1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a 2bit ECC memory or cache 11 * failure. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronous to other VM 15 * users, because memory failures could happen anytime and anywhere, 16 * possibly violating some of their assumptions. This is why this code 17 * has to be extremely careful. Generally it tries to use normal locking 18 * rules, as in get the standard locks, even if that means the 19 * error handling takes potentially a long time. 20 * 21 * The operation to map back from RMAP chains to processes has to walk 22 * the complete process list and has non linear complexity with the number 23 * mappings. In short it can be quite slow. But since memory corruptions 24 * are rare we hope to get away with this. 25 */ 26 27 /* 28 * Notebook: 29 * - hugetlb needs more code 30 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages 31 * - pass bad pages to kdump next kernel 32 */ 33 #define DEBUG 1 /* remove me in 2.6.34 */ 34 #include <linux/kernel.h> 35 #include <linux/mm.h> 36 #include <linux/page-flags.h> 37 #include <linux/kernel-page-flags.h> 38 #include <linux/sched.h> 39 #include <linux/ksm.h> 40 #include <linux/rmap.h> 41 #include <linux/pagemap.h> 42 #include <linux/swap.h> 43 #include <linux/backing-dev.h> 44 #include <linux/migrate.h> 45 #include <linux/page-isolation.h> 46 #include <linux/suspend.h> 47 #include "internal.h" 48 49 int sysctl_memory_failure_early_kill __read_mostly = 0; 50 51 int sysctl_memory_failure_recovery __read_mostly = 1; 52 53 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0); 54 55 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 56 57 u32 hwpoison_filter_enable = 0; 58 u32 hwpoison_filter_dev_major = ~0U; 59 u32 hwpoison_filter_dev_minor = ~0U; 60 u64 hwpoison_filter_flags_mask; 61 u64 hwpoison_filter_flags_value; 62 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 63 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 64 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 65 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 66 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 67 68 static int hwpoison_filter_dev(struct page *p) 69 { 70 struct address_space *mapping; 71 dev_t dev; 72 73 if (hwpoison_filter_dev_major == ~0U && 74 hwpoison_filter_dev_minor == ~0U) 75 return 0; 76 77 /* 78 * page_mapping() does not accept slab page 79 */ 80 if (PageSlab(p)) 81 return -EINVAL; 82 83 mapping = page_mapping(p); 84 if (mapping == NULL || mapping->host == NULL) 85 return -EINVAL; 86 87 dev = mapping->host->i_sb->s_dev; 88 if (hwpoison_filter_dev_major != ~0U && 89 hwpoison_filter_dev_major != MAJOR(dev)) 90 return -EINVAL; 91 if (hwpoison_filter_dev_minor != ~0U && 92 hwpoison_filter_dev_minor != MINOR(dev)) 93 return -EINVAL; 94 95 return 0; 96 } 97 98 static int hwpoison_filter_flags(struct page *p) 99 { 100 if (!hwpoison_filter_flags_mask) 101 return 0; 102 103 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 104 hwpoison_filter_flags_value) 105 return 0; 106 else 107 return -EINVAL; 108 } 109 110 /* 111 * This allows stress tests to limit test scope to a collection of tasks 112 * by putting them under some memcg. This prevents killing unrelated/important 113 * processes such as /sbin/init. Note that the target task may share clean 114 * pages with init (eg. libc text), which is harmless. If the target task 115 * share _dirty_ pages with another task B, the test scheme must make sure B 116 * is also included in the memcg. At last, due to race conditions this filter 117 * can only guarantee that the page either belongs to the memcg tasks, or is 118 * a freed page. 119 */ 120 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 121 u64 hwpoison_filter_memcg; 122 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 123 static int hwpoison_filter_task(struct page *p) 124 { 125 struct mem_cgroup *mem; 126 struct cgroup_subsys_state *css; 127 unsigned long ino; 128 129 if (!hwpoison_filter_memcg) 130 return 0; 131 132 mem = try_get_mem_cgroup_from_page(p); 133 if (!mem) 134 return -EINVAL; 135 136 css = mem_cgroup_css(mem); 137 /* root_mem_cgroup has NULL dentries */ 138 if (!css->cgroup->dentry) 139 return -EINVAL; 140 141 ino = css->cgroup->dentry->d_inode->i_ino; 142 css_put(css); 143 144 if (ino != hwpoison_filter_memcg) 145 return -EINVAL; 146 147 return 0; 148 } 149 #else 150 static int hwpoison_filter_task(struct page *p) { return 0; } 151 #endif 152 153 int hwpoison_filter(struct page *p) 154 { 155 if (!hwpoison_filter_enable) 156 return 0; 157 158 if (hwpoison_filter_dev(p)) 159 return -EINVAL; 160 161 if (hwpoison_filter_flags(p)) 162 return -EINVAL; 163 164 if (hwpoison_filter_task(p)) 165 return -EINVAL; 166 167 return 0; 168 } 169 #else 170 int hwpoison_filter(struct page *p) 171 { 172 return 0; 173 } 174 #endif 175 176 EXPORT_SYMBOL_GPL(hwpoison_filter); 177 178 /* 179 * Send all the processes who have the page mapped an ``action optional'' 180 * signal. 181 */ 182 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno, 183 unsigned long pfn) 184 { 185 struct siginfo si; 186 int ret; 187 188 printk(KERN_ERR 189 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n", 190 pfn, t->comm, t->pid); 191 si.si_signo = SIGBUS; 192 si.si_errno = 0; 193 si.si_code = BUS_MCEERR_AO; 194 si.si_addr = (void *)addr; 195 #ifdef __ARCH_SI_TRAPNO 196 si.si_trapno = trapno; 197 #endif 198 si.si_addr_lsb = PAGE_SHIFT; 199 /* 200 * Don't use force here, it's convenient if the signal 201 * can be temporarily blocked. 202 * This could cause a loop when the user sets SIGBUS 203 * to SIG_IGN, but hopefully noone will do that? 204 */ 205 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 206 if (ret < 0) 207 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", 208 t->comm, t->pid, ret); 209 return ret; 210 } 211 212 /* 213 * When a unknown page type is encountered drain as many buffers as possible 214 * in the hope to turn the page into a LRU or free page, which we can handle. 215 */ 216 void shake_page(struct page *p, int access) 217 { 218 if (!PageSlab(p)) { 219 lru_add_drain_all(); 220 if (PageLRU(p)) 221 return; 222 drain_all_pages(); 223 if (PageLRU(p) || is_free_buddy_page(p)) 224 return; 225 } 226 227 /* 228 * Only all shrink_slab here (which would also 229 * shrink other caches) if access is not potentially fatal. 230 */ 231 if (access) { 232 int nr; 233 do { 234 nr = shrink_slab(1000, GFP_KERNEL, 1000); 235 if (page_count(p) == 0) 236 break; 237 } while (nr > 10); 238 } 239 } 240 EXPORT_SYMBOL_GPL(shake_page); 241 242 /* 243 * Kill all processes that have a poisoned page mapped and then isolate 244 * the page. 245 * 246 * General strategy: 247 * Find all processes having the page mapped and kill them. 248 * But we keep a page reference around so that the page is not 249 * actually freed yet. 250 * Then stash the page away 251 * 252 * There's no convenient way to get back to mapped processes 253 * from the VMAs. So do a brute-force search over all 254 * running processes. 255 * 256 * Remember that machine checks are not common (or rather 257 * if they are common you have other problems), so this shouldn't 258 * be a performance issue. 259 * 260 * Also there are some races possible while we get from the 261 * error detection to actually handle it. 262 */ 263 264 struct to_kill { 265 struct list_head nd; 266 struct task_struct *tsk; 267 unsigned long addr; 268 unsigned addr_valid:1; 269 }; 270 271 /* 272 * Failure handling: if we can't find or can't kill a process there's 273 * not much we can do. We just print a message and ignore otherwise. 274 */ 275 276 /* 277 * Schedule a process for later kill. 278 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 279 * TBD would GFP_NOIO be enough? 280 */ 281 static void add_to_kill(struct task_struct *tsk, struct page *p, 282 struct vm_area_struct *vma, 283 struct list_head *to_kill, 284 struct to_kill **tkc) 285 { 286 struct to_kill *tk; 287 288 if (*tkc) { 289 tk = *tkc; 290 *tkc = NULL; 291 } else { 292 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 293 if (!tk) { 294 printk(KERN_ERR 295 "MCE: Out of memory while machine check handling\n"); 296 return; 297 } 298 } 299 tk->addr = page_address_in_vma(p, vma); 300 tk->addr_valid = 1; 301 302 /* 303 * In theory we don't have to kill when the page was 304 * munmaped. But it could be also a mremap. Since that's 305 * likely very rare kill anyways just out of paranoia, but use 306 * a SIGKILL because the error is not contained anymore. 307 */ 308 if (tk->addr == -EFAULT) { 309 pr_debug("MCE: Unable to find user space address %lx in %s\n", 310 page_to_pfn(p), tsk->comm); 311 tk->addr_valid = 0; 312 } 313 get_task_struct(tsk); 314 tk->tsk = tsk; 315 list_add_tail(&tk->nd, to_kill); 316 } 317 318 /* 319 * Kill the processes that have been collected earlier. 320 * 321 * Only do anything when DOIT is set, otherwise just free the list 322 * (this is used for clean pages which do not need killing) 323 * Also when FAIL is set do a force kill because something went 324 * wrong earlier. 325 */ 326 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno, 327 int fail, unsigned long pfn) 328 { 329 struct to_kill *tk, *next; 330 331 list_for_each_entry_safe (tk, next, to_kill, nd) { 332 if (doit) { 333 /* 334 * In case something went wrong with munmapping 335 * make sure the process doesn't catch the 336 * signal and then access the memory. Just kill it. 337 */ 338 if (fail || tk->addr_valid == 0) { 339 printk(KERN_ERR 340 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 341 pfn, tk->tsk->comm, tk->tsk->pid); 342 force_sig(SIGKILL, tk->tsk); 343 } 344 345 /* 346 * In theory the process could have mapped 347 * something else on the address in-between. We could 348 * check for that, but we need to tell the 349 * process anyways. 350 */ 351 else if (kill_proc_ao(tk->tsk, tk->addr, trapno, 352 pfn) < 0) 353 printk(KERN_ERR 354 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", 355 pfn, tk->tsk->comm, tk->tsk->pid); 356 } 357 put_task_struct(tk->tsk); 358 kfree(tk); 359 } 360 } 361 362 static int task_early_kill(struct task_struct *tsk) 363 { 364 if (!tsk->mm) 365 return 0; 366 if (tsk->flags & PF_MCE_PROCESS) 367 return !!(tsk->flags & PF_MCE_EARLY); 368 return sysctl_memory_failure_early_kill; 369 } 370 371 /* 372 * Collect processes when the error hit an anonymous page. 373 */ 374 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 375 struct to_kill **tkc) 376 { 377 struct vm_area_struct *vma; 378 struct task_struct *tsk; 379 struct anon_vma *av; 380 381 read_lock(&tasklist_lock); 382 av = page_lock_anon_vma(page); 383 if (av == NULL) /* Not actually mapped anymore */ 384 goto out; 385 for_each_process (tsk) { 386 struct anon_vma_chain *vmac; 387 388 if (!task_early_kill(tsk)) 389 continue; 390 list_for_each_entry(vmac, &av->head, same_anon_vma) { 391 vma = vmac->vma; 392 if (!page_mapped_in_vma(page, vma)) 393 continue; 394 if (vma->vm_mm == tsk->mm) 395 add_to_kill(tsk, page, vma, to_kill, tkc); 396 } 397 } 398 page_unlock_anon_vma(av); 399 out: 400 read_unlock(&tasklist_lock); 401 } 402 403 /* 404 * Collect processes when the error hit a file mapped page. 405 */ 406 static void collect_procs_file(struct page *page, struct list_head *to_kill, 407 struct to_kill **tkc) 408 { 409 struct vm_area_struct *vma; 410 struct task_struct *tsk; 411 struct prio_tree_iter iter; 412 struct address_space *mapping = page->mapping; 413 414 /* 415 * A note on the locking order between the two locks. 416 * We don't rely on this particular order. 417 * If you have some other code that needs a different order 418 * feel free to switch them around. Or add a reverse link 419 * from mm_struct to task_struct, then this could be all 420 * done without taking tasklist_lock and looping over all tasks. 421 */ 422 423 read_lock(&tasklist_lock); 424 spin_lock(&mapping->i_mmap_lock); 425 for_each_process(tsk) { 426 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 427 428 if (!task_early_kill(tsk)) 429 continue; 430 431 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, 432 pgoff) { 433 /* 434 * Send early kill signal to tasks where a vma covers 435 * the page but the corrupted page is not necessarily 436 * mapped it in its pte. 437 * Assume applications who requested early kill want 438 * to be informed of all such data corruptions. 439 */ 440 if (vma->vm_mm == tsk->mm) 441 add_to_kill(tsk, page, vma, to_kill, tkc); 442 } 443 } 444 spin_unlock(&mapping->i_mmap_lock); 445 read_unlock(&tasklist_lock); 446 } 447 448 /* 449 * Collect the processes who have the corrupted page mapped to kill. 450 * This is done in two steps for locking reasons. 451 * First preallocate one tokill structure outside the spin locks, 452 * so that we can kill at least one process reasonably reliable. 453 */ 454 static void collect_procs(struct page *page, struct list_head *tokill) 455 { 456 struct to_kill *tk; 457 458 if (!page->mapping) 459 return; 460 461 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 462 if (!tk) 463 return; 464 if (PageAnon(page)) 465 collect_procs_anon(page, tokill, &tk); 466 else 467 collect_procs_file(page, tokill, &tk); 468 kfree(tk); 469 } 470 471 /* 472 * Error handlers for various types of pages. 473 */ 474 475 enum outcome { 476 IGNORED, /* Error: cannot be handled */ 477 FAILED, /* Error: handling failed */ 478 DELAYED, /* Will be handled later */ 479 RECOVERED, /* Successfully recovered */ 480 }; 481 482 static const char *action_name[] = { 483 [IGNORED] = "Ignored", 484 [FAILED] = "Failed", 485 [DELAYED] = "Delayed", 486 [RECOVERED] = "Recovered", 487 }; 488 489 /* 490 * XXX: It is possible that a page is isolated from LRU cache, 491 * and then kept in swap cache or failed to remove from page cache. 492 * The page count will stop it from being freed by unpoison. 493 * Stress tests should be aware of this memory leak problem. 494 */ 495 static int delete_from_lru_cache(struct page *p) 496 { 497 if (!isolate_lru_page(p)) { 498 /* 499 * Clear sensible page flags, so that the buddy system won't 500 * complain when the page is unpoison-and-freed. 501 */ 502 ClearPageActive(p); 503 ClearPageUnevictable(p); 504 /* 505 * drop the page count elevated by isolate_lru_page() 506 */ 507 page_cache_release(p); 508 return 0; 509 } 510 return -EIO; 511 } 512 513 /* 514 * Error hit kernel page. 515 * Do nothing, try to be lucky and not touch this instead. For a few cases we 516 * could be more sophisticated. 517 */ 518 static int me_kernel(struct page *p, unsigned long pfn) 519 { 520 return IGNORED; 521 } 522 523 /* 524 * Page in unknown state. Do nothing. 525 */ 526 static int me_unknown(struct page *p, unsigned long pfn) 527 { 528 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); 529 return FAILED; 530 } 531 532 /* 533 * Clean (or cleaned) page cache page. 534 */ 535 static int me_pagecache_clean(struct page *p, unsigned long pfn) 536 { 537 int err; 538 int ret = FAILED; 539 struct address_space *mapping; 540 541 delete_from_lru_cache(p); 542 543 /* 544 * For anonymous pages we're done the only reference left 545 * should be the one m_f() holds. 546 */ 547 if (PageAnon(p)) 548 return RECOVERED; 549 550 /* 551 * Now truncate the page in the page cache. This is really 552 * more like a "temporary hole punch" 553 * Don't do this for block devices when someone else 554 * has a reference, because it could be file system metadata 555 * and that's not safe to truncate. 556 */ 557 mapping = page_mapping(p); 558 if (!mapping) { 559 /* 560 * Page has been teared down in the meanwhile 561 */ 562 return FAILED; 563 } 564 565 /* 566 * Truncation is a bit tricky. Enable it per file system for now. 567 * 568 * Open: to take i_mutex or not for this? Right now we don't. 569 */ 570 if (mapping->a_ops->error_remove_page) { 571 err = mapping->a_ops->error_remove_page(mapping, p); 572 if (err != 0) { 573 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", 574 pfn, err); 575 } else if (page_has_private(p) && 576 !try_to_release_page(p, GFP_NOIO)) { 577 pr_debug("MCE %#lx: failed to release buffers\n", pfn); 578 } else { 579 ret = RECOVERED; 580 } 581 } else { 582 /* 583 * If the file system doesn't support it just invalidate 584 * This fails on dirty or anything with private pages 585 */ 586 if (invalidate_inode_page(p)) 587 ret = RECOVERED; 588 else 589 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", 590 pfn); 591 } 592 return ret; 593 } 594 595 /* 596 * Dirty cache page page 597 * Issues: when the error hit a hole page the error is not properly 598 * propagated. 599 */ 600 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 601 { 602 struct address_space *mapping = page_mapping(p); 603 604 SetPageError(p); 605 /* TBD: print more information about the file. */ 606 if (mapping) { 607 /* 608 * IO error will be reported by write(), fsync(), etc. 609 * who check the mapping. 610 * This way the application knows that something went 611 * wrong with its dirty file data. 612 * 613 * There's one open issue: 614 * 615 * The EIO will be only reported on the next IO 616 * operation and then cleared through the IO map. 617 * Normally Linux has two mechanisms to pass IO error 618 * first through the AS_EIO flag in the address space 619 * and then through the PageError flag in the page. 620 * Since we drop pages on memory failure handling the 621 * only mechanism open to use is through AS_AIO. 622 * 623 * This has the disadvantage that it gets cleared on 624 * the first operation that returns an error, while 625 * the PageError bit is more sticky and only cleared 626 * when the page is reread or dropped. If an 627 * application assumes it will always get error on 628 * fsync, but does other operations on the fd before 629 * and the page is dropped inbetween then the error 630 * will not be properly reported. 631 * 632 * This can already happen even without hwpoisoned 633 * pages: first on metadata IO errors (which only 634 * report through AS_EIO) or when the page is dropped 635 * at the wrong time. 636 * 637 * So right now we assume that the application DTRT on 638 * the first EIO, but we're not worse than other parts 639 * of the kernel. 640 */ 641 mapping_set_error(mapping, EIO); 642 } 643 644 return me_pagecache_clean(p, pfn); 645 } 646 647 /* 648 * Clean and dirty swap cache. 649 * 650 * Dirty swap cache page is tricky to handle. The page could live both in page 651 * cache and swap cache(ie. page is freshly swapped in). So it could be 652 * referenced concurrently by 2 types of PTEs: 653 * normal PTEs and swap PTEs. We try to handle them consistently by calling 654 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 655 * and then 656 * - clear dirty bit to prevent IO 657 * - remove from LRU 658 * - but keep in the swap cache, so that when we return to it on 659 * a later page fault, we know the application is accessing 660 * corrupted data and shall be killed (we installed simple 661 * interception code in do_swap_page to catch it). 662 * 663 * Clean swap cache pages can be directly isolated. A later page fault will 664 * bring in the known good data from disk. 665 */ 666 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 667 { 668 ClearPageDirty(p); 669 /* Trigger EIO in shmem: */ 670 ClearPageUptodate(p); 671 672 if (!delete_from_lru_cache(p)) 673 return DELAYED; 674 else 675 return FAILED; 676 } 677 678 static int me_swapcache_clean(struct page *p, unsigned long pfn) 679 { 680 delete_from_swap_cache(p); 681 682 if (!delete_from_lru_cache(p)) 683 return RECOVERED; 684 else 685 return FAILED; 686 } 687 688 /* 689 * Huge pages. Needs work. 690 * Issues: 691 * No rmap support so we cannot find the original mapper. In theory could walk 692 * all MMs and look for the mappings, but that would be non atomic and racy. 693 * Need rmap for hugepages for this. Alternatively we could employ a heuristic, 694 * like just walking the current process and hoping it has it mapped (that 695 * should be usually true for the common "shared database cache" case) 696 * Should handle free huge pages and dequeue them too, but this needs to 697 * handle huge page accounting correctly. 698 */ 699 static int me_huge_page(struct page *p, unsigned long pfn) 700 { 701 return FAILED; 702 } 703 704 /* 705 * Various page states we can handle. 706 * 707 * A page state is defined by its current page->flags bits. 708 * The table matches them in order and calls the right handler. 709 * 710 * This is quite tricky because we can access page at any time 711 * in its live cycle, so all accesses have to be extremly careful. 712 * 713 * This is not complete. More states could be added. 714 * For any missing state don't attempt recovery. 715 */ 716 717 #define dirty (1UL << PG_dirty) 718 #define sc (1UL << PG_swapcache) 719 #define unevict (1UL << PG_unevictable) 720 #define mlock (1UL << PG_mlocked) 721 #define writeback (1UL << PG_writeback) 722 #define lru (1UL << PG_lru) 723 #define swapbacked (1UL << PG_swapbacked) 724 #define head (1UL << PG_head) 725 #define tail (1UL << PG_tail) 726 #define compound (1UL << PG_compound) 727 #define slab (1UL << PG_slab) 728 #define reserved (1UL << PG_reserved) 729 730 static struct page_state { 731 unsigned long mask; 732 unsigned long res; 733 char *msg; 734 int (*action)(struct page *p, unsigned long pfn); 735 } error_states[] = { 736 { reserved, reserved, "reserved kernel", me_kernel }, 737 /* 738 * free pages are specially detected outside this table: 739 * PG_buddy pages only make a small fraction of all free pages. 740 */ 741 742 /* 743 * Could in theory check if slab page is free or if we can drop 744 * currently unused objects without touching them. But just 745 * treat it as standard kernel for now. 746 */ 747 { slab, slab, "kernel slab", me_kernel }, 748 749 #ifdef CONFIG_PAGEFLAGS_EXTENDED 750 { head, head, "huge", me_huge_page }, 751 { tail, tail, "huge", me_huge_page }, 752 #else 753 { compound, compound, "huge", me_huge_page }, 754 #endif 755 756 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty }, 757 { sc|dirty, sc, "swapcache", me_swapcache_clean }, 758 759 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty}, 760 { unevict, unevict, "unevictable LRU", me_pagecache_clean}, 761 762 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty }, 763 { mlock, mlock, "mlocked LRU", me_pagecache_clean }, 764 765 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty }, 766 { lru|dirty, lru, "clean LRU", me_pagecache_clean }, 767 768 /* 769 * Catchall entry: must be at end. 770 */ 771 { 0, 0, "unknown page state", me_unknown }, 772 }; 773 774 #undef dirty 775 #undef sc 776 #undef unevict 777 #undef mlock 778 #undef writeback 779 #undef lru 780 #undef swapbacked 781 #undef head 782 #undef tail 783 #undef compound 784 #undef slab 785 #undef reserved 786 787 static void action_result(unsigned long pfn, char *msg, int result) 788 { 789 struct page *page = pfn_to_page(pfn); 790 791 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n", 792 pfn, 793 PageDirty(page) ? "dirty " : "", 794 msg, action_name[result]); 795 } 796 797 static int page_action(struct page_state *ps, struct page *p, 798 unsigned long pfn) 799 { 800 int result; 801 int count; 802 803 result = ps->action(p, pfn); 804 action_result(pfn, ps->msg, result); 805 806 count = page_count(p) - 1; 807 if (ps->action == me_swapcache_dirty && result == DELAYED) 808 count--; 809 if (count != 0) { 810 printk(KERN_ERR 811 "MCE %#lx: %s page still referenced by %d users\n", 812 pfn, ps->msg, count); 813 result = FAILED; 814 } 815 816 /* Could do more checks here if page looks ok */ 817 /* 818 * Could adjust zone counters here to correct for the missing page. 819 */ 820 821 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; 822 } 823 824 #define N_UNMAP_TRIES 5 825 826 /* 827 * Do all that is necessary to remove user space mappings. Unmap 828 * the pages and send SIGBUS to the processes if the data was dirty. 829 */ 830 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 831 int trapno) 832 { 833 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 834 struct address_space *mapping; 835 LIST_HEAD(tokill); 836 int ret; 837 int i; 838 int kill = 1; 839 840 if (PageReserved(p) || PageSlab(p)) 841 return SWAP_SUCCESS; 842 843 /* 844 * This check implies we don't kill processes if their pages 845 * are in the swap cache early. Those are always late kills. 846 */ 847 if (!page_mapped(p)) 848 return SWAP_SUCCESS; 849 850 if (PageCompound(p) || PageKsm(p)) 851 return SWAP_FAIL; 852 853 if (PageSwapCache(p)) { 854 printk(KERN_ERR 855 "MCE %#lx: keeping poisoned page in swap cache\n", pfn); 856 ttu |= TTU_IGNORE_HWPOISON; 857 } 858 859 /* 860 * Propagate the dirty bit from PTEs to struct page first, because we 861 * need this to decide if we should kill or just drop the page. 862 * XXX: the dirty test could be racy: set_page_dirty() may not always 863 * be called inside page lock (it's recommended but not enforced). 864 */ 865 mapping = page_mapping(p); 866 if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) { 867 if (page_mkclean(p)) { 868 SetPageDirty(p); 869 } else { 870 kill = 0; 871 ttu |= TTU_IGNORE_HWPOISON; 872 printk(KERN_INFO 873 "MCE %#lx: corrupted page was clean: dropped without side effects\n", 874 pfn); 875 } 876 } 877 878 /* 879 * First collect all the processes that have the page 880 * mapped in dirty form. This has to be done before try_to_unmap, 881 * because ttu takes the rmap data structures down. 882 * 883 * Error handling: We ignore errors here because 884 * there's nothing that can be done. 885 */ 886 if (kill) 887 collect_procs(p, &tokill); 888 889 /* 890 * try_to_unmap can fail temporarily due to races. 891 * Try a few times (RED-PEN better strategy?) 892 */ 893 for (i = 0; i < N_UNMAP_TRIES; i++) { 894 ret = try_to_unmap(p, ttu); 895 if (ret == SWAP_SUCCESS) 896 break; 897 pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret); 898 } 899 900 if (ret != SWAP_SUCCESS) 901 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", 902 pfn, page_mapcount(p)); 903 904 /* 905 * Now that the dirty bit has been propagated to the 906 * struct page and all unmaps done we can decide if 907 * killing is needed or not. Only kill when the page 908 * was dirty, otherwise the tokill list is merely 909 * freed. When there was a problem unmapping earlier 910 * use a more force-full uncatchable kill to prevent 911 * any accesses to the poisoned memory. 912 */ 913 kill_procs_ao(&tokill, !!PageDirty(p), trapno, 914 ret != SWAP_SUCCESS, pfn); 915 916 return ret; 917 } 918 919 int __memory_failure(unsigned long pfn, int trapno, int flags) 920 { 921 struct page_state *ps; 922 struct page *p; 923 int res; 924 925 if (!sysctl_memory_failure_recovery) 926 panic("Memory failure from trap %d on page %lx", trapno, pfn); 927 928 if (!pfn_valid(pfn)) { 929 printk(KERN_ERR 930 "MCE %#lx: memory outside kernel control\n", 931 pfn); 932 return -ENXIO; 933 } 934 935 p = pfn_to_page(pfn); 936 if (TestSetPageHWPoison(p)) { 937 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); 938 return 0; 939 } 940 941 atomic_long_add(1, &mce_bad_pages); 942 943 /* 944 * We need/can do nothing about count=0 pages. 945 * 1) it's a free page, and therefore in safe hand: 946 * prep_new_page() will be the gate keeper. 947 * 2) it's part of a non-compound high order page. 948 * Implies some kernel user: cannot stop them from 949 * R/W the page; let's pray that the page has been 950 * used and will be freed some time later. 951 * In fact it's dangerous to directly bump up page count from 0, 952 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 953 */ 954 if (!(flags & MF_COUNT_INCREASED) && 955 !get_page_unless_zero(compound_head(p))) { 956 if (is_free_buddy_page(p)) { 957 action_result(pfn, "free buddy", DELAYED); 958 return 0; 959 } else { 960 action_result(pfn, "high order kernel", IGNORED); 961 return -EBUSY; 962 } 963 } 964 965 /* 966 * We ignore non-LRU pages for good reasons. 967 * - PG_locked is only well defined for LRU pages and a few others 968 * - to avoid races with __set_page_locked() 969 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 970 * The check (unnecessarily) ignores LRU pages being isolated and 971 * walked by the page reclaim code, however that's not a big loss. 972 */ 973 if (!PageLRU(p)) 974 shake_page(p, 0); 975 if (!PageLRU(p)) { 976 /* 977 * shake_page could have turned it free. 978 */ 979 if (is_free_buddy_page(p)) { 980 action_result(pfn, "free buddy, 2nd try", DELAYED); 981 return 0; 982 } 983 action_result(pfn, "non LRU", IGNORED); 984 put_page(p); 985 return -EBUSY; 986 } 987 988 /* 989 * Lock the page and wait for writeback to finish. 990 * It's very difficult to mess with pages currently under IO 991 * and in many cases impossible, so we just avoid it here. 992 */ 993 lock_page_nosync(p); 994 995 /* 996 * unpoison always clear PG_hwpoison inside page lock 997 */ 998 if (!PageHWPoison(p)) { 999 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); 1000 res = 0; 1001 goto out; 1002 } 1003 if (hwpoison_filter(p)) { 1004 if (TestClearPageHWPoison(p)) 1005 atomic_long_dec(&mce_bad_pages); 1006 unlock_page(p); 1007 put_page(p); 1008 return 0; 1009 } 1010 1011 wait_on_page_writeback(p); 1012 1013 /* 1014 * Now take care of user space mappings. 1015 * Abort on fail: __remove_from_page_cache() assumes unmapped page. 1016 */ 1017 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) { 1018 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); 1019 res = -EBUSY; 1020 goto out; 1021 } 1022 1023 /* 1024 * Torn down by someone else? 1025 */ 1026 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1027 action_result(pfn, "already truncated LRU", IGNORED); 1028 res = -EBUSY; 1029 goto out; 1030 } 1031 1032 res = -EBUSY; 1033 for (ps = error_states;; ps++) { 1034 if ((p->flags & ps->mask) == ps->res) { 1035 res = page_action(ps, p, pfn); 1036 break; 1037 } 1038 } 1039 out: 1040 unlock_page(p); 1041 return res; 1042 } 1043 EXPORT_SYMBOL_GPL(__memory_failure); 1044 1045 /** 1046 * memory_failure - Handle memory failure of a page. 1047 * @pfn: Page Number of the corrupted page 1048 * @trapno: Trap number reported in the signal to user space. 1049 * 1050 * This function is called by the low level machine check code 1051 * of an architecture when it detects hardware memory corruption 1052 * of a page. It tries its best to recover, which includes 1053 * dropping pages, killing processes etc. 1054 * 1055 * The function is primarily of use for corruptions that 1056 * happen outside the current execution context (e.g. when 1057 * detected by a background scrubber) 1058 * 1059 * Must run in process context (e.g. a work queue) with interrupts 1060 * enabled and no spinlocks hold. 1061 */ 1062 void memory_failure(unsigned long pfn, int trapno) 1063 { 1064 __memory_failure(pfn, trapno, 0); 1065 } 1066 1067 /** 1068 * unpoison_memory - Unpoison a previously poisoned page 1069 * @pfn: Page number of the to be unpoisoned page 1070 * 1071 * Software-unpoison a page that has been poisoned by 1072 * memory_failure() earlier. 1073 * 1074 * This is only done on the software-level, so it only works 1075 * for linux injected failures, not real hardware failures 1076 * 1077 * Returns 0 for success, otherwise -errno. 1078 */ 1079 int unpoison_memory(unsigned long pfn) 1080 { 1081 struct page *page; 1082 struct page *p; 1083 int freeit = 0; 1084 1085 if (!pfn_valid(pfn)) 1086 return -ENXIO; 1087 1088 p = pfn_to_page(pfn); 1089 page = compound_head(p); 1090 1091 if (!PageHWPoison(p)) { 1092 pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn); 1093 return 0; 1094 } 1095 1096 if (!get_page_unless_zero(page)) { 1097 if (TestClearPageHWPoison(p)) 1098 atomic_long_dec(&mce_bad_pages); 1099 pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn); 1100 return 0; 1101 } 1102 1103 lock_page_nosync(page); 1104 /* 1105 * This test is racy because PG_hwpoison is set outside of page lock. 1106 * That's acceptable because that won't trigger kernel panic. Instead, 1107 * the PG_hwpoison page will be caught and isolated on the entrance to 1108 * the free buddy page pool. 1109 */ 1110 if (TestClearPageHWPoison(p)) { 1111 pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn); 1112 atomic_long_dec(&mce_bad_pages); 1113 freeit = 1; 1114 } 1115 unlock_page(page); 1116 1117 put_page(page); 1118 if (freeit) 1119 put_page(page); 1120 1121 return 0; 1122 } 1123 EXPORT_SYMBOL(unpoison_memory); 1124 1125 static struct page *new_page(struct page *p, unsigned long private, int **x) 1126 { 1127 int nid = page_to_nid(p); 1128 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1129 } 1130 1131 /* 1132 * Safely get reference count of an arbitrary page. 1133 * Returns 0 for a free page, -EIO for a zero refcount page 1134 * that is not free, and 1 for any other page type. 1135 * For 1 the page is returned with increased page count, otherwise not. 1136 */ 1137 static int get_any_page(struct page *p, unsigned long pfn, int flags) 1138 { 1139 int ret; 1140 1141 if (flags & MF_COUNT_INCREASED) 1142 return 1; 1143 1144 /* 1145 * The lock_system_sleep prevents a race with memory hotplug, 1146 * because the isolation assumes there's only a single user. 1147 * This is a big hammer, a better would be nicer. 1148 */ 1149 lock_system_sleep(); 1150 1151 /* 1152 * Isolate the page, so that it doesn't get reallocated if it 1153 * was free. 1154 */ 1155 set_migratetype_isolate(p); 1156 if (!get_page_unless_zero(compound_head(p))) { 1157 if (is_free_buddy_page(p)) { 1158 pr_debug("get_any_page: %#lx free buddy page\n", pfn); 1159 /* Set hwpoison bit while page is still isolated */ 1160 SetPageHWPoison(p); 1161 ret = 0; 1162 } else { 1163 pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n", 1164 pfn, p->flags); 1165 ret = -EIO; 1166 } 1167 } else { 1168 /* Not a free page */ 1169 ret = 1; 1170 } 1171 unset_migratetype_isolate(p); 1172 unlock_system_sleep(); 1173 return ret; 1174 } 1175 1176 /** 1177 * soft_offline_page - Soft offline a page. 1178 * @page: page to offline 1179 * @flags: flags. Same as memory_failure(). 1180 * 1181 * Returns 0 on success, otherwise negated errno. 1182 * 1183 * Soft offline a page, by migration or invalidation, 1184 * without killing anything. This is for the case when 1185 * a page is not corrupted yet (so it's still valid to access), 1186 * but has had a number of corrected errors and is better taken 1187 * out. 1188 * 1189 * The actual policy on when to do that is maintained by 1190 * user space. 1191 * 1192 * This should never impact any application or cause data loss, 1193 * however it might take some time. 1194 * 1195 * This is not a 100% solution for all memory, but tries to be 1196 * ``good enough'' for the majority of memory. 1197 */ 1198 int soft_offline_page(struct page *page, int flags) 1199 { 1200 int ret; 1201 unsigned long pfn = page_to_pfn(page); 1202 1203 ret = get_any_page(page, pfn, flags); 1204 if (ret < 0) 1205 return ret; 1206 if (ret == 0) 1207 goto done; 1208 1209 /* 1210 * Page cache page we can handle? 1211 */ 1212 if (!PageLRU(page)) { 1213 /* 1214 * Try to free it. 1215 */ 1216 put_page(page); 1217 shake_page(page, 1); 1218 1219 /* 1220 * Did it turn free? 1221 */ 1222 ret = get_any_page(page, pfn, 0); 1223 if (ret < 0) 1224 return ret; 1225 if (ret == 0) 1226 goto done; 1227 } 1228 if (!PageLRU(page)) { 1229 pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n", 1230 pfn, page->flags); 1231 return -EIO; 1232 } 1233 1234 lock_page(page); 1235 wait_on_page_writeback(page); 1236 1237 /* 1238 * Synchronized using the page lock with memory_failure() 1239 */ 1240 if (PageHWPoison(page)) { 1241 unlock_page(page); 1242 put_page(page); 1243 pr_debug("soft offline: %#lx page already poisoned\n", pfn); 1244 return -EBUSY; 1245 } 1246 1247 /* 1248 * Try to invalidate first. This should work for 1249 * non dirty unmapped page cache pages. 1250 */ 1251 ret = invalidate_inode_page(page); 1252 unlock_page(page); 1253 1254 /* 1255 * Drop count because page migration doesn't like raised 1256 * counts. The page could get re-allocated, but if it becomes 1257 * LRU the isolation will just fail. 1258 * RED-PEN would be better to keep it isolated here, but we 1259 * would need to fix isolation locking first. 1260 */ 1261 put_page(page); 1262 if (ret == 1) { 1263 ret = 0; 1264 pr_debug("soft_offline: %#lx: invalidated\n", pfn); 1265 goto done; 1266 } 1267 1268 /* 1269 * Simple invalidation didn't work. 1270 * Try to migrate to a new page instead. migrate.c 1271 * handles a large number of cases for us. 1272 */ 1273 ret = isolate_lru_page(page); 1274 if (!ret) { 1275 LIST_HEAD(pagelist); 1276 1277 list_add(&page->lru, &pagelist); 1278 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0); 1279 if (ret) { 1280 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n", 1281 pfn, ret, page->flags); 1282 if (ret > 0) 1283 ret = -EIO; 1284 } 1285 } else { 1286 pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1287 pfn, ret, page_count(page), page->flags); 1288 } 1289 if (ret) 1290 return ret; 1291 1292 done: 1293 atomic_long_add(1, &mce_bad_pages); 1294 SetPageHWPoison(page); 1295 /* keep elevated page count for bad page */ 1296 return ret; 1297 } 1298