xref: /linux/mm/memory-failure.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66 
67 static int sysctl_memory_failure_early_kill __read_mostly;
68 
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70 
71 static int sysctl_enable_soft_offline __read_mostly = 1;
72 
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
74 
75 static bool hw_memory_failure __read_mostly = false;
76 
77 static DEFINE_MUTEX(mf_mutex);
78 
79 void num_poisoned_pages_inc(unsigned long pfn)
80 {
81 	atomic_long_inc(&num_poisoned_pages);
82 	memblk_nr_poison_inc(pfn);
83 }
84 
85 void num_poisoned_pages_sub(unsigned long pfn, long i)
86 {
87 	atomic_long_sub(i, &num_poisoned_pages);
88 	if (pfn != -1UL)
89 		memblk_nr_poison_sub(pfn, i);
90 }
91 
92 /**
93  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94  * @_name: name of the file in the per NUMA sysfs directory.
95  */
96 #define MF_ATTR_RO(_name)					\
97 static ssize_t _name##_show(struct device *dev,			\
98 			    struct device_attribute *attr,	\
99 			    char *buf)				\
100 {								\
101 	struct memory_failure_stats *mf_stats =			\
102 		&NODE_DATA(dev->id)->mf_stats;			\
103 	return sysfs_emit(buf, "%lu\n", mf_stats->_name);	\
104 }								\
105 static DEVICE_ATTR_RO(_name)
106 
107 MF_ATTR_RO(total);
108 MF_ATTR_RO(ignored);
109 MF_ATTR_RO(failed);
110 MF_ATTR_RO(delayed);
111 MF_ATTR_RO(recovered);
112 
113 static struct attribute *memory_failure_attr[] = {
114 	&dev_attr_total.attr,
115 	&dev_attr_ignored.attr,
116 	&dev_attr_failed.attr,
117 	&dev_attr_delayed.attr,
118 	&dev_attr_recovered.attr,
119 	NULL,
120 };
121 
122 const struct attribute_group memory_failure_attr_group = {
123 	.name = "memory_failure",
124 	.attrs = memory_failure_attr,
125 };
126 
127 static struct ctl_table memory_failure_table[] = {
128 	{
129 		.procname	= "memory_failure_early_kill",
130 		.data		= &sysctl_memory_failure_early_kill,
131 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
132 		.mode		= 0644,
133 		.proc_handler	= proc_dointvec_minmax,
134 		.extra1		= SYSCTL_ZERO,
135 		.extra2		= SYSCTL_ONE,
136 	},
137 	{
138 		.procname	= "memory_failure_recovery",
139 		.data		= &sysctl_memory_failure_recovery,
140 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
141 		.mode		= 0644,
142 		.proc_handler	= proc_dointvec_minmax,
143 		.extra1		= SYSCTL_ZERO,
144 		.extra2		= SYSCTL_ONE,
145 	},
146 	{
147 		.procname	= "enable_soft_offline",
148 		.data		= &sysctl_enable_soft_offline,
149 		.maxlen		= sizeof(sysctl_enable_soft_offline),
150 		.mode		= 0644,
151 		.proc_handler	= proc_dointvec_minmax,
152 		.extra1		= SYSCTL_ZERO,
153 		.extra2		= SYSCTL_ONE,
154 	}
155 };
156 
157 /*
158  * Return values:
159  *   1:   the page is dissolved (if needed) and taken off from buddy,
160  *   0:   the page is dissolved (if needed) and not taken off from buddy,
161  *   < 0: failed to dissolve.
162  */
163 static int __page_handle_poison(struct page *page)
164 {
165 	int ret;
166 
167 	/*
168 	 * zone_pcp_disable() can't be used here. It will
169 	 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 	 * optimization is enabled. This will break current lock dependency
172 	 * chain and leads to deadlock.
173 	 * Disabling pcp before dissolving the page was a deterministic
174 	 * approach because we made sure that those pages cannot end up in any
175 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 	 * but nothing guarantees that those pages do not get back to a PCP
177 	 * queue if we need to refill those.
178 	 */
179 	ret = dissolve_free_hugetlb_folio(page_folio(page));
180 	if (!ret) {
181 		drain_all_pages(page_zone(page));
182 		ret = take_page_off_buddy(page);
183 	}
184 
185 	return ret;
186 }
187 
188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
189 {
190 	if (hugepage_or_freepage) {
191 		/*
192 		 * Doing this check for free pages is also fine since
193 		 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
194 		 */
195 		if (__page_handle_poison(page) <= 0)
196 			/*
197 			 * We could fail to take off the target page from buddy
198 			 * for example due to racy page allocation, but that's
199 			 * acceptable because soft-offlined page is not broken
200 			 * and if someone really want to use it, they should
201 			 * take it.
202 			 */
203 			return false;
204 	}
205 
206 	SetPageHWPoison(page);
207 	if (release)
208 		put_page(page);
209 	page_ref_inc(page);
210 	num_poisoned_pages_inc(page_to_pfn(page));
211 
212 	return true;
213 }
214 
215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
216 
217 u32 hwpoison_filter_enable = 0;
218 u32 hwpoison_filter_dev_major = ~0U;
219 u32 hwpoison_filter_dev_minor = ~0U;
220 u64 hwpoison_filter_flags_mask;
221 u64 hwpoison_filter_flags_value;
222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
227 
228 static int hwpoison_filter_dev(struct page *p)
229 {
230 	struct folio *folio = page_folio(p);
231 	struct address_space *mapping;
232 	dev_t dev;
233 
234 	if (hwpoison_filter_dev_major == ~0U &&
235 	    hwpoison_filter_dev_minor == ~0U)
236 		return 0;
237 
238 	mapping = folio_mapping(folio);
239 	if (mapping == NULL || mapping->host == NULL)
240 		return -EINVAL;
241 
242 	dev = mapping->host->i_sb->s_dev;
243 	if (hwpoison_filter_dev_major != ~0U &&
244 	    hwpoison_filter_dev_major != MAJOR(dev))
245 		return -EINVAL;
246 	if (hwpoison_filter_dev_minor != ~0U &&
247 	    hwpoison_filter_dev_minor != MINOR(dev))
248 		return -EINVAL;
249 
250 	return 0;
251 }
252 
253 static int hwpoison_filter_flags(struct page *p)
254 {
255 	if (!hwpoison_filter_flags_mask)
256 		return 0;
257 
258 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 				    hwpoison_filter_flags_value)
260 		return 0;
261 	else
262 		return -EINVAL;
263 }
264 
265 /*
266  * This allows stress tests to limit test scope to a collection of tasks
267  * by putting them under some memcg. This prevents killing unrelated/important
268  * processes such as /sbin/init. Note that the target task may share clean
269  * pages with init (eg. libc text), which is harmless. If the target task
270  * share _dirty_ pages with another task B, the test scheme must make sure B
271  * is also included in the memcg. At last, due to race conditions this filter
272  * can only guarantee that the page either belongs to the memcg tasks, or is
273  * a freed page.
274  */
275 #ifdef CONFIG_MEMCG
276 u64 hwpoison_filter_memcg;
277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
278 static int hwpoison_filter_task(struct page *p)
279 {
280 	if (!hwpoison_filter_memcg)
281 		return 0;
282 
283 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
284 		return -EINVAL;
285 
286 	return 0;
287 }
288 #else
289 static int hwpoison_filter_task(struct page *p) { return 0; }
290 #endif
291 
292 int hwpoison_filter(struct page *p)
293 {
294 	if (!hwpoison_filter_enable)
295 		return 0;
296 
297 	if (hwpoison_filter_dev(p))
298 		return -EINVAL;
299 
300 	if (hwpoison_filter_flags(p))
301 		return -EINVAL;
302 
303 	if (hwpoison_filter_task(p))
304 		return -EINVAL;
305 
306 	return 0;
307 }
308 EXPORT_SYMBOL_GPL(hwpoison_filter);
309 #else
310 int hwpoison_filter(struct page *p)
311 {
312 	return 0;
313 }
314 #endif
315 
316 /*
317  * Kill all processes that have a poisoned page mapped and then isolate
318  * the page.
319  *
320  * General strategy:
321  * Find all processes having the page mapped and kill them.
322  * But we keep a page reference around so that the page is not
323  * actually freed yet.
324  * Then stash the page away
325  *
326  * There's no convenient way to get back to mapped processes
327  * from the VMAs. So do a brute-force search over all
328  * running processes.
329  *
330  * Remember that machine checks are not common (or rather
331  * if they are common you have other problems), so this shouldn't
332  * be a performance issue.
333  *
334  * Also there are some races possible while we get from the
335  * error detection to actually handle it.
336  */
337 
338 struct to_kill {
339 	struct list_head nd;
340 	struct task_struct *tsk;
341 	unsigned long addr;
342 	short size_shift;
343 };
344 
345 /*
346  * Send all the processes who have the page mapped a signal.
347  * ``action optional'' if they are not immediately affected by the error
348  * ``action required'' if error happened in current execution context
349  */
350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
351 {
352 	struct task_struct *t = tk->tsk;
353 	short addr_lsb = tk->size_shift;
354 	int ret = 0;
355 
356 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357 			pfn, t->comm, task_pid_nr(t));
358 
359 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 		ret = force_sig_mceerr(BUS_MCEERR_AR,
361 				 (void __user *)tk->addr, addr_lsb);
362 	else
363 		/*
364 		 * Signal other processes sharing the page if they have
365 		 * PF_MCE_EARLY set.
366 		 * Don't use force here, it's convenient if the signal
367 		 * can be temporarily blocked.
368 		 */
369 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
370 				      addr_lsb, t);
371 	if (ret < 0)
372 		pr_info("Error sending signal to %s:%d: %d\n",
373 			t->comm, task_pid_nr(t), ret);
374 	return ret;
375 }
376 
377 /*
378  * Unknown page type encountered. Try to check whether it can turn PageLRU by
379  * lru_add_drain_all.
380  */
381 void shake_folio(struct folio *folio)
382 {
383 	if (folio_test_hugetlb(folio))
384 		return;
385 	/*
386 	 * TODO: Could shrink slab caches here if a lightweight range-based
387 	 * shrinker will be available.
388 	 */
389 	if (folio_test_slab(folio))
390 		return;
391 
392 	lru_add_drain_all();
393 }
394 EXPORT_SYMBOL_GPL(shake_folio);
395 
396 static void shake_page(struct page *page)
397 {
398 	shake_folio(page_folio(page));
399 }
400 
401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 		unsigned long address)
403 {
404 	unsigned long ret = 0;
405 	pgd_t *pgd;
406 	p4d_t *p4d;
407 	pud_t *pud;
408 	pmd_t *pmd;
409 	pte_t *pte;
410 	pte_t ptent;
411 
412 	VM_BUG_ON_VMA(address == -EFAULT, vma);
413 	pgd = pgd_offset(vma->vm_mm, address);
414 	if (!pgd_present(*pgd))
415 		return 0;
416 	p4d = p4d_offset(pgd, address);
417 	if (!p4d_present(*p4d))
418 		return 0;
419 	pud = pud_offset(p4d, address);
420 	if (!pud_present(*pud))
421 		return 0;
422 	if (pud_devmap(*pud))
423 		return PUD_SHIFT;
424 	pmd = pmd_offset(pud, address);
425 	if (!pmd_present(*pmd))
426 		return 0;
427 	if (pmd_devmap(*pmd))
428 		return PMD_SHIFT;
429 	pte = pte_offset_map(pmd, address);
430 	if (!pte)
431 		return 0;
432 	ptent = ptep_get(pte);
433 	if (pte_present(ptent) && pte_devmap(ptent))
434 		ret = PAGE_SHIFT;
435 	pte_unmap(pte);
436 	return ret;
437 }
438 
439 /*
440  * Failure handling: if we can't find or can't kill a process there's
441  * not much we can do.	We just print a message and ignore otherwise.
442  */
443 
444 /*
445  * Schedule a process for later kill.
446  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
447  */
448 static void __add_to_kill(struct task_struct *tsk, const struct page *p,
449 			  struct vm_area_struct *vma, struct list_head *to_kill,
450 			  unsigned long addr)
451 {
452 	struct to_kill *tk;
453 
454 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455 	if (!tk) {
456 		pr_err("Out of memory while machine check handling\n");
457 		return;
458 	}
459 
460 	tk->addr = addr;
461 	if (is_zone_device_page(p))
462 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
463 	else
464 		tk->size_shift = folio_shift(page_folio(p));
465 
466 	/*
467 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 	 * so "tk->size_shift == 0" effectively checks no mapping on
470 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 	 * to a process' address space, it's possible not all N VMAs
472 	 * contain mappings for the page, but at least one VMA does.
473 	 * Only deliver SIGBUS with payload derived from the VMA that
474 	 * has a mapping for the page.
475 	 */
476 	if (tk->addr == -EFAULT) {
477 		pr_info("Unable to find user space address %lx in %s\n",
478 			page_to_pfn(p), tsk->comm);
479 	} else if (tk->size_shift == 0) {
480 		kfree(tk);
481 		return;
482 	}
483 
484 	get_task_struct(tsk);
485 	tk->tsk = tsk;
486 	list_add_tail(&tk->nd, to_kill);
487 }
488 
489 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
490 		struct vm_area_struct *vma, struct list_head *to_kill,
491 		unsigned long addr)
492 {
493 	if (addr == -EFAULT)
494 		return;
495 	__add_to_kill(tsk, p, vma, to_kill, addr);
496 }
497 
498 #ifdef CONFIG_KSM
499 static bool task_in_to_kill_list(struct list_head *to_kill,
500 				 struct task_struct *tsk)
501 {
502 	struct to_kill *tk, *next;
503 
504 	list_for_each_entry_safe(tk, next, to_kill, nd) {
505 		if (tk->tsk == tsk)
506 			return true;
507 	}
508 
509 	return false;
510 }
511 
512 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
513 		     struct vm_area_struct *vma, struct list_head *to_kill,
514 		     unsigned long addr)
515 {
516 	if (!task_in_to_kill_list(to_kill, tsk))
517 		__add_to_kill(tsk, p, vma, to_kill, addr);
518 }
519 #endif
520 /*
521  * Kill the processes that have been collected earlier.
522  *
523  * Only do anything when FORCEKILL is set, otherwise just free the
524  * list (this is used for clean pages which do not need killing)
525  */
526 static void kill_procs(struct list_head *to_kill, int forcekill,
527 		unsigned long pfn, int flags)
528 {
529 	struct to_kill *tk, *next;
530 
531 	list_for_each_entry_safe(tk, next, to_kill, nd) {
532 		if (forcekill) {
533 			if (tk->addr == -EFAULT) {
534 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 						 tk->tsk, PIDTYPE_PID);
538 			}
539 
540 			/*
541 			 * In theory the process could have mapped
542 			 * something else on the address in-between. We could
543 			 * check for that, but we need to tell the
544 			 * process anyways.
545 			 */
546 			else if (kill_proc(tk, pfn, flags) < 0)
547 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548 				       pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
549 		}
550 		list_del(&tk->nd);
551 		put_task_struct(tk->tsk);
552 		kfree(tk);
553 	}
554 }
555 
556 /*
557  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558  * on behalf of the thread group. Return task_struct of the (first found)
559  * dedicated thread if found, and return NULL otherwise.
560  *
561  * We already hold rcu lock in the caller, so we don't have to call
562  * rcu_read_lock/unlock() in this function.
563  */
564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
565 {
566 	struct task_struct *t;
567 
568 	for_each_thread(tsk, t) {
569 		if (t->flags & PF_MCE_PROCESS) {
570 			if (t->flags & PF_MCE_EARLY)
571 				return t;
572 		} else {
573 			if (sysctl_memory_failure_early_kill)
574 				return t;
575 		}
576 	}
577 	return NULL;
578 }
579 
580 /*
581  * Determine whether a given process is "early kill" process which expects
582  * to be signaled when some page under the process is hwpoisoned.
583  * Return task_struct of the dedicated thread (main thread unless explicitly
584  * specified) if the process is "early kill" and otherwise returns NULL.
585  *
586  * Note that the above is true for Action Optional case. For Action Required
587  * case, it's only meaningful to the current thread which need to be signaled
588  * with SIGBUS, this error is Action Optional for other non current
589  * processes sharing the same error page,if the process is "early kill", the
590  * task_struct of the dedicated thread will also be returned.
591  */
592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
593 {
594 	if (!tsk->mm)
595 		return NULL;
596 	/*
597 	 * Comparing ->mm here because current task might represent
598 	 * a subthread, while tsk always points to the main thread.
599 	 */
600 	if (force_early && tsk->mm == current->mm)
601 		return current;
602 
603 	return find_early_kill_thread(tsk);
604 }
605 
606 /*
607  * Collect processes when the error hit an anonymous page.
608  */
609 static void collect_procs_anon(const struct folio *folio,
610 		const struct page *page, struct list_head *to_kill,
611 		int force_early)
612 {
613 	struct task_struct *tsk;
614 	struct anon_vma *av;
615 	pgoff_t pgoff;
616 
617 	av = folio_lock_anon_vma_read(folio, NULL);
618 	if (av == NULL)	/* Not actually mapped anymore */
619 		return;
620 
621 	pgoff = page_pgoff(folio, page);
622 	rcu_read_lock();
623 	for_each_process(tsk) {
624 		struct vm_area_struct *vma;
625 		struct anon_vma_chain *vmac;
626 		struct task_struct *t = task_early_kill(tsk, force_early);
627 		unsigned long addr;
628 
629 		if (!t)
630 			continue;
631 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
632 					       pgoff, pgoff) {
633 			vma = vmac->vma;
634 			if (vma->vm_mm != t->mm)
635 				continue;
636 			addr = page_mapped_in_vma(page, vma);
637 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
638 		}
639 	}
640 	rcu_read_unlock();
641 	anon_vma_unlock_read(av);
642 }
643 
644 /*
645  * Collect processes when the error hit a file mapped page.
646  */
647 static void collect_procs_file(const struct folio *folio,
648 		const struct page *page, struct list_head *to_kill,
649 		int force_early)
650 {
651 	struct vm_area_struct *vma;
652 	struct task_struct *tsk;
653 	struct address_space *mapping = folio->mapping;
654 	pgoff_t pgoff;
655 
656 	i_mmap_lock_read(mapping);
657 	rcu_read_lock();
658 	pgoff = page_pgoff(folio, page);
659 	for_each_process(tsk) {
660 		struct task_struct *t = task_early_kill(tsk, force_early);
661 		unsigned long addr;
662 
663 		if (!t)
664 			continue;
665 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
666 				      pgoff) {
667 			/*
668 			 * Send early kill signal to tasks where a vma covers
669 			 * the page but the corrupted page is not necessarily
670 			 * mapped in its pte.
671 			 * Assume applications who requested early kill want
672 			 * to be informed of all such data corruptions.
673 			 */
674 			if (vma->vm_mm != t->mm)
675 				continue;
676 			addr = page_address_in_vma(folio, page, vma);
677 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
678 		}
679 	}
680 	rcu_read_unlock();
681 	i_mmap_unlock_read(mapping);
682 }
683 
684 #ifdef CONFIG_FS_DAX
685 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
686 			      struct vm_area_struct *vma,
687 			      struct list_head *to_kill, pgoff_t pgoff)
688 {
689 	unsigned long addr = vma_address(vma, pgoff, 1);
690 	__add_to_kill(tsk, p, vma, to_kill, addr);
691 }
692 
693 /*
694  * Collect processes when the error hit a fsdax page.
695  */
696 static void collect_procs_fsdax(const struct page *page,
697 		struct address_space *mapping, pgoff_t pgoff,
698 		struct list_head *to_kill, bool pre_remove)
699 {
700 	struct vm_area_struct *vma;
701 	struct task_struct *tsk;
702 
703 	i_mmap_lock_read(mapping);
704 	rcu_read_lock();
705 	for_each_process(tsk) {
706 		struct task_struct *t = tsk;
707 
708 		/*
709 		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
710 		 * the current may not be the one accessing the fsdax page.
711 		 * Otherwise, search for the current task.
712 		 */
713 		if (!pre_remove)
714 			t = task_early_kill(tsk, true);
715 		if (!t)
716 			continue;
717 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
718 			if (vma->vm_mm == t->mm)
719 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
720 		}
721 	}
722 	rcu_read_unlock();
723 	i_mmap_unlock_read(mapping);
724 }
725 #endif /* CONFIG_FS_DAX */
726 
727 /*
728  * Collect the processes who have the corrupted page mapped to kill.
729  */
730 static void collect_procs(const struct folio *folio, const struct page *page,
731 		struct list_head *tokill, int force_early)
732 {
733 	if (!folio->mapping)
734 		return;
735 	if (unlikely(folio_test_ksm(folio)))
736 		collect_procs_ksm(folio, page, tokill, force_early);
737 	else if (folio_test_anon(folio))
738 		collect_procs_anon(folio, page, tokill, force_early);
739 	else
740 		collect_procs_file(folio, page, tokill, force_early);
741 }
742 
743 struct hwpoison_walk {
744 	struct to_kill tk;
745 	unsigned long pfn;
746 	int flags;
747 };
748 
749 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
750 {
751 	tk->addr = addr;
752 	tk->size_shift = shift;
753 }
754 
755 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
756 				unsigned long poisoned_pfn, struct to_kill *tk)
757 {
758 	unsigned long pfn = 0;
759 
760 	if (pte_present(pte)) {
761 		pfn = pte_pfn(pte);
762 	} else {
763 		swp_entry_t swp = pte_to_swp_entry(pte);
764 
765 		if (is_hwpoison_entry(swp))
766 			pfn = swp_offset_pfn(swp);
767 	}
768 
769 	if (!pfn || pfn != poisoned_pfn)
770 		return 0;
771 
772 	set_to_kill(tk, addr, shift);
773 	return 1;
774 }
775 
776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
777 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
778 				      struct hwpoison_walk *hwp)
779 {
780 	pmd_t pmd = *pmdp;
781 	unsigned long pfn;
782 	unsigned long hwpoison_vaddr;
783 
784 	if (!pmd_present(pmd))
785 		return 0;
786 	pfn = pmd_pfn(pmd);
787 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
788 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
789 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
790 		return 1;
791 	}
792 	return 0;
793 }
794 #else
795 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
796 				      struct hwpoison_walk *hwp)
797 {
798 	return 0;
799 }
800 #endif
801 
802 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
803 			      unsigned long end, struct mm_walk *walk)
804 {
805 	struct hwpoison_walk *hwp = walk->private;
806 	int ret = 0;
807 	pte_t *ptep, *mapped_pte;
808 	spinlock_t *ptl;
809 
810 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
811 	if (ptl) {
812 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
813 		spin_unlock(ptl);
814 		goto out;
815 	}
816 
817 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
818 						addr, &ptl);
819 	if (!ptep)
820 		goto out;
821 
822 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
823 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
824 					     hwp->pfn, &hwp->tk);
825 		if (ret == 1)
826 			break;
827 	}
828 	pte_unmap_unlock(mapped_pte, ptl);
829 out:
830 	cond_resched();
831 	return ret;
832 }
833 
834 #ifdef CONFIG_HUGETLB_PAGE
835 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
836 			    unsigned long addr, unsigned long end,
837 			    struct mm_walk *walk)
838 {
839 	struct hwpoison_walk *hwp = walk->private;
840 	pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
841 	struct hstate *h = hstate_vma(walk->vma);
842 
843 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
844 				      hwp->pfn, &hwp->tk);
845 }
846 #else
847 #define hwpoison_hugetlb_range	NULL
848 #endif
849 
850 static const struct mm_walk_ops hwpoison_walk_ops = {
851 	.pmd_entry = hwpoison_pte_range,
852 	.hugetlb_entry = hwpoison_hugetlb_range,
853 	.walk_lock = PGWALK_RDLOCK,
854 };
855 
856 /*
857  * Sends SIGBUS to the current process with error info.
858  *
859  * This function is intended to handle "Action Required" MCEs on already
860  * hardware poisoned pages. They could happen, for example, when
861  * memory_failure() failed to unmap the error page at the first call, or
862  * when multiple local machine checks happened on different CPUs.
863  *
864  * MCE handler currently has no easy access to the error virtual address,
865  * so this function walks page table to find it. The returned virtual address
866  * is proper in most cases, but it could be wrong when the application
867  * process has multiple entries mapping the error page.
868  */
869 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
870 				  int flags)
871 {
872 	int ret;
873 	struct hwpoison_walk priv = {
874 		.pfn = pfn,
875 	};
876 	priv.tk.tsk = p;
877 
878 	if (!p->mm)
879 		return -EFAULT;
880 
881 	mmap_read_lock(p->mm);
882 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
883 			      (void *)&priv);
884 	if (ret == 1 && priv.tk.addr)
885 		kill_proc(&priv.tk, pfn, flags);
886 	else
887 		ret = 0;
888 	mmap_read_unlock(p->mm);
889 	return ret > 0 ? -EHWPOISON : -EFAULT;
890 }
891 
892 /*
893  * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
894  * But it could not do more to isolate the page from being accessed again,
895  * nor does it kill the process. This is extremely rare and one of the
896  * potential causes is that the page state has been changed due to
897  * underlying race condition. This is the most severe outcomes.
898  *
899  * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
900  * It should have killed the process, but it can't isolate the page,
901  * due to conditions such as extra pin, unmap failure, etc. Accessing
902  * the page again may trigger another MCE and the process will be killed
903  * by the m-f() handler immediately.
904  *
905  * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
906  * The page is unmapped, and is removed from the LRU or file mapping.
907  * An attempt to access the page again will trigger page fault and the
908  * PF handler will kill the process.
909  *
910  * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
911  * The page has been completely isolated, that is, unmapped, taken out of
912  * the buddy system, or hole-punnched out of the file mapping.
913  */
914 static const char *action_name[] = {
915 	[MF_IGNORED] = "Ignored",
916 	[MF_FAILED] = "Failed",
917 	[MF_DELAYED] = "Delayed",
918 	[MF_RECOVERED] = "Recovered",
919 };
920 
921 static const char * const action_page_types[] = {
922 	[MF_MSG_KERNEL]			= "reserved kernel page",
923 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
924 	[MF_MSG_HUGE]			= "huge page",
925 	[MF_MSG_FREE_HUGE]		= "free huge page",
926 	[MF_MSG_GET_HWPOISON]		= "get hwpoison page",
927 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
928 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
929 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
930 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
931 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
932 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
933 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
934 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
935 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
936 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
937 	[MF_MSG_BUDDY]			= "free buddy page",
938 	[MF_MSG_DAX]			= "dax page",
939 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
940 	[MF_MSG_ALREADY_POISONED]	= "already poisoned",
941 	[MF_MSG_UNKNOWN]		= "unknown page",
942 };
943 
944 /*
945  * XXX: It is possible that a page is isolated from LRU cache,
946  * and then kept in swap cache or failed to remove from page cache.
947  * The page count will stop it from being freed by unpoison.
948  * Stress tests should be aware of this memory leak problem.
949  */
950 static int delete_from_lru_cache(struct folio *folio)
951 {
952 	if (folio_isolate_lru(folio)) {
953 		/*
954 		 * Clear sensible page flags, so that the buddy system won't
955 		 * complain when the folio is unpoison-and-freed.
956 		 */
957 		folio_clear_active(folio);
958 		folio_clear_unevictable(folio);
959 
960 		/*
961 		 * Poisoned page might never drop its ref count to 0 so we have
962 		 * to uncharge it manually from its memcg.
963 		 */
964 		mem_cgroup_uncharge(folio);
965 
966 		/*
967 		 * drop the refcount elevated by folio_isolate_lru()
968 		 */
969 		folio_put(folio);
970 		return 0;
971 	}
972 	return -EIO;
973 }
974 
975 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
976 				struct address_space *mapping)
977 {
978 	int ret = MF_FAILED;
979 
980 	if (mapping->a_ops->error_remove_folio) {
981 		int err = mapping->a_ops->error_remove_folio(mapping, folio);
982 
983 		if (err != 0)
984 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
985 		else if (!filemap_release_folio(folio, GFP_NOIO))
986 			pr_info("%#lx: failed to release buffers\n", pfn);
987 		else
988 			ret = MF_RECOVERED;
989 	} else {
990 		/*
991 		 * If the file system doesn't support it just invalidate
992 		 * This fails on dirty or anything with private pages
993 		 */
994 		if (mapping_evict_folio(mapping, folio))
995 			ret = MF_RECOVERED;
996 		else
997 			pr_info("%#lx: Failed to invalidate\n",	pfn);
998 	}
999 
1000 	return ret;
1001 }
1002 
1003 struct page_state {
1004 	unsigned long mask;
1005 	unsigned long res;
1006 	enum mf_action_page_type type;
1007 
1008 	/* Callback ->action() has to unlock the relevant page inside it. */
1009 	int (*action)(struct page_state *ps, struct page *p);
1010 };
1011 
1012 /*
1013  * Return true if page is still referenced by others, otherwise return
1014  * false.
1015  *
1016  * The extra_pins is true when one extra refcount is expected.
1017  */
1018 static bool has_extra_refcount(struct page_state *ps, struct page *p,
1019 			       bool extra_pins)
1020 {
1021 	int count = page_count(p) - 1;
1022 
1023 	if (extra_pins)
1024 		count -= folio_nr_pages(page_folio(p));
1025 
1026 	if (count > 0) {
1027 		pr_err("%#lx: %s still referenced by %d users\n",
1028 		       page_to_pfn(p), action_page_types[ps->type], count);
1029 		return true;
1030 	}
1031 
1032 	return false;
1033 }
1034 
1035 /*
1036  * Error hit kernel page.
1037  * Do nothing, try to be lucky and not touch this instead. For a few cases we
1038  * could be more sophisticated.
1039  */
1040 static int me_kernel(struct page_state *ps, struct page *p)
1041 {
1042 	unlock_page(p);
1043 	return MF_IGNORED;
1044 }
1045 
1046 /*
1047  * Page in unknown state. Do nothing.
1048  * This is a catch-all in case we fail to make sense of the page state.
1049  */
1050 static int me_unknown(struct page_state *ps, struct page *p)
1051 {
1052 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1053 	unlock_page(p);
1054 	return MF_IGNORED;
1055 }
1056 
1057 /*
1058  * Clean (or cleaned) page cache page.
1059  */
1060 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1061 {
1062 	struct folio *folio = page_folio(p);
1063 	int ret;
1064 	struct address_space *mapping;
1065 	bool extra_pins;
1066 
1067 	delete_from_lru_cache(folio);
1068 
1069 	/*
1070 	 * For anonymous folios the only reference left
1071 	 * should be the one m_f() holds.
1072 	 */
1073 	if (folio_test_anon(folio)) {
1074 		ret = MF_RECOVERED;
1075 		goto out;
1076 	}
1077 
1078 	/*
1079 	 * Now truncate the page in the page cache. This is really
1080 	 * more like a "temporary hole punch"
1081 	 * Don't do this for block devices when someone else
1082 	 * has a reference, because it could be file system metadata
1083 	 * and that's not safe to truncate.
1084 	 */
1085 	mapping = folio_mapping(folio);
1086 	if (!mapping) {
1087 		/* Folio has been torn down in the meantime */
1088 		ret = MF_FAILED;
1089 		goto out;
1090 	}
1091 
1092 	/*
1093 	 * The shmem page is kept in page cache instead of truncating
1094 	 * so is expected to have an extra refcount after error-handling.
1095 	 */
1096 	extra_pins = shmem_mapping(mapping);
1097 
1098 	/*
1099 	 * Truncation is a bit tricky. Enable it per file system for now.
1100 	 *
1101 	 * Open: to take i_rwsem or not for this? Right now we don't.
1102 	 */
1103 	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1104 	if (has_extra_refcount(ps, p, extra_pins))
1105 		ret = MF_FAILED;
1106 
1107 out:
1108 	folio_unlock(folio);
1109 
1110 	return ret;
1111 }
1112 
1113 /*
1114  * Dirty pagecache page
1115  * Issues: when the error hit a hole page the error is not properly
1116  * propagated.
1117  */
1118 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1119 {
1120 	struct folio *folio = page_folio(p);
1121 	struct address_space *mapping = folio_mapping(folio);
1122 
1123 	/* TBD: print more information about the file. */
1124 	if (mapping) {
1125 		/*
1126 		 * IO error will be reported by write(), fsync(), etc.
1127 		 * who check the mapping.
1128 		 * This way the application knows that something went
1129 		 * wrong with its dirty file data.
1130 		 */
1131 		mapping_set_error(mapping, -EIO);
1132 	}
1133 
1134 	return me_pagecache_clean(ps, p);
1135 }
1136 
1137 /*
1138  * Clean and dirty swap cache.
1139  *
1140  * Dirty swap cache page is tricky to handle. The page could live both in page
1141  * table and swap cache(ie. page is freshly swapped in). So it could be
1142  * referenced concurrently by 2 types of PTEs:
1143  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1144  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1145  * and then
1146  *      - clear dirty bit to prevent IO
1147  *      - remove from LRU
1148  *      - but keep in the swap cache, so that when we return to it on
1149  *        a later page fault, we know the application is accessing
1150  *        corrupted data and shall be killed (we installed simple
1151  *        interception code in do_swap_page to catch it).
1152  *
1153  * Clean swap cache pages can be directly isolated. A later page fault will
1154  * bring in the known good data from disk.
1155  */
1156 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1157 {
1158 	struct folio *folio = page_folio(p);
1159 	int ret;
1160 	bool extra_pins = false;
1161 
1162 	folio_clear_dirty(folio);
1163 	/* Trigger EIO in shmem: */
1164 	folio_clear_uptodate(folio);
1165 
1166 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1167 	folio_unlock(folio);
1168 
1169 	if (ret == MF_DELAYED)
1170 		extra_pins = true;
1171 
1172 	if (has_extra_refcount(ps, p, extra_pins))
1173 		ret = MF_FAILED;
1174 
1175 	return ret;
1176 }
1177 
1178 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1179 {
1180 	struct folio *folio = page_folio(p);
1181 	int ret;
1182 
1183 	delete_from_swap_cache(folio);
1184 
1185 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1186 	folio_unlock(folio);
1187 
1188 	if (has_extra_refcount(ps, p, false))
1189 		ret = MF_FAILED;
1190 
1191 	return ret;
1192 }
1193 
1194 /*
1195  * Huge pages. Needs work.
1196  * Issues:
1197  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1198  *   To narrow down kill region to one page, we need to break up pmd.
1199  */
1200 static int me_huge_page(struct page_state *ps, struct page *p)
1201 {
1202 	struct folio *folio = page_folio(p);
1203 	int res;
1204 	struct address_space *mapping;
1205 	bool extra_pins = false;
1206 
1207 	mapping = folio_mapping(folio);
1208 	if (mapping) {
1209 		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1210 		/* The page is kept in page cache. */
1211 		extra_pins = true;
1212 		folio_unlock(folio);
1213 	} else {
1214 		folio_unlock(folio);
1215 		/*
1216 		 * migration entry prevents later access on error hugepage,
1217 		 * so we can free and dissolve it into buddy to save healthy
1218 		 * subpages.
1219 		 */
1220 		folio_put(folio);
1221 		if (__page_handle_poison(p) > 0) {
1222 			page_ref_inc(p);
1223 			res = MF_RECOVERED;
1224 		} else {
1225 			res = MF_FAILED;
1226 		}
1227 	}
1228 
1229 	if (has_extra_refcount(ps, p, extra_pins))
1230 		res = MF_FAILED;
1231 
1232 	return res;
1233 }
1234 
1235 /*
1236  * Various page states we can handle.
1237  *
1238  * A page state is defined by its current page->flags bits.
1239  * The table matches them in order and calls the right handler.
1240  *
1241  * This is quite tricky because we can access page at any time
1242  * in its live cycle, so all accesses have to be extremely careful.
1243  *
1244  * This is not complete. More states could be added.
1245  * For any missing state don't attempt recovery.
1246  */
1247 
1248 #define dirty		(1UL << PG_dirty)
1249 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1250 #define unevict		(1UL << PG_unevictable)
1251 #define mlock		(1UL << PG_mlocked)
1252 #define lru		(1UL << PG_lru)
1253 #define head		(1UL << PG_head)
1254 #define reserved	(1UL << PG_reserved)
1255 
1256 static struct page_state error_states[] = {
1257 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1258 	/*
1259 	 * free pages are specially detected outside this table:
1260 	 * PG_buddy pages only make a small fraction of all free pages.
1261 	 */
1262 
1263 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1264 
1265 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1266 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1267 
1268 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1269 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1270 
1271 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1272 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1273 
1274 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1275 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1276 
1277 	/*
1278 	 * Catchall entry: must be at end.
1279 	 */
1280 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1281 };
1282 
1283 #undef dirty
1284 #undef sc
1285 #undef unevict
1286 #undef mlock
1287 #undef lru
1288 #undef head
1289 #undef reserved
1290 
1291 static void update_per_node_mf_stats(unsigned long pfn,
1292 				     enum mf_result result)
1293 {
1294 	int nid = MAX_NUMNODES;
1295 	struct memory_failure_stats *mf_stats = NULL;
1296 
1297 	nid = pfn_to_nid(pfn);
1298 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1299 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1300 		return;
1301 	}
1302 
1303 	mf_stats = &NODE_DATA(nid)->mf_stats;
1304 	switch (result) {
1305 	case MF_IGNORED:
1306 		++mf_stats->ignored;
1307 		break;
1308 	case MF_FAILED:
1309 		++mf_stats->failed;
1310 		break;
1311 	case MF_DELAYED:
1312 		++mf_stats->delayed;
1313 		break;
1314 	case MF_RECOVERED:
1315 		++mf_stats->recovered;
1316 		break;
1317 	default:
1318 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1319 		break;
1320 	}
1321 	++mf_stats->total;
1322 }
1323 
1324 /*
1325  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1326  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1327  */
1328 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1329 			 enum mf_result result)
1330 {
1331 	trace_memory_failure_event(pfn, type, result);
1332 
1333 	num_poisoned_pages_inc(pfn);
1334 
1335 	update_per_node_mf_stats(pfn, result);
1336 
1337 	pr_err("%#lx: recovery action for %s: %s\n",
1338 		pfn, action_page_types[type], action_name[result]);
1339 
1340 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1341 }
1342 
1343 static int page_action(struct page_state *ps, struct page *p,
1344 			unsigned long pfn)
1345 {
1346 	int result;
1347 
1348 	/* page p should be unlocked after returning from ps->action().  */
1349 	result = ps->action(ps, p);
1350 
1351 	/* Could do more checks here if page looks ok */
1352 	/*
1353 	 * Could adjust zone counters here to correct for the missing page.
1354 	 */
1355 
1356 	return action_result(pfn, ps->type, result);
1357 }
1358 
1359 static inline bool PageHWPoisonTakenOff(struct page *page)
1360 {
1361 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1362 }
1363 
1364 void SetPageHWPoisonTakenOff(struct page *page)
1365 {
1366 	set_page_private(page, MAGIC_HWPOISON);
1367 }
1368 
1369 void ClearPageHWPoisonTakenOff(struct page *page)
1370 {
1371 	if (PageHWPoison(page))
1372 		set_page_private(page, 0);
1373 }
1374 
1375 /*
1376  * Return true if a page type of a given page is supported by hwpoison
1377  * mechanism (while handling could fail), otherwise false.  This function
1378  * does not return true for hugetlb or device memory pages, so it's assumed
1379  * to be called only in the context where we never have such pages.
1380  */
1381 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1382 {
1383 	if (PageSlab(page))
1384 		return false;
1385 
1386 	/* Soft offline could migrate non-LRU movable pages */
1387 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1388 		return true;
1389 
1390 	return PageLRU(page) || is_free_buddy_page(page);
1391 }
1392 
1393 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1394 {
1395 	struct folio *folio = page_folio(page);
1396 	int ret = 0;
1397 	bool hugetlb = false;
1398 
1399 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1400 	if (hugetlb) {
1401 		/* Make sure hugetlb demotion did not happen from under us. */
1402 		if (folio == page_folio(page))
1403 			return ret;
1404 		if (ret > 0) {
1405 			folio_put(folio);
1406 			folio = page_folio(page);
1407 		}
1408 	}
1409 
1410 	/*
1411 	 * This check prevents from calling folio_try_get() for any
1412 	 * unsupported type of folio in order to reduce the risk of unexpected
1413 	 * races caused by taking a folio refcount.
1414 	 */
1415 	if (!HWPoisonHandlable(&folio->page, flags))
1416 		return -EBUSY;
1417 
1418 	if (folio_try_get(folio)) {
1419 		if (folio == page_folio(page))
1420 			return 1;
1421 
1422 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1423 		folio_put(folio);
1424 	}
1425 
1426 	return 0;
1427 }
1428 
1429 #define GET_PAGE_MAX_RETRY_NUM 3
1430 
1431 static int get_any_page(struct page *p, unsigned long flags)
1432 {
1433 	int ret = 0, pass = 0;
1434 	bool count_increased = false;
1435 
1436 	if (flags & MF_COUNT_INCREASED)
1437 		count_increased = true;
1438 
1439 try_again:
1440 	if (!count_increased) {
1441 		ret = __get_hwpoison_page(p, flags);
1442 		if (!ret) {
1443 			if (page_count(p)) {
1444 				/* We raced with an allocation, retry. */
1445 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1446 					goto try_again;
1447 				ret = -EBUSY;
1448 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1449 				/* We raced with put_page, retry. */
1450 				if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1451 					goto try_again;
1452 				ret = -EIO;
1453 			}
1454 			goto out;
1455 		} else if (ret == -EBUSY) {
1456 			/*
1457 			 * We raced with (possibly temporary) unhandlable
1458 			 * page, retry.
1459 			 */
1460 			if (pass++ < 3) {
1461 				shake_page(p);
1462 				goto try_again;
1463 			}
1464 			ret = -EIO;
1465 			goto out;
1466 		}
1467 	}
1468 
1469 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1470 		ret = 1;
1471 	} else {
1472 		/*
1473 		 * A page we cannot handle. Check whether we can turn
1474 		 * it into something we can handle.
1475 		 */
1476 		if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1477 			put_page(p);
1478 			shake_page(p);
1479 			count_increased = false;
1480 			goto try_again;
1481 		}
1482 		put_page(p);
1483 		ret = -EIO;
1484 	}
1485 out:
1486 	if (ret == -EIO)
1487 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1488 
1489 	return ret;
1490 }
1491 
1492 static int __get_unpoison_page(struct page *page)
1493 {
1494 	struct folio *folio = page_folio(page);
1495 	int ret = 0;
1496 	bool hugetlb = false;
1497 
1498 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1499 	if (hugetlb) {
1500 		/* Make sure hugetlb demotion did not happen from under us. */
1501 		if (folio == page_folio(page))
1502 			return ret;
1503 		if (ret > 0)
1504 			folio_put(folio);
1505 	}
1506 
1507 	/*
1508 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1509 	 * but also isolated from buddy freelist, so need to identify the
1510 	 * state and have to cancel both operations to unpoison.
1511 	 */
1512 	if (PageHWPoisonTakenOff(page))
1513 		return -EHWPOISON;
1514 
1515 	return get_page_unless_zero(page) ? 1 : 0;
1516 }
1517 
1518 /**
1519  * get_hwpoison_page() - Get refcount for memory error handling
1520  * @p:		Raw error page (hit by memory error)
1521  * @flags:	Flags controlling behavior of error handling
1522  *
1523  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1524  * error on it, after checking that the error page is in a well-defined state
1525  * (defined as a page-type we can successfully handle the memory error on it,
1526  * such as LRU page and hugetlb page).
1527  *
1528  * Memory error handling could be triggered at any time on any type of page,
1529  * so it's prone to race with typical memory management lifecycle (like
1530  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1531  * extra care for the error page's state (as done in __get_hwpoison_page()),
1532  * and has some retry logic in get_any_page().
1533  *
1534  * When called from unpoison_memory(), the caller should already ensure that
1535  * the given page has PG_hwpoison. So it's never reused for other page
1536  * allocations, and __get_unpoison_page() never races with them.
1537  *
1538  * Return: 0 on failure or free buddy (hugetlb) page,
1539  *         1 on success for in-use pages in a well-defined state,
1540  *         -EIO for pages on which we can not handle memory errors,
1541  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1542  *         operations like allocation and free,
1543  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1544  */
1545 static int get_hwpoison_page(struct page *p, unsigned long flags)
1546 {
1547 	int ret;
1548 
1549 	zone_pcp_disable(page_zone(p));
1550 	if (flags & MF_UNPOISON)
1551 		ret = __get_unpoison_page(p);
1552 	else
1553 		ret = get_any_page(p, flags);
1554 	zone_pcp_enable(page_zone(p));
1555 
1556 	return ret;
1557 }
1558 
1559 void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu)
1560 {
1561 	if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1562 		struct address_space *mapping;
1563 
1564 		/*
1565 		 * For hugetlb folios in shared mappings, try_to_unmap
1566 		 * could potentially call huge_pmd_unshare.  Because of
1567 		 * this, take semaphore in write mode here and set
1568 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1569 		 * at this higher level.
1570 		 */
1571 		mapping = hugetlb_folio_mapping_lock_write(folio);
1572 		if (!mapping) {
1573 			pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1574 				folio_pfn(folio));
1575 			return;
1576 		}
1577 
1578 		try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1579 		i_mmap_unlock_write(mapping);
1580 	} else {
1581 		try_to_unmap(folio, ttu);
1582 	}
1583 }
1584 
1585 /*
1586  * Do all that is necessary to remove user space mappings. Unmap
1587  * the pages and send SIGBUS to the processes if the data was dirty.
1588  */
1589 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1590 		unsigned long pfn, int flags)
1591 {
1592 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1593 	struct address_space *mapping;
1594 	LIST_HEAD(tokill);
1595 	bool unmap_success;
1596 	int forcekill;
1597 	bool mlocked = folio_test_mlocked(folio);
1598 
1599 	/*
1600 	 * Here we are interested only in user-mapped pages, so skip any
1601 	 * other types of pages.
1602 	 */
1603 	if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1604 	    folio_test_pgtable(folio) || folio_test_offline(folio))
1605 		return true;
1606 	if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1607 		return true;
1608 
1609 	/*
1610 	 * This check implies we don't kill processes if their pages
1611 	 * are in the swap cache early. Those are always late kills.
1612 	 */
1613 	if (!folio_mapped(folio))
1614 		return true;
1615 
1616 	if (folio_test_swapcache(folio)) {
1617 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1618 		ttu &= ~TTU_HWPOISON;
1619 	}
1620 
1621 	/*
1622 	 * Propagate the dirty bit from PTEs to struct page first, because we
1623 	 * need this to decide if we should kill or just drop the page.
1624 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1625 	 * be called inside page lock (it's recommended but not enforced).
1626 	 */
1627 	mapping = folio_mapping(folio);
1628 	if (!(flags & MF_MUST_KILL) && !folio_test_dirty(folio) && mapping &&
1629 	    mapping_can_writeback(mapping)) {
1630 		if (folio_mkclean(folio)) {
1631 			folio_set_dirty(folio);
1632 		} else {
1633 			ttu &= ~TTU_HWPOISON;
1634 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1635 				pfn);
1636 		}
1637 	}
1638 
1639 	/*
1640 	 * First collect all the processes that have the page
1641 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1642 	 * because ttu takes the rmap data structures down.
1643 	 */
1644 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1645 
1646 	unmap_poisoned_folio(folio, ttu);
1647 
1648 	unmap_success = !folio_mapped(folio);
1649 	if (!unmap_success)
1650 		pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1651 		       pfn, folio_mapcount(folio));
1652 
1653 	/*
1654 	 * try_to_unmap() might put mlocked page in lru cache, so call
1655 	 * shake_page() again to ensure that it's flushed.
1656 	 */
1657 	if (mlocked)
1658 		shake_folio(folio);
1659 
1660 	/*
1661 	 * Now that the dirty bit has been propagated to the
1662 	 * struct page and all unmaps done we can decide if
1663 	 * killing is needed or not.  Only kill when the page
1664 	 * was dirty or the process is not restartable,
1665 	 * otherwise the tokill list is merely
1666 	 * freed.  When there was a problem unmapping earlier
1667 	 * use a more force-full uncatchable kill to prevent
1668 	 * any accesses to the poisoned memory.
1669 	 */
1670 	forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1671 		    !unmap_success;
1672 	kill_procs(&tokill, forcekill, pfn, flags);
1673 
1674 	return unmap_success;
1675 }
1676 
1677 static int identify_page_state(unsigned long pfn, struct page *p,
1678 				unsigned long page_flags)
1679 {
1680 	struct page_state *ps;
1681 
1682 	/*
1683 	 * The first check uses the current page flags which may not have any
1684 	 * relevant information. The second check with the saved page flags is
1685 	 * carried out only if the first check can't determine the page status.
1686 	 */
1687 	for (ps = error_states;; ps++)
1688 		if ((p->flags & ps->mask) == ps->res)
1689 			break;
1690 
1691 	page_flags |= (p->flags & (1UL << PG_dirty));
1692 
1693 	if (!ps->mask)
1694 		for (ps = error_states;; ps++)
1695 			if ((page_flags & ps->mask) == ps->res)
1696 				break;
1697 	return page_action(ps, p, pfn);
1698 }
1699 
1700 /*
1701  * When 'release' is 'false', it means that if thp split has failed,
1702  * there is still more to do, hence the page refcount we took earlier
1703  * is still needed.
1704  */
1705 static int try_to_split_thp_page(struct page *page, bool release)
1706 {
1707 	int ret;
1708 
1709 	lock_page(page);
1710 	ret = split_huge_page(page);
1711 	unlock_page(page);
1712 
1713 	if (ret && release)
1714 		put_page(page);
1715 
1716 	return ret;
1717 }
1718 
1719 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1720 		struct address_space *mapping, pgoff_t index, int flags)
1721 {
1722 	struct to_kill *tk;
1723 	unsigned long size = 0;
1724 
1725 	list_for_each_entry(tk, to_kill, nd)
1726 		if (tk->size_shift)
1727 			size = max(size, 1UL << tk->size_shift);
1728 
1729 	if (size) {
1730 		/*
1731 		 * Unmap the largest mapping to avoid breaking up device-dax
1732 		 * mappings which are constant size. The actual size of the
1733 		 * mapping being torn down is communicated in siginfo, see
1734 		 * kill_proc()
1735 		 */
1736 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1737 
1738 		unmap_mapping_range(mapping, start, size, 0);
1739 	}
1740 
1741 	kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1742 }
1743 
1744 /*
1745  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1746  * either do not claim or fails to claim a hwpoison event, or devdax.
1747  * The fsdax pages are initialized per base page, and the devdax pages
1748  * could be initialized either as base pages, or as compound pages with
1749  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1750  * hwpoison, such that, if a subpage of a compound page is poisoned,
1751  * simply mark the compound head page is by far sufficient.
1752  */
1753 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1754 		struct dev_pagemap *pgmap)
1755 {
1756 	struct folio *folio = pfn_folio(pfn);
1757 	LIST_HEAD(to_kill);
1758 	dax_entry_t cookie;
1759 	int rc = 0;
1760 
1761 	/*
1762 	 * Prevent the inode from being freed while we are interrogating
1763 	 * the address_space, typically this would be handled by
1764 	 * lock_page(), but dax pages do not use the page lock. This
1765 	 * also prevents changes to the mapping of this pfn until
1766 	 * poison signaling is complete.
1767 	 */
1768 	cookie = dax_lock_folio(folio);
1769 	if (!cookie)
1770 		return -EBUSY;
1771 
1772 	if (hwpoison_filter(&folio->page)) {
1773 		rc = -EOPNOTSUPP;
1774 		goto unlock;
1775 	}
1776 
1777 	switch (pgmap->type) {
1778 	case MEMORY_DEVICE_PRIVATE:
1779 	case MEMORY_DEVICE_COHERENT:
1780 		/*
1781 		 * TODO: Handle device pages which may need coordination
1782 		 * with device-side memory.
1783 		 */
1784 		rc = -ENXIO;
1785 		goto unlock;
1786 	default:
1787 		break;
1788 	}
1789 
1790 	/*
1791 	 * Use this flag as an indication that the dax page has been
1792 	 * remapped UC to prevent speculative consumption of poison.
1793 	 */
1794 	SetPageHWPoison(&folio->page);
1795 
1796 	/*
1797 	 * Unlike System-RAM there is no possibility to swap in a
1798 	 * different physical page at a given virtual address, so all
1799 	 * userspace consumption of ZONE_DEVICE memory necessitates
1800 	 * SIGBUS (i.e. MF_MUST_KILL)
1801 	 */
1802 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1803 	collect_procs(folio, &folio->page, &to_kill, true);
1804 
1805 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1806 unlock:
1807 	dax_unlock_folio(folio, cookie);
1808 	return rc;
1809 }
1810 
1811 #ifdef CONFIG_FS_DAX
1812 /**
1813  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1814  * @mapping:	address_space of the file in use
1815  * @index:	start pgoff of the range within the file
1816  * @count:	length of the range, in unit of PAGE_SIZE
1817  * @mf_flags:	memory failure flags
1818  */
1819 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1820 		unsigned long count, int mf_flags)
1821 {
1822 	LIST_HEAD(to_kill);
1823 	dax_entry_t cookie;
1824 	struct page *page;
1825 	size_t end = index + count;
1826 	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1827 
1828 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1829 
1830 	for (; index < end; index++) {
1831 		page = NULL;
1832 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1833 		if (!cookie)
1834 			return -EBUSY;
1835 		if (!page)
1836 			goto unlock;
1837 
1838 		if (!pre_remove)
1839 			SetPageHWPoison(page);
1840 
1841 		/*
1842 		 * The pre_remove case is revoking access, the memory is still
1843 		 * good and could theoretically be put back into service.
1844 		 */
1845 		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1846 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1847 				index, mf_flags);
1848 unlock:
1849 		dax_unlock_mapping_entry(mapping, index, cookie);
1850 	}
1851 	return 0;
1852 }
1853 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1854 #endif /* CONFIG_FS_DAX */
1855 
1856 #ifdef CONFIG_HUGETLB_PAGE
1857 
1858 /*
1859  * Struct raw_hwp_page represents information about "raw error page",
1860  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1861  */
1862 struct raw_hwp_page {
1863 	struct llist_node node;
1864 	struct page *page;
1865 };
1866 
1867 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1868 {
1869 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1870 }
1871 
1872 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1873 {
1874 	struct llist_head *raw_hwp_head;
1875 	struct raw_hwp_page *p;
1876 	struct folio *folio = page_folio(page);
1877 	bool ret = false;
1878 
1879 	if (!folio_test_hwpoison(folio))
1880 		return false;
1881 
1882 	if (!folio_test_hugetlb(folio))
1883 		return PageHWPoison(page);
1884 
1885 	/*
1886 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1887 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1888 	 */
1889 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1890 		return true;
1891 
1892 	mutex_lock(&mf_mutex);
1893 
1894 	raw_hwp_head = raw_hwp_list_head(folio);
1895 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1896 		if (page == p->page) {
1897 			ret = true;
1898 			break;
1899 		}
1900 	}
1901 
1902 	mutex_unlock(&mf_mutex);
1903 
1904 	return ret;
1905 }
1906 
1907 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1908 {
1909 	struct llist_node *head;
1910 	struct raw_hwp_page *p, *next;
1911 	unsigned long count = 0;
1912 
1913 	head = llist_del_all(raw_hwp_list_head(folio));
1914 	llist_for_each_entry_safe(p, next, head, node) {
1915 		if (move_flag)
1916 			SetPageHWPoison(p->page);
1917 		else
1918 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1919 		kfree(p);
1920 		count++;
1921 	}
1922 	return count;
1923 }
1924 
1925 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1926 {
1927 	struct llist_head *head;
1928 	struct raw_hwp_page *raw_hwp;
1929 	struct raw_hwp_page *p;
1930 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1931 
1932 	/*
1933 	 * Once the hwpoison hugepage has lost reliable raw error info,
1934 	 * there is little meaning to keep additional error info precisely,
1935 	 * so skip to add additional raw error info.
1936 	 */
1937 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1938 		return -EHWPOISON;
1939 	head = raw_hwp_list_head(folio);
1940 	llist_for_each_entry(p, head->first, node) {
1941 		if (p->page == page)
1942 			return -EHWPOISON;
1943 	}
1944 
1945 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1946 	if (raw_hwp) {
1947 		raw_hwp->page = page;
1948 		llist_add(&raw_hwp->node, head);
1949 		/* the first error event will be counted in action_result(). */
1950 		if (ret)
1951 			num_poisoned_pages_inc(page_to_pfn(page));
1952 	} else {
1953 		/*
1954 		 * Failed to save raw error info.  We no longer trace all
1955 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1956 		 * this hwpoisoned hugepage.
1957 		 */
1958 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1959 		/*
1960 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1961 		 * used any more, so free it.
1962 		 */
1963 		__folio_free_raw_hwp(folio, false);
1964 	}
1965 	return ret;
1966 }
1967 
1968 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1969 {
1970 	/*
1971 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1972 	 * pages for tail pages are required but they don't exist.
1973 	 */
1974 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1975 		return 0;
1976 
1977 	/*
1978 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1979 	 * definition.
1980 	 */
1981 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1982 		return 0;
1983 
1984 	return __folio_free_raw_hwp(folio, move_flag);
1985 }
1986 
1987 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1988 {
1989 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1990 		return;
1991 	if (folio_test_hugetlb_vmemmap_optimized(folio))
1992 		return;
1993 	folio_clear_hwpoison(folio);
1994 	folio_free_raw_hwp(folio, true);
1995 }
1996 
1997 /*
1998  * Called from hugetlb code with hugetlb_lock held.
1999  *
2000  * Return values:
2001  *   0             - free hugepage
2002  *   1             - in-use hugepage
2003  *   2             - not a hugepage
2004  *   -EBUSY        - the hugepage is busy (try to retry)
2005  *   -EHWPOISON    - the hugepage is already hwpoisoned
2006  */
2007 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2008 				 bool *migratable_cleared)
2009 {
2010 	struct page *page = pfn_to_page(pfn);
2011 	struct folio *folio = page_folio(page);
2012 	int ret = 2;	/* fallback to normal page handling */
2013 	bool count_increased = false;
2014 
2015 	if (!folio_test_hugetlb(folio))
2016 		goto out;
2017 
2018 	if (flags & MF_COUNT_INCREASED) {
2019 		ret = 1;
2020 		count_increased = true;
2021 	} else if (folio_test_hugetlb_freed(folio)) {
2022 		ret = 0;
2023 	} else if (folio_test_hugetlb_migratable(folio)) {
2024 		ret = folio_try_get(folio);
2025 		if (ret)
2026 			count_increased = true;
2027 	} else {
2028 		ret = -EBUSY;
2029 		if (!(flags & MF_NO_RETRY))
2030 			goto out;
2031 	}
2032 
2033 	if (folio_set_hugetlb_hwpoison(folio, page)) {
2034 		ret = -EHWPOISON;
2035 		goto out;
2036 	}
2037 
2038 	/*
2039 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2040 	 * from being migrated by memory hotremove.
2041 	 */
2042 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2043 		folio_clear_hugetlb_migratable(folio);
2044 		*migratable_cleared = true;
2045 	}
2046 
2047 	return ret;
2048 out:
2049 	if (count_increased)
2050 		folio_put(folio);
2051 	return ret;
2052 }
2053 
2054 /*
2055  * Taking refcount of hugetlb pages needs extra care about race conditions
2056  * with basic operations like hugepage allocation/free/demotion.
2057  * So some of prechecks for hwpoison (pinning, and testing/setting
2058  * PageHWPoison) should be done in single hugetlb_lock range.
2059  */
2060 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2061 {
2062 	int res;
2063 	struct page *p = pfn_to_page(pfn);
2064 	struct folio *folio;
2065 	unsigned long page_flags;
2066 	bool migratable_cleared = false;
2067 
2068 	*hugetlb = 1;
2069 retry:
2070 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2071 	if (res == 2) { /* fallback to normal page handling */
2072 		*hugetlb = 0;
2073 		return 0;
2074 	} else if (res == -EHWPOISON) {
2075 		pr_err("%#lx: already hardware poisoned\n", pfn);
2076 		if (flags & MF_ACTION_REQUIRED) {
2077 			folio = page_folio(p);
2078 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2079 			action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2080 		}
2081 		return res;
2082 	} else if (res == -EBUSY) {
2083 		if (!(flags & MF_NO_RETRY)) {
2084 			flags |= MF_NO_RETRY;
2085 			goto retry;
2086 		}
2087 		return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2088 	}
2089 
2090 	folio = page_folio(p);
2091 	folio_lock(folio);
2092 
2093 	if (hwpoison_filter(p)) {
2094 		folio_clear_hugetlb_hwpoison(folio);
2095 		if (migratable_cleared)
2096 			folio_set_hugetlb_migratable(folio);
2097 		folio_unlock(folio);
2098 		if (res == 1)
2099 			folio_put(folio);
2100 		return -EOPNOTSUPP;
2101 	}
2102 
2103 	/*
2104 	 * Handling free hugepage.  The possible race with hugepage allocation
2105 	 * or demotion can be prevented by PageHWPoison flag.
2106 	 */
2107 	if (res == 0) {
2108 		folio_unlock(folio);
2109 		if (__page_handle_poison(p) > 0) {
2110 			page_ref_inc(p);
2111 			res = MF_RECOVERED;
2112 		} else {
2113 			res = MF_FAILED;
2114 		}
2115 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2116 	}
2117 
2118 	page_flags = folio->flags;
2119 
2120 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2121 		folio_unlock(folio);
2122 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2123 	}
2124 
2125 	return identify_page_state(pfn, p, page_flags);
2126 }
2127 
2128 #else
2129 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2130 {
2131 	return 0;
2132 }
2133 
2134 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2135 {
2136 	return 0;
2137 }
2138 #endif	/* CONFIG_HUGETLB_PAGE */
2139 
2140 /* Drop the extra refcount in case we come from madvise() */
2141 static void put_ref_page(unsigned long pfn, int flags)
2142 {
2143 	if (!(flags & MF_COUNT_INCREASED))
2144 		return;
2145 
2146 	put_page(pfn_to_page(pfn));
2147 }
2148 
2149 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2150 		struct dev_pagemap *pgmap)
2151 {
2152 	int rc = -ENXIO;
2153 
2154 	/* device metadata space is not recoverable */
2155 	if (!pgmap_pfn_valid(pgmap, pfn))
2156 		goto out;
2157 
2158 	/*
2159 	 * Call driver's implementation to handle the memory failure, otherwise
2160 	 * fall back to generic handler.
2161 	 */
2162 	if (pgmap_has_memory_failure(pgmap)) {
2163 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2164 		/*
2165 		 * Fall back to generic handler too if operation is not
2166 		 * supported inside the driver/device/filesystem.
2167 		 */
2168 		if (rc != -EOPNOTSUPP)
2169 			goto out;
2170 	}
2171 
2172 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2173 out:
2174 	/* drop pgmap ref acquired in caller */
2175 	put_dev_pagemap(pgmap);
2176 	if (rc != -EOPNOTSUPP)
2177 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2178 	return rc;
2179 }
2180 
2181 /*
2182  * The calling condition is as such: thp split failed, page might have
2183  * been RDMA pinned, not much can be done for recovery.
2184  * But a SIGBUS should be delivered with vaddr provided so that the user
2185  * application has a chance to recover. Also, application processes'
2186  * election for MCE early killed will be honored.
2187  */
2188 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2189 				struct folio *folio)
2190 {
2191 	LIST_HEAD(tokill);
2192 
2193 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2194 	kill_procs(&tokill, true, pfn, flags);
2195 }
2196 
2197 /**
2198  * memory_failure - Handle memory failure of a page.
2199  * @pfn: Page Number of the corrupted page
2200  * @flags: fine tune action taken
2201  *
2202  * This function is called by the low level machine check code
2203  * of an architecture when it detects hardware memory corruption
2204  * of a page. It tries its best to recover, which includes
2205  * dropping pages, killing processes etc.
2206  *
2207  * The function is primarily of use for corruptions that
2208  * happen outside the current execution context (e.g. when
2209  * detected by a background scrubber)
2210  *
2211  * Must run in process context (e.g. a work queue) with interrupts
2212  * enabled and no spinlocks held.
2213  *
2214  * Return: 0 for successfully handled the memory error,
2215  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2216  *         < 0(except -EOPNOTSUPP) on failure.
2217  */
2218 int memory_failure(unsigned long pfn, int flags)
2219 {
2220 	struct page *p;
2221 	struct folio *folio;
2222 	struct dev_pagemap *pgmap;
2223 	int res = 0;
2224 	unsigned long page_flags;
2225 	bool retry = true;
2226 	int hugetlb = 0;
2227 
2228 	if (!sysctl_memory_failure_recovery)
2229 		panic("Memory failure on page %lx", pfn);
2230 
2231 	mutex_lock(&mf_mutex);
2232 
2233 	if (!(flags & MF_SW_SIMULATED))
2234 		hw_memory_failure = true;
2235 
2236 	p = pfn_to_online_page(pfn);
2237 	if (!p) {
2238 		res = arch_memory_failure(pfn, flags);
2239 		if (res == 0)
2240 			goto unlock_mutex;
2241 
2242 		if (pfn_valid(pfn)) {
2243 			pgmap = get_dev_pagemap(pfn, NULL);
2244 			put_ref_page(pfn, flags);
2245 			if (pgmap) {
2246 				res = memory_failure_dev_pagemap(pfn, flags,
2247 								 pgmap);
2248 				goto unlock_mutex;
2249 			}
2250 		}
2251 		pr_err("%#lx: memory outside kernel control\n", pfn);
2252 		res = -ENXIO;
2253 		goto unlock_mutex;
2254 	}
2255 
2256 try_again:
2257 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2258 	if (hugetlb)
2259 		goto unlock_mutex;
2260 
2261 	if (TestSetPageHWPoison(p)) {
2262 		pr_err("%#lx: already hardware poisoned\n", pfn);
2263 		res = -EHWPOISON;
2264 		if (flags & MF_ACTION_REQUIRED)
2265 			res = kill_accessing_process(current, pfn, flags);
2266 		if (flags & MF_COUNT_INCREASED)
2267 			put_page(p);
2268 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2269 		goto unlock_mutex;
2270 	}
2271 
2272 	/*
2273 	 * We need/can do nothing about count=0 pages.
2274 	 * 1) it's a free page, and therefore in safe hand:
2275 	 *    check_new_page() will be the gate keeper.
2276 	 * 2) it's part of a non-compound high order page.
2277 	 *    Implies some kernel user: cannot stop them from
2278 	 *    R/W the page; let's pray that the page has been
2279 	 *    used and will be freed some time later.
2280 	 * In fact it's dangerous to directly bump up page count from 0,
2281 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2282 	 */
2283 	if (!(flags & MF_COUNT_INCREASED)) {
2284 		res = get_hwpoison_page(p, flags);
2285 		if (!res) {
2286 			if (is_free_buddy_page(p)) {
2287 				if (take_page_off_buddy(p)) {
2288 					page_ref_inc(p);
2289 					res = MF_RECOVERED;
2290 				} else {
2291 					/* We lost the race, try again */
2292 					if (retry) {
2293 						ClearPageHWPoison(p);
2294 						retry = false;
2295 						goto try_again;
2296 					}
2297 					res = MF_FAILED;
2298 				}
2299 				res = action_result(pfn, MF_MSG_BUDDY, res);
2300 			} else {
2301 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2302 			}
2303 			goto unlock_mutex;
2304 		} else if (res < 0) {
2305 			res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2306 			goto unlock_mutex;
2307 		}
2308 	}
2309 
2310 	folio = page_folio(p);
2311 
2312 	/* filter pages that are protected from hwpoison test by users */
2313 	folio_lock(folio);
2314 	if (hwpoison_filter(p)) {
2315 		ClearPageHWPoison(p);
2316 		folio_unlock(folio);
2317 		folio_put(folio);
2318 		res = -EOPNOTSUPP;
2319 		goto unlock_mutex;
2320 	}
2321 	folio_unlock(folio);
2322 
2323 	if (folio_test_large(folio)) {
2324 		/*
2325 		 * The flag must be set after the refcount is bumped
2326 		 * otherwise it may race with THP split.
2327 		 * And the flag can't be set in get_hwpoison_page() since
2328 		 * it is called by soft offline too and it is just called
2329 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2330 		 * place.
2331 		 *
2332 		 * Don't need care about the above error handling paths for
2333 		 * get_hwpoison_page() since they handle either free page
2334 		 * or unhandlable page.  The refcount is bumped iff the
2335 		 * page is a valid handlable page.
2336 		 */
2337 		folio_set_has_hwpoisoned(folio);
2338 		if (try_to_split_thp_page(p, false) < 0) {
2339 			res = -EHWPOISON;
2340 			kill_procs_now(p, pfn, flags, folio);
2341 			put_page(p);
2342 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2343 			goto unlock_mutex;
2344 		}
2345 		VM_BUG_ON_PAGE(!page_count(p), p);
2346 		folio = page_folio(p);
2347 	}
2348 
2349 	/*
2350 	 * We ignore non-LRU pages for good reasons.
2351 	 * - PG_locked is only well defined for LRU pages and a few others
2352 	 * - to avoid races with __SetPageLocked()
2353 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2354 	 * The check (unnecessarily) ignores LRU pages being isolated and
2355 	 * walked by the page reclaim code, however that's not a big loss.
2356 	 */
2357 	shake_folio(folio);
2358 
2359 	folio_lock(folio);
2360 
2361 	/*
2362 	 * We're only intended to deal with the non-Compound page here.
2363 	 * The page cannot become compound pages again as folio has been
2364 	 * splited and extra refcnt is held.
2365 	 */
2366 	WARN_ON(folio_test_large(folio));
2367 
2368 	/*
2369 	 * We use page flags to determine what action should be taken, but
2370 	 * the flags can be modified by the error containment action.  One
2371 	 * example is an mlocked page, where PG_mlocked is cleared by
2372 	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2373 	 * status correctly, we save a copy of the page flags at this time.
2374 	 */
2375 	page_flags = folio->flags;
2376 
2377 	/*
2378 	 * __munlock_folio() may clear a writeback folio's LRU flag without
2379 	 * the folio lock. We need to wait for writeback completion for this
2380 	 * folio or it may trigger a vfs BUG while evicting inode.
2381 	 */
2382 	if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2383 		goto identify_page_state;
2384 
2385 	/*
2386 	 * It's very difficult to mess with pages currently under IO
2387 	 * and in many cases impossible, so we just avoid it here.
2388 	 */
2389 	folio_wait_writeback(folio);
2390 
2391 	/*
2392 	 * Now take care of user space mappings.
2393 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2394 	 */
2395 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2396 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2397 		goto unlock_page;
2398 	}
2399 
2400 	/*
2401 	 * Torn down by someone else?
2402 	 */
2403 	if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2404 	    folio->mapping == NULL) {
2405 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2406 		goto unlock_page;
2407 	}
2408 
2409 identify_page_state:
2410 	res = identify_page_state(pfn, p, page_flags);
2411 	mutex_unlock(&mf_mutex);
2412 	return res;
2413 unlock_page:
2414 	folio_unlock(folio);
2415 unlock_mutex:
2416 	mutex_unlock(&mf_mutex);
2417 	return res;
2418 }
2419 EXPORT_SYMBOL_GPL(memory_failure);
2420 
2421 #define MEMORY_FAILURE_FIFO_ORDER	4
2422 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2423 
2424 struct memory_failure_entry {
2425 	unsigned long pfn;
2426 	int flags;
2427 };
2428 
2429 struct memory_failure_cpu {
2430 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2431 		      MEMORY_FAILURE_FIFO_SIZE);
2432 	raw_spinlock_t lock;
2433 	struct work_struct work;
2434 };
2435 
2436 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2437 
2438 /**
2439  * memory_failure_queue - Schedule handling memory failure of a page.
2440  * @pfn: Page Number of the corrupted page
2441  * @flags: Flags for memory failure handling
2442  *
2443  * This function is called by the low level hardware error handler
2444  * when it detects hardware memory corruption of a page. It schedules
2445  * the recovering of error page, including dropping pages, killing
2446  * processes etc.
2447  *
2448  * The function is primarily of use for corruptions that
2449  * happen outside the current execution context (e.g. when
2450  * detected by a background scrubber)
2451  *
2452  * Can run in IRQ context.
2453  */
2454 void memory_failure_queue(unsigned long pfn, int flags)
2455 {
2456 	struct memory_failure_cpu *mf_cpu;
2457 	unsigned long proc_flags;
2458 	bool buffer_overflow;
2459 	struct memory_failure_entry entry = {
2460 		.pfn =		pfn,
2461 		.flags =	flags,
2462 	};
2463 
2464 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2465 	raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2466 	buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2467 	if (!buffer_overflow)
2468 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2469 	raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2470 	put_cpu_var(memory_failure_cpu);
2471 	if (buffer_overflow)
2472 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2473 		       pfn);
2474 }
2475 EXPORT_SYMBOL_GPL(memory_failure_queue);
2476 
2477 static void memory_failure_work_func(struct work_struct *work)
2478 {
2479 	struct memory_failure_cpu *mf_cpu;
2480 	struct memory_failure_entry entry = { 0, };
2481 	unsigned long proc_flags;
2482 	int gotten;
2483 
2484 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2485 	for (;;) {
2486 		raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2487 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2488 		raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2489 		if (!gotten)
2490 			break;
2491 		if (entry.flags & MF_SOFT_OFFLINE)
2492 			soft_offline_page(entry.pfn, entry.flags);
2493 		else
2494 			memory_failure(entry.pfn, entry.flags);
2495 	}
2496 }
2497 
2498 /*
2499  * Process memory_failure work queued on the specified CPU.
2500  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2501  */
2502 void memory_failure_queue_kick(int cpu)
2503 {
2504 	struct memory_failure_cpu *mf_cpu;
2505 
2506 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2507 	cancel_work_sync(&mf_cpu->work);
2508 	memory_failure_work_func(&mf_cpu->work);
2509 }
2510 
2511 static int __init memory_failure_init(void)
2512 {
2513 	struct memory_failure_cpu *mf_cpu;
2514 	int cpu;
2515 
2516 	for_each_possible_cpu(cpu) {
2517 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2518 		raw_spin_lock_init(&mf_cpu->lock);
2519 		INIT_KFIFO(mf_cpu->fifo);
2520 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2521 	}
2522 
2523 	register_sysctl_init("vm", memory_failure_table);
2524 
2525 	return 0;
2526 }
2527 core_initcall(memory_failure_init);
2528 
2529 #undef pr_fmt
2530 #define pr_fmt(fmt)	"Unpoison: " fmt
2531 #define unpoison_pr_info(fmt, pfn, rs)			\
2532 ({							\
2533 	if (__ratelimit(rs))				\
2534 		pr_info(fmt, pfn);			\
2535 })
2536 
2537 /**
2538  * unpoison_memory - Unpoison a previously poisoned page
2539  * @pfn: Page number of the to be unpoisoned page
2540  *
2541  * Software-unpoison a page that has been poisoned by
2542  * memory_failure() earlier.
2543  *
2544  * This is only done on the software-level, so it only works
2545  * for linux injected failures, not real hardware failures
2546  *
2547  * Returns 0 for success, otherwise -errno.
2548  */
2549 int unpoison_memory(unsigned long pfn)
2550 {
2551 	struct folio *folio;
2552 	struct page *p;
2553 	int ret = -EBUSY, ghp;
2554 	unsigned long count;
2555 	bool huge = false;
2556 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2557 					DEFAULT_RATELIMIT_BURST);
2558 
2559 	if (!pfn_valid(pfn))
2560 		return -ENXIO;
2561 
2562 	p = pfn_to_page(pfn);
2563 	folio = page_folio(p);
2564 
2565 	mutex_lock(&mf_mutex);
2566 
2567 	if (hw_memory_failure) {
2568 		unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2569 				 pfn, &unpoison_rs);
2570 		ret = -EOPNOTSUPP;
2571 		goto unlock_mutex;
2572 	}
2573 
2574 	if (is_huge_zero_folio(folio)) {
2575 		unpoison_pr_info("%#lx: huge zero page is not supported\n",
2576 				 pfn, &unpoison_rs);
2577 		ret = -EOPNOTSUPP;
2578 		goto unlock_mutex;
2579 	}
2580 
2581 	if (!PageHWPoison(p)) {
2582 		unpoison_pr_info("%#lx: page was already unpoisoned\n",
2583 				 pfn, &unpoison_rs);
2584 		goto unlock_mutex;
2585 	}
2586 
2587 	if (folio_ref_count(folio) > 1) {
2588 		unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2589 				 pfn, &unpoison_rs);
2590 		goto unlock_mutex;
2591 	}
2592 
2593 	if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2594 	    folio_test_reserved(folio) || folio_test_offline(folio))
2595 		goto unlock_mutex;
2596 
2597 	if (folio_mapped(folio)) {
2598 		unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2599 				 pfn, &unpoison_rs);
2600 		goto unlock_mutex;
2601 	}
2602 
2603 	if (folio_mapping(folio)) {
2604 		unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2605 				 pfn, &unpoison_rs);
2606 		goto unlock_mutex;
2607 	}
2608 
2609 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2610 	if (!ghp) {
2611 		if (folio_test_hugetlb(folio)) {
2612 			huge = true;
2613 			count = folio_free_raw_hwp(folio, false);
2614 			if (count == 0)
2615 				goto unlock_mutex;
2616 		}
2617 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2618 	} else if (ghp < 0) {
2619 		if (ghp == -EHWPOISON) {
2620 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2621 		} else {
2622 			ret = ghp;
2623 			unpoison_pr_info("%#lx: failed to grab page\n",
2624 					 pfn, &unpoison_rs);
2625 		}
2626 	} else {
2627 		if (folio_test_hugetlb(folio)) {
2628 			huge = true;
2629 			count = folio_free_raw_hwp(folio, false);
2630 			if (count == 0) {
2631 				folio_put(folio);
2632 				goto unlock_mutex;
2633 			}
2634 		}
2635 
2636 		folio_put(folio);
2637 		if (TestClearPageHWPoison(p)) {
2638 			folio_put(folio);
2639 			ret = 0;
2640 		}
2641 	}
2642 
2643 unlock_mutex:
2644 	mutex_unlock(&mf_mutex);
2645 	if (!ret) {
2646 		if (!huge)
2647 			num_poisoned_pages_sub(pfn, 1);
2648 		unpoison_pr_info("%#lx: software-unpoisoned page\n",
2649 				 page_to_pfn(p), &unpoison_rs);
2650 	}
2651 	return ret;
2652 }
2653 EXPORT_SYMBOL(unpoison_memory);
2654 
2655 #undef pr_fmt
2656 #define pr_fmt(fmt) "Soft offline: " fmt
2657 
2658 /*
2659  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2660  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2661  * If the page is mapped, it migrates the contents over.
2662  */
2663 static int soft_offline_in_use_page(struct page *page)
2664 {
2665 	long ret = 0;
2666 	unsigned long pfn = page_to_pfn(page);
2667 	struct folio *folio = page_folio(page);
2668 	char const *msg_page[] = {"page", "hugepage"};
2669 	bool huge = folio_test_hugetlb(folio);
2670 	bool isolated;
2671 	LIST_HEAD(pagelist);
2672 	struct migration_target_control mtc = {
2673 		.nid = NUMA_NO_NODE,
2674 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2675 		.reason = MR_MEMORY_FAILURE,
2676 	};
2677 
2678 	if (!huge && folio_test_large(folio)) {
2679 		if (try_to_split_thp_page(page, true)) {
2680 			pr_info("%#lx: thp split failed\n", pfn);
2681 			return -EBUSY;
2682 		}
2683 		folio = page_folio(page);
2684 	}
2685 
2686 	folio_lock(folio);
2687 	if (!huge)
2688 		folio_wait_writeback(folio);
2689 	if (PageHWPoison(page)) {
2690 		folio_unlock(folio);
2691 		folio_put(folio);
2692 		pr_info("%#lx: page already poisoned\n", pfn);
2693 		return 0;
2694 	}
2695 
2696 	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2697 		/*
2698 		 * Try to invalidate first. This should work for
2699 		 * non dirty unmapped page cache pages.
2700 		 */
2701 		ret = mapping_evict_folio(folio_mapping(folio), folio);
2702 	folio_unlock(folio);
2703 
2704 	if (ret) {
2705 		pr_info("%#lx: invalidated\n", pfn);
2706 		page_handle_poison(page, false, true);
2707 		return 0;
2708 	}
2709 
2710 	isolated = isolate_folio_to_list(folio, &pagelist);
2711 
2712 	/*
2713 	 * If we succeed to isolate the folio, we grabbed another refcount on
2714 	 * the folio, so we can safely drop the one we got from get_any_page().
2715 	 * If we failed to isolate the folio, it means that we cannot go further
2716 	 * and we will return an error, so drop the reference we got from
2717 	 * get_any_page() as well.
2718 	 */
2719 	folio_put(folio);
2720 
2721 	if (isolated) {
2722 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2723 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2724 		if (!ret) {
2725 			bool release = !huge;
2726 
2727 			if (!page_handle_poison(page, huge, release))
2728 				ret = -EBUSY;
2729 		} else {
2730 			if (!list_empty(&pagelist))
2731 				putback_movable_pages(&pagelist);
2732 
2733 			pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2734 				pfn, msg_page[huge], ret, &page->flags);
2735 			if (ret > 0)
2736 				ret = -EBUSY;
2737 		}
2738 	} else {
2739 		pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2740 			pfn, msg_page[huge], page_count(page), &page->flags);
2741 		ret = -EBUSY;
2742 	}
2743 	return ret;
2744 }
2745 
2746 /**
2747  * soft_offline_page - Soft offline a page.
2748  * @pfn: pfn to soft-offline
2749  * @flags: flags. Same as memory_failure().
2750  *
2751  * Returns 0 on success,
2752  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2753  *         disabled by /proc/sys/vm/enable_soft_offline,
2754  *         < 0 otherwise negated errno.
2755  *
2756  * Soft offline a page, by migration or invalidation,
2757  * without killing anything. This is for the case when
2758  * a page is not corrupted yet (so it's still valid to access),
2759  * but has had a number of corrected errors and is better taken
2760  * out.
2761  *
2762  * The actual policy on when to do that is maintained by
2763  * user space.
2764  *
2765  * This should never impact any application or cause data loss,
2766  * however it might take some time.
2767  *
2768  * This is not a 100% solution for all memory, but tries to be
2769  * ``good enough'' for the majority of memory.
2770  */
2771 int soft_offline_page(unsigned long pfn, int flags)
2772 {
2773 	int ret;
2774 	bool try_again = true;
2775 	struct page *page;
2776 
2777 	if (!pfn_valid(pfn)) {
2778 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2779 		return -ENXIO;
2780 	}
2781 
2782 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2783 	page = pfn_to_online_page(pfn);
2784 	if (!page) {
2785 		put_ref_page(pfn, flags);
2786 		return -EIO;
2787 	}
2788 
2789 	if (!sysctl_enable_soft_offline) {
2790 		pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2791 		put_ref_page(pfn, flags);
2792 		return -EOPNOTSUPP;
2793 	}
2794 
2795 	mutex_lock(&mf_mutex);
2796 
2797 	if (PageHWPoison(page)) {
2798 		pr_info("%#lx: page already poisoned\n", pfn);
2799 		put_ref_page(pfn, flags);
2800 		mutex_unlock(&mf_mutex);
2801 		return 0;
2802 	}
2803 
2804 retry:
2805 	get_online_mems();
2806 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2807 	put_online_mems();
2808 
2809 	if (hwpoison_filter(page)) {
2810 		if (ret > 0)
2811 			put_page(page);
2812 
2813 		mutex_unlock(&mf_mutex);
2814 		return -EOPNOTSUPP;
2815 	}
2816 
2817 	if (ret > 0) {
2818 		ret = soft_offline_in_use_page(page);
2819 	} else if (ret == 0) {
2820 		if (!page_handle_poison(page, true, false)) {
2821 			if (try_again) {
2822 				try_again = false;
2823 				flags &= ~MF_COUNT_INCREASED;
2824 				goto retry;
2825 			}
2826 			ret = -EBUSY;
2827 		}
2828 	}
2829 
2830 	mutex_unlock(&mf_mutex);
2831 
2832 	return ret;
2833 }
2834