xref: /linux/mm/memory-failure.c (revision a115bc070b1fc57ab23f3972401425927b5b465c)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a 2bit ECC memory or cache
11  * failure.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronous to other VM
15  * users, because memory failures could happen anytime and anywhere,
16  * possibly violating some of their assumptions. This is why this code
17  * has to be extremely careful. Generally it tries to use normal locking
18  * rules, as in get the standard locks, even if that means the
19  * error handling takes potentially a long time.
20  *
21  * The operation to map back from RMAP chains to processes has to walk
22  * the complete process list and has non linear complexity with the number
23  * mappings. In short it can be quite slow. But since memory corruptions
24  * are rare we hope to get away with this.
25  */
26 
27 /*
28  * Notebook:
29  * - hugetlb needs more code
30  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31  * - pass bad pages to kdump next kernel
32  */
33 #define DEBUG 1		/* remove me in 2.6.34 */
34 #include <linux/kernel.h>
35 #include <linux/mm.h>
36 #include <linux/page-flags.h>
37 #include <linux/kernel-page-flags.h>
38 #include <linux/sched.h>
39 #include <linux/ksm.h>
40 #include <linux/rmap.h>
41 #include <linux/pagemap.h>
42 #include <linux/swap.h>
43 #include <linux/backing-dev.h>
44 #include <linux/migrate.h>
45 #include <linux/page-isolation.h>
46 #include <linux/suspend.h>
47 #include "internal.h"
48 
49 int sysctl_memory_failure_early_kill __read_mostly = 0;
50 
51 int sysctl_memory_failure_recovery __read_mostly = 1;
52 
53 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
54 
55 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
56 
57 u32 hwpoison_filter_enable = 0;
58 u32 hwpoison_filter_dev_major = ~0U;
59 u32 hwpoison_filter_dev_minor = ~0U;
60 u64 hwpoison_filter_flags_mask;
61 u64 hwpoison_filter_flags_value;
62 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
63 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
64 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
65 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
66 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
67 
68 static int hwpoison_filter_dev(struct page *p)
69 {
70 	struct address_space *mapping;
71 	dev_t dev;
72 
73 	if (hwpoison_filter_dev_major == ~0U &&
74 	    hwpoison_filter_dev_minor == ~0U)
75 		return 0;
76 
77 	/*
78 	 * page_mapping() does not accept slab page
79 	 */
80 	if (PageSlab(p))
81 		return -EINVAL;
82 
83 	mapping = page_mapping(p);
84 	if (mapping == NULL || mapping->host == NULL)
85 		return -EINVAL;
86 
87 	dev = mapping->host->i_sb->s_dev;
88 	if (hwpoison_filter_dev_major != ~0U &&
89 	    hwpoison_filter_dev_major != MAJOR(dev))
90 		return -EINVAL;
91 	if (hwpoison_filter_dev_minor != ~0U &&
92 	    hwpoison_filter_dev_minor != MINOR(dev))
93 		return -EINVAL;
94 
95 	return 0;
96 }
97 
98 static int hwpoison_filter_flags(struct page *p)
99 {
100 	if (!hwpoison_filter_flags_mask)
101 		return 0;
102 
103 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
104 				    hwpoison_filter_flags_value)
105 		return 0;
106 	else
107 		return -EINVAL;
108 }
109 
110 /*
111  * This allows stress tests to limit test scope to a collection of tasks
112  * by putting them under some memcg. This prevents killing unrelated/important
113  * processes such as /sbin/init. Note that the target task may share clean
114  * pages with init (eg. libc text), which is harmless. If the target task
115  * share _dirty_ pages with another task B, the test scheme must make sure B
116  * is also included in the memcg. At last, due to race conditions this filter
117  * can only guarantee that the page either belongs to the memcg tasks, or is
118  * a freed page.
119  */
120 #ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
121 u64 hwpoison_filter_memcg;
122 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
123 static int hwpoison_filter_task(struct page *p)
124 {
125 	struct mem_cgroup *mem;
126 	struct cgroup_subsys_state *css;
127 	unsigned long ino;
128 
129 	if (!hwpoison_filter_memcg)
130 		return 0;
131 
132 	mem = try_get_mem_cgroup_from_page(p);
133 	if (!mem)
134 		return -EINVAL;
135 
136 	css = mem_cgroup_css(mem);
137 	/* root_mem_cgroup has NULL dentries */
138 	if (!css->cgroup->dentry)
139 		return -EINVAL;
140 
141 	ino = css->cgroup->dentry->d_inode->i_ino;
142 	css_put(css);
143 
144 	if (ino != hwpoison_filter_memcg)
145 		return -EINVAL;
146 
147 	return 0;
148 }
149 #else
150 static int hwpoison_filter_task(struct page *p) { return 0; }
151 #endif
152 
153 int hwpoison_filter(struct page *p)
154 {
155 	if (!hwpoison_filter_enable)
156 		return 0;
157 
158 	if (hwpoison_filter_dev(p))
159 		return -EINVAL;
160 
161 	if (hwpoison_filter_flags(p))
162 		return -EINVAL;
163 
164 	if (hwpoison_filter_task(p))
165 		return -EINVAL;
166 
167 	return 0;
168 }
169 #else
170 int hwpoison_filter(struct page *p)
171 {
172 	return 0;
173 }
174 #endif
175 
176 EXPORT_SYMBOL_GPL(hwpoison_filter);
177 
178 /*
179  * Send all the processes who have the page mapped an ``action optional''
180  * signal.
181  */
182 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
183 			unsigned long pfn)
184 {
185 	struct siginfo si;
186 	int ret;
187 
188 	printk(KERN_ERR
189 		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
190 		pfn, t->comm, t->pid);
191 	si.si_signo = SIGBUS;
192 	si.si_errno = 0;
193 	si.si_code = BUS_MCEERR_AO;
194 	si.si_addr = (void *)addr;
195 #ifdef __ARCH_SI_TRAPNO
196 	si.si_trapno = trapno;
197 #endif
198 	si.si_addr_lsb = PAGE_SHIFT;
199 	/*
200 	 * Don't use force here, it's convenient if the signal
201 	 * can be temporarily blocked.
202 	 * This could cause a loop when the user sets SIGBUS
203 	 * to SIG_IGN, but hopefully noone will do that?
204 	 */
205 	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
206 	if (ret < 0)
207 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
208 		       t->comm, t->pid, ret);
209 	return ret;
210 }
211 
212 /*
213  * When a unknown page type is encountered drain as many buffers as possible
214  * in the hope to turn the page into a LRU or free page, which we can handle.
215  */
216 void shake_page(struct page *p, int access)
217 {
218 	if (!PageSlab(p)) {
219 		lru_add_drain_all();
220 		if (PageLRU(p))
221 			return;
222 		drain_all_pages();
223 		if (PageLRU(p) || is_free_buddy_page(p))
224 			return;
225 	}
226 
227 	/*
228 	 * Only all shrink_slab here (which would also
229 	 * shrink other caches) if access is not potentially fatal.
230 	 */
231 	if (access) {
232 		int nr;
233 		do {
234 			nr = shrink_slab(1000, GFP_KERNEL, 1000);
235 			if (page_count(p) == 0)
236 				break;
237 		} while (nr > 10);
238 	}
239 }
240 EXPORT_SYMBOL_GPL(shake_page);
241 
242 /*
243  * Kill all processes that have a poisoned page mapped and then isolate
244  * the page.
245  *
246  * General strategy:
247  * Find all processes having the page mapped and kill them.
248  * But we keep a page reference around so that the page is not
249  * actually freed yet.
250  * Then stash the page away
251  *
252  * There's no convenient way to get back to mapped processes
253  * from the VMAs. So do a brute-force search over all
254  * running processes.
255  *
256  * Remember that machine checks are not common (or rather
257  * if they are common you have other problems), so this shouldn't
258  * be a performance issue.
259  *
260  * Also there are some races possible while we get from the
261  * error detection to actually handle it.
262  */
263 
264 struct to_kill {
265 	struct list_head nd;
266 	struct task_struct *tsk;
267 	unsigned long addr;
268 	unsigned addr_valid:1;
269 };
270 
271 /*
272  * Failure handling: if we can't find or can't kill a process there's
273  * not much we can do.	We just print a message and ignore otherwise.
274  */
275 
276 /*
277  * Schedule a process for later kill.
278  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
279  * TBD would GFP_NOIO be enough?
280  */
281 static void add_to_kill(struct task_struct *tsk, struct page *p,
282 		       struct vm_area_struct *vma,
283 		       struct list_head *to_kill,
284 		       struct to_kill **tkc)
285 {
286 	struct to_kill *tk;
287 
288 	if (*tkc) {
289 		tk = *tkc;
290 		*tkc = NULL;
291 	} else {
292 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
293 		if (!tk) {
294 			printk(KERN_ERR
295 		"MCE: Out of memory while machine check handling\n");
296 			return;
297 		}
298 	}
299 	tk->addr = page_address_in_vma(p, vma);
300 	tk->addr_valid = 1;
301 
302 	/*
303 	 * In theory we don't have to kill when the page was
304 	 * munmaped. But it could be also a mremap. Since that's
305 	 * likely very rare kill anyways just out of paranoia, but use
306 	 * a SIGKILL because the error is not contained anymore.
307 	 */
308 	if (tk->addr == -EFAULT) {
309 		pr_debug("MCE: Unable to find user space address %lx in %s\n",
310 			page_to_pfn(p), tsk->comm);
311 		tk->addr_valid = 0;
312 	}
313 	get_task_struct(tsk);
314 	tk->tsk = tsk;
315 	list_add_tail(&tk->nd, to_kill);
316 }
317 
318 /*
319  * Kill the processes that have been collected earlier.
320  *
321  * Only do anything when DOIT is set, otherwise just free the list
322  * (this is used for clean pages which do not need killing)
323  * Also when FAIL is set do a force kill because something went
324  * wrong earlier.
325  */
326 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
327 			  int fail, unsigned long pfn)
328 {
329 	struct to_kill *tk, *next;
330 
331 	list_for_each_entry_safe (tk, next, to_kill, nd) {
332 		if (doit) {
333 			/*
334 			 * In case something went wrong with munmapping
335 			 * make sure the process doesn't catch the
336 			 * signal and then access the memory. Just kill it.
337 			 */
338 			if (fail || tk->addr_valid == 0) {
339 				printk(KERN_ERR
340 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
341 					pfn, tk->tsk->comm, tk->tsk->pid);
342 				force_sig(SIGKILL, tk->tsk);
343 			}
344 
345 			/*
346 			 * In theory the process could have mapped
347 			 * something else on the address in-between. We could
348 			 * check for that, but we need to tell the
349 			 * process anyways.
350 			 */
351 			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
352 					      pfn) < 0)
353 				printk(KERN_ERR
354 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
355 					pfn, tk->tsk->comm, tk->tsk->pid);
356 		}
357 		put_task_struct(tk->tsk);
358 		kfree(tk);
359 	}
360 }
361 
362 static int task_early_kill(struct task_struct *tsk)
363 {
364 	if (!tsk->mm)
365 		return 0;
366 	if (tsk->flags & PF_MCE_PROCESS)
367 		return !!(tsk->flags & PF_MCE_EARLY);
368 	return sysctl_memory_failure_early_kill;
369 }
370 
371 /*
372  * Collect processes when the error hit an anonymous page.
373  */
374 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
375 			      struct to_kill **tkc)
376 {
377 	struct vm_area_struct *vma;
378 	struct task_struct *tsk;
379 	struct anon_vma *av;
380 
381 	read_lock(&tasklist_lock);
382 	av = page_lock_anon_vma(page);
383 	if (av == NULL)	/* Not actually mapped anymore */
384 		goto out;
385 	for_each_process (tsk) {
386 		struct anon_vma_chain *vmac;
387 
388 		if (!task_early_kill(tsk))
389 			continue;
390 		list_for_each_entry(vmac, &av->head, same_anon_vma) {
391 			vma = vmac->vma;
392 			if (!page_mapped_in_vma(page, vma))
393 				continue;
394 			if (vma->vm_mm == tsk->mm)
395 				add_to_kill(tsk, page, vma, to_kill, tkc);
396 		}
397 	}
398 	page_unlock_anon_vma(av);
399 out:
400 	read_unlock(&tasklist_lock);
401 }
402 
403 /*
404  * Collect processes when the error hit a file mapped page.
405  */
406 static void collect_procs_file(struct page *page, struct list_head *to_kill,
407 			      struct to_kill **tkc)
408 {
409 	struct vm_area_struct *vma;
410 	struct task_struct *tsk;
411 	struct prio_tree_iter iter;
412 	struct address_space *mapping = page->mapping;
413 
414 	/*
415 	 * A note on the locking order between the two locks.
416 	 * We don't rely on this particular order.
417 	 * If you have some other code that needs a different order
418 	 * feel free to switch them around. Or add a reverse link
419 	 * from mm_struct to task_struct, then this could be all
420 	 * done without taking tasklist_lock and looping over all tasks.
421 	 */
422 
423 	read_lock(&tasklist_lock);
424 	spin_lock(&mapping->i_mmap_lock);
425 	for_each_process(tsk) {
426 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
427 
428 		if (!task_early_kill(tsk))
429 			continue;
430 
431 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
432 				      pgoff) {
433 			/*
434 			 * Send early kill signal to tasks where a vma covers
435 			 * the page but the corrupted page is not necessarily
436 			 * mapped it in its pte.
437 			 * Assume applications who requested early kill want
438 			 * to be informed of all such data corruptions.
439 			 */
440 			if (vma->vm_mm == tsk->mm)
441 				add_to_kill(tsk, page, vma, to_kill, tkc);
442 		}
443 	}
444 	spin_unlock(&mapping->i_mmap_lock);
445 	read_unlock(&tasklist_lock);
446 }
447 
448 /*
449  * Collect the processes who have the corrupted page mapped to kill.
450  * This is done in two steps for locking reasons.
451  * First preallocate one tokill structure outside the spin locks,
452  * so that we can kill at least one process reasonably reliable.
453  */
454 static void collect_procs(struct page *page, struct list_head *tokill)
455 {
456 	struct to_kill *tk;
457 
458 	if (!page->mapping)
459 		return;
460 
461 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
462 	if (!tk)
463 		return;
464 	if (PageAnon(page))
465 		collect_procs_anon(page, tokill, &tk);
466 	else
467 		collect_procs_file(page, tokill, &tk);
468 	kfree(tk);
469 }
470 
471 /*
472  * Error handlers for various types of pages.
473  */
474 
475 enum outcome {
476 	IGNORED,	/* Error: cannot be handled */
477 	FAILED,		/* Error: handling failed */
478 	DELAYED,	/* Will be handled later */
479 	RECOVERED,	/* Successfully recovered */
480 };
481 
482 static const char *action_name[] = {
483 	[IGNORED] = "Ignored",
484 	[FAILED] = "Failed",
485 	[DELAYED] = "Delayed",
486 	[RECOVERED] = "Recovered",
487 };
488 
489 /*
490  * XXX: It is possible that a page is isolated from LRU cache,
491  * and then kept in swap cache or failed to remove from page cache.
492  * The page count will stop it from being freed by unpoison.
493  * Stress tests should be aware of this memory leak problem.
494  */
495 static int delete_from_lru_cache(struct page *p)
496 {
497 	if (!isolate_lru_page(p)) {
498 		/*
499 		 * Clear sensible page flags, so that the buddy system won't
500 		 * complain when the page is unpoison-and-freed.
501 		 */
502 		ClearPageActive(p);
503 		ClearPageUnevictable(p);
504 		/*
505 		 * drop the page count elevated by isolate_lru_page()
506 		 */
507 		page_cache_release(p);
508 		return 0;
509 	}
510 	return -EIO;
511 }
512 
513 /*
514  * Error hit kernel page.
515  * Do nothing, try to be lucky and not touch this instead. For a few cases we
516  * could be more sophisticated.
517  */
518 static int me_kernel(struct page *p, unsigned long pfn)
519 {
520 	return IGNORED;
521 }
522 
523 /*
524  * Page in unknown state. Do nothing.
525  */
526 static int me_unknown(struct page *p, unsigned long pfn)
527 {
528 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
529 	return FAILED;
530 }
531 
532 /*
533  * Clean (or cleaned) page cache page.
534  */
535 static int me_pagecache_clean(struct page *p, unsigned long pfn)
536 {
537 	int err;
538 	int ret = FAILED;
539 	struct address_space *mapping;
540 
541 	delete_from_lru_cache(p);
542 
543 	/*
544 	 * For anonymous pages we're done the only reference left
545 	 * should be the one m_f() holds.
546 	 */
547 	if (PageAnon(p))
548 		return RECOVERED;
549 
550 	/*
551 	 * Now truncate the page in the page cache. This is really
552 	 * more like a "temporary hole punch"
553 	 * Don't do this for block devices when someone else
554 	 * has a reference, because it could be file system metadata
555 	 * and that's not safe to truncate.
556 	 */
557 	mapping = page_mapping(p);
558 	if (!mapping) {
559 		/*
560 		 * Page has been teared down in the meanwhile
561 		 */
562 		return FAILED;
563 	}
564 
565 	/*
566 	 * Truncation is a bit tricky. Enable it per file system for now.
567 	 *
568 	 * Open: to take i_mutex or not for this? Right now we don't.
569 	 */
570 	if (mapping->a_ops->error_remove_page) {
571 		err = mapping->a_ops->error_remove_page(mapping, p);
572 		if (err != 0) {
573 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
574 					pfn, err);
575 		} else if (page_has_private(p) &&
576 				!try_to_release_page(p, GFP_NOIO)) {
577 			pr_debug("MCE %#lx: failed to release buffers\n", pfn);
578 		} else {
579 			ret = RECOVERED;
580 		}
581 	} else {
582 		/*
583 		 * If the file system doesn't support it just invalidate
584 		 * This fails on dirty or anything with private pages
585 		 */
586 		if (invalidate_inode_page(p))
587 			ret = RECOVERED;
588 		else
589 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
590 				pfn);
591 	}
592 	return ret;
593 }
594 
595 /*
596  * Dirty cache page page
597  * Issues: when the error hit a hole page the error is not properly
598  * propagated.
599  */
600 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
601 {
602 	struct address_space *mapping = page_mapping(p);
603 
604 	SetPageError(p);
605 	/* TBD: print more information about the file. */
606 	if (mapping) {
607 		/*
608 		 * IO error will be reported by write(), fsync(), etc.
609 		 * who check the mapping.
610 		 * This way the application knows that something went
611 		 * wrong with its dirty file data.
612 		 *
613 		 * There's one open issue:
614 		 *
615 		 * The EIO will be only reported on the next IO
616 		 * operation and then cleared through the IO map.
617 		 * Normally Linux has two mechanisms to pass IO error
618 		 * first through the AS_EIO flag in the address space
619 		 * and then through the PageError flag in the page.
620 		 * Since we drop pages on memory failure handling the
621 		 * only mechanism open to use is through AS_AIO.
622 		 *
623 		 * This has the disadvantage that it gets cleared on
624 		 * the first operation that returns an error, while
625 		 * the PageError bit is more sticky and only cleared
626 		 * when the page is reread or dropped.  If an
627 		 * application assumes it will always get error on
628 		 * fsync, but does other operations on the fd before
629 		 * and the page is dropped inbetween then the error
630 		 * will not be properly reported.
631 		 *
632 		 * This can already happen even without hwpoisoned
633 		 * pages: first on metadata IO errors (which only
634 		 * report through AS_EIO) or when the page is dropped
635 		 * at the wrong time.
636 		 *
637 		 * So right now we assume that the application DTRT on
638 		 * the first EIO, but we're not worse than other parts
639 		 * of the kernel.
640 		 */
641 		mapping_set_error(mapping, EIO);
642 	}
643 
644 	return me_pagecache_clean(p, pfn);
645 }
646 
647 /*
648  * Clean and dirty swap cache.
649  *
650  * Dirty swap cache page is tricky to handle. The page could live both in page
651  * cache and swap cache(ie. page is freshly swapped in). So it could be
652  * referenced concurrently by 2 types of PTEs:
653  * normal PTEs and swap PTEs. We try to handle them consistently by calling
654  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
655  * and then
656  *      - clear dirty bit to prevent IO
657  *      - remove from LRU
658  *      - but keep in the swap cache, so that when we return to it on
659  *        a later page fault, we know the application is accessing
660  *        corrupted data and shall be killed (we installed simple
661  *        interception code in do_swap_page to catch it).
662  *
663  * Clean swap cache pages can be directly isolated. A later page fault will
664  * bring in the known good data from disk.
665  */
666 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
667 {
668 	ClearPageDirty(p);
669 	/* Trigger EIO in shmem: */
670 	ClearPageUptodate(p);
671 
672 	if (!delete_from_lru_cache(p))
673 		return DELAYED;
674 	else
675 		return FAILED;
676 }
677 
678 static int me_swapcache_clean(struct page *p, unsigned long pfn)
679 {
680 	delete_from_swap_cache(p);
681 
682 	if (!delete_from_lru_cache(p))
683 		return RECOVERED;
684 	else
685 		return FAILED;
686 }
687 
688 /*
689  * Huge pages. Needs work.
690  * Issues:
691  * No rmap support so we cannot find the original mapper. In theory could walk
692  * all MMs and look for the mappings, but that would be non atomic and racy.
693  * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
694  * like just walking the current process and hoping it has it mapped (that
695  * should be usually true for the common "shared database cache" case)
696  * Should handle free huge pages and dequeue them too, but this needs to
697  * handle huge page accounting correctly.
698  */
699 static int me_huge_page(struct page *p, unsigned long pfn)
700 {
701 	return FAILED;
702 }
703 
704 /*
705  * Various page states we can handle.
706  *
707  * A page state is defined by its current page->flags bits.
708  * The table matches them in order and calls the right handler.
709  *
710  * This is quite tricky because we can access page at any time
711  * in its live cycle, so all accesses have to be extremly careful.
712  *
713  * This is not complete. More states could be added.
714  * For any missing state don't attempt recovery.
715  */
716 
717 #define dirty		(1UL << PG_dirty)
718 #define sc		(1UL << PG_swapcache)
719 #define unevict		(1UL << PG_unevictable)
720 #define mlock		(1UL << PG_mlocked)
721 #define writeback	(1UL << PG_writeback)
722 #define lru		(1UL << PG_lru)
723 #define swapbacked	(1UL << PG_swapbacked)
724 #define head		(1UL << PG_head)
725 #define tail		(1UL << PG_tail)
726 #define compound	(1UL << PG_compound)
727 #define slab		(1UL << PG_slab)
728 #define reserved	(1UL << PG_reserved)
729 
730 static struct page_state {
731 	unsigned long mask;
732 	unsigned long res;
733 	char *msg;
734 	int (*action)(struct page *p, unsigned long pfn);
735 } error_states[] = {
736 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
737 	/*
738 	 * free pages are specially detected outside this table:
739 	 * PG_buddy pages only make a small fraction of all free pages.
740 	 */
741 
742 	/*
743 	 * Could in theory check if slab page is free or if we can drop
744 	 * currently unused objects without touching them. But just
745 	 * treat it as standard kernel for now.
746 	 */
747 	{ slab,		slab,		"kernel slab",	me_kernel },
748 
749 #ifdef CONFIG_PAGEFLAGS_EXTENDED
750 	{ head,		head,		"huge",		me_huge_page },
751 	{ tail,		tail,		"huge",		me_huge_page },
752 #else
753 	{ compound,	compound,	"huge",		me_huge_page },
754 #endif
755 
756 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
757 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
758 
759 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
760 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
761 
762 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
763 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
764 
765 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
766 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
767 
768 	/*
769 	 * Catchall entry: must be at end.
770 	 */
771 	{ 0,		0,		"unknown page state",	me_unknown },
772 };
773 
774 #undef dirty
775 #undef sc
776 #undef unevict
777 #undef mlock
778 #undef writeback
779 #undef lru
780 #undef swapbacked
781 #undef head
782 #undef tail
783 #undef compound
784 #undef slab
785 #undef reserved
786 
787 static void action_result(unsigned long pfn, char *msg, int result)
788 {
789 	struct page *page = pfn_to_page(pfn);
790 
791 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
792 		pfn,
793 		PageDirty(page) ? "dirty " : "",
794 		msg, action_name[result]);
795 }
796 
797 static int page_action(struct page_state *ps, struct page *p,
798 			unsigned long pfn)
799 {
800 	int result;
801 	int count;
802 
803 	result = ps->action(p, pfn);
804 	action_result(pfn, ps->msg, result);
805 
806 	count = page_count(p) - 1;
807 	if (ps->action == me_swapcache_dirty && result == DELAYED)
808 		count--;
809 	if (count != 0) {
810 		printk(KERN_ERR
811 		       "MCE %#lx: %s page still referenced by %d users\n",
812 		       pfn, ps->msg, count);
813 		result = FAILED;
814 	}
815 
816 	/* Could do more checks here if page looks ok */
817 	/*
818 	 * Could adjust zone counters here to correct for the missing page.
819 	 */
820 
821 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
822 }
823 
824 #define N_UNMAP_TRIES 5
825 
826 /*
827  * Do all that is necessary to remove user space mappings. Unmap
828  * the pages and send SIGBUS to the processes if the data was dirty.
829  */
830 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
831 				  int trapno)
832 {
833 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
834 	struct address_space *mapping;
835 	LIST_HEAD(tokill);
836 	int ret;
837 	int i;
838 	int kill = 1;
839 
840 	if (PageReserved(p) || PageSlab(p))
841 		return SWAP_SUCCESS;
842 
843 	/*
844 	 * This check implies we don't kill processes if their pages
845 	 * are in the swap cache early. Those are always late kills.
846 	 */
847 	if (!page_mapped(p))
848 		return SWAP_SUCCESS;
849 
850 	if (PageCompound(p) || PageKsm(p))
851 		return SWAP_FAIL;
852 
853 	if (PageSwapCache(p)) {
854 		printk(KERN_ERR
855 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
856 		ttu |= TTU_IGNORE_HWPOISON;
857 	}
858 
859 	/*
860 	 * Propagate the dirty bit from PTEs to struct page first, because we
861 	 * need this to decide if we should kill or just drop the page.
862 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
863 	 * be called inside page lock (it's recommended but not enforced).
864 	 */
865 	mapping = page_mapping(p);
866 	if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
867 		if (page_mkclean(p)) {
868 			SetPageDirty(p);
869 		} else {
870 			kill = 0;
871 			ttu |= TTU_IGNORE_HWPOISON;
872 			printk(KERN_INFO
873 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
874 				pfn);
875 		}
876 	}
877 
878 	/*
879 	 * First collect all the processes that have the page
880 	 * mapped in dirty form.  This has to be done before try_to_unmap,
881 	 * because ttu takes the rmap data structures down.
882 	 *
883 	 * Error handling: We ignore errors here because
884 	 * there's nothing that can be done.
885 	 */
886 	if (kill)
887 		collect_procs(p, &tokill);
888 
889 	/*
890 	 * try_to_unmap can fail temporarily due to races.
891 	 * Try a few times (RED-PEN better strategy?)
892 	 */
893 	for (i = 0; i < N_UNMAP_TRIES; i++) {
894 		ret = try_to_unmap(p, ttu);
895 		if (ret == SWAP_SUCCESS)
896 			break;
897 		pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn,  ret);
898 	}
899 
900 	if (ret != SWAP_SUCCESS)
901 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
902 				pfn, page_mapcount(p));
903 
904 	/*
905 	 * Now that the dirty bit has been propagated to the
906 	 * struct page and all unmaps done we can decide if
907 	 * killing is needed or not.  Only kill when the page
908 	 * was dirty, otherwise the tokill list is merely
909 	 * freed.  When there was a problem unmapping earlier
910 	 * use a more force-full uncatchable kill to prevent
911 	 * any accesses to the poisoned memory.
912 	 */
913 	kill_procs_ao(&tokill, !!PageDirty(p), trapno,
914 		      ret != SWAP_SUCCESS, pfn);
915 
916 	return ret;
917 }
918 
919 int __memory_failure(unsigned long pfn, int trapno, int flags)
920 {
921 	struct page_state *ps;
922 	struct page *p;
923 	int res;
924 
925 	if (!sysctl_memory_failure_recovery)
926 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
927 
928 	if (!pfn_valid(pfn)) {
929 		printk(KERN_ERR
930 		       "MCE %#lx: memory outside kernel control\n",
931 		       pfn);
932 		return -ENXIO;
933 	}
934 
935 	p = pfn_to_page(pfn);
936 	if (TestSetPageHWPoison(p)) {
937 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
938 		return 0;
939 	}
940 
941 	atomic_long_add(1, &mce_bad_pages);
942 
943 	/*
944 	 * We need/can do nothing about count=0 pages.
945 	 * 1) it's a free page, and therefore in safe hand:
946 	 *    prep_new_page() will be the gate keeper.
947 	 * 2) it's part of a non-compound high order page.
948 	 *    Implies some kernel user: cannot stop them from
949 	 *    R/W the page; let's pray that the page has been
950 	 *    used and will be freed some time later.
951 	 * In fact it's dangerous to directly bump up page count from 0,
952 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
953 	 */
954 	if (!(flags & MF_COUNT_INCREASED) &&
955 		!get_page_unless_zero(compound_head(p))) {
956 		if (is_free_buddy_page(p)) {
957 			action_result(pfn, "free buddy", DELAYED);
958 			return 0;
959 		} else {
960 			action_result(pfn, "high order kernel", IGNORED);
961 			return -EBUSY;
962 		}
963 	}
964 
965 	/*
966 	 * We ignore non-LRU pages for good reasons.
967 	 * - PG_locked is only well defined for LRU pages and a few others
968 	 * - to avoid races with __set_page_locked()
969 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
970 	 * The check (unnecessarily) ignores LRU pages being isolated and
971 	 * walked by the page reclaim code, however that's not a big loss.
972 	 */
973 	if (!PageLRU(p))
974 		shake_page(p, 0);
975 	if (!PageLRU(p)) {
976 		/*
977 		 * shake_page could have turned it free.
978 		 */
979 		if (is_free_buddy_page(p)) {
980 			action_result(pfn, "free buddy, 2nd try", DELAYED);
981 			return 0;
982 		}
983 		action_result(pfn, "non LRU", IGNORED);
984 		put_page(p);
985 		return -EBUSY;
986 	}
987 
988 	/*
989 	 * Lock the page and wait for writeback to finish.
990 	 * It's very difficult to mess with pages currently under IO
991 	 * and in many cases impossible, so we just avoid it here.
992 	 */
993 	lock_page_nosync(p);
994 
995 	/*
996 	 * unpoison always clear PG_hwpoison inside page lock
997 	 */
998 	if (!PageHWPoison(p)) {
999 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1000 		res = 0;
1001 		goto out;
1002 	}
1003 	if (hwpoison_filter(p)) {
1004 		if (TestClearPageHWPoison(p))
1005 			atomic_long_dec(&mce_bad_pages);
1006 		unlock_page(p);
1007 		put_page(p);
1008 		return 0;
1009 	}
1010 
1011 	wait_on_page_writeback(p);
1012 
1013 	/*
1014 	 * Now take care of user space mappings.
1015 	 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
1016 	 */
1017 	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1018 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1019 		res = -EBUSY;
1020 		goto out;
1021 	}
1022 
1023 	/*
1024 	 * Torn down by someone else?
1025 	 */
1026 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1027 		action_result(pfn, "already truncated LRU", IGNORED);
1028 		res = -EBUSY;
1029 		goto out;
1030 	}
1031 
1032 	res = -EBUSY;
1033 	for (ps = error_states;; ps++) {
1034 		if ((p->flags & ps->mask) == ps->res) {
1035 			res = page_action(ps, p, pfn);
1036 			break;
1037 		}
1038 	}
1039 out:
1040 	unlock_page(p);
1041 	return res;
1042 }
1043 EXPORT_SYMBOL_GPL(__memory_failure);
1044 
1045 /**
1046  * memory_failure - Handle memory failure of a page.
1047  * @pfn: Page Number of the corrupted page
1048  * @trapno: Trap number reported in the signal to user space.
1049  *
1050  * This function is called by the low level machine check code
1051  * of an architecture when it detects hardware memory corruption
1052  * of a page. It tries its best to recover, which includes
1053  * dropping pages, killing processes etc.
1054  *
1055  * The function is primarily of use for corruptions that
1056  * happen outside the current execution context (e.g. when
1057  * detected by a background scrubber)
1058  *
1059  * Must run in process context (e.g. a work queue) with interrupts
1060  * enabled and no spinlocks hold.
1061  */
1062 void memory_failure(unsigned long pfn, int trapno)
1063 {
1064 	__memory_failure(pfn, trapno, 0);
1065 }
1066 
1067 /**
1068  * unpoison_memory - Unpoison a previously poisoned page
1069  * @pfn: Page number of the to be unpoisoned page
1070  *
1071  * Software-unpoison a page that has been poisoned by
1072  * memory_failure() earlier.
1073  *
1074  * This is only done on the software-level, so it only works
1075  * for linux injected failures, not real hardware failures
1076  *
1077  * Returns 0 for success, otherwise -errno.
1078  */
1079 int unpoison_memory(unsigned long pfn)
1080 {
1081 	struct page *page;
1082 	struct page *p;
1083 	int freeit = 0;
1084 
1085 	if (!pfn_valid(pfn))
1086 		return -ENXIO;
1087 
1088 	p = pfn_to_page(pfn);
1089 	page = compound_head(p);
1090 
1091 	if (!PageHWPoison(p)) {
1092 		pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
1093 		return 0;
1094 	}
1095 
1096 	if (!get_page_unless_zero(page)) {
1097 		if (TestClearPageHWPoison(p))
1098 			atomic_long_dec(&mce_bad_pages);
1099 		pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
1100 		return 0;
1101 	}
1102 
1103 	lock_page_nosync(page);
1104 	/*
1105 	 * This test is racy because PG_hwpoison is set outside of page lock.
1106 	 * That's acceptable because that won't trigger kernel panic. Instead,
1107 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1108 	 * the free buddy page pool.
1109 	 */
1110 	if (TestClearPageHWPoison(p)) {
1111 		pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
1112 		atomic_long_dec(&mce_bad_pages);
1113 		freeit = 1;
1114 	}
1115 	unlock_page(page);
1116 
1117 	put_page(page);
1118 	if (freeit)
1119 		put_page(page);
1120 
1121 	return 0;
1122 }
1123 EXPORT_SYMBOL(unpoison_memory);
1124 
1125 static struct page *new_page(struct page *p, unsigned long private, int **x)
1126 {
1127 	int nid = page_to_nid(p);
1128 	return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1129 }
1130 
1131 /*
1132  * Safely get reference count of an arbitrary page.
1133  * Returns 0 for a free page, -EIO for a zero refcount page
1134  * that is not free, and 1 for any other page type.
1135  * For 1 the page is returned with increased page count, otherwise not.
1136  */
1137 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1138 {
1139 	int ret;
1140 
1141 	if (flags & MF_COUNT_INCREASED)
1142 		return 1;
1143 
1144 	/*
1145 	 * The lock_system_sleep prevents a race with memory hotplug,
1146 	 * because the isolation assumes there's only a single user.
1147 	 * This is a big hammer, a better would be nicer.
1148 	 */
1149 	lock_system_sleep();
1150 
1151 	/*
1152 	 * Isolate the page, so that it doesn't get reallocated if it
1153 	 * was free.
1154 	 */
1155 	set_migratetype_isolate(p);
1156 	if (!get_page_unless_zero(compound_head(p))) {
1157 		if (is_free_buddy_page(p)) {
1158 			pr_debug("get_any_page: %#lx free buddy page\n", pfn);
1159 			/* Set hwpoison bit while page is still isolated */
1160 			SetPageHWPoison(p);
1161 			ret = 0;
1162 		} else {
1163 			pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1164 				pfn, p->flags);
1165 			ret = -EIO;
1166 		}
1167 	} else {
1168 		/* Not a free page */
1169 		ret = 1;
1170 	}
1171 	unset_migratetype_isolate(p);
1172 	unlock_system_sleep();
1173 	return ret;
1174 }
1175 
1176 /**
1177  * soft_offline_page - Soft offline a page.
1178  * @page: page to offline
1179  * @flags: flags. Same as memory_failure().
1180  *
1181  * Returns 0 on success, otherwise negated errno.
1182  *
1183  * Soft offline a page, by migration or invalidation,
1184  * without killing anything. This is for the case when
1185  * a page is not corrupted yet (so it's still valid to access),
1186  * but has had a number of corrected errors and is better taken
1187  * out.
1188  *
1189  * The actual policy on when to do that is maintained by
1190  * user space.
1191  *
1192  * This should never impact any application or cause data loss,
1193  * however it might take some time.
1194  *
1195  * This is not a 100% solution for all memory, but tries to be
1196  * ``good enough'' for the majority of memory.
1197  */
1198 int soft_offline_page(struct page *page, int flags)
1199 {
1200 	int ret;
1201 	unsigned long pfn = page_to_pfn(page);
1202 
1203 	ret = get_any_page(page, pfn, flags);
1204 	if (ret < 0)
1205 		return ret;
1206 	if (ret == 0)
1207 		goto done;
1208 
1209 	/*
1210 	 * Page cache page we can handle?
1211 	 */
1212 	if (!PageLRU(page)) {
1213 		/*
1214 		 * Try to free it.
1215 		 */
1216 		put_page(page);
1217 		shake_page(page, 1);
1218 
1219 		/*
1220 		 * Did it turn free?
1221 		 */
1222 		ret = get_any_page(page, pfn, 0);
1223 		if (ret < 0)
1224 			return ret;
1225 		if (ret == 0)
1226 			goto done;
1227 	}
1228 	if (!PageLRU(page)) {
1229 		pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
1230 				pfn, page->flags);
1231 		return -EIO;
1232 	}
1233 
1234 	lock_page(page);
1235 	wait_on_page_writeback(page);
1236 
1237 	/*
1238 	 * Synchronized using the page lock with memory_failure()
1239 	 */
1240 	if (PageHWPoison(page)) {
1241 		unlock_page(page);
1242 		put_page(page);
1243 		pr_debug("soft offline: %#lx page already poisoned\n", pfn);
1244 		return -EBUSY;
1245 	}
1246 
1247 	/*
1248 	 * Try to invalidate first. This should work for
1249 	 * non dirty unmapped page cache pages.
1250 	 */
1251 	ret = invalidate_inode_page(page);
1252 	unlock_page(page);
1253 
1254 	/*
1255 	 * Drop count because page migration doesn't like raised
1256 	 * counts. The page could get re-allocated, but if it becomes
1257 	 * LRU the isolation will just fail.
1258 	 * RED-PEN would be better to keep it isolated here, but we
1259 	 * would need to fix isolation locking first.
1260 	 */
1261 	put_page(page);
1262 	if (ret == 1) {
1263 		ret = 0;
1264 		pr_debug("soft_offline: %#lx: invalidated\n", pfn);
1265 		goto done;
1266 	}
1267 
1268 	/*
1269 	 * Simple invalidation didn't work.
1270 	 * Try to migrate to a new page instead. migrate.c
1271 	 * handles a large number of cases for us.
1272 	 */
1273 	ret = isolate_lru_page(page);
1274 	if (!ret) {
1275 		LIST_HEAD(pagelist);
1276 
1277 		list_add(&page->lru, &pagelist);
1278 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1279 		if (ret) {
1280 			pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1281 				pfn, ret, page->flags);
1282 			if (ret > 0)
1283 				ret = -EIO;
1284 		}
1285 	} else {
1286 		pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1287 				pfn, ret, page_count(page), page->flags);
1288 	}
1289 	if (ret)
1290 		return ret;
1291 
1292 done:
1293 	atomic_long_add(1, &mce_bad_pages);
1294 	SetPageHWPoison(page);
1295 	/* keep elevated page count for bad page */
1296 	return ret;
1297 }
1298