1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/dax.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/memremap.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/sysctl.h> 63 #include "swap.h" 64 #include "internal.h" 65 #include "ras/ras_event.h" 66 67 static int sysctl_memory_failure_early_kill __read_mostly; 68 69 static int sysctl_memory_failure_recovery __read_mostly = 1; 70 71 static int sysctl_enable_soft_offline __read_mostly = 1; 72 73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 74 75 static bool hw_memory_failure __read_mostly = false; 76 77 static DEFINE_MUTEX(mf_mutex); 78 79 void num_poisoned_pages_inc(unsigned long pfn) 80 { 81 atomic_long_inc(&num_poisoned_pages); 82 memblk_nr_poison_inc(pfn); 83 } 84 85 void num_poisoned_pages_sub(unsigned long pfn, long i) 86 { 87 atomic_long_sub(i, &num_poisoned_pages); 88 if (pfn != -1UL) 89 memblk_nr_poison_sub(pfn, i); 90 } 91 92 /** 93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 94 * @_name: name of the file in the per NUMA sysfs directory. 95 */ 96 #define MF_ATTR_RO(_name) \ 97 static ssize_t _name##_show(struct device *dev, \ 98 struct device_attribute *attr, \ 99 char *buf) \ 100 { \ 101 struct memory_failure_stats *mf_stats = \ 102 &NODE_DATA(dev->id)->mf_stats; \ 103 return sysfs_emit(buf, "%lu\n", mf_stats->_name); \ 104 } \ 105 static DEVICE_ATTR_RO(_name) 106 107 MF_ATTR_RO(total); 108 MF_ATTR_RO(ignored); 109 MF_ATTR_RO(failed); 110 MF_ATTR_RO(delayed); 111 MF_ATTR_RO(recovered); 112 113 static struct attribute *memory_failure_attr[] = { 114 &dev_attr_total.attr, 115 &dev_attr_ignored.attr, 116 &dev_attr_failed.attr, 117 &dev_attr_delayed.attr, 118 &dev_attr_recovered.attr, 119 NULL, 120 }; 121 122 const struct attribute_group memory_failure_attr_group = { 123 .name = "memory_failure", 124 .attrs = memory_failure_attr, 125 }; 126 127 static const struct ctl_table memory_failure_table[] = { 128 { 129 .procname = "memory_failure_early_kill", 130 .data = &sysctl_memory_failure_early_kill, 131 .maxlen = sizeof(sysctl_memory_failure_early_kill), 132 .mode = 0644, 133 .proc_handler = proc_dointvec_minmax, 134 .extra1 = SYSCTL_ZERO, 135 .extra2 = SYSCTL_ONE, 136 }, 137 { 138 .procname = "memory_failure_recovery", 139 .data = &sysctl_memory_failure_recovery, 140 .maxlen = sizeof(sysctl_memory_failure_recovery), 141 .mode = 0644, 142 .proc_handler = proc_dointvec_minmax, 143 .extra1 = SYSCTL_ZERO, 144 .extra2 = SYSCTL_ONE, 145 }, 146 { 147 .procname = "enable_soft_offline", 148 .data = &sysctl_enable_soft_offline, 149 .maxlen = sizeof(sysctl_enable_soft_offline), 150 .mode = 0644, 151 .proc_handler = proc_dointvec_minmax, 152 .extra1 = SYSCTL_ZERO, 153 .extra2 = SYSCTL_ONE, 154 } 155 }; 156 157 /* 158 * Return values: 159 * 1: the page is dissolved (if needed) and taken off from buddy, 160 * 0: the page is dissolved (if needed) and not taken off from buddy, 161 * < 0: failed to dissolve. 162 */ 163 static int __page_handle_poison(struct page *page) 164 { 165 int ret; 166 167 /* 168 * zone_pcp_disable() can't be used here. It will 169 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold 170 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap 171 * optimization is enabled. This will break current lock dependency 172 * chain and leads to deadlock. 173 * Disabling pcp before dissolving the page was a deterministic 174 * approach because we made sure that those pages cannot end up in any 175 * PCP list. Draining PCP lists expels those pages to the buddy system, 176 * but nothing guarantees that those pages do not get back to a PCP 177 * queue if we need to refill those. 178 */ 179 ret = dissolve_free_hugetlb_folio(page_folio(page)); 180 if (!ret) { 181 drain_all_pages(page_zone(page)); 182 ret = take_page_off_buddy(page); 183 } 184 185 return ret; 186 } 187 188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 189 { 190 if (hugepage_or_freepage) { 191 /* 192 * Doing this check for free pages is also fine since 193 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well. 194 */ 195 if (__page_handle_poison(page) <= 0) 196 /* 197 * We could fail to take off the target page from buddy 198 * for example due to racy page allocation, but that's 199 * acceptable because soft-offlined page is not broken 200 * and if someone really want to use it, they should 201 * take it. 202 */ 203 return false; 204 } 205 206 SetPageHWPoison(page); 207 if (release) 208 put_page(page); 209 page_ref_inc(page); 210 num_poisoned_pages_inc(page_to_pfn(page)); 211 212 return true; 213 } 214 215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT) 216 217 u32 hwpoison_filter_enable = 0; 218 u32 hwpoison_filter_dev_major = ~0U; 219 u32 hwpoison_filter_dev_minor = ~0U; 220 u64 hwpoison_filter_flags_mask; 221 u64 hwpoison_filter_flags_value; 222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 227 228 static int hwpoison_filter_dev(struct page *p) 229 { 230 struct folio *folio = page_folio(p); 231 struct address_space *mapping; 232 dev_t dev; 233 234 if (hwpoison_filter_dev_major == ~0U && 235 hwpoison_filter_dev_minor == ~0U) 236 return 0; 237 238 mapping = folio_mapping(folio); 239 if (mapping == NULL || mapping->host == NULL) 240 return -EINVAL; 241 242 dev = mapping->host->i_sb->s_dev; 243 if (hwpoison_filter_dev_major != ~0U && 244 hwpoison_filter_dev_major != MAJOR(dev)) 245 return -EINVAL; 246 if (hwpoison_filter_dev_minor != ~0U && 247 hwpoison_filter_dev_minor != MINOR(dev)) 248 return -EINVAL; 249 250 return 0; 251 } 252 253 static int hwpoison_filter_flags(struct page *p) 254 { 255 if (!hwpoison_filter_flags_mask) 256 return 0; 257 258 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 259 hwpoison_filter_flags_value) 260 return 0; 261 else 262 return -EINVAL; 263 } 264 265 /* 266 * This allows stress tests to limit test scope to a collection of tasks 267 * by putting them under some memcg. This prevents killing unrelated/important 268 * processes such as /sbin/init. Note that the target task may share clean 269 * pages with init (eg. libc text), which is harmless. If the target task 270 * share _dirty_ pages with another task B, the test scheme must make sure B 271 * is also included in the memcg. At last, due to race conditions this filter 272 * can only guarantee that the page either belongs to the memcg tasks, or is 273 * a freed page. 274 */ 275 #ifdef CONFIG_MEMCG 276 u64 hwpoison_filter_memcg; 277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 278 static int hwpoison_filter_task(struct page *p) 279 { 280 if (!hwpoison_filter_memcg) 281 return 0; 282 283 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 284 return -EINVAL; 285 286 return 0; 287 } 288 #else 289 static int hwpoison_filter_task(struct page *p) { return 0; } 290 #endif 291 292 int hwpoison_filter(struct page *p) 293 { 294 if (!hwpoison_filter_enable) 295 return 0; 296 297 if (hwpoison_filter_dev(p)) 298 return -EINVAL; 299 300 if (hwpoison_filter_flags(p)) 301 return -EINVAL; 302 303 if (hwpoison_filter_task(p)) 304 return -EINVAL; 305 306 return 0; 307 } 308 EXPORT_SYMBOL_GPL(hwpoison_filter); 309 #else 310 int hwpoison_filter(struct page *p) 311 { 312 return 0; 313 } 314 #endif 315 316 /* 317 * Kill all processes that have a poisoned page mapped and then isolate 318 * the page. 319 * 320 * General strategy: 321 * Find all processes having the page mapped and kill them. 322 * But we keep a page reference around so that the page is not 323 * actually freed yet. 324 * Then stash the page away 325 * 326 * There's no convenient way to get back to mapped processes 327 * from the VMAs. So do a brute-force search over all 328 * running processes. 329 * 330 * Remember that machine checks are not common (or rather 331 * if they are common you have other problems), so this shouldn't 332 * be a performance issue. 333 * 334 * Also there are some races possible while we get from the 335 * error detection to actually handle it. 336 */ 337 338 struct to_kill { 339 struct list_head nd; 340 struct task_struct *tsk; 341 unsigned long addr; 342 short size_shift; 343 }; 344 345 /* 346 * Send all the processes who have the page mapped a signal. 347 * ``action optional'' if they are not immediately affected by the error 348 * ``action required'' if error happened in current execution context 349 */ 350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 351 { 352 struct task_struct *t = tk->tsk; 353 short addr_lsb = tk->size_shift; 354 int ret = 0; 355 356 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 357 pfn, t->comm, task_pid_nr(t)); 358 359 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 360 ret = force_sig_mceerr(BUS_MCEERR_AR, 361 (void __user *)tk->addr, addr_lsb); 362 else 363 /* 364 * Signal other processes sharing the page if they have 365 * PF_MCE_EARLY set. 366 * Don't use force here, it's convenient if the signal 367 * can be temporarily blocked. 368 */ 369 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 370 addr_lsb, t); 371 if (ret < 0) 372 pr_info("Error sending signal to %s:%d: %d\n", 373 t->comm, task_pid_nr(t), ret); 374 return ret; 375 } 376 377 /* 378 * Unknown page type encountered. Try to check whether it can turn PageLRU by 379 * lru_add_drain_all. 380 */ 381 void shake_folio(struct folio *folio) 382 { 383 if (folio_test_hugetlb(folio)) 384 return; 385 /* 386 * TODO: Could shrink slab caches here if a lightweight range-based 387 * shrinker will be available. 388 */ 389 if (folio_test_slab(folio)) 390 return; 391 392 lru_add_drain_all(); 393 } 394 EXPORT_SYMBOL_GPL(shake_folio); 395 396 static void shake_page(struct page *page) 397 { 398 shake_folio(page_folio(page)); 399 } 400 401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 402 unsigned long address) 403 { 404 unsigned long ret = 0; 405 pgd_t *pgd; 406 p4d_t *p4d; 407 pud_t *pud; 408 pmd_t *pmd; 409 pte_t *pte; 410 pte_t ptent; 411 412 VM_BUG_ON_VMA(address == -EFAULT, vma); 413 pgd = pgd_offset(vma->vm_mm, address); 414 if (!pgd_present(*pgd)) 415 return 0; 416 p4d = p4d_offset(pgd, address); 417 if (!p4d_present(*p4d)) 418 return 0; 419 pud = pud_offset(p4d, address); 420 if (!pud_present(*pud)) 421 return 0; 422 if (pud_trans_huge(*pud)) 423 return PUD_SHIFT; 424 pmd = pmd_offset(pud, address); 425 if (!pmd_present(*pmd)) 426 return 0; 427 if (pmd_trans_huge(*pmd)) 428 return PMD_SHIFT; 429 pte = pte_offset_map(pmd, address); 430 if (!pte) 431 return 0; 432 ptent = ptep_get(pte); 433 if (pte_present(ptent)) 434 ret = PAGE_SHIFT; 435 pte_unmap(pte); 436 return ret; 437 } 438 439 /* 440 * Failure handling: if we can't find or can't kill a process there's 441 * not much we can do. We just print a message and ignore otherwise. 442 */ 443 444 /* 445 * Schedule a process for later kill. 446 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 447 */ 448 static void __add_to_kill(struct task_struct *tsk, const struct page *p, 449 struct vm_area_struct *vma, struct list_head *to_kill, 450 unsigned long addr) 451 { 452 struct to_kill *tk; 453 454 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 455 if (!tk) { 456 pr_err("Out of memory while machine check handling\n"); 457 return; 458 } 459 460 tk->addr = addr; 461 if (is_zone_device_page(p)) 462 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 463 else 464 tk->size_shift = folio_shift(page_folio(p)); 465 466 /* 467 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 468 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 469 * so "tk->size_shift == 0" effectively checks no mapping on 470 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 471 * to a process' address space, it's possible not all N VMAs 472 * contain mappings for the page, but at least one VMA does. 473 * Only deliver SIGBUS with payload derived from the VMA that 474 * has a mapping for the page. 475 */ 476 if (tk->addr == -EFAULT) { 477 pr_info("Unable to find user space address %lx in %s\n", 478 page_to_pfn(p), tsk->comm); 479 } else if (tk->size_shift == 0) { 480 kfree(tk); 481 return; 482 } 483 484 get_task_struct(tsk); 485 tk->tsk = tsk; 486 list_add_tail(&tk->nd, to_kill); 487 } 488 489 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p, 490 struct vm_area_struct *vma, struct list_head *to_kill, 491 unsigned long addr) 492 { 493 if (addr == -EFAULT) 494 return; 495 __add_to_kill(tsk, p, vma, to_kill, addr); 496 } 497 498 #ifdef CONFIG_KSM 499 static bool task_in_to_kill_list(struct list_head *to_kill, 500 struct task_struct *tsk) 501 { 502 struct to_kill *tk, *next; 503 504 list_for_each_entry_safe(tk, next, to_kill, nd) { 505 if (tk->tsk == tsk) 506 return true; 507 } 508 509 return false; 510 } 511 512 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p, 513 struct vm_area_struct *vma, struct list_head *to_kill, 514 unsigned long addr) 515 { 516 if (!task_in_to_kill_list(to_kill, tsk)) 517 __add_to_kill(tsk, p, vma, to_kill, addr); 518 } 519 #endif 520 /* 521 * Kill the processes that have been collected earlier. 522 * 523 * Only do anything when FORCEKILL is set, otherwise just free the 524 * list (this is used for clean pages which do not need killing) 525 */ 526 static void kill_procs(struct list_head *to_kill, int forcekill, 527 unsigned long pfn, int flags) 528 { 529 struct to_kill *tk, *next; 530 531 list_for_each_entry_safe(tk, next, to_kill, nd) { 532 if (forcekill) { 533 if (tk->addr == -EFAULT) { 534 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 535 pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); 536 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 537 tk->tsk, PIDTYPE_PID); 538 } 539 540 /* 541 * In theory the process could have mapped 542 * something else on the address in-between. We could 543 * check for that, but we need to tell the 544 * process anyways. 545 */ 546 else if (kill_proc(tk, pfn, flags) < 0) 547 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 548 pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); 549 } 550 list_del(&tk->nd); 551 put_task_struct(tk->tsk); 552 kfree(tk); 553 } 554 } 555 556 /* 557 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 558 * on behalf of the thread group. Return task_struct of the (first found) 559 * dedicated thread if found, and return NULL otherwise. 560 * 561 * We already hold rcu lock in the caller, so we don't have to call 562 * rcu_read_lock/unlock() in this function. 563 */ 564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 565 { 566 struct task_struct *t; 567 568 for_each_thread(tsk, t) { 569 if (t->flags & PF_MCE_PROCESS) { 570 if (t->flags & PF_MCE_EARLY) 571 return t; 572 } else { 573 if (sysctl_memory_failure_early_kill) 574 return t; 575 } 576 } 577 return NULL; 578 } 579 580 /* 581 * Determine whether a given process is "early kill" process which expects 582 * to be signaled when some page under the process is hwpoisoned. 583 * Return task_struct of the dedicated thread (main thread unless explicitly 584 * specified) if the process is "early kill" and otherwise returns NULL. 585 * 586 * Note that the above is true for Action Optional case. For Action Required 587 * case, it's only meaningful to the current thread which need to be signaled 588 * with SIGBUS, this error is Action Optional for other non current 589 * processes sharing the same error page,if the process is "early kill", the 590 * task_struct of the dedicated thread will also be returned. 591 */ 592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 593 { 594 if (!tsk->mm) 595 return NULL; 596 /* 597 * Comparing ->mm here because current task might represent 598 * a subthread, while tsk always points to the main thread. 599 */ 600 if (force_early && tsk->mm == current->mm) 601 return current; 602 603 return find_early_kill_thread(tsk); 604 } 605 606 /* 607 * Collect processes when the error hit an anonymous page. 608 */ 609 static void collect_procs_anon(const struct folio *folio, 610 const struct page *page, struct list_head *to_kill, 611 int force_early) 612 { 613 struct task_struct *tsk; 614 struct anon_vma *av; 615 pgoff_t pgoff; 616 617 av = folio_lock_anon_vma_read(folio, NULL); 618 if (av == NULL) /* Not actually mapped anymore */ 619 return; 620 621 pgoff = page_pgoff(folio, page); 622 rcu_read_lock(); 623 for_each_process(tsk) { 624 struct vm_area_struct *vma; 625 struct anon_vma_chain *vmac; 626 struct task_struct *t = task_early_kill(tsk, force_early); 627 unsigned long addr; 628 629 if (!t) 630 continue; 631 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 632 pgoff, pgoff) { 633 vma = vmac->vma; 634 if (vma->vm_mm != t->mm) 635 continue; 636 addr = page_mapped_in_vma(page, vma); 637 add_to_kill_anon_file(t, page, vma, to_kill, addr); 638 } 639 } 640 rcu_read_unlock(); 641 anon_vma_unlock_read(av); 642 } 643 644 /* 645 * Collect processes when the error hit a file mapped page. 646 */ 647 static void collect_procs_file(const struct folio *folio, 648 const struct page *page, struct list_head *to_kill, 649 int force_early) 650 { 651 struct vm_area_struct *vma; 652 struct task_struct *tsk; 653 struct address_space *mapping = folio->mapping; 654 pgoff_t pgoff; 655 656 i_mmap_lock_read(mapping); 657 rcu_read_lock(); 658 pgoff = page_pgoff(folio, page); 659 for_each_process(tsk) { 660 struct task_struct *t = task_early_kill(tsk, force_early); 661 unsigned long addr; 662 663 if (!t) 664 continue; 665 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 666 pgoff) { 667 /* 668 * Send early kill signal to tasks where a vma covers 669 * the page but the corrupted page is not necessarily 670 * mapped in its pte. 671 * Assume applications who requested early kill want 672 * to be informed of all such data corruptions. 673 */ 674 if (vma->vm_mm != t->mm) 675 continue; 676 addr = page_address_in_vma(folio, page, vma); 677 add_to_kill_anon_file(t, page, vma, to_kill, addr); 678 } 679 } 680 rcu_read_unlock(); 681 i_mmap_unlock_read(mapping); 682 } 683 684 #ifdef CONFIG_FS_DAX 685 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p, 686 struct vm_area_struct *vma, 687 struct list_head *to_kill, pgoff_t pgoff) 688 { 689 unsigned long addr = vma_address(vma, pgoff, 1); 690 __add_to_kill(tsk, p, vma, to_kill, addr); 691 } 692 693 /* 694 * Collect processes when the error hit a fsdax page. 695 */ 696 static void collect_procs_fsdax(const struct page *page, 697 struct address_space *mapping, pgoff_t pgoff, 698 struct list_head *to_kill, bool pre_remove) 699 { 700 struct vm_area_struct *vma; 701 struct task_struct *tsk; 702 703 i_mmap_lock_read(mapping); 704 rcu_read_lock(); 705 for_each_process(tsk) { 706 struct task_struct *t = tsk; 707 708 /* 709 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because 710 * the current may not be the one accessing the fsdax page. 711 * Otherwise, search for the current task. 712 */ 713 if (!pre_remove) 714 t = task_early_kill(tsk, true); 715 if (!t) 716 continue; 717 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 718 if (vma->vm_mm == t->mm) 719 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 720 } 721 } 722 rcu_read_unlock(); 723 i_mmap_unlock_read(mapping); 724 } 725 #endif /* CONFIG_FS_DAX */ 726 727 /* 728 * Collect the processes who have the corrupted page mapped to kill. 729 */ 730 static void collect_procs(const struct folio *folio, const struct page *page, 731 struct list_head *tokill, int force_early) 732 { 733 if (!folio->mapping) 734 return; 735 if (unlikely(folio_test_ksm(folio))) 736 collect_procs_ksm(folio, page, tokill, force_early); 737 else if (folio_test_anon(folio)) 738 collect_procs_anon(folio, page, tokill, force_early); 739 else 740 collect_procs_file(folio, page, tokill, force_early); 741 } 742 743 struct hwpoison_walk { 744 struct to_kill tk; 745 unsigned long pfn; 746 int flags; 747 }; 748 749 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 750 { 751 tk->addr = addr; 752 tk->size_shift = shift; 753 } 754 755 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 756 unsigned long poisoned_pfn, struct to_kill *tk) 757 { 758 unsigned long pfn = 0; 759 760 if (pte_present(pte)) { 761 pfn = pte_pfn(pte); 762 } else { 763 swp_entry_t swp = pte_to_swp_entry(pte); 764 765 if (is_hwpoison_entry(swp)) 766 pfn = swp_offset_pfn(swp); 767 } 768 769 if (!pfn || pfn != poisoned_pfn) 770 return 0; 771 772 set_to_kill(tk, addr, shift); 773 return 1; 774 } 775 776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 777 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 778 struct hwpoison_walk *hwp) 779 { 780 pmd_t pmd = *pmdp; 781 unsigned long pfn; 782 unsigned long hwpoison_vaddr; 783 784 if (!pmd_present(pmd)) 785 return 0; 786 pfn = pmd_pfn(pmd); 787 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 788 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 789 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 790 return 1; 791 } 792 return 0; 793 } 794 #else 795 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 796 struct hwpoison_walk *hwp) 797 { 798 return 0; 799 } 800 #endif 801 802 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 803 unsigned long end, struct mm_walk *walk) 804 { 805 struct hwpoison_walk *hwp = walk->private; 806 int ret = 0; 807 pte_t *ptep, *mapped_pte; 808 spinlock_t *ptl; 809 810 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 811 if (ptl) { 812 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 813 spin_unlock(ptl); 814 goto out; 815 } 816 817 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 818 addr, &ptl); 819 if (!ptep) 820 goto out; 821 822 for (; addr != end; ptep++, addr += PAGE_SIZE) { 823 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, 824 hwp->pfn, &hwp->tk); 825 if (ret == 1) 826 break; 827 } 828 pte_unmap_unlock(mapped_pte, ptl); 829 out: 830 cond_resched(); 831 return ret; 832 } 833 834 #ifdef CONFIG_HUGETLB_PAGE 835 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 836 unsigned long addr, unsigned long end, 837 struct mm_walk *walk) 838 { 839 struct hwpoison_walk *hwp = walk->private; 840 struct hstate *h = hstate_vma(walk->vma); 841 spinlock_t *ptl; 842 pte_t pte; 843 int ret; 844 845 ptl = huge_pte_lock(h, walk->mm, ptep); 846 pte = huge_ptep_get(walk->mm, addr, ptep); 847 ret = check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 848 hwp->pfn, &hwp->tk); 849 spin_unlock(ptl); 850 return ret; 851 } 852 #else 853 #define hwpoison_hugetlb_range NULL 854 #endif 855 856 static const struct mm_walk_ops hwpoison_walk_ops = { 857 .pmd_entry = hwpoison_pte_range, 858 .hugetlb_entry = hwpoison_hugetlb_range, 859 .walk_lock = PGWALK_RDLOCK, 860 }; 861 862 /* 863 * Sends SIGBUS to the current process with error info. 864 * 865 * This function is intended to handle "Action Required" MCEs on already 866 * hardware poisoned pages. They could happen, for example, when 867 * memory_failure() failed to unmap the error page at the first call, or 868 * when multiple local machine checks happened on different CPUs. 869 * 870 * MCE handler currently has no easy access to the error virtual address, 871 * so this function walks page table to find it. The returned virtual address 872 * is proper in most cases, but it could be wrong when the application 873 * process has multiple entries mapping the error page. 874 */ 875 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 876 int flags) 877 { 878 int ret; 879 struct hwpoison_walk priv = { 880 .pfn = pfn, 881 }; 882 priv.tk.tsk = p; 883 884 if (!p->mm) 885 return -EFAULT; 886 887 mmap_read_lock(p->mm); 888 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops, 889 (void *)&priv); 890 /* 891 * ret = 1 when CMCI wins, regardless of whether try_to_unmap() 892 * succeeds or fails, then kill the process with SIGBUS. 893 * ret = 0 when poison page is a clean page and it's dropped, no 894 * SIGBUS is needed. 895 */ 896 if (ret == 1 && priv.tk.addr) 897 kill_proc(&priv.tk, pfn, flags); 898 mmap_read_unlock(p->mm); 899 900 return ret > 0 ? -EHWPOISON : 0; 901 } 902 903 /* 904 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed. 905 * But it could not do more to isolate the page from being accessed again, 906 * nor does it kill the process. This is extremely rare and one of the 907 * potential causes is that the page state has been changed due to 908 * underlying race condition. This is the most severe outcomes. 909 * 910 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed. 911 * It should have killed the process, but it can't isolate the page, 912 * due to conditions such as extra pin, unmap failure, etc. Accessing 913 * the page again may trigger another MCE and the process will be killed 914 * by the m-f() handler immediately. 915 * 916 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed. 917 * The page is unmapped, and is removed from the LRU or file mapping. 918 * An attempt to access the page again will trigger page fault and the 919 * PF handler will kill the process. 920 * 921 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed. 922 * The page has been completely isolated, that is, unmapped, taken out of 923 * the buddy system, or hole-punnched out of the file mapping. 924 */ 925 static const char *action_name[] = { 926 [MF_IGNORED] = "Ignored", 927 [MF_FAILED] = "Failed", 928 [MF_DELAYED] = "Delayed", 929 [MF_RECOVERED] = "Recovered", 930 }; 931 932 static const char * const action_page_types[] = { 933 [MF_MSG_KERNEL] = "reserved kernel page", 934 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 935 [MF_MSG_HUGE] = "huge page", 936 [MF_MSG_FREE_HUGE] = "free huge page", 937 [MF_MSG_GET_HWPOISON] = "get hwpoison page", 938 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 939 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 940 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 941 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 942 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 943 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 944 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 945 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 946 [MF_MSG_CLEAN_LRU] = "clean LRU page", 947 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 948 [MF_MSG_BUDDY] = "free buddy page", 949 [MF_MSG_DAX] = "dax page", 950 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 951 [MF_MSG_ALREADY_POISONED] = "already poisoned", 952 [MF_MSG_UNKNOWN] = "unknown page", 953 }; 954 955 /* 956 * XXX: It is possible that a page is isolated from LRU cache, 957 * and then kept in swap cache or failed to remove from page cache. 958 * The page count will stop it from being freed by unpoison. 959 * Stress tests should be aware of this memory leak problem. 960 */ 961 static int delete_from_lru_cache(struct folio *folio) 962 { 963 if (folio_isolate_lru(folio)) { 964 /* 965 * Clear sensible page flags, so that the buddy system won't 966 * complain when the folio is unpoison-and-freed. 967 */ 968 folio_clear_active(folio); 969 folio_clear_unevictable(folio); 970 971 /* 972 * Poisoned page might never drop its ref count to 0 so we have 973 * to uncharge it manually from its memcg. 974 */ 975 mem_cgroup_uncharge(folio); 976 977 /* 978 * drop the refcount elevated by folio_isolate_lru() 979 */ 980 folio_put(folio); 981 return 0; 982 } 983 return -EIO; 984 } 985 986 static int truncate_error_folio(struct folio *folio, unsigned long pfn, 987 struct address_space *mapping) 988 { 989 int ret = MF_FAILED; 990 991 if (mapping->a_ops->error_remove_folio) { 992 int err = mapping->a_ops->error_remove_folio(mapping, folio); 993 994 if (err != 0) 995 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 996 else if (!filemap_release_folio(folio, GFP_NOIO)) 997 pr_info("%#lx: failed to release buffers\n", pfn); 998 else 999 ret = MF_RECOVERED; 1000 } else { 1001 /* 1002 * If the file system doesn't support it just invalidate 1003 * This fails on dirty or anything with private pages 1004 */ 1005 if (mapping_evict_folio(mapping, folio)) 1006 ret = MF_RECOVERED; 1007 else 1008 pr_info("%#lx: Failed to invalidate\n", pfn); 1009 } 1010 1011 return ret; 1012 } 1013 1014 struct page_state { 1015 unsigned long mask; 1016 unsigned long res; 1017 enum mf_action_page_type type; 1018 1019 /* Callback ->action() has to unlock the relevant page inside it. */ 1020 int (*action)(struct page_state *ps, struct page *p); 1021 }; 1022 1023 /* 1024 * Return true if page is still referenced by others, otherwise return 1025 * false. 1026 * 1027 * The extra_pins is true when one extra refcount is expected. 1028 */ 1029 static bool has_extra_refcount(struct page_state *ps, struct page *p, 1030 bool extra_pins) 1031 { 1032 int count = page_count(p) - 1; 1033 1034 if (extra_pins) 1035 count -= folio_nr_pages(page_folio(p)); 1036 1037 if (count > 0) { 1038 pr_err("%#lx: %s still referenced by %d users\n", 1039 page_to_pfn(p), action_page_types[ps->type], count); 1040 return true; 1041 } 1042 1043 return false; 1044 } 1045 1046 /* 1047 * Error hit kernel page. 1048 * Do nothing, try to be lucky and not touch this instead. For a few cases we 1049 * could be more sophisticated. 1050 */ 1051 static int me_kernel(struct page_state *ps, struct page *p) 1052 { 1053 unlock_page(p); 1054 return MF_IGNORED; 1055 } 1056 1057 /* 1058 * Page in unknown state. Do nothing. 1059 * This is a catch-all in case we fail to make sense of the page state. 1060 */ 1061 static int me_unknown(struct page_state *ps, struct page *p) 1062 { 1063 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1064 unlock_page(p); 1065 return MF_IGNORED; 1066 } 1067 1068 /* 1069 * Clean (or cleaned) page cache page. 1070 */ 1071 static int me_pagecache_clean(struct page_state *ps, struct page *p) 1072 { 1073 struct folio *folio = page_folio(p); 1074 int ret; 1075 struct address_space *mapping; 1076 bool extra_pins; 1077 1078 delete_from_lru_cache(folio); 1079 1080 /* 1081 * For anonymous folios the only reference left 1082 * should be the one m_f() holds. 1083 */ 1084 if (folio_test_anon(folio)) { 1085 ret = MF_RECOVERED; 1086 goto out; 1087 } 1088 1089 /* 1090 * Now truncate the page in the page cache. This is really 1091 * more like a "temporary hole punch" 1092 * Don't do this for block devices when someone else 1093 * has a reference, because it could be file system metadata 1094 * and that's not safe to truncate. 1095 */ 1096 mapping = folio_mapping(folio); 1097 if (!mapping) { 1098 /* Folio has been torn down in the meantime */ 1099 ret = MF_FAILED; 1100 goto out; 1101 } 1102 1103 /* 1104 * The shmem page is kept in page cache instead of truncating 1105 * so is expected to have an extra refcount after error-handling. 1106 */ 1107 extra_pins = shmem_mapping(mapping); 1108 1109 /* 1110 * Truncation is a bit tricky. Enable it per file system for now. 1111 * 1112 * Open: to take i_rwsem or not for this? Right now we don't. 1113 */ 1114 ret = truncate_error_folio(folio, page_to_pfn(p), mapping); 1115 if (has_extra_refcount(ps, p, extra_pins)) 1116 ret = MF_FAILED; 1117 1118 out: 1119 folio_unlock(folio); 1120 1121 return ret; 1122 } 1123 1124 /* 1125 * Dirty pagecache page 1126 * Issues: when the error hit a hole page the error is not properly 1127 * propagated. 1128 */ 1129 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1130 { 1131 struct folio *folio = page_folio(p); 1132 struct address_space *mapping = folio_mapping(folio); 1133 1134 /* TBD: print more information about the file. */ 1135 if (mapping) { 1136 /* 1137 * IO error will be reported by write(), fsync(), etc. 1138 * who check the mapping. 1139 * This way the application knows that something went 1140 * wrong with its dirty file data. 1141 */ 1142 mapping_set_error(mapping, -EIO); 1143 } 1144 1145 return me_pagecache_clean(ps, p); 1146 } 1147 1148 /* 1149 * Clean and dirty swap cache. 1150 * 1151 * Dirty swap cache page is tricky to handle. The page could live both in page 1152 * table and swap cache(ie. page is freshly swapped in). So it could be 1153 * referenced concurrently by 2 types of PTEs: 1154 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1155 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1156 * and then 1157 * - clear dirty bit to prevent IO 1158 * - remove from LRU 1159 * - but keep in the swap cache, so that when we return to it on 1160 * a later page fault, we know the application is accessing 1161 * corrupted data and shall be killed (we installed simple 1162 * interception code in do_swap_page to catch it). 1163 * 1164 * Clean swap cache pages can be directly isolated. A later page fault will 1165 * bring in the known good data from disk. 1166 */ 1167 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1168 { 1169 struct folio *folio = page_folio(p); 1170 int ret; 1171 bool extra_pins = false; 1172 1173 folio_clear_dirty(folio); 1174 /* Trigger EIO in shmem: */ 1175 folio_clear_uptodate(folio); 1176 1177 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED; 1178 folio_unlock(folio); 1179 1180 if (ret == MF_DELAYED) 1181 extra_pins = true; 1182 1183 if (has_extra_refcount(ps, p, extra_pins)) 1184 ret = MF_FAILED; 1185 1186 return ret; 1187 } 1188 1189 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1190 { 1191 struct folio *folio = page_folio(p); 1192 int ret; 1193 1194 delete_from_swap_cache(folio); 1195 1196 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED; 1197 folio_unlock(folio); 1198 1199 if (has_extra_refcount(ps, p, false)) 1200 ret = MF_FAILED; 1201 1202 return ret; 1203 } 1204 1205 /* 1206 * Huge pages. Needs work. 1207 * Issues: 1208 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1209 * To narrow down kill region to one page, we need to break up pmd. 1210 */ 1211 static int me_huge_page(struct page_state *ps, struct page *p) 1212 { 1213 struct folio *folio = page_folio(p); 1214 int res; 1215 struct address_space *mapping; 1216 bool extra_pins = false; 1217 1218 mapping = folio_mapping(folio); 1219 if (mapping) { 1220 res = truncate_error_folio(folio, page_to_pfn(p), mapping); 1221 /* The page is kept in page cache. */ 1222 extra_pins = true; 1223 folio_unlock(folio); 1224 } else { 1225 folio_unlock(folio); 1226 /* 1227 * migration entry prevents later access on error hugepage, 1228 * so we can free and dissolve it into buddy to save healthy 1229 * subpages. 1230 */ 1231 folio_put(folio); 1232 if (__page_handle_poison(p) > 0) { 1233 page_ref_inc(p); 1234 res = MF_RECOVERED; 1235 } else { 1236 res = MF_FAILED; 1237 } 1238 } 1239 1240 if (has_extra_refcount(ps, p, extra_pins)) 1241 res = MF_FAILED; 1242 1243 return res; 1244 } 1245 1246 /* 1247 * Various page states we can handle. 1248 * 1249 * A page state is defined by its current page->flags bits. 1250 * The table matches them in order and calls the right handler. 1251 * 1252 * This is quite tricky because we can access page at any time 1253 * in its live cycle, so all accesses have to be extremely careful. 1254 * 1255 * This is not complete. More states could be added. 1256 * For any missing state don't attempt recovery. 1257 */ 1258 1259 #define dirty (1UL << PG_dirty) 1260 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1261 #define unevict (1UL << PG_unevictable) 1262 #define mlock (1UL << PG_mlocked) 1263 #define lru (1UL << PG_lru) 1264 #define head (1UL << PG_head) 1265 #define reserved (1UL << PG_reserved) 1266 1267 static struct page_state error_states[] = { 1268 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1269 /* 1270 * free pages are specially detected outside this table: 1271 * PG_buddy pages only make a small fraction of all free pages. 1272 */ 1273 1274 { head, head, MF_MSG_HUGE, me_huge_page }, 1275 1276 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1277 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1278 1279 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1280 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1281 1282 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1283 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1284 1285 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1286 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1287 1288 /* 1289 * Catchall entry: must be at end. 1290 */ 1291 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1292 }; 1293 1294 #undef dirty 1295 #undef sc 1296 #undef unevict 1297 #undef mlock 1298 #undef lru 1299 #undef head 1300 #undef reserved 1301 1302 static void update_per_node_mf_stats(unsigned long pfn, 1303 enum mf_result result) 1304 { 1305 int nid = MAX_NUMNODES; 1306 struct memory_failure_stats *mf_stats = NULL; 1307 1308 nid = pfn_to_nid(pfn); 1309 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1310 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1311 return; 1312 } 1313 1314 mf_stats = &NODE_DATA(nid)->mf_stats; 1315 switch (result) { 1316 case MF_IGNORED: 1317 ++mf_stats->ignored; 1318 break; 1319 case MF_FAILED: 1320 ++mf_stats->failed; 1321 break; 1322 case MF_DELAYED: 1323 ++mf_stats->delayed; 1324 break; 1325 case MF_RECOVERED: 1326 ++mf_stats->recovered; 1327 break; 1328 default: 1329 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1330 break; 1331 } 1332 ++mf_stats->total; 1333 } 1334 1335 /* 1336 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1337 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1338 */ 1339 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1340 enum mf_result result) 1341 { 1342 trace_memory_failure_event(pfn, type, result); 1343 1344 num_poisoned_pages_inc(pfn); 1345 1346 update_per_node_mf_stats(pfn, result); 1347 1348 pr_err("%#lx: recovery action for %s: %s\n", 1349 pfn, action_page_types[type], action_name[result]); 1350 1351 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1352 } 1353 1354 static int page_action(struct page_state *ps, struct page *p, 1355 unsigned long pfn) 1356 { 1357 int result; 1358 1359 /* page p should be unlocked after returning from ps->action(). */ 1360 result = ps->action(ps, p); 1361 1362 /* Could do more checks here if page looks ok */ 1363 /* 1364 * Could adjust zone counters here to correct for the missing page. 1365 */ 1366 1367 return action_result(pfn, ps->type, result); 1368 } 1369 1370 static inline bool PageHWPoisonTakenOff(struct page *page) 1371 { 1372 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1373 } 1374 1375 void SetPageHWPoisonTakenOff(struct page *page) 1376 { 1377 set_page_private(page, MAGIC_HWPOISON); 1378 } 1379 1380 void ClearPageHWPoisonTakenOff(struct page *page) 1381 { 1382 if (PageHWPoison(page)) 1383 set_page_private(page, 0); 1384 } 1385 1386 /* 1387 * Return true if a page type of a given page is supported by hwpoison 1388 * mechanism (while handling could fail), otherwise false. This function 1389 * does not return true for hugetlb or device memory pages, so it's assumed 1390 * to be called only in the context where we never have such pages. 1391 */ 1392 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1393 { 1394 if (PageSlab(page)) 1395 return false; 1396 1397 /* Soft offline could migrate movable_ops pages */ 1398 if ((flags & MF_SOFT_OFFLINE) && page_has_movable_ops(page)) 1399 return true; 1400 1401 return PageLRU(page) || is_free_buddy_page(page); 1402 } 1403 1404 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1405 { 1406 struct folio *folio = page_folio(page); 1407 int ret = 0; 1408 bool hugetlb = false; 1409 1410 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1411 if (hugetlb) { 1412 /* Make sure hugetlb demotion did not happen from under us. */ 1413 if (folio == page_folio(page)) 1414 return ret; 1415 if (ret > 0) { 1416 folio_put(folio); 1417 folio = page_folio(page); 1418 } 1419 } 1420 1421 /* 1422 * This check prevents from calling folio_try_get() for any 1423 * unsupported type of folio in order to reduce the risk of unexpected 1424 * races caused by taking a folio refcount. 1425 */ 1426 if (!HWPoisonHandlable(&folio->page, flags)) 1427 return -EBUSY; 1428 1429 if (folio_try_get(folio)) { 1430 if (folio == page_folio(page)) 1431 return 1; 1432 1433 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1434 folio_put(folio); 1435 } 1436 1437 return 0; 1438 } 1439 1440 #define GET_PAGE_MAX_RETRY_NUM 3 1441 1442 static int get_any_page(struct page *p, unsigned long flags) 1443 { 1444 int ret = 0, pass = 0; 1445 bool count_increased = false; 1446 1447 if (flags & MF_COUNT_INCREASED) 1448 count_increased = true; 1449 1450 try_again: 1451 if (!count_increased) { 1452 ret = __get_hwpoison_page(p, flags); 1453 if (!ret) { 1454 if (page_count(p)) { 1455 /* We raced with an allocation, retry. */ 1456 if (pass++ < GET_PAGE_MAX_RETRY_NUM) 1457 goto try_again; 1458 ret = -EBUSY; 1459 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1460 /* We raced with put_page, retry. */ 1461 if (pass++ < GET_PAGE_MAX_RETRY_NUM) 1462 goto try_again; 1463 ret = -EIO; 1464 } 1465 goto out; 1466 } else if (ret == -EBUSY) { 1467 /* 1468 * We raced with (possibly temporary) unhandlable 1469 * page, retry. 1470 */ 1471 if (pass++ < 3) { 1472 shake_page(p); 1473 goto try_again; 1474 } 1475 ret = -EIO; 1476 goto out; 1477 } 1478 } 1479 1480 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1481 ret = 1; 1482 } else { 1483 /* 1484 * A page we cannot handle. Check whether we can turn 1485 * it into something we can handle. 1486 */ 1487 if (pass++ < GET_PAGE_MAX_RETRY_NUM) { 1488 put_page(p); 1489 shake_page(p); 1490 count_increased = false; 1491 goto try_again; 1492 } 1493 put_page(p); 1494 ret = -EIO; 1495 } 1496 out: 1497 if (ret == -EIO) 1498 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1499 1500 return ret; 1501 } 1502 1503 static int __get_unpoison_page(struct page *page) 1504 { 1505 struct folio *folio = page_folio(page); 1506 int ret = 0; 1507 bool hugetlb = false; 1508 1509 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1510 if (hugetlb) { 1511 /* Make sure hugetlb demotion did not happen from under us. */ 1512 if (folio == page_folio(page)) 1513 return ret; 1514 if (ret > 0) 1515 folio_put(folio); 1516 } 1517 1518 /* 1519 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1520 * but also isolated from buddy freelist, so need to identify the 1521 * state and have to cancel both operations to unpoison. 1522 */ 1523 if (PageHWPoisonTakenOff(page)) 1524 return -EHWPOISON; 1525 1526 return get_page_unless_zero(page) ? 1 : 0; 1527 } 1528 1529 /** 1530 * get_hwpoison_page() - Get refcount for memory error handling 1531 * @p: Raw error page (hit by memory error) 1532 * @flags: Flags controlling behavior of error handling 1533 * 1534 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1535 * error on it, after checking that the error page is in a well-defined state 1536 * (defined as a page-type we can successfully handle the memory error on it, 1537 * such as LRU page and hugetlb page). 1538 * 1539 * Memory error handling could be triggered at any time on any type of page, 1540 * so it's prone to race with typical memory management lifecycle (like 1541 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1542 * extra care for the error page's state (as done in __get_hwpoison_page()), 1543 * and has some retry logic in get_any_page(). 1544 * 1545 * When called from unpoison_memory(), the caller should already ensure that 1546 * the given page has PG_hwpoison. So it's never reused for other page 1547 * allocations, and __get_unpoison_page() never races with them. 1548 * 1549 * Return: 0 on failure or free buddy (hugetlb) page, 1550 * 1 on success for in-use pages in a well-defined state, 1551 * -EIO for pages on which we can not handle memory errors, 1552 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1553 * operations like allocation and free, 1554 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1555 */ 1556 static int get_hwpoison_page(struct page *p, unsigned long flags) 1557 { 1558 int ret; 1559 1560 zone_pcp_disable(page_zone(p)); 1561 if (flags & MF_UNPOISON) 1562 ret = __get_unpoison_page(p); 1563 else 1564 ret = get_any_page(p, flags); 1565 zone_pcp_enable(page_zone(p)); 1566 1567 return ret; 1568 } 1569 1570 /* 1571 * The caller must guarantee the folio isn't large folio, except hugetlb. 1572 * try_to_unmap() can't handle it. 1573 */ 1574 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill) 1575 { 1576 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1577 struct address_space *mapping; 1578 1579 if (folio_test_swapcache(folio)) { 1580 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1581 ttu &= ~TTU_HWPOISON; 1582 } 1583 1584 /* 1585 * Propagate the dirty bit from PTEs to struct page first, because we 1586 * need this to decide if we should kill or just drop the page. 1587 * XXX: the dirty test could be racy: set_page_dirty() may not always 1588 * be called inside page lock (it's recommended but not enforced). 1589 */ 1590 mapping = folio_mapping(folio); 1591 if (!must_kill && !folio_test_dirty(folio) && mapping && 1592 mapping_can_writeback(mapping)) { 1593 if (folio_mkclean(folio)) { 1594 folio_set_dirty(folio); 1595 } else { 1596 ttu &= ~TTU_HWPOISON; 1597 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1598 pfn); 1599 } 1600 } 1601 1602 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { 1603 /* 1604 * For hugetlb folios in shared mappings, try_to_unmap 1605 * could potentially call huge_pmd_unshare. Because of 1606 * this, take semaphore in write mode here and set 1607 * TTU_RMAP_LOCKED to indicate we have taken the lock 1608 * at this higher level. 1609 */ 1610 mapping = hugetlb_folio_mapping_lock_write(folio); 1611 if (!mapping) { 1612 pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n", 1613 folio_pfn(folio)); 1614 return -EBUSY; 1615 } 1616 1617 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1618 i_mmap_unlock_write(mapping); 1619 } else { 1620 try_to_unmap(folio, ttu); 1621 } 1622 1623 return folio_mapped(folio) ? -EBUSY : 0; 1624 } 1625 1626 /* 1627 * Do all that is necessary to remove user space mappings. Unmap 1628 * the pages and send SIGBUS to the processes if the data was dirty. 1629 */ 1630 static bool hwpoison_user_mappings(struct folio *folio, struct page *p, 1631 unsigned long pfn, int flags) 1632 { 1633 LIST_HEAD(tokill); 1634 bool unmap_success; 1635 int forcekill; 1636 bool mlocked = folio_test_mlocked(folio); 1637 1638 /* 1639 * Here we are interested only in user-mapped pages, so skip any 1640 * other types of pages. 1641 */ 1642 if (folio_test_reserved(folio) || folio_test_slab(folio) || 1643 folio_test_pgtable(folio) || folio_test_offline(folio)) 1644 return true; 1645 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio))) 1646 return true; 1647 1648 /* 1649 * This check implies we don't kill processes if their pages 1650 * are in the swap cache early. Those are always late kills. 1651 */ 1652 if (!folio_mapped(folio)) 1653 return true; 1654 1655 /* 1656 * First collect all the processes that have the page 1657 * mapped in dirty form. This has to be done before try_to_unmap, 1658 * because ttu takes the rmap data structures down. 1659 */ 1660 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 1661 1662 unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL); 1663 if (!unmap_success) 1664 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n", 1665 pfn, folio_mapcount(folio)); 1666 1667 /* 1668 * try_to_unmap() might put mlocked page in lru cache, so call 1669 * shake_page() again to ensure that it's flushed. 1670 */ 1671 if (mlocked) 1672 shake_folio(folio); 1673 1674 /* 1675 * Now that the dirty bit has been propagated to the 1676 * struct page and all unmaps done we can decide if 1677 * killing is needed or not. Only kill when the page 1678 * was dirty or the process is not restartable, 1679 * otherwise the tokill list is merely 1680 * freed. When there was a problem unmapping earlier 1681 * use a more force-full uncatchable kill to prevent 1682 * any accesses to the poisoned memory. 1683 */ 1684 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) || 1685 !unmap_success; 1686 kill_procs(&tokill, forcekill, pfn, flags); 1687 1688 return unmap_success; 1689 } 1690 1691 static int identify_page_state(unsigned long pfn, struct page *p, 1692 unsigned long page_flags) 1693 { 1694 struct page_state *ps; 1695 1696 /* 1697 * The first check uses the current page flags which may not have any 1698 * relevant information. The second check with the saved page flags is 1699 * carried out only if the first check can't determine the page status. 1700 */ 1701 for (ps = error_states;; ps++) 1702 if ((p->flags & ps->mask) == ps->res) 1703 break; 1704 1705 page_flags |= (p->flags & (1UL << PG_dirty)); 1706 1707 if (!ps->mask) 1708 for (ps = error_states;; ps++) 1709 if ((page_flags & ps->mask) == ps->res) 1710 break; 1711 return page_action(ps, p, pfn); 1712 } 1713 1714 /* 1715 * When 'release' is 'false', it means that if thp split has failed, 1716 * there is still more to do, hence the page refcount we took earlier 1717 * is still needed. 1718 */ 1719 static int try_to_split_thp_page(struct page *page, bool release) 1720 { 1721 int ret; 1722 1723 lock_page(page); 1724 ret = split_huge_page(page); 1725 unlock_page(page); 1726 1727 if (ret && release) 1728 put_page(page); 1729 1730 return ret; 1731 } 1732 1733 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1734 struct address_space *mapping, pgoff_t index, int flags) 1735 { 1736 struct to_kill *tk; 1737 unsigned long size = 0; 1738 1739 list_for_each_entry(tk, to_kill, nd) 1740 if (tk->size_shift) 1741 size = max(size, 1UL << tk->size_shift); 1742 1743 if (size) { 1744 /* 1745 * Unmap the largest mapping to avoid breaking up device-dax 1746 * mappings which are constant size. The actual size of the 1747 * mapping being torn down is communicated in siginfo, see 1748 * kill_proc() 1749 */ 1750 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1); 1751 1752 unmap_mapping_range(mapping, start, size, 0); 1753 } 1754 1755 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags); 1756 } 1757 1758 /* 1759 * Only dev_pagemap pages get here, such as fsdax when the filesystem 1760 * either do not claim or fails to claim a hwpoison event, or devdax. 1761 * The fsdax pages are initialized per base page, and the devdax pages 1762 * could be initialized either as base pages, or as compound pages with 1763 * vmemmap optimization enabled. Devdax is simplistic in its dealing with 1764 * hwpoison, such that, if a subpage of a compound page is poisoned, 1765 * simply mark the compound head page is by far sufficient. 1766 */ 1767 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1768 struct dev_pagemap *pgmap) 1769 { 1770 struct folio *folio = pfn_folio(pfn); 1771 LIST_HEAD(to_kill); 1772 dax_entry_t cookie; 1773 int rc = 0; 1774 1775 /* 1776 * Prevent the inode from being freed while we are interrogating 1777 * the address_space, typically this would be handled by 1778 * lock_page(), but dax pages do not use the page lock. This 1779 * also prevents changes to the mapping of this pfn until 1780 * poison signaling is complete. 1781 */ 1782 cookie = dax_lock_folio(folio); 1783 if (!cookie) 1784 return -EBUSY; 1785 1786 if (hwpoison_filter(&folio->page)) { 1787 rc = -EOPNOTSUPP; 1788 goto unlock; 1789 } 1790 1791 switch (pgmap->type) { 1792 case MEMORY_DEVICE_PRIVATE: 1793 case MEMORY_DEVICE_COHERENT: 1794 /* 1795 * TODO: Handle device pages which may need coordination 1796 * with device-side memory. 1797 */ 1798 rc = -ENXIO; 1799 goto unlock; 1800 default: 1801 break; 1802 } 1803 1804 /* 1805 * Use this flag as an indication that the dax page has been 1806 * remapped UC to prevent speculative consumption of poison. 1807 */ 1808 SetPageHWPoison(&folio->page); 1809 1810 /* 1811 * Unlike System-RAM there is no possibility to swap in a 1812 * different physical page at a given virtual address, so all 1813 * userspace consumption of ZONE_DEVICE memory necessitates 1814 * SIGBUS (i.e. MF_MUST_KILL) 1815 */ 1816 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1817 collect_procs(folio, &folio->page, &to_kill, true); 1818 1819 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags); 1820 unlock: 1821 dax_unlock_folio(folio, cookie); 1822 return rc; 1823 } 1824 1825 #ifdef CONFIG_FS_DAX 1826 /** 1827 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1828 * @mapping: address_space of the file in use 1829 * @index: start pgoff of the range within the file 1830 * @count: length of the range, in unit of PAGE_SIZE 1831 * @mf_flags: memory failure flags 1832 */ 1833 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1834 unsigned long count, int mf_flags) 1835 { 1836 LIST_HEAD(to_kill); 1837 dax_entry_t cookie; 1838 struct page *page; 1839 size_t end = index + count; 1840 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE; 1841 1842 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1843 1844 for (; index < end; index++) { 1845 page = NULL; 1846 cookie = dax_lock_mapping_entry(mapping, index, &page); 1847 if (!cookie) 1848 return -EBUSY; 1849 if (!page) 1850 goto unlock; 1851 1852 if (!pre_remove) 1853 SetPageHWPoison(page); 1854 1855 /* 1856 * The pre_remove case is revoking access, the memory is still 1857 * good and could theoretically be put back into service. 1858 */ 1859 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove); 1860 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1861 index, mf_flags); 1862 unlock: 1863 dax_unlock_mapping_entry(mapping, index, cookie); 1864 } 1865 return 0; 1866 } 1867 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1868 #endif /* CONFIG_FS_DAX */ 1869 1870 #ifdef CONFIG_HUGETLB_PAGE 1871 1872 /* 1873 * Struct raw_hwp_page represents information about "raw error page", 1874 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1875 */ 1876 struct raw_hwp_page { 1877 struct llist_node node; 1878 struct page *page; 1879 }; 1880 1881 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1882 { 1883 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1884 } 1885 1886 bool is_raw_hwpoison_page_in_hugepage(struct page *page) 1887 { 1888 struct llist_head *raw_hwp_head; 1889 struct raw_hwp_page *p; 1890 struct folio *folio = page_folio(page); 1891 bool ret = false; 1892 1893 if (!folio_test_hwpoison(folio)) 1894 return false; 1895 1896 if (!folio_test_hugetlb(folio)) 1897 return PageHWPoison(page); 1898 1899 /* 1900 * When RawHwpUnreliable is set, kernel lost track of which subpages 1901 * are HWPOISON. So return as if ALL subpages are HWPOISONed. 1902 */ 1903 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1904 return true; 1905 1906 mutex_lock(&mf_mutex); 1907 1908 raw_hwp_head = raw_hwp_list_head(folio); 1909 llist_for_each_entry(p, raw_hwp_head->first, node) { 1910 if (page == p->page) { 1911 ret = true; 1912 break; 1913 } 1914 } 1915 1916 mutex_unlock(&mf_mutex); 1917 1918 return ret; 1919 } 1920 1921 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1922 { 1923 struct llist_node *head; 1924 struct raw_hwp_page *p, *next; 1925 unsigned long count = 0; 1926 1927 head = llist_del_all(raw_hwp_list_head(folio)); 1928 llist_for_each_entry_safe(p, next, head, node) { 1929 if (move_flag) 1930 SetPageHWPoison(p->page); 1931 else 1932 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1933 kfree(p); 1934 count++; 1935 } 1936 return count; 1937 } 1938 1939 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1940 { 1941 struct llist_head *head; 1942 struct raw_hwp_page *raw_hwp; 1943 struct raw_hwp_page *p; 1944 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1945 1946 /* 1947 * Once the hwpoison hugepage has lost reliable raw error info, 1948 * there is little meaning to keep additional error info precisely, 1949 * so skip to add additional raw error info. 1950 */ 1951 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1952 return -EHWPOISON; 1953 head = raw_hwp_list_head(folio); 1954 llist_for_each_entry(p, head->first, node) { 1955 if (p->page == page) 1956 return -EHWPOISON; 1957 } 1958 1959 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1960 if (raw_hwp) { 1961 raw_hwp->page = page; 1962 llist_add(&raw_hwp->node, head); 1963 /* the first error event will be counted in action_result(). */ 1964 if (ret) 1965 num_poisoned_pages_inc(page_to_pfn(page)); 1966 } else { 1967 /* 1968 * Failed to save raw error info. We no longer trace all 1969 * hwpoisoned subpages, and we need refuse to free/dissolve 1970 * this hwpoisoned hugepage. 1971 */ 1972 folio_set_hugetlb_raw_hwp_unreliable(folio); 1973 /* 1974 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1975 * used any more, so free it. 1976 */ 1977 __folio_free_raw_hwp(folio, false); 1978 } 1979 return ret; 1980 } 1981 1982 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1983 { 1984 /* 1985 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1986 * pages for tail pages are required but they don't exist. 1987 */ 1988 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1989 return 0; 1990 1991 /* 1992 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1993 * definition. 1994 */ 1995 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1996 return 0; 1997 1998 return __folio_free_raw_hwp(folio, move_flag); 1999 } 2000 2001 void folio_clear_hugetlb_hwpoison(struct folio *folio) 2002 { 2003 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 2004 return; 2005 if (folio_test_hugetlb_vmemmap_optimized(folio)) 2006 return; 2007 folio_clear_hwpoison(folio); 2008 folio_free_raw_hwp(folio, true); 2009 } 2010 2011 /* 2012 * Called from hugetlb code with hugetlb_lock held. 2013 * 2014 * Return values: 2015 * 0 - free hugepage 2016 * 1 - in-use hugepage 2017 * 2 - not a hugepage 2018 * -EBUSY - the hugepage is busy (try to retry) 2019 * -EHWPOISON - the hugepage is already hwpoisoned 2020 */ 2021 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 2022 bool *migratable_cleared) 2023 { 2024 struct page *page = pfn_to_page(pfn); 2025 struct folio *folio = page_folio(page); 2026 int ret = 2; /* fallback to normal page handling */ 2027 bool count_increased = false; 2028 2029 if (!folio_test_hugetlb(folio)) 2030 goto out; 2031 2032 if (flags & MF_COUNT_INCREASED) { 2033 ret = 1; 2034 count_increased = true; 2035 } else if (folio_test_hugetlb_freed(folio)) { 2036 ret = 0; 2037 } else if (folio_test_hugetlb_migratable(folio)) { 2038 ret = folio_try_get(folio); 2039 if (ret) 2040 count_increased = true; 2041 } else { 2042 ret = -EBUSY; 2043 if (!(flags & MF_NO_RETRY)) 2044 goto out; 2045 } 2046 2047 if (folio_set_hugetlb_hwpoison(folio, page)) { 2048 ret = -EHWPOISON; 2049 goto out; 2050 } 2051 2052 /* 2053 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 2054 * from being migrated by memory hotremove. 2055 */ 2056 if (count_increased && folio_test_hugetlb_migratable(folio)) { 2057 folio_clear_hugetlb_migratable(folio); 2058 *migratable_cleared = true; 2059 } 2060 2061 return ret; 2062 out: 2063 if (count_increased) 2064 folio_put(folio); 2065 return ret; 2066 } 2067 2068 /* 2069 * Taking refcount of hugetlb pages needs extra care about race conditions 2070 * with basic operations like hugepage allocation/free/demotion. 2071 * So some of prechecks for hwpoison (pinning, and testing/setting 2072 * PageHWPoison) should be done in single hugetlb_lock range. 2073 */ 2074 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2075 { 2076 int res; 2077 struct page *p = pfn_to_page(pfn); 2078 struct folio *folio; 2079 unsigned long page_flags; 2080 bool migratable_cleared = false; 2081 2082 *hugetlb = 1; 2083 retry: 2084 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 2085 if (res == 2) { /* fallback to normal page handling */ 2086 *hugetlb = 0; 2087 return 0; 2088 } else if (res == -EHWPOISON) { 2089 pr_err("%#lx: already hardware poisoned\n", pfn); 2090 if (flags & MF_ACTION_REQUIRED) { 2091 folio = page_folio(p); 2092 res = kill_accessing_process(current, folio_pfn(folio), flags); 2093 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); 2094 } 2095 return res; 2096 } else if (res == -EBUSY) { 2097 if (!(flags & MF_NO_RETRY)) { 2098 flags |= MF_NO_RETRY; 2099 goto retry; 2100 } 2101 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); 2102 } 2103 2104 folio = page_folio(p); 2105 folio_lock(folio); 2106 2107 if (hwpoison_filter(p)) { 2108 folio_clear_hugetlb_hwpoison(folio); 2109 if (migratable_cleared) 2110 folio_set_hugetlb_migratable(folio); 2111 folio_unlock(folio); 2112 if (res == 1) 2113 folio_put(folio); 2114 return -EOPNOTSUPP; 2115 } 2116 2117 /* 2118 * Handling free hugepage. The possible race with hugepage allocation 2119 * or demotion can be prevented by PageHWPoison flag. 2120 */ 2121 if (res == 0) { 2122 folio_unlock(folio); 2123 if (__page_handle_poison(p) > 0) { 2124 page_ref_inc(p); 2125 res = MF_RECOVERED; 2126 } else { 2127 res = MF_FAILED; 2128 } 2129 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2130 } 2131 2132 page_flags = folio->flags; 2133 2134 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2135 folio_unlock(folio); 2136 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); 2137 } 2138 2139 return identify_page_state(pfn, p, page_flags); 2140 } 2141 2142 #else 2143 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2144 { 2145 return 0; 2146 } 2147 2148 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2149 { 2150 return 0; 2151 } 2152 #endif /* CONFIG_HUGETLB_PAGE */ 2153 2154 /* Drop the extra refcount in case we come from madvise() */ 2155 static void put_ref_page(unsigned long pfn, int flags) 2156 { 2157 if (!(flags & MF_COUNT_INCREASED)) 2158 return; 2159 2160 put_page(pfn_to_page(pfn)); 2161 } 2162 2163 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2164 struct dev_pagemap *pgmap) 2165 { 2166 int rc = -ENXIO; 2167 2168 /* device metadata space is not recoverable */ 2169 if (!pgmap_pfn_valid(pgmap, pfn)) 2170 goto out; 2171 2172 /* 2173 * Call driver's implementation to handle the memory failure, otherwise 2174 * fall back to generic handler. 2175 */ 2176 if (pgmap_has_memory_failure(pgmap)) { 2177 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2178 /* 2179 * Fall back to generic handler too if operation is not 2180 * supported inside the driver/device/filesystem. 2181 */ 2182 if (rc != -EOPNOTSUPP) 2183 goto out; 2184 } 2185 2186 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2187 out: 2188 /* drop pgmap ref acquired in caller */ 2189 put_dev_pagemap(pgmap); 2190 if (rc != -EOPNOTSUPP) 2191 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2192 return rc; 2193 } 2194 2195 /* 2196 * The calling condition is as such: thp split failed, page might have 2197 * been RDMA pinned, not much can be done for recovery. 2198 * But a SIGBUS should be delivered with vaddr provided so that the user 2199 * application has a chance to recover. Also, application processes' 2200 * election for MCE early killed will be honored. 2201 */ 2202 static void kill_procs_now(struct page *p, unsigned long pfn, int flags, 2203 struct folio *folio) 2204 { 2205 LIST_HEAD(tokill); 2206 2207 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 2208 kill_procs(&tokill, true, pfn, flags); 2209 } 2210 2211 /** 2212 * memory_failure - Handle memory failure of a page. 2213 * @pfn: Page Number of the corrupted page 2214 * @flags: fine tune action taken 2215 * 2216 * This function is called by the low level machine check code 2217 * of an architecture when it detects hardware memory corruption 2218 * of a page. It tries its best to recover, which includes 2219 * dropping pages, killing processes etc. 2220 * 2221 * The function is primarily of use for corruptions that 2222 * happen outside the current execution context (e.g. when 2223 * detected by a background scrubber) 2224 * 2225 * Must run in process context (e.g. a work queue) with interrupts 2226 * enabled and no spinlocks held. 2227 * 2228 * Return: 2229 * 0 - success, 2230 * -ENXIO - memory not managed by the kernel 2231 * -EOPNOTSUPP - hwpoison_filter() filtered the error event, 2232 * -EHWPOISON - the page was already poisoned, potentially 2233 * kill process, 2234 * other negative values - failure. 2235 */ 2236 int memory_failure(unsigned long pfn, int flags) 2237 { 2238 struct page *p; 2239 struct folio *folio; 2240 struct dev_pagemap *pgmap; 2241 int res = 0; 2242 unsigned long page_flags; 2243 bool retry = true; 2244 int hugetlb = 0; 2245 2246 if (!sysctl_memory_failure_recovery) 2247 panic("Memory failure on page %lx", pfn); 2248 2249 mutex_lock(&mf_mutex); 2250 2251 if (!(flags & MF_SW_SIMULATED)) 2252 hw_memory_failure = true; 2253 2254 p = pfn_to_online_page(pfn); 2255 if (!p) { 2256 res = arch_memory_failure(pfn, flags); 2257 if (res == 0) 2258 goto unlock_mutex; 2259 2260 if (pfn_valid(pfn)) { 2261 pgmap = get_dev_pagemap(pfn, NULL); 2262 put_ref_page(pfn, flags); 2263 if (pgmap) { 2264 res = memory_failure_dev_pagemap(pfn, flags, 2265 pgmap); 2266 goto unlock_mutex; 2267 } 2268 } 2269 pr_err("%#lx: memory outside kernel control\n", pfn); 2270 res = -ENXIO; 2271 goto unlock_mutex; 2272 } 2273 2274 try_again: 2275 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2276 if (hugetlb) 2277 goto unlock_mutex; 2278 2279 if (TestSetPageHWPoison(p)) { 2280 pr_err("%#lx: already hardware poisoned\n", pfn); 2281 res = -EHWPOISON; 2282 if (flags & MF_ACTION_REQUIRED) 2283 res = kill_accessing_process(current, pfn, flags); 2284 if (flags & MF_COUNT_INCREASED) 2285 put_page(p); 2286 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); 2287 goto unlock_mutex; 2288 } 2289 2290 /* 2291 * We need/can do nothing about count=0 pages. 2292 * 1) it's a free page, and therefore in safe hand: 2293 * check_new_page() will be the gate keeper. 2294 * 2) it's part of a non-compound high order page. 2295 * Implies some kernel user: cannot stop them from 2296 * R/W the page; let's pray that the page has been 2297 * used and will be freed some time later. 2298 * In fact it's dangerous to directly bump up page count from 0, 2299 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2300 */ 2301 if (!(flags & MF_COUNT_INCREASED)) { 2302 res = get_hwpoison_page(p, flags); 2303 if (!res) { 2304 if (is_free_buddy_page(p)) { 2305 if (take_page_off_buddy(p)) { 2306 page_ref_inc(p); 2307 res = MF_RECOVERED; 2308 } else { 2309 /* We lost the race, try again */ 2310 if (retry) { 2311 ClearPageHWPoison(p); 2312 retry = false; 2313 goto try_again; 2314 } 2315 res = MF_FAILED; 2316 } 2317 res = action_result(pfn, MF_MSG_BUDDY, res); 2318 } else { 2319 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2320 } 2321 goto unlock_mutex; 2322 } else if (res < 0) { 2323 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); 2324 goto unlock_mutex; 2325 } 2326 } 2327 2328 folio = page_folio(p); 2329 2330 /* filter pages that are protected from hwpoison test by users */ 2331 folio_lock(folio); 2332 if (hwpoison_filter(p)) { 2333 ClearPageHWPoison(p); 2334 folio_unlock(folio); 2335 folio_put(folio); 2336 res = -EOPNOTSUPP; 2337 goto unlock_mutex; 2338 } 2339 folio_unlock(folio); 2340 2341 if (folio_test_large(folio)) { 2342 /* 2343 * The flag must be set after the refcount is bumped 2344 * otherwise it may race with THP split. 2345 * And the flag can't be set in get_hwpoison_page() since 2346 * it is called by soft offline too and it is just called 2347 * for !MF_COUNT_INCREASED. So here seems to be the best 2348 * place. 2349 * 2350 * Don't need care about the above error handling paths for 2351 * get_hwpoison_page() since they handle either free page 2352 * or unhandlable page. The refcount is bumped iff the 2353 * page is a valid handlable page. 2354 */ 2355 folio_set_has_hwpoisoned(folio); 2356 if (try_to_split_thp_page(p, false) < 0) { 2357 res = -EHWPOISON; 2358 kill_procs_now(p, pfn, flags, folio); 2359 put_page(p); 2360 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED); 2361 goto unlock_mutex; 2362 } 2363 VM_BUG_ON_PAGE(!page_count(p), p); 2364 folio = page_folio(p); 2365 } 2366 2367 /* 2368 * We ignore non-LRU pages for good reasons. 2369 * - PG_locked is only well defined for LRU pages and a few others 2370 * - to avoid races with __SetPageLocked() 2371 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2372 * The check (unnecessarily) ignores LRU pages being isolated and 2373 * walked by the page reclaim code, however that's not a big loss. 2374 */ 2375 shake_folio(folio); 2376 2377 folio_lock(folio); 2378 2379 /* 2380 * We're only intended to deal with the non-Compound page here. 2381 * The page cannot become compound pages again as folio has been 2382 * splited and extra refcnt is held. 2383 */ 2384 WARN_ON(folio_test_large(folio)); 2385 2386 /* 2387 * We use page flags to determine what action should be taken, but 2388 * the flags can be modified by the error containment action. One 2389 * example is an mlocked page, where PG_mlocked is cleared by 2390 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page 2391 * status correctly, we save a copy of the page flags at this time. 2392 */ 2393 page_flags = folio->flags; 2394 2395 /* 2396 * __munlock_folio() may clear a writeback folio's LRU flag without 2397 * the folio lock. We need to wait for writeback completion for this 2398 * folio or it may trigger a vfs BUG while evicting inode. 2399 */ 2400 if (!folio_test_lru(folio) && !folio_test_writeback(folio)) 2401 goto identify_page_state; 2402 2403 /* 2404 * It's very difficult to mess with pages currently under IO 2405 * and in many cases impossible, so we just avoid it here. 2406 */ 2407 folio_wait_writeback(folio); 2408 2409 /* 2410 * Now take care of user space mappings. 2411 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2412 */ 2413 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2414 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); 2415 goto unlock_page; 2416 } 2417 2418 /* 2419 * Torn down by someone else? 2420 */ 2421 if (folio_test_lru(folio) && !folio_test_swapcache(folio) && 2422 folio->mapping == NULL) { 2423 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2424 goto unlock_page; 2425 } 2426 2427 identify_page_state: 2428 res = identify_page_state(pfn, p, page_flags); 2429 mutex_unlock(&mf_mutex); 2430 return res; 2431 unlock_page: 2432 folio_unlock(folio); 2433 unlock_mutex: 2434 mutex_unlock(&mf_mutex); 2435 return res; 2436 } 2437 EXPORT_SYMBOL_GPL(memory_failure); 2438 2439 #define MEMORY_FAILURE_FIFO_ORDER 4 2440 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2441 2442 struct memory_failure_entry { 2443 unsigned long pfn; 2444 int flags; 2445 }; 2446 2447 struct memory_failure_cpu { 2448 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2449 MEMORY_FAILURE_FIFO_SIZE); 2450 raw_spinlock_t lock; 2451 struct work_struct work; 2452 }; 2453 2454 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2455 2456 /** 2457 * memory_failure_queue - Schedule handling memory failure of a page. 2458 * @pfn: Page Number of the corrupted page 2459 * @flags: Flags for memory failure handling 2460 * 2461 * This function is called by the low level hardware error handler 2462 * when it detects hardware memory corruption of a page. It schedules 2463 * the recovering of error page, including dropping pages, killing 2464 * processes etc. 2465 * 2466 * The function is primarily of use for corruptions that 2467 * happen outside the current execution context (e.g. when 2468 * detected by a background scrubber) 2469 * 2470 * Can run in IRQ context. 2471 */ 2472 void memory_failure_queue(unsigned long pfn, int flags) 2473 { 2474 struct memory_failure_cpu *mf_cpu; 2475 unsigned long proc_flags; 2476 bool buffer_overflow; 2477 struct memory_failure_entry entry = { 2478 .pfn = pfn, 2479 .flags = flags, 2480 }; 2481 2482 mf_cpu = &get_cpu_var(memory_failure_cpu); 2483 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2484 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry); 2485 if (!buffer_overflow) 2486 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2487 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2488 put_cpu_var(memory_failure_cpu); 2489 if (buffer_overflow) 2490 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2491 pfn); 2492 } 2493 EXPORT_SYMBOL_GPL(memory_failure_queue); 2494 2495 static void memory_failure_work_func(struct work_struct *work) 2496 { 2497 struct memory_failure_cpu *mf_cpu; 2498 struct memory_failure_entry entry = { 0, }; 2499 unsigned long proc_flags; 2500 int gotten; 2501 2502 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2503 for (;;) { 2504 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2505 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2506 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2507 if (!gotten) 2508 break; 2509 if (entry.flags & MF_SOFT_OFFLINE) 2510 soft_offline_page(entry.pfn, entry.flags); 2511 else 2512 memory_failure(entry.pfn, entry.flags); 2513 } 2514 } 2515 2516 static int __init memory_failure_init(void) 2517 { 2518 struct memory_failure_cpu *mf_cpu; 2519 int cpu; 2520 2521 for_each_possible_cpu(cpu) { 2522 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2523 raw_spin_lock_init(&mf_cpu->lock); 2524 INIT_KFIFO(mf_cpu->fifo); 2525 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2526 } 2527 2528 register_sysctl_init("vm", memory_failure_table); 2529 2530 return 0; 2531 } 2532 core_initcall(memory_failure_init); 2533 2534 #undef pr_fmt 2535 #define pr_fmt(fmt) "Unpoison: " fmt 2536 #define unpoison_pr_info(fmt, pfn, rs) \ 2537 ({ \ 2538 if (__ratelimit(rs)) \ 2539 pr_info(fmt, pfn); \ 2540 }) 2541 2542 /** 2543 * unpoison_memory - Unpoison a previously poisoned page 2544 * @pfn: Page number of the to be unpoisoned page 2545 * 2546 * Software-unpoison a page that has been poisoned by 2547 * memory_failure() earlier. 2548 * 2549 * This is only done on the software-level, so it only works 2550 * for linux injected failures, not real hardware failures 2551 * 2552 * Returns 0 for success, otherwise -errno. 2553 */ 2554 int unpoison_memory(unsigned long pfn) 2555 { 2556 struct folio *folio; 2557 struct page *p; 2558 int ret = -EBUSY, ghp; 2559 unsigned long count; 2560 bool huge = false; 2561 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2562 DEFAULT_RATELIMIT_BURST); 2563 2564 if (!pfn_valid(pfn)) 2565 return -ENXIO; 2566 2567 p = pfn_to_page(pfn); 2568 folio = page_folio(p); 2569 2570 mutex_lock(&mf_mutex); 2571 2572 if (hw_memory_failure) { 2573 unpoison_pr_info("%#lx: disabled after HW memory failure\n", 2574 pfn, &unpoison_rs); 2575 ret = -EOPNOTSUPP; 2576 goto unlock_mutex; 2577 } 2578 2579 if (is_huge_zero_folio(folio)) { 2580 unpoison_pr_info("%#lx: huge zero page is not supported\n", 2581 pfn, &unpoison_rs); 2582 ret = -EOPNOTSUPP; 2583 goto unlock_mutex; 2584 } 2585 2586 if (!PageHWPoison(p)) { 2587 unpoison_pr_info("%#lx: page was already unpoisoned\n", 2588 pfn, &unpoison_rs); 2589 goto unlock_mutex; 2590 } 2591 2592 if (folio_ref_count(folio) > 1) { 2593 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n", 2594 pfn, &unpoison_rs); 2595 goto unlock_mutex; 2596 } 2597 2598 if (folio_test_slab(folio) || folio_test_pgtable(folio) || 2599 folio_test_reserved(folio) || folio_test_offline(folio)) 2600 goto unlock_mutex; 2601 2602 if (folio_mapped(folio)) { 2603 unpoison_pr_info("%#lx: someone maps the hwpoison page\n", 2604 pfn, &unpoison_rs); 2605 goto unlock_mutex; 2606 } 2607 2608 if (folio_mapping(folio)) { 2609 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n", 2610 pfn, &unpoison_rs); 2611 goto unlock_mutex; 2612 } 2613 2614 ghp = get_hwpoison_page(p, MF_UNPOISON); 2615 if (!ghp) { 2616 if (folio_test_hugetlb(folio)) { 2617 huge = true; 2618 count = folio_free_raw_hwp(folio, false); 2619 if (count == 0) 2620 goto unlock_mutex; 2621 } 2622 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2623 } else if (ghp < 0) { 2624 if (ghp == -EHWPOISON) { 2625 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2626 } else { 2627 ret = ghp; 2628 unpoison_pr_info("%#lx: failed to grab page\n", 2629 pfn, &unpoison_rs); 2630 } 2631 } else { 2632 if (folio_test_hugetlb(folio)) { 2633 huge = true; 2634 count = folio_free_raw_hwp(folio, false); 2635 if (count == 0) { 2636 folio_put(folio); 2637 goto unlock_mutex; 2638 } 2639 } 2640 2641 folio_put(folio); 2642 if (TestClearPageHWPoison(p)) { 2643 folio_put(folio); 2644 ret = 0; 2645 } 2646 } 2647 2648 unlock_mutex: 2649 mutex_unlock(&mf_mutex); 2650 if (!ret) { 2651 if (!huge) 2652 num_poisoned_pages_sub(pfn, 1); 2653 unpoison_pr_info("%#lx: software-unpoisoned page\n", 2654 page_to_pfn(p), &unpoison_rs); 2655 } 2656 return ret; 2657 } 2658 EXPORT_SYMBOL(unpoison_memory); 2659 2660 #undef pr_fmt 2661 #define pr_fmt(fmt) "Soft offline: " fmt 2662 2663 /* 2664 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2665 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2666 * If the page is mapped, it migrates the contents over. 2667 */ 2668 static int soft_offline_in_use_page(struct page *page) 2669 { 2670 long ret = 0; 2671 unsigned long pfn = page_to_pfn(page); 2672 struct folio *folio = page_folio(page); 2673 char const *msg_page[] = {"page", "hugepage"}; 2674 bool huge = folio_test_hugetlb(folio); 2675 bool isolated; 2676 LIST_HEAD(pagelist); 2677 struct migration_target_control mtc = { 2678 .nid = NUMA_NO_NODE, 2679 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2680 .reason = MR_MEMORY_FAILURE, 2681 }; 2682 2683 if (!huge && folio_test_large(folio)) { 2684 if (try_to_split_thp_page(page, true)) { 2685 pr_info("%#lx: thp split failed\n", pfn); 2686 return -EBUSY; 2687 } 2688 folio = page_folio(page); 2689 } 2690 2691 folio_lock(folio); 2692 if (!huge) 2693 folio_wait_writeback(folio); 2694 if (PageHWPoison(page)) { 2695 folio_unlock(folio); 2696 folio_put(folio); 2697 pr_info("%#lx: page already poisoned\n", pfn); 2698 return 0; 2699 } 2700 2701 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio)) 2702 /* 2703 * Try to invalidate first. This should work for 2704 * non dirty unmapped page cache pages. 2705 */ 2706 ret = mapping_evict_folio(folio_mapping(folio), folio); 2707 folio_unlock(folio); 2708 2709 if (ret) { 2710 pr_info("%#lx: invalidated\n", pfn); 2711 page_handle_poison(page, false, true); 2712 return 0; 2713 } 2714 2715 isolated = isolate_folio_to_list(folio, &pagelist); 2716 2717 /* 2718 * If we succeed to isolate the folio, we grabbed another refcount on 2719 * the folio, so we can safely drop the one we got from get_any_page(). 2720 * If we failed to isolate the folio, it means that we cannot go further 2721 * and we will return an error, so drop the reference we got from 2722 * get_any_page() as well. 2723 */ 2724 folio_put(folio); 2725 2726 if (isolated) { 2727 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2728 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2729 if (!ret) { 2730 bool release = !huge; 2731 2732 if (!page_handle_poison(page, huge, release)) 2733 ret = -EBUSY; 2734 } else { 2735 if (!list_empty(&pagelist)) 2736 putback_movable_pages(&pagelist); 2737 2738 pr_info("%#lx: %s migration failed %ld, type %pGp\n", 2739 pfn, msg_page[huge], ret, &page->flags); 2740 if (ret > 0) 2741 ret = -EBUSY; 2742 } 2743 } else { 2744 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n", 2745 pfn, msg_page[huge], page_count(page), &page->flags); 2746 ret = -EBUSY; 2747 } 2748 return ret; 2749 } 2750 2751 /** 2752 * soft_offline_page - Soft offline a page. 2753 * @pfn: pfn to soft-offline 2754 * @flags: flags. Same as memory_failure(). 2755 * 2756 * Returns 0 on success, 2757 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or 2758 * disabled by /proc/sys/vm/enable_soft_offline, 2759 * < 0 otherwise negated errno. 2760 * 2761 * Soft offline a page, by migration or invalidation, 2762 * without killing anything. This is for the case when 2763 * a page is not corrupted yet (so it's still valid to access), 2764 * but has had a number of corrected errors and is better taken 2765 * out. 2766 * 2767 * The actual policy on when to do that is maintained by 2768 * user space. 2769 * 2770 * This should never impact any application or cause data loss, 2771 * however it might take some time. 2772 * 2773 * This is not a 100% solution for all memory, but tries to be 2774 * ``good enough'' for the majority of memory. 2775 */ 2776 int soft_offline_page(unsigned long pfn, int flags) 2777 { 2778 int ret; 2779 bool try_again = true; 2780 struct page *page; 2781 2782 if (!pfn_valid(pfn)) { 2783 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2784 return -ENXIO; 2785 } 2786 2787 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2788 page = pfn_to_online_page(pfn); 2789 if (!page) { 2790 put_ref_page(pfn, flags); 2791 return -EIO; 2792 } 2793 2794 if (!sysctl_enable_soft_offline) { 2795 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n"); 2796 put_ref_page(pfn, flags); 2797 return -EOPNOTSUPP; 2798 } 2799 2800 mutex_lock(&mf_mutex); 2801 2802 if (PageHWPoison(page)) { 2803 pr_info("%#lx: page already poisoned\n", pfn); 2804 put_ref_page(pfn, flags); 2805 mutex_unlock(&mf_mutex); 2806 return 0; 2807 } 2808 2809 retry: 2810 get_online_mems(); 2811 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2812 put_online_mems(); 2813 2814 if (hwpoison_filter(page)) { 2815 if (ret > 0) 2816 put_page(page); 2817 2818 mutex_unlock(&mf_mutex); 2819 return -EOPNOTSUPP; 2820 } 2821 2822 if (ret > 0) { 2823 ret = soft_offline_in_use_page(page); 2824 } else if (ret == 0) { 2825 if (!page_handle_poison(page, true, false)) { 2826 if (try_again) { 2827 try_again = false; 2828 flags &= ~MF_COUNT_INCREASED; 2829 goto retry; 2830 } 2831 ret = -EBUSY; 2832 } 2833 } 2834 2835 mutex_unlock(&mf_mutex); 2836 2837 return ret; 2838 } 2839