xref: /linux/mm/memory-failure.c (revision 80d443e8876602be2c130f79c4de81e12e2a700d)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched.h>
44 #include <linux/ksm.h>
45 #include <linux/rmap.h>
46 #include <linux/export.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/backing-dev.h>
50 #include <linux/migrate.h>
51 #include <linux/page-isolation.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include "internal.h"
61 #include "ras/ras_event.h"
62 
63 int sysctl_memory_failure_early_kill __read_mostly = 0;
64 
65 int sysctl_memory_failure_recovery __read_mostly = 1;
66 
67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
68 
69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70 
71 u32 hwpoison_filter_enable = 0;
72 u32 hwpoison_filter_dev_major = ~0U;
73 u32 hwpoison_filter_dev_minor = ~0U;
74 u64 hwpoison_filter_flags_mask;
75 u64 hwpoison_filter_flags_value;
76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
81 
82 static int hwpoison_filter_dev(struct page *p)
83 {
84 	struct address_space *mapping;
85 	dev_t dev;
86 
87 	if (hwpoison_filter_dev_major == ~0U &&
88 	    hwpoison_filter_dev_minor == ~0U)
89 		return 0;
90 
91 	/*
92 	 * page_mapping() does not accept slab pages.
93 	 */
94 	if (PageSlab(p))
95 		return -EINVAL;
96 
97 	mapping = page_mapping(p);
98 	if (mapping == NULL || mapping->host == NULL)
99 		return -EINVAL;
100 
101 	dev = mapping->host->i_sb->s_dev;
102 	if (hwpoison_filter_dev_major != ~0U &&
103 	    hwpoison_filter_dev_major != MAJOR(dev))
104 		return -EINVAL;
105 	if (hwpoison_filter_dev_minor != ~0U &&
106 	    hwpoison_filter_dev_minor != MINOR(dev))
107 		return -EINVAL;
108 
109 	return 0;
110 }
111 
112 static int hwpoison_filter_flags(struct page *p)
113 {
114 	if (!hwpoison_filter_flags_mask)
115 		return 0;
116 
117 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 				    hwpoison_filter_flags_value)
119 		return 0;
120 	else
121 		return -EINVAL;
122 }
123 
124 /*
125  * This allows stress tests to limit test scope to a collection of tasks
126  * by putting them under some memcg. This prevents killing unrelated/important
127  * processes such as /sbin/init. Note that the target task may share clean
128  * pages with init (eg. libc text), which is harmless. If the target task
129  * share _dirty_ pages with another task B, the test scheme must make sure B
130  * is also included in the memcg. At last, due to race conditions this filter
131  * can only guarantee that the page either belongs to the memcg tasks, or is
132  * a freed page.
133  */
134 #ifdef CONFIG_MEMCG
135 u64 hwpoison_filter_memcg;
136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137 static int hwpoison_filter_task(struct page *p)
138 {
139 	if (!hwpoison_filter_memcg)
140 		return 0;
141 
142 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
143 		return -EINVAL;
144 
145 	return 0;
146 }
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150 
151 int hwpoison_filter(struct page *p)
152 {
153 	if (!hwpoison_filter_enable)
154 		return 0;
155 
156 	if (hwpoison_filter_dev(p))
157 		return -EINVAL;
158 
159 	if (hwpoison_filter_flags(p))
160 		return -EINVAL;
161 
162 	if (hwpoison_filter_task(p))
163 		return -EINVAL;
164 
165 	return 0;
166 }
167 #else
168 int hwpoison_filter(struct page *p)
169 {
170 	return 0;
171 }
172 #endif
173 
174 EXPORT_SYMBOL_GPL(hwpoison_filter);
175 
176 /*
177  * Send all the processes who have the page mapped a signal.
178  * ``action optional'' if they are not immediately affected by the error
179  * ``action required'' if error happened in current execution context
180  */
181 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 			unsigned long pfn, struct page *page, int flags)
183 {
184 	struct siginfo si;
185 	int ret;
186 
187 	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 		pfn, t->comm, t->pid);
189 	si.si_signo = SIGBUS;
190 	si.si_errno = 0;
191 	si.si_addr = (void *)addr;
192 #ifdef __ARCH_SI_TRAPNO
193 	si.si_trapno = trapno;
194 #endif
195 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
196 
197 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198 		si.si_code = BUS_MCEERR_AR;
199 		ret = force_sig_info(SIGBUS, &si, current);
200 	} else {
201 		/*
202 		 * Don't use force here, it's convenient if the signal
203 		 * can be temporarily blocked.
204 		 * This could cause a loop when the user sets SIGBUS
205 		 * to SIG_IGN, but hopefully no one will do that?
206 		 */
207 		si.si_code = BUS_MCEERR_AO;
208 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
209 	}
210 	if (ret < 0)
211 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
212 			t->comm, t->pid, ret);
213 	return ret;
214 }
215 
216 /*
217  * When a unknown page type is encountered drain as many buffers as possible
218  * in the hope to turn the page into a LRU or free page, which we can handle.
219  */
220 void shake_page(struct page *p, int access)
221 {
222 	if (!PageSlab(p)) {
223 		lru_add_drain_all();
224 		if (PageLRU(p))
225 			return;
226 		drain_all_pages(page_zone(p));
227 		if (PageLRU(p) || is_free_buddy_page(p))
228 			return;
229 	}
230 
231 	/*
232 	 * Only call shrink_node_slabs here (which would also shrink
233 	 * other caches) if access is not potentially fatal.
234 	 */
235 	if (access)
236 		drop_slab_node(page_to_nid(p));
237 }
238 EXPORT_SYMBOL_GPL(shake_page);
239 
240 /*
241  * Kill all processes that have a poisoned page mapped and then isolate
242  * the page.
243  *
244  * General strategy:
245  * Find all processes having the page mapped and kill them.
246  * But we keep a page reference around so that the page is not
247  * actually freed yet.
248  * Then stash the page away
249  *
250  * There's no convenient way to get back to mapped processes
251  * from the VMAs. So do a brute-force search over all
252  * running processes.
253  *
254  * Remember that machine checks are not common (or rather
255  * if they are common you have other problems), so this shouldn't
256  * be a performance issue.
257  *
258  * Also there are some races possible while we get from the
259  * error detection to actually handle it.
260  */
261 
262 struct to_kill {
263 	struct list_head nd;
264 	struct task_struct *tsk;
265 	unsigned long addr;
266 	char addr_valid;
267 };
268 
269 /*
270  * Failure handling: if we can't find or can't kill a process there's
271  * not much we can do.	We just print a message and ignore otherwise.
272  */
273 
274 /*
275  * Schedule a process for later kill.
276  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
277  * TBD would GFP_NOIO be enough?
278  */
279 static void add_to_kill(struct task_struct *tsk, struct page *p,
280 		       struct vm_area_struct *vma,
281 		       struct list_head *to_kill,
282 		       struct to_kill **tkc)
283 {
284 	struct to_kill *tk;
285 
286 	if (*tkc) {
287 		tk = *tkc;
288 		*tkc = NULL;
289 	} else {
290 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
291 		if (!tk) {
292 			pr_err("Memory failure: Out of memory while machine check handling\n");
293 			return;
294 		}
295 	}
296 	tk->addr = page_address_in_vma(p, vma);
297 	tk->addr_valid = 1;
298 
299 	/*
300 	 * In theory we don't have to kill when the page was
301 	 * munmaped. But it could be also a mremap. Since that's
302 	 * likely very rare kill anyways just out of paranoia, but use
303 	 * a SIGKILL because the error is not contained anymore.
304 	 */
305 	if (tk->addr == -EFAULT) {
306 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
307 			page_to_pfn(p), tsk->comm);
308 		tk->addr_valid = 0;
309 	}
310 	get_task_struct(tsk);
311 	tk->tsk = tsk;
312 	list_add_tail(&tk->nd, to_kill);
313 }
314 
315 /*
316  * Kill the processes that have been collected earlier.
317  *
318  * Only do anything when DOIT is set, otherwise just free the list
319  * (this is used for clean pages which do not need killing)
320  * Also when FAIL is set do a force kill because something went
321  * wrong earlier.
322  */
323 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
324 			  int fail, struct page *page, unsigned long pfn,
325 			  int flags)
326 {
327 	struct to_kill *tk, *next;
328 
329 	list_for_each_entry_safe (tk, next, to_kill, nd) {
330 		if (forcekill) {
331 			/*
332 			 * In case something went wrong with munmapping
333 			 * make sure the process doesn't catch the
334 			 * signal and then access the memory. Just kill it.
335 			 */
336 			if (fail || tk->addr_valid == 0) {
337 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
338 				       pfn, tk->tsk->comm, tk->tsk->pid);
339 				force_sig(SIGKILL, tk->tsk);
340 			}
341 
342 			/*
343 			 * In theory the process could have mapped
344 			 * something else on the address in-between. We could
345 			 * check for that, but we need to tell the
346 			 * process anyways.
347 			 */
348 			else if (kill_proc(tk->tsk, tk->addr, trapno,
349 					      pfn, page, flags) < 0)
350 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
351 				       pfn, tk->tsk->comm, tk->tsk->pid);
352 		}
353 		put_task_struct(tk->tsk);
354 		kfree(tk);
355 	}
356 }
357 
358 /*
359  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
360  * on behalf of the thread group. Return task_struct of the (first found)
361  * dedicated thread if found, and return NULL otherwise.
362  *
363  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
364  * have to call rcu_read_lock/unlock() in this function.
365  */
366 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
367 {
368 	struct task_struct *t;
369 
370 	for_each_thread(tsk, t)
371 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
372 			return t;
373 	return NULL;
374 }
375 
376 /*
377  * Determine whether a given process is "early kill" process which expects
378  * to be signaled when some page under the process is hwpoisoned.
379  * Return task_struct of the dedicated thread (main thread unless explicitly
380  * specified) if the process is "early kill," and otherwise returns NULL.
381  */
382 static struct task_struct *task_early_kill(struct task_struct *tsk,
383 					   int force_early)
384 {
385 	struct task_struct *t;
386 	if (!tsk->mm)
387 		return NULL;
388 	if (force_early)
389 		return tsk;
390 	t = find_early_kill_thread(tsk);
391 	if (t)
392 		return t;
393 	if (sysctl_memory_failure_early_kill)
394 		return tsk;
395 	return NULL;
396 }
397 
398 /*
399  * Collect processes when the error hit an anonymous page.
400  */
401 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
402 			      struct to_kill **tkc, int force_early)
403 {
404 	struct vm_area_struct *vma;
405 	struct task_struct *tsk;
406 	struct anon_vma *av;
407 	pgoff_t pgoff;
408 
409 	av = page_lock_anon_vma_read(page);
410 	if (av == NULL)	/* Not actually mapped anymore */
411 		return;
412 
413 	pgoff = page_to_pgoff(page);
414 	read_lock(&tasklist_lock);
415 	for_each_process (tsk) {
416 		struct anon_vma_chain *vmac;
417 		struct task_struct *t = task_early_kill(tsk, force_early);
418 
419 		if (!t)
420 			continue;
421 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
422 					       pgoff, pgoff) {
423 			vma = vmac->vma;
424 			if (!page_mapped_in_vma(page, vma))
425 				continue;
426 			if (vma->vm_mm == t->mm)
427 				add_to_kill(t, page, vma, to_kill, tkc);
428 		}
429 	}
430 	read_unlock(&tasklist_lock);
431 	page_unlock_anon_vma_read(av);
432 }
433 
434 /*
435  * Collect processes when the error hit a file mapped page.
436  */
437 static void collect_procs_file(struct page *page, struct list_head *to_kill,
438 			      struct to_kill **tkc, int force_early)
439 {
440 	struct vm_area_struct *vma;
441 	struct task_struct *tsk;
442 	struct address_space *mapping = page->mapping;
443 
444 	i_mmap_lock_read(mapping);
445 	read_lock(&tasklist_lock);
446 	for_each_process(tsk) {
447 		pgoff_t pgoff = page_to_pgoff(page);
448 		struct task_struct *t = task_early_kill(tsk, force_early);
449 
450 		if (!t)
451 			continue;
452 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
453 				      pgoff) {
454 			/*
455 			 * Send early kill signal to tasks where a vma covers
456 			 * the page but the corrupted page is not necessarily
457 			 * mapped it in its pte.
458 			 * Assume applications who requested early kill want
459 			 * to be informed of all such data corruptions.
460 			 */
461 			if (vma->vm_mm == t->mm)
462 				add_to_kill(t, page, vma, to_kill, tkc);
463 		}
464 	}
465 	read_unlock(&tasklist_lock);
466 	i_mmap_unlock_read(mapping);
467 }
468 
469 /*
470  * Collect the processes who have the corrupted page mapped to kill.
471  * This is done in two steps for locking reasons.
472  * First preallocate one tokill structure outside the spin locks,
473  * so that we can kill at least one process reasonably reliable.
474  */
475 static void collect_procs(struct page *page, struct list_head *tokill,
476 				int force_early)
477 {
478 	struct to_kill *tk;
479 
480 	if (!page->mapping)
481 		return;
482 
483 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
484 	if (!tk)
485 		return;
486 	if (PageAnon(page))
487 		collect_procs_anon(page, tokill, &tk, force_early);
488 	else
489 		collect_procs_file(page, tokill, &tk, force_early);
490 	kfree(tk);
491 }
492 
493 static const char *action_name[] = {
494 	[MF_IGNORED] = "Ignored",
495 	[MF_FAILED] = "Failed",
496 	[MF_DELAYED] = "Delayed",
497 	[MF_RECOVERED] = "Recovered",
498 };
499 
500 static const char * const action_page_types[] = {
501 	[MF_MSG_KERNEL]			= "reserved kernel page",
502 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
503 	[MF_MSG_SLAB]			= "kernel slab page",
504 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
505 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
506 	[MF_MSG_HUGE]			= "huge page",
507 	[MF_MSG_FREE_HUGE]		= "free huge page",
508 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
509 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
510 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
511 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
512 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
513 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
514 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
515 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
516 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
517 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
518 	[MF_MSG_BUDDY]			= "free buddy page",
519 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
520 	[MF_MSG_UNKNOWN]		= "unknown page",
521 };
522 
523 /*
524  * XXX: It is possible that a page is isolated from LRU cache,
525  * and then kept in swap cache or failed to remove from page cache.
526  * The page count will stop it from being freed by unpoison.
527  * Stress tests should be aware of this memory leak problem.
528  */
529 static int delete_from_lru_cache(struct page *p)
530 {
531 	if (!isolate_lru_page(p)) {
532 		/*
533 		 * Clear sensible page flags, so that the buddy system won't
534 		 * complain when the page is unpoison-and-freed.
535 		 */
536 		ClearPageActive(p);
537 		ClearPageUnevictable(p);
538 		/*
539 		 * drop the page count elevated by isolate_lru_page()
540 		 */
541 		put_page(p);
542 		return 0;
543 	}
544 	return -EIO;
545 }
546 
547 /*
548  * Error hit kernel page.
549  * Do nothing, try to be lucky and not touch this instead. For a few cases we
550  * could be more sophisticated.
551  */
552 static int me_kernel(struct page *p, unsigned long pfn)
553 {
554 	return MF_IGNORED;
555 }
556 
557 /*
558  * Page in unknown state. Do nothing.
559  */
560 static int me_unknown(struct page *p, unsigned long pfn)
561 {
562 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
563 	return MF_FAILED;
564 }
565 
566 /*
567  * Clean (or cleaned) page cache page.
568  */
569 static int me_pagecache_clean(struct page *p, unsigned long pfn)
570 {
571 	int err;
572 	int ret = MF_FAILED;
573 	struct address_space *mapping;
574 
575 	delete_from_lru_cache(p);
576 
577 	/*
578 	 * For anonymous pages we're done the only reference left
579 	 * should be the one m_f() holds.
580 	 */
581 	if (PageAnon(p))
582 		return MF_RECOVERED;
583 
584 	/*
585 	 * Now truncate the page in the page cache. This is really
586 	 * more like a "temporary hole punch"
587 	 * Don't do this for block devices when someone else
588 	 * has a reference, because it could be file system metadata
589 	 * and that's not safe to truncate.
590 	 */
591 	mapping = page_mapping(p);
592 	if (!mapping) {
593 		/*
594 		 * Page has been teared down in the meanwhile
595 		 */
596 		return MF_FAILED;
597 	}
598 
599 	/*
600 	 * Truncation is a bit tricky. Enable it per file system for now.
601 	 *
602 	 * Open: to take i_mutex or not for this? Right now we don't.
603 	 */
604 	if (mapping->a_ops->error_remove_page) {
605 		err = mapping->a_ops->error_remove_page(mapping, p);
606 		if (err != 0) {
607 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
608 				pfn, err);
609 		} else if (page_has_private(p) &&
610 				!try_to_release_page(p, GFP_NOIO)) {
611 			pr_info("Memory failure: %#lx: failed to release buffers\n",
612 				pfn);
613 		} else {
614 			ret = MF_RECOVERED;
615 		}
616 	} else {
617 		/*
618 		 * If the file system doesn't support it just invalidate
619 		 * This fails on dirty or anything with private pages
620 		 */
621 		if (invalidate_inode_page(p))
622 			ret = MF_RECOVERED;
623 		else
624 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
625 				pfn);
626 	}
627 	return ret;
628 }
629 
630 /*
631  * Dirty pagecache page
632  * Issues: when the error hit a hole page the error is not properly
633  * propagated.
634  */
635 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
636 {
637 	struct address_space *mapping = page_mapping(p);
638 
639 	SetPageError(p);
640 	/* TBD: print more information about the file. */
641 	if (mapping) {
642 		/*
643 		 * IO error will be reported by write(), fsync(), etc.
644 		 * who check the mapping.
645 		 * This way the application knows that something went
646 		 * wrong with its dirty file data.
647 		 *
648 		 * There's one open issue:
649 		 *
650 		 * The EIO will be only reported on the next IO
651 		 * operation and then cleared through the IO map.
652 		 * Normally Linux has two mechanisms to pass IO error
653 		 * first through the AS_EIO flag in the address space
654 		 * and then through the PageError flag in the page.
655 		 * Since we drop pages on memory failure handling the
656 		 * only mechanism open to use is through AS_AIO.
657 		 *
658 		 * This has the disadvantage that it gets cleared on
659 		 * the first operation that returns an error, while
660 		 * the PageError bit is more sticky and only cleared
661 		 * when the page is reread or dropped.  If an
662 		 * application assumes it will always get error on
663 		 * fsync, but does other operations on the fd before
664 		 * and the page is dropped between then the error
665 		 * will not be properly reported.
666 		 *
667 		 * This can already happen even without hwpoisoned
668 		 * pages: first on metadata IO errors (which only
669 		 * report through AS_EIO) or when the page is dropped
670 		 * at the wrong time.
671 		 *
672 		 * So right now we assume that the application DTRT on
673 		 * the first EIO, but we're not worse than other parts
674 		 * of the kernel.
675 		 */
676 		mapping_set_error(mapping, EIO);
677 	}
678 
679 	return me_pagecache_clean(p, pfn);
680 }
681 
682 /*
683  * Clean and dirty swap cache.
684  *
685  * Dirty swap cache page is tricky to handle. The page could live both in page
686  * cache and swap cache(ie. page is freshly swapped in). So it could be
687  * referenced concurrently by 2 types of PTEs:
688  * normal PTEs and swap PTEs. We try to handle them consistently by calling
689  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
690  * and then
691  *      - clear dirty bit to prevent IO
692  *      - remove from LRU
693  *      - but keep in the swap cache, so that when we return to it on
694  *        a later page fault, we know the application is accessing
695  *        corrupted data and shall be killed (we installed simple
696  *        interception code in do_swap_page to catch it).
697  *
698  * Clean swap cache pages can be directly isolated. A later page fault will
699  * bring in the known good data from disk.
700  */
701 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
702 {
703 	ClearPageDirty(p);
704 	/* Trigger EIO in shmem: */
705 	ClearPageUptodate(p);
706 
707 	if (!delete_from_lru_cache(p))
708 		return MF_DELAYED;
709 	else
710 		return MF_FAILED;
711 }
712 
713 static int me_swapcache_clean(struct page *p, unsigned long pfn)
714 {
715 	delete_from_swap_cache(p);
716 
717 	if (!delete_from_lru_cache(p))
718 		return MF_RECOVERED;
719 	else
720 		return MF_FAILED;
721 }
722 
723 /*
724  * Huge pages. Needs work.
725  * Issues:
726  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
727  *   To narrow down kill region to one page, we need to break up pmd.
728  */
729 static int me_huge_page(struct page *p, unsigned long pfn)
730 {
731 	int res = 0;
732 	struct page *hpage = compound_head(p);
733 
734 	if (!PageHuge(hpage))
735 		return MF_DELAYED;
736 
737 	/*
738 	 * We can safely recover from error on free or reserved (i.e.
739 	 * not in-use) hugepage by dequeuing it from freelist.
740 	 * To check whether a hugepage is in-use or not, we can't use
741 	 * page->lru because it can be used in other hugepage operations,
742 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
743 	 * So instead we use page_mapping() and PageAnon().
744 	 */
745 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
746 		res = dequeue_hwpoisoned_huge_page(hpage);
747 		if (!res)
748 			return MF_RECOVERED;
749 	}
750 	return MF_DELAYED;
751 }
752 
753 /*
754  * Various page states we can handle.
755  *
756  * A page state is defined by its current page->flags bits.
757  * The table matches them in order and calls the right handler.
758  *
759  * This is quite tricky because we can access page at any time
760  * in its live cycle, so all accesses have to be extremely careful.
761  *
762  * This is not complete. More states could be added.
763  * For any missing state don't attempt recovery.
764  */
765 
766 #define dirty		(1UL << PG_dirty)
767 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
768 #define unevict		(1UL << PG_unevictable)
769 #define mlock		(1UL << PG_mlocked)
770 #define writeback	(1UL << PG_writeback)
771 #define lru		(1UL << PG_lru)
772 #define head		(1UL << PG_head)
773 #define slab		(1UL << PG_slab)
774 #define reserved	(1UL << PG_reserved)
775 
776 static struct page_state {
777 	unsigned long mask;
778 	unsigned long res;
779 	enum mf_action_page_type type;
780 	int (*action)(struct page *p, unsigned long pfn);
781 } error_states[] = {
782 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
783 	/*
784 	 * free pages are specially detected outside this table:
785 	 * PG_buddy pages only make a small fraction of all free pages.
786 	 */
787 
788 	/*
789 	 * Could in theory check if slab page is free or if we can drop
790 	 * currently unused objects without touching them. But just
791 	 * treat it as standard kernel for now.
792 	 */
793 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
794 
795 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
796 
797 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
798 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
799 
800 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
801 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
802 
803 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
804 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
805 
806 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
807 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
808 
809 	/*
810 	 * Catchall entry: must be at end.
811 	 */
812 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
813 };
814 
815 #undef dirty
816 #undef sc
817 #undef unevict
818 #undef mlock
819 #undef writeback
820 #undef lru
821 #undef head
822 #undef slab
823 #undef reserved
824 
825 /*
826  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
827  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
828  */
829 static void action_result(unsigned long pfn, enum mf_action_page_type type,
830 			  enum mf_result result)
831 {
832 	trace_memory_failure_event(pfn, type, result);
833 
834 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
835 		pfn, action_page_types[type], action_name[result]);
836 }
837 
838 static int page_action(struct page_state *ps, struct page *p,
839 			unsigned long pfn)
840 {
841 	int result;
842 	int count;
843 
844 	result = ps->action(p, pfn);
845 
846 	count = page_count(p) - 1;
847 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
848 		count--;
849 	if (count != 0) {
850 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
851 		       pfn, action_page_types[ps->type], count);
852 		result = MF_FAILED;
853 	}
854 	action_result(pfn, ps->type, result);
855 
856 	/* Could do more checks here if page looks ok */
857 	/*
858 	 * Could adjust zone counters here to correct for the missing page.
859 	 */
860 
861 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
862 }
863 
864 /**
865  * get_hwpoison_page() - Get refcount for memory error handling:
866  * @page:	raw error page (hit by memory error)
867  *
868  * Return: return 0 if failed to grab the refcount, otherwise true (some
869  * non-zero value.)
870  */
871 int get_hwpoison_page(struct page *page)
872 {
873 	struct page *head = compound_head(page);
874 
875 	if (!PageHuge(head) && PageTransHuge(head)) {
876 		/*
877 		 * Non anonymous thp exists only in allocation/free time. We
878 		 * can't handle such a case correctly, so let's give it up.
879 		 * This should be better than triggering BUG_ON when kernel
880 		 * tries to touch the "partially handled" page.
881 		 */
882 		if (!PageAnon(head)) {
883 			pr_err("Memory failure: %#lx: non anonymous thp\n",
884 				page_to_pfn(page));
885 			return 0;
886 		}
887 	}
888 
889 	if (get_page_unless_zero(head)) {
890 		if (head == compound_head(page))
891 			return 1;
892 
893 		pr_info("Memory failure: %#lx cannot catch tail\n",
894 			page_to_pfn(page));
895 		put_page(head);
896 	}
897 
898 	return 0;
899 }
900 EXPORT_SYMBOL_GPL(get_hwpoison_page);
901 
902 /*
903  * Do all that is necessary to remove user space mappings. Unmap
904  * the pages and send SIGBUS to the processes if the data was dirty.
905  */
906 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
907 				  int trapno, int flags, struct page **hpagep)
908 {
909 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
910 	struct address_space *mapping;
911 	LIST_HEAD(tokill);
912 	int ret;
913 	int kill = 1, forcekill;
914 	struct page *hpage = *hpagep;
915 
916 	/*
917 	 * Here we are interested only in user-mapped pages, so skip any
918 	 * other types of pages.
919 	 */
920 	if (PageReserved(p) || PageSlab(p))
921 		return SWAP_SUCCESS;
922 	if (!(PageLRU(hpage) || PageHuge(p)))
923 		return SWAP_SUCCESS;
924 
925 	/*
926 	 * This check implies we don't kill processes if their pages
927 	 * are in the swap cache early. Those are always late kills.
928 	 */
929 	if (!page_mapped(hpage))
930 		return SWAP_SUCCESS;
931 
932 	if (PageKsm(p)) {
933 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
934 		return SWAP_FAIL;
935 	}
936 
937 	if (PageSwapCache(p)) {
938 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
939 			pfn);
940 		ttu |= TTU_IGNORE_HWPOISON;
941 	}
942 
943 	/*
944 	 * Propagate the dirty bit from PTEs to struct page first, because we
945 	 * need this to decide if we should kill or just drop the page.
946 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
947 	 * be called inside page lock (it's recommended but not enforced).
948 	 */
949 	mapping = page_mapping(hpage);
950 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
951 	    mapping_cap_writeback_dirty(mapping)) {
952 		if (page_mkclean(hpage)) {
953 			SetPageDirty(hpage);
954 		} else {
955 			kill = 0;
956 			ttu |= TTU_IGNORE_HWPOISON;
957 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
958 				pfn);
959 		}
960 	}
961 
962 	/*
963 	 * First collect all the processes that have the page
964 	 * mapped in dirty form.  This has to be done before try_to_unmap,
965 	 * because ttu takes the rmap data structures down.
966 	 *
967 	 * Error handling: We ignore errors here because
968 	 * there's nothing that can be done.
969 	 */
970 	if (kill)
971 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
972 
973 	ret = try_to_unmap(hpage, ttu);
974 	if (ret != SWAP_SUCCESS)
975 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
976 		       pfn, page_mapcount(hpage));
977 
978 	/*
979 	 * Now that the dirty bit has been propagated to the
980 	 * struct page and all unmaps done we can decide if
981 	 * killing is needed or not.  Only kill when the page
982 	 * was dirty or the process is not restartable,
983 	 * otherwise the tokill list is merely
984 	 * freed.  When there was a problem unmapping earlier
985 	 * use a more force-full uncatchable kill to prevent
986 	 * any accesses to the poisoned memory.
987 	 */
988 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
989 	kill_procs(&tokill, forcekill, trapno,
990 		      ret != SWAP_SUCCESS, p, pfn, flags);
991 
992 	return ret;
993 }
994 
995 static void set_page_hwpoison_huge_page(struct page *hpage)
996 {
997 	int i;
998 	int nr_pages = 1 << compound_order(hpage);
999 	for (i = 0; i < nr_pages; i++)
1000 		SetPageHWPoison(hpage + i);
1001 }
1002 
1003 static void clear_page_hwpoison_huge_page(struct page *hpage)
1004 {
1005 	int i;
1006 	int nr_pages = 1 << compound_order(hpage);
1007 	for (i = 0; i < nr_pages; i++)
1008 		ClearPageHWPoison(hpage + i);
1009 }
1010 
1011 /**
1012  * memory_failure - Handle memory failure of a page.
1013  * @pfn: Page Number of the corrupted page
1014  * @trapno: Trap number reported in the signal to user space.
1015  * @flags: fine tune action taken
1016  *
1017  * This function is called by the low level machine check code
1018  * of an architecture when it detects hardware memory corruption
1019  * of a page. It tries its best to recover, which includes
1020  * dropping pages, killing processes etc.
1021  *
1022  * The function is primarily of use for corruptions that
1023  * happen outside the current execution context (e.g. when
1024  * detected by a background scrubber)
1025  *
1026  * Must run in process context (e.g. a work queue) with interrupts
1027  * enabled and no spinlocks hold.
1028  */
1029 int memory_failure(unsigned long pfn, int trapno, int flags)
1030 {
1031 	struct page_state *ps;
1032 	struct page *p;
1033 	struct page *hpage;
1034 	struct page *orig_head;
1035 	int res;
1036 	unsigned int nr_pages;
1037 	unsigned long page_flags;
1038 
1039 	if (!sysctl_memory_failure_recovery)
1040 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1041 
1042 	if (!pfn_valid(pfn)) {
1043 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1044 			pfn);
1045 		return -ENXIO;
1046 	}
1047 
1048 	p = pfn_to_page(pfn);
1049 	orig_head = hpage = compound_head(p);
1050 	if (TestSetPageHWPoison(p)) {
1051 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1052 			pfn);
1053 		return 0;
1054 	}
1055 
1056 	/*
1057 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1058 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1059 	 * transparent hugepages, they are supposed to be split and error
1060 	 * measurement is done in normal page units.  So nr_pages should be one
1061 	 * in this case.
1062 	 */
1063 	if (PageHuge(p))
1064 		nr_pages = 1 << compound_order(hpage);
1065 	else /* normal page or thp */
1066 		nr_pages = 1;
1067 	num_poisoned_pages_add(nr_pages);
1068 
1069 	/*
1070 	 * We need/can do nothing about count=0 pages.
1071 	 * 1) it's a free page, and therefore in safe hand:
1072 	 *    prep_new_page() will be the gate keeper.
1073 	 * 2) it's a free hugepage, which is also safe:
1074 	 *    an affected hugepage will be dequeued from hugepage freelist,
1075 	 *    so there's no concern about reusing it ever after.
1076 	 * 3) it's part of a non-compound high order page.
1077 	 *    Implies some kernel user: cannot stop them from
1078 	 *    R/W the page; let's pray that the page has been
1079 	 *    used and will be freed some time later.
1080 	 * In fact it's dangerous to directly bump up page count from 0,
1081 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1082 	 */
1083 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1084 		if (is_free_buddy_page(p)) {
1085 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1086 			return 0;
1087 		} else if (PageHuge(hpage)) {
1088 			/*
1089 			 * Check "filter hit" and "race with other subpage."
1090 			 */
1091 			lock_page(hpage);
1092 			if (PageHWPoison(hpage)) {
1093 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1094 				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1095 					num_poisoned_pages_sub(nr_pages);
1096 					unlock_page(hpage);
1097 					return 0;
1098 				}
1099 			}
1100 			set_page_hwpoison_huge_page(hpage);
1101 			res = dequeue_hwpoisoned_huge_page(hpage);
1102 			action_result(pfn, MF_MSG_FREE_HUGE,
1103 				      res ? MF_IGNORED : MF_DELAYED);
1104 			unlock_page(hpage);
1105 			return res;
1106 		} else {
1107 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1108 			return -EBUSY;
1109 		}
1110 	}
1111 
1112 	if (!PageHuge(p) && PageTransHuge(hpage)) {
1113 		lock_page(p);
1114 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1115 			unlock_page(p);
1116 			if (!PageAnon(p))
1117 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1118 					pfn);
1119 			else
1120 				pr_err("Memory failure: %#lx: thp split failed\n",
1121 					pfn);
1122 			if (TestClearPageHWPoison(p))
1123 				num_poisoned_pages_sub(nr_pages);
1124 			put_hwpoison_page(p);
1125 			return -EBUSY;
1126 		}
1127 		unlock_page(p);
1128 		VM_BUG_ON_PAGE(!page_count(p), p);
1129 		hpage = compound_head(p);
1130 	}
1131 
1132 	/*
1133 	 * We ignore non-LRU pages for good reasons.
1134 	 * - PG_locked is only well defined for LRU pages and a few others
1135 	 * - to avoid races with __SetPageLocked()
1136 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1137 	 * The check (unnecessarily) ignores LRU pages being isolated and
1138 	 * walked by the page reclaim code, however that's not a big loss.
1139 	 */
1140 	if (!PageHuge(p)) {
1141 		if (!PageLRU(p))
1142 			shake_page(p, 0);
1143 		if (!PageLRU(p)) {
1144 			/*
1145 			 * shake_page could have turned it free.
1146 			 */
1147 			if (is_free_buddy_page(p)) {
1148 				if (flags & MF_COUNT_INCREASED)
1149 					action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1150 				else
1151 					action_result(pfn, MF_MSG_BUDDY_2ND,
1152 						      MF_DELAYED);
1153 				return 0;
1154 			}
1155 		}
1156 	}
1157 
1158 	lock_page(hpage);
1159 
1160 	/*
1161 	 * The page could have changed compound pages during the locking.
1162 	 * If this happens just bail out.
1163 	 */
1164 	if (PageCompound(p) && compound_head(p) != orig_head) {
1165 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1166 		res = -EBUSY;
1167 		goto out;
1168 	}
1169 
1170 	/*
1171 	 * We use page flags to determine what action should be taken, but
1172 	 * the flags can be modified by the error containment action.  One
1173 	 * example is an mlocked page, where PG_mlocked is cleared by
1174 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1175 	 * correctly, we save a copy of the page flags at this time.
1176 	 */
1177 	page_flags = p->flags;
1178 
1179 	/*
1180 	 * unpoison always clear PG_hwpoison inside page lock
1181 	 */
1182 	if (!PageHWPoison(p)) {
1183 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1184 		num_poisoned_pages_sub(nr_pages);
1185 		unlock_page(hpage);
1186 		put_hwpoison_page(hpage);
1187 		return 0;
1188 	}
1189 	if (hwpoison_filter(p)) {
1190 		if (TestClearPageHWPoison(p))
1191 			num_poisoned_pages_sub(nr_pages);
1192 		unlock_page(hpage);
1193 		put_hwpoison_page(hpage);
1194 		return 0;
1195 	}
1196 
1197 	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1198 		goto identify_page_state;
1199 
1200 	/*
1201 	 * For error on the tail page, we should set PG_hwpoison
1202 	 * on the head page to show that the hugepage is hwpoisoned
1203 	 */
1204 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1205 		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1206 		unlock_page(hpage);
1207 		put_hwpoison_page(hpage);
1208 		return 0;
1209 	}
1210 	/*
1211 	 * Set PG_hwpoison on all pages in an error hugepage,
1212 	 * because containment is done in hugepage unit for now.
1213 	 * Since we have done TestSetPageHWPoison() for the head page with
1214 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1215 	 */
1216 	if (PageHuge(p))
1217 		set_page_hwpoison_huge_page(hpage);
1218 
1219 	/*
1220 	 * It's very difficult to mess with pages currently under IO
1221 	 * and in many cases impossible, so we just avoid it here.
1222 	 */
1223 	wait_on_page_writeback(p);
1224 
1225 	/*
1226 	 * Now take care of user space mappings.
1227 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1228 	 *
1229 	 * When the raw error page is thp tail page, hpage points to the raw
1230 	 * page after thp split.
1231 	 */
1232 	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1233 	    != SWAP_SUCCESS) {
1234 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1235 		res = -EBUSY;
1236 		goto out;
1237 	}
1238 
1239 	/*
1240 	 * Torn down by someone else?
1241 	 */
1242 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1243 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1244 		res = -EBUSY;
1245 		goto out;
1246 	}
1247 
1248 identify_page_state:
1249 	res = -EBUSY;
1250 	/*
1251 	 * The first check uses the current page flags which may not have any
1252 	 * relevant information. The second check with the saved page flagss is
1253 	 * carried out only if the first check can't determine the page status.
1254 	 */
1255 	for (ps = error_states;; ps++)
1256 		if ((p->flags & ps->mask) == ps->res)
1257 			break;
1258 
1259 	page_flags |= (p->flags & (1UL << PG_dirty));
1260 
1261 	if (!ps->mask)
1262 		for (ps = error_states;; ps++)
1263 			if ((page_flags & ps->mask) == ps->res)
1264 				break;
1265 	res = page_action(ps, p, pfn);
1266 out:
1267 	unlock_page(hpage);
1268 	return res;
1269 }
1270 EXPORT_SYMBOL_GPL(memory_failure);
1271 
1272 #define MEMORY_FAILURE_FIFO_ORDER	4
1273 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1274 
1275 struct memory_failure_entry {
1276 	unsigned long pfn;
1277 	int trapno;
1278 	int flags;
1279 };
1280 
1281 struct memory_failure_cpu {
1282 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1283 		      MEMORY_FAILURE_FIFO_SIZE);
1284 	spinlock_t lock;
1285 	struct work_struct work;
1286 };
1287 
1288 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1289 
1290 /**
1291  * memory_failure_queue - Schedule handling memory failure of a page.
1292  * @pfn: Page Number of the corrupted page
1293  * @trapno: Trap number reported in the signal to user space.
1294  * @flags: Flags for memory failure handling
1295  *
1296  * This function is called by the low level hardware error handler
1297  * when it detects hardware memory corruption of a page. It schedules
1298  * the recovering of error page, including dropping pages, killing
1299  * processes etc.
1300  *
1301  * The function is primarily of use for corruptions that
1302  * happen outside the current execution context (e.g. when
1303  * detected by a background scrubber)
1304  *
1305  * Can run in IRQ context.
1306  */
1307 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1308 {
1309 	struct memory_failure_cpu *mf_cpu;
1310 	unsigned long proc_flags;
1311 	struct memory_failure_entry entry = {
1312 		.pfn =		pfn,
1313 		.trapno =	trapno,
1314 		.flags =	flags,
1315 	};
1316 
1317 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1318 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1319 	if (kfifo_put(&mf_cpu->fifo, entry))
1320 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1321 	else
1322 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1323 		       pfn);
1324 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1325 	put_cpu_var(memory_failure_cpu);
1326 }
1327 EXPORT_SYMBOL_GPL(memory_failure_queue);
1328 
1329 static void memory_failure_work_func(struct work_struct *work)
1330 {
1331 	struct memory_failure_cpu *mf_cpu;
1332 	struct memory_failure_entry entry = { 0, };
1333 	unsigned long proc_flags;
1334 	int gotten;
1335 
1336 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1337 	for (;;) {
1338 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1339 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1340 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1341 		if (!gotten)
1342 			break;
1343 		if (entry.flags & MF_SOFT_OFFLINE)
1344 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1345 		else
1346 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1347 	}
1348 }
1349 
1350 static int __init memory_failure_init(void)
1351 {
1352 	struct memory_failure_cpu *mf_cpu;
1353 	int cpu;
1354 
1355 	for_each_possible_cpu(cpu) {
1356 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1357 		spin_lock_init(&mf_cpu->lock);
1358 		INIT_KFIFO(mf_cpu->fifo);
1359 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1360 	}
1361 
1362 	return 0;
1363 }
1364 core_initcall(memory_failure_init);
1365 
1366 #define unpoison_pr_info(fmt, pfn, rs)			\
1367 ({							\
1368 	if (__ratelimit(rs))				\
1369 		pr_info(fmt, pfn);			\
1370 })
1371 
1372 /**
1373  * unpoison_memory - Unpoison a previously poisoned page
1374  * @pfn: Page number of the to be unpoisoned page
1375  *
1376  * Software-unpoison a page that has been poisoned by
1377  * memory_failure() earlier.
1378  *
1379  * This is only done on the software-level, so it only works
1380  * for linux injected failures, not real hardware failures
1381  *
1382  * Returns 0 for success, otherwise -errno.
1383  */
1384 int unpoison_memory(unsigned long pfn)
1385 {
1386 	struct page *page;
1387 	struct page *p;
1388 	int freeit = 0;
1389 	unsigned int nr_pages;
1390 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1391 					DEFAULT_RATELIMIT_BURST);
1392 
1393 	if (!pfn_valid(pfn))
1394 		return -ENXIO;
1395 
1396 	p = pfn_to_page(pfn);
1397 	page = compound_head(p);
1398 
1399 	if (!PageHWPoison(p)) {
1400 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1401 				 pfn, &unpoison_rs);
1402 		return 0;
1403 	}
1404 
1405 	if (page_count(page) > 1) {
1406 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1407 				 pfn, &unpoison_rs);
1408 		return 0;
1409 	}
1410 
1411 	if (page_mapped(page)) {
1412 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1413 				 pfn, &unpoison_rs);
1414 		return 0;
1415 	}
1416 
1417 	if (page_mapping(page)) {
1418 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1419 				 pfn, &unpoison_rs);
1420 		return 0;
1421 	}
1422 
1423 	/*
1424 	 * unpoison_memory() can encounter thp only when the thp is being
1425 	 * worked by memory_failure() and the page lock is not held yet.
1426 	 * In such case, we yield to memory_failure() and make unpoison fail.
1427 	 */
1428 	if (!PageHuge(page) && PageTransHuge(page)) {
1429 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1430 				 pfn, &unpoison_rs);
1431 		return 0;
1432 	}
1433 
1434 	nr_pages = 1 << compound_order(page);
1435 
1436 	if (!get_hwpoison_page(p)) {
1437 		/*
1438 		 * Since HWPoisoned hugepage should have non-zero refcount,
1439 		 * race between memory failure and unpoison seems to happen.
1440 		 * In such case unpoison fails and memory failure runs
1441 		 * to the end.
1442 		 */
1443 		if (PageHuge(page)) {
1444 			unpoison_pr_info("Unpoison: Memory failure is now running on free hugepage %#lx\n",
1445 					 pfn, &unpoison_rs);
1446 			return 0;
1447 		}
1448 		if (TestClearPageHWPoison(p))
1449 			num_poisoned_pages_dec();
1450 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1451 				 pfn, &unpoison_rs);
1452 		return 0;
1453 	}
1454 
1455 	lock_page(page);
1456 	/*
1457 	 * This test is racy because PG_hwpoison is set outside of page lock.
1458 	 * That's acceptable because that won't trigger kernel panic. Instead,
1459 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1460 	 * the free buddy page pool.
1461 	 */
1462 	if (TestClearPageHWPoison(page)) {
1463 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1464 				 pfn, &unpoison_rs);
1465 		num_poisoned_pages_sub(nr_pages);
1466 		freeit = 1;
1467 		if (PageHuge(page))
1468 			clear_page_hwpoison_huge_page(page);
1469 	}
1470 	unlock_page(page);
1471 
1472 	put_hwpoison_page(page);
1473 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1474 		put_hwpoison_page(page);
1475 
1476 	return 0;
1477 }
1478 EXPORT_SYMBOL(unpoison_memory);
1479 
1480 static struct page *new_page(struct page *p, unsigned long private, int **x)
1481 {
1482 	int nid = page_to_nid(p);
1483 	if (PageHuge(p))
1484 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1485 						   nid);
1486 	else
1487 		return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1488 }
1489 
1490 /*
1491  * Safely get reference count of an arbitrary page.
1492  * Returns 0 for a free page, -EIO for a zero refcount page
1493  * that is not free, and 1 for any other page type.
1494  * For 1 the page is returned with increased page count, otherwise not.
1495  */
1496 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1497 {
1498 	int ret;
1499 
1500 	if (flags & MF_COUNT_INCREASED)
1501 		return 1;
1502 
1503 	/*
1504 	 * When the target page is a free hugepage, just remove it
1505 	 * from free hugepage list.
1506 	 */
1507 	if (!get_hwpoison_page(p)) {
1508 		if (PageHuge(p)) {
1509 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1510 			ret = 0;
1511 		} else if (is_free_buddy_page(p)) {
1512 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1513 			ret = 0;
1514 		} else {
1515 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1516 				__func__, pfn, p->flags);
1517 			ret = -EIO;
1518 		}
1519 	} else {
1520 		/* Not a free page */
1521 		ret = 1;
1522 	}
1523 	return ret;
1524 }
1525 
1526 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1527 {
1528 	int ret = __get_any_page(page, pfn, flags);
1529 
1530 	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1531 		/*
1532 		 * Try to free it.
1533 		 */
1534 		put_hwpoison_page(page);
1535 		shake_page(page, 1);
1536 
1537 		/*
1538 		 * Did it turn free?
1539 		 */
1540 		ret = __get_any_page(page, pfn, 0);
1541 		if (ret == 1 && !PageLRU(page)) {
1542 			/* Drop page reference which is from __get_any_page() */
1543 			put_hwpoison_page(page);
1544 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1545 				pfn, page->flags);
1546 			return -EIO;
1547 		}
1548 	}
1549 	return ret;
1550 }
1551 
1552 static int soft_offline_huge_page(struct page *page, int flags)
1553 {
1554 	int ret;
1555 	unsigned long pfn = page_to_pfn(page);
1556 	struct page *hpage = compound_head(page);
1557 	LIST_HEAD(pagelist);
1558 
1559 	/*
1560 	 * This double-check of PageHWPoison is to avoid the race with
1561 	 * memory_failure(). See also comment in __soft_offline_page().
1562 	 */
1563 	lock_page(hpage);
1564 	if (PageHWPoison(hpage)) {
1565 		unlock_page(hpage);
1566 		put_hwpoison_page(hpage);
1567 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1568 		return -EBUSY;
1569 	}
1570 	unlock_page(hpage);
1571 
1572 	ret = isolate_huge_page(hpage, &pagelist);
1573 	/*
1574 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1575 	 * so need to drop one here.
1576 	 */
1577 	put_hwpoison_page(hpage);
1578 	if (!ret) {
1579 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1580 		return -EBUSY;
1581 	}
1582 
1583 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1584 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1585 	if (ret) {
1586 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1587 			pfn, ret, page->flags);
1588 		/*
1589 		 * We know that soft_offline_huge_page() tries to migrate
1590 		 * only one hugepage pointed to by hpage, so we need not
1591 		 * run through the pagelist here.
1592 		 */
1593 		putback_active_hugepage(hpage);
1594 		if (ret > 0)
1595 			ret = -EIO;
1596 	} else {
1597 		/* overcommit hugetlb page will be freed to buddy */
1598 		if (PageHuge(page)) {
1599 			set_page_hwpoison_huge_page(hpage);
1600 			dequeue_hwpoisoned_huge_page(hpage);
1601 			num_poisoned_pages_add(1 << compound_order(hpage));
1602 		} else {
1603 			SetPageHWPoison(page);
1604 			num_poisoned_pages_inc();
1605 		}
1606 	}
1607 	return ret;
1608 }
1609 
1610 static int __soft_offline_page(struct page *page, int flags)
1611 {
1612 	int ret;
1613 	unsigned long pfn = page_to_pfn(page);
1614 
1615 	/*
1616 	 * Check PageHWPoison again inside page lock because PageHWPoison
1617 	 * is set by memory_failure() outside page lock. Note that
1618 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1619 	 * so there's no race between soft_offline_page() and memory_failure().
1620 	 */
1621 	lock_page(page);
1622 	wait_on_page_writeback(page);
1623 	if (PageHWPoison(page)) {
1624 		unlock_page(page);
1625 		put_hwpoison_page(page);
1626 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1627 		return -EBUSY;
1628 	}
1629 	/*
1630 	 * Try to invalidate first. This should work for
1631 	 * non dirty unmapped page cache pages.
1632 	 */
1633 	ret = invalidate_inode_page(page);
1634 	unlock_page(page);
1635 	/*
1636 	 * RED-PEN would be better to keep it isolated here, but we
1637 	 * would need to fix isolation locking first.
1638 	 */
1639 	if (ret == 1) {
1640 		put_hwpoison_page(page);
1641 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1642 		SetPageHWPoison(page);
1643 		num_poisoned_pages_inc();
1644 		return 0;
1645 	}
1646 
1647 	/*
1648 	 * Simple invalidation didn't work.
1649 	 * Try to migrate to a new page instead. migrate.c
1650 	 * handles a large number of cases for us.
1651 	 */
1652 	ret = isolate_lru_page(page);
1653 	/*
1654 	 * Drop page reference which is came from get_any_page()
1655 	 * successful isolate_lru_page() already took another one.
1656 	 */
1657 	put_hwpoison_page(page);
1658 	if (!ret) {
1659 		LIST_HEAD(pagelist);
1660 		inc_node_page_state(page, NR_ISOLATED_ANON +
1661 					page_is_file_cache(page));
1662 		list_add(&page->lru, &pagelist);
1663 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1664 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1665 		if (ret) {
1666 			if (!list_empty(&pagelist)) {
1667 				list_del(&page->lru);
1668 				dec_node_page_state(page, NR_ISOLATED_ANON +
1669 						page_is_file_cache(page));
1670 				putback_lru_page(page);
1671 			}
1672 
1673 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1674 				pfn, ret, page->flags);
1675 			if (ret > 0)
1676 				ret = -EIO;
1677 		}
1678 	} else {
1679 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1680 			pfn, ret, page_count(page), page->flags);
1681 	}
1682 	return ret;
1683 }
1684 
1685 static int soft_offline_in_use_page(struct page *page, int flags)
1686 {
1687 	int ret;
1688 	struct page *hpage = compound_head(page);
1689 
1690 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1691 		lock_page(hpage);
1692 		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1693 			unlock_page(hpage);
1694 			if (!PageAnon(hpage))
1695 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1696 			else
1697 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1698 			put_hwpoison_page(hpage);
1699 			return -EBUSY;
1700 		}
1701 		unlock_page(hpage);
1702 		get_hwpoison_page(page);
1703 		put_hwpoison_page(hpage);
1704 	}
1705 
1706 	if (PageHuge(page))
1707 		ret = soft_offline_huge_page(page, flags);
1708 	else
1709 		ret = __soft_offline_page(page, flags);
1710 
1711 	return ret;
1712 }
1713 
1714 static void soft_offline_free_page(struct page *page)
1715 {
1716 	if (PageHuge(page)) {
1717 		struct page *hpage = compound_head(page);
1718 
1719 		set_page_hwpoison_huge_page(hpage);
1720 		if (!dequeue_hwpoisoned_huge_page(hpage))
1721 			num_poisoned_pages_add(1 << compound_order(hpage));
1722 	} else {
1723 		if (!TestSetPageHWPoison(page))
1724 			num_poisoned_pages_inc();
1725 	}
1726 }
1727 
1728 /**
1729  * soft_offline_page - Soft offline a page.
1730  * @page: page to offline
1731  * @flags: flags. Same as memory_failure().
1732  *
1733  * Returns 0 on success, otherwise negated errno.
1734  *
1735  * Soft offline a page, by migration or invalidation,
1736  * without killing anything. This is for the case when
1737  * a page is not corrupted yet (so it's still valid to access),
1738  * but has had a number of corrected errors and is better taken
1739  * out.
1740  *
1741  * The actual policy on when to do that is maintained by
1742  * user space.
1743  *
1744  * This should never impact any application or cause data loss,
1745  * however it might take some time.
1746  *
1747  * This is not a 100% solution for all memory, but tries to be
1748  * ``good enough'' for the majority of memory.
1749  */
1750 int soft_offline_page(struct page *page, int flags)
1751 {
1752 	int ret;
1753 	unsigned long pfn = page_to_pfn(page);
1754 
1755 	if (PageHWPoison(page)) {
1756 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1757 		if (flags & MF_COUNT_INCREASED)
1758 			put_hwpoison_page(page);
1759 		return -EBUSY;
1760 	}
1761 
1762 	get_online_mems();
1763 	ret = get_any_page(page, pfn, flags);
1764 	put_online_mems();
1765 
1766 	if (ret > 0)
1767 		ret = soft_offline_in_use_page(page, flags);
1768 	else if (ret == 0)
1769 		soft_offline_free_page(page);
1770 
1771 	return ret;
1772 }
1773