xref: /linux/mm/memory-failure.c (revision a3a4a816b4b194c45d0217e8b9e08b2639802cda)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/page-isolation.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/kfifo.h>
60 #include <linux/ratelimit.h>
61 #include "internal.h"
62 #include "ras/ras_event.h"
63 
64 int sysctl_memory_failure_early_kill __read_mostly = 0;
65 
66 int sysctl_memory_failure_recovery __read_mostly = 1;
67 
68 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
69 
70 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
71 
72 u32 hwpoison_filter_enable = 0;
73 u32 hwpoison_filter_dev_major = ~0U;
74 u32 hwpoison_filter_dev_minor = ~0U;
75 u64 hwpoison_filter_flags_mask;
76 u64 hwpoison_filter_flags_value;
77 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
82 
83 static int hwpoison_filter_dev(struct page *p)
84 {
85 	struct address_space *mapping;
86 	dev_t dev;
87 
88 	if (hwpoison_filter_dev_major == ~0U &&
89 	    hwpoison_filter_dev_minor == ~0U)
90 		return 0;
91 
92 	/*
93 	 * page_mapping() does not accept slab pages.
94 	 */
95 	if (PageSlab(p))
96 		return -EINVAL;
97 
98 	mapping = page_mapping(p);
99 	if (mapping == NULL || mapping->host == NULL)
100 		return -EINVAL;
101 
102 	dev = mapping->host->i_sb->s_dev;
103 	if (hwpoison_filter_dev_major != ~0U &&
104 	    hwpoison_filter_dev_major != MAJOR(dev))
105 		return -EINVAL;
106 	if (hwpoison_filter_dev_minor != ~0U &&
107 	    hwpoison_filter_dev_minor != MINOR(dev))
108 		return -EINVAL;
109 
110 	return 0;
111 }
112 
113 static int hwpoison_filter_flags(struct page *p)
114 {
115 	if (!hwpoison_filter_flags_mask)
116 		return 0;
117 
118 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
119 				    hwpoison_filter_flags_value)
120 		return 0;
121 	else
122 		return -EINVAL;
123 }
124 
125 /*
126  * This allows stress tests to limit test scope to a collection of tasks
127  * by putting them under some memcg. This prevents killing unrelated/important
128  * processes such as /sbin/init. Note that the target task may share clean
129  * pages with init (eg. libc text), which is harmless. If the target task
130  * share _dirty_ pages with another task B, the test scheme must make sure B
131  * is also included in the memcg. At last, due to race conditions this filter
132  * can only guarantee that the page either belongs to the memcg tasks, or is
133  * a freed page.
134  */
135 #ifdef CONFIG_MEMCG
136 u64 hwpoison_filter_memcg;
137 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
138 static int hwpoison_filter_task(struct page *p)
139 {
140 	if (!hwpoison_filter_memcg)
141 		return 0;
142 
143 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
144 		return -EINVAL;
145 
146 	return 0;
147 }
148 #else
149 static int hwpoison_filter_task(struct page *p) { return 0; }
150 #endif
151 
152 int hwpoison_filter(struct page *p)
153 {
154 	if (!hwpoison_filter_enable)
155 		return 0;
156 
157 	if (hwpoison_filter_dev(p))
158 		return -EINVAL;
159 
160 	if (hwpoison_filter_flags(p))
161 		return -EINVAL;
162 
163 	if (hwpoison_filter_task(p))
164 		return -EINVAL;
165 
166 	return 0;
167 }
168 #else
169 int hwpoison_filter(struct page *p)
170 {
171 	return 0;
172 }
173 #endif
174 
175 EXPORT_SYMBOL_GPL(hwpoison_filter);
176 
177 /*
178  * Send all the processes who have the page mapped a signal.
179  * ``action optional'' if they are not immediately affected by the error
180  * ``action required'' if error happened in current execution context
181  */
182 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
183 			unsigned long pfn, struct page *page, int flags)
184 {
185 	struct siginfo si;
186 	int ret;
187 
188 	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
189 		pfn, t->comm, t->pid);
190 	si.si_signo = SIGBUS;
191 	si.si_errno = 0;
192 	si.si_addr = (void *)addr;
193 #ifdef __ARCH_SI_TRAPNO
194 	si.si_trapno = trapno;
195 #endif
196 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
197 
198 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
199 		si.si_code = BUS_MCEERR_AR;
200 		ret = force_sig_info(SIGBUS, &si, current);
201 	} else {
202 		/*
203 		 * Don't use force here, it's convenient if the signal
204 		 * can be temporarily blocked.
205 		 * This could cause a loop when the user sets SIGBUS
206 		 * to SIG_IGN, but hopefully no one will do that?
207 		 */
208 		si.si_code = BUS_MCEERR_AO;
209 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
210 	}
211 	if (ret < 0)
212 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
213 			t->comm, t->pid, ret);
214 	return ret;
215 }
216 
217 /*
218  * When a unknown page type is encountered drain as many buffers as possible
219  * in the hope to turn the page into a LRU or free page, which we can handle.
220  */
221 void shake_page(struct page *p, int access)
222 {
223 	if (!PageSlab(p)) {
224 		lru_add_drain_all();
225 		if (PageLRU(p))
226 			return;
227 		drain_all_pages(page_zone(p));
228 		if (PageLRU(p) || is_free_buddy_page(p))
229 			return;
230 	}
231 
232 	/*
233 	 * Only call shrink_node_slabs here (which would also shrink
234 	 * other caches) if access is not potentially fatal.
235 	 */
236 	if (access)
237 		drop_slab_node(page_to_nid(p));
238 }
239 EXPORT_SYMBOL_GPL(shake_page);
240 
241 /*
242  * Kill all processes that have a poisoned page mapped and then isolate
243  * the page.
244  *
245  * General strategy:
246  * Find all processes having the page mapped and kill them.
247  * But we keep a page reference around so that the page is not
248  * actually freed yet.
249  * Then stash the page away
250  *
251  * There's no convenient way to get back to mapped processes
252  * from the VMAs. So do a brute-force search over all
253  * running processes.
254  *
255  * Remember that machine checks are not common (or rather
256  * if they are common you have other problems), so this shouldn't
257  * be a performance issue.
258  *
259  * Also there are some races possible while we get from the
260  * error detection to actually handle it.
261  */
262 
263 struct to_kill {
264 	struct list_head nd;
265 	struct task_struct *tsk;
266 	unsigned long addr;
267 	char addr_valid;
268 };
269 
270 /*
271  * Failure handling: if we can't find or can't kill a process there's
272  * not much we can do.	We just print a message and ignore otherwise.
273  */
274 
275 /*
276  * Schedule a process for later kill.
277  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
278  * TBD would GFP_NOIO be enough?
279  */
280 static void add_to_kill(struct task_struct *tsk, struct page *p,
281 		       struct vm_area_struct *vma,
282 		       struct list_head *to_kill,
283 		       struct to_kill **tkc)
284 {
285 	struct to_kill *tk;
286 
287 	if (*tkc) {
288 		tk = *tkc;
289 		*tkc = NULL;
290 	} else {
291 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
292 		if (!tk) {
293 			pr_err("Memory failure: Out of memory while machine check handling\n");
294 			return;
295 		}
296 	}
297 	tk->addr = page_address_in_vma(p, vma);
298 	tk->addr_valid = 1;
299 
300 	/*
301 	 * In theory we don't have to kill when the page was
302 	 * munmaped. But it could be also a mremap. Since that's
303 	 * likely very rare kill anyways just out of paranoia, but use
304 	 * a SIGKILL because the error is not contained anymore.
305 	 */
306 	if (tk->addr == -EFAULT) {
307 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
308 			page_to_pfn(p), tsk->comm);
309 		tk->addr_valid = 0;
310 	}
311 	get_task_struct(tsk);
312 	tk->tsk = tsk;
313 	list_add_tail(&tk->nd, to_kill);
314 }
315 
316 /*
317  * Kill the processes that have been collected earlier.
318  *
319  * Only do anything when DOIT is set, otherwise just free the list
320  * (this is used for clean pages which do not need killing)
321  * Also when FAIL is set do a force kill because something went
322  * wrong earlier.
323  */
324 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
325 			  int fail, struct page *page, unsigned long pfn,
326 			  int flags)
327 {
328 	struct to_kill *tk, *next;
329 
330 	list_for_each_entry_safe (tk, next, to_kill, nd) {
331 		if (forcekill) {
332 			/*
333 			 * In case something went wrong with munmapping
334 			 * make sure the process doesn't catch the
335 			 * signal and then access the memory. Just kill it.
336 			 */
337 			if (fail || tk->addr_valid == 0) {
338 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
339 				       pfn, tk->tsk->comm, tk->tsk->pid);
340 				force_sig(SIGKILL, tk->tsk);
341 			}
342 
343 			/*
344 			 * In theory the process could have mapped
345 			 * something else on the address in-between. We could
346 			 * check for that, but we need to tell the
347 			 * process anyways.
348 			 */
349 			else if (kill_proc(tk->tsk, tk->addr, trapno,
350 					      pfn, page, flags) < 0)
351 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
352 				       pfn, tk->tsk->comm, tk->tsk->pid);
353 		}
354 		put_task_struct(tk->tsk);
355 		kfree(tk);
356 	}
357 }
358 
359 /*
360  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
361  * on behalf of the thread group. Return task_struct of the (first found)
362  * dedicated thread if found, and return NULL otherwise.
363  *
364  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
365  * have to call rcu_read_lock/unlock() in this function.
366  */
367 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
368 {
369 	struct task_struct *t;
370 
371 	for_each_thread(tsk, t)
372 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
373 			return t;
374 	return NULL;
375 }
376 
377 /*
378  * Determine whether a given process is "early kill" process which expects
379  * to be signaled when some page under the process is hwpoisoned.
380  * Return task_struct of the dedicated thread (main thread unless explicitly
381  * specified) if the process is "early kill," and otherwise returns NULL.
382  */
383 static struct task_struct *task_early_kill(struct task_struct *tsk,
384 					   int force_early)
385 {
386 	struct task_struct *t;
387 	if (!tsk->mm)
388 		return NULL;
389 	if (force_early)
390 		return tsk;
391 	t = find_early_kill_thread(tsk);
392 	if (t)
393 		return t;
394 	if (sysctl_memory_failure_early_kill)
395 		return tsk;
396 	return NULL;
397 }
398 
399 /*
400  * Collect processes when the error hit an anonymous page.
401  */
402 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
403 			      struct to_kill **tkc, int force_early)
404 {
405 	struct vm_area_struct *vma;
406 	struct task_struct *tsk;
407 	struct anon_vma *av;
408 	pgoff_t pgoff;
409 
410 	av = page_lock_anon_vma_read(page);
411 	if (av == NULL)	/* Not actually mapped anymore */
412 		return;
413 
414 	pgoff = page_to_pgoff(page);
415 	read_lock(&tasklist_lock);
416 	for_each_process (tsk) {
417 		struct anon_vma_chain *vmac;
418 		struct task_struct *t = task_early_kill(tsk, force_early);
419 
420 		if (!t)
421 			continue;
422 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
423 					       pgoff, pgoff) {
424 			vma = vmac->vma;
425 			if (!page_mapped_in_vma(page, vma))
426 				continue;
427 			if (vma->vm_mm == t->mm)
428 				add_to_kill(t, page, vma, to_kill, tkc);
429 		}
430 	}
431 	read_unlock(&tasklist_lock);
432 	page_unlock_anon_vma_read(av);
433 }
434 
435 /*
436  * Collect processes when the error hit a file mapped page.
437  */
438 static void collect_procs_file(struct page *page, struct list_head *to_kill,
439 			      struct to_kill **tkc, int force_early)
440 {
441 	struct vm_area_struct *vma;
442 	struct task_struct *tsk;
443 	struct address_space *mapping = page->mapping;
444 
445 	i_mmap_lock_read(mapping);
446 	read_lock(&tasklist_lock);
447 	for_each_process(tsk) {
448 		pgoff_t pgoff = page_to_pgoff(page);
449 		struct task_struct *t = task_early_kill(tsk, force_early);
450 
451 		if (!t)
452 			continue;
453 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
454 				      pgoff) {
455 			/*
456 			 * Send early kill signal to tasks where a vma covers
457 			 * the page but the corrupted page is not necessarily
458 			 * mapped it in its pte.
459 			 * Assume applications who requested early kill want
460 			 * to be informed of all such data corruptions.
461 			 */
462 			if (vma->vm_mm == t->mm)
463 				add_to_kill(t, page, vma, to_kill, tkc);
464 		}
465 	}
466 	read_unlock(&tasklist_lock);
467 	i_mmap_unlock_read(mapping);
468 }
469 
470 /*
471  * Collect the processes who have the corrupted page mapped to kill.
472  * This is done in two steps for locking reasons.
473  * First preallocate one tokill structure outside the spin locks,
474  * so that we can kill at least one process reasonably reliable.
475  */
476 static void collect_procs(struct page *page, struct list_head *tokill,
477 				int force_early)
478 {
479 	struct to_kill *tk;
480 
481 	if (!page->mapping)
482 		return;
483 
484 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
485 	if (!tk)
486 		return;
487 	if (PageAnon(page))
488 		collect_procs_anon(page, tokill, &tk, force_early);
489 	else
490 		collect_procs_file(page, tokill, &tk, force_early);
491 	kfree(tk);
492 }
493 
494 static const char *action_name[] = {
495 	[MF_IGNORED] = "Ignored",
496 	[MF_FAILED] = "Failed",
497 	[MF_DELAYED] = "Delayed",
498 	[MF_RECOVERED] = "Recovered",
499 };
500 
501 static const char * const action_page_types[] = {
502 	[MF_MSG_KERNEL]			= "reserved kernel page",
503 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
504 	[MF_MSG_SLAB]			= "kernel slab page",
505 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
506 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
507 	[MF_MSG_HUGE]			= "huge page",
508 	[MF_MSG_FREE_HUGE]		= "free huge page",
509 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
510 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
511 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
512 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
513 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
514 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
515 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
516 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
517 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
518 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
519 	[MF_MSG_BUDDY]			= "free buddy page",
520 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
521 	[MF_MSG_UNKNOWN]		= "unknown page",
522 };
523 
524 /*
525  * XXX: It is possible that a page is isolated from LRU cache,
526  * and then kept in swap cache or failed to remove from page cache.
527  * The page count will stop it from being freed by unpoison.
528  * Stress tests should be aware of this memory leak problem.
529  */
530 static int delete_from_lru_cache(struct page *p)
531 {
532 	if (!isolate_lru_page(p)) {
533 		/*
534 		 * Clear sensible page flags, so that the buddy system won't
535 		 * complain when the page is unpoison-and-freed.
536 		 */
537 		ClearPageActive(p);
538 		ClearPageUnevictable(p);
539 		/*
540 		 * drop the page count elevated by isolate_lru_page()
541 		 */
542 		put_page(p);
543 		return 0;
544 	}
545 	return -EIO;
546 }
547 
548 /*
549  * Error hit kernel page.
550  * Do nothing, try to be lucky and not touch this instead. For a few cases we
551  * could be more sophisticated.
552  */
553 static int me_kernel(struct page *p, unsigned long pfn)
554 {
555 	return MF_IGNORED;
556 }
557 
558 /*
559  * Page in unknown state. Do nothing.
560  */
561 static int me_unknown(struct page *p, unsigned long pfn)
562 {
563 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
564 	return MF_FAILED;
565 }
566 
567 /*
568  * Clean (or cleaned) page cache page.
569  */
570 static int me_pagecache_clean(struct page *p, unsigned long pfn)
571 {
572 	int err;
573 	int ret = MF_FAILED;
574 	struct address_space *mapping;
575 
576 	delete_from_lru_cache(p);
577 
578 	/*
579 	 * For anonymous pages we're done the only reference left
580 	 * should be the one m_f() holds.
581 	 */
582 	if (PageAnon(p))
583 		return MF_RECOVERED;
584 
585 	/*
586 	 * Now truncate the page in the page cache. This is really
587 	 * more like a "temporary hole punch"
588 	 * Don't do this for block devices when someone else
589 	 * has a reference, because it could be file system metadata
590 	 * and that's not safe to truncate.
591 	 */
592 	mapping = page_mapping(p);
593 	if (!mapping) {
594 		/*
595 		 * Page has been teared down in the meanwhile
596 		 */
597 		return MF_FAILED;
598 	}
599 
600 	/*
601 	 * Truncation is a bit tricky. Enable it per file system for now.
602 	 *
603 	 * Open: to take i_mutex or not for this? Right now we don't.
604 	 */
605 	if (mapping->a_ops->error_remove_page) {
606 		err = mapping->a_ops->error_remove_page(mapping, p);
607 		if (err != 0) {
608 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
609 				pfn, err);
610 		} else if (page_has_private(p) &&
611 				!try_to_release_page(p, GFP_NOIO)) {
612 			pr_info("Memory failure: %#lx: failed to release buffers\n",
613 				pfn);
614 		} else {
615 			ret = MF_RECOVERED;
616 		}
617 	} else {
618 		/*
619 		 * If the file system doesn't support it just invalidate
620 		 * This fails on dirty or anything with private pages
621 		 */
622 		if (invalidate_inode_page(p))
623 			ret = MF_RECOVERED;
624 		else
625 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
626 				pfn);
627 	}
628 	return ret;
629 }
630 
631 /*
632  * Dirty pagecache page
633  * Issues: when the error hit a hole page the error is not properly
634  * propagated.
635  */
636 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
637 {
638 	struct address_space *mapping = page_mapping(p);
639 
640 	SetPageError(p);
641 	/* TBD: print more information about the file. */
642 	if (mapping) {
643 		/*
644 		 * IO error will be reported by write(), fsync(), etc.
645 		 * who check the mapping.
646 		 * This way the application knows that something went
647 		 * wrong with its dirty file data.
648 		 *
649 		 * There's one open issue:
650 		 *
651 		 * The EIO will be only reported on the next IO
652 		 * operation and then cleared through the IO map.
653 		 * Normally Linux has two mechanisms to pass IO error
654 		 * first through the AS_EIO flag in the address space
655 		 * and then through the PageError flag in the page.
656 		 * Since we drop pages on memory failure handling the
657 		 * only mechanism open to use is through AS_AIO.
658 		 *
659 		 * This has the disadvantage that it gets cleared on
660 		 * the first operation that returns an error, while
661 		 * the PageError bit is more sticky and only cleared
662 		 * when the page is reread or dropped.  If an
663 		 * application assumes it will always get error on
664 		 * fsync, but does other operations on the fd before
665 		 * and the page is dropped between then the error
666 		 * will not be properly reported.
667 		 *
668 		 * This can already happen even without hwpoisoned
669 		 * pages: first on metadata IO errors (which only
670 		 * report through AS_EIO) or when the page is dropped
671 		 * at the wrong time.
672 		 *
673 		 * So right now we assume that the application DTRT on
674 		 * the first EIO, but we're not worse than other parts
675 		 * of the kernel.
676 		 */
677 		mapping_set_error(mapping, EIO);
678 	}
679 
680 	return me_pagecache_clean(p, pfn);
681 }
682 
683 /*
684  * Clean and dirty swap cache.
685  *
686  * Dirty swap cache page is tricky to handle. The page could live both in page
687  * cache and swap cache(ie. page is freshly swapped in). So it could be
688  * referenced concurrently by 2 types of PTEs:
689  * normal PTEs and swap PTEs. We try to handle them consistently by calling
690  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
691  * and then
692  *      - clear dirty bit to prevent IO
693  *      - remove from LRU
694  *      - but keep in the swap cache, so that when we return to it on
695  *        a later page fault, we know the application is accessing
696  *        corrupted data and shall be killed (we installed simple
697  *        interception code in do_swap_page to catch it).
698  *
699  * Clean swap cache pages can be directly isolated. A later page fault will
700  * bring in the known good data from disk.
701  */
702 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
703 {
704 	ClearPageDirty(p);
705 	/* Trigger EIO in shmem: */
706 	ClearPageUptodate(p);
707 
708 	if (!delete_from_lru_cache(p))
709 		return MF_DELAYED;
710 	else
711 		return MF_FAILED;
712 }
713 
714 static int me_swapcache_clean(struct page *p, unsigned long pfn)
715 {
716 	delete_from_swap_cache(p);
717 
718 	if (!delete_from_lru_cache(p))
719 		return MF_RECOVERED;
720 	else
721 		return MF_FAILED;
722 }
723 
724 /*
725  * Huge pages. Needs work.
726  * Issues:
727  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
728  *   To narrow down kill region to one page, we need to break up pmd.
729  */
730 static int me_huge_page(struct page *p, unsigned long pfn)
731 {
732 	int res = 0;
733 	struct page *hpage = compound_head(p);
734 
735 	if (!PageHuge(hpage))
736 		return MF_DELAYED;
737 
738 	/*
739 	 * We can safely recover from error on free or reserved (i.e.
740 	 * not in-use) hugepage by dequeuing it from freelist.
741 	 * To check whether a hugepage is in-use or not, we can't use
742 	 * page->lru because it can be used in other hugepage operations,
743 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
744 	 * So instead we use page_mapping() and PageAnon().
745 	 */
746 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
747 		res = dequeue_hwpoisoned_huge_page(hpage);
748 		if (!res)
749 			return MF_RECOVERED;
750 	}
751 	return MF_DELAYED;
752 }
753 
754 /*
755  * Various page states we can handle.
756  *
757  * A page state is defined by its current page->flags bits.
758  * The table matches them in order and calls the right handler.
759  *
760  * This is quite tricky because we can access page at any time
761  * in its live cycle, so all accesses have to be extremely careful.
762  *
763  * This is not complete. More states could be added.
764  * For any missing state don't attempt recovery.
765  */
766 
767 #define dirty		(1UL << PG_dirty)
768 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
769 #define unevict		(1UL << PG_unevictable)
770 #define mlock		(1UL << PG_mlocked)
771 #define writeback	(1UL << PG_writeback)
772 #define lru		(1UL << PG_lru)
773 #define head		(1UL << PG_head)
774 #define slab		(1UL << PG_slab)
775 #define reserved	(1UL << PG_reserved)
776 
777 static struct page_state {
778 	unsigned long mask;
779 	unsigned long res;
780 	enum mf_action_page_type type;
781 	int (*action)(struct page *p, unsigned long pfn);
782 } error_states[] = {
783 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
784 	/*
785 	 * free pages are specially detected outside this table:
786 	 * PG_buddy pages only make a small fraction of all free pages.
787 	 */
788 
789 	/*
790 	 * Could in theory check if slab page is free or if we can drop
791 	 * currently unused objects without touching them. But just
792 	 * treat it as standard kernel for now.
793 	 */
794 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
795 
796 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
797 
798 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
799 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
800 
801 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
802 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
803 
804 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
805 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
806 
807 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
808 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
809 
810 	/*
811 	 * Catchall entry: must be at end.
812 	 */
813 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
814 };
815 
816 #undef dirty
817 #undef sc
818 #undef unevict
819 #undef mlock
820 #undef writeback
821 #undef lru
822 #undef head
823 #undef slab
824 #undef reserved
825 
826 /*
827  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
828  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
829  */
830 static void action_result(unsigned long pfn, enum mf_action_page_type type,
831 			  enum mf_result result)
832 {
833 	trace_memory_failure_event(pfn, type, result);
834 
835 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
836 		pfn, action_page_types[type], action_name[result]);
837 }
838 
839 static int page_action(struct page_state *ps, struct page *p,
840 			unsigned long pfn)
841 {
842 	int result;
843 	int count;
844 
845 	result = ps->action(p, pfn);
846 
847 	count = page_count(p) - 1;
848 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
849 		count--;
850 	if (count != 0) {
851 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
852 		       pfn, action_page_types[ps->type], count);
853 		result = MF_FAILED;
854 	}
855 	action_result(pfn, ps->type, result);
856 
857 	/* Could do more checks here if page looks ok */
858 	/*
859 	 * Could adjust zone counters here to correct for the missing page.
860 	 */
861 
862 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
863 }
864 
865 /**
866  * get_hwpoison_page() - Get refcount for memory error handling:
867  * @page:	raw error page (hit by memory error)
868  *
869  * Return: return 0 if failed to grab the refcount, otherwise true (some
870  * non-zero value.)
871  */
872 int get_hwpoison_page(struct page *page)
873 {
874 	struct page *head = compound_head(page);
875 
876 	if (!PageHuge(head) && PageTransHuge(head)) {
877 		/*
878 		 * Non anonymous thp exists only in allocation/free time. We
879 		 * can't handle such a case correctly, so let's give it up.
880 		 * This should be better than triggering BUG_ON when kernel
881 		 * tries to touch the "partially handled" page.
882 		 */
883 		if (!PageAnon(head)) {
884 			pr_err("Memory failure: %#lx: non anonymous thp\n",
885 				page_to_pfn(page));
886 			return 0;
887 		}
888 	}
889 
890 	if (get_page_unless_zero(head)) {
891 		if (head == compound_head(page))
892 			return 1;
893 
894 		pr_info("Memory failure: %#lx cannot catch tail\n",
895 			page_to_pfn(page));
896 		put_page(head);
897 	}
898 
899 	return 0;
900 }
901 EXPORT_SYMBOL_GPL(get_hwpoison_page);
902 
903 /*
904  * Do all that is necessary to remove user space mappings. Unmap
905  * the pages and send SIGBUS to the processes if the data was dirty.
906  */
907 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
908 				  int trapno, int flags, struct page **hpagep)
909 {
910 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
911 	struct address_space *mapping;
912 	LIST_HEAD(tokill);
913 	int ret;
914 	int kill = 1, forcekill;
915 	struct page *hpage = *hpagep;
916 
917 	/*
918 	 * Here we are interested only in user-mapped pages, so skip any
919 	 * other types of pages.
920 	 */
921 	if (PageReserved(p) || PageSlab(p))
922 		return SWAP_SUCCESS;
923 	if (!(PageLRU(hpage) || PageHuge(p)))
924 		return SWAP_SUCCESS;
925 
926 	/*
927 	 * This check implies we don't kill processes if their pages
928 	 * are in the swap cache early. Those are always late kills.
929 	 */
930 	if (!page_mapped(hpage))
931 		return SWAP_SUCCESS;
932 
933 	if (PageKsm(p)) {
934 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
935 		return SWAP_FAIL;
936 	}
937 
938 	if (PageSwapCache(p)) {
939 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
940 			pfn);
941 		ttu |= TTU_IGNORE_HWPOISON;
942 	}
943 
944 	/*
945 	 * Propagate the dirty bit from PTEs to struct page first, because we
946 	 * need this to decide if we should kill or just drop the page.
947 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
948 	 * be called inside page lock (it's recommended but not enforced).
949 	 */
950 	mapping = page_mapping(hpage);
951 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
952 	    mapping_cap_writeback_dirty(mapping)) {
953 		if (page_mkclean(hpage)) {
954 			SetPageDirty(hpage);
955 		} else {
956 			kill = 0;
957 			ttu |= TTU_IGNORE_HWPOISON;
958 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
959 				pfn);
960 		}
961 	}
962 
963 	/*
964 	 * First collect all the processes that have the page
965 	 * mapped in dirty form.  This has to be done before try_to_unmap,
966 	 * because ttu takes the rmap data structures down.
967 	 *
968 	 * Error handling: We ignore errors here because
969 	 * there's nothing that can be done.
970 	 */
971 	if (kill)
972 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
973 
974 	ret = try_to_unmap(hpage, ttu);
975 	if (ret != SWAP_SUCCESS)
976 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
977 		       pfn, page_mapcount(hpage));
978 
979 	/*
980 	 * Now that the dirty bit has been propagated to the
981 	 * struct page and all unmaps done we can decide if
982 	 * killing is needed or not.  Only kill when the page
983 	 * was dirty or the process is not restartable,
984 	 * otherwise the tokill list is merely
985 	 * freed.  When there was a problem unmapping earlier
986 	 * use a more force-full uncatchable kill to prevent
987 	 * any accesses to the poisoned memory.
988 	 */
989 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
990 	kill_procs(&tokill, forcekill, trapno,
991 		      ret != SWAP_SUCCESS, p, pfn, flags);
992 
993 	return ret;
994 }
995 
996 static void set_page_hwpoison_huge_page(struct page *hpage)
997 {
998 	int i;
999 	int nr_pages = 1 << compound_order(hpage);
1000 	for (i = 0; i < nr_pages; i++)
1001 		SetPageHWPoison(hpage + i);
1002 }
1003 
1004 static void clear_page_hwpoison_huge_page(struct page *hpage)
1005 {
1006 	int i;
1007 	int nr_pages = 1 << compound_order(hpage);
1008 	for (i = 0; i < nr_pages; i++)
1009 		ClearPageHWPoison(hpage + i);
1010 }
1011 
1012 /**
1013  * memory_failure - Handle memory failure of a page.
1014  * @pfn: Page Number of the corrupted page
1015  * @trapno: Trap number reported in the signal to user space.
1016  * @flags: fine tune action taken
1017  *
1018  * This function is called by the low level machine check code
1019  * of an architecture when it detects hardware memory corruption
1020  * of a page. It tries its best to recover, which includes
1021  * dropping pages, killing processes etc.
1022  *
1023  * The function is primarily of use for corruptions that
1024  * happen outside the current execution context (e.g. when
1025  * detected by a background scrubber)
1026  *
1027  * Must run in process context (e.g. a work queue) with interrupts
1028  * enabled and no spinlocks hold.
1029  */
1030 int memory_failure(unsigned long pfn, int trapno, int flags)
1031 {
1032 	struct page_state *ps;
1033 	struct page *p;
1034 	struct page *hpage;
1035 	struct page *orig_head;
1036 	int res;
1037 	unsigned int nr_pages;
1038 	unsigned long page_flags;
1039 
1040 	if (!sysctl_memory_failure_recovery)
1041 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1042 
1043 	if (!pfn_valid(pfn)) {
1044 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1045 			pfn);
1046 		return -ENXIO;
1047 	}
1048 
1049 	p = pfn_to_page(pfn);
1050 	orig_head = hpage = compound_head(p);
1051 	if (TestSetPageHWPoison(p)) {
1052 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1053 			pfn);
1054 		return 0;
1055 	}
1056 
1057 	/*
1058 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1059 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1060 	 * transparent hugepages, they are supposed to be split and error
1061 	 * measurement is done in normal page units.  So nr_pages should be one
1062 	 * in this case.
1063 	 */
1064 	if (PageHuge(p))
1065 		nr_pages = 1 << compound_order(hpage);
1066 	else /* normal page or thp */
1067 		nr_pages = 1;
1068 	num_poisoned_pages_add(nr_pages);
1069 
1070 	/*
1071 	 * We need/can do nothing about count=0 pages.
1072 	 * 1) it's a free page, and therefore in safe hand:
1073 	 *    prep_new_page() will be the gate keeper.
1074 	 * 2) it's a free hugepage, which is also safe:
1075 	 *    an affected hugepage will be dequeued from hugepage freelist,
1076 	 *    so there's no concern about reusing it ever after.
1077 	 * 3) it's part of a non-compound high order page.
1078 	 *    Implies some kernel user: cannot stop them from
1079 	 *    R/W the page; let's pray that the page has been
1080 	 *    used and will be freed some time later.
1081 	 * In fact it's dangerous to directly bump up page count from 0,
1082 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1083 	 */
1084 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1085 		if (is_free_buddy_page(p)) {
1086 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1087 			return 0;
1088 		} else if (PageHuge(hpage)) {
1089 			/*
1090 			 * Check "filter hit" and "race with other subpage."
1091 			 */
1092 			lock_page(hpage);
1093 			if (PageHWPoison(hpage)) {
1094 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1095 				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1096 					num_poisoned_pages_sub(nr_pages);
1097 					unlock_page(hpage);
1098 					return 0;
1099 				}
1100 			}
1101 			set_page_hwpoison_huge_page(hpage);
1102 			res = dequeue_hwpoisoned_huge_page(hpage);
1103 			action_result(pfn, MF_MSG_FREE_HUGE,
1104 				      res ? MF_IGNORED : MF_DELAYED);
1105 			unlock_page(hpage);
1106 			return res;
1107 		} else {
1108 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1109 			return -EBUSY;
1110 		}
1111 	}
1112 
1113 	if (!PageHuge(p) && PageTransHuge(hpage)) {
1114 		lock_page(p);
1115 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1116 			unlock_page(p);
1117 			if (!PageAnon(p))
1118 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1119 					pfn);
1120 			else
1121 				pr_err("Memory failure: %#lx: thp split failed\n",
1122 					pfn);
1123 			if (TestClearPageHWPoison(p))
1124 				num_poisoned_pages_sub(nr_pages);
1125 			put_hwpoison_page(p);
1126 			return -EBUSY;
1127 		}
1128 		unlock_page(p);
1129 		VM_BUG_ON_PAGE(!page_count(p), p);
1130 		hpage = compound_head(p);
1131 	}
1132 
1133 	/*
1134 	 * We ignore non-LRU pages for good reasons.
1135 	 * - PG_locked is only well defined for LRU pages and a few others
1136 	 * - to avoid races with __SetPageLocked()
1137 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1138 	 * The check (unnecessarily) ignores LRU pages being isolated and
1139 	 * walked by the page reclaim code, however that's not a big loss.
1140 	 */
1141 	if (!PageHuge(p)) {
1142 		if (!PageLRU(p))
1143 			shake_page(p, 0);
1144 		if (!PageLRU(p)) {
1145 			/*
1146 			 * shake_page could have turned it free.
1147 			 */
1148 			if (is_free_buddy_page(p)) {
1149 				if (flags & MF_COUNT_INCREASED)
1150 					action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1151 				else
1152 					action_result(pfn, MF_MSG_BUDDY_2ND,
1153 						      MF_DELAYED);
1154 				return 0;
1155 			}
1156 		}
1157 	}
1158 
1159 	lock_page(hpage);
1160 
1161 	/*
1162 	 * The page could have changed compound pages during the locking.
1163 	 * If this happens just bail out.
1164 	 */
1165 	if (PageCompound(p) && compound_head(p) != orig_head) {
1166 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1167 		res = -EBUSY;
1168 		goto out;
1169 	}
1170 
1171 	/*
1172 	 * We use page flags to determine what action should be taken, but
1173 	 * the flags can be modified by the error containment action.  One
1174 	 * example is an mlocked page, where PG_mlocked is cleared by
1175 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1176 	 * correctly, we save a copy of the page flags at this time.
1177 	 */
1178 	page_flags = p->flags;
1179 
1180 	/*
1181 	 * unpoison always clear PG_hwpoison inside page lock
1182 	 */
1183 	if (!PageHWPoison(p)) {
1184 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1185 		num_poisoned_pages_sub(nr_pages);
1186 		unlock_page(hpage);
1187 		put_hwpoison_page(hpage);
1188 		return 0;
1189 	}
1190 	if (hwpoison_filter(p)) {
1191 		if (TestClearPageHWPoison(p))
1192 			num_poisoned_pages_sub(nr_pages);
1193 		unlock_page(hpage);
1194 		put_hwpoison_page(hpage);
1195 		return 0;
1196 	}
1197 
1198 	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1199 		goto identify_page_state;
1200 
1201 	/*
1202 	 * For error on the tail page, we should set PG_hwpoison
1203 	 * on the head page to show that the hugepage is hwpoisoned
1204 	 */
1205 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1206 		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1207 		unlock_page(hpage);
1208 		put_hwpoison_page(hpage);
1209 		return 0;
1210 	}
1211 	/*
1212 	 * Set PG_hwpoison on all pages in an error hugepage,
1213 	 * because containment is done in hugepage unit for now.
1214 	 * Since we have done TestSetPageHWPoison() for the head page with
1215 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1216 	 */
1217 	if (PageHuge(p))
1218 		set_page_hwpoison_huge_page(hpage);
1219 
1220 	/*
1221 	 * It's very difficult to mess with pages currently under IO
1222 	 * and in many cases impossible, so we just avoid it here.
1223 	 */
1224 	wait_on_page_writeback(p);
1225 
1226 	/*
1227 	 * Now take care of user space mappings.
1228 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1229 	 *
1230 	 * When the raw error page is thp tail page, hpage points to the raw
1231 	 * page after thp split.
1232 	 */
1233 	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1234 	    != SWAP_SUCCESS) {
1235 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1236 		res = -EBUSY;
1237 		goto out;
1238 	}
1239 
1240 	/*
1241 	 * Torn down by someone else?
1242 	 */
1243 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1244 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1245 		res = -EBUSY;
1246 		goto out;
1247 	}
1248 
1249 identify_page_state:
1250 	res = -EBUSY;
1251 	/*
1252 	 * The first check uses the current page flags which may not have any
1253 	 * relevant information. The second check with the saved page flagss is
1254 	 * carried out only if the first check can't determine the page status.
1255 	 */
1256 	for (ps = error_states;; ps++)
1257 		if ((p->flags & ps->mask) == ps->res)
1258 			break;
1259 
1260 	page_flags |= (p->flags & (1UL << PG_dirty));
1261 
1262 	if (!ps->mask)
1263 		for (ps = error_states;; ps++)
1264 			if ((page_flags & ps->mask) == ps->res)
1265 				break;
1266 	res = page_action(ps, p, pfn);
1267 out:
1268 	unlock_page(hpage);
1269 	return res;
1270 }
1271 EXPORT_SYMBOL_GPL(memory_failure);
1272 
1273 #define MEMORY_FAILURE_FIFO_ORDER	4
1274 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1275 
1276 struct memory_failure_entry {
1277 	unsigned long pfn;
1278 	int trapno;
1279 	int flags;
1280 };
1281 
1282 struct memory_failure_cpu {
1283 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1284 		      MEMORY_FAILURE_FIFO_SIZE);
1285 	spinlock_t lock;
1286 	struct work_struct work;
1287 };
1288 
1289 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1290 
1291 /**
1292  * memory_failure_queue - Schedule handling memory failure of a page.
1293  * @pfn: Page Number of the corrupted page
1294  * @trapno: Trap number reported in the signal to user space.
1295  * @flags: Flags for memory failure handling
1296  *
1297  * This function is called by the low level hardware error handler
1298  * when it detects hardware memory corruption of a page. It schedules
1299  * the recovering of error page, including dropping pages, killing
1300  * processes etc.
1301  *
1302  * The function is primarily of use for corruptions that
1303  * happen outside the current execution context (e.g. when
1304  * detected by a background scrubber)
1305  *
1306  * Can run in IRQ context.
1307  */
1308 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1309 {
1310 	struct memory_failure_cpu *mf_cpu;
1311 	unsigned long proc_flags;
1312 	struct memory_failure_entry entry = {
1313 		.pfn =		pfn,
1314 		.trapno =	trapno,
1315 		.flags =	flags,
1316 	};
1317 
1318 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1319 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1320 	if (kfifo_put(&mf_cpu->fifo, entry))
1321 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1322 	else
1323 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1324 		       pfn);
1325 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1326 	put_cpu_var(memory_failure_cpu);
1327 }
1328 EXPORT_SYMBOL_GPL(memory_failure_queue);
1329 
1330 static void memory_failure_work_func(struct work_struct *work)
1331 {
1332 	struct memory_failure_cpu *mf_cpu;
1333 	struct memory_failure_entry entry = { 0, };
1334 	unsigned long proc_flags;
1335 	int gotten;
1336 
1337 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1338 	for (;;) {
1339 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1340 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1341 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1342 		if (!gotten)
1343 			break;
1344 		if (entry.flags & MF_SOFT_OFFLINE)
1345 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1346 		else
1347 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1348 	}
1349 }
1350 
1351 static int __init memory_failure_init(void)
1352 {
1353 	struct memory_failure_cpu *mf_cpu;
1354 	int cpu;
1355 
1356 	for_each_possible_cpu(cpu) {
1357 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1358 		spin_lock_init(&mf_cpu->lock);
1359 		INIT_KFIFO(mf_cpu->fifo);
1360 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1361 	}
1362 
1363 	return 0;
1364 }
1365 core_initcall(memory_failure_init);
1366 
1367 #define unpoison_pr_info(fmt, pfn, rs)			\
1368 ({							\
1369 	if (__ratelimit(rs))				\
1370 		pr_info(fmt, pfn);			\
1371 })
1372 
1373 /**
1374  * unpoison_memory - Unpoison a previously poisoned page
1375  * @pfn: Page number of the to be unpoisoned page
1376  *
1377  * Software-unpoison a page that has been poisoned by
1378  * memory_failure() earlier.
1379  *
1380  * This is only done on the software-level, so it only works
1381  * for linux injected failures, not real hardware failures
1382  *
1383  * Returns 0 for success, otherwise -errno.
1384  */
1385 int unpoison_memory(unsigned long pfn)
1386 {
1387 	struct page *page;
1388 	struct page *p;
1389 	int freeit = 0;
1390 	unsigned int nr_pages;
1391 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1392 					DEFAULT_RATELIMIT_BURST);
1393 
1394 	if (!pfn_valid(pfn))
1395 		return -ENXIO;
1396 
1397 	p = pfn_to_page(pfn);
1398 	page = compound_head(p);
1399 
1400 	if (!PageHWPoison(p)) {
1401 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1402 				 pfn, &unpoison_rs);
1403 		return 0;
1404 	}
1405 
1406 	if (page_count(page) > 1) {
1407 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1408 				 pfn, &unpoison_rs);
1409 		return 0;
1410 	}
1411 
1412 	if (page_mapped(page)) {
1413 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1414 				 pfn, &unpoison_rs);
1415 		return 0;
1416 	}
1417 
1418 	if (page_mapping(page)) {
1419 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1420 				 pfn, &unpoison_rs);
1421 		return 0;
1422 	}
1423 
1424 	/*
1425 	 * unpoison_memory() can encounter thp only when the thp is being
1426 	 * worked by memory_failure() and the page lock is not held yet.
1427 	 * In such case, we yield to memory_failure() and make unpoison fail.
1428 	 */
1429 	if (!PageHuge(page) && PageTransHuge(page)) {
1430 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1431 				 pfn, &unpoison_rs);
1432 		return 0;
1433 	}
1434 
1435 	nr_pages = 1 << compound_order(page);
1436 
1437 	if (!get_hwpoison_page(p)) {
1438 		/*
1439 		 * Since HWPoisoned hugepage should have non-zero refcount,
1440 		 * race between memory failure and unpoison seems to happen.
1441 		 * In such case unpoison fails and memory failure runs
1442 		 * to the end.
1443 		 */
1444 		if (PageHuge(page)) {
1445 			unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1446 					 pfn, &unpoison_rs);
1447 			return 0;
1448 		}
1449 		if (TestClearPageHWPoison(p))
1450 			num_poisoned_pages_dec();
1451 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1452 				 pfn, &unpoison_rs);
1453 		return 0;
1454 	}
1455 
1456 	lock_page(page);
1457 	/*
1458 	 * This test is racy because PG_hwpoison is set outside of page lock.
1459 	 * That's acceptable because that won't trigger kernel panic. Instead,
1460 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1461 	 * the free buddy page pool.
1462 	 */
1463 	if (TestClearPageHWPoison(page)) {
1464 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1465 				 pfn, &unpoison_rs);
1466 		num_poisoned_pages_sub(nr_pages);
1467 		freeit = 1;
1468 		if (PageHuge(page))
1469 			clear_page_hwpoison_huge_page(page);
1470 	}
1471 	unlock_page(page);
1472 
1473 	put_hwpoison_page(page);
1474 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1475 		put_hwpoison_page(page);
1476 
1477 	return 0;
1478 }
1479 EXPORT_SYMBOL(unpoison_memory);
1480 
1481 static struct page *new_page(struct page *p, unsigned long private, int **x)
1482 {
1483 	int nid = page_to_nid(p);
1484 	if (PageHuge(p))
1485 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1486 						   nid);
1487 	else
1488 		return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1489 }
1490 
1491 /*
1492  * Safely get reference count of an arbitrary page.
1493  * Returns 0 for a free page, -EIO for a zero refcount page
1494  * that is not free, and 1 for any other page type.
1495  * For 1 the page is returned with increased page count, otherwise not.
1496  */
1497 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1498 {
1499 	int ret;
1500 
1501 	if (flags & MF_COUNT_INCREASED)
1502 		return 1;
1503 
1504 	/*
1505 	 * When the target page is a free hugepage, just remove it
1506 	 * from free hugepage list.
1507 	 */
1508 	if (!get_hwpoison_page(p)) {
1509 		if (PageHuge(p)) {
1510 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1511 			ret = 0;
1512 		} else if (is_free_buddy_page(p)) {
1513 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1514 			ret = 0;
1515 		} else {
1516 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1517 				__func__, pfn, p->flags);
1518 			ret = -EIO;
1519 		}
1520 	} else {
1521 		/* Not a free page */
1522 		ret = 1;
1523 	}
1524 	return ret;
1525 }
1526 
1527 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1528 {
1529 	int ret = __get_any_page(page, pfn, flags);
1530 
1531 	if (ret == 1 && !PageHuge(page) &&
1532 	    !PageLRU(page) && !__PageMovable(page)) {
1533 		/*
1534 		 * Try to free it.
1535 		 */
1536 		put_hwpoison_page(page);
1537 		shake_page(page, 1);
1538 
1539 		/*
1540 		 * Did it turn free?
1541 		 */
1542 		ret = __get_any_page(page, pfn, 0);
1543 		if (ret == 1 && !PageLRU(page)) {
1544 			/* Drop page reference which is from __get_any_page() */
1545 			put_hwpoison_page(page);
1546 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1547 				pfn, page->flags);
1548 			return -EIO;
1549 		}
1550 	}
1551 	return ret;
1552 }
1553 
1554 static int soft_offline_huge_page(struct page *page, int flags)
1555 {
1556 	int ret;
1557 	unsigned long pfn = page_to_pfn(page);
1558 	struct page *hpage = compound_head(page);
1559 	LIST_HEAD(pagelist);
1560 
1561 	/*
1562 	 * This double-check of PageHWPoison is to avoid the race with
1563 	 * memory_failure(). See also comment in __soft_offline_page().
1564 	 */
1565 	lock_page(hpage);
1566 	if (PageHWPoison(hpage)) {
1567 		unlock_page(hpage);
1568 		put_hwpoison_page(hpage);
1569 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1570 		return -EBUSY;
1571 	}
1572 	unlock_page(hpage);
1573 
1574 	ret = isolate_huge_page(hpage, &pagelist);
1575 	/*
1576 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1577 	 * so need to drop one here.
1578 	 */
1579 	put_hwpoison_page(hpage);
1580 	if (!ret) {
1581 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1582 		return -EBUSY;
1583 	}
1584 
1585 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1586 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1587 	if (ret) {
1588 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1589 			pfn, ret, page->flags);
1590 		/*
1591 		 * We know that soft_offline_huge_page() tries to migrate
1592 		 * only one hugepage pointed to by hpage, so we need not
1593 		 * run through the pagelist here.
1594 		 */
1595 		putback_active_hugepage(hpage);
1596 		if (ret > 0)
1597 			ret = -EIO;
1598 	} else {
1599 		/* overcommit hugetlb page will be freed to buddy */
1600 		if (PageHuge(page)) {
1601 			set_page_hwpoison_huge_page(hpage);
1602 			dequeue_hwpoisoned_huge_page(hpage);
1603 			num_poisoned_pages_add(1 << compound_order(hpage));
1604 		} else {
1605 			SetPageHWPoison(page);
1606 			num_poisoned_pages_inc();
1607 		}
1608 	}
1609 	return ret;
1610 }
1611 
1612 static int __soft_offline_page(struct page *page, int flags)
1613 {
1614 	int ret;
1615 	unsigned long pfn = page_to_pfn(page);
1616 
1617 	/*
1618 	 * Check PageHWPoison again inside page lock because PageHWPoison
1619 	 * is set by memory_failure() outside page lock. Note that
1620 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1621 	 * so there's no race between soft_offline_page() and memory_failure().
1622 	 */
1623 	lock_page(page);
1624 	wait_on_page_writeback(page);
1625 	if (PageHWPoison(page)) {
1626 		unlock_page(page);
1627 		put_hwpoison_page(page);
1628 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1629 		return -EBUSY;
1630 	}
1631 	/*
1632 	 * Try to invalidate first. This should work for
1633 	 * non dirty unmapped page cache pages.
1634 	 */
1635 	ret = invalidate_inode_page(page);
1636 	unlock_page(page);
1637 	/*
1638 	 * RED-PEN would be better to keep it isolated here, but we
1639 	 * would need to fix isolation locking first.
1640 	 */
1641 	if (ret == 1) {
1642 		put_hwpoison_page(page);
1643 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1644 		SetPageHWPoison(page);
1645 		num_poisoned_pages_inc();
1646 		return 0;
1647 	}
1648 
1649 	/*
1650 	 * Simple invalidation didn't work.
1651 	 * Try to migrate to a new page instead. migrate.c
1652 	 * handles a large number of cases for us.
1653 	 */
1654 	if (PageLRU(page))
1655 		ret = isolate_lru_page(page);
1656 	else
1657 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1658 	/*
1659 	 * Drop page reference which is came from get_any_page()
1660 	 * successful isolate_lru_page() already took another one.
1661 	 */
1662 	put_hwpoison_page(page);
1663 	if (!ret) {
1664 		LIST_HEAD(pagelist);
1665 		/*
1666 		 * After isolated lru page, the PageLRU will be cleared,
1667 		 * so use !__PageMovable instead for LRU page's mapping
1668 		 * cannot have PAGE_MAPPING_MOVABLE.
1669 		 */
1670 		if (!__PageMovable(page))
1671 			inc_node_page_state(page, NR_ISOLATED_ANON +
1672 						page_is_file_cache(page));
1673 		list_add(&page->lru, &pagelist);
1674 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1675 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1676 		if (ret) {
1677 			if (!list_empty(&pagelist))
1678 				putback_movable_pages(&pagelist);
1679 
1680 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1681 				pfn, ret, page->flags);
1682 			if (ret > 0)
1683 				ret = -EIO;
1684 		}
1685 	} else {
1686 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1687 			pfn, ret, page_count(page), page->flags);
1688 	}
1689 	return ret;
1690 }
1691 
1692 static int soft_offline_in_use_page(struct page *page, int flags)
1693 {
1694 	int ret;
1695 	struct page *hpage = compound_head(page);
1696 
1697 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1698 		lock_page(hpage);
1699 		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1700 			unlock_page(hpage);
1701 			if (!PageAnon(hpage))
1702 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1703 			else
1704 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1705 			put_hwpoison_page(hpage);
1706 			return -EBUSY;
1707 		}
1708 		unlock_page(hpage);
1709 		get_hwpoison_page(page);
1710 		put_hwpoison_page(hpage);
1711 	}
1712 
1713 	if (PageHuge(page))
1714 		ret = soft_offline_huge_page(page, flags);
1715 	else
1716 		ret = __soft_offline_page(page, flags);
1717 
1718 	return ret;
1719 }
1720 
1721 static void soft_offline_free_page(struct page *page)
1722 {
1723 	if (PageHuge(page)) {
1724 		struct page *hpage = compound_head(page);
1725 
1726 		set_page_hwpoison_huge_page(hpage);
1727 		if (!dequeue_hwpoisoned_huge_page(hpage))
1728 			num_poisoned_pages_add(1 << compound_order(hpage));
1729 	} else {
1730 		if (!TestSetPageHWPoison(page))
1731 			num_poisoned_pages_inc();
1732 	}
1733 }
1734 
1735 /**
1736  * soft_offline_page - Soft offline a page.
1737  * @page: page to offline
1738  * @flags: flags. Same as memory_failure().
1739  *
1740  * Returns 0 on success, otherwise negated errno.
1741  *
1742  * Soft offline a page, by migration or invalidation,
1743  * without killing anything. This is for the case when
1744  * a page is not corrupted yet (so it's still valid to access),
1745  * but has had a number of corrected errors and is better taken
1746  * out.
1747  *
1748  * The actual policy on when to do that is maintained by
1749  * user space.
1750  *
1751  * This should never impact any application or cause data loss,
1752  * however it might take some time.
1753  *
1754  * This is not a 100% solution for all memory, but tries to be
1755  * ``good enough'' for the majority of memory.
1756  */
1757 int soft_offline_page(struct page *page, int flags)
1758 {
1759 	int ret;
1760 	unsigned long pfn = page_to_pfn(page);
1761 
1762 	if (PageHWPoison(page)) {
1763 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1764 		if (flags & MF_COUNT_INCREASED)
1765 			put_hwpoison_page(page);
1766 		return -EBUSY;
1767 	}
1768 
1769 	get_online_mems();
1770 	ret = get_any_page(page, pfn, flags);
1771 	put_online_mems();
1772 
1773 	if (ret > 0)
1774 		ret = soft_offline_in_use_page(page, flags);
1775 	else if (ret == 0)
1776 		soft_offline_free_page(page);
1777 
1778 	return ret;
1779 }
1780