a few cases we
1013  * could be more sophisticated.
1014  */
1015 static int me_kernel(struct page_state *ps, struct page *p)
1016 {
1017 	unlock_page(p);
1018 	return MF_IGNORED;
1019 }
1020 
1021 /*
1022  * Page in unknown state. Do nothing.
1023  */
1024 static int me_unknown(struct page_state *ps, struct page *p)
1025 {
1026 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1027 	unlock_page(p);
1028 	return MF_FAILED;
1029 }
1030 
1031 /*
1032  * Clean (or cleaned) page cache page.
1033  */
1034 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1035 {
1036 	struct folio *folio = page_folio(p);
1037 	int ret;
1038 	struct address_space *mapping;
1039 	bool extra_pins;
1040 
1041 	delete_from_lru_cache(folio);
1042 
1043 	/*
1044 	 * For anonymous folios the only reference left
1045 	 * should be the one m_f() holds.
1046 	 */
1047 	if (folio_test_anon(folio)) {
1048 		ret = MF_RECOVERED;
1049 		goto out;
1050 	}
1051 
1052 	/*
1053 	 * Now truncate the page in the page cache. This is really
1054 	 * more like a "temporary hole punch"
1055 	 * Don't do this for block devices when someone else
1056 	 * has a reference, because it could be file system metadata
1057 	 * and that's not safe to truncate.
1058 	 */
1059 	mapping = folio_mapping(folio);
1060 	if (!mapping) {
1061 		/* Folio has been torn down in the meantime */
1062 		ret = MF_FAILED;
1063 		goto out;
1064 	}
1065 
1066 	/*
1067 	 * The shmem page is kept in page cache instead of truncating
1068 	 * so is expected to have an extra refcount after error-handling.
1069 	 */
1070 	extra_pins = shmem_mapping(mapping);
1071 
1072 	/*
1073 	 * Truncation is a bit tricky. Enable it per file system for now.
1074 	 *
1075 	 * Open: to take i_rwsem or not for this? Right now we don't.
1076 	 */
1077 	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1078 	if (has_extra_refcount(ps, p, extra_pins))
1079 		ret = MF_FAILED;
1080 
1081 out:
1082 	folio_unlock(folio);
1083 
1084 	return ret;
1085 }
1086 
1087 /*
1088  * Dirty pagecache page
1089  * Issues: when the error hit a hole page the error is not properly
1090  * propagated.
1091  */
1092 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1093 {
1094 	struct folio *folio = page_folio(p);
1095 	struct address_space *mapping = folio_mapping(folio);
1096 
1097 	SetPageError(p);
1098 	/* TBD: print more information about the file. */
1099 	if (mapping) {
1100 		/*
1101 		 * IO error will be reported by write(), fsync(), etc.
1102 		 * who check the mapping.
1103 		 * This way the application knows that something went
1104 		 * wrong with its dirty file data.
1105 		 *
1106 		 * There's one open issue:
1107 		 *
1108 		 * The EIO will be only reported on the next IO
1109 		 * operation and then cleared through the IO map.
1110 		 * Normally Linux has two mechanisms to pass IO error
1111 		 * first through the AS_EIO flag in the address space
1112 		 * and then through the PageError flag in the page.
1113 		 * Since we drop pages on memory failure handling the
1114 		 * only mechanism open to use is through AS_AIO.
1115 		 *
1116 		 * This has the disadvantage that it gets cleared on
1117 		 * the first operation that returns an error, while
1118 		 * the PageError bit is more sticky and only cleared
1119 		 * when the page is reread or dropped.  If an
1120 		 * application assumes it will always get error on
1121 		 * fsync, but does other operations on the fd before
1122 		 * and the page is dropped between then the error
1123 		 * will not be properly reported.
1124 		 *
1125 		 * This can already happen even without hwpoisoned
1126 		 * pages: first on metadata IO errors (which only
1127 		 * report through AS_EIO) or when the page is dropped
1128 		 * at the wrong time.
1129 		 *
1130 		 * So right now we assume that the application DTRT on
1131 		 * the first EIO, but we're not worse than other parts
1132 		 * of the kernel.
1133 		 */
1134 		mapping_set_error(mapping, -EIO);
1135 	}
1136 
1137 	return me_pagecache_clean(ps, p);
1138 }
1139 
1140 /*
1141  * Clean and dirty swap cache.
1142  *
1143  * Dirty swap cache page is tricky to handle. The page could live both in page
1144  * cache and swap cache(ie. page is freshly swapped in). So it could be
1145  * referenced concurrently by 2 types of PTEs:
1146  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1147  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1148  * and then
1149  *      - clear dirty bit to prevent IO
1150  *      - remove from LRU
1151  *      - but keep in the swap cache, so that when we return to it on
1152  *        a later page fault, we know the application is accessing
1153  *        corrupted data and shall be killed (we installed simple
1154  *        interception code in do_swap_page to catch it).
1155  *
1156  * Clean swap cache pages can be directly isolated. A later page fault will
1157  * bring in the known good data from disk.
1158  */
1159 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1160 {
1161 	struct folio *folio = page_folio(p);
1162 	int ret;
1163 	bool extra_pins = false;
1164 
1165 	folio_clear_dirty(folio);
1166 	/* Trigger EIO in shmem: */
1167 	folio_clear_uptodate(folio);
1168 
1169 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1170 	folio_unlock(folio);
1171 
1172 	if (ret == MF_DELAYED)
1173 		extra_pins = true;
1174 
1175 	if (has_extra_refcount(ps, p, extra_pins))
1176 		ret = MF_FAILED;
1177 
1178 	return ret;
1179 }
1180 
1181 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1182 {
1183 	struct folio *folio = page_folio(p);
1184 	int ret;
1185 
1186 	delete_from_swap_cache(folio);
1187 
1188 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1189 	folio_unlock(folio);
1190 
1191 	if (has_extra_refcount(ps, p, false))
1192 		ret = MF_FAILED;
1193 
1194 	return ret;
1195 }
1196 
1197 /*
1198  * Huge pages. Needs work.
1199  * Issues:
1200  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1201  *   To narrow down kill region to one page, we need to break up pmd.
1202  */
1203 static int me_huge_page(struct page_state *ps, struct page *p)
1204 {
1205 	struct folio *folio = page_folio(p);
1206 	int res;
1207 	struct address_space *mapping;
1208 	bool extra_pins = false;
1209 
1210 	mapping = folio_mapping(folio);
1211 	if (mapping) {
1212 		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1213 		/* The page is kept in page cache. */
1214 		extra_pins = true;
1215 		folio_unlock(folio);
1216 	} else {
1217 		folio_unlock(folio);
1218 		/*
1219 		 * migration entry prevents later access on error hugepage,
1220 		 * so we can free and dissolve it into buddy to save healthy
1221 		 * subpages.
1222 		 */
1223 		folio_put(folio);
1224 		if (__page_handle_poison(p) > 0) {
1225 			page_ref_inc(p);
1226 			res = MF_RECOVERED;
1227 		} else {
1228 			res = MF_FAILED;
1229 		}
1230 	}
1231 
1232 	if (has_extra_refcount(ps, p, extra_pins))
1233 		res = MF_FAILED;
1234 
1235 	return res;
1236 }
1237 
1238 /*
1239  * Various page states we can handle.
1240  *
1241  * A page state is defined by its current page->flags bits.
1242  * The table matches them in order and calls the right handler.
1243  *
1244  * This is quite tricky because we can access page at any time
1245  * in its live cycle, so all accesses have to be extremely careful.
1246  *
1247  * This is not complete. More states could be added.
1248  * For any missing state don't attempt recovery.
1249  */
1250 
1251 #define dirty		(1UL << PG_dirty)
1252 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1253 #define unevict		(1UL << PG_unevictable)
1254 #define mlock		(1UL << PG_mlocked)
1255 #define lru		(1UL << PG_lru)
1256 #define head		(1UL << PG_head)
1257 #define reserved	(1UL << PG_reserved)
1258 
1259 static struct page_state error_states[] = {
1260 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1261 	/*
1262 	 * free pages are specially detected outside this table:
1263 	 * PG_buddy pages only make a small fraction of all free pages.
1264 	 */
1265 
1266 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1267 
1268 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1269 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1270 
1271 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1272 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1273 
1274 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1275 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1276 
1277 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1278 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1279 
1280 	/*
1281 	 * Catchall entry: must be at end.
1282 	 */
1283 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1284 };
1285 
1286 #undef dirty
1287 #undef sc
1288 #undef unevict
1289 #undef mlock
1290 #undef lru
1291 #undef head
1292 #undef reserved
1293 
1294 static void update_per_node_mf_stats(unsigned long pfn,
1295 				     enum mf_result result)
1296 {
1297 	int nid = MAX_NUMNODES;
1298 	struct memory_failure_stats *mf_stats = NULL;
1299 
1300 	nid = pfn_to_nid(pfn);
1301 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1302 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1303 		return;
1304 	}
1305 
1306 	mf_stats = &NODE_DATA(nid)->mf_stats;
1307 	switch (result) {
1308 	case MF_IGNORED:
1309 		++mf_stats->ignored;
1310 		break;
1311 	case MF_FAILED:
1312 		++mf_stats->failed;
1313 		break;
1314 	case MF_DELAYED:
1315 		++mf_stats->delayed;
1316 		break;
1317 	case MF_RECOVERED:
1318 		++mf_stats->recovered;
1319 		break;
1320 	default:
1321 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1322 		break;
1323 	}
1324 	++mf_stats->total;
1325 }
1326 
1327 /*
1328  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1329  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1330  */
1331 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1332 			 enum mf_result result)
1333 {
1334 	trace_memory_failure_event(pfn, type, result);
1335 
1336 	num_poisoned_pages_inc(pfn);
1337 
1338 	update_per_node_mf_stats(pfn, result);
1339 
1340 	pr_err("%#lx: recovery action for %s: %s\n",
1341 		pfn, action_page_types[type], action_name[result]);
1342 
1343 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1344 }
1345 
1346 static int page_action(struct page_state *ps, struct page *p,
1347 			unsigned long pfn)
1348 {
1349 	int result;
1350 
1351 	/* page p should be unlocked after returning from ps->action().  */
1352 	result = ps->action(ps, p);
1353 
1354 	/* Could do more checks here if page looks ok */
1355 	/*
1356 	 * Could adjust zone counters here to correct for the missing page.
1357 	 */
1358 
1359 	return action_result(pfn, ps->type, result);
1360 }
1361 
1362 static inline bool PageHWPoisonTakenOff(struct page *page)
1363 {
1364 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1365 }
1366 
1367 void SetPageHWPoisonTakenOff(struct page *page)
1368 {
1369 	set_page_private(page, MAGIC_HWPOISON);
1370 }
1371 
1372 void ClearPageHWPoisonTakenOff(struct page *page)
1373 {
1374 	if (PageHWPoison(page))
1375 		set_page_private(page, 0);
1376 }
1377 
1378 /*
1379  * Return true if a page type of a given page is supported by hwpoison
1380  * mechanism (while handling could fail), otherwise false.  This function
1381  * does not return true for hugetlb or device memory pages, so it's assumed
1382  * to be called only in the context where we never have such pages.
1383  */
1384 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1385 {
1386 	if (PageSlab(page))
1387 		return false;
1388 
1389 	/* Soft offline could migrate non-LRU movable pages */
1390 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1391 		return true;
1392 
1393 	return PageLRU(page) || is_free_buddy_page(page);
1394 }
1395 
1396 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1397 {
1398 	struct folio *folio = page_folio(page);
1399 	int ret = 0;
1400 	bool hugetlb = false;
1401 
1402 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1403 	if (hugetlb) {
1404 		/* Make sure hugetlb demotion did not happen from under us. */
1405 		if (folio == page_folio(page))
1406 			return ret;
1407 		if (ret > 0) {
1408 			folio_put(folio);
1409 			folio = page_folio(page);
1410 		}
1411 	}
1412 
1413 	/*
1414 	 * This check prevents from calling folio_try_get() for any
1415 	 * unsupported type of folio in order to reduce the risk of unexpected
1416 	 * races caused by taking a folio refcount.
1417 	 */
1418 	if (!HWPoisonHandlable(&folio->page, flags))
1419 		return -EBUSY;
1420 
1421 	if (folio_try_get(folio)) {
1422 		if (folio == page_folio(page))
1423 			return 1;
1424 
1425 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1426 		folio_put(folio);
1427 	}
1428 
1429 	return 0;
1430 }
1431 
1432 static int get_any_page(struct page *p, unsigned long flags)
1433 {
1434 	int ret = 0, pass = 0;
1435 	bool count_increased = false;
1436 
1437 	if (flags & MF_COUNT_INCREASED)
1438 		count_increased = true;
1439 
1440 try_again:
1441 	if (!count_increased) {
1442 		ret = __get_hwpoison_page(p, flags);
1443 		if (!ret) {
1444 			if (page_count(p)) {
1445 				/* We raced with an allocation, retry. */
1446 				if (pass++ < 3)
1447 					goto try_again;
1448 				ret = -EBUSY;
1449 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1450 				/* We raced with put_page, retry. */
1451 				if (pass++ < 3)
1452 					goto try_again;
1453 				ret = -EIO;
1454 			}
1455 			goto out;
1456 		} else if (ret == -EBUSY) {
1457 			/*
1458 			 * We raced with (possibly temporary) unhandlable
1459 			 * page, retry.
1460 			 */
1461 			if (pass++ < 3) {
1462 				shake_page(p);
1463 				goto try_again;
1464 			}
1465 			ret = -EIO;
1466 			goto out;
1467 		}
1468 	}
1469 
1470 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1471 		ret = 1;
1472 	} else {
1473 		/*
1474 		 * A page we cannot handle. Check whether we can turn
1475 		 * it into something we can handle.
1476 		 */
1477 		if (pass++ < 3) {
1478 			put_page(p);
1479 			shake_page(p);
1480 			count_increased = false;
1481 			goto try_again;
1482 		}
1483 		put_page(p);
1484 		ret = -EIO;
1485 	}
1486 out:
1487 	if (ret == -EIO)
1488 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1489 
1490 	return ret;
1491 }
1492 
1493 static int __get_unpoison_page(struct page *page)
1494 {
1495 	struct folio *folio = page_folio(page);
1496 	int ret = 0;
1497 	bool hugetlb = false;
1498 
1499 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1500 	if (hugetlb) {
1501 		/* Make sure hugetlb demotion did not happen from under us. */
1502 		if (folio == page_folio(page))
1503 			return ret;
1504 		if (ret > 0)
1505 			folio_put(folio);
1506 	}
1507 
1508 	/*
1509 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1510 	 * but also isolated from buddy freelist, so need to identify the
1511 	 * state and have to cancel both operations to unpoison.
1512 	 */
1513 	if (PageHWPoisonTakenOff(page))
1514 		return -EHWPOISON;
1515 
1516 	return get_page_unless_zero(page) ? 1 : 0;
1517 }
1518 
1519 /**
1520  * get_hwpoison_page() - Get refcount for memory error handling
1521  * @p:		Raw error page (hit by memory error)
1522  * @flags:	Flags controlling behavior of error handling
1523  *
1524  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1525  * error on it, after checking that the error page is in a well-defined state
1526  * (defined as a page-type we can successfully handle the memory error on it,
1527  * such as LRU page and hugetlb page).
1528  *
1529  * Memory error handling could be triggered at any time on any type of page,
1530  * so it's prone to race with typical memory management lifecycle (like
1531  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1532  * extra care for the error page's state (as done in __get_hwpoison_page()),
1533  * and has some retry logic in get_any_page().
1534  *
1535  * When called from unpoison_memory(), the caller should already ensure that
1536  * the given page has PG_hwpoison. So it's never reused for other page
1537  * allocations, and __get_unpoison_page() never races with them.
1538  *
1539  * Return: 0 on failure,
1540  *         1 on success for in-use pages in a well-defined state,
1541  *         -EIO for pages on which we can not handle memory errors,
1542  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1543  *         operations like allocation and free,
1544  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1545  */
1546 static int get_hwpoison_page(struct page *p, unsigned long flags)
1547 {
1548 	int ret;
1549 
1550 	zone_pcp_disable(page_zone(p));
1551 	if (flags & MF_UNPOISON)
1552 		ret = __get_unpoison_page(p);
1553 	else
1554 		ret = get_any_page(p, flags);
1555 	zone_pcp_enable(page_zone(p));
1556 
1557 	return ret;
1558 }
1559 
1560 /*
1561  * Do all that is necessary to remove user space mappings. Unmap
1562  * the pages and send SIGBUS to the processes if the data was dirty.
1563  */
1564 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1565 		unsigned long pfn, int flags)
1566 {
1567 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1568 	struct address_space *mapping;
1569 	LIST_HEAD(tokill);
1570 	bool unmap_success;
1571 	int forcekill;
1572 	bool mlocked = folio_test_mlocked(folio);
1573 
1574 	/*
1575 	 * Here we are interested only in user-mapped pages, so skip any
1576 	 * other types of pages.
1577 	 */
1578 	if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1579 	    folio_test_pgtable(folio) || folio_test_offline(folio))
1580 		return true;
1581 	if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1582 		return true;
1583 
1584 	/*
1585 	 * This check implies we don't kill processes if their pages
1586 	 * are in the swap cache early. Those are always late kills.
1587 	 */
1588 	if (!page_mapped(p))
1589 		return true;
1590 
1591 	if (folio_test_swapcache(folio)) {
1592 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1593 		ttu &= ~TTU_HWPOISON;
1594 	}
1595 
1596 	/*
1597 	 * Propagate the dirty bit from PTEs to struct page first, because we
1598 	 * need this to decide if we should kill or just drop the page.
1599 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1600 	 * be called inside page lock (it's recommended but not enforced).
1601 	 */
1602 	mapping = folio_mapping(folio);
1603 	if (!(flags & MF_MUST_KILL) && !folio_test_dirty(folio) && mapping &&
1604 	    mapping_can_writeback(mapping)) {
1605 		if (folio_mkclean(folio)) {
1606 			folio_set_dirty(folio);
1607 		} else {
1608 			ttu &= ~TTU_HWPOISON;
1609 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1610 				pfn);
1611 		}
1612 	}
1613 
1614 	/*
1615 	 * First collect all the processes that have the page
1616 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1617 	 * because ttu takes the rmap data structures down.
1618 	 */
1619 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1620 
1621 	if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1622 		/*
1623 		 * For hugetlb pages in shared mappings, try_to_unmap
1624 		 * could potentially call huge_pmd_unshare.  Because of
1625 		 * this, take semaphore in write mode here and set
1626 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1627 		 * at this higher level.
1628 		 */
1629 		mapping = hugetlb_folio_mapping_lock_write(folio);
1630 		if (mapping) {
1631 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1632 			i_mmap_unlock_write(mapping);
1633 		} else
1634 			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1635 	} else {
1636 		try_to_unmap(folio, ttu);
1637 	}
1638 
1639 	unmap_success = !page_mapped(p);
1640 	if (!unmap_success)
1641 		pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1642 		       pfn, folio_mapcount(page_folio(p)));
1643 
1644 	/*
1645 	 * try_to_unmap() might put mlocked page in lru cache, so call
1646 	 * shake_page() again to ensure that it's flushed.
1647 	 */
1648 	if (mlocked)
1649 		shake_folio(folio);
1650 
1651 	/*
1652 	 * Now that the dirty bit has been propagated to the
1653 	 * struct page and all unmaps done we can decide if
1654 	 * killing is needed or not.  Only kill when the page
1655 	 * was dirty or the process is not restartable,
1656 	 * otherwise the tokill list is merely
1657 	 * freed.  When there was a problem unmapping earlier
1658 	 * use a more force-full uncatchable kill to prevent
1659 	 * any accesses to the poisoned memory.
1660 	 */
1661 	forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1662 		    !unmap_success;
1663 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1664 
1665 	return unmap_success;
1666 }
1667 
1668 static int identify_page_state(unsigned long pfn, struct page *p,
1669 				unsigned long page_flags)
1670 {
1671 	struct page_state *ps;
1672 
1673 	/*
1674 	 * The first check uses the current page flags which may not have any
1675 	 * relevant information. The second check with the saved page flags is
1676 	 * carried out only if the first check can't determine the page status.
1677 	 */
1678 	for (ps = error_states;; ps++)
1679 		if ((p->flags & ps->mask) == ps->res)
1680 			break;
1681 
1682 	page_flags |= (p->flags & (1UL << PG_dirty));
1683 
1684 	if (!ps->mask)
1685 		for (ps = error_states;; ps++)
1686 			if ((page_flags & ps->mask) == ps->res)
1687 				break;
1688 	return page_action(ps, p, pfn);
1689 }
1690 
1691 static int try_to_split_thp_page(struct page *page)
1692 {
1693 	int ret;
1694 
1695 	lock_page(page);
1696 	ret = split_huge_page(page);
1697 	unlock_page(page);
1698 
1699 	if (unlikely(ret))
1700 		put_page(page);
1701 
1702 	return ret;
1703 }
1704 
1705 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1706 		struct address_space *mapping, pgoff_t index, int flags)
1707 {
1708 	struct to_kill *tk;
1709 	unsigned long size = 0;
1710 
1711 	list_for_each_entry(tk, to_kill, nd)
1712 		if (tk->size_shift)
1713 			size = max(size, 1UL << tk->size_shift);
1714 
1715 	if (size) {
1716 		/*
1717 		 * Unmap the largest mapping to avoid breaking up device-dax
1718 		 * mappings which are constant size. The actual size of the
1719 		 * mapping being torn down is communicated in siginfo, see
1720 		 * kill_proc()
1721 		 */
1722 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1723 
1724 		unmap_mapping_range(mapping, start, size, 0);
1725 	}
1726 
1727 	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1728 }
1729 
1730 /*
1731  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1732  * either do not claim or fails to claim a hwpoison event, or devdax.
1733  * The fsdax pages are initialized per base page, and the devdax pages
1734  * could be initialized either as base pages, or as compound pages with
1735  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1736  * hwpoison, such that, if a subpage of a compound page is poisoned,
1737  * simply mark the compound head page is by far sufficient.
1738  */
1739 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1740 		struct dev_pagemap *pgmap)
1741 {
1742 	struct folio *folio = pfn_folio(pfn);
1743 	LIST_HEAD(to_kill);
1744 	dax_entry_t cookie;
1745 	int rc = 0;
1746 
1747 	/*
1748 	 * Prevent the inode from being freed while we are interrogating
1749 	 * the address_space, typically this would be handled by
1750 	 * lock_page(), but dax pages do not use the page lock. This
1751 	 * also prevents changes to the mapping of this pfn until
1752 	 * poison signaling is complete.
1753 	 */
1754 	cookie = dax_lock_folio(folio);
1755 	if (!cookie)
1756 		return -EBUSY;
1757 
1758 	if (hwpoison_filter(&folio->page)) {
1759 		rc = -EOPNOTSUPP;
1760 		goto unlock;
1761 	}
1762 
1763 	switch (pgmap->type) {
1764 	case MEMORY_DEVICE_PRIVATE:
1765 	case MEMORY_DEVICE_COHERENT:
1766 		/*
1767 		 * TODO: Handle device pages which may need coordination
1768 		 * with device-side memory.
1769 		 */
1770 		rc = -ENXIO;
1771 		goto unlock;
1772 	default:
1773 		break;
1774 	}
1775 
1776 	/*
1777 	 * Use this flag as an indication that the dax page has been
1778 	 * remapped UC to prevent speculative consumption of poison.
1779 	 */
1780 	SetPageHWPoison(&folio->page);
1781 
1782 	/*
1783 	 * Unlike System-RAM there is no possibility to swap in a
1784 	 * different physical page at a given virtual address, so all
1785 	 * userspace consumption of ZONE_DEVICE memory necessitates
1786 	 * SIGBUS (i.e. MF_MUST_KILL)
1787 	 */
1788 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1789 	collect_procs(folio, &folio->page, &to_kill, true);
1790 
1791 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1792 unlock:
1793 	dax_unlock_folio(folio, cookie);
1794 	return rc;
1795 }
1796 
1797 #ifdef CONFIG_FS_DAX
1798 /**
1799  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1800  * @mapping:	address_space of the file in use
1801  * @index:	start pgoff of the range within the file
1802  * @count:	length of the range, in unit of PAGE_SIZE
1803  * @mf_flags:	memory failure flags
1804  */
1805 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1806 		unsigned long count, int mf_flags)
1807 {
1808 	LIST_HEAD(to_kill);
1809 	dax_entry_t cookie;
1810 	struct page *page;
1811 	size_t end = index + count;
1812 	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1813 
1814 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1815 
1816 	for (; index < end; index++) {
1817 		page = NULL;
1818 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1819 		if (!cookie)
1820 			return -EBUSY;
1821 		if (!page)
1822 			goto unlock;
1823 
1824 		if (!pre_remove)
1825 			SetPageHWPoison(page);
1826 
1827 		/*
1828 		 * The pre_remove case is revoking access, the memory is still
1829 		 * good and could theoretically be put back into service.
1830 		 */
1831 		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1832 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1833 				index, mf_flags);
1834 unlock:
1835 		dax_unlock_mapping_entry(mapping, index, cookie);
1836 	}
1837 	return 0;
1838 }
1839 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1840 #endif /* CONFIG_FS_DAX */
1841 
1842 #ifdef CONFIG_HUGETLB_PAGE
1843 
1844 /*
1845  * Struct raw_hwp_page represents information about "raw error page",
1846  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1847  */
1848 struct raw_hwp_page {
1849 	struct llist_node node;
1850 	struct page *page;
1851 };
1852 
1853 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1854 {
1855 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1856 }
1857 
1858 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1859 {
1860 	struct llist_head *raw_hwp_head;
1861 	struct raw_hwp_page *p;
1862 	struct folio *folio = page_folio(page);
1863 	bool ret = false;
1864 
1865 	if (!folio_test_hwpoison(folio))
1866 		return false;
1867 
1868 	if (!folio_test_hugetlb(folio))
1869 		return PageHWPoison(page);
1870 
1871 	/*
1872 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1873 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1874 	 */
1875 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1876 		return true;
1877 
1878 	mutex_lock(&mf_mutex);
1879 
1880 	raw_hwp_head = raw_hwp_list_head(folio);
1881 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1882 		if (page == p->page) {
1883 			ret = true;
1884 			break;
1885 		}
1886 	}
1887 
1888 	mutex_unlock(&mf_mutex);
1889 
1890 	return ret;
1891 }
1892 
1893 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1894 {
1895 	struct llist_node *head;
1896 	struct raw_hwp_page *p, *next;
1897 	unsigned long count = 0;
1898 
1899 	head = llist_del_all(raw_hwp_list_head(folio));
1900 	llist_for_each_entry_safe(p, next, head, node) {
1901 		if (move_flag)
1902 			SetPageHWPoison(p->page);
1903 		else
1904 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1905 		kfree(p);
1906 		count++;
1907 	}
1908 	return count;
1909 }
1910 
1911 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1912 {
1913 	struct llist_head *head;
1914 	struct raw_hwp_page *raw_hwp;
1915 	struct raw_hwp_page *p, *next;
1916 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1917 
1918 	/*
1919 	 * Once the hwpoison hugepage has lost reliable raw error info,
1920 	 * there is little meaning to keep additional error info precisely,
1921 	 * so skip to add additional raw error info.
1922 	 */
1923 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1924 		return -EHWPOISON;
1925 	head = raw_hwp_list_head(folio);
1926 	llist_for_each_entry_safe(p, next, head->first, node) {
1927 		if (p->page == page)
1928 			return -EHWPOISON;
1929 	}
1930 
1931 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1932 	if (raw_hwp) {
1933 		raw_hwp->page = page;
1934 		llist_add(&raw_hwp->node, head);
1935 		/* the first error event will be counted in action_result(). */
1936 		if (ret)
1937 			num_poisoned_pages_inc(page_to_pfn(page));
1938 	} else {
1939 		/*
1940 		 * Failed to save raw error info.  We no longer trace all
1941 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1942 		 * this hwpoisoned hugepage.
1943 		 */
1944 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1945 		/*
1946 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1947 		 * used any more, so free it.
1948 		 */
1949 		__folio_free_raw_hwp(folio, false);
1950 	}
1951 	return ret;
1952 }
1953 
1954 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1955 {
1956 	/*
1957 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1958 	 * pages for tail pages are required but they don't exist.
1959 	 */
1960 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1961 		return 0;
1962 
1963 	/*
1964 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1965 	 * definition.
1966 	 */
1967 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1968 		return 0;
1969 
1970 	return __folio_free_raw_hwp(folio, move_flag);
1971 }
1972 
1973 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1974 {
1975 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1976 		return;
1977 	if (folio_test_hugetlb_vmemmap_optimized(folio))
1978 		return;
1979 	folio_clear_hwpoison(folio);
1980 	folio_free_raw_hwp(folio, true);
1981 }
1982 
1983 /*
1984  * Called from hugetlb code with hugetlb_lock held.
1985  *
1986  * Return values:
1987  *   0             - free hugepage
1988  *   1             - in-use hugepage
1989  *   2             - not a hugepage
1990  *   -EBUSY        - the hugepage is busy (try to retry)
1991  *   -EHWPOISON    - the hugepage is already hwpoisoned
1992  */
1993 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1994 				 bool *migratable_cleared)
1995 {
1996 	struct page *page = pfn_to_page(pfn);
1997 	struct folio *folio = page_folio(page);
1998 	int ret = 2;	/* fallback to normal page handling */
1999 	bool count_increased = false;
2000 
2001 	if (!folio_test_hugetlb(folio))
2002 		goto out;
2003 
2004 	if (flags & MF_COUNT_INCREASED) {
2005 		ret = 1;
2006 		count_increased = true;
2007 	} else if (folio_test_hugetlb_freed(folio)) {
2008 		ret = 0;
2009 	} else if (folio_test_hugetlb_migratable(folio)) {
2010 		ret = folio_try_get(folio);
2011 		if (ret)
2012 			count_increased = true;
2013 	} else {
2014 		ret = -EBUSY;
2015 		if (!(flags & MF_NO_RETRY))
2016 			goto out;
2017 	}
2018 
2019 	if (folio_set_hugetlb_hwpoison(folio, page)) {
2020 		ret = -EHWPOISON;
2021 		goto out;
2022 	}
2023 
2024 	/*
2025 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2026 	 * from being migrated by memory hotremove.
2027 	 */
2028 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2029 		folio_clear_hugetlb_migratable(folio);
2030 		*migratable_cleared = true;
2031 	}
2032 
2033 	return ret;
2034 out:
2035 	if (count_increased)
2036 		folio_put(folio);
2037 	return ret;
2038 }
2039 
2040 /*
2041  * Taking refcount of hugetlb pages needs extra care about race conditions
2042  * with basic operations like hugepage allocation/free/demotion.
2043  * So some of prechecks for hwpoison (pinning, and testing/setting
2044  * PageHWPoison) should be done in single hugetlb_lock range.
2045  */
2046 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2047 {
2048 	int res;
2049 	struct page *p = pfn_to_page(pfn);
2050 	struct folio *folio;
2051 	unsigned long page_flags;
2052 	bool migratable_cleared = false;
2053 
2054 	*hugetlb = 1;
2055 retry:
2056 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2057 	if (res == 2) { /* fallback to normal page handling */
2058 		*hugetlb = 0;
2059 		return 0;
2060 	} else if (res == -EHWPOISON) {
2061 		pr_err("%#lx: already hardware poisoned\n", pfn);
2062 		if (flags & MF_ACTION_REQUIRED) {
2063 			folio = page_folio(p);
2064 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2065 		}
2066 		return res;
2067 	} else if (res == -EBUSY) {
2068 		if (!(flags & MF_NO_RETRY)) {
2069 			flags |= MF_NO_RETRY;
2070 			goto retry;
2071 		}
2072 		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2073 	}
2074 
2075 	folio = page_folio(p);
2076 	folio_lock(folio);
2077 
2078 	if (hwpoison_filter(p)) {
2079 		folio_clear_hugetlb_hwpoison(folio);
2080 		if (migratable_cleared)
2081 			folio_set_hugetlb_migratable(folio);
2082 		folio_unlock(folio);
2083 		if (res == 1)
2084 			folio_put(folio);
2085 		return -EOPNOTSUPP;
2086 	}
2087 
2088 	/*
2089 	 * Handling free hugepage.  The possible race with hugepage allocation
2090 	 * or demotion can be prevented by PageHWPoison flag.
2091 	 */
2092 	if (res == 0) {
2093 		folio_unlock(folio);
2094 		if (__page_handle_poison(p) > 0) {
2095 			page_ref_inc(p);
2096 			res = MF_RECOVERED;
2097 		} else {
2098 			res = MF_FAILED;
2099 		}
2100 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2101 	}
2102 
2103 	page_flags = folio->flags;
2104 
2105 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2106 		folio_unlock(folio);
2107 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2108 	}
2109 
2110 	return identify_page_state(pfn, p, page_flags);
2111 }
2112 
2113 #else
2114 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2115 {
2116 	return 0;
2117 }
2118 
2119 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2120 {
2121 	return 0;
2122 }
2123 #endif	/* CONFIG_HUGETLB_PAGE */
2124 
2125 /* Drop the extra refcount in case we come from madvise() */
2126 static void put_ref_page(unsigned long pfn, int flags)
2127 {
2128 	struct page *page;
2129 
2130 	if (!(flags & MF_COUNT_INCREASED))
2131 		return;
2132 
2133 	page = pfn_to_page(pfn);
2134 	if (page)
2135 		put_page(page);
2136 }
2137 
2138 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2139 		struct dev_pagemap *pgmap)
2140 {
2141 	int rc = -ENXIO;
2142 
2143 	/* device metadata space is not recoverable */
2144 	if (!pgmap_pfn_valid(pgmap, pfn))
2145 		goto out;
2146 
2147 	/*
2148 	 * Call driver's implementation to handle the memory failure, otherwise
2149 	 * fall back to generic handler.
2150 	 */
2151 	if (pgmap_has_memory_failure(pgmap)) {
2152 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2153 		/*
2154 		 * Fall back to generic handler too if operation is not
2155 		 * supported inside the driver/device/filesystem.
2156 		 */
2157 		if (rc != -EOPNOTSUPP)
2158 			goto out;
2159 	}
2160 
2161 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2162 out:
2163 	/* drop pgmap ref acquired in caller */
2164 	put_dev_pagemap(pgmap);
2165 	if (rc != -EOPNOTSUPP)
2166 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2167 	return rc;
2168 }
2169 
2170 /**
2171  * memory_failure - Handle memory failure of a page.
2172  * @pfn: Page Number of the corrupted page
2173  * @flags: fine tune action taken
2174  *
2175  * This function is called by the low level machine check code
2176  * of an architecture when it detects hardware memory corruption
2177  * of a page. It tries its best to recover, which includes
2178  * dropping pages, killing processes etc.
2179  *
2180  * The function is primarily of use for corruptions that
2181  * happen outside the current execution context (e.g. when
2182  * detected by a background scrubber)
2183  *
2184  * Must run in process context (e.g. a work queue) with interrupts
2185  * enabled and no spinlocks held.
2186  *
2187  * Return: 0 for successfully handled the memory error,
2188  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2189  *         < 0(except -EOPNOTSUPP) on failure.
2190  */
2191 int memory_failure(unsigned long pfn, int flags)
2192 {
2193 	struct page *p;
2194 	struct folio *folio;
2195 	struct dev_pagemap *pgmap;
2196 	int res = 0;
2197 	unsigned long page_flags;
2198 	bool retry = true;
2199 	int hugetlb = 0;
2200 
2201 	if (!sysctl_memory_failure_recovery)
2202 		panic("Memory failure on page %lx", pfn);
2203 
2204 	mutex_lock(&mf_mutex);
2205 
2206 	if (!(flags & MF_SW_SIMULATED))
2207 		hw_memory_failure = true;
2208 
2209 	p = pfn_to_online_page(pfn);
2210 	if (!p) {
2211 		res = arch_memory_failure(pfn, flags);
2212 		if (res == 0)
2213 			goto unlock_mutex;
2214 
2215 		if (pfn_valid(pfn)) {
2216 			pgmap = get_dev_pagemap(pfn, NULL);
2217 			put_ref_page(pfn, flags);
2218 			if (pgmap) {
2219 				res = memory_failure_dev_pagemap(pfn, flags,
2220 								 pgmap);
2221 				goto unlock_mutex;
2222 			}
2223 		}
2224 		pr_err("%#lx: memory outside kernel control\n", pfn);
2225 		res = -ENXIO;
2226 		goto unlock_mutex;
2227 	}
2228 
2229 try_again:
2230 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2231 	if (hugetlb)
2232 		goto unlock_mutex;
2233 
2234 	if (TestSetPageHWPoison(p)) {
2235 		pr_err("%#lx: already hardware poisoned\n", pfn);
2236 		res = -EHWPOISON;
2237 		if (flags & MF_ACTION_REQUIRED)
2238 			res = kill_accessing_process(current, pfn, flags);
2239 		if (flags & MF_COUNT_INCREASED)
2240 			put_page(p);
2241 		goto unlock_mutex;
2242 	}
2243 
2244 	/*
2245 	 * We need/can do nothing about count=0 pages.
2246 	 * 1) it's a free page, and therefore in safe hand:
2247 	 *    check_new_page() will be the gate keeper.
2248 	 * 2) it's part of a non-compound high order page.
2249 	 *    Implies some kernel user: cannot stop them from
2250 	 *    R/W the page; let's pray that the page has been
2251 	 *    used and will be freed some time later.
2252 	 * In fact it's dangerous to directly bump up page count from 0,
2253 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2254 	 */
2255 	if (!(flags & MF_COUNT_INCREASED)) {
2256 		res = get_hwpoison_page(p, flags);
2257 		if (!res) {
2258 			if (is_free_buddy_page(p)) {
2259 				if (take_page_off_buddy(p)) {
2260 					page_ref_inc(p);
2261 					res = MF_RECOVERED;
2262 				} else {
2263 					/* We lost the race, try again */
2264 					if (retry) {
2265 						ClearPageHWPoison(p);
2266 						retry = false;
2267 						goto try_again;
2268 					}
2269 					res = MF_FAILED;
2270 				}
2271 				res = action_result(pfn, MF_MSG_BUDDY, res);
2272 			} else {
2273 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2274 			}
2275 			goto unlock_mutex;
2276 		} else if (res < 0) {
2277 			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2278 			goto unlock_mutex;
2279 		}
2280 	}
2281 
2282 	folio = page_folio(p);
2283 	if (folio_test_large(folio)) {
2284 		/*
2285 		 * The flag must be set after the refcount is bumped
2286 		 * otherwise it may race with THP split.
2287 		 * And the flag can't be set in get_hwpoison_page() since
2288 		 * it is called by soft offline too and it is just called
2289 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2290 		 * place.
2291 		 *
2292 		 * Don't need care about the above error handling paths for
2293 		 * get_hwpoison_page() since they handle either free page
2294 		 * or unhandlable page.  The refcount is bumped iff the
2295 		 * page is a valid handlable page.
2296 		 */
2297 		folio_set_has_hwpoisoned(folio);
2298 		if (try_to_split_thp_page(p) < 0) {
2299 			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2300 			goto unlock_mutex;
2301 		}
2302 		VM_BUG_ON_PAGE(!page_count(p), p);
2303 		folio = page_folio(p);
2304 	}
2305 
2306 	/*
2307 	 * We ignore non-LRU pages for good reasons.
2308 	 * - PG_locked is only well defined for LRU pages and a few others
2309 	 * - to avoid races with __SetPageLocked()
2310 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2311 	 * The check (unnecessarily) ignores LRU pages being isolated and
2312 	 * walked by the page reclaim code, however that's not a big loss.
2313 	 */
2314 	shake_folio(folio);
2315 
2316 	folio_lock(folio);
2317 
2318 	/*
2319 	 * We're only intended to deal with the non-Compound page here.
2320 	 * However, the page could have changed compound pages due to
2321 	 * race window. If this happens, we could try again to hopefully
2322 	 * handle the page next round.
2323 	 */
2324 	if (folio_test_large(folio)) {
2325 		if (retry) {
2326 			ClearPageHWPoison(p);
2327 			folio_unlock(folio);
2328 			folio_put(folio);
2329 			flags &= ~MF_COUNT_INCREASED;
2330 			retry = false;
2331 			goto try_again;
2332 		}
2333 		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2334 		goto unlock_page;
2335 	}
2336 
2337 	/*
2338 	 * We use page flags to determine what action should be taken, but
2339 	 * the flags can be modified by the error containment action.  One
2340 	 * example is an mlocked page, where PG_mlocked is cleared by
2341 	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2342 	 * status correctly, we save a copy of the page flags at this time.
2343 	 */
2344 	page_flags = folio->flags;
2345 
2346 	if (hwpoison_filter(p)) {
2347 		ClearPageHWPoison(p);
2348 		folio_unlock(folio);
2349 		folio_put(folio);
2350 		res = -EOPNOTSUPP;
2351 		goto unlock_mutex;
2352 	}
2353 
2354 	/*
2355 	 * __munlock_folio() may clear a writeback folio's LRU flag without
2356 	 * the folio lock. We need to wait for writeback completion for this
2357 	 * folio or it may trigger a vfs BUG while evicting inode.
2358 	 */
2359 	if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2360 		goto identify_page_state;
2361 
2362 	/*
2363 	 * It's very difficult to mess with pages currently under IO
2364 	 * and in many cases impossible, so we just avoid it here.
2365 	 */
2366 	folio_wait_writeback(folio);
2367 
2368 	/*
2369 	 * Now take care of user space mappings.
2370 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2371 	 */
2372 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2373 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2374 		goto unlock_page;
2375 	}
2376 
2377 	/*
2378 	 * Torn down by someone else?
2379 	 */
2380 	if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2381 	    folio->mapping == NULL) {
2382 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2383 		goto unlock_page;
2384 	}
2385 
2386 identify_page_state:
2387 	res = identify_page_state(pfn, p, page_flags);
2388 	mutex_unlock(&mf_mutex);
2389 	return res;
2390 unlock_page:
2391 	folio_unlock(folio);
2392 unlock_mutex:
2393 	mutex_unlock(&mf_mutex);
2394 	return res;
2395 }
2396 EXPORT_SYMBOL_GPL(memory_failure);
2397 
2398 #define MEMORY_FAILURE_FIFO_ORDER	4
2399 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2400 
2401 struct memory_failure_entry {
2402 	unsigned long pfn;
2403 	int flags;
2404 };
2405 
2406 struct memory_failure_cpu {
2407 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2408 		      MEMORY_FAILURE_FIFO_SIZE);
2409 	spinlock_t lock;
2410 	struct work_struct work;
2411 };
2412 
2413 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2414 
2415 /**
2416  * memory_failure_queue - Schedule handling memory failure of a page.
2417  * @pfn: Page Number of the corrupted page
2418  * @flags: Flags for memory failure handling
2419  *
2420  * This function is called by the low level hardware error handler
2421  * when it detects hardware memory corruption of a page. It schedules
2422  * the recovering of error page, including dropping pages, killing
2423  * processes etc.
2424  *
2425  * The function is primarily of use for corruptions that
2426  * happen outside the current execution context (e.g. when
2427  * detected by a background scrubber)
2428  *
2429  * Can run in IRQ context.
2430  */
2431 void memory_failure_queue(unsigned long pfn, int flags)
2432 {
2433 	struct memory_failure_cpu *mf_cpu;
2434 	unsigned long proc_flags;
2435 	struct memory_failure_entry entry = {
2436 		.pfn =		pfn,
2437 		.flags =	flags,
2438 	};
2439 
2440 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2441 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2442 	if (kfifo_put(&mf_cpu->fifo, entry))
2443 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2444 	else
2445 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2446 		       pfn);
2447 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2448 	put_cpu_var(memory_failure_cpu);
2449 }
2450 EXPORT_SYMBOL_GPL(memory_failure_queue);
2451 
2452 static void memory_failure_work_func(struct work_struct *work)
2453 {
2454 	struct memory_failure_cpu *mf_cpu;
2455 	struct memory_failure_entry entry = { 0, };
2456 	unsigned long proc_flags;
2457 	int gotten;
2458 
2459 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2460 	for (;;) {
2461 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2462 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2463 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2464 		if (!gotten)
2465 			break;
2466 		if (entry.flags & MF_SOFT_OFFLINE)
2467 			soft_offline_page(entry.pfn, entry.flags);
2468 		else
2469 			memory_failure(entry.pfn, entry.flags);
2470 	}
2471 }
2472 
2473 /*
2474  * Process memory_failure work queued on the specified CPU.
2475  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2476  */
2477 void memory_failure_queue_kick(int cpu)
2478 {
2479 	struct memory_failure_cpu *mf_cpu;
2480 
2481 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2482 	cancel_work_sync(&mf_cpu->work);
2483 	memory_failure_work_func(&mf_cpu->work);
2484 }
2485 
2486 static int __init memory_failure_init(void)
2487 {
2488 	struct memory_failure_cpu *mf_cpu;
2489 	int cpu;
2490 
2491 	for_each_possible_cpu(cpu) {
2492 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2493 		spin_lock_init(&mf_cpu->lock);
2494 		INIT_KFIFO(mf_cpu->fifo);
2495 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2496 	}
2497 
2498 	register_sysctl_init("vm", memory_failure_table);
2499 
2500 	return 0;
2501 }
2502 core_initcall(memory_failure_init);
2503 
2504 #undef pr_fmt
2505 #define pr_fmt(fmt)	"" fmt
2506 #define unpoison_pr_info(fmt, pfn, rs)			\
2507 ({							\
2508 	if (__ratelimit(rs))				\
2509 		pr_info(fmt, pfn);			\
2510 })
2511 
2512 /**
2513  * unpoison_memory - Unpoison a previously poisoned page
2514  * @pfn: Page number of the to be unpoisoned page
2515  *
2516  * Software-unpoison a page that has been poisoned by
2517  * memory_failure() earlier.
2518  *
2519  * This is only done on the software-level, so it only works
2520  * for linux injected failures, not real hardware failures
2521  *
2522  * Returns 0 for success, otherwise -errno.
2523  */
2524 int unpoison_memory(unsigned long pfn)
2525 {
2526 	struct folio *folio;
2527 	struct page *p;
2528 	int ret = -EBUSY, ghp;
2529 	unsigned long count = 1;
2530 	bool huge = false;
2531 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2532 					DEFAULT_RATELIMIT_BURST);
2533 
2534 	if (!pfn_valid(pfn))
2535 		return -ENXIO;
2536 
2537 	p = pfn_to_page(pfn);
2538 	folio = page_folio(p);
2539 
2540 	mutex_lock(&mf_mutex);
2541 
2542 	if (hw_memory_failure) {
2543 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2544 				 pfn, &unpoison_rs);
2545 		ret = -EOPNOTSUPP;
2546 		goto unlock_mutex;
2547 	}
2548 
2549 	if (is_huge_zero_folio(folio)) {
2550 		unpoison_pr_info("Unpoison: huge zero page is not supported %#lx\n",
2551 				 pfn, &unpoison_rs);
2552 		ret = -EOPNOTSUPP;
2553 		goto unlock_mutex;
2554 	}
2555 
2556 	if (!PageHWPoison(p)) {
2557 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2558 				 pfn, &unpoison_rs);
2559 		goto unlock_mutex;
2560 	}
2561 
2562 	if (folio_ref_count(folio) > 1) {
2563 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2564 				 pfn, &unpoison_rs);
2565 		goto unlock_mutex;
2566 	}
2567 
2568 	if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2569 	    folio_test_reserved(folio) || folio_test_offline(folio))
2570 		goto unlock_mutex;
2571 
2572 	/*
2573 	 * Note that folio->_mapcount is overloaded in SLAB, so the simple test
2574 	 * in folio_mapped() has to be done after folio_test_slab() is checked.
2575 	 */
2576 	if (folio_mapped(folio)) {
2577 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2578 				 pfn, &unpoison_rs);
2579 		goto unlock_mutex;
2580 	}
2581 
2582 	if (folio_mapping(folio)) {
2583 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2584 				 pfn, &unpoison_rs);
2585 		goto unlock_mutex;
2586 	}
2587 
2588 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2589 	if (!ghp) {
2590 		if (folio_test_hugetlb(folio)) {
2591 			huge = true;
2592 			count = folio_free_raw_hwp(folio, false);
2593 			if (count == 0)
2594 				goto unlock_mutex;
2595 		}
2596 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2597 	} else if (ghp < 0) {
2598 		if (ghp == -EHWPOISON) {
2599 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2600 		} else {
2601 			ret = ghp;
2602 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2603 					 pfn, &unpoison_rs);
2604 		}
2605 	} else {
2606 		if (folio_test_hugetlb(folio)) {
2607 			huge = true;
2608 			count = folio_free_raw_hwp(folio, false);
2609 			if (count == 0) {
2610 				folio_put(folio);
2611 				goto unlock_mutex;
2612 			}
2613 		}
2614 
2615 		folio_put(folio);
2616 		if (TestClearPageHWPoison(p)) {
2617 			folio_put(folio);
2618 			ret = 0;
2619 		}
2620 	}
2621 
2622 unlock_mutex:
2623 	mutex_unlock(&mf_mutex);
2624 	if (!ret) {
2625 		if (!huge)
2626 			num_poisoned_pages_sub(pfn, 1);
2627 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2628 				 page_to_pfn(p), &unpoison_rs);
2629 	}
2630 	return ret;
2631 }
2632 EXPORT_SYMBOL(unpoison_memory);
2633 
2634 static bool mf_isolate_folio(struct folio *folio, struct list_head *pagelist)
2635 {
2636 	bool isolated = false;
2637 
2638 	if (folio_test_hugetlb(folio)) {
2639 		isolated = isolate_hugetlb(folio, pagelist);
2640 	} else {
2641 		bool lru = !__folio_test_movable(folio);
2642 
2643 		if (lru)
2644 			isolated = folio_isolate_lru(folio);
2645 		else
2646 			isolated = isolate_movable_page(&folio->page,
2647 							ISOLATE_UNEVICTABLE);
2648 
2649 		if (isolated) {
2650 			list_add(&folio->lru, pagelist);
2651 			if (lru)
2652 				node_stat_add_folio(folio, NR_ISOLATED_ANON +
2653 						    folio_is_file_lru(folio));
2654 		}
2655 	}
2656 
2657 	/*
2658 	 * If we succeed to isolate the folio, we grabbed another refcount on
2659 	 * the folio, so we can safely drop the one we got from get_any_page().
2660 	 * If we failed to isolate the folio, it means that we cannot go further
2661 	 * and we will return an error, so drop the reference we got from
2662 	 * get_any_page() as well.
2663 	 */
2664 	folio_put(folio);
2665 	return isolated;
2666 }
2667 
2668 /*
2669  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2670  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2671  * If the page is mapped, it migrates the contents over.
2672  */
2673 static int soft_offline_in_use_page(struct page *page)
2674 {
2675 	long ret = 0;
2676 	unsigned long pfn = page_to_pfn(page);
2677 	struct folio *folio = page_folio(page);
2678 	char const *msg_page[] = {"page", "hugepage"};
2679 	bool huge = folio_test_hugetlb(folio);
2680 	LIST_HEAD(pagelist);
2681 	struct migration_target_control mtc = {
2682 		.nid = NUMA_NO_NODE,
2683 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2684 		.reason = MR_MEMORY_FAILURE,
2685 	};
2686 
2687 	if (!huge && folio_test_large(folio)) {
2688 		if (try_to_split_thp_page(page)) {
2689 			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2690 			return -EBUSY;
2691 		}
2692 		folio = page_folio(page);
2693 	}
2694 
2695 	folio_lock(folio);
2696 	if (!huge)
2697 		folio_wait_writeback(folio);
2698 	if (PageHWPoison(page)) {
2699 		folio_unlock(folio);
2700 		folio_put(folio);
2701 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2702 		return 0;
2703 	}
2704 
2705 	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2706 		/*
2707 		 * Try to invalidate first. This should work for
2708 		 * non dirty unmapped page cache pages.
2709 		 */
2710 		ret = mapping_evict_folio(folio_mapping(folio), folio);
2711 	folio_unlock(folio);
2712 
2713 	if (ret) {
2714 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2715 		page_handle_poison(page, false, true);
2716 		return 0;
2717 	}
2718 
2719 	if (mf_isolate_folio(folio, &pagelist)) {
2720 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2721 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2722 		if (!ret) {
2723 			bool release = !huge;
2724 
2725 			if (!page_handle_poison(page, huge, release))
2726 				ret = -EBUSY;
2727 		} else {
2728 			if (!list_empty(&pagelist))
2729 				putback_movable_pages(&pagelist);
2730 
2731 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2732 				pfn, msg_page[huge], ret, &page->flags);
2733 			if (ret > 0)
2734 				ret = -EBUSY;
2735 		}
2736 	} else {
2737 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2738 			pfn, msg_page[huge], page_count(page), &page->flags);
2739 		ret = -EBUSY;
2740 	}
2741 	return ret;
2742 }
2743 
2744 /**
2745  * soft_offline_page - Soft offline a page.
2746  * @pfn: pfn to soft-offline
2747  * @flags: flags. Same as memory_failure().
2748  *
2749  * Returns 0 on success
2750  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2751  *         < 0 otherwise negated errno.
2752  *
2753  * Soft offline a page, by migration or invalidation,
2754  * without killing anything. This is for the case when
2755  * a page is not corrupted yet (so it's still valid to access),
2756  * but has had a number of corrected errors and is better taken
2757  * out.
2758  *
2759  * The actual policy on when to do that is maintained by
2760  * user space.
2761  *
2762  * This should never impact any application or cause data loss,
2763  * however it might take some time.
2764  *
2765  * This is not a 100% solution for all memory, but tries to be
2766  * ``good enough'' for the majority of memory.
2767  */
2768 int soft_offline_page(unsigned long pfn, int flags)
2769 {
2770 	int ret;
2771 	bool try_again = true;
2772 	struct page *page;
2773 
2774 	if (!pfn_valid(pfn)) {
2775 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2776 		return -ENXIO;
2777 	}
2778 
2779 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2780 	page = pfn_to_online_page(pfn);
2781 	if (!page) {
2782 		put_ref_page(pfn, flags);
2783 		return -EIO;
2784 	}
2785 
2786 	mutex_lock(&mf_mutex);
2787 
2788 	if (PageHWPoison(page)) {
2789 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2790 		put_ref_page(pfn, flags);
2791 		mutex_unlock(&mf_mutex);
2792 		return 0;
2793 	}
2794 
2795 retry:
2796 	get_online_mems();
2797 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2798 	put_online_mems();
2799 
2800 	if (hwpoison_filter(page)) {
2801 		if (ret > 0)
2802 			put_page(page);
2803 
2804 		mutex_unlock(&mf_mutex);
2805 		return -EOPNOTSUPP;
2806 	}
2807 
2808 	if (ret > 0) {
2809 		ret = soft_offline_in_use_page(page);
2810 	} else if (ret == 0) {
2811 		if (!page_handle_poison(page, true, false)) {
2812 			if (try_again) {
2813 				try_again = false;
2814 				flags &= ~MF_COUNT_INCREASED;
2815 				goto retry;
2816 			}
2817 			ret = -EBUSY;
2818 		}
2819 	}
2820 
2821 	mutex_unlock(&mf_mutex);
2822 
2823 	return ret;
2824 }
2825