xref: /linux/mm/memory-failure.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/memremap.h>
59 #include <linux/kfifo.h>
60 #include <linux/ratelimit.h>
61 #include <linux/page-isolation.h>
62 #include "internal.h"
63 #include "ras/ras_event.h"
64 
65 int sysctl_memory_failure_early_kill __read_mostly = 0;
66 
67 int sysctl_memory_failure_recovery __read_mostly = 1;
68 
69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
70 
71 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
72 
73 u32 hwpoison_filter_enable = 0;
74 u32 hwpoison_filter_dev_major = ~0U;
75 u32 hwpoison_filter_dev_minor = ~0U;
76 u64 hwpoison_filter_flags_mask;
77 u64 hwpoison_filter_flags_value;
78 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
82 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
83 
84 static int hwpoison_filter_dev(struct page *p)
85 {
86 	struct address_space *mapping;
87 	dev_t dev;
88 
89 	if (hwpoison_filter_dev_major == ~0U &&
90 	    hwpoison_filter_dev_minor == ~0U)
91 		return 0;
92 
93 	/*
94 	 * page_mapping() does not accept slab pages.
95 	 */
96 	if (PageSlab(p))
97 		return -EINVAL;
98 
99 	mapping = page_mapping(p);
100 	if (mapping == NULL || mapping->host == NULL)
101 		return -EINVAL;
102 
103 	dev = mapping->host->i_sb->s_dev;
104 	if (hwpoison_filter_dev_major != ~0U &&
105 	    hwpoison_filter_dev_major != MAJOR(dev))
106 		return -EINVAL;
107 	if (hwpoison_filter_dev_minor != ~0U &&
108 	    hwpoison_filter_dev_minor != MINOR(dev))
109 		return -EINVAL;
110 
111 	return 0;
112 }
113 
114 static int hwpoison_filter_flags(struct page *p)
115 {
116 	if (!hwpoison_filter_flags_mask)
117 		return 0;
118 
119 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
120 				    hwpoison_filter_flags_value)
121 		return 0;
122 	else
123 		return -EINVAL;
124 }
125 
126 /*
127  * This allows stress tests to limit test scope to a collection of tasks
128  * by putting them under some memcg. This prevents killing unrelated/important
129  * processes such as /sbin/init. Note that the target task may share clean
130  * pages with init (eg. libc text), which is harmless. If the target task
131  * share _dirty_ pages with another task B, the test scheme must make sure B
132  * is also included in the memcg. At last, due to race conditions this filter
133  * can only guarantee that the page either belongs to the memcg tasks, or is
134  * a freed page.
135  */
136 #ifdef CONFIG_MEMCG
137 u64 hwpoison_filter_memcg;
138 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
139 static int hwpoison_filter_task(struct page *p)
140 {
141 	if (!hwpoison_filter_memcg)
142 		return 0;
143 
144 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
145 		return -EINVAL;
146 
147 	return 0;
148 }
149 #else
150 static int hwpoison_filter_task(struct page *p) { return 0; }
151 #endif
152 
153 int hwpoison_filter(struct page *p)
154 {
155 	if (!hwpoison_filter_enable)
156 		return 0;
157 
158 	if (hwpoison_filter_dev(p))
159 		return -EINVAL;
160 
161 	if (hwpoison_filter_flags(p))
162 		return -EINVAL;
163 
164 	if (hwpoison_filter_task(p))
165 		return -EINVAL;
166 
167 	return 0;
168 }
169 #else
170 int hwpoison_filter(struct page *p)
171 {
172 	return 0;
173 }
174 #endif
175 
176 EXPORT_SYMBOL_GPL(hwpoison_filter);
177 
178 /*
179  * Kill all processes that have a poisoned page mapped and then isolate
180  * the page.
181  *
182  * General strategy:
183  * Find all processes having the page mapped and kill them.
184  * But we keep a page reference around so that the page is not
185  * actually freed yet.
186  * Then stash the page away
187  *
188  * There's no convenient way to get back to mapped processes
189  * from the VMAs. So do a brute-force search over all
190  * running processes.
191  *
192  * Remember that machine checks are not common (or rather
193  * if they are common you have other problems), so this shouldn't
194  * be a performance issue.
195  *
196  * Also there are some races possible while we get from the
197  * error detection to actually handle it.
198  */
199 
200 struct to_kill {
201 	struct list_head nd;
202 	struct task_struct *tsk;
203 	unsigned long addr;
204 	short size_shift;
205 	char addr_valid;
206 };
207 
208 /*
209  * Send all the processes who have the page mapped a signal.
210  * ``action optional'' if they are not immediately affected by the error
211  * ``action required'' if error happened in current execution context
212  */
213 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
214 {
215 	struct task_struct *t = tk->tsk;
216 	short addr_lsb = tk->size_shift;
217 	int ret;
218 
219 	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
220 		pfn, t->comm, t->pid);
221 
222 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
223 		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
224 				       addr_lsb, current);
225 	} else {
226 		/*
227 		 * Don't use force here, it's convenient if the signal
228 		 * can be temporarily blocked.
229 		 * This could cause a loop when the user sets SIGBUS
230 		 * to SIG_IGN, but hopefully no one will do that?
231 		 */
232 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
233 				      addr_lsb, t);  /* synchronous? */
234 	}
235 	if (ret < 0)
236 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
237 			t->comm, t->pid, ret);
238 	return ret;
239 }
240 
241 /*
242  * When a unknown page type is encountered drain as many buffers as possible
243  * in the hope to turn the page into a LRU or free page, which we can handle.
244  */
245 void shake_page(struct page *p, int access)
246 {
247 	if (PageHuge(p))
248 		return;
249 
250 	if (!PageSlab(p)) {
251 		lru_add_drain_all();
252 		if (PageLRU(p))
253 			return;
254 		drain_all_pages(page_zone(p));
255 		if (PageLRU(p) || is_free_buddy_page(p))
256 			return;
257 	}
258 
259 	/*
260 	 * Only call shrink_node_slabs here (which would also shrink
261 	 * other caches) if access is not potentially fatal.
262 	 */
263 	if (access)
264 		drop_slab_node(page_to_nid(p));
265 }
266 EXPORT_SYMBOL_GPL(shake_page);
267 
268 static unsigned long dev_pagemap_mapping_shift(struct page *page,
269 		struct vm_area_struct *vma)
270 {
271 	unsigned long address = vma_address(page, vma);
272 	pgd_t *pgd;
273 	p4d_t *p4d;
274 	pud_t *pud;
275 	pmd_t *pmd;
276 	pte_t *pte;
277 
278 	pgd = pgd_offset(vma->vm_mm, address);
279 	if (!pgd_present(*pgd))
280 		return 0;
281 	p4d = p4d_offset(pgd, address);
282 	if (!p4d_present(*p4d))
283 		return 0;
284 	pud = pud_offset(p4d, address);
285 	if (!pud_present(*pud))
286 		return 0;
287 	if (pud_devmap(*pud))
288 		return PUD_SHIFT;
289 	pmd = pmd_offset(pud, address);
290 	if (!pmd_present(*pmd))
291 		return 0;
292 	if (pmd_devmap(*pmd))
293 		return PMD_SHIFT;
294 	pte = pte_offset_map(pmd, address);
295 	if (!pte_present(*pte))
296 		return 0;
297 	if (pte_devmap(*pte))
298 		return PAGE_SHIFT;
299 	return 0;
300 }
301 
302 /*
303  * Failure handling: if we can't find or can't kill a process there's
304  * not much we can do.	We just print a message and ignore otherwise.
305  */
306 
307 /*
308  * Schedule a process for later kill.
309  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
310  * TBD would GFP_NOIO be enough?
311  */
312 static void add_to_kill(struct task_struct *tsk, struct page *p,
313 		       struct vm_area_struct *vma,
314 		       struct list_head *to_kill,
315 		       struct to_kill **tkc)
316 {
317 	struct to_kill *tk;
318 
319 	if (*tkc) {
320 		tk = *tkc;
321 		*tkc = NULL;
322 	} else {
323 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
324 		if (!tk) {
325 			pr_err("Memory failure: Out of memory while machine check handling\n");
326 			return;
327 		}
328 	}
329 	tk->addr = page_address_in_vma(p, vma);
330 	tk->addr_valid = 1;
331 	if (is_zone_device_page(p))
332 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
333 	else
334 		tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
335 
336 	/*
337 	 * In theory we don't have to kill when the page was
338 	 * munmaped. But it could be also a mremap. Since that's
339 	 * likely very rare kill anyways just out of paranoia, but use
340 	 * a SIGKILL because the error is not contained anymore.
341 	 */
342 	if (tk->addr == -EFAULT || tk->size_shift == 0) {
343 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
344 			page_to_pfn(p), tsk->comm);
345 		tk->addr_valid = 0;
346 	}
347 	get_task_struct(tsk);
348 	tk->tsk = tsk;
349 	list_add_tail(&tk->nd, to_kill);
350 }
351 
352 /*
353  * Kill the processes that have been collected earlier.
354  *
355  * Only do anything when DOIT is set, otherwise just free the list
356  * (this is used for clean pages which do not need killing)
357  * Also when FAIL is set do a force kill because something went
358  * wrong earlier.
359  */
360 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
361 		unsigned long pfn, int flags)
362 {
363 	struct to_kill *tk, *next;
364 
365 	list_for_each_entry_safe (tk, next, to_kill, nd) {
366 		if (forcekill) {
367 			/*
368 			 * In case something went wrong with munmapping
369 			 * make sure the process doesn't catch the
370 			 * signal and then access the memory. Just kill it.
371 			 */
372 			if (fail || tk->addr_valid == 0) {
373 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
374 				       pfn, tk->tsk->comm, tk->tsk->pid);
375 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
376 						 tk->tsk, PIDTYPE_PID);
377 			}
378 
379 			/*
380 			 * In theory the process could have mapped
381 			 * something else on the address in-between. We could
382 			 * check for that, but we need to tell the
383 			 * process anyways.
384 			 */
385 			else if (kill_proc(tk, pfn, flags) < 0)
386 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
387 				       pfn, tk->tsk->comm, tk->tsk->pid);
388 		}
389 		put_task_struct(tk->tsk);
390 		kfree(tk);
391 	}
392 }
393 
394 /*
395  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
396  * on behalf of the thread group. Return task_struct of the (first found)
397  * dedicated thread if found, and return NULL otherwise.
398  *
399  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
400  * have to call rcu_read_lock/unlock() in this function.
401  */
402 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
403 {
404 	struct task_struct *t;
405 
406 	for_each_thread(tsk, t)
407 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
408 			return t;
409 	return NULL;
410 }
411 
412 /*
413  * Determine whether a given process is "early kill" process which expects
414  * to be signaled when some page under the process is hwpoisoned.
415  * Return task_struct of the dedicated thread (main thread unless explicitly
416  * specified) if the process is "early kill," and otherwise returns NULL.
417  */
418 static struct task_struct *task_early_kill(struct task_struct *tsk,
419 					   int force_early)
420 {
421 	struct task_struct *t;
422 	if (!tsk->mm)
423 		return NULL;
424 	if (force_early)
425 		return tsk;
426 	t = find_early_kill_thread(tsk);
427 	if (t)
428 		return t;
429 	if (sysctl_memory_failure_early_kill)
430 		return tsk;
431 	return NULL;
432 }
433 
434 /*
435  * Collect processes when the error hit an anonymous page.
436  */
437 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
438 			      struct to_kill **tkc, int force_early)
439 {
440 	struct vm_area_struct *vma;
441 	struct task_struct *tsk;
442 	struct anon_vma *av;
443 	pgoff_t pgoff;
444 
445 	av = page_lock_anon_vma_read(page);
446 	if (av == NULL)	/* Not actually mapped anymore */
447 		return;
448 
449 	pgoff = page_to_pgoff(page);
450 	read_lock(&tasklist_lock);
451 	for_each_process (tsk) {
452 		struct anon_vma_chain *vmac;
453 		struct task_struct *t = task_early_kill(tsk, force_early);
454 
455 		if (!t)
456 			continue;
457 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
458 					       pgoff, pgoff) {
459 			vma = vmac->vma;
460 			if (!page_mapped_in_vma(page, vma))
461 				continue;
462 			if (vma->vm_mm == t->mm)
463 				add_to_kill(t, page, vma, to_kill, tkc);
464 		}
465 	}
466 	read_unlock(&tasklist_lock);
467 	page_unlock_anon_vma_read(av);
468 }
469 
470 /*
471  * Collect processes when the error hit a file mapped page.
472  */
473 static void collect_procs_file(struct page *page, struct list_head *to_kill,
474 			      struct to_kill **tkc, int force_early)
475 {
476 	struct vm_area_struct *vma;
477 	struct task_struct *tsk;
478 	struct address_space *mapping = page->mapping;
479 
480 	i_mmap_lock_read(mapping);
481 	read_lock(&tasklist_lock);
482 	for_each_process(tsk) {
483 		pgoff_t pgoff = page_to_pgoff(page);
484 		struct task_struct *t = task_early_kill(tsk, force_early);
485 
486 		if (!t)
487 			continue;
488 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
489 				      pgoff) {
490 			/*
491 			 * Send early kill signal to tasks where a vma covers
492 			 * the page but the corrupted page is not necessarily
493 			 * mapped it in its pte.
494 			 * Assume applications who requested early kill want
495 			 * to be informed of all such data corruptions.
496 			 */
497 			if (vma->vm_mm == t->mm)
498 				add_to_kill(t, page, vma, to_kill, tkc);
499 		}
500 	}
501 	read_unlock(&tasklist_lock);
502 	i_mmap_unlock_read(mapping);
503 }
504 
505 /*
506  * Collect the processes who have the corrupted page mapped to kill.
507  * This is done in two steps for locking reasons.
508  * First preallocate one tokill structure outside the spin locks,
509  * so that we can kill at least one process reasonably reliable.
510  */
511 static void collect_procs(struct page *page, struct list_head *tokill,
512 				int force_early)
513 {
514 	struct to_kill *tk;
515 
516 	if (!page->mapping)
517 		return;
518 
519 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
520 	if (!tk)
521 		return;
522 	if (PageAnon(page))
523 		collect_procs_anon(page, tokill, &tk, force_early);
524 	else
525 		collect_procs_file(page, tokill, &tk, force_early);
526 	kfree(tk);
527 }
528 
529 static const char *action_name[] = {
530 	[MF_IGNORED] = "Ignored",
531 	[MF_FAILED] = "Failed",
532 	[MF_DELAYED] = "Delayed",
533 	[MF_RECOVERED] = "Recovered",
534 };
535 
536 static const char * const action_page_types[] = {
537 	[MF_MSG_KERNEL]			= "reserved kernel page",
538 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
539 	[MF_MSG_SLAB]			= "kernel slab page",
540 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
541 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
542 	[MF_MSG_HUGE]			= "huge page",
543 	[MF_MSG_FREE_HUGE]		= "free huge page",
544 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
545 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
546 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
547 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
548 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
549 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
550 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
551 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
552 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
553 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
554 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
555 	[MF_MSG_BUDDY]			= "free buddy page",
556 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
557 	[MF_MSG_DAX]			= "dax page",
558 	[MF_MSG_UNKNOWN]		= "unknown page",
559 };
560 
561 /*
562  * XXX: It is possible that a page is isolated from LRU cache,
563  * and then kept in swap cache or failed to remove from page cache.
564  * The page count will stop it from being freed by unpoison.
565  * Stress tests should be aware of this memory leak problem.
566  */
567 static int delete_from_lru_cache(struct page *p)
568 {
569 	if (!isolate_lru_page(p)) {
570 		/*
571 		 * Clear sensible page flags, so that the buddy system won't
572 		 * complain when the page is unpoison-and-freed.
573 		 */
574 		ClearPageActive(p);
575 		ClearPageUnevictable(p);
576 
577 		/*
578 		 * Poisoned page might never drop its ref count to 0 so we have
579 		 * to uncharge it manually from its memcg.
580 		 */
581 		mem_cgroup_uncharge(p);
582 
583 		/*
584 		 * drop the page count elevated by isolate_lru_page()
585 		 */
586 		put_page(p);
587 		return 0;
588 	}
589 	return -EIO;
590 }
591 
592 static int truncate_error_page(struct page *p, unsigned long pfn,
593 				struct address_space *mapping)
594 {
595 	int ret = MF_FAILED;
596 
597 	if (mapping->a_ops->error_remove_page) {
598 		int err = mapping->a_ops->error_remove_page(mapping, p);
599 
600 		if (err != 0) {
601 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
602 				pfn, err);
603 		} else if (page_has_private(p) &&
604 			   !try_to_release_page(p, GFP_NOIO)) {
605 			pr_info("Memory failure: %#lx: failed to release buffers\n",
606 				pfn);
607 		} else {
608 			ret = MF_RECOVERED;
609 		}
610 	} else {
611 		/*
612 		 * If the file system doesn't support it just invalidate
613 		 * This fails on dirty or anything with private pages
614 		 */
615 		if (invalidate_inode_page(p))
616 			ret = MF_RECOVERED;
617 		else
618 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
619 				pfn);
620 	}
621 
622 	return ret;
623 }
624 
625 /*
626  * Error hit kernel page.
627  * Do nothing, try to be lucky and not touch this instead. For a few cases we
628  * could be more sophisticated.
629  */
630 static int me_kernel(struct page *p, unsigned long pfn)
631 {
632 	return MF_IGNORED;
633 }
634 
635 /*
636  * Page in unknown state. Do nothing.
637  */
638 static int me_unknown(struct page *p, unsigned long pfn)
639 {
640 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
641 	return MF_FAILED;
642 }
643 
644 /*
645  * Clean (or cleaned) page cache page.
646  */
647 static int me_pagecache_clean(struct page *p, unsigned long pfn)
648 {
649 	struct address_space *mapping;
650 
651 	delete_from_lru_cache(p);
652 
653 	/*
654 	 * For anonymous pages we're done the only reference left
655 	 * should be the one m_f() holds.
656 	 */
657 	if (PageAnon(p))
658 		return MF_RECOVERED;
659 
660 	/*
661 	 * Now truncate the page in the page cache. This is really
662 	 * more like a "temporary hole punch"
663 	 * Don't do this for block devices when someone else
664 	 * has a reference, because it could be file system metadata
665 	 * and that's not safe to truncate.
666 	 */
667 	mapping = page_mapping(p);
668 	if (!mapping) {
669 		/*
670 		 * Page has been teared down in the meanwhile
671 		 */
672 		return MF_FAILED;
673 	}
674 
675 	/*
676 	 * Truncation is a bit tricky. Enable it per file system for now.
677 	 *
678 	 * Open: to take i_mutex or not for this? Right now we don't.
679 	 */
680 	return truncate_error_page(p, pfn, mapping);
681 }
682 
683 /*
684  * Dirty pagecache page
685  * Issues: when the error hit a hole page the error is not properly
686  * propagated.
687  */
688 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
689 {
690 	struct address_space *mapping = page_mapping(p);
691 
692 	SetPageError(p);
693 	/* TBD: print more information about the file. */
694 	if (mapping) {
695 		/*
696 		 * IO error will be reported by write(), fsync(), etc.
697 		 * who check the mapping.
698 		 * This way the application knows that something went
699 		 * wrong with its dirty file data.
700 		 *
701 		 * There's one open issue:
702 		 *
703 		 * The EIO will be only reported on the next IO
704 		 * operation and then cleared through the IO map.
705 		 * Normally Linux has two mechanisms to pass IO error
706 		 * first through the AS_EIO flag in the address space
707 		 * and then through the PageError flag in the page.
708 		 * Since we drop pages on memory failure handling the
709 		 * only mechanism open to use is through AS_AIO.
710 		 *
711 		 * This has the disadvantage that it gets cleared on
712 		 * the first operation that returns an error, while
713 		 * the PageError bit is more sticky and only cleared
714 		 * when the page is reread or dropped.  If an
715 		 * application assumes it will always get error on
716 		 * fsync, but does other operations on the fd before
717 		 * and the page is dropped between then the error
718 		 * will not be properly reported.
719 		 *
720 		 * This can already happen even without hwpoisoned
721 		 * pages: first on metadata IO errors (which only
722 		 * report through AS_EIO) or when the page is dropped
723 		 * at the wrong time.
724 		 *
725 		 * So right now we assume that the application DTRT on
726 		 * the first EIO, but we're not worse than other parts
727 		 * of the kernel.
728 		 */
729 		mapping_set_error(mapping, -EIO);
730 	}
731 
732 	return me_pagecache_clean(p, pfn);
733 }
734 
735 /*
736  * Clean and dirty swap cache.
737  *
738  * Dirty swap cache page is tricky to handle. The page could live both in page
739  * cache and swap cache(ie. page is freshly swapped in). So it could be
740  * referenced concurrently by 2 types of PTEs:
741  * normal PTEs and swap PTEs. We try to handle them consistently by calling
742  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
743  * and then
744  *      - clear dirty bit to prevent IO
745  *      - remove from LRU
746  *      - but keep in the swap cache, so that when we return to it on
747  *        a later page fault, we know the application is accessing
748  *        corrupted data and shall be killed (we installed simple
749  *        interception code in do_swap_page to catch it).
750  *
751  * Clean swap cache pages can be directly isolated. A later page fault will
752  * bring in the known good data from disk.
753  */
754 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
755 {
756 	ClearPageDirty(p);
757 	/* Trigger EIO in shmem: */
758 	ClearPageUptodate(p);
759 
760 	if (!delete_from_lru_cache(p))
761 		return MF_DELAYED;
762 	else
763 		return MF_FAILED;
764 }
765 
766 static int me_swapcache_clean(struct page *p, unsigned long pfn)
767 {
768 	delete_from_swap_cache(p);
769 
770 	if (!delete_from_lru_cache(p))
771 		return MF_RECOVERED;
772 	else
773 		return MF_FAILED;
774 }
775 
776 /*
777  * Huge pages. Needs work.
778  * Issues:
779  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
780  *   To narrow down kill region to one page, we need to break up pmd.
781  */
782 static int me_huge_page(struct page *p, unsigned long pfn)
783 {
784 	int res = 0;
785 	struct page *hpage = compound_head(p);
786 	struct address_space *mapping;
787 
788 	if (!PageHuge(hpage))
789 		return MF_DELAYED;
790 
791 	mapping = page_mapping(hpage);
792 	if (mapping) {
793 		res = truncate_error_page(hpage, pfn, mapping);
794 	} else {
795 		unlock_page(hpage);
796 		/*
797 		 * migration entry prevents later access on error anonymous
798 		 * hugepage, so we can free and dissolve it into buddy to
799 		 * save healthy subpages.
800 		 */
801 		if (PageAnon(hpage))
802 			put_page(hpage);
803 		dissolve_free_huge_page(p);
804 		res = MF_RECOVERED;
805 		lock_page(hpage);
806 	}
807 
808 	return res;
809 }
810 
811 /*
812  * Various page states we can handle.
813  *
814  * A page state is defined by its current page->flags bits.
815  * The table matches them in order and calls the right handler.
816  *
817  * This is quite tricky because we can access page at any time
818  * in its live cycle, so all accesses have to be extremely careful.
819  *
820  * This is not complete. More states could be added.
821  * For any missing state don't attempt recovery.
822  */
823 
824 #define dirty		(1UL << PG_dirty)
825 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
826 #define unevict		(1UL << PG_unevictable)
827 #define mlock		(1UL << PG_mlocked)
828 #define writeback	(1UL << PG_writeback)
829 #define lru		(1UL << PG_lru)
830 #define head		(1UL << PG_head)
831 #define slab		(1UL << PG_slab)
832 #define reserved	(1UL << PG_reserved)
833 
834 static struct page_state {
835 	unsigned long mask;
836 	unsigned long res;
837 	enum mf_action_page_type type;
838 	int (*action)(struct page *p, unsigned long pfn);
839 } error_states[] = {
840 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
841 	/*
842 	 * free pages are specially detected outside this table:
843 	 * PG_buddy pages only make a small fraction of all free pages.
844 	 */
845 
846 	/*
847 	 * Could in theory check if slab page is free or if we can drop
848 	 * currently unused objects without touching them. But just
849 	 * treat it as standard kernel for now.
850 	 */
851 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
852 
853 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
854 
855 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
856 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
857 
858 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
859 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
860 
861 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
862 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
863 
864 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
865 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
866 
867 	/*
868 	 * Catchall entry: must be at end.
869 	 */
870 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
871 };
872 
873 #undef dirty
874 #undef sc
875 #undef unevict
876 #undef mlock
877 #undef writeback
878 #undef lru
879 #undef head
880 #undef slab
881 #undef reserved
882 
883 /*
884  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
885  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
886  */
887 static void action_result(unsigned long pfn, enum mf_action_page_type type,
888 			  enum mf_result result)
889 {
890 	trace_memory_failure_event(pfn, type, result);
891 
892 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
893 		pfn, action_page_types[type], action_name[result]);
894 }
895 
896 static int page_action(struct page_state *ps, struct page *p,
897 			unsigned long pfn)
898 {
899 	int result;
900 	int count;
901 
902 	result = ps->action(p, pfn);
903 
904 	count = page_count(p) - 1;
905 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
906 		count--;
907 	if (count > 0) {
908 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
909 		       pfn, action_page_types[ps->type], count);
910 		result = MF_FAILED;
911 	}
912 	action_result(pfn, ps->type, result);
913 
914 	/* Could do more checks here if page looks ok */
915 	/*
916 	 * Could adjust zone counters here to correct for the missing page.
917 	 */
918 
919 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
920 }
921 
922 /**
923  * get_hwpoison_page() - Get refcount for memory error handling:
924  * @page:	raw error page (hit by memory error)
925  *
926  * Return: return 0 if failed to grab the refcount, otherwise true (some
927  * non-zero value.)
928  */
929 int get_hwpoison_page(struct page *page)
930 {
931 	struct page *head = compound_head(page);
932 
933 	if (!PageHuge(head) && PageTransHuge(head)) {
934 		/*
935 		 * Non anonymous thp exists only in allocation/free time. We
936 		 * can't handle such a case correctly, so let's give it up.
937 		 * This should be better than triggering BUG_ON when kernel
938 		 * tries to touch the "partially handled" page.
939 		 */
940 		if (!PageAnon(head)) {
941 			pr_err("Memory failure: %#lx: non anonymous thp\n",
942 				page_to_pfn(page));
943 			return 0;
944 		}
945 	}
946 
947 	if (get_page_unless_zero(head)) {
948 		if (head == compound_head(page))
949 			return 1;
950 
951 		pr_info("Memory failure: %#lx cannot catch tail\n",
952 			page_to_pfn(page));
953 		put_page(head);
954 	}
955 
956 	return 0;
957 }
958 EXPORT_SYMBOL_GPL(get_hwpoison_page);
959 
960 /*
961  * Do all that is necessary to remove user space mappings. Unmap
962  * the pages and send SIGBUS to the processes if the data was dirty.
963  */
964 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
965 				  int flags, struct page **hpagep)
966 {
967 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
968 	struct address_space *mapping;
969 	LIST_HEAD(tokill);
970 	bool unmap_success;
971 	int kill = 1, forcekill;
972 	struct page *hpage = *hpagep;
973 	bool mlocked = PageMlocked(hpage);
974 
975 	/*
976 	 * Here we are interested only in user-mapped pages, so skip any
977 	 * other types of pages.
978 	 */
979 	if (PageReserved(p) || PageSlab(p))
980 		return true;
981 	if (!(PageLRU(hpage) || PageHuge(p)))
982 		return true;
983 
984 	/*
985 	 * This check implies we don't kill processes if their pages
986 	 * are in the swap cache early. Those are always late kills.
987 	 */
988 	if (!page_mapped(hpage))
989 		return true;
990 
991 	if (PageKsm(p)) {
992 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
993 		return false;
994 	}
995 
996 	if (PageSwapCache(p)) {
997 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
998 			pfn);
999 		ttu |= TTU_IGNORE_HWPOISON;
1000 	}
1001 
1002 	/*
1003 	 * Propagate the dirty bit from PTEs to struct page first, because we
1004 	 * need this to decide if we should kill or just drop the page.
1005 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1006 	 * be called inside page lock (it's recommended but not enforced).
1007 	 */
1008 	mapping = page_mapping(hpage);
1009 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1010 	    mapping_cap_writeback_dirty(mapping)) {
1011 		if (page_mkclean(hpage)) {
1012 			SetPageDirty(hpage);
1013 		} else {
1014 			kill = 0;
1015 			ttu |= TTU_IGNORE_HWPOISON;
1016 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1017 				pfn);
1018 		}
1019 	}
1020 
1021 	/*
1022 	 * First collect all the processes that have the page
1023 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1024 	 * because ttu takes the rmap data structures down.
1025 	 *
1026 	 * Error handling: We ignore errors here because
1027 	 * there's nothing that can be done.
1028 	 */
1029 	if (kill)
1030 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1031 
1032 	unmap_success = try_to_unmap(hpage, ttu);
1033 	if (!unmap_success)
1034 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1035 		       pfn, page_mapcount(hpage));
1036 
1037 	/*
1038 	 * try_to_unmap() might put mlocked page in lru cache, so call
1039 	 * shake_page() again to ensure that it's flushed.
1040 	 */
1041 	if (mlocked)
1042 		shake_page(hpage, 0);
1043 
1044 	/*
1045 	 * Now that the dirty bit has been propagated to the
1046 	 * struct page and all unmaps done we can decide if
1047 	 * killing is needed or not.  Only kill when the page
1048 	 * was dirty or the process is not restartable,
1049 	 * otherwise the tokill list is merely
1050 	 * freed.  When there was a problem unmapping earlier
1051 	 * use a more force-full uncatchable kill to prevent
1052 	 * any accesses to the poisoned memory.
1053 	 */
1054 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1055 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1056 
1057 	return unmap_success;
1058 }
1059 
1060 static int identify_page_state(unsigned long pfn, struct page *p,
1061 				unsigned long page_flags)
1062 {
1063 	struct page_state *ps;
1064 
1065 	/*
1066 	 * The first check uses the current page flags which may not have any
1067 	 * relevant information. The second check with the saved page flags is
1068 	 * carried out only if the first check can't determine the page status.
1069 	 */
1070 	for (ps = error_states;; ps++)
1071 		if ((p->flags & ps->mask) == ps->res)
1072 			break;
1073 
1074 	page_flags |= (p->flags & (1UL << PG_dirty));
1075 
1076 	if (!ps->mask)
1077 		for (ps = error_states;; ps++)
1078 			if ((page_flags & ps->mask) == ps->res)
1079 				break;
1080 	return page_action(ps, p, pfn);
1081 }
1082 
1083 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1084 {
1085 	struct page *p = pfn_to_page(pfn);
1086 	struct page *head = compound_head(p);
1087 	int res;
1088 	unsigned long page_flags;
1089 
1090 	if (TestSetPageHWPoison(head)) {
1091 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1092 		       pfn);
1093 		return 0;
1094 	}
1095 
1096 	num_poisoned_pages_inc();
1097 
1098 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1099 		/*
1100 		 * Check "filter hit" and "race with other subpage."
1101 		 */
1102 		lock_page(head);
1103 		if (PageHWPoison(head)) {
1104 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1105 			    || (p != head && TestSetPageHWPoison(head))) {
1106 				num_poisoned_pages_dec();
1107 				unlock_page(head);
1108 				return 0;
1109 			}
1110 		}
1111 		unlock_page(head);
1112 		dissolve_free_huge_page(p);
1113 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1114 		return 0;
1115 	}
1116 
1117 	lock_page(head);
1118 	page_flags = head->flags;
1119 
1120 	if (!PageHWPoison(head)) {
1121 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1122 		num_poisoned_pages_dec();
1123 		unlock_page(head);
1124 		put_hwpoison_page(head);
1125 		return 0;
1126 	}
1127 
1128 	/*
1129 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1130 	 * simply disable it. In order to make it work properly, we need
1131 	 * make sure that:
1132 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1133 	 *    entry properly works, and
1134 	 *  - other mm code walking over page table is aware of pud-aligned
1135 	 *    hwpoison entries.
1136 	 */
1137 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1138 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1139 		res = -EBUSY;
1140 		goto out;
1141 	}
1142 
1143 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1144 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1145 		res = -EBUSY;
1146 		goto out;
1147 	}
1148 
1149 	res = identify_page_state(pfn, p, page_flags);
1150 out:
1151 	unlock_page(head);
1152 	return res;
1153 }
1154 
1155 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1156 		struct dev_pagemap *pgmap)
1157 {
1158 	struct page *page = pfn_to_page(pfn);
1159 	const bool unmap_success = true;
1160 	unsigned long size = 0;
1161 	struct to_kill *tk;
1162 	LIST_HEAD(tokill);
1163 	int rc = -EBUSY;
1164 	loff_t start;
1165 	dax_entry_t cookie;
1166 
1167 	/*
1168 	 * Prevent the inode from being freed while we are interrogating
1169 	 * the address_space, typically this would be handled by
1170 	 * lock_page(), but dax pages do not use the page lock. This
1171 	 * also prevents changes to the mapping of this pfn until
1172 	 * poison signaling is complete.
1173 	 */
1174 	cookie = dax_lock_page(page);
1175 	if (!cookie)
1176 		goto out;
1177 
1178 	if (hwpoison_filter(page)) {
1179 		rc = 0;
1180 		goto unlock;
1181 	}
1182 
1183 	switch (pgmap->type) {
1184 	case MEMORY_DEVICE_PRIVATE:
1185 	case MEMORY_DEVICE_PUBLIC:
1186 		/*
1187 		 * TODO: Handle HMM pages which may need coordination
1188 		 * with device-side memory.
1189 		 */
1190 		goto unlock;
1191 	default:
1192 		break;
1193 	}
1194 
1195 	/*
1196 	 * Use this flag as an indication that the dax page has been
1197 	 * remapped UC to prevent speculative consumption of poison.
1198 	 */
1199 	SetPageHWPoison(page);
1200 
1201 	/*
1202 	 * Unlike System-RAM there is no possibility to swap in a
1203 	 * different physical page at a given virtual address, so all
1204 	 * userspace consumption of ZONE_DEVICE memory necessitates
1205 	 * SIGBUS (i.e. MF_MUST_KILL)
1206 	 */
1207 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1208 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1209 
1210 	list_for_each_entry(tk, &tokill, nd)
1211 		if (tk->size_shift)
1212 			size = max(size, 1UL << tk->size_shift);
1213 	if (size) {
1214 		/*
1215 		 * Unmap the largest mapping to avoid breaking up
1216 		 * device-dax mappings which are constant size. The
1217 		 * actual size of the mapping being torn down is
1218 		 * communicated in siginfo, see kill_proc()
1219 		 */
1220 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1221 		unmap_mapping_range(page->mapping, start, start + size, 0);
1222 	}
1223 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1224 	rc = 0;
1225 unlock:
1226 	dax_unlock_page(page, cookie);
1227 out:
1228 	/* drop pgmap ref acquired in caller */
1229 	put_dev_pagemap(pgmap);
1230 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1231 	return rc;
1232 }
1233 
1234 /**
1235  * memory_failure - Handle memory failure of a page.
1236  * @pfn: Page Number of the corrupted page
1237  * @flags: fine tune action taken
1238  *
1239  * This function is called by the low level machine check code
1240  * of an architecture when it detects hardware memory corruption
1241  * of a page. It tries its best to recover, which includes
1242  * dropping pages, killing processes etc.
1243  *
1244  * The function is primarily of use for corruptions that
1245  * happen outside the current execution context (e.g. when
1246  * detected by a background scrubber)
1247  *
1248  * Must run in process context (e.g. a work queue) with interrupts
1249  * enabled and no spinlocks hold.
1250  */
1251 int memory_failure(unsigned long pfn, int flags)
1252 {
1253 	struct page *p;
1254 	struct page *hpage;
1255 	struct page *orig_head;
1256 	struct dev_pagemap *pgmap;
1257 	int res;
1258 	unsigned long page_flags;
1259 
1260 	if (!sysctl_memory_failure_recovery)
1261 		panic("Memory failure on page %lx", pfn);
1262 
1263 	if (!pfn_valid(pfn)) {
1264 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1265 			pfn);
1266 		return -ENXIO;
1267 	}
1268 
1269 	pgmap = get_dev_pagemap(pfn, NULL);
1270 	if (pgmap)
1271 		return memory_failure_dev_pagemap(pfn, flags, pgmap);
1272 
1273 	p = pfn_to_page(pfn);
1274 	if (PageHuge(p))
1275 		return memory_failure_hugetlb(pfn, flags);
1276 	if (TestSetPageHWPoison(p)) {
1277 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1278 			pfn);
1279 		return 0;
1280 	}
1281 
1282 	orig_head = hpage = compound_head(p);
1283 	num_poisoned_pages_inc();
1284 
1285 	/*
1286 	 * We need/can do nothing about count=0 pages.
1287 	 * 1) it's a free page, and therefore in safe hand:
1288 	 *    prep_new_page() will be the gate keeper.
1289 	 * 2) it's part of a non-compound high order page.
1290 	 *    Implies some kernel user: cannot stop them from
1291 	 *    R/W the page; let's pray that the page has been
1292 	 *    used and will be freed some time later.
1293 	 * In fact it's dangerous to directly bump up page count from 0,
1294 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1295 	 */
1296 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1297 		if (is_free_buddy_page(p)) {
1298 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1299 			return 0;
1300 		} else {
1301 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1302 			return -EBUSY;
1303 		}
1304 	}
1305 
1306 	if (PageTransHuge(hpage)) {
1307 		lock_page(p);
1308 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1309 			unlock_page(p);
1310 			if (!PageAnon(p))
1311 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1312 					pfn);
1313 			else
1314 				pr_err("Memory failure: %#lx: thp split failed\n",
1315 					pfn);
1316 			if (TestClearPageHWPoison(p))
1317 				num_poisoned_pages_dec();
1318 			put_hwpoison_page(p);
1319 			return -EBUSY;
1320 		}
1321 		unlock_page(p);
1322 		VM_BUG_ON_PAGE(!page_count(p), p);
1323 		hpage = compound_head(p);
1324 	}
1325 
1326 	/*
1327 	 * We ignore non-LRU pages for good reasons.
1328 	 * - PG_locked is only well defined for LRU pages and a few others
1329 	 * - to avoid races with __SetPageLocked()
1330 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1331 	 * The check (unnecessarily) ignores LRU pages being isolated and
1332 	 * walked by the page reclaim code, however that's not a big loss.
1333 	 */
1334 	shake_page(p, 0);
1335 	/* shake_page could have turned it free. */
1336 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1337 		if (flags & MF_COUNT_INCREASED)
1338 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1339 		else
1340 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1341 		return 0;
1342 	}
1343 
1344 	lock_page(p);
1345 
1346 	/*
1347 	 * The page could have changed compound pages during the locking.
1348 	 * If this happens just bail out.
1349 	 */
1350 	if (PageCompound(p) && compound_head(p) != orig_head) {
1351 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1352 		res = -EBUSY;
1353 		goto out;
1354 	}
1355 
1356 	/*
1357 	 * We use page flags to determine what action should be taken, but
1358 	 * the flags can be modified by the error containment action.  One
1359 	 * example is an mlocked page, where PG_mlocked is cleared by
1360 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1361 	 * correctly, we save a copy of the page flags at this time.
1362 	 */
1363 	if (PageHuge(p))
1364 		page_flags = hpage->flags;
1365 	else
1366 		page_flags = p->flags;
1367 
1368 	/*
1369 	 * unpoison always clear PG_hwpoison inside page lock
1370 	 */
1371 	if (!PageHWPoison(p)) {
1372 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1373 		num_poisoned_pages_dec();
1374 		unlock_page(p);
1375 		put_hwpoison_page(p);
1376 		return 0;
1377 	}
1378 	if (hwpoison_filter(p)) {
1379 		if (TestClearPageHWPoison(p))
1380 			num_poisoned_pages_dec();
1381 		unlock_page(p);
1382 		put_hwpoison_page(p);
1383 		return 0;
1384 	}
1385 
1386 	if (!PageTransTail(p) && !PageLRU(p))
1387 		goto identify_page_state;
1388 
1389 	/*
1390 	 * It's very difficult to mess with pages currently under IO
1391 	 * and in many cases impossible, so we just avoid it here.
1392 	 */
1393 	wait_on_page_writeback(p);
1394 
1395 	/*
1396 	 * Now take care of user space mappings.
1397 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1398 	 *
1399 	 * When the raw error page is thp tail page, hpage points to the raw
1400 	 * page after thp split.
1401 	 */
1402 	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1403 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1404 		res = -EBUSY;
1405 		goto out;
1406 	}
1407 
1408 	/*
1409 	 * Torn down by someone else?
1410 	 */
1411 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1412 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1413 		res = -EBUSY;
1414 		goto out;
1415 	}
1416 
1417 identify_page_state:
1418 	res = identify_page_state(pfn, p, page_flags);
1419 out:
1420 	unlock_page(p);
1421 	return res;
1422 }
1423 EXPORT_SYMBOL_GPL(memory_failure);
1424 
1425 #define MEMORY_FAILURE_FIFO_ORDER	4
1426 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1427 
1428 struct memory_failure_entry {
1429 	unsigned long pfn;
1430 	int flags;
1431 };
1432 
1433 struct memory_failure_cpu {
1434 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1435 		      MEMORY_FAILURE_FIFO_SIZE);
1436 	spinlock_t lock;
1437 	struct work_struct work;
1438 };
1439 
1440 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1441 
1442 /**
1443  * memory_failure_queue - Schedule handling memory failure of a page.
1444  * @pfn: Page Number of the corrupted page
1445  * @flags: Flags for memory failure handling
1446  *
1447  * This function is called by the low level hardware error handler
1448  * when it detects hardware memory corruption of a page. It schedules
1449  * the recovering of error page, including dropping pages, killing
1450  * processes etc.
1451  *
1452  * The function is primarily of use for corruptions that
1453  * happen outside the current execution context (e.g. when
1454  * detected by a background scrubber)
1455  *
1456  * Can run in IRQ context.
1457  */
1458 void memory_failure_queue(unsigned long pfn, int flags)
1459 {
1460 	struct memory_failure_cpu *mf_cpu;
1461 	unsigned long proc_flags;
1462 	struct memory_failure_entry entry = {
1463 		.pfn =		pfn,
1464 		.flags =	flags,
1465 	};
1466 
1467 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1468 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1469 	if (kfifo_put(&mf_cpu->fifo, entry))
1470 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1471 	else
1472 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1473 		       pfn);
1474 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1475 	put_cpu_var(memory_failure_cpu);
1476 }
1477 EXPORT_SYMBOL_GPL(memory_failure_queue);
1478 
1479 static void memory_failure_work_func(struct work_struct *work)
1480 {
1481 	struct memory_failure_cpu *mf_cpu;
1482 	struct memory_failure_entry entry = { 0, };
1483 	unsigned long proc_flags;
1484 	int gotten;
1485 
1486 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1487 	for (;;) {
1488 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1489 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1490 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1491 		if (!gotten)
1492 			break;
1493 		if (entry.flags & MF_SOFT_OFFLINE)
1494 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1495 		else
1496 			memory_failure(entry.pfn, entry.flags);
1497 	}
1498 }
1499 
1500 static int __init memory_failure_init(void)
1501 {
1502 	struct memory_failure_cpu *mf_cpu;
1503 	int cpu;
1504 
1505 	for_each_possible_cpu(cpu) {
1506 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1507 		spin_lock_init(&mf_cpu->lock);
1508 		INIT_KFIFO(mf_cpu->fifo);
1509 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1510 	}
1511 
1512 	return 0;
1513 }
1514 core_initcall(memory_failure_init);
1515 
1516 #define unpoison_pr_info(fmt, pfn, rs)			\
1517 ({							\
1518 	if (__ratelimit(rs))				\
1519 		pr_info(fmt, pfn);			\
1520 })
1521 
1522 /**
1523  * unpoison_memory - Unpoison a previously poisoned page
1524  * @pfn: Page number of the to be unpoisoned page
1525  *
1526  * Software-unpoison a page that has been poisoned by
1527  * memory_failure() earlier.
1528  *
1529  * This is only done on the software-level, so it only works
1530  * for linux injected failures, not real hardware failures
1531  *
1532  * Returns 0 for success, otherwise -errno.
1533  */
1534 int unpoison_memory(unsigned long pfn)
1535 {
1536 	struct page *page;
1537 	struct page *p;
1538 	int freeit = 0;
1539 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1540 					DEFAULT_RATELIMIT_BURST);
1541 
1542 	if (!pfn_valid(pfn))
1543 		return -ENXIO;
1544 
1545 	p = pfn_to_page(pfn);
1546 	page = compound_head(p);
1547 
1548 	if (!PageHWPoison(p)) {
1549 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1550 				 pfn, &unpoison_rs);
1551 		return 0;
1552 	}
1553 
1554 	if (page_count(page) > 1) {
1555 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1556 				 pfn, &unpoison_rs);
1557 		return 0;
1558 	}
1559 
1560 	if (page_mapped(page)) {
1561 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1562 				 pfn, &unpoison_rs);
1563 		return 0;
1564 	}
1565 
1566 	if (page_mapping(page)) {
1567 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1568 				 pfn, &unpoison_rs);
1569 		return 0;
1570 	}
1571 
1572 	/*
1573 	 * unpoison_memory() can encounter thp only when the thp is being
1574 	 * worked by memory_failure() and the page lock is not held yet.
1575 	 * In such case, we yield to memory_failure() and make unpoison fail.
1576 	 */
1577 	if (!PageHuge(page) && PageTransHuge(page)) {
1578 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1579 				 pfn, &unpoison_rs);
1580 		return 0;
1581 	}
1582 
1583 	if (!get_hwpoison_page(p)) {
1584 		if (TestClearPageHWPoison(p))
1585 			num_poisoned_pages_dec();
1586 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1587 				 pfn, &unpoison_rs);
1588 		return 0;
1589 	}
1590 
1591 	lock_page(page);
1592 	/*
1593 	 * This test is racy because PG_hwpoison is set outside of page lock.
1594 	 * That's acceptable because that won't trigger kernel panic. Instead,
1595 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1596 	 * the free buddy page pool.
1597 	 */
1598 	if (TestClearPageHWPoison(page)) {
1599 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1600 				 pfn, &unpoison_rs);
1601 		num_poisoned_pages_dec();
1602 		freeit = 1;
1603 	}
1604 	unlock_page(page);
1605 
1606 	put_hwpoison_page(page);
1607 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1608 		put_hwpoison_page(page);
1609 
1610 	return 0;
1611 }
1612 EXPORT_SYMBOL(unpoison_memory);
1613 
1614 static struct page *new_page(struct page *p, unsigned long private)
1615 {
1616 	int nid = page_to_nid(p);
1617 
1618 	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1619 }
1620 
1621 /*
1622  * Safely get reference count of an arbitrary page.
1623  * Returns 0 for a free page, -EIO for a zero refcount page
1624  * that is not free, and 1 for any other page type.
1625  * For 1 the page is returned with increased page count, otherwise not.
1626  */
1627 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1628 {
1629 	int ret;
1630 
1631 	if (flags & MF_COUNT_INCREASED)
1632 		return 1;
1633 
1634 	/*
1635 	 * When the target page is a free hugepage, just remove it
1636 	 * from free hugepage list.
1637 	 */
1638 	if (!get_hwpoison_page(p)) {
1639 		if (PageHuge(p)) {
1640 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1641 			ret = 0;
1642 		} else if (is_free_buddy_page(p)) {
1643 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1644 			ret = 0;
1645 		} else {
1646 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1647 				__func__, pfn, p->flags);
1648 			ret = -EIO;
1649 		}
1650 	} else {
1651 		/* Not a free page */
1652 		ret = 1;
1653 	}
1654 	return ret;
1655 }
1656 
1657 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1658 {
1659 	int ret = __get_any_page(page, pfn, flags);
1660 
1661 	if (ret == 1 && !PageHuge(page) &&
1662 	    !PageLRU(page) && !__PageMovable(page)) {
1663 		/*
1664 		 * Try to free it.
1665 		 */
1666 		put_hwpoison_page(page);
1667 		shake_page(page, 1);
1668 
1669 		/*
1670 		 * Did it turn free?
1671 		 */
1672 		ret = __get_any_page(page, pfn, 0);
1673 		if (ret == 1 && !PageLRU(page)) {
1674 			/* Drop page reference which is from __get_any_page() */
1675 			put_hwpoison_page(page);
1676 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1677 				pfn, page->flags, &page->flags);
1678 			return -EIO;
1679 		}
1680 	}
1681 	return ret;
1682 }
1683 
1684 static int soft_offline_huge_page(struct page *page, int flags)
1685 {
1686 	int ret;
1687 	unsigned long pfn = page_to_pfn(page);
1688 	struct page *hpage = compound_head(page);
1689 	LIST_HEAD(pagelist);
1690 
1691 	/*
1692 	 * This double-check of PageHWPoison is to avoid the race with
1693 	 * memory_failure(). See also comment in __soft_offline_page().
1694 	 */
1695 	lock_page(hpage);
1696 	if (PageHWPoison(hpage)) {
1697 		unlock_page(hpage);
1698 		put_hwpoison_page(hpage);
1699 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1700 		return -EBUSY;
1701 	}
1702 	unlock_page(hpage);
1703 
1704 	ret = isolate_huge_page(hpage, &pagelist);
1705 	/*
1706 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1707 	 * so need to drop one here.
1708 	 */
1709 	put_hwpoison_page(hpage);
1710 	if (!ret) {
1711 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1712 		return -EBUSY;
1713 	}
1714 
1715 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1716 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1717 	if (ret) {
1718 		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1719 			pfn, ret, page->flags, &page->flags);
1720 		if (!list_empty(&pagelist))
1721 			putback_movable_pages(&pagelist);
1722 		if (ret > 0)
1723 			ret = -EIO;
1724 	} else {
1725 		/*
1726 		 * We set PG_hwpoison only when the migration source hugepage
1727 		 * was successfully dissolved, because otherwise hwpoisoned
1728 		 * hugepage remains on free hugepage list, then userspace will
1729 		 * find it as SIGBUS by allocation failure. That's not expected
1730 		 * in soft-offlining.
1731 		 */
1732 		ret = dissolve_free_huge_page(page);
1733 		if (!ret) {
1734 			if (set_hwpoison_free_buddy_page(page))
1735 				num_poisoned_pages_inc();
1736 		}
1737 	}
1738 	return ret;
1739 }
1740 
1741 static int __soft_offline_page(struct page *page, int flags)
1742 {
1743 	int ret;
1744 	unsigned long pfn = page_to_pfn(page);
1745 
1746 	/*
1747 	 * Check PageHWPoison again inside page lock because PageHWPoison
1748 	 * is set by memory_failure() outside page lock. Note that
1749 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1750 	 * so there's no race between soft_offline_page() and memory_failure().
1751 	 */
1752 	lock_page(page);
1753 	wait_on_page_writeback(page);
1754 	if (PageHWPoison(page)) {
1755 		unlock_page(page);
1756 		put_hwpoison_page(page);
1757 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1758 		return -EBUSY;
1759 	}
1760 	/*
1761 	 * Try to invalidate first. This should work for
1762 	 * non dirty unmapped page cache pages.
1763 	 */
1764 	ret = invalidate_inode_page(page);
1765 	unlock_page(page);
1766 	/*
1767 	 * RED-PEN would be better to keep it isolated here, but we
1768 	 * would need to fix isolation locking first.
1769 	 */
1770 	if (ret == 1) {
1771 		put_hwpoison_page(page);
1772 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1773 		SetPageHWPoison(page);
1774 		num_poisoned_pages_inc();
1775 		return 0;
1776 	}
1777 
1778 	/*
1779 	 * Simple invalidation didn't work.
1780 	 * Try to migrate to a new page instead. migrate.c
1781 	 * handles a large number of cases for us.
1782 	 */
1783 	if (PageLRU(page))
1784 		ret = isolate_lru_page(page);
1785 	else
1786 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1787 	/*
1788 	 * Drop page reference which is came from get_any_page()
1789 	 * successful isolate_lru_page() already took another one.
1790 	 */
1791 	put_hwpoison_page(page);
1792 	if (!ret) {
1793 		LIST_HEAD(pagelist);
1794 		/*
1795 		 * After isolated lru page, the PageLRU will be cleared,
1796 		 * so use !__PageMovable instead for LRU page's mapping
1797 		 * cannot have PAGE_MAPPING_MOVABLE.
1798 		 */
1799 		if (!__PageMovable(page))
1800 			inc_node_page_state(page, NR_ISOLATED_ANON +
1801 						page_is_file_cache(page));
1802 		list_add(&page->lru, &pagelist);
1803 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1804 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1805 		if (ret) {
1806 			if (!list_empty(&pagelist))
1807 				putback_movable_pages(&pagelist);
1808 
1809 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1810 				pfn, ret, page->flags, &page->flags);
1811 			if (ret > 0)
1812 				ret = -EIO;
1813 		}
1814 	} else {
1815 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1816 			pfn, ret, page_count(page), page->flags, &page->flags);
1817 	}
1818 	return ret;
1819 }
1820 
1821 static int soft_offline_in_use_page(struct page *page, int flags)
1822 {
1823 	int ret;
1824 	int mt;
1825 	struct page *hpage = compound_head(page);
1826 
1827 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1828 		lock_page(page);
1829 		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1830 			unlock_page(page);
1831 			if (!PageAnon(page))
1832 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1833 			else
1834 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1835 			put_hwpoison_page(page);
1836 			return -EBUSY;
1837 		}
1838 		unlock_page(page);
1839 	}
1840 
1841 	/*
1842 	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1843 	 * to free list immediately (not via pcplist) when released after
1844 	 * successful page migration. Otherwise we can't guarantee that the
1845 	 * page is really free after put_page() returns, so
1846 	 * set_hwpoison_free_buddy_page() highly likely fails.
1847 	 */
1848 	mt = get_pageblock_migratetype(page);
1849 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1850 	if (PageHuge(page))
1851 		ret = soft_offline_huge_page(page, flags);
1852 	else
1853 		ret = __soft_offline_page(page, flags);
1854 	set_pageblock_migratetype(page, mt);
1855 	return ret;
1856 }
1857 
1858 static int soft_offline_free_page(struct page *page)
1859 {
1860 	int rc = 0;
1861 	struct page *head = compound_head(page);
1862 
1863 	if (PageHuge(head))
1864 		rc = dissolve_free_huge_page(page);
1865 	if (!rc) {
1866 		if (set_hwpoison_free_buddy_page(page))
1867 			num_poisoned_pages_inc();
1868 		else
1869 			rc = -EBUSY;
1870 	}
1871 	return rc;
1872 }
1873 
1874 /**
1875  * soft_offline_page - Soft offline a page.
1876  * @page: page to offline
1877  * @flags: flags. Same as memory_failure().
1878  *
1879  * Returns 0 on success, otherwise negated errno.
1880  *
1881  * Soft offline a page, by migration or invalidation,
1882  * without killing anything. This is for the case when
1883  * a page is not corrupted yet (so it's still valid to access),
1884  * but has had a number of corrected errors and is better taken
1885  * out.
1886  *
1887  * The actual policy on when to do that is maintained by
1888  * user space.
1889  *
1890  * This should never impact any application or cause data loss,
1891  * however it might take some time.
1892  *
1893  * This is not a 100% solution for all memory, but tries to be
1894  * ``good enough'' for the majority of memory.
1895  */
1896 int soft_offline_page(struct page *page, int flags)
1897 {
1898 	int ret;
1899 	unsigned long pfn = page_to_pfn(page);
1900 
1901 	if (is_zone_device_page(page)) {
1902 		pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
1903 				pfn);
1904 		if (flags & MF_COUNT_INCREASED)
1905 			put_page(page);
1906 		return -EIO;
1907 	}
1908 
1909 	if (PageHWPoison(page)) {
1910 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1911 		if (flags & MF_COUNT_INCREASED)
1912 			put_hwpoison_page(page);
1913 		return -EBUSY;
1914 	}
1915 
1916 	get_online_mems();
1917 	ret = get_any_page(page, pfn, flags);
1918 	put_online_mems();
1919 
1920 	if (ret > 0)
1921 		ret = soft_offline_in_use_page(page, flags);
1922 	else if (ret == 0)
1923 		ret = soft_offline_free_page(page);
1924 
1925 	return ret;
1926 }
1927