1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/dax.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/memremap.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/sysctl.h> 63 #include "swap.h" 64 #include "internal.h" 65 #include "ras/ras_event.h" 66 67 static int sysctl_memory_failure_early_kill __read_mostly; 68 69 static int sysctl_memory_failure_recovery __read_mostly = 1; 70 71 static int sysctl_enable_soft_offline __read_mostly = 1; 72 73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 74 75 static bool hw_memory_failure __read_mostly = false; 76 77 static DEFINE_MUTEX(mf_mutex); 78 79 void num_poisoned_pages_inc(unsigned long pfn) 80 { 81 atomic_long_inc(&num_poisoned_pages); 82 memblk_nr_poison_inc(pfn); 83 } 84 85 void num_poisoned_pages_sub(unsigned long pfn, long i) 86 { 87 atomic_long_sub(i, &num_poisoned_pages); 88 if (pfn != -1UL) 89 memblk_nr_poison_sub(pfn, i); 90 } 91 92 /** 93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 94 * @_name: name of the file in the per NUMA sysfs directory. 95 */ 96 #define MF_ATTR_RO(_name) \ 97 static ssize_t _name##_show(struct device *dev, \ 98 struct device_attribute *attr, \ 99 char *buf) \ 100 { \ 101 struct memory_failure_stats *mf_stats = \ 102 &NODE_DATA(dev->id)->mf_stats; \ 103 return sysfs_emit(buf, "%lu\n", mf_stats->_name); \ 104 } \ 105 static DEVICE_ATTR_RO(_name) 106 107 MF_ATTR_RO(total); 108 MF_ATTR_RO(ignored); 109 MF_ATTR_RO(failed); 110 MF_ATTR_RO(delayed); 111 MF_ATTR_RO(recovered); 112 113 static struct attribute *memory_failure_attr[] = { 114 &dev_attr_total.attr, 115 &dev_attr_ignored.attr, 116 &dev_attr_failed.attr, 117 &dev_attr_delayed.attr, 118 &dev_attr_recovered.attr, 119 NULL, 120 }; 121 122 const struct attribute_group memory_failure_attr_group = { 123 .name = "memory_failure", 124 .attrs = memory_failure_attr, 125 }; 126 127 static struct ctl_table memory_failure_table[] = { 128 { 129 .procname = "memory_failure_early_kill", 130 .data = &sysctl_memory_failure_early_kill, 131 .maxlen = sizeof(sysctl_memory_failure_early_kill), 132 .mode = 0644, 133 .proc_handler = proc_dointvec_minmax, 134 .extra1 = SYSCTL_ZERO, 135 .extra2 = SYSCTL_ONE, 136 }, 137 { 138 .procname = "memory_failure_recovery", 139 .data = &sysctl_memory_failure_recovery, 140 .maxlen = sizeof(sysctl_memory_failure_recovery), 141 .mode = 0644, 142 .proc_handler = proc_dointvec_minmax, 143 .extra1 = SYSCTL_ZERO, 144 .extra2 = SYSCTL_ONE, 145 }, 146 { 147 .procname = "enable_soft_offline", 148 .data = &sysctl_enable_soft_offline, 149 .maxlen = sizeof(sysctl_enable_soft_offline), 150 .mode = 0644, 151 .proc_handler = proc_dointvec_minmax, 152 .extra1 = SYSCTL_ZERO, 153 .extra2 = SYSCTL_ONE, 154 } 155 }; 156 157 /* 158 * Return values: 159 * 1: the page is dissolved (if needed) and taken off from buddy, 160 * 0: the page is dissolved (if needed) and not taken off from buddy, 161 * < 0: failed to dissolve. 162 */ 163 static int __page_handle_poison(struct page *page) 164 { 165 int ret; 166 167 /* 168 * zone_pcp_disable() can't be used here. It will 169 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold 170 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap 171 * optimization is enabled. This will break current lock dependency 172 * chain and leads to deadlock. 173 * Disabling pcp before dissolving the page was a deterministic 174 * approach because we made sure that those pages cannot end up in any 175 * PCP list. Draining PCP lists expels those pages to the buddy system, 176 * but nothing guarantees that those pages do not get back to a PCP 177 * queue if we need to refill those. 178 */ 179 ret = dissolve_free_hugetlb_folio(page_folio(page)); 180 if (!ret) { 181 drain_all_pages(page_zone(page)); 182 ret = take_page_off_buddy(page); 183 } 184 185 return ret; 186 } 187 188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 189 { 190 if (hugepage_or_freepage) { 191 /* 192 * Doing this check for free pages is also fine since 193 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well. 194 */ 195 if (__page_handle_poison(page) <= 0) 196 /* 197 * We could fail to take off the target page from buddy 198 * for example due to racy page allocation, but that's 199 * acceptable because soft-offlined page is not broken 200 * and if someone really want to use it, they should 201 * take it. 202 */ 203 return false; 204 } 205 206 SetPageHWPoison(page); 207 if (release) 208 put_page(page); 209 page_ref_inc(page); 210 num_poisoned_pages_inc(page_to_pfn(page)); 211 212 return true; 213 } 214 215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT) 216 217 u32 hwpoison_filter_enable = 0; 218 u32 hwpoison_filter_dev_major = ~0U; 219 u32 hwpoison_filter_dev_minor = ~0U; 220 u64 hwpoison_filter_flags_mask; 221 u64 hwpoison_filter_flags_value; 222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 227 228 static int hwpoison_filter_dev(struct page *p) 229 { 230 struct folio *folio = page_folio(p); 231 struct address_space *mapping; 232 dev_t dev; 233 234 if (hwpoison_filter_dev_major == ~0U && 235 hwpoison_filter_dev_minor == ~0U) 236 return 0; 237 238 mapping = folio_mapping(folio); 239 if (mapping == NULL || mapping->host == NULL) 240 return -EINVAL; 241 242 dev = mapping->host->i_sb->s_dev; 243 if (hwpoison_filter_dev_major != ~0U && 244 hwpoison_filter_dev_major != MAJOR(dev)) 245 return -EINVAL; 246 if (hwpoison_filter_dev_minor != ~0U && 247 hwpoison_filter_dev_minor != MINOR(dev)) 248 return -EINVAL; 249 250 return 0; 251 } 252 253 static int hwpoison_filter_flags(struct page *p) 254 { 255 if (!hwpoison_filter_flags_mask) 256 return 0; 257 258 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 259 hwpoison_filter_flags_value) 260 return 0; 261 else 262 return -EINVAL; 263 } 264 265 /* 266 * This allows stress tests to limit test scope to a collection of tasks 267 * by putting them under some memcg. This prevents killing unrelated/important 268 * processes such as /sbin/init. Note that the target task may share clean 269 * pages with init (eg. libc text), which is harmless. If the target task 270 * share _dirty_ pages with another task B, the test scheme must make sure B 271 * is also included in the memcg. At last, due to race conditions this filter 272 * can only guarantee that the page either belongs to the memcg tasks, or is 273 * a freed page. 274 */ 275 #ifdef CONFIG_MEMCG 276 u64 hwpoison_filter_memcg; 277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 278 static int hwpoison_filter_task(struct page *p) 279 { 280 if (!hwpoison_filter_memcg) 281 return 0; 282 283 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 284 return -EINVAL; 285 286 return 0; 287 } 288 #else 289 static int hwpoison_filter_task(struct page *p) { return 0; } 290 #endif 291 292 int hwpoison_filter(struct page *p) 293 { 294 if (!hwpoison_filter_enable) 295 return 0; 296 297 if (hwpoison_filter_dev(p)) 298 return -EINVAL; 299 300 if (hwpoison_filter_flags(p)) 301 return -EINVAL; 302 303 if (hwpoison_filter_task(p)) 304 return -EINVAL; 305 306 return 0; 307 } 308 EXPORT_SYMBOL_GPL(hwpoison_filter); 309 #else 310 int hwpoison_filter(struct page *p) 311 { 312 return 0; 313 } 314 #endif 315 316 /* 317 * Kill all processes that have a poisoned page mapped and then isolate 318 * the page. 319 * 320 * General strategy: 321 * Find all processes having the page mapped and kill them. 322 * But we keep a page reference around so that the page is not 323 * actually freed yet. 324 * Then stash the page away 325 * 326 * There's no convenient way to get back to mapped processes 327 * from the VMAs. So do a brute-force search over all 328 * running processes. 329 * 330 * Remember that machine checks are not common (or rather 331 * if they are common you have other problems), so this shouldn't 332 * be a performance issue. 333 * 334 * Also there are some races possible while we get from the 335 * error detection to actually handle it. 336 */ 337 338 struct to_kill { 339 struct list_head nd; 340 struct task_struct *tsk; 341 unsigned long addr; 342 short size_shift; 343 }; 344 345 /* 346 * Send all the processes who have the page mapped a signal. 347 * ``action optional'' if they are not immediately affected by the error 348 * ``action required'' if error happened in current execution context 349 */ 350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 351 { 352 struct task_struct *t = tk->tsk; 353 short addr_lsb = tk->size_shift; 354 int ret = 0; 355 356 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 357 pfn, t->comm, task_pid_nr(t)); 358 359 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 360 ret = force_sig_mceerr(BUS_MCEERR_AR, 361 (void __user *)tk->addr, addr_lsb); 362 else 363 /* 364 * Signal other processes sharing the page if they have 365 * PF_MCE_EARLY set. 366 * Don't use force here, it's convenient if the signal 367 * can be temporarily blocked. 368 */ 369 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 370 addr_lsb, t); 371 if (ret < 0) 372 pr_info("Error sending signal to %s:%d: %d\n", 373 t->comm, task_pid_nr(t), ret); 374 return ret; 375 } 376 377 /* 378 * Unknown page type encountered. Try to check whether it can turn PageLRU by 379 * lru_add_drain_all. 380 */ 381 void shake_folio(struct folio *folio) 382 { 383 if (folio_test_hugetlb(folio)) 384 return; 385 /* 386 * TODO: Could shrink slab caches here if a lightweight range-based 387 * shrinker will be available. 388 */ 389 if (folio_test_slab(folio)) 390 return; 391 392 lru_add_drain_all(); 393 } 394 EXPORT_SYMBOL_GPL(shake_folio); 395 396 static void shake_page(struct page *page) 397 { 398 shake_folio(page_folio(page)); 399 } 400 401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 402 unsigned long address) 403 { 404 unsigned long ret = 0; 405 pgd_t *pgd; 406 p4d_t *p4d; 407 pud_t *pud; 408 pmd_t *pmd; 409 pte_t *pte; 410 pte_t ptent; 411 412 VM_BUG_ON_VMA(address == -EFAULT, vma); 413 pgd = pgd_offset(vma->vm_mm, address); 414 if (!pgd_present(*pgd)) 415 return 0; 416 p4d = p4d_offset(pgd, address); 417 if (!p4d_present(*p4d)) 418 return 0; 419 pud = pud_offset(p4d, address); 420 if (!pud_present(*pud)) 421 return 0; 422 if (pud_devmap(*pud)) 423 return PUD_SHIFT; 424 pmd = pmd_offset(pud, address); 425 if (!pmd_present(*pmd)) 426 return 0; 427 if (pmd_devmap(*pmd)) 428 return PMD_SHIFT; 429 pte = pte_offset_map(pmd, address); 430 if (!pte) 431 return 0; 432 ptent = ptep_get(pte); 433 if (pte_present(ptent) && pte_devmap(ptent)) 434 ret = PAGE_SHIFT; 435 pte_unmap(pte); 436 return ret; 437 } 438 439 /* 440 * Failure handling: if we can't find or can't kill a process there's 441 * not much we can do. We just print a message and ignore otherwise. 442 */ 443 444 /* 445 * Schedule a process for later kill. 446 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 447 */ 448 static void __add_to_kill(struct task_struct *tsk, const struct page *p, 449 struct vm_area_struct *vma, struct list_head *to_kill, 450 unsigned long addr) 451 { 452 struct to_kill *tk; 453 454 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 455 if (!tk) { 456 pr_err("Out of memory while machine check handling\n"); 457 return; 458 } 459 460 tk->addr = addr; 461 if (is_zone_device_page(p)) 462 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 463 else 464 tk->size_shift = folio_shift(page_folio(p)); 465 466 /* 467 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 468 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 469 * so "tk->size_shift == 0" effectively checks no mapping on 470 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 471 * to a process' address space, it's possible not all N VMAs 472 * contain mappings for the page, but at least one VMA does. 473 * Only deliver SIGBUS with payload derived from the VMA that 474 * has a mapping for the page. 475 */ 476 if (tk->addr == -EFAULT) { 477 pr_info("Unable to find user space address %lx in %s\n", 478 page_to_pfn(p), tsk->comm); 479 } else if (tk->size_shift == 0) { 480 kfree(tk); 481 return; 482 } 483 484 get_task_struct(tsk); 485 tk->tsk = tsk; 486 list_add_tail(&tk->nd, to_kill); 487 } 488 489 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p, 490 struct vm_area_struct *vma, struct list_head *to_kill, 491 unsigned long addr) 492 { 493 if (addr == -EFAULT) 494 return; 495 __add_to_kill(tsk, p, vma, to_kill, addr); 496 } 497 498 #ifdef CONFIG_KSM 499 static bool task_in_to_kill_list(struct list_head *to_kill, 500 struct task_struct *tsk) 501 { 502 struct to_kill *tk, *next; 503 504 list_for_each_entry_safe(tk, next, to_kill, nd) { 505 if (tk->tsk == tsk) 506 return true; 507 } 508 509 return false; 510 } 511 512 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p, 513 struct vm_area_struct *vma, struct list_head *to_kill, 514 unsigned long addr) 515 { 516 if (!task_in_to_kill_list(to_kill, tsk)) 517 __add_to_kill(tsk, p, vma, to_kill, addr); 518 } 519 #endif 520 /* 521 * Kill the processes that have been collected earlier. 522 * 523 * Only do anything when FORCEKILL is set, otherwise just free the 524 * list (this is used for clean pages which do not need killing) 525 */ 526 static void kill_procs(struct list_head *to_kill, int forcekill, 527 unsigned long pfn, int flags) 528 { 529 struct to_kill *tk, *next; 530 531 list_for_each_entry_safe(tk, next, to_kill, nd) { 532 if (forcekill) { 533 if (tk->addr == -EFAULT) { 534 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 535 pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); 536 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 537 tk->tsk, PIDTYPE_PID); 538 } 539 540 /* 541 * In theory the process could have mapped 542 * something else on the address in-between. We could 543 * check for that, but we need to tell the 544 * process anyways. 545 */ 546 else if (kill_proc(tk, pfn, flags) < 0) 547 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 548 pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); 549 } 550 list_del(&tk->nd); 551 put_task_struct(tk->tsk); 552 kfree(tk); 553 } 554 } 555 556 /* 557 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 558 * on behalf of the thread group. Return task_struct of the (first found) 559 * dedicated thread if found, and return NULL otherwise. 560 * 561 * We already hold rcu lock in the caller, so we don't have to call 562 * rcu_read_lock/unlock() in this function. 563 */ 564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 565 { 566 struct task_struct *t; 567 568 for_each_thread(tsk, t) { 569 if (t->flags & PF_MCE_PROCESS) { 570 if (t->flags & PF_MCE_EARLY) 571 return t; 572 } else { 573 if (sysctl_memory_failure_early_kill) 574 return t; 575 } 576 } 577 return NULL; 578 } 579 580 /* 581 * Determine whether a given process is "early kill" process which expects 582 * to be signaled when some page under the process is hwpoisoned. 583 * Return task_struct of the dedicated thread (main thread unless explicitly 584 * specified) if the process is "early kill" and otherwise returns NULL. 585 * 586 * Note that the above is true for Action Optional case. For Action Required 587 * case, it's only meaningful to the current thread which need to be signaled 588 * with SIGBUS, this error is Action Optional for other non current 589 * processes sharing the same error page,if the process is "early kill", the 590 * task_struct of the dedicated thread will also be returned. 591 */ 592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 593 { 594 if (!tsk->mm) 595 return NULL; 596 /* 597 * Comparing ->mm here because current task might represent 598 * a subthread, while tsk always points to the main thread. 599 */ 600 if (force_early && tsk->mm == current->mm) 601 return current; 602 603 return find_early_kill_thread(tsk); 604 } 605 606 /* 607 * Collect processes when the error hit an anonymous page. 608 */ 609 static void collect_procs_anon(const struct folio *folio, 610 const struct page *page, struct list_head *to_kill, 611 int force_early) 612 { 613 struct task_struct *tsk; 614 struct anon_vma *av; 615 pgoff_t pgoff; 616 617 av = folio_lock_anon_vma_read(folio, NULL); 618 if (av == NULL) /* Not actually mapped anymore */ 619 return; 620 621 pgoff = page_pgoff(folio, page); 622 rcu_read_lock(); 623 for_each_process(tsk) { 624 struct vm_area_struct *vma; 625 struct anon_vma_chain *vmac; 626 struct task_struct *t = task_early_kill(tsk, force_early); 627 unsigned long addr; 628 629 if (!t) 630 continue; 631 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 632 pgoff, pgoff) { 633 vma = vmac->vma; 634 if (vma->vm_mm != t->mm) 635 continue; 636 addr = page_mapped_in_vma(page, vma); 637 add_to_kill_anon_file(t, page, vma, to_kill, addr); 638 } 639 } 640 rcu_read_unlock(); 641 anon_vma_unlock_read(av); 642 } 643 644 /* 645 * Collect processes when the error hit a file mapped page. 646 */ 647 static void collect_procs_file(const struct folio *folio, 648 const struct page *page, struct list_head *to_kill, 649 int force_early) 650 { 651 struct vm_area_struct *vma; 652 struct task_struct *tsk; 653 struct address_space *mapping = folio->mapping; 654 pgoff_t pgoff; 655 656 i_mmap_lock_read(mapping); 657 rcu_read_lock(); 658 pgoff = page_pgoff(folio, page); 659 for_each_process(tsk) { 660 struct task_struct *t = task_early_kill(tsk, force_early); 661 unsigned long addr; 662 663 if (!t) 664 continue; 665 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 666 pgoff) { 667 /* 668 * Send early kill signal to tasks where a vma covers 669 * the page but the corrupted page is not necessarily 670 * mapped in its pte. 671 * Assume applications who requested early kill want 672 * to be informed of all such data corruptions. 673 */ 674 if (vma->vm_mm != t->mm) 675 continue; 676 addr = page_address_in_vma(folio, page, vma); 677 add_to_kill_anon_file(t, page, vma, to_kill, addr); 678 } 679 } 680 rcu_read_unlock(); 681 i_mmap_unlock_read(mapping); 682 } 683 684 #ifdef CONFIG_FS_DAX 685 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p, 686 struct vm_area_struct *vma, 687 struct list_head *to_kill, pgoff_t pgoff) 688 { 689 unsigned long addr = vma_address(vma, pgoff, 1); 690 __add_to_kill(tsk, p, vma, to_kill, addr); 691 } 692 693 /* 694 * Collect processes when the error hit a fsdax page. 695 */ 696 static void collect_procs_fsdax(const struct page *page, 697 struct address_space *mapping, pgoff_t pgoff, 698 struct list_head *to_kill, bool pre_remove) 699 { 700 struct vm_area_struct *vma; 701 struct task_struct *tsk; 702 703 i_mmap_lock_read(mapping); 704 rcu_read_lock(); 705 for_each_process(tsk) { 706 struct task_struct *t = tsk; 707 708 /* 709 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because 710 * the current may not be the one accessing the fsdax page. 711 * Otherwise, search for the current task. 712 */ 713 if (!pre_remove) 714 t = task_early_kill(tsk, true); 715 if (!t) 716 continue; 717 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 718 if (vma->vm_mm == t->mm) 719 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 720 } 721 } 722 rcu_read_unlock(); 723 i_mmap_unlock_read(mapping); 724 } 725 #endif /* CONFIG_FS_DAX */ 726 727 /* 728 * Collect the processes who have the corrupted page mapped to kill. 729 */ 730 static void collect_procs(const struct folio *folio, const struct page *page, 731 struct list_head *tokill, int force_early) 732 { 733 if (!folio->mapping) 734 return; 735 if (unlikely(folio_test_ksm(folio))) 736 collect_procs_ksm(folio, page, tokill, force_early); 737 else if (folio_test_anon(folio)) 738 collect_procs_anon(folio, page, tokill, force_early); 739 else 740 collect_procs_file(folio, page, tokill, force_early); 741 } 742 743 struct hwpoison_walk { 744 struct to_kill tk; 745 unsigned long pfn; 746 int flags; 747 }; 748 749 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 750 { 751 tk->addr = addr; 752 tk->size_shift = shift; 753 } 754 755 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 756 unsigned long poisoned_pfn, struct to_kill *tk) 757 { 758 unsigned long pfn = 0; 759 760 if (pte_present(pte)) { 761 pfn = pte_pfn(pte); 762 } else { 763 swp_entry_t swp = pte_to_swp_entry(pte); 764 765 if (is_hwpoison_entry(swp)) 766 pfn = swp_offset_pfn(swp); 767 } 768 769 if (!pfn || pfn != poisoned_pfn) 770 return 0; 771 772 set_to_kill(tk, addr, shift); 773 return 1; 774 } 775 776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 777 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 778 struct hwpoison_walk *hwp) 779 { 780 pmd_t pmd = *pmdp; 781 unsigned long pfn; 782 unsigned long hwpoison_vaddr; 783 784 if (!pmd_present(pmd)) 785 return 0; 786 pfn = pmd_pfn(pmd); 787 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 788 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 789 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 790 return 1; 791 } 792 return 0; 793 } 794 #else 795 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 796 struct hwpoison_walk *hwp) 797 { 798 return 0; 799 } 800 #endif 801 802 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 803 unsigned long end, struct mm_walk *walk) 804 { 805 struct hwpoison_walk *hwp = walk->private; 806 int ret = 0; 807 pte_t *ptep, *mapped_pte; 808 spinlock_t *ptl; 809 810 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 811 if (ptl) { 812 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 813 spin_unlock(ptl); 814 goto out; 815 } 816 817 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 818 addr, &ptl); 819 if (!ptep) 820 goto out; 821 822 for (; addr != end; ptep++, addr += PAGE_SIZE) { 823 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, 824 hwp->pfn, &hwp->tk); 825 if (ret == 1) 826 break; 827 } 828 pte_unmap_unlock(mapped_pte, ptl); 829 out: 830 cond_resched(); 831 return ret; 832 } 833 834 #ifdef CONFIG_HUGETLB_PAGE 835 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 836 unsigned long addr, unsigned long end, 837 struct mm_walk *walk) 838 { 839 struct hwpoison_walk *hwp = walk->private; 840 pte_t pte = huge_ptep_get(walk->mm, addr, ptep); 841 struct hstate *h = hstate_vma(walk->vma); 842 843 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 844 hwp->pfn, &hwp->tk); 845 } 846 #else 847 #define hwpoison_hugetlb_range NULL 848 #endif 849 850 static const struct mm_walk_ops hwpoison_walk_ops = { 851 .pmd_entry = hwpoison_pte_range, 852 .hugetlb_entry = hwpoison_hugetlb_range, 853 .walk_lock = PGWALK_RDLOCK, 854 }; 855 856 /* 857 * Sends SIGBUS to the current process with error info. 858 * 859 * This function is intended to handle "Action Required" MCEs on already 860 * hardware poisoned pages. They could happen, for example, when 861 * memory_failure() failed to unmap the error page at the first call, or 862 * when multiple local machine checks happened on different CPUs. 863 * 864 * MCE handler currently has no easy access to the error virtual address, 865 * so this function walks page table to find it. The returned virtual address 866 * is proper in most cases, but it could be wrong when the application 867 * process has multiple entries mapping the error page. 868 */ 869 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 870 int flags) 871 { 872 int ret; 873 struct hwpoison_walk priv = { 874 .pfn = pfn, 875 }; 876 priv.tk.tsk = p; 877 878 if (!p->mm) 879 return -EFAULT; 880 881 mmap_read_lock(p->mm); 882 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops, 883 (void *)&priv); 884 if (ret == 1 && priv.tk.addr) 885 kill_proc(&priv.tk, pfn, flags); 886 else 887 ret = 0; 888 mmap_read_unlock(p->mm); 889 return ret > 0 ? -EHWPOISON : -EFAULT; 890 } 891 892 /* 893 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed. 894 * But it could not do more to isolate the page from being accessed again, 895 * nor does it kill the process. This is extremely rare and one of the 896 * potential causes is that the page state has been changed due to 897 * underlying race condition. This is the most severe outcomes. 898 * 899 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed. 900 * It should have killed the process, but it can't isolate the page, 901 * due to conditions such as extra pin, unmap failure, etc. Accessing 902 * the page again may trigger another MCE and the process will be killed 903 * by the m-f() handler immediately. 904 * 905 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed. 906 * The page is unmapped, and is removed from the LRU or file mapping. 907 * An attempt to access the page again will trigger page fault and the 908 * PF handler will kill the process. 909 * 910 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed. 911 * The page has been completely isolated, that is, unmapped, taken out of 912 * the buddy system, or hole-punnched out of the file mapping. 913 */ 914 static const char *action_name[] = { 915 [MF_IGNORED] = "Ignored", 916 [MF_FAILED] = "Failed", 917 [MF_DELAYED] = "Delayed", 918 [MF_RECOVERED] = "Recovered", 919 }; 920 921 static const char * const action_page_types[] = { 922 [MF_MSG_KERNEL] = "reserved kernel page", 923 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 924 [MF_MSG_HUGE] = "huge page", 925 [MF_MSG_FREE_HUGE] = "free huge page", 926 [MF_MSG_GET_HWPOISON] = "get hwpoison page", 927 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 928 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 929 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 930 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 931 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 932 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 933 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 934 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 935 [MF_MSG_CLEAN_LRU] = "clean LRU page", 936 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 937 [MF_MSG_BUDDY] = "free buddy page", 938 [MF_MSG_DAX] = "dax page", 939 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 940 [MF_MSG_ALREADY_POISONED] = "already poisoned", 941 [MF_MSG_UNKNOWN] = "unknown page", 942 }; 943 944 /* 945 * XXX: It is possible that a page is isolated from LRU cache, 946 * and then kept in swap cache or failed to remove from page cache. 947 * The page count will stop it from being freed by unpoison. 948 * Stress tests should be aware of this memory leak problem. 949 */ 950 static int delete_from_lru_cache(struct folio *folio) 951 { 952 if (folio_isolate_lru(folio)) { 953 /* 954 * Clear sensible page flags, so that the buddy system won't 955 * complain when the folio is unpoison-and-freed. 956 */ 957 folio_clear_active(folio); 958 folio_clear_unevictable(folio); 959 960 /* 961 * Poisoned page might never drop its ref count to 0 so we have 962 * to uncharge it manually from its memcg. 963 */ 964 mem_cgroup_uncharge(folio); 965 966 /* 967 * drop the refcount elevated by folio_isolate_lru() 968 */ 969 folio_put(folio); 970 return 0; 971 } 972 return -EIO; 973 } 974 975 static int truncate_error_folio(struct folio *folio, unsigned long pfn, 976 struct address_space *mapping) 977 { 978 int ret = MF_FAILED; 979 980 if (mapping->a_ops->error_remove_folio) { 981 int err = mapping->a_ops->error_remove_folio(mapping, folio); 982 983 if (err != 0) 984 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 985 else if (!filemap_release_folio(folio, GFP_NOIO)) 986 pr_info("%#lx: failed to release buffers\n", pfn); 987 else 988 ret = MF_RECOVERED; 989 } else { 990 /* 991 * If the file system doesn't support it just invalidate 992 * This fails on dirty or anything with private pages 993 */ 994 if (mapping_evict_folio(mapping, folio)) 995 ret = MF_RECOVERED; 996 else 997 pr_info("%#lx: Failed to invalidate\n", pfn); 998 } 999 1000 return ret; 1001 } 1002 1003 struct page_state { 1004 unsigned long mask; 1005 unsigned long res; 1006 enum mf_action_page_type type; 1007 1008 /* Callback ->action() has to unlock the relevant page inside it. */ 1009 int (*action)(struct page_state *ps, struct page *p); 1010 }; 1011 1012 /* 1013 * Return true if page is still referenced by others, otherwise return 1014 * false. 1015 * 1016 * The extra_pins is true when one extra refcount is expected. 1017 */ 1018 static bool has_extra_refcount(struct page_state *ps, struct page *p, 1019 bool extra_pins) 1020 { 1021 int count = page_count(p) - 1; 1022 1023 if (extra_pins) 1024 count -= folio_nr_pages(page_folio(p)); 1025 1026 if (count > 0) { 1027 pr_err("%#lx: %s still referenced by %d users\n", 1028 page_to_pfn(p), action_page_types[ps->type], count); 1029 return true; 1030 } 1031 1032 return false; 1033 } 1034 1035 /* 1036 * Error hit kernel page. 1037 * Do nothing, try to be lucky and not touch this instead. For a few cases we 1038 * could be more sophisticated. 1039 */ 1040 static int me_kernel(struct page_state *ps, struct page *p) 1041 { 1042 unlock_page(p); 1043 return MF_IGNORED; 1044 } 1045 1046 /* 1047 * Page in unknown state. Do nothing. 1048 * This is a catch-all in case we fail to make sense of the page state. 1049 */ 1050 static int me_unknown(struct page_state *ps, struct page *p) 1051 { 1052 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1053 unlock_page(p); 1054 return MF_IGNORED; 1055 } 1056 1057 /* 1058 * Clean (or cleaned) page cache page. 1059 */ 1060 static int me_pagecache_clean(struct page_state *ps, struct page *p) 1061 { 1062 struct folio *folio = page_folio(p); 1063 int ret; 1064 struct address_space *mapping; 1065 bool extra_pins; 1066 1067 delete_from_lru_cache(folio); 1068 1069 /* 1070 * For anonymous folios the only reference left 1071 * should be the one m_f() holds. 1072 */ 1073 if (folio_test_anon(folio)) { 1074 ret = MF_RECOVERED; 1075 goto out; 1076 } 1077 1078 /* 1079 * Now truncate the page in the page cache. This is really 1080 * more like a "temporary hole punch" 1081 * Don't do this for block devices when someone else 1082 * has a reference, because it could be file system metadata 1083 * and that's not safe to truncate. 1084 */ 1085 mapping = folio_mapping(folio); 1086 if (!mapping) { 1087 /* Folio has been torn down in the meantime */ 1088 ret = MF_FAILED; 1089 goto out; 1090 } 1091 1092 /* 1093 * The shmem page is kept in page cache instead of truncating 1094 * so is expected to have an extra refcount after error-handling. 1095 */ 1096 extra_pins = shmem_mapping(mapping); 1097 1098 /* 1099 * Truncation is a bit tricky. Enable it per file system for now. 1100 * 1101 * Open: to take i_rwsem or not for this? Right now we don't. 1102 */ 1103 ret = truncate_error_folio(folio, page_to_pfn(p), mapping); 1104 if (has_extra_refcount(ps, p, extra_pins)) 1105 ret = MF_FAILED; 1106 1107 out: 1108 folio_unlock(folio); 1109 1110 return ret; 1111 } 1112 1113 /* 1114 * Dirty pagecache page 1115 * Issues: when the error hit a hole page the error is not properly 1116 * propagated. 1117 */ 1118 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1119 { 1120 struct folio *folio = page_folio(p); 1121 struct address_space *mapping = folio_mapping(folio); 1122 1123 /* TBD: print more information about the file. */ 1124 if (mapping) { 1125 /* 1126 * IO error will be reported by write(), fsync(), etc. 1127 * who check the mapping. 1128 * This way the application knows that something went 1129 * wrong with its dirty file data. 1130 */ 1131 mapping_set_error(mapping, -EIO); 1132 } 1133 1134 return me_pagecache_clean(ps, p); 1135 } 1136 1137 /* 1138 * Clean and dirty swap cache. 1139 * 1140 * Dirty swap cache page is tricky to handle. The page could live both in page 1141 * table and swap cache(ie. page is freshly swapped in). So it could be 1142 * referenced concurrently by 2 types of PTEs: 1143 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1144 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1145 * and then 1146 * - clear dirty bit to prevent IO 1147 * - remove from LRU 1148 * - but keep in the swap cache, so that when we return to it on 1149 * a later page fault, we know the application is accessing 1150 * corrupted data and shall be killed (we installed simple 1151 * interception code in do_swap_page to catch it). 1152 * 1153 * Clean swap cache pages can be directly isolated. A later page fault will 1154 * bring in the known good data from disk. 1155 */ 1156 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1157 { 1158 struct folio *folio = page_folio(p); 1159 int ret; 1160 bool extra_pins = false; 1161 1162 folio_clear_dirty(folio); 1163 /* Trigger EIO in shmem: */ 1164 folio_clear_uptodate(folio); 1165 1166 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED; 1167 folio_unlock(folio); 1168 1169 if (ret == MF_DELAYED) 1170 extra_pins = true; 1171 1172 if (has_extra_refcount(ps, p, extra_pins)) 1173 ret = MF_FAILED; 1174 1175 return ret; 1176 } 1177 1178 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1179 { 1180 struct folio *folio = page_folio(p); 1181 int ret; 1182 1183 delete_from_swap_cache(folio); 1184 1185 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED; 1186 folio_unlock(folio); 1187 1188 if (has_extra_refcount(ps, p, false)) 1189 ret = MF_FAILED; 1190 1191 return ret; 1192 } 1193 1194 /* 1195 * Huge pages. Needs work. 1196 * Issues: 1197 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1198 * To narrow down kill region to one page, we need to break up pmd. 1199 */ 1200 static int me_huge_page(struct page_state *ps, struct page *p) 1201 { 1202 struct folio *folio = page_folio(p); 1203 int res; 1204 struct address_space *mapping; 1205 bool extra_pins = false; 1206 1207 mapping = folio_mapping(folio); 1208 if (mapping) { 1209 res = truncate_error_folio(folio, page_to_pfn(p), mapping); 1210 /* The page is kept in page cache. */ 1211 extra_pins = true; 1212 folio_unlock(folio); 1213 } else { 1214 folio_unlock(folio); 1215 /* 1216 * migration entry prevents later access on error hugepage, 1217 * so we can free and dissolve it into buddy to save healthy 1218 * subpages. 1219 */ 1220 folio_put(folio); 1221 if (__page_handle_poison(p) > 0) { 1222 page_ref_inc(p); 1223 res = MF_RECOVERED; 1224 } else { 1225 res = MF_FAILED; 1226 } 1227 } 1228 1229 if (has_extra_refcount(ps, p, extra_pins)) 1230 res = MF_FAILED; 1231 1232 return res; 1233 } 1234 1235 /* 1236 * Various page states we can handle. 1237 * 1238 * A page state is defined by its current page->flags bits. 1239 * The table matches them in order and calls the right handler. 1240 * 1241 * This is quite tricky because we can access page at any time 1242 * in its live cycle, so all accesses have to be extremely careful. 1243 * 1244 * This is not complete. More states could be added. 1245 * For any missing state don't attempt recovery. 1246 */ 1247 1248 #define dirty (1UL << PG_dirty) 1249 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1250 #define unevict (1UL << PG_unevictable) 1251 #define mlock (1UL << PG_mlocked) 1252 #define lru (1UL << PG_lru) 1253 #define head (1UL << PG_head) 1254 #define reserved (1UL << PG_reserved) 1255 1256 static struct page_state error_states[] = { 1257 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1258 /* 1259 * free pages are specially detected outside this table: 1260 * PG_buddy pages only make a small fraction of all free pages. 1261 */ 1262 1263 { head, head, MF_MSG_HUGE, me_huge_page }, 1264 1265 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1266 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1267 1268 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1269 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1270 1271 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1272 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1273 1274 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1275 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1276 1277 /* 1278 * Catchall entry: must be at end. 1279 */ 1280 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1281 }; 1282 1283 #undef dirty 1284 #undef sc 1285 #undef unevict 1286 #undef mlock 1287 #undef lru 1288 #undef head 1289 #undef reserved 1290 1291 static void update_per_node_mf_stats(unsigned long pfn, 1292 enum mf_result result) 1293 { 1294 int nid = MAX_NUMNODES; 1295 struct memory_failure_stats *mf_stats = NULL; 1296 1297 nid = pfn_to_nid(pfn); 1298 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1299 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1300 return; 1301 } 1302 1303 mf_stats = &NODE_DATA(nid)->mf_stats; 1304 switch (result) { 1305 case MF_IGNORED: 1306 ++mf_stats->ignored; 1307 break; 1308 case MF_FAILED: 1309 ++mf_stats->failed; 1310 break; 1311 case MF_DELAYED: 1312 ++mf_stats->delayed; 1313 break; 1314 case MF_RECOVERED: 1315 ++mf_stats->recovered; 1316 break; 1317 default: 1318 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1319 break; 1320 } 1321 ++mf_stats->total; 1322 } 1323 1324 /* 1325 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1326 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1327 */ 1328 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1329 enum mf_result result) 1330 { 1331 trace_memory_failure_event(pfn, type, result); 1332 1333 num_poisoned_pages_inc(pfn); 1334 1335 update_per_node_mf_stats(pfn, result); 1336 1337 pr_err("%#lx: recovery action for %s: %s\n", 1338 pfn, action_page_types[type], action_name[result]); 1339 1340 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1341 } 1342 1343 static int page_action(struct page_state *ps, struct page *p, 1344 unsigned long pfn) 1345 { 1346 int result; 1347 1348 /* page p should be unlocked after returning from ps->action(). */ 1349 result = ps->action(ps, p); 1350 1351 /* Could do more checks here if page looks ok */ 1352 /* 1353 * Could adjust zone counters here to correct for the missing page. 1354 */ 1355 1356 return action_result(pfn, ps->type, result); 1357 } 1358 1359 static inline bool PageHWPoisonTakenOff(struct page *page) 1360 { 1361 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1362 } 1363 1364 void SetPageHWPoisonTakenOff(struct page *page) 1365 { 1366 set_page_private(page, MAGIC_HWPOISON); 1367 } 1368 1369 void ClearPageHWPoisonTakenOff(struct page *page) 1370 { 1371 if (PageHWPoison(page)) 1372 set_page_private(page, 0); 1373 } 1374 1375 /* 1376 * Return true if a page type of a given page is supported by hwpoison 1377 * mechanism (while handling could fail), otherwise false. This function 1378 * does not return true for hugetlb or device memory pages, so it's assumed 1379 * to be called only in the context where we never have such pages. 1380 */ 1381 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1382 { 1383 if (PageSlab(page)) 1384 return false; 1385 1386 /* Soft offline could migrate non-LRU movable pages */ 1387 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1388 return true; 1389 1390 return PageLRU(page) || is_free_buddy_page(page); 1391 } 1392 1393 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1394 { 1395 struct folio *folio = page_folio(page); 1396 int ret = 0; 1397 bool hugetlb = false; 1398 1399 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1400 if (hugetlb) { 1401 /* Make sure hugetlb demotion did not happen from under us. */ 1402 if (folio == page_folio(page)) 1403 return ret; 1404 if (ret > 0) { 1405 folio_put(folio); 1406 folio = page_folio(page); 1407 } 1408 } 1409 1410 /* 1411 * This check prevents from calling folio_try_get() for any 1412 * unsupported type of folio in order to reduce the risk of unexpected 1413 * races caused by taking a folio refcount. 1414 */ 1415 if (!HWPoisonHandlable(&folio->page, flags)) 1416 return -EBUSY; 1417 1418 if (folio_try_get(folio)) { 1419 if (folio == page_folio(page)) 1420 return 1; 1421 1422 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1423 folio_put(folio); 1424 } 1425 1426 return 0; 1427 } 1428 1429 #define GET_PAGE_MAX_RETRY_NUM 3 1430 1431 static int get_any_page(struct page *p, unsigned long flags) 1432 { 1433 int ret = 0, pass = 0; 1434 bool count_increased = false; 1435 1436 if (flags & MF_COUNT_INCREASED) 1437 count_increased = true; 1438 1439 try_again: 1440 if (!count_increased) { 1441 ret = __get_hwpoison_page(p, flags); 1442 if (!ret) { 1443 if (page_count(p)) { 1444 /* We raced with an allocation, retry. */ 1445 if (pass++ < GET_PAGE_MAX_RETRY_NUM) 1446 goto try_again; 1447 ret = -EBUSY; 1448 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1449 /* We raced with put_page, retry. */ 1450 if (pass++ < GET_PAGE_MAX_RETRY_NUM) 1451 goto try_again; 1452 ret = -EIO; 1453 } 1454 goto out; 1455 } else if (ret == -EBUSY) { 1456 /* 1457 * We raced with (possibly temporary) unhandlable 1458 * page, retry. 1459 */ 1460 if (pass++ < 3) { 1461 shake_page(p); 1462 goto try_again; 1463 } 1464 ret = -EIO; 1465 goto out; 1466 } 1467 } 1468 1469 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1470 ret = 1; 1471 } else { 1472 /* 1473 * A page we cannot handle. Check whether we can turn 1474 * it into something we can handle. 1475 */ 1476 if (pass++ < GET_PAGE_MAX_RETRY_NUM) { 1477 put_page(p); 1478 shake_page(p); 1479 count_increased = false; 1480 goto try_again; 1481 } 1482 put_page(p); 1483 ret = -EIO; 1484 } 1485 out: 1486 if (ret == -EIO) 1487 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1488 1489 return ret; 1490 } 1491 1492 static int __get_unpoison_page(struct page *page) 1493 { 1494 struct folio *folio = page_folio(page); 1495 int ret = 0; 1496 bool hugetlb = false; 1497 1498 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1499 if (hugetlb) { 1500 /* Make sure hugetlb demotion did not happen from under us. */ 1501 if (folio == page_folio(page)) 1502 return ret; 1503 if (ret > 0) 1504 folio_put(folio); 1505 } 1506 1507 /* 1508 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1509 * but also isolated from buddy freelist, so need to identify the 1510 * state and have to cancel both operations to unpoison. 1511 */ 1512 if (PageHWPoisonTakenOff(page)) 1513 return -EHWPOISON; 1514 1515 return get_page_unless_zero(page) ? 1 : 0; 1516 } 1517 1518 /** 1519 * get_hwpoison_page() - Get refcount for memory error handling 1520 * @p: Raw error page (hit by memory error) 1521 * @flags: Flags controlling behavior of error handling 1522 * 1523 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1524 * error on it, after checking that the error page is in a well-defined state 1525 * (defined as a page-type we can successfully handle the memory error on it, 1526 * such as LRU page and hugetlb page). 1527 * 1528 * Memory error handling could be triggered at any time on any type of page, 1529 * so it's prone to race with typical memory management lifecycle (like 1530 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1531 * extra care for the error page's state (as done in __get_hwpoison_page()), 1532 * and has some retry logic in get_any_page(). 1533 * 1534 * When called from unpoison_memory(), the caller should already ensure that 1535 * the given page has PG_hwpoison. So it's never reused for other page 1536 * allocations, and __get_unpoison_page() never races with them. 1537 * 1538 * Return: 0 on failure or free buddy (hugetlb) page, 1539 * 1 on success for in-use pages in a well-defined state, 1540 * -EIO for pages on which we can not handle memory errors, 1541 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1542 * operations like allocation and free, 1543 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1544 */ 1545 static int get_hwpoison_page(struct page *p, unsigned long flags) 1546 { 1547 int ret; 1548 1549 zone_pcp_disable(page_zone(p)); 1550 if (flags & MF_UNPOISON) 1551 ret = __get_unpoison_page(p); 1552 else 1553 ret = get_any_page(p, flags); 1554 zone_pcp_enable(page_zone(p)); 1555 1556 return ret; 1557 } 1558 1559 void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu) 1560 { 1561 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { 1562 struct address_space *mapping; 1563 1564 /* 1565 * For hugetlb folios in shared mappings, try_to_unmap 1566 * could potentially call huge_pmd_unshare. Because of 1567 * this, take semaphore in write mode here and set 1568 * TTU_RMAP_LOCKED to indicate we have taken the lock 1569 * at this higher level. 1570 */ 1571 mapping = hugetlb_folio_mapping_lock_write(folio); 1572 if (!mapping) { 1573 pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n", 1574 folio_pfn(folio)); 1575 return; 1576 } 1577 1578 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1579 i_mmap_unlock_write(mapping); 1580 } else { 1581 try_to_unmap(folio, ttu); 1582 } 1583 } 1584 1585 /* 1586 * Do all that is necessary to remove user space mappings. Unmap 1587 * the pages and send SIGBUS to the processes if the data was dirty. 1588 */ 1589 static bool hwpoison_user_mappings(struct folio *folio, struct page *p, 1590 unsigned long pfn, int flags) 1591 { 1592 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1593 struct address_space *mapping; 1594 LIST_HEAD(tokill); 1595 bool unmap_success; 1596 int forcekill; 1597 bool mlocked = folio_test_mlocked(folio); 1598 1599 /* 1600 * Here we are interested only in user-mapped pages, so skip any 1601 * other types of pages. 1602 */ 1603 if (folio_test_reserved(folio) || folio_test_slab(folio) || 1604 folio_test_pgtable(folio) || folio_test_offline(folio)) 1605 return true; 1606 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio))) 1607 return true; 1608 1609 /* 1610 * This check implies we don't kill processes if their pages 1611 * are in the swap cache early. Those are always late kills. 1612 */ 1613 if (!folio_mapped(folio)) 1614 return true; 1615 1616 if (folio_test_swapcache(folio)) { 1617 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1618 ttu &= ~TTU_HWPOISON; 1619 } 1620 1621 /* 1622 * Propagate the dirty bit from PTEs to struct page first, because we 1623 * need this to decide if we should kill or just drop the page. 1624 * XXX: the dirty test could be racy: set_page_dirty() may not always 1625 * be called inside page lock (it's recommended but not enforced). 1626 */ 1627 mapping = folio_mapping(folio); 1628 if (!(flags & MF_MUST_KILL) && !folio_test_dirty(folio) && mapping && 1629 mapping_can_writeback(mapping)) { 1630 if (folio_mkclean(folio)) { 1631 folio_set_dirty(folio); 1632 } else { 1633 ttu &= ~TTU_HWPOISON; 1634 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1635 pfn); 1636 } 1637 } 1638 1639 /* 1640 * First collect all the processes that have the page 1641 * mapped in dirty form. This has to be done before try_to_unmap, 1642 * because ttu takes the rmap data structures down. 1643 */ 1644 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 1645 1646 unmap_poisoned_folio(folio, ttu); 1647 1648 unmap_success = !folio_mapped(folio); 1649 if (!unmap_success) 1650 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n", 1651 pfn, folio_mapcount(folio)); 1652 1653 /* 1654 * try_to_unmap() might put mlocked page in lru cache, so call 1655 * shake_page() again to ensure that it's flushed. 1656 */ 1657 if (mlocked) 1658 shake_folio(folio); 1659 1660 /* 1661 * Now that the dirty bit has been propagated to the 1662 * struct page and all unmaps done we can decide if 1663 * killing is needed or not. Only kill when the page 1664 * was dirty or the process is not restartable, 1665 * otherwise the tokill list is merely 1666 * freed. When there was a problem unmapping earlier 1667 * use a more force-full uncatchable kill to prevent 1668 * any accesses to the poisoned memory. 1669 */ 1670 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) || 1671 !unmap_success; 1672 kill_procs(&tokill, forcekill, pfn, flags); 1673 1674 return unmap_success; 1675 } 1676 1677 static int identify_page_state(unsigned long pfn, struct page *p, 1678 unsigned long page_flags) 1679 { 1680 struct page_state *ps; 1681 1682 /* 1683 * The first check uses the current page flags which may not have any 1684 * relevant information. The second check with the saved page flags is 1685 * carried out only if the first check can't determine the page status. 1686 */ 1687 for (ps = error_states;; ps++) 1688 if ((p->flags & ps->mask) == ps->res) 1689 break; 1690 1691 page_flags |= (p->flags & (1UL << PG_dirty)); 1692 1693 if (!ps->mask) 1694 for (ps = error_states;; ps++) 1695 if ((page_flags & ps->mask) == ps->res) 1696 break; 1697 return page_action(ps, p, pfn); 1698 } 1699 1700 /* 1701 * When 'release' is 'false', it means that if thp split has failed, 1702 * there is still more to do, hence the page refcount we took earlier 1703 * is still needed. 1704 */ 1705 static int try_to_split_thp_page(struct page *page, bool release) 1706 { 1707 int ret; 1708 1709 lock_page(page); 1710 ret = split_huge_page(page); 1711 unlock_page(page); 1712 1713 if (ret && release) 1714 put_page(page); 1715 1716 return ret; 1717 } 1718 1719 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1720 struct address_space *mapping, pgoff_t index, int flags) 1721 { 1722 struct to_kill *tk; 1723 unsigned long size = 0; 1724 1725 list_for_each_entry(tk, to_kill, nd) 1726 if (tk->size_shift) 1727 size = max(size, 1UL << tk->size_shift); 1728 1729 if (size) { 1730 /* 1731 * Unmap the largest mapping to avoid breaking up device-dax 1732 * mappings which are constant size. The actual size of the 1733 * mapping being torn down is communicated in siginfo, see 1734 * kill_proc() 1735 */ 1736 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1); 1737 1738 unmap_mapping_range(mapping, start, size, 0); 1739 } 1740 1741 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags); 1742 } 1743 1744 /* 1745 * Only dev_pagemap pages get here, such as fsdax when the filesystem 1746 * either do not claim or fails to claim a hwpoison event, or devdax. 1747 * The fsdax pages are initialized per base page, and the devdax pages 1748 * could be initialized either as base pages, or as compound pages with 1749 * vmemmap optimization enabled. Devdax is simplistic in its dealing with 1750 * hwpoison, such that, if a subpage of a compound page is poisoned, 1751 * simply mark the compound head page is by far sufficient. 1752 */ 1753 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1754 struct dev_pagemap *pgmap) 1755 { 1756 struct folio *folio = pfn_folio(pfn); 1757 LIST_HEAD(to_kill); 1758 dax_entry_t cookie; 1759 int rc = 0; 1760 1761 /* 1762 * Prevent the inode from being freed while we are interrogating 1763 * the address_space, typically this would be handled by 1764 * lock_page(), but dax pages do not use the page lock. This 1765 * also prevents changes to the mapping of this pfn until 1766 * poison signaling is complete. 1767 */ 1768 cookie = dax_lock_folio(folio); 1769 if (!cookie) 1770 return -EBUSY; 1771 1772 if (hwpoison_filter(&folio->page)) { 1773 rc = -EOPNOTSUPP; 1774 goto unlock; 1775 } 1776 1777 switch (pgmap->type) { 1778 case MEMORY_DEVICE_PRIVATE: 1779 case MEMORY_DEVICE_COHERENT: 1780 /* 1781 * TODO: Handle device pages which may need coordination 1782 * with device-side memory. 1783 */ 1784 rc = -ENXIO; 1785 goto unlock; 1786 default: 1787 break; 1788 } 1789 1790 /* 1791 * Use this flag as an indication that the dax page has been 1792 * remapped UC to prevent speculative consumption of poison. 1793 */ 1794 SetPageHWPoison(&folio->page); 1795 1796 /* 1797 * Unlike System-RAM there is no possibility to swap in a 1798 * different physical page at a given virtual address, so all 1799 * userspace consumption of ZONE_DEVICE memory necessitates 1800 * SIGBUS (i.e. MF_MUST_KILL) 1801 */ 1802 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1803 collect_procs(folio, &folio->page, &to_kill, true); 1804 1805 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags); 1806 unlock: 1807 dax_unlock_folio(folio, cookie); 1808 return rc; 1809 } 1810 1811 #ifdef CONFIG_FS_DAX 1812 /** 1813 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1814 * @mapping: address_space of the file in use 1815 * @index: start pgoff of the range within the file 1816 * @count: length of the range, in unit of PAGE_SIZE 1817 * @mf_flags: memory failure flags 1818 */ 1819 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1820 unsigned long count, int mf_flags) 1821 { 1822 LIST_HEAD(to_kill); 1823 dax_entry_t cookie; 1824 struct page *page; 1825 size_t end = index + count; 1826 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE; 1827 1828 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1829 1830 for (; index < end; index++) { 1831 page = NULL; 1832 cookie = dax_lock_mapping_entry(mapping, index, &page); 1833 if (!cookie) 1834 return -EBUSY; 1835 if (!page) 1836 goto unlock; 1837 1838 if (!pre_remove) 1839 SetPageHWPoison(page); 1840 1841 /* 1842 * The pre_remove case is revoking access, the memory is still 1843 * good and could theoretically be put back into service. 1844 */ 1845 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove); 1846 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1847 index, mf_flags); 1848 unlock: 1849 dax_unlock_mapping_entry(mapping, index, cookie); 1850 } 1851 return 0; 1852 } 1853 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1854 #endif /* CONFIG_FS_DAX */ 1855 1856 #ifdef CONFIG_HUGETLB_PAGE 1857 1858 /* 1859 * Struct raw_hwp_page represents information about "raw error page", 1860 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1861 */ 1862 struct raw_hwp_page { 1863 struct llist_node node; 1864 struct page *page; 1865 }; 1866 1867 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1868 { 1869 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1870 } 1871 1872 bool is_raw_hwpoison_page_in_hugepage(struct page *page) 1873 { 1874 struct llist_head *raw_hwp_head; 1875 struct raw_hwp_page *p; 1876 struct folio *folio = page_folio(page); 1877 bool ret = false; 1878 1879 if (!folio_test_hwpoison(folio)) 1880 return false; 1881 1882 if (!folio_test_hugetlb(folio)) 1883 return PageHWPoison(page); 1884 1885 /* 1886 * When RawHwpUnreliable is set, kernel lost track of which subpages 1887 * are HWPOISON. So return as if ALL subpages are HWPOISONed. 1888 */ 1889 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1890 return true; 1891 1892 mutex_lock(&mf_mutex); 1893 1894 raw_hwp_head = raw_hwp_list_head(folio); 1895 llist_for_each_entry(p, raw_hwp_head->first, node) { 1896 if (page == p->page) { 1897 ret = true; 1898 break; 1899 } 1900 } 1901 1902 mutex_unlock(&mf_mutex); 1903 1904 return ret; 1905 } 1906 1907 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1908 { 1909 struct llist_node *head; 1910 struct raw_hwp_page *p, *next; 1911 unsigned long count = 0; 1912 1913 head = llist_del_all(raw_hwp_list_head(folio)); 1914 llist_for_each_entry_safe(p, next, head, node) { 1915 if (move_flag) 1916 SetPageHWPoison(p->page); 1917 else 1918 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1919 kfree(p); 1920 count++; 1921 } 1922 return count; 1923 } 1924 1925 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1926 { 1927 struct llist_head *head; 1928 struct raw_hwp_page *raw_hwp; 1929 struct raw_hwp_page *p; 1930 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1931 1932 /* 1933 * Once the hwpoison hugepage has lost reliable raw error info, 1934 * there is little meaning to keep additional error info precisely, 1935 * so skip to add additional raw error info. 1936 */ 1937 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1938 return -EHWPOISON; 1939 head = raw_hwp_list_head(folio); 1940 llist_for_each_entry(p, head->first, node) { 1941 if (p->page == page) 1942 return -EHWPOISON; 1943 } 1944 1945 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1946 if (raw_hwp) { 1947 raw_hwp->page = page; 1948 llist_add(&raw_hwp->node, head); 1949 /* the first error event will be counted in action_result(). */ 1950 if (ret) 1951 num_poisoned_pages_inc(page_to_pfn(page)); 1952 } else { 1953 /* 1954 * Failed to save raw error info. We no longer trace all 1955 * hwpoisoned subpages, and we need refuse to free/dissolve 1956 * this hwpoisoned hugepage. 1957 */ 1958 folio_set_hugetlb_raw_hwp_unreliable(folio); 1959 /* 1960 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1961 * used any more, so free it. 1962 */ 1963 __folio_free_raw_hwp(folio, false); 1964 } 1965 return ret; 1966 } 1967 1968 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1969 { 1970 /* 1971 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1972 * pages for tail pages are required but they don't exist. 1973 */ 1974 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1975 return 0; 1976 1977 /* 1978 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1979 * definition. 1980 */ 1981 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1982 return 0; 1983 1984 return __folio_free_raw_hwp(folio, move_flag); 1985 } 1986 1987 void folio_clear_hugetlb_hwpoison(struct folio *folio) 1988 { 1989 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1990 return; 1991 if (folio_test_hugetlb_vmemmap_optimized(folio)) 1992 return; 1993 folio_clear_hwpoison(folio); 1994 folio_free_raw_hwp(folio, true); 1995 } 1996 1997 /* 1998 * Called from hugetlb code with hugetlb_lock held. 1999 * 2000 * Return values: 2001 * 0 - free hugepage 2002 * 1 - in-use hugepage 2003 * 2 - not a hugepage 2004 * -EBUSY - the hugepage is busy (try to retry) 2005 * -EHWPOISON - the hugepage is already hwpoisoned 2006 */ 2007 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 2008 bool *migratable_cleared) 2009 { 2010 struct page *page = pfn_to_page(pfn); 2011 struct folio *folio = page_folio(page); 2012 int ret = 2; /* fallback to normal page handling */ 2013 bool count_increased = false; 2014 2015 if (!folio_test_hugetlb(folio)) 2016 goto out; 2017 2018 if (flags & MF_COUNT_INCREASED) { 2019 ret = 1; 2020 count_increased = true; 2021 } else if (folio_test_hugetlb_freed(folio)) { 2022 ret = 0; 2023 } else if (folio_test_hugetlb_migratable(folio)) { 2024 ret = folio_try_get(folio); 2025 if (ret) 2026 count_increased = true; 2027 } else { 2028 ret = -EBUSY; 2029 if (!(flags & MF_NO_RETRY)) 2030 goto out; 2031 } 2032 2033 if (folio_set_hugetlb_hwpoison(folio, page)) { 2034 ret = -EHWPOISON; 2035 goto out; 2036 } 2037 2038 /* 2039 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 2040 * from being migrated by memory hotremove. 2041 */ 2042 if (count_increased && folio_test_hugetlb_migratable(folio)) { 2043 folio_clear_hugetlb_migratable(folio); 2044 *migratable_cleared = true; 2045 } 2046 2047 return ret; 2048 out: 2049 if (count_increased) 2050 folio_put(folio); 2051 return ret; 2052 } 2053 2054 /* 2055 * Taking refcount of hugetlb pages needs extra care about race conditions 2056 * with basic operations like hugepage allocation/free/demotion. 2057 * So some of prechecks for hwpoison (pinning, and testing/setting 2058 * PageHWPoison) should be done in single hugetlb_lock range. 2059 */ 2060 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2061 { 2062 int res; 2063 struct page *p = pfn_to_page(pfn); 2064 struct folio *folio; 2065 unsigned long page_flags; 2066 bool migratable_cleared = false; 2067 2068 *hugetlb = 1; 2069 retry: 2070 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 2071 if (res == 2) { /* fallback to normal page handling */ 2072 *hugetlb = 0; 2073 return 0; 2074 } else if (res == -EHWPOISON) { 2075 pr_err("%#lx: already hardware poisoned\n", pfn); 2076 if (flags & MF_ACTION_REQUIRED) { 2077 folio = page_folio(p); 2078 res = kill_accessing_process(current, folio_pfn(folio), flags); 2079 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); 2080 } 2081 return res; 2082 } else if (res == -EBUSY) { 2083 if (!(flags & MF_NO_RETRY)) { 2084 flags |= MF_NO_RETRY; 2085 goto retry; 2086 } 2087 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); 2088 } 2089 2090 folio = page_folio(p); 2091 folio_lock(folio); 2092 2093 if (hwpoison_filter(p)) { 2094 folio_clear_hugetlb_hwpoison(folio); 2095 if (migratable_cleared) 2096 folio_set_hugetlb_migratable(folio); 2097 folio_unlock(folio); 2098 if (res == 1) 2099 folio_put(folio); 2100 return -EOPNOTSUPP; 2101 } 2102 2103 /* 2104 * Handling free hugepage. The possible race with hugepage allocation 2105 * or demotion can be prevented by PageHWPoison flag. 2106 */ 2107 if (res == 0) { 2108 folio_unlock(folio); 2109 if (__page_handle_poison(p) > 0) { 2110 page_ref_inc(p); 2111 res = MF_RECOVERED; 2112 } else { 2113 res = MF_FAILED; 2114 } 2115 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2116 } 2117 2118 page_flags = folio->flags; 2119 2120 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2121 folio_unlock(folio); 2122 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); 2123 } 2124 2125 return identify_page_state(pfn, p, page_flags); 2126 } 2127 2128 #else 2129 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2130 { 2131 return 0; 2132 } 2133 2134 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2135 { 2136 return 0; 2137 } 2138 #endif /* CONFIG_HUGETLB_PAGE */ 2139 2140 /* Drop the extra refcount in case we come from madvise() */ 2141 static void put_ref_page(unsigned long pfn, int flags) 2142 { 2143 if (!(flags & MF_COUNT_INCREASED)) 2144 return; 2145 2146 put_page(pfn_to_page(pfn)); 2147 } 2148 2149 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2150 struct dev_pagemap *pgmap) 2151 { 2152 int rc = -ENXIO; 2153 2154 /* device metadata space is not recoverable */ 2155 if (!pgmap_pfn_valid(pgmap, pfn)) 2156 goto out; 2157 2158 /* 2159 * Call driver's implementation to handle the memory failure, otherwise 2160 * fall back to generic handler. 2161 */ 2162 if (pgmap_has_memory_failure(pgmap)) { 2163 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2164 /* 2165 * Fall back to generic handler too if operation is not 2166 * supported inside the driver/device/filesystem. 2167 */ 2168 if (rc != -EOPNOTSUPP) 2169 goto out; 2170 } 2171 2172 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2173 out: 2174 /* drop pgmap ref acquired in caller */ 2175 put_dev_pagemap(pgmap); 2176 if (rc != -EOPNOTSUPP) 2177 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2178 return rc; 2179 } 2180 2181 /* 2182 * The calling condition is as such: thp split failed, page might have 2183 * been RDMA pinned, not much can be done for recovery. 2184 * But a SIGBUS should be delivered with vaddr provided so that the user 2185 * application has a chance to recover. Also, application processes' 2186 * election for MCE early killed will be honored. 2187 */ 2188 static void kill_procs_now(struct page *p, unsigned long pfn, int flags, 2189 struct folio *folio) 2190 { 2191 LIST_HEAD(tokill); 2192 2193 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 2194 kill_procs(&tokill, true, pfn, flags); 2195 } 2196 2197 /** 2198 * memory_failure - Handle memory failure of a page. 2199 * @pfn: Page Number of the corrupted page 2200 * @flags: fine tune action taken 2201 * 2202 * This function is called by the low level machine check code 2203 * of an architecture when it detects hardware memory corruption 2204 * of a page. It tries its best to recover, which includes 2205 * dropping pages, killing processes etc. 2206 * 2207 * The function is primarily of use for corruptions that 2208 * happen outside the current execution context (e.g. when 2209 * detected by a background scrubber) 2210 * 2211 * Must run in process context (e.g. a work queue) with interrupts 2212 * enabled and no spinlocks held. 2213 * 2214 * Return: 0 for successfully handled the memory error, 2215 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 2216 * < 0(except -EOPNOTSUPP) on failure. 2217 */ 2218 int memory_failure(unsigned long pfn, int flags) 2219 { 2220 struct page *p; 2221 struct folio *folio; 2222 struct dev_pagemap *pgmap; 2223 int res = 0; 2224 unsigned long page_flags; 2225 bool retry = true; 2226 int hugetlb = 0; 2227 2228 if (!sysctl_memory_failure_recovery) 2229 panic("Memory failure on page %lx", pfn); 2230 2231 mutex_lock(&mf_mutex); 2232 2233 if (!(flags & MF_SW_SIMULATED)) 2234 hw_memory_failure = true; 2235 2236 p = pfn_to_online_page(pfn); 2237 if (!p) { 2238 res = arch_memory_failure(pfn, flags); 2239 if (res == 0) 2240 goto unlock_mutex; 2241 2242 if (pfn_valid(pfn)) { 2243 pgmap = get_dev_pagemap(pfn, NULL); 2244 put_ref_page(pfn, flags); 2245 if (pgmap) { 2246 res = memory_failure_dev_pagemap(pfn, flags, 2247 pgmap); 2248 goto unlock_mutex; 2249 } 2250 } 2251 pr_err("%#lx: memory outside kernel control\n", pfn); 2252 res = -ENXIO; 2253 goto unlock_mutex; 2254 } 2255 2256 try_again: 2257 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2258 if (hugetlb) 2259 goto unlock_mutex; 2260 2261 if (TestSetPageHWPoison(p)) { 2262 pr_err("%#lx: already hardware poisoned\n", pfn); 2263 res = -EHWPOISON; 2264 if (flags & MF_ACTION_REQUIRED) 2265 res = kill_accessing_process(current, pfn, flags); 2266 if (flags & MF_COUNT_INCREASED) 2267 put_page(p); 2268 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); 2269 goto unlock_mutex; 2270 } 2271 2272 /* 2273 * We need/can do nothing about count=0 pages. 2274 * 1) it's a free page, and therefore in safe hand: 2275 * check_new_page() will be the gate keeper. 2276 * 2) it's part of a non-compound high order page. 2277 * Implies some kernel user: cannot stop them from 2278 * R/W the page; let's pray that the page has been 2279 * used and will be freed some time later. 2280 * In fact it's dangerous to directly bump up page count from 0, 2281 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2282 */ 2283 if (!(flags & MF_COUNT_INCREASED)) { 2284 res = get_hwpoison_page(p, flags); 2285 if (!res) { 2286 if (is_free_buddy_page(p)) { 2287 if (take_page_off_buddy(p)) { 2288 page_ref_inc(p); 2289 res = MF_RECOVERED; 2290 } else { 2291 /* We lost the race, try again */ 2292 if (retry) { 2293 ClearPageHWPoison(p); 2294 retry = false; 2295 goto try_again; 2296 } 2297 res = MF_FAILED; 2298 } 2299 res = action_result(pfn, MF_MSG_BUDDY, res); 2300 } else { 2301 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2302 } 2303 goto unlock_mutex; 2304 } else if (res < 0) { 2305 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); 2306 goto unlock_mutex; 2307 } 2308 } 2309 2310 folio = page_folio(p); 2311 2312 /* filter pages that are protected from hwpoison test by users */ 2313 folio_lock(folio); 2314 if (hwpoison_filter(p)) { 2315 ClearPageHWPoison(p); 2316 folio_unlock(folio); 2317 folio_put(folio); 2318 res = -EOPNOTSUPP; 2319 goto unlock_mutex; 2320 } 2321 folio_unlock(folio); 2322 2323 if (folio_test_large(folio)) { 2324 /* 2325 * The flag must be set after the refcount is bumped 2326 * otherwise it may race with THP split. 2327 * And the flag can't be set in get_hwpoison_page() since 2328 * it is called by soft offline too and it is just called 2329 * for !MF_COUNT_INCREASED. So here seems to be the best 2330 * place. 2331 * 2332 * Don't need care about the above error handling paths for 2333 * get_hwpoison_page() since they handle either free page 2334 * or unhandlable page. The refcount is bumped iff the 2335 * page is a valid handlable page. 2336 */ 2337 folio_set_has_hwpoisoned(folio); 2338 if (try_to_split_thp_page(p, false) < 0) { 2339 res = -EHWPOISON; 2340 kill_procs_now(p, pfn, flags, folio); 2341 put_page(p); 2342 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED); 2343 goto unlock_mutex; 2344 } 2345 VM_BUG_ON_PAGE(!page_count(p), p); 2346 folio = page_folio(p); 2347 } 2348 2349 /* 2350 * We ignore non-LRU pages for good reasons. 2351 * - PG_locked is only well defined for LRU pages and a few others 2352 * - to avoid races with __SetPageLocked() 2353 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2354 * The check (unnecessarily) ignores LRU pages being isolated and 2355 * walked by the page reclaim code, however that's not a big loss. 2356 */ 2357 shake_folio(folio); 2358 2359 folio_lock(folio); 2360 2361 /* 2362 * We're only intended to deal with the non-Compound page here. 2363 * The page cannot become compound pages again as folio has been 2364 * splited and extra refcnt is held. 2365 */ 2366 WARN_ON(folio_test_large(folio)); 2367 2368 /* 2369 * We use page flags to determine what action should be taken, but 2370 * the flags can be modified by the error containment action. One 2371 * example is an mlocked page, where PG_mlocked is cleared by 2372 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page 2373 * status correctly, we save a copy of the page flags at this time. 2374 */ 2375 page_flags = folio->flags; 2376 2377 /* 2378 * __munlock_folio() may clear a writeback folio's LRU flag without 2379 * the folio lock. We need to wait for writeback completion for this 2380 * folio or it may trigger a vfs BUG while evicting inode. 2381 */ 2382 if (!folio_test_lru(folio) && !folio_test_writeback(folio)) 2383 goto identify_page_state; 2384 2385 /* 2386 * It's very difficult to mess with pages currently under IO 2387 * and in many cases impossible, so we just avoid it here. 2388 */ 2389 folio_wait_writeback(folio); 2390 2391 /* 2392 * Now take care of user space mappings. 2393 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2394 */ 2395 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2396 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); 2397 goto unlock_page; 2398 } 2399 2400 /* 2401 * Torn down by someone else? 2402 */ 2403 if (folio_test_lru(folio) && !folio_test_swapcache(folio) && 2404 folio->mapping == NULL) { 2405 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2406 goto unlock_page; 2407 } 2408 2409 identify_page_state: 2410 res = identify_page_state(pfn, p, page_flags); 2411 mutex_unlock(&mf_mutex); 2412 return res; 2413 unlock_page: 2414 folio_unlock(folio); 2415 unlock_mutex: 2416 mutex_unlock(&mf_mutex); 2417 return res; 2418 } 2419 EXPORT_SYMBOL_GPL(memory_failure); 2420 2421 #define MEMORY_FAILURE_FIFO_ORDER 4 2422 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2423 2424 struct memory_failure_entry { 2425 unsigned long pfn; 2426 int flags; 2427 }; 2428 2429 struct memory_failure_cpu { 2430 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2431 MEMORY_FAILURE_FIFO_SIZE); 2432 raw_spinlock_t lock; 2433 struct work_struct work; 2434 }; 2435 2436 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2437 2438 /** 2439 * memory_failure_queue - Schedule handling memory failure of a page. 2440 * @pfn: Page Number of the corrupted page 2441 * @flags: Flags for memory failure handling 2442 * 2443 * This function is called by the low level hardware error handler 2444 * when it detects hardware memory corruption of a page. It schedules 2445 * the recovering of error page, including dropping pages, killing 2446 * processes etc. 2447 * 2448 * The function is primarily of use for corruptions that 2449 * happen outside the current execution context (e.g. when 2450 * detected by a background scrubber) 2451 * 2452 * Can run in IRQ context. 2453 */ 2454 void memory_failure_queue(unsigned long pfn, int flags) 2455 { 2456 struct memory_failure_cpu *mf_cpu; 2457 unsigned long proc_flags; 2458 bool buffer_overflow; 2459 struct memory_failure_entry entry = { 2460 .pfn = pfn, 2461 .flags = flags, 2462 }; 2463 2464 mf_cpu = &get_cpu_var(memory_failure_cpu); 2465 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2466 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry); 2467 if (!buffer_overflow) 2468 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2469 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2470 put_cpu_var(memory_failure_cpu); 2471 if (buffer_overflow) 2472 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2473 pfn); 2474 } 2475 EXPORT_SYMBOL_GPL(memory_failure_queue); 2476 2477 static void memory_failure_work_func(struct work_struct *work) 2478 { 2479 struct memory_failure_cpu *mf_cpu; 2480 struct memory_failure_entry entry = { 0, }; 2481 unsigned long proc_flags; 2482 int gotten; 2483 2484 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2485 for (;;) { 2486 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2487 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2488 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2489 if (!gotten) 2490 break; 2491 if (entry.flags & MF_SOFT_OFFLINE) 2492 soft_offline_page(entry.pfn, entry.flags); 2493 else 2494 memory_failure(entry.pfn, entry.flags); 2495 } 2496 } 2497 2498 /* 2499 * Process memory_failure work queued on the specified CPU. 2500 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2501 */ 2502 void memory_failure_queue_kick(int cpu) 2503 { 2504 struct memory_failure_cpu *mf_cpu; 2505 2506 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2507 cancel_work_sync(&mf_cpu->work); 2508 memory_failure_work_func(&mf_cpu->work); 2509 } 2510 2511 static int __init memory_failure_init(void) 2512 { 2513 struct memory_failure_cpu *mf_cpu; 2514 int cpu; 2515 2516 for_each_possible_cpu(cpu) { 2517 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2518 raw_spin_lock_init(&mf_cpu->lock); 2519 INIT_KFIFO(mf_cpu->fifo); 2520 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2521 } 2522 2523 register_sysctl_init("vm", memory_failure_table); 2524 2525 return 0; 2526 } 2527 core_initcall(memory_failure_init); 2528 2529 #undef pr_fmt 2530 #define pr_fmt(fmt) "Unpoison: " fmt 2531 #define unpoison_pr_info(fmt, pfn, rs) \ 2532 ({ \ 2533 if (__ratelimit(rs)) \ 2534 pr_info(fmt, pfn); \ 2535 }) 2536 2537 /** 2538 * unpoison_memory - Unpoison a previously poisoned page 2539 * @pfn: Page number of the to be unpoisoned page 2540 * 2541 * Software-unpoison a page that has been poisoned by 2542 * memory_failure() earlier. 2543 * 2544 * This is only done on the software-level, so it only works 2545 * for linux injected failures, not real hardware failures 2546 * 2547 * Returns 0 for success, otherwise -errno. 2548 */ 2549 int unpoison_memory(unsigned long pfn) 2550 { 2551 struct folio *folio; 2552 struct page *p; 2553 int ret = -EBUSY, ghp; 2554 unsigned long count; 2555 bool huge = false; 2556 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2557 DEFAULT_RATELIMIT_BURST); 2558 2559 if (!pfn_valid(pfn)) 2560 return -ENXIO; 2561 2562 p = pfn_to_page(pfn); 2563 folio = page_folio(p); 2564 2565 mutex_lock(&mf_mutex); 2566 2567 if (hw_memory_failure) { 2568 unpoison_pr_info("%#lx: disabled after HW memory failure\n", 2569 pfn, &unpoison_rs); 2570 ret = -EOPNOTSUPP; 2571 goto unlock_mutex; 2572 } 2573 2574 if (is_huge_zero_folio(folio)) { 2575 unpoison_pr_info("%#lx: huge zero page is not supported\n", 2576 pfn, &unpoison_rs); 2577 ret = -EOPNOTSUPP; 2578 goto unlock_mutex; 2579 } 2580 2581 if (!PageHWPoison(p)) { 2582 unpoison_pr_info("%#lx: page was already unpoisoned\n", 2583 pfn, &unpoison_rs); 2584 goto unlock_mutex; 2585 } 2586 2587 if (folio_ref_count(folio) > 1) { 2588 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n", 2589 pfn, &unpoison_rs); 2590 goto unlock_mutex; 2591 } 2592 2593 if (folio_test_slab(folio) || folio_test_pgtable(folio) || 2594 folio_test_reserved(folio) || folio_test_offline(folio)) 2595 goto unlock_mutex; 2596 2597 if (folio_mapped(folio)) { 2598 unpoison_pr_info("%#lx: someone maps the hwpoison page\n", 2599 pfn, &unpoison_rs); 2600 goto unlock_mutex; 2601 } 2602 2603 if (folio_mapping(folio)) { 2604 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n", 2605 pfn, &unpoison_rs); 2606 goto unlock_mutex; 2607 } 2608 2609 ghp = get_hwpoison_page(p, MF_UNPOISON); 2610 if (!ghp) { 2611 if (folio_test_hugetlb(folio)) { 2612 huge = true; 2613 count = folio_free_raw_hwp(folio, false); 2614 if (count == 0) 2615 goto unlock_mutex; 2616 } 2617 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2618 } else if (ghp < 0) { 2619 if (ghp == -EHWPOISON) { 2620 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2621 } else { 2622 ret = ghp; 2623 unpoison_pr_info("%#lx: failed to grab page\n", 2624 pfn, &unpoison_rs); 2625 } 2626 } else { 2627 if (folio_test_hugetlb(folio)) { 2628 huge = true; 2629 count = folio_free_raw_hwp(folio, false); 2630 if (count == 0) { 2631 folio_put(folio); 2632 goto unlock_mutex; 2633 } 2634 } 2635 2636 folio_put(folio); 2637 if (TestClearPageHWPoison(p)) { 2638 folio_put(folio); 2639 ret = 0; 2640 } 2641 } 2642 2643 unlock_mutex: 2644 mutex_unlock(&mf_mutex); 2645 if (!ret) { 2646 if (!huge) 2647 num_poisoned_pages_sub(pfn, 1); 2648 unpoison_pr_info("%#lx: software-unpoisoned page\n", 2649 page_to_pfn(p), &unpoison_rs); 2650 } 2651 return ret; 2652 } 2653 EXPORT_SYMBOL(unpoison_memory); 2654 2655 #undef pr_fmt 2656 #define pr_fmt(fmt) "Soft offline: " fmt 2657 2658 /* 2659 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2660 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2661 * If the page is mapped, it migrates the contents over. 2662 */ 2663 static int soft_offline_in_use_page(struct page *page) 2664 { 2665 long ret = 0; 2666 unsigned long pfn = page_to_pfn(page); 2667 struct folio *folio = page_folio(page); 2668 char const *msg_page[] = {"page", "hugepage"}; 2669 bool huge = folio_test_hugetlb(folio); 2670 bool isolated; 2671 LIST_HEAD(pagelist); 2672 struct migration_target_control mtc = { 2673 .nid = NUMA_NO_NODE, 2674 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2675 .reason = MR_MEMORY_FAILURE, 2676 }; 2677 2678 if (!huge && folio_test_large(folio)) { 2679 if (try_to_split_thp_page(page, true)) { 2680 pr_info("%#lx: thp split failed\n", pfn); 2681 return -EBUSY; 2682 } 2683 folio = page_folio(page); 2684 } 2685 2686 folio_lock(folio); 2687 if (!huge) 2688 folio_wait_writeback(folio); 2689 if (PageHWPoison(page)) { 2690 folio_unlock(folio); 2691 folio_put(folio); 2692 pr_info("%#lx: page already poisoned\n", pfn); 2693 return 0; 2694 } 2695 2696 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio)) 2697 /* 2698 * Try to invalidate first. This should work for 2699 * non dirty unmapped page cache pages. 2700 */ 2701 ret = mapping_evict_folio(folio_mapping(folio), folio); 2702 folio_unlock(folio); 2703 2704 if (ret) { 2705 pr_info("%#lx: invalidated\n", pfn); 2706 page_handle_poison(page, false, true); 2707 return 0; 2708 } 2709 2710 isolated = isolate_folio_to_list(folio, &pagelist); 2711 2712 /* 2713 * If we succeed to isolate the folio, we grabbed another refcount on 2714 * the folio, so we can safely drop the one we got from get_any_page(). 2715 * If we failed to isolate the folio, it means that we cannot go further 2716 * and we will return an error, so drop the reference we got from 2717 * get_any_page() as well. 2718 */ 2719 folio_put(folio); 2720 2721 if (isolated) { 2722 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2723 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2724 if (!ret) { 2725 bool release = !huge; 2726 2727 if (!page_handle_poison(page, huge, release)) 2728 ret = -EBUSY; 2729 } else { 2730 if (!list_empty(&pagelist)) 2731 putback_movable_pages(&pagelist); 2732 2733 pr_info("%#lx: %s migration failed %ld, type %pGp\n", 2734 pfn, msg_page[huge], ret, &page->flags); 2735 if (ret > 0) 2736 ret = -EBUSY; 2737 } 2738 } else { 2739 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n", 2740 pfn, msg_page[huge], page_count(page), &page->flags); 2741 ret = -EBUSY; 2742 } 2743 return ret; 2744 } 2745 2746 /** 2747 * soft_offline_page - Soft offline a page. 2748 * @pfn: pfn to soft-offline 2749 * @flags: flags. Same as memory_failure(). 2750 * 2751 * Returns 0 on success, 2752 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or 2753 * disabled by /proc/sys/vm/enable_soft_offline, 2754 * < 0 otherwise negated errno. 2755 * 2756 * Soft offline a page, by migration or invalidation, 2757 * without killing anything. This is for the case when 2758 * a page is not corrupted yet (so it's still valid to access), 2759 * but has had a number of corrected errors and is better taken 2760 * out. 2761 * 2762 * The actual policy on when to do that is maintained by 2763 * user space. 2764 * 2765 * This should never impact any application or cause data loss, 2766 * however it might take some time. 2767 * 2768 * This is not a 100% solution for all memory, but tries to be 2769 * ``good enough'' for the majority of memory. 2770 */ 2771 int soft_offline_page(unsigned long pfn, int flags) 2772 { 2773 int ret; 2774 bool try_again = true; 2775 struct page *page; 2776 2777 if (!pfn_valid(pfn)) { 2778 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2779 return -ENXIO; 2780 } 2781 2782 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2783 page = pfn_to_online_page(pfn); 2784 if (!page) { 2785 put_ref_page(pfn, flags); 2786 return -EIO; 2787 } 2788 2789 if (!sysctl_enable_soft_offline) { 2790 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n"); 2791 put_ref_page(pfn, flags); 2792 return -EOPNOTSUPP; 2793 } 2794 2795 mutex_lock(&mf_mutex); 2796 2797 if (PageHWPoison(page)) { 2798 pr_info("%#lx: page already poisoned\n", pfn); 2799 put_ref_page(pfn, flags); 2800 mutex_unlock(&mf_mutex); 2801 return 0; 2802 } 2803 2804 retry: 2805 get_online_mems(); 2806 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2807 put_online_mems(); 2808 2809 if (hwpoison_filter(page)) { 2810 if (ret > 0) 2811 put_page(page); 2812 2813 mutex_unlock(&mf_mutex); 2814 return -EOPNOTSUPP; 2815 } 2816 2817 if (ret > 0) { 2818 ret = soft_offline_in_use_page(page); 2819 } else if (ret == 0) { 2820 if (!page_handle_poison(page, true, false)) { 2821 if (try_again) { 2822 try_again = false; 2823 flags &= ~MF_COUNT_INCREASED; 2824 goto retry; 2825 } 2826 ret = -EBUSY; 2827 } 2828 } 2829 2830 mutex_unlock(&mf_mutex); 2831 2832 return ret; 2833 } 2834