1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/dax.h> 46 #include <linux/ksm.h> 47 #include <linux/rmap.h> 48 #include <linux/export.h> 49 #include <linux/pagemap.h> 50 #include <linux/swap.h> 51 #include <linux/backing-dev.h> 52 #include <linux/migrate.h> 53 #include <linux/suspend.h> 54 #include <linux/slab.h> 55 #include <linux/swapops.h> 56 #include <linux/hugetlb.h> 57 #include <linux/memory_hotplug.h> 58 #include <linux/mm_inline.h> 59 #include <linux/memremap.h> 60 #include <linux/kfifo.h> 61 #include <linux/ratelimit.h> 62 #include <linux/page-isolation.h> 63 #include <linux/pagewalk.h> 64 #include <linux/shmem_fs.h> 65 #include "swap.h" 66 #include "internal.h" 67 #include "ras/ras_event.h" 68 69 int sysctl_memory_failure_early_kill __read_mostly = 0; 70 71 int sysctl_memory_failure_recovery __read_mostly = 1; 72 73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 74 75 static bool hw_memory_failure __read_mostly = false; 76 77 /* 78 * Return values: 79 * 1: the page is dissolved (if needed) and taken off from buddy, 80 * 0: the page is dissolved (if needed) and not taken off from buddy, 81 * < 0: failed to dissolve. 82 */ 83 static int __page_handle_poison(struct page *page) 84 { 85 int ret; 86 87 zone_pcp_disable(page_zone(page)); 88 ret = dissolve_free_huge_page(page); 89 if (!ret) 90 ret = take_page_off_buddy(page); 91 zone_pcp_enable(page_zone(page)); 92 93 return ret; 94 } 95 96 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 97 { 98 if (hugepage_or_freepage) { 99 /* 100 * Doing this check for free pages is also fine since dissolve_free_huge_page 101 * returns 0 for non-hugetlb pages as well. 102 */ 103 if (__page_handle_poison(page) <= 0) 104 /* 105 * We could fail to take off the target page from buddy 106 * for example due to racy page allocation, but that's 107 * acceptable because soft-offlined page is not broken 108 * and if someone really want to use it, they should 109 * take it. 110 */ 111 return false; 112 } 113 114 SetPageHWPoison(page); 115 if (release) 116 put_page(page); 117 page_ref_inc(page); 118 num_poisoned_pages_inc(); 119 120 return true; 121 } 122 123 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 124 125 u32 hwpoison_filter_enable = 0; 126 u32 hwpoison_filter_dev_major = ~0U; 127 u32 hwpoison_filter_dev_minor = ~0U; 128 u64 hwpoison_filter_flags_mask; 129 u64 hwpoison_filter_flags_value; 130 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 131 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 132 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 133 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 134 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 135 136 static int hwpoison_filter_dev(struct page *p) 137 { 138 struct address_space *mapping; 139 dev_t dev; 140 141 if (hwpoison_filter_dev_major == ~0U && 142 hwpoison_filter_dev_minor == ~0U) 143 return 0; 144 145 mapping = page_mapping(p); 146 if (mapping == NULL || mapping->host == NULL) 147 return -EINVAL; 148 149 dev = mapping->host->i_sb->s_dev; 150 if (hwpoison_filter_dev_major != ~0U && 151 hwpoison_filter_dev_major != MAJOR(dev)) 152 return -EINVAL; 153 if (hwpoison_filter_dev_minor != ~0U && 154 hwpoison_filter_dev_minor != MINOR(dev)) 155 return -EINVAL; 156 157 return 0; 158 } 159 160 static int hwpoison_filter_flags(struct page *p) 161 { 162 if (!hwpoison_filter_flags_mask) 163 return 0; 164 165 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 166 hwpoison_filter_flags_value) 167 return 0; 168 else 169 return -EINVAL; 170 } 171 172 /* 173 * This allows stress tests to limit test scope to a collection of tasks 174 * by putting them under some memcg. This prevents killing unrelated/important 175 * processes such as /sbin/init. Note that the target task may share clean 176 * pages with init (eg. libc text), which is harmless. If the target task 177 * share _dirty_ pages with another task B, the test scheme must make sure B 178 * is also included in the memcg. At last, due to race conditions this filter 179 * can only guarantee that the page either belongs to the memcg tasks, or is 180 * a freed page. 181 */ 182 #ifdef CONFIG_MEMCG 183 u64 hwpoison_filter_memcg; 184 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 185 static int hwpoison_filter_task(struct page *p) 186 { 187 if (!hwpoison_filter_memcg) 188 return 0; 189 190 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 191 return -EINVAL; 192 193 return 0; 194 } 195 #else 196 static int hwpoison_filter_task(struct page *p) { return 0; } 197 #endif 198 199 int hwpoison_filter(struct page *p) 200 { 201 if (!hwpoison_filter_enable) 202 return 0; 203 204 if (hwpoison_filter_dev(p)) 205 return -EINVAL; 206 207 if (hwpoison_filter_flags(p)) 208 return -EINVAL; 209 210 if (hwpoison_filter_task(p)) 211 return -EINVAL; 212 213 return 0; 214 } 215 #else 216 int hwpoison_filter(struct page *p) 217 { 218 return 0; 219 } 220 #endif 221 222 EXPORT_SYMBOL_GPL(hwpoison_filter); 223 224 /* 225 * Kill all processes that have a poisoned page mapped and then isolate 226 * the page. 227 * 228 * General strategy: 229 * Find all processes having the page mapped and kill them. 230 * But we keep a page reference around so that the page is not 231 * actually freed yet. 232 * Then stash the page away 233 * 234 * There's no convenient way to get back to mapped processes 235 * from the VMAs. So do a brute-force search over all 236 * running processes. 237 * 238 * Remember that machine checks are not common (or rather 239 * if they are common you have other problems), so this shouldn't 240 * be a performance issue. 241 * 242 * Also there are some races possible while we get from the 243 * error detection to actually handle it. 244 */ 245 246 struct to_kill { 247 struct list_head nd; 248 struct task_struct *tsk; 249 unsigned long addr; 250 short size_shift; 251 }; 252 253 /* 254 * Send all the processes who have the page mapped a signal. 255 * ``action optional'' if they are not immediately affected by the error 256 * ``action required'' if error happened in current execution context 257 */ 258 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 259 { 260 struct task_struct *t = tk->tsk; 261 short addr_lsb = tk->size_shift; 262 int ret = 0; 263 264 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 265 pfn, t->comm, t->pid); 266 267 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 268 ret = force_sig_mceerr(BUS_MCEERR_AR, 269 (void __user *)tk->addr, addr_lsb); 270 else 271 /* 272 * Signal other processes sharing the page if they have 273 * PF_MCE_EARLY set. 274 * Don't use force here, it's convenient if the signal 275 * can be temporarily blocked. 276 * This could cause a loop when the user sets SIGBUS 277 * to SIG_IGN, but hopefully no one will do that? 278 */ 279 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 280 addr_lsb, t); /* synchronous? */ 281 if (ret < 0) 282 pr_info("Error sending signal to %s:%d: %d\n", 283 t->comm, t->pid, ret); 284 return ret; 285 } 286 287 /* 288 * Unknown page type encountered. Try to check whether it can turn PageLRU by 289 * lru_add_drain_all. 290 */ 291 void shake_page(struct page *p) 292 { 293 if (PageHuge(p)) 294 return; 295 296 if (!PageSlab(p)) { 297 lru_add_drain_all(); 298 if (PageLRU(p) || is_free_buddy_page(p)) 299 return; 300 } 301 302 /* 303 * TODO: Could shrink slab caches here if a lightweight range-based 304 * shrinker will be available. 305 */ 306 } 307 EXPORT_SYMBOL_GPL(shake_page); 308 309 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 310 unsigned long address) 311 { 312 unsigned long ret = 0; 313 pgd_t *pgd; 314 p4d_t *p4d; 315 pud_t *pud; 316 pmd_t *pmd; 317 pte_t *pte; 318 319 VM_BUG_ON_VMA(address == -EFAULT, vma); 320 pgd = pgd_offset(vma->vm_mm, address); 321 if (!pgd_present(*pgd)) 322 return 0; 323 p4d = p4d_offset(pgd, address); 324 if (!p4d_present(*p4d)) 325 return 0; 326 pud = pud_offset(p4d, address); 327 if (!pud_present(*pud)) 328 return 0; 329 if (pud_devmap(*pud)) 330 return PUD_SHIFT; 331 pmd = pmd_offset(pud, address); 332 if (!pmd_present(*pmd)) 333 return 0; 334 if (pmd_devmap(*pmd)) 335 return PMD_SHIFT; 336 pte = pte_offset_map(pmd, address); 337 if (pte_present(*pte) && pte_devmap(*pte)) 338 ret = PAGE_SHIFT; 339 pte_unmap(pte); 340 return ret; 341 } 342 343 /* 344 * Failure handling: if we can't find or can't kill a process there's 345 * not much we can do. We just print a message and ignore otherwise. 346 */ 347 348 #define FSDAX_INVALID_PGOFF ULONG_MAX 349 350 /* 351 * Schedule a process for later kill. 352 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 353 * 354 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a 355 * filesystem with a memory failure handler has claimed the 356 * memory_failure event. In all other cases, page->index and 357 * page->mapping are sufficient for mapping the page back to its 358 * corresponding user virtual address. 359 */ 360 static void add_to_kill(struct task_struct *tsk, struct page *p, 361 pgoff_t fsdax_pgoff, struct vm_area_struct *vma, 362 struct list_head *to_kill) 363 { 364 struct to_kill *tk; 365 366 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 367 if (!tk) { 368 pr_err("Out of memory while machine check handling\n"); 369 return; 370 } 371 372 tk->addr = page_address_in_vma(p, vma); 373 if (is_zone_device_page(p)) { 374 if (fsdax_pgoff != FSDAX_INVALID_PGOFF) 375 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma); 376 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 377 } else 378 tk->size_shift = page_shift(compound_head(p)); 379 380 /* 381 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 382 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 383 * so "tk->size_shift == 0" effectively checks no mapping on 384 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 385 * to a process' address space, it's possible not all N VMAs 386 * contain mappings for the page, but at least one VMA does. 387 * Only deliver SIGBUS with payload derived from the VMA that 388 * has a mapping for the page. 389 */ 390 if (tk->addr == -EFAULT) { 391 pr_info("Unable to find user space address %lx in %s\n", 392 page_to_pfn(p), tsk->comm); 393 } else if (tk->size_shift == 0) { 394 kfree(tk); 395 return; 396 } 397 398 get_task_struct(tsk); 399 tk->tsk = tsk; 400 list_add_tail(&tk->nd, to_kill); 401 } 402 403 /* 404 * Kill the processes that have been collected earlier. 405 * 406 * Only do anything when FORCEKILL is set, otherwise just free the 407 * list (this is used for clean pages which do not need killing) 408 * Also when FAIL is set do a force kill because something went 409 * wrong earlier. 410 */ 411 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 412 unsigned long pfn, int flags) 413 { 414 struct to_kill *tk, *next; 415 416 list_for_each_entry_safe (tk, next, to_kill, nd) { 417 if (forcekill) { 418 /* 419 * In case something went wrong with munmapping 420 * make sure the process doesn't catch the 421 * signal and then access the memory. Just kill it. 422 */ 423 if (fail || tk->addr == -EFAULT) { 424 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 425 pfn, tk->tsk->comm, tk->tsk->pid); 426 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 427 tk->tsk, PIDTYPE_PID); 428 } 429 430 /* 431 * In theory the process could have mapped 432 * something else on the address in-between. We could 433 * check for that, but we need to tell the 434 * process anyways. 435 */ 436 else if (kill_proc(tk, pfn, flags) < 0) 437 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 438 pfn, tk->tsk->comm, tk->tsk->pid); 439 } 440 put_task_struct(tk->tsk); 441 kfree(tk); 442 } 443 } 444 445 /* 446 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 447 * on behalf of the thread group. Return task_struct of the (first found) 448 * dedicated thread if found, and return NULL otherwise. 449 * 450 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 451 * have to call rcu_read_lock/unlock() in this function. 452 */ 453 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 454 { 455 struct task_struct *t; 456 457 for_each_thread(tsk, t) { 458 if (t->flags & PF_MCE_PROCESS) { 459 if (t->flags & PF_MCE_EARLY) 460 return t; 461 } else { 462 if (sysctl_memory_failure_early_kill) 463 return t; 464 } 465 } 466 return NULL; 467 } 468 469 /* 470 * Determine whether a given process is "early kill" process which expects 471 * to be signaled when some page under the process is hwpoisoned. 472 * Return task_struct of the dedicated thread (main thread unless explicitly 473 * specified) if the process is "early kill" and otherwise returns NULL. 474 * 475 * Note that the above is true for Action Optional case. For Action Required 476 * case, it's only meaningful to the current thread which need to be signaled 477 * with SIGBUS, this error is Action Optional for other non current 478 * processes sharing the same error page,if the process is "early kill", the 479 * task_struct of the dedicated thread will also be returned. 480 */ 481 static struct task_struct *task_early_kill(struct task_struct *tsk, 482 int force_early) 483 { 484 if (!tsk->mm) 485 return NULL; 486 /* 487 * Comparing ->mm here because current task might represent 488 * a subthread, while tsk always points to the main thread. 489 */ 490 if (force_early && tsk->mm == current->mm) 491 return current; 492 493 return find_early_kill_thread(tsk); 494 } 495 496 /* 497 * Collect processes when the error hit an anonymous page. 498 */ 499 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 500 int force_early) 501 { 502 struct folio *folio = page_folio(page); 503 struct vm_area_struct *vma; 504 struct task_struct *tsk; 505 struct anon_vma *av; 506 pgoff_t pgoff; 507 508 av = folio_lock_anon_vma_read(folio, NULL); 509 if (av == NULL) /* Not actually mapped anymore */ 510 return; 511 512 pgoff = page_to_pgoff(page); 513 read_lock(&tasklist_lock); 514 for_each_process (tsk) { 515 struct anon_vma_chain *vmac; 516 struct task_struct *t = task_early_kill(tsk, force_early); 517 518 if (!t) 519 continue; 520 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 521 pgoff, pgoff) { 522 vma = vmac->vma; 523 if (!page_mapped_in_vma(page, vma)) 524 continue; 525 if (vma->vm_mm == t->mm) 526 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma, 527 to_kill); 528 } 529 } 530 read_unlock(&tasklist_lock); 531 page_unlock_anon_vma_read(av); 532 } 533 534 /* 535 * Collect processes when the error hit a file mapped page. 536 */ 537 static void collect_procs_file(struct page *page, struct list_head *to_kill, 538 int force_early) 539 { 540 struct vm_area_struct *vma; 541 struct task_struct *tsk; 542 struct address_space *mapping = page->mapping; 543 pgoff_t pgoff; 544 545 i_mmap_lock_read(mapping); 546 read_lock(&tasklist_lock); 547 pgoff = page_to_pgoff(page); 548 for_each_process(tsk) { 549 struct task_struct *t = task_early_kill(tsk, force_early); 550 551 if (!t) 552 continue; 553 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 554 pgoff) { 555 /* 556 * Send early kill signal to tasks where a vma covers 557 * the page but the corrupted page is not necessarily 558 * mapped it in its pte. 559 * Assume applications who requested early kill want 560 * to be informed of all such data corruptions. 561 */ 562 if (vma->vm_mm == t->mm) 563 add_to_kill(t, page, FSDAX_INVALID_PGOFF, vma, 564 to_kill); 565 } 566 } 567 read_unlock(&tasklist_lock); 568 i_mmap_unlock_read(mapping); 569 } 570 571 #ifdef CONFIG_FS_DAX 572 /* 573 * Collect processes when the error hit a fsdax page. 574 */ 575 static void collect_procs_fsdax(struct page *page, 576 struct address_space *mapping, pgoff_t pgoff, 577 struct list_head *to_kill) 578 { 579 struct vm_area_struct *vma; 580 struct task_struct *tsk; 581 582 i_mmap_lock_read(mapping); 583 read_lock(&tasklist_lock); 584 for_each_process(tsk) { 585 struct task_struct *t = task_early_kill(tsk, true); 586 587 if (!t) 588 continue; 589 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 590 if (vma->vm_mm == t->mm) 591 add_to_kill(t, page, pgoff, vma, to_kill); 592 } 593 } 594 read_unlock(&tasklist_lock); 595 i_mmap_unlock_read(mapping); 596 } 597 #endif /* CONFIG_FS_DAX */ 598 599 /* 600 * Collect the processes who have the corrupted page mapped to kill. 601 */ 602 static void collect_procs(struct page *page, struct list_head *tokill, 603 int force_early) 604 { 605 if (!page->mapping) 606 return; 607 608 if (PageAnon(page)) 609 collect_procs_anon(page, tokill, force_early); 610 else 611 collect_procs_file(page, tokill, force_early); 612 } 613 614 struct hwp_walk { 615 struct to_kill tk; 616 unsigned long pfn; 617 int flags; 618 }; 619 620 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 621 { 622 tk->addr = addr; 623 tk->size_shift = shift; 624 } 625 626 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 627 unsigned long poisoned_pfn, struct to_kill *tk) 628 { 629 unsigned long pfn = 0; 630 631 if (pte_present(pte)) { 632 pfn = pte_pfn(pte); 633 } else { 634 swp_entry_t swp = pte_to_swp_entry(pte); 635 636 if (is_hwpoison_entry(swp)) 637 pfn = hwpoison_entry_to_pfn(swp); 638 } 639 640 if (!pfn || pfn != poisoned_pfn) 641 return 0; 642 643 set_to_kill(tk, addr, shift); 644 return 1; 645 } 646 647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 648 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 649 struct hwp_walk *hwp) 650 { 651 pmd_t pmd = *pmdp; 652 unsigned long pfn; 653 unsigned long hwpoison_vaddr; 654 655 if (!pmd_present(pmd)) 656 return 0; 657 pfn = pmd_pfn(pmd); 658 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 659 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 660 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 661 return 1; 662 } 663 return 0; 664 } 665 #else 666 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 667 struct hwp_walk *hwp) 668 { 669 return 0; 670 } 671 #endif 672 673 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 674 unsigned long end, struct mm_walk *walk) 675 { 676 struct hwp_walk *hwp = walk->private; 677 int ret = 0; 678 pte_t *ptep, *mapped_pte; 679 spinlock_t *ptl; 680 681 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 682 if (ptl) { 683 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 684 spin_unlock(ptl); 685 goto out; 686 } 687 688 if (pmd_trans_unstable(pmdp)) 689 goto out; 690 691 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 692 addr, &ptl); 693 for (; addr != end; ptep++, addr += PAGE_SIZE) { 694 ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT, 695 hwp->pfn, &hwp->tk); 696 if (ret == 1) 697 break; 698 } 699 pte_unmap_unlock(mapped_pte, ptl); 700 out: 701 cond_resched(); 702 return ret; 703 } 704 705 #ifdef CONFIG_HUGETLB_PAGE 706 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 707 unsigned long addr, unsigned long end, 708 struct mm_walk *walk) 709 { 710 struct hwp_walk *hwp = walk->private; 711 pte_t pte = huge_ptep_get(ptep); 712 struct hstate *h = hstate_vma(walk->vma); 713 714 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 715 hwp->pfn, &hwp->tk); 716 } 717 #else 718 #define hwpoison_hugetlb_range NULL 719 #endif 720 721 static const struct mm_walk_ops hwp_walk_ops = { 722 .pmd_entry = hwpoison_pte_range, 723 .hugetlb_entry = hwpoison_hugetlb_range, 724 }; 725 726 /* 727 * Sends SIGBUS to the current process with error info. 728 * 729 * This function is intended to handle "Action Required" MCEs on already 730 * hardware poisoned pages. They could happen, for example, when 731 * memory_failure() failed to unmap the error page at the first call, or 732 * when multiple local machine checks happened on different CPUs. 733 * 734 * MCE handler currently has no easy access to the error virtual address, 735 * so this function walks page table to find it. The returned virtual address 736 * is proper in most cases, but it could be wrong when the application 737 * process has multiple entries mapping the error page. 738 */ 739 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 740 int flags) 741 { 742 int ret; 743 struct hwp_walk priv = { 744 .pfn = pfn, 745 }; 746 priv.tk.tsk = p; 747 748 if (!p->mm) 749 return -EFAULT; 750 751 mmap_read_lock(p->mm); 752 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 753 (void *)&priv); 754 if (ret == 1 && priv.tk.addr) 755 kill_proc(&priv.tk, pfn, flags); 756 else 757 ret = 0; 758 mmap_read_unlock(p->mm); 759 return ret > 0 ? -EHWPOISON : -EFAULT; 760 } 761 762 static const char *action_name[] = { 763 [MF_IGNORED] = "Ignored", 764 [MF_FAILED] = "Failed", 765 [MF_DELAYED] = "Delayed", 766 [MF_RECOVERED] = "Recovered", 767 }; 768 769 static const char * const action_page_types[] = { 770 [MF_MSG_KERNEL] = "reserved kernel page", 771 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 772 [MF_MSG_SLAB] = "kernel slab page", 773 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 774 [MF_MSG_HUGE] = "huge page", 775 [MF_MSG_FREE_HUGE] = "free huge page", 776 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 777 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 778 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 779 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 780 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 781 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 782 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 783 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 784 [MF_MSG_CLEAN_LRU] = "clean LRU page", 785 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 786 [MF_MSG_BUDDY] = "free buddy page", 787 [MF_MSG_DAX] = "dax page", 788 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 789 [MF_MSG_UNKNOWN] = "unknown page", 790 }; 791 792 /* 793 * XXX: It is possible that a page is isolated from LRU cache, 794 * and then kept in swap cache or failed to remove from page cache. 795 * The page count will stop it from being freed by unpoison. 796 * Stress tests should be aware of this memory leak problem. 797 */ 798 static int delete_from_lru_cache(struct page *p) 799 { 800 if (!isolate_lru_page(p)) { 801 /* 802 * Clear sensible page flags, so that the buddy system won't 803 * complain when the page is unpoison-and-freed. 804 */ 805 ClearPageActive(p); 806 ClearPageUnevictable(p); 807 808 /* 809 * Poisoned page might never drop its ref count to 0 so we have 810 * to uncharge it manually from its memcg. 811 */ 812 mem_cgroup_uncharge(page_folio(p)); 813 814 /* 815 * drop the page count elevated by isolate_lru_page() 816 */ 817 put_page(p); 818 return 0; 819 } 820 return -EIO; 821 } 822 823 static int truncate_error_page(struct page *p, unsigned long pfn, 824 struct address_space *mapping) 825 { 826 int ret = MF_FAILED; 827 828 if (mapping->a_ops->error_remove_page) { 829 int err = mapping->a_ops->error_remove_page(mapping, p); 830 831 if (err != 0) { 832 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 833 } else if (page_has_private(p) && 834 !try_to_release_page(p, GFP_NOIO)) { 835 pr_info("%#lx: failed to release buffers\n", pfn); 836 } else { 837 ret = MF_RECOVERED; 838 } 839 } else { 840 /* 841 * If the file system doesn't support it just invalidate 842 * This fails on dirty or anything with private pages 843 */ 844 if (invalidate_inode_page(p)) 845 ret = MF_RECOVERED; 846 else 847 pr_info("%#lx: Failed to invalidate\n", pfn); 848 } 849 850 return ret; 851 } 852 853 struct page_state { 854 unsigned long mask; 855 unsigned long res; 856 enum mf_action_page_type type; 857 858 /* Callback ->action() has to unlock the relevant page inside it. */ 859 int (*action)(struct page_state *ps, struct page *p); 860 }; 861 862 /* 863 * Return true if page is still referenced by others, otherwise return 864 * false. 865 * 866 * The extra_pins is true when one extra refcount is expected. 867 */ 868 static bool has_extra_refcount(struct page_state *ps, struct page *p, 869 bool extra_pins) 870 { 871 int count = page_count(p) - 1; 872 873 if (extra_pins) 874 count -= 1; 875 876 if (count > 0) { 877 pr_err("%#lx: %s still referenced by %d users\n", 878 page_to_pfn(p), action_page_types[ps->type], count); 879 return true; 880 } 881 882 return false; 883 } 884 885 /* 886 * Error hit kernel page. 887 * Do nothing, try to be lucky and not touch this instead. For a few cases we 888 * could be more sophisticated. 889 */ 890 static int me_kernel(struct page_state *ps, struct page *p) 891 { 892 unlock_page(p); 893 return MF_IGNORED; 894 } 895 896 /* 897 * Page in unknown state. Do nothing. 898 */ 899 static int me_unknown(struct page_state *ps, struct page *p) 900 { 901 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 902 unlock_page(p); 903 return MF_FAILED; 904 } 905 906 /* 907 * Clean (or cleaned) page cache page. 908 */ 909 static int me_pagecache_clean(struct page_state *ps, struct page *p) 910 { 911 int ret; 912 struct address_space *mapping; 913 bool extra_pins; 914 915 delete_from_lru_cache(p); 916 917 /* 918 * For anonymous pages we're done the only reference left 919 * should be the one m_f() holds. 920 */ 921 if (PageAnon(p)) { 922 ret = MF_RECOVERED; 923 goto out; 924 } 925 926 /* 927 * Now truncate the page in the page cache. This is really 928 * more like a "temporary hole punch" 929 * Don't do this for block devices when someone else 930 * has a reference, because it could be file system metadata 931 * and that's not safe to truncate. 932 */ 933 mapping = page_mapping(p); 934 if (!mapping) { 935 /* 936 * Page has been teared down in the meanwhile 937 */ 938 ret = MF_FAILED; 939 goto out; 940 } 941 942 /* 943 * The shmem page is kept in page cache instead of truncating 944 * so is expected to have an extra refcount after error-handling. 945 */ 946 extra_pins = shmem_mapping(mapping); 947 948 /* 949 * Truncation is a bit tricky. Enable it per file system for now. 950 * 951 * Open: to take i_rwsem or not for this? Right now we don't. 952 */ 953 ret = truncate_error_page(p, page_to_pfn(p), mapping); 954 if (has_extra_refcount(ps, p, extra_pins)) 955 ret = MF_FAILED; 956 957 out: 958 unlock_page(p); 959 960 return ret; 961 } 962 963 /* 964 * Dirty pagecache page 965 * Issues: when the error hit a hole page the error is not properly 966 * propagated. 967 */ 968 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 969 { 970 struct address_space *mapping = page_mapping(p); 971 972 SetPageError(p); 973 /* TBD: print more information about the file. */ 974 if (mapping) { 975 /* 976 * IO error will be reported by write(), fsync(), etc. 977 * who check the mapping. 978 * This way the application knows that something went 979 * wrong with its dirty file data. 980 * 981 * There's one open issue: 982 * 983 * The EIO will be only reported on the next IO 984 * operation and then cleared through the IO map. 985 * Normally Linux has two mechanisms to pass IO error 986 * first through the AS_EIO flag in the address space 987 * and then through the PageError flag in the page. 988 * Since we drop pages on memory failure handling the 989 * only mechanism open to use is through AS_AIO. 990 * 991 * This has the disadvantage that it gets cleared on 992 * the first operation that returns an error, while 993 * the PageError bit is more sticky and only cleared 994 * when the page is reread or dropped. If an 995 * application assumes it will always get error on 996 * fsync, but does other operations on the fd before 997 * and the page is dropped between then the error 998 * will not be properly reported. 999 * 1000 * This can already happen even without hwpoisoned 1001 * pages: first on metadata IO errors (which only 1002 * report through AS_EIO) or when the page is dropped 1003 * at the wrong time. 1004 * 1005 * So right now we assume that the application DTRT on 1006 * the first EIO, but we're not worse than other parts 1007 * of the kernel. 1008 */ 1009 mapping_set_error(mapping, -EIO); 1010 } 1011 1012 return me_pagecache_clean(ps, p); 1013 } 1014 1015 /* 1016 * Clean and dirty swap cache. 1017 * 1018 * Dirty swap cache page is tricky to handle. The page could live both in page 1019 * cache and swap cache(ie. page is freshly swapped in). So it could be 1020 * referenced concurrently by 2 types of PTEs: 1021 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1022 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 1023 * and then 1024 * - clear dirty bit to prevent IO 1025 * - remove from LRU 1026 * - but keep in the swap cache, so that when we return to it on 1027 * a later page fault, we know the application is accessing 1028 * corrupted data and shall be killed (we installed simple 1029 * interception code in do_swap_page to catch it). 1030 * 1031 * Clean swap cache pages can be directly isolated. A later page fault will 1032 * bring in the known good data from disk. 1033 */ 1034 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1035 { 1036 int ret; 1037 bool extra_pins = false; 1038 1039 ClearPageDirty(p); 1040 /* Trigger EIO in shmem: */ 1041 ClearPageUptodate(p); 1042 1043 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 1044 unlock_page(p); 1045 1046 if (ret == MF_DELAYED) 1047 extra_pins = true; 1048 1049 if (has_extra_refcount(ps, p, extra_pins)) 1050 ret = MF_FAILED; 1051 1052 return ret; 1053 } 1054 1055 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1056 { 1057 struct folio *folio = page_folio(p); 1058 int ret; 1059 1060 delete_from_swap_cache(folio); 1061 1062 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1063 folio_unlock(folio); 1064 1065 if (has_extra_refcount(ps, p, false)) 1066 ret = MF_FAILED; 1067 1068 return ret; 1069 } 1070 1071 /* 1072 * Huge pages. Needs work. 1073 * Issues: 1074 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1075 * To narrow down kill region to one page, we need to break up pmd. 1076 */ 1077 static int me_huge_page(struct page_state *ps, struct page *p) 1078 { 1079 int res; 1080 struct page *hpage = compound_head(p); 1081 struct address_space *mapping; 1082 1083 if (!PageHuge(hpage)) 1084 return MF_DELAYED; 1085 1086 mapping = page_mapping(hpage); 1087 if (mapping) { 1088 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1089 unlock_page(hpage); 1090 } else { 1091 unlock_page(hpage); 1092 /* 1093 * migration entry prevents later access on error hugepage, 1094 * so we can free and dissolve it into buddy to save healthy 1095 * subpages. 1096 */ 1097 put_page(hpage); 1098 if (__page_handle_poison(p) >= 0) { 1099 page_ref_inc(p); 1100 res = MF_RECOVERED; 1101 } else { 1102 res = MF_FAILED; 1103 } 1104 } 1105 1106 if (has_extra_refcount(ps, p, false)) 1107 res = MF_FAILED; 1108 1109 return res; 1110 } 1111 1112 /* 1113 * Various page states we can handle. 1114 * 1115 * A page state is defined by its current page->flags bits. 1116 * The table matches them in order and calls the right handler. 1117 * 1118 * This is quite tricky because we can access page at any time 1119 * in its live cycle, so all accesses have to be extremely careful. 1120 * 1121 * This is not complete. More states could be added. 1122 * For any missing state don't attempt recovery. 1123 */ 1124 1125 #define dirty (1UL << PG_dirty) 1126 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1127 #define unevict (1UL << PG_unevictable) 1128 #define mlock (1UL << PG_mlocked) 1129 #define lru (1UL << PG_lru) 1130 #define head (1UL << PG_head) 1131 #define slab (1UL << PG_slab) 1132 #define reserved (1UL << PG_reserved) 1133 1134 static struct page_state error_states[] = { 1135 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1136 /* 1137 * free pages are specially detected outside this table: 1138 * PG_buddy pages only make a small fraction of all free pages. 1139 */ 1140 1141 /* 1142 * Could in theory check if slab page is free or if we can drop 1143 * currently unused objects without touching them. But just 1144 * treat it as standard kernel for now. 1145 */ 1146 { slab, slab, MF_MSG_SLAB, me_kernel }, 1147 1148 { head, head, MF_MSG_HUGE, me_huge_page }, 1149 1150 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1151 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1152 1153 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1154 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1155 1156 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1157 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1158 1159 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1160 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1161 1162 /* 1163 * Catchall entry: must be at end. 1164 */ 1165 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1166 }; 1167 1168 #undef dirty 1169 #undef sc 1170 #undef unevict 1171 #undef mlock 1172 #undef lru 1173 #undef head 1174 #undef slab 1175 #undef reserved 1176 1177 /* 1178 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1179 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1180 */ 1181 static void action_result(unsigned long pfn, enum mf_action_page_type type, 1182 enum mf_result result) 1183 { 1184 trace_memory_failure_event(pfn, type, result); 1185 1186 num_poisoned_pages_inc(); 1187 pr_err("%#lx: recovery action for %s: %s\n", 1188 pfn, action_page_types[type], action_name[result]); 1189 } 1190 1191 static int page_action(struct page_state *ps, struct page *p, 1192 unsigned long pfn) 1193 { 1194 int result; 1195 1196 /* page p should be unlocked after returning from ps->action(). */ 1197 result = ps->action(ps, p); 1198 1199 action_result(pfn, ps->type, result); 1200 1201 /* Could do more checks here if page looks ok */ 1202 /* 1203 * Could adjust zone counters here to correct for the missing page. 1204 */ 1205 1206 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1207 } 1208 1209 static inline bool PageHWPoisonTakenOff(struct page *page) 1210 { 1211 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1212 } 1213 1214 void SetPageHWPoisonTakenOff(struct page *page) 1215 { 1216 set_page_private(page, MAGIC_HWPOISON); 1217 } 1218 1219 void ClearPageHWPoisonTakenOff(struct page *page) 1220 { 1221 if (PageHWPoison(page)) 1222 set_page_private(page, 0); 1223 } 1224 1225 /* 1226 * Return true if a page type of a given page is supported by hwpoison 1227 * mechanism (while handling could fail), otherwise false. This function 1228 * does not return true for hugetlb or device memory pages, so it's assumed 1229 * to be called only in the context where we never have such pages. 1230 */ 1231 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1232 { 1233 /* Soft offline could migrate non-LRU movable pages */ 1234 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1235 return true; 1236 1237 return PageLRU(page) || is_free_buddy_page(page); 1238 } 1239 1240 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1241 { 1242 struct page *head = compound_head(page); 1243 int ret = 0; 1244 bool hugetlb = false; 1245 1246 ret = get_hwpoison_huge_page(head, &hugetlb); 1247 if (hugetlb) 1248 return ret; 1249 1250 /* 1251 * This check prevents from calling get_hwpoison_unless_zero() 1252 * for any unsupported type of page in order to reduce the risk of 1253 * unexpected races caused by taking a page refcount. 1254 */ 1255 if (!HWPoisonHandlable(head, flags)) 1256 return -EBUSY; 1257 1258 if (get_page_unless_zero(head)) { 1259 if (head == compound_head(page)) 1260 return 1; 1261 1262 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1263 put_page(head); 1264 } 1265 1266 return 0; 1267 } 1268 1269 static int get_any_page(struct page *p, unsigned long flags) 1270 { 1271 int ret = 0, pass = 0; 1272 bool count_increased = false; 1273 1274 if (flags & MF_COUNT_INCREASED) 1275 count_increased = true; 1276 1277 try_again: 1278 if (!count_increased) { 1279 ret = __get_hwpoison_page(p, flags); 1280 if (!ret) { 1281 if (page_count(p)) { 1282 /* We raced with an allocation, retry. */ 1283 if (pass++ < 3) 1284 goto try_again; 1285 ret = -EBUSY; 1286 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1287 /* We raced with put_page, retry. */ 1288 if (pass++ < 3) 1289 goto try_again; 1290 ret = -EIO; 1291 } 1292 goto out; 1293 } else if (ret == -EBUSY) { 1294 /* 1295 * We raced with (possibly temporary) unhandlable 1296 * page, retry. 1297 */ 1298 if (pass++ < 3) { 1299 shake_page(p); 1300 goto try_again; 1301 } 1302 ret = -EIO; 1303 goto out; 1304 } 1305 } 1306 1307 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1308 ret = 1; 1309 } else { 1310 /* 1311 * A page we cannot handle. Check whether we can turn 1312 * it into something we can handle. 1313 */ 1314 if (pass++ < 3) { 1315 put_page(p); 1316 shake_page(p); 1317 count_increased = false; 1318 goto try_again; 1319 } 1320 put_page(p); 1321 ret = -EIO; 1322 } 1323 out: 1324 if (ret == -EIO) 1325 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1326 1327 return ret; 1328 } 1329 1330 static int __get_unpoison_page(struct page *page) 1331 { 1332 struct page *head = compound_head(page); 1333 int ret = 0; 1334 bool hugetlb = false; 1335 1336 ret = get_hwpoison_huge_page(head, &hugetlb); 1337 if (hugetlb) 1338 return ret; 1339 1340 /* 1341 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1342 * but also isolated from buddy freelist, so need to identify the 1343 * state and have to cancel both operations to unpoison. 1344 */ 1345 if (PageHWPoisonTakenOff(page)) 1346 return -EHWPOISON; 1347 1348 return get_page_unless_zero(page) ? 1 : 0; 1349 } 1350 1351 /** 1352 * get_hwpoison_page() - Get refcount for memory error handling 1353 * @p: Raw error page (hit by memory error) 1354 * @flags: Flags controlling behavior of error handling 1355 * 1356 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1357 * error on it, after checking that the error page is in a well-defined state 1358 * (defined as a page-type we can successfully handle the memory error on it, 1359 * such as LRU page and hugetlb page). 1360 * 1361 * Memory error handling could be triggered at any time on any type of page, 1362 * so it's prone to race with typical memory management lifecycle (like 1363 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1364 * extra care for the error page's state (as done in __get_hwpoison_page()), 1365 * and has some retry logic in get_any_page(). 1366 * 1367 * When called from unpoison_memory(), the caller should already ensure that 1368 * the given page has PG_hwpoison. So it's never reused for other page 1369 * allocations, and __get_unpoison_page() never races with them. 1370 * 1371 * Return: 0 on failure, 1372 * 1 on success for in-use pages in a well-defined state, 1373 * -EIO for pages on which we can not handle memory errors, 1374 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1375 * operations like allocation and free, 1376 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1377 */ 1378 static int get_hwpoison_page(struct page *p, unsigned long flags) 1379 { 1380 int ret; 1381 1382 zone_pcp_disable(page_zone(p)); 1383 if (flags & MF_UNPOISON) 1384 ret = __get_unpoison_page(p); 1385 else 1386 ret = get_any_page(p, flags); 1387 zone_pcp_enable(page_zone(p)); 1388 1389 return ret; 1390 } 1391 1392 /* 1393 * Do all that is necessary to remove user space mappings. Unmap 1394 * the pages and send SIGBUS to the processes if the data was dirty. 1395 */ 1396 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1397 int flags, struct page *hpage) 1398 { 1399 struct folio *folio = page_folio(hpage); 1400 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC; 1401 struct address_space *mapping; 1402 LIST_HEAD(tokill); 1403 bool unmap_success; 1404 int kill = 1, forcekill; 1405 bool mlocked = PageMlocked(hpage); 1406 1407 /* 1408 * Here we are interested only in user-mapped pages, so skip any 1409 * other types of pages. 1410 */ 1411 if (PageReserved(p) || PageSlab(p)) 1412 return true; 1413 if (!(PageLRU(hpage) || PageHuge(p))) 1414 return true; 1415 1416 /* 1417 * This check implies we don't kill processes if their pages 1418 * are in the swap cache early. Those are always late kills. 1419 */ 1420 if (!page_mapped(hpage)) 1421 return true; 1422 1423 if (PageKsm(p)) { 1424 pr_err("%#lx: can't handle KSM pages.\n", pfn); 1425 return false; 1426 } 1427 1428 if (PageSwapCache(p)) { 1429 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1430 ttu |= TTU_IGNORE_HWPOISON; 1431 } 1432 1433 /* 1434 * Propagate the dirty bit from PTEs to struct page first, because we 1435 * need this to decide if we should kill or just drop the page. 1436 * XXX: the dirty test could be racy: set_page_dirty() may not always 1437 * be called inside page lock (it's recommended but not enforced). 1438 */ 1439 mapping = page_mapping(hpage); 1440 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1441 mapping_can_writeback(mapping)) { 1442 if (page_mkclean(hpage)) { 1443 SetPageDirty(hpage); 1444 } else { 1445 kill = 0; 1446 ttu |= TTU_IGNORE_HWPOISON; 1447 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1448 pfn); 1449 } 1450 } 1451 1452 /* 1453 * First collect all the processes that have the page 1454 * mapped in dirty form. This has to be done before try_to_unmap, 1455 * because ttu takes the rmap data structures down. 1456 * 1457 * Error handling: We ignore errors here because 1458 * there's nothing that can be done. 1459 */ 1460 if (kill) 1461 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1462 1463 if (PageHuge(hpage) && !PageAnon(hpage)) { 1464 /* 1465 * For hugetlb pages in shared mappings, try_to_unmap 1466 * could potentially call huge_pmd_unshare. Because of 1467 * this, take semaphore in write mode here and set 1468 * TTU_RMAP_LOCKED to indicate we have taken the lock 1469 * at this higher level. 1470 */ 1471 mapping = hugetlb_page_mapping_lock_write(hpage); 1472 if (mapping) { 1473 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1474 i_mmap_unlock_write(mapping); 1475 } else 1476 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); 1477 } else { 1478 try_to_unmap(folio, ttu); 1479 } 1480 1481 unmap_success = !page_mapped(hpage); 1482 if (!unmap_success) 1483 pr_err("%#lx: failed to unmap page (mapcount=%d)\n", 1484 pfn, page_mapcount(hpage)); 1485 1486 /* 1487 * try_to_unmap() might put mlocked page in lru cache, so call 1488 * shake_page() again to ensure that it's flushed. 1489 */ 1490 if (mlocked) 1491 shake_page(hpage); 1492 1493 /* 1494 * Now that the dirty bit has been propagated to the 1495 * struct page and all unmaps done we can decide if 1496 * killing is needed or not. Only kill when the page 1497 * was dirty or the process is not restartable, 1498 * otherwise the tokill list is merely 1499 * freed. When there was a problem unmapping earlier 1500 * use a more force-full uncatchable kill to prevent 1501 * any accesses to the poisoned memory. 1502 */ 1503 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1504 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1505 1506 return unmap_success; 1507 } 1508 1509 static int identify_page_state(unsigned long pfn, struct page *p, 1510 unsigned long page_flags) 1511 { 1512 struct page_state *ps; 1513 1514 /* 1515 * The first check uses the current page flags which may not have any 1516 * relevant information. The second check with the saved page flags is 1517 * carried out only if the first check can't determine the page status. 1518 */ 1519 for (ps = error_states;; ps++) 1520 if ((p->flags & ps->mask) == ps->res) 1521 break; 1522 1523 page_flags |= (p->flags & (1UL << PG_dirty)); 1524 1525 if (!ps->mask) 1526 for (ps = error_states;; ps++) 1527 if ((page_flags & ps->mask) == ps->res) 1528 break; 1529 return page_action(ps, p, pfn); 1530 } 1531 1532 static int try_to_split_thp_page(struct page *page, const char *msg) 1533 { 1534 lock_page(page); 1535 if (unlikely(split_huge_page(page))) { 1536 unsigned long pfn = page_to_pfn(page); 1537 1538 unlock_page(page); 1539 pr_info("%s: %#lx: thp split failed\n", msg, pfn); 1540 put_page(page); 1541 return -EBUSY; 1542 } 1543 unlock_page(page); 1544 1545 return 0; 1546 } 1547 1548 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1549 struct address_space *mapping, pgoff_t index, int flags) 1550 { 1551 struct to_kill *tk; 1552 unsigned long size = 0; 1553 1554 list_for_each_entry(tk, to_kill, nd) 1555 if (tk->size_shift) 1556 size = max(size, 1UL << tk->size_shift); 1557 1558 if (size) { 1559 /* 1560 * Unmap the largest mapping to avoid breaking up device-dax 1561 * mappings which are constant size. The actual size of the 1562 * mapping being torn down is communicated in siginfo, see 1563 * kill_proc() 1564 */ 1565 loff_t start = (index << PAGE_SHIFT) & ~(size - 1); 1566 1567 unmap_mapping_range(mapping, start, size, 0); 1568 } 1569 1570 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); 1571 } 1572 1573 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1574 struct dev_pagemap *pgmap) 1575 { 1576 struct page *page = pfn_to_page(pfn); 1577 LIST_HEAD(to_kill); 1578 dax_entry_t cookie; 1579 int rc = 0; 1580 1581 /* 1582 * Pages instantiated by device-dax (not filesystem-dax) 1583 * may be compound pages. 1584 */ 1585 page = compound_head(page); 1586 1587 /* 1588 * Prevent the inode from being freed while we are interrogating 1589 * the address_space, typically this would be handled by 1590 * lock_page(), but dax pages do not use the page lock. This 1591 * also prevents changes to the mapping of this pfn until 1592 * poison signaling is complete. 1593 */ 1594 cookie = dax_lock_page(page); 1595 if (!cookie) 1596 return -EBUSY; 1597 1598 if (hwpoison_filter(page)) { 1599 rc = -EOPNOTSUPP; 1600 goto unlock; 1601 } 1602 1603 switch (pgmap->type) { 1604 case MEMORY_DEVICE_PRIVATE: 1605 case MEMORY_DEVICE_COHERENT: 1606 /* 1607 * TODO: Handle device pages which may need coordination 1608 * with device-side memory. 1609 */ 1610 rc = -ENXIO; 1611 goto unlock; 1612 default: 1613 break; 1614 } 1615 1616 /* 1617 * Use this flag as an indication that the dax page has been 1618 * remapped UC to prevent speculative consumption of poison. 1619 */ 1620 SetPageHWPoison(page); 1621 1622 /* 1623 * Unlike System-RAM there is no possibility to swap in a 1624 * different physical page at a given virtual address, so all 1625 * userspace consumption of ZONE_DEVICE memory necessitates 1626 * SIGBUS (i.e. MF_MUST_KILL) 1627 */ 1628 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1629 collect_procs(page, &to_kill, true); 1630 1631 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags); 1632 unlock: 1633 dax_unlock_page(page, cookie); 1634 return rc; 1635 } 1636 1637 #ifdef CONFIG_FS_DAX 1638 /** 1639 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1640 * @mapping: address_space of the file in use 1641 * @index: start pgoff of the range within the file 1642 * @count: length of the range, in unit of PAGE_SIZE 1643 * @mf_flags: memory failure flags 1644 */ 1645 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1646 unsigned long count, int mf_flags) 1647 { 1648 LIST_HEAD(to_kill); 1649 dax_entry_t cookie; 1650 struct page *page; 1651 size_t end = index + count; 1652 1653 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1654 1655 for (; index < end; index++) { 1656 page = NULL; 1657 cookie = dax_lock_mapping_entry(mapping, index, &page); 1658 if (!cookie) 1659 return -EBUSY; 1660 if (!page) 1661 goto unlock; 1662 1663 SetPageHWPoison(page); 1664 1665 collect_procs_fsdax(page, mapping, index, &to_kill); 1666 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1667 index, mf_flags); 1668 unlock: 1669 dax_unlock_mapping_entry(mapping, index, cookie); 1670 } 1671 return 0; 1672 } 1673 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1674 #endif /* CONFIG_FS_DAX */ 1675 1676 #ifdef CONFIG_HUGETLB_PAGE 1677 /* 1678 * Struct raw_hwp_page represents information about "raw error page", 1679 * constructing singly linked list originated from ->private field of 1680 * SUBPAGE_INDEX_HWPOISON-th tail page. 1681 */ 1682 struct raw_hwp_page { 1683 struct llist_node node; 1684 struct page *page; 1685 }; 1686 1687 static inline struct llist_head *raw_hwp_list_head(struct page *hpage) 1688 { 1689 return (struct llist_head *)&page_private(hpage + SUBPAGE_INDEX_HWPOISON); 1690 } 1691 1692 static unsigned long __free_raw_hwp_pages(struct page *hpage, bool move_flag) 1693 { 1694 struct llist_head *head; 1695 struct llist_node *t, *tnode; 1696 unsigned long count = 0; 1697 1698 head = raw_hwp_list_head(hpage); 1699 llist_for_each_safe(tnode, t, head->first) { 1700 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1701 1702 if (move_flag) 1703 SetPageHWPoison(p->page); 1704 kfree(p); 1705 count++; 1706 } 1707 llist_del_all(head); 1708 return count; 1709 } 1710 1711 static int hugetlb_set_page_hwpoison(struct page *hpage, struct page *page) 1712 { 1713 struct llist_head *head; 1714 struct raw_hwp_page *raw_hwp; 1715 struct llist_node *t, *tnode; 1716 int ret = TestSetPageHWPoison(hpage) ? -EHWPOISON : 0; 1717 1718 /* 1719 * Once the hwpoison hugepage has lost reliable raw error info, 1720 * there is little meaning to keep additional error info precisely, 1721 * so skip to add additional raw error info. 1722 */ 1723 if (HPageRawHwpUnreliable(hpage)) 1724 return -EHWPOISON; 1725 head = raw_hwp_list_head(hpage); 1726 llist_for_each_safe(tnode, t, head->first) { 1727 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1728 1729 if (p->page == page) 1730 return -EHWPOISON; 1731 } 1732 1733 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1734 if (raw_hwp) { 1735 raw_hwp->page = page; 1736 llist_add(&raw_hwp->node, head); 1737 /* the first error event will be counted in action_result(). */ 1738 if (ret) 1739 num_poisoned_pages_inc(); 1740 } else { 1741 /* 1742 * Failed to save raw error info. We no longer trace all 1743 * hwpoisoned subpages, and we need refuse to free/dissolve 1744 * this hwpoisoned hugepage. 1745 */ 1746 SetHPageRawHwpUnreliable(hpage); 1747 /* 1748 * Once HPageRawHwpUnreliable is set, raw_hwp_page is not 1749 * used any more, so free it. 1750 */ 1751 __free_raw_hwp_pages(hpage, false); 1752 } 1753 return ret; 1754 } 1755 1756 static unsigned long free_raw_hwp_pages(struct page *hpage, bool move_flag) 1757 { 1758 /* 1759 * HPageVmemmapOptimized hugepages can't be freed because struct 1760 * pages for tail pages are required but they don't exist. 1761 */ 1762 if (move_flag && HPageVmemmapOptimized(hpage)) 1763 return 0; 1764 1765 /* 1766 * HPageRawHwpUnreliable hugepages shouldn't be unpoisoned by 1767 * definition. 1768 */ 1769 if (HPageRawHwpUnreliable(hpage)) 1770 return 0; 1771 1772 return __free_raw_hwp_pages(hpage, move_flag); 1773 } 1774 1775 void hugetlb_clear_page_hwpoison(struct page *hpage) 1776 { 1777 if (HPageRawHwpUnreliable(hpage)) 1778 return; 1779 ClearPageHWPoison(hpage); 1780 free_raw_hwp_pages(hpage, true); 1781 } 1782 1783 /* 1784 * Called from hugetlb code with hugetlb_lock held. 1785 * 1786 * Return values: 1787 * 0 - free hugepage 1788 * 1 - in-use hugepage 1789 * 2 - not a hugepage 1790 * -EBUSY - the hugepage is busy (try to retry) 1791 * -EHWPOISON - the hugepage is already hwpoisoned 1792 */ 1793 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags) 1794 { 1795 struct page *page = pfn_to_page(pfn); 1796 struct page *head = compound_head(page); 1797 int ret = 2; /* fallback to normal page handling */ 1798 bool count_increased = false; 1799 1800 if (!PageHeadHuge(head)) 1801 goto out; 1802 1803 if (flags & MF_COUNT_INCREASED) { 1804 ret = 1; 1805 count_increased = true; 1806 } else if (HPageFreed(head)) { 1807 ret = 0; 1808 } else if (HPageMigratable(head)) { 1809 ret = get_page_unless_zero(head); 1810 if (ret) 1811 count_increased = true; 1812 } else { 1813 ret = -EBUSY; 1814 if (!(flags & MF_NO_RETRY)) 1815 goto out; 1816 } 1817 1818 if (hugetlb_set_page_hwpoison(head, page)) { 1819 ret = -EHWPOISON; 1820 goto out; 1821 } 1822 1823 return ret; 1824 out: 1825 if (count_increased) 1826 put_page(head); 1827 return ret; 1828 } 1829 1830 /* 1831 * Taking refcount of hugetlb pages needs extra care about race conditions 1832 * with basic operations like hugepage allocation/free/demotion. 1833 * So some of prechecks for hwpoison (pinning, and testing/setting 1834 * PageHWPoison) should be done in single hugetlb_lock range. 1835 */ 1836 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1837 { 1838 int res; 1839 struct page *p = pfn_to_page(pfn); 1840 struct page *head; 1841 unsigned long page_flags; 1842 1843 *hugetlb = 1; 1844 retry: 1845 res = get_huge_page_for_hwpoison(pfn, flags); 1846 if (res == 2) { /* fallback to normal page handling */ 1847 *hugetlb = 0; 1848 return 0; 1849 } else if (res == -EHWPOISON) { 1850 pr_err("%#lx: already hardware poisoned\n", pfn); 1851 if (flags & MF_ACTION_REQUIRED) { 1852 head = compound_head(p); 1853 res = kill_accessing_process(current, page_to_pfn(head), flags); 1854 } 1855 return res; 1856 } else if (res == -EBUSY) { 1857 if (!(flags & MF_NO_RETRY)) { 1858 flags |= MF_NO_RETRY; 1859 goto retry; 1860 } 1861 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 1862 return res; 1863 } 1864 1865 head = compound_head(p); 1866 lock_page(head); 1867 1868 if (hwpoison_filter(p)) { 1869 hugetlb_clear_page_hwpoison(head); 1870 res = -EOPNOTSUPP; 1871 goto out; 1872 } 1873 1874 /* 1875 * Handling free hugepage. The possible race with hugepage allocation 1876 * or demotion can be prevented by PageHWPoison flag. 1877 */ 1878 if (res == 0) { 1879 unlock_page(head); 1880 if (__page_handle_poison(p) >= 0) { 1881 page_ref_inc(p); 1882 res = MF_RECOVERED; 1883 } else { 1884 res = MF_FAILED; 1885 } 1886 action_result(pfn, MF_MSG_FREE_HUGE, res); 1887 return res == MF_RECOVERED ? 0 : -EBUSY; 1888 } 1889 1890 page_flags = head->flags; 1891 1892 if (!hwpoison_user_mappings(p, pfn, flags, head)) { 1893 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1894 res = -EBUSY; 1895 goto out; 1896 } 1897 1898 return identify_page_state(pfn, p, page_flags); 1899 out: 1900 unlock_page(head); 1901 return res; 1902 } 1903 1904 #else 1905 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1906 { 1907 return 0; 1908 } 1909 1910 static inline unsigned long free_raw_hwp_pages(struct page *hpage, bool flag) 1911 { 1912 return 0; 1913 } 1914 #endif /* CONFIG_HUGETLB_PAGE */ 1915 1916 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1917 struct dev_pagemap *pgmap) 1918 { 1919 struct page *page = pfn_to_page(pfn); 1920 int rc = -ENXIO; 1921 1922 if (flags & MF_COUNT_INCREASED) 1923 /* 1924 * Drop the extra refcount in case we come from madvise(). 1925 */ 1926 put_page(page); 1927 1928 /* device metadata space is not recoverable */ 1929 if (!pgmap_pfn_valid(pgmap, pfn)) 1930 goto out; 1931 1932 /* 1933 * Call driver's implementation to handle the memory failure, otherwise 1934 * fall back to generic handler. 1935 */ 1936 if (pgmap_has_memory_failure(pgmap)) { 1937 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 1938 /* 1939 * Fall back to generic handler too if operation is not 1940 * supported inside the driver/device/filesystem. 1941 */ 1942 if (rc != -EOPNOTSUPP) 1943 goto out; 1944 } 1945 1946 rc = mf_generic_kill_procs(pfn, flags, pgmap); 1947 out: 1948 /* drop pgmap ref acquired in caller */ 1949 put_dev_pagemap(pgmap); 1950 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1951 return rc; 1952 } 1953 1954 static DEFINE_MUTEX(mf_mutex); 1955 1956 /** 1957 * memory_failure - Handle memory failure of a page. 1958 * @pfn: Page Number of the corrupted page 1959 * @flags: fine tune action taken 1960 * 1961 * This function is called by the low level machine check code 1962 * of an architecture when it detects hardware memory corruption 1963 * of a page. It tries its best to recover, which includes 1964 * dropping pages, killing processes etc. 1965 * 1966 * The function is primarily of use for corruptions that 1967 * happen outside the current execution context (e.g. when 1968 * detected by a background scrubber) 1969 * 1970 * Must run in process context (e.g. a work queue) with interrupts 1971 * enabled and no spinlocks hold. 1972 * 1973 * Return: 0 for successfully handled the memory error, 1974 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 1975 * < 0(except -EOPNOTSUPP) on failure. 1976 */ 1977 int memory_failure(unsigned long pfn, int flags) 1978 { 1979 struct page *p; 1980 struct page *hpage; 1981 struct dev_pagemap *pgmap; 1982 int res = 0; 1983 unsigned long page_flags; 1984 bool retry = true; 1985 int hugetlb = 0; 1986 1987 if (!sysctl_memory_failure_recovery) 1988 panic("Memory failure on page %lx", pfn); 1989 1990 mutex_lock(&mf_mutex); 1991 1992 if (!(flags & MF_SW_SIMULATED)) 1993 hw_memory_failure = true; 1994 1995 p = pfn_to_online_page(pfn); 1996 if (!p) { 1997 res = arch_memory_failure(pfn, flags); 1998 if (res == 0) 1999 goto unlock_mutex; 2000 2001 if (pfn_valid(pfn)) { 2002 pgmap = get_dev_pagemap(pfn, NULL); 2003 if (pgmap) { 2004 res = memory_failure_dev_pagemap(pfn, flags, 2005 pgmap); 2006 goto unlock_mutex; 2007 } 2008 } 2009 pr_err("%#lx: memory outside kernel control\n", pfn); 2010 res = -ENXIO; 2011 goto unlock_mutex; 2012 } 2013 2014 try_again: 2015 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2016 if (hugetlb) 2017 goto unlock_mutex; 2018 2019 if (TestSetPageHWPoison(p)) { 2020 pr_err("%#lx: already hardware poisoned\n", pfn); 2021 res = -EHWPOISON; 2022 if (flags & MF_ACTION_REQUIRED) 2023 res = kill_accessing_process(current, pfn, flags); 2024 if (flags & MF_COUNT_INCREASED) 2025 put_page(p); 2026 goto unlock_mutex; 2027 } 2028 2029 hpage = compound_head(p); 2030 2031 /* 2032 * We need/can do nothing about count=0 pages. 2033 * 1) it's a free page, and therefore in safe hand: 2034 * prep_new_page() will be the gate keeper. 2035 * 2) it's part of a non-compound high order page. 2036 * Implies some kernel user: cannot stop them from 2037 * R/W the page; let's pray that the page has been 2038 * used and will be freed some time later. 2039 * In fact it's dangerous to directly bump up page count from 0, 2040 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2041 */ 2042 if (!(flags & MF_COUNT_INCREASED)) { 2043 res = get_hwpoison_page(p, flags); 2044 if (!res) { 2045 if (is_free_buddy_page(p)) { 2046 if (take_page_off_buddy(p)) { 2047 page_ref_inc(p); 2048 res = MF_RECOVERED; 2049 } else { 2050 /* We lost the race, try again */ 2051 if (retry) { 2052 ClearPageHWPoison(p); 2053 retry = false; 2054 goto try_again; 2055 } 2056 res = MF_FAILED; 2057 } 2058 action_result(pfn, MF_MSG_BUDDY, res); 2059 res = res == MF_RECOVERED ? 0 : -EBUSY; 2060 } else { 2061 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2062 res = -EBUSY; 2063 } 2064 goto unlock_mutex; 2065 } else if (res < 0) { 2066 action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2067 res = -EBUSY; 2068 goto unlock_mutex; 2069 } 2070 } 2071 2072 if (PageTransHuge(hpage)) { 2073 /* 2074 * The flag must be set after the refcount is bumped 2075 * otherwise it may race with THP split. 2076 * And the flag can't be set in get_hwpoison_page() since 2077 * it is called by soft offline too and it is just called 2078 * for !MF_COUNT_INCREASE. So here seems to be the best 2079 * place. 2080 * 2081 * Don't need care about the above error handling paths for 2082 * get_hwpoison_page() since they handle either free page 2083 * or unhandlable page. The refcount is bumped iff the 2084 * page is a valid handlable page. 2085 */ 2086 SetPageHasHWPoisoned(hpage); 2087 if (try_to_split_thp_page(p, "Memory Failure") < 0) { 2088 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 2089 res = -EBUSY; 2090 goto unlock_mutex; 2091 } 2092 VM_BUG_ON_PAGE(!page_count(p), p); 2093 } 2094 2095 /* 2096 * We ignore non-LRU pages for good reasons. 2097 * - PG_locked is only well defined for LRU pages and a few others 2098 * - to avoid races with __SetPageLocked() 2099 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2100 * The check (unnecessarily) ignores LRU pages being isolated and 2101 * walked by the page reclaim code, however that's not a big loss. 2102 */ 2103 shake_page(p); 2104 2105 lock_page(p); 2106 2107 /* 2108 * We're only intended to deal with the non-Compound page here. 2109 * However, the page could have changed compound pages due to 2110 * race window. If this happens, we could try again to hopefully 2111 * handle the page next round. 2112 */ 2113 if (PageCompound(p)) { 2114 if (retry) { 2115 ClearPageHWPoison(p); 2116 unlock_page(p); 2117 put_page(p); 2118 flags &= ~MF_COUNT_INCREASED; 2119 retry = false; 2120 goto try_again; 2121 } 2122 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 2123 res = -EBUSY; 2124 goto unlock_page; 2125 } 2126 2127 /* 2128 * We use page flags to determine what action should be taken, but 2129 * the flags can be modified by the error containment action. One 2130 * example is an mlocked page, where PG_mlocked is cleared by 2131 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 2132 * correctly, we save a copy of the page flags at this time. 2133 */ 2134 page_flags = p->flags; 2135 2136 if (hwpoison_filter(p)) { 2137 TestClearPageHWPoison(p); 2138 unlock_page(p); 2139 put_page(p); 2140 res = -EOPNOTSUPP; 2141 goto unlock_mutex; 2142 } 2143 2144 /* 2145 * __munlock_pagevec may clear a writeback page's LRU flag without 2146 * page_lock. We need wait writeback completion for this page or it 2147 * may trigger vfs BUG while evict inode. 2148 */ 2149 if (!PageLRU(p) && !PageWriteback(p)) 2150 goto identify_page_state; 2151 2152 /* 2153 * It's very difficult to mess with pages currently under IO 2154 * and in many cases impossible, so we just avoid it here. 2155 */ 2156 wait_on_page_writeback(p); 2157 2158 /* 2159 * Now take care of user space mappings. 2160 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2161 */ 2162 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 2163 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2164 res = -EBUSY; 2165 goto unlock_page; 2166 } 2167 2168 /* 2169 * Torn down by someone else? 2170 */ 2171 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 2172 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2173 res = -EBUSY; 2174 goto unlock_page; 2175 } 2176 2177 identify_page_state: 2178 res = identify_page_state(pfn, p, page_flags); 2179 mutex_unlock(&mf_mutex); 2180 return res; 2181 unlock_page: 2182 unlock_page(p); 2183 unlock_mutex: 2184 mutex_unlock(&mf_mutex); 2185 return res; 2186 } 2187 EXPORT_SYMBOL_GPL(memory_failure); 2188 2189 #define MEMORY_FAILURE_FIFO_ORDER 4 2190 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2191 2192 struct memory_failure_entry { 2193 unsigned long pfn; 2194 int flags; 2195 }; 2196 2197 struct memory_failure_cpu { 2198 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2199 MEMORY_FAILURE_FIFO_SIZE); 2200 spinlock_t lock; 2201 struct work_struct work; 2202 }; 2203 2204 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2205 2206 /** 2207 * memory_failure_queue - Schedule handling memory failure of a page. 2208 * @pfn: Page Number of the corrupted page 2209 * @flags: Flags for memory failure handling 2210 * 2211 * This function is called by the low level hardware error handler 2212 * when it detects hardware memory corruption of a page. It schedules 2213 * the recovering of error page, including dropping pages, killing 2214 * processes etc. 2215 * 2216 * The function is primarily of use for corruptions that 2217 * happen outside the current execution context (e.g. when 2218 * detected by a background scrubber) 2219 * 2220 * Can run in IRQ context. 2221 */ 2222 void memory_failure_queue(unsigned long pfn, int flags) 2223 { 2224 struct memory_failure_cpu *mf_cpu; 2225 unsigned long proc_flags; 2226 struct memory_failure_entry entry = { 2227 .pfn = pfn, 2228 .flags = flags, 2229 }; 2230 2231 mf_cpu = &get_cpu_var(memory_failure_cpu); 2232 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2233 if (kfifo_put(&mf_cpu->fifo, entry)) 2234 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2235 else 2236 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2237 pfn); 2238 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2239 put_cpu_var(memory_failure_cpu); 2240 } 2241 EXPORT_SYMBOL_GPL(memory_failure_queue); 2242 2243 static void memory_failure_work_func(struct work_struct *work) 2244 { 2245 struct memory_failure_cpu *mf_cpu; 2246 struct memory_failure_entry entry = { 0, }; 2247 unsigned long proc_flags; 2248 int gotten; 2249 2250 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2251 for (;;) { 2252 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2253 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2254 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2255 if (!gotten) 2256 break; 2257 if (entry.flags & MF_SOFT_OFFLINE) 2258 soft_offline_page(entry.pfn, entry.flags); 2259 else 2260 memory_failure(entry.pfn, entry.flags); 2261 } 2262 } 2263 2264 /* 2265 * Process memory_failure work queued on the specified CPU. 2266 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2267 */ 2268 void memory_failure_queue_kick(int cpu) 2269 { 2270 struct memory_failure_cpu *mf_cpu; 2271 2272 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2273 cancel_work_sync(&mf_cpu->work); 2274 memory_failure_work_func(&mf_cpu->work); 2275 } 2276 2277 static int __init memory_failure_init(void) 2278 { 2279 struct memory_failure_cpu *mf_cpu; 2280 int cpu; 2281 2282 for_each_possible_cpu(cpu) { 2283 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2284 spin_lock_init(&mf_cpu->lock); 2285 INIT_KFIFO(mf_cpu->fifo); 2286 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2287 } 2288 2289 return 0; 2290 } 2291 core_initcall(memory_failure_init); 2292 2293 #undef pr_fmt 2294 #define pr_fmt(fmt) "" fmt 2295 #define unpoison_pr_info(fmt, pfn, rs) \ 2296 ({ \ 2297 if (__ratelimit(rs)) \ 2298 pr_info(fmt, pfn); \ 2299 }) 2300 2301 /** 2302 * unpoison_memory - Unpoison a previously poisoned page 2303 * @pfn: Page number of the to be unpoisoned page 2304 * 2305 * Software-unpoison a page that has been poisoned by 2306 * memory_failure() earlier. 2307 * 2308 * This is only done on the software-level, so it only works 2309 * for linux injected failures, not real hardware failures 2310 * 2311 * Returns 0 for success, otherwise -errno. 2312 */ 2313 int unpoison_memory(unsigned long pfn) 2314 { 2315 struct page *page; 2316 struct page *p; 2317 int ret = -EBUSY; 2318 int freeit = 0; 2319 unsigned long count = 1; 2320 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2321 DEFAULT_RATELIMIT_BURST); 2322 2323 if (!pfn_valid(pfn)) 2324 return -ENXIO; 2325 2326 p = pfn_to_page(pfn); 2327 page = compound_head(p); 2328 2329 mutex_lock(&mf_mutex); 2330 2331 if (hw_memory_failure) { 2332 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", 2333 pfn, &unpoison_rs); 2334 ret = -EOPNOTSUPP; 2335 goto unlock_mutex; 2336 } 2337 2338 if (!PageHWPoison(p)) { 2339 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2340 pfn, &unpoison_rs); 2341 goto unlock_mutex; 2342 } 2343 2344 if (page_count(page) > 1) { 2345 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2346 pfn, &unpoison_rs); 2347 goto unlock_mutex; 2348 } 2349 2350 if (page_mapped(page)) { 2351 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2352 pfn, &unpoison_rs); 2353 goto unlock_mutex; 2354 } 2355 2356 if (page_mapping(page)) { 2357 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2358 pfn, &unpoison_rs); 2359 goto unlock_mutex; 2360 } 2361 2362 if (PageSlab(page) || PageTable(page)) 2363 goto unlock_mutex; 2364 2365 ret = get_hwpoison_page(p, MF_UNPOISON); 2366 if (!ret) { 2367 if (PageHuge(p)) { 2368 count = free_raw_hwp_pages(page, false); 2369 if (count == 0) { 2370 ret = -EBUSY; 2371 goto unlock_mutex; 2372 } 2373 } 2374 ret = TestClearPageHWPoison(page) ? 0 : -EBUSY; 2375 } else if (ret < 0) { 2376 if (ret == -EHWPOISON) { 2377 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2378 } else 2379 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2380 pfn, &unpoison_rs); 2381 } else { 2382 if (PageHuge(p)) { 2383 count = free_raw_hwp_pages(page, false); 2384 if (count == 0) { 2385 ret = -EBUSY; 2386 goto unlock_mutex; 2387 } 2388 } 2389 freeit = !!TestClearPageHWPoison(p); 2390 2391 put_page(page); 2392 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) { 2393 put_page(page); 2394 ret = 0; 2395 } 2396 } 2397 2398 unlock_mutex: 2399 mutex_unlock(&mf_mutex); 2400 if (!ret || freeit) { 2401 num_poisoned_pages_sub(count); 2402 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2403 page_to_pfn(p), &unpoison_rs); 2404 } 2405 return ret; 2406 } 2407 EXPORT_SYMBOL(unpoison_memory); 2408 2409 static bool isolate_page(struct page *page, struct list_head *pagelist) 2410 { 2411 bool isolated = false; 2412 bool lru = PageLRU(page); 2413 2414 if (PageHuge(page)) { 2415 isolated = !isolate_hugetlb(page, pagelist); 2416 } else { 2417 if (lru) 2418 isolated = !isolate_lru_page(page); 2419 else 2420 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE); 2421 2422 if (isolated) 2423 list_add(&page->lru, pagelist); 2424 } 2425 2426 if (isolated && lru) 2427 inc_node_page_state(page, NR_ISOLATED_ANON + 2428 page_is_file_lru(page)); 2429 2430 /* 2431 * If we succeed to isolate the page, we grabbed another refcount on 2432 * the page, so we can safely drop the one we got from get_any_pages(). 2433 * If we failed to isolate the page, it means that we cannot go further 2434 * and we will return an error, so drop the reference we got from 2435 * get_any_pages() as well. 2436 */ 2437 put_page(page); 2438 return isolated; 2439 } 2440 2441 /* 2442 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages. 2443 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2444 * If the page is mapped, it migrates the contents over. 2445 */ 2446 static int __soft_offline_page(struct page *page) 2447 { 2448 long ret = 0; 2449 unsigned long pfn = page_to_pfn(page); 2450 struct page *hpage = compound_head(page); 2451 char const *msg_page[] = {"page", "hugepage"}; 2452 bool huge = PageHuge(page); 2453 LIST_HEAD(pagelist); 2454 struct migration_target_control mtc = { 2455 .nid = NUMA_NO_NODE, 2456 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2457 }; 2458 2459 lock_page(page); 2460 if (!PageHuge(page)) 2461 wait_on_page_writeback(page); 2462 if (PageHWPoison(page)) { 2463 unlock_page(page); 2464 put_page(page); 2465 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2466 return 0; 2467 } 2468 2469 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page)) 2470 /* 2471 * Try to invalidate first. This should work for 2472 * non dirty unmapped page cache pages. 2473 */ 2474 ret = invalidate_inode_page(page); 2475 unlock_page(page); 2476 2477 if (ret) { 2478 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2479 page_handle_poison(page, false, true); 2480 return 0; 2481 } 2482 2483 if (isolate_page(hpage, &pagelist)) { 2484 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2485 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2486 if (!ret) { 2487 bool release = !huge; 2488 2489 if (!page_handle_poison(page, huge, release)) 2490 ret = -EBUSY; 2491 } else { 2492 if (!list_empty(&pagelist)) 2493 putback_movable_pages(&pagelist); 2494 2495 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2496 pfn, msg_page[huge], ret, &page->flags); 2497 if (ret > 0) 2498 ret = -EBUSY; 2499 } 2500 } else { 2501 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2502 pfn, msg_page[huge], page_count(page), &page->flags); 2503 ret = -EBUSY; 2504 } 2505 return ret; 2506 } 2507 2508 static int soft_offline_in_use_page(struct page *page) 2509 { 2510 struct page *hpage = compound_head(page); 2511 2512 if (!PageHuge(page) && PageTransHuge(hpage)) 2513 if (try_to_split_thp_page(page, "soft offline") < 0) 2514 return -EBUSY; 2515 return __soft_offline_page(page); 2516 } 2517 2518 static int soft_offline_free_page(struct page *page) 2519 { 2520 int rc = 0; 2521 2522 if (!page_handle_poison(page, true, false)) 2523 rc = -EBUSY; 2524 2525 return rc; 2526 } 2527 2528 static void put_ref_page(struct page *page) 2529 { 2530 if (page) 2531 put_page(page); 2532 } 2533 2534 /** 2535 * soft_offline_page - Soft offline a page. 2536 * @pfn: pfn to soft-offline 2537 * @flags: flags. Same as memory_failure(). 2538 * 2539 * Returns 0 on success 2540 * -EOPNOTSUPP for hwpoison_filter() filtered the error event 2541 * < 0 otherwise negated errno. 2542 * 2543 * Soft offline a page, by migration or invalidation, 2544 * without killing anything. This is for the case when 2545 * a page is not corrupted yet (so it's still valid to access), 2546 * but has had a number of corrected errors and is better taken 2547 * out. 2548 * 2549 * The actual policy on when to do that is maintained by 2550 * user space. 2551 * 2552 * This should never impact any application or cause data loss, 2553 * however it might take some time. 2554 * 2555 * This is not a 100% solution for all memory, but tries to be 2556 * ``good enough'' for the majority of memory. 2557 */ 2558 int soft_offline_page(unsigned long pfn, int flags) 2559 { 2560 int ret; 2561 bool try_again = true; 2562 struct page *page, *ref_page = NULL; 2563 2564 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED)); 2565 2566 if (!pfn_valid(pfn)) 2567 return -ENXIO; 2568 if (flags & MF_COUNT_INCREASED) 2569 ref_page = pfn_to_page(pfn); 2570 2571 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2572 page = pfn_to_online_page(pfn); 2573 if (!page) { 2574 put_ref_page(ref_page); 2575 return -EIO; 2576 } 2577 2578 mutex_lock(&mf_mutex); 2579 2580 if (PageHWPoison(page)) { 2581 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2582 put_ref_page(ref_page); 2583 mutex_unlock(&mf_mutex); 2584 return 0; 2585 } 2586 2587 retry: 2588 get_online_mems(); 2589 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2590 put_online_mems(); 2591 2592 if (hwpoison_filter(page)) { 2593 if (ret > 0) 2594 put_page(page); 2595 else 2596 put_ref_page(ref_page); 2597 2598 mutex_unlock(&mf_mutex); 2599 return -EOPNOTSUPP; 2600 } 2601 2602 if (ret > 0) { 2603 ret = soft_offline_in_use_page(page); 2604 } else if (ret == 0) { 2605 if (soft_offline_free_page(page) && try_again) { 2606 try_again = false; 2607 flags &= ~MF_COUNT_INCREASED; 2608 goto retry; 2609 } 2610 } 2611 2612 mutex_unlock(&mf_mutex); 2613 2614 return ret; 2615 } 2616 2617 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages) 2618 { 2619 int i; 2620 2621 /* 2622 * A further optimization is to have per section refcounted 2623 * num_poisoned_pages. But that would need more space per memmap, so 2624 * for now just do a quick global check to speed up this routine in the 2625 * absence of bad pages. 2626 */ 2627 if (atomic_long_read(&num_poisoned_pages) == 0) 2628 return; 2629 2630 for (i = 0; i < nr_pages; i++) { 2631 if (PageHWPoison(&memmap[i])) { 2632 num_poisoned_pages_dec(); 2633 ClearPageHWPoison(&memmap[i]); 2634 } 2635 } 2636 } 2637