1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/dax.h> 46 #include <linux/ksm.h> 47 #include <linux/rmap.h> 48 #include <linux/export.h> 49 #include <linux/pagemap.h> 50 #include <linux/swap.h> 51 #include <linux/backing-dev.h> 52 #include <linux/migrate.h> 53 #include <linux/suspend.h> 54 #include <linux/slab.h> 55 #include <linux/swapops.h> 56 #include <linux/hugetlb.h> 57 #include <linux/memory_hotplug.h> 58 #include <linux/mm_inline.h> 59 #include <linux/memremap.h> 60 #include <linux/kfifo.h> 61 #include <linux/ratelimit.h> 62 #include <linux/page-isolation.h> 63 #include <linux/pagewalk.h> 64 #include <linux/shmem_fs.h> 65 #include <linux/sysctl.h> 66 #include "swap.h" 67 #include "internal.h" 68 #include "ras/ras_event.h" 69 70 static int sysctl_memory_failure_early_kill __read_mostly; 71 72 static int sysctl_memory_failure_recovery __read_mostly = 1; 73 74 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 75 76 static bool hw_memory_failure __read_mostly = false; 77 78 inline void num_poisoned_pages_inc(unsigned long pfn) 79 { 80 atomic_long_inc(&num_poisoned_pages); 81 memblk_nr_poison_inc(pfn); 82 } 83 84 inline void num_poisoned_pages_sub(unsigned long pfn, long i) 85 { 86 atomic_long_sub(i, &num_poisoned_pages); 87 if (pfn != -1UL) 88 memblk_nr_poison_sub(pfn, i); 89 } 90 91 /** 92 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 93 * @_name: name of the file in the per NUMA sysfs directory. 94 */ 95 #define MF_ATTR_RO(_name) \ 96 static ssize_t _name##_show(struct device *dev, \ 97 struct device_attribute *attr, \ 98 char *buf) \ 99 { \ 100 struct memory_failure_stats *mf_stats = \ 101 &NODE_DATA(dev->id)->mf_stats; \ 102 return sprintf(buf, "%lu\n", mf_stats->_name); \ 103 } \ 104 static DEVICE_ATTR_RO(_name) 105 106 MF_ATTR_RO(total); 107 MF_ATTR_RO(ignored); 108 MF_ATTR_RO(failed); 109 MF_ATTR_RO(delayed); 110 MF_ATTR_RO(recovered); 111 112 static struct attribute *memory_failure_attr[] = { 113 &dev_attr_total.attr, 114 &dev_attr_ignored.attr, 115 &dev_attr_failed.attr, 116 &dev_attr_delayed.attr, 117 &dev_attr_recovered.attr, 118 NULL, 119 }; 120 121 const struct attribute_group memory_failure_attr_group = { 122 .name = "memory_failure", 123 .attrs = memory_failure_attr, 124 }; 125 126 static struct ctl_table memory_failure_table[] = { 127 { 128 .procname = "memory_failure_early_kill", 129 .data = &sysctl_memory_failure_early_kill, 130 .maxlen = sizeof(sysctl_memory_failure_early_kill), 131 .mode = 0644, 132 .proc_handler = proc_dointvec_minmax, 133 .extra1 = SYSCTL_ZERO, 134 .extra2 = SYSCTL_ONE, 135 }, 136 { 137 .procname = "memory_failure_recovery", 138 .data = &sysctl_memory_failure_recovery, 139 .maxlen = sizeof(sysctl_memory_failure_recovery), 140 .mode = 0644, 141 .proc_handler = proc_dointvec_minmax, 142 .extra1 = SYSCTL_ZERO, 143 .extra2 = SYSCTL_ONE, 144 }, 145 { } 146 }; 147 148 /* 149 * Return values: 150 * 1: the page is dissolved (if needed) and taken off from buddy, 151 * 0: the page is dissolved (if needed) and not taken off from buddy, 152 * < 0: failed to dissolve. 153 */ 154 static int __page_handle_poison(struct page *page) 155 { 156 int ret; 157 158 zone_pcp_disable(page_zone(page)); 159 ret = dissolve_free_huge_page(page); 160 if (!ret) 161 ret = take_page_off_buddy(page); 162 zone_pcp_enable(page_zone(page)); 163 164 return ret; 165 } 166 167 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 168 { 169 if (hugepage_or_freepage) { 170 /* 171 * Doing this check for free pages is also fine since dissolve_free_huge_page 172 * returns 0 for non-hugetlb pages as well. 173 */ 174 if (__page_handle_poison(page) <= 0) 175 /* 176 * We could fail to take off the target page from buddy 177 * for example due to racy page allocation, but that's 178 * acceptable because soft-offlined page is not broken 179 * and if someone really want to use it, they should 180 * take it. 181 */ 182 return false; 183 } 184 185 SetPageHWPoison(page); 186 if (release) 187 put_page(page); 188 page_ref_inc(page); 189 num_poisoned_pages_inc(page_to_pfn(page)); 190 191 return true; 192 } 193 194 #if IS_ENABLED(CONFIG_HWPOISON_INJECT) 195 196 u32 hwpoison_filter_enable = 0; 197 u32 hwpoison_filter_dev_major = ~0U; 198 u32 hwpoison_filter_dev_minor = ~0U; 199 u64 hwpoison_filter_flags_mask; 200 u64 hwpoison_filter_flags_value; 201 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 202 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 203 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 204 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 205 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 206 207 static int hwpoison_filter_dev(struct page *p) 208 { 209 struct address_space *mapping; 210 dev_t dev; 211 212 if (hwpoison_filter_dev_major == ~0U && 213 hwpoison_filter_dev_minor == ~0U) 214 return 0; 215 216 mapping = page_mapping(p); 217 if (mapping == NULL || mapping->host == NULL) 218 return -EINVAL; 219 220 dev = mapping->host->i_sb->s_dev; 221 if (hwpoison_filter_dev_major != ~0U && 222 hwpoison_filter_dev_major != MAJOR(dev)) 223 return -EINVAL; 224 if (hwpoison_filter_dev_minor != ~0U && 225 hwpoison_filter_dev_minor != MINOR(dev)) 226 return -EINVAL; 227 228 return 0; 229 } 230 231 static int hwpoison_filter_flags(struct page *p) 232 { 233 if (!hwpoison_filter_flags_mask) 234 return 0; 235 236 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 237 hwpoison_filter_flags_value) 238 return 0; 239 else 240 return -EINVAL; 241 } 242 243 /* 244 * This allows stress tests to limit test scope to a collection of tasks 245 * by putting them under some memcg. This prevents killing unrelated/important 246 * processes such as /sbin/init. Note that the target task may share clean 247 * pages with init (eg. libc text), which is harmless. If the target task 248 * share _dirty_ pages with another task B, the test scheme must make sure B 249 * is also included in the memcg. At last, due to race conditions this filter 250 * can only guarantee that the page either belongs to the memcg tasks, or is 251 * a freed page. 252 */ 253 #ifdef CONFIG_MEMCG 254 u64 hwpoison_filter_memcg; 255 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 256 static int hwpoison_filter_task(struct page *p) 257 { 258 if (!hwpoison_filter_memcg) 259 return 0; 260 261 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 262 return -EINVAL; 263 264 return 0; 265 } 266 #else 267 static int hwpoison_filter_task(struct page *p) { return 0; } 268 #endif 269 270 int hwpoison_filter(struct page *p) 271 { 272 if (!hwpoison_filter_enable) 273 return 0; 274 275 if (hwpoison_filter_dev(p)) 276 return -EINVAL; 277 278 if (hwpoison_filter_flags(p)) 279 return -EINVAL; 280 281 if (hwpoison_filter_task(p)) 282 return -EINVAL; 283 284 return 0; 285 } 286 #else 287 int hwpoison_filter(struct page *p) 288 { 289 return 0; 290 } 291 #endif 292 293 EXPORT_SYMBOL_GPL(hwpoison_filter); 294 295 /* 296 * Kill all processes that have a poisoned page mapped and then isolate 297 * the page. 298 * 299 * General strategy: 300 * Find all processes having the page mapped and kill them. 301 * But we keep a page reference around so that the page is not 302 * actually freed yet. 303 * Then stash the page away 304 * 305 * There's no convenient way to get back to mapped processes 306 * from the VMAs. So do a brute-force search over all 307 * running processes. 308 * 309 * Remember that machine checks are not common (or rather 310 * if they are common you have other problems), so this shouldn't 311 * be a performance issue. 312 * 313 * Also there are some races possible while we get from the 314 * error detection to actually handle it. 315 */ 316 317 struct to_kill { 318 struct list_head nd; 319 struct task_struct *tsk; 320 unsigned long addr; 321 short size_shift; 322 }; 323 324 /* 325 * Send all the processes who have the page mapped a signal. 326 * ``action optional'' if they are not immediately affected by the error 327 * ``action required'' if error happened in current execution context 328 */ 329 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 330 { 331 struct task_struct *t = tk->tsk; 332 short addr_lsb = tk->size_shift; 333 int ret = 0; 334 335 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 336 pfn, t->comm, t->pid); 337 338 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 339 ret = force_sig_mceerr(BUS_MCEERR_AR, 340 (void __user *)tk->addr, addr_lsb); 341 else 342 /* 343 * Signal other processes sharing the page if they have 344 * PF_MCE_EARLY set. 345 * Don't use force here, it's convenient if the signal 346 * can be temporarily blocked. 347 * This could cause a loop when the user sets SIGBUS 348 * to SIG_IGN, but hopefully no one will do that? 349 */ 350 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 351 addr_lsb, t); 352 if (ret < 0) 353 pr_info("Error sending signal to %s:%d: %d\n", 354 t->comm, t->pid, ret); 355 return ret; 356 } 357 358 /* 359 * Unknown page type encountered. Try to check whether it can turn PageLRU by 360 * lru_add_drain_all. 361 */ 362 void shake_page(struct page *p) 363 { 364 if (PageHuge(p)) 365 return; 366 367 if (!PageSlab(p)) { 368 lru_add_drain_all(); 369 if (PageLRU(p) || is_free_buddy_page(p)) 370 return; 371 } 372 373 /* 374 * TODO: Could shrink slab caches here if a lightweight range-based 375 * shrinker will be available. 376 */ 377 } 378 EXPORT_SYMBOL_GPL(shake_page); 379 380 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 381 unsigned long address) 382 { 383 unsigned long ret = 0; 384 pgd_t *pgd; 385 p4d_t *p4d; 386 pud_t *pud; 387 pmd_t *pmd; 388 pte_t *pte; 389 pte_t ptent; 390 391 VM_BUG_ON_VMA(address == -EFAULT, vma); 392 pgd = pgd_offset(vma->vm_mm, address); 393 if (!pgd_present(*pgd)) 394 return 0; 395 p4d = p4d_offset(pgd, address); 396 if (!p4d_present(*p4d)) 397 return 0; 398 pud = pud_offset(p4d, address); 399 if (!pud_present(*pud)) 400 return 0; 401 if (pud_devmap(*pud)) 402 return PUD_SHIFT; 403 pmd = pmd_offset(pud, address); 404 if (!pmd_present(*pmd)) 405 return 0; 406 if (pmd_devmap(*pmd)) 407 return PMD_SHIFT; 408 pte = pte_offset_map(pmd, address); 409 if (!pte) 410 return 0; 411 ptent = ptep_get(pte); 412 if (pte_present(ptent) && pte_devmap(ptent)) 413 ret = PAGE_SHIFT; 414 pte_unmap(pte); 415 return ret; 416 } 417 418 /* 419 * Failure handling: if we can't find or can't kill a process there's 420 * not much we can do. We just print a message and ignore otherwise. 421 */ 422 423 #define FSDAX_INVALID_PGOFF ULONG_MAX 424 425 /* 426 * Schedule a process for later kill. 427 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 428 * 429 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a 430 * filesystem with a memory failure handler has claimed the 431 * memory_failure event. In all other cases, page->index and 432 * page->mapping are sufficient for mapping the page back to its 433 * corresponding user virtual address. 434 */ 435 static void __add_to_kill(struct task_struct *tsk, struct page *p, 436 struct vm_area_struct *vma, struct list_head *to_kill, 437 unsigned long ksm_addr, pgoff_t fsdax_pgoff) 438 { 439 struct to_kill *tk; 440 441 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 442 if (!tk) { 443 pr_err("Out of memory while machine check handling\n"); 444 return; 445 } 446 447 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma); 448 if (is_zone_device_page(p)) { 449 if (fsdax_pgoff != FSDAX_INVALID_PGOFF) 450 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma); 451 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 452 } else 453 tk->size_shift = page_shift(compound_head(p)); 454 455 /* 456 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 457 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 458 * so "tk->size_shift == 0" effectively checks no mapping on 459 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 460 * to a process' address space, it's possible not all N VMAs 461 * contain mappings for the page, but at least one VMA does. 462 * Only deliver SIGBUS with payload derived from the VMA that 463 * has a mapping for the page. 464 */ 465 if (tk->addr == -EFAULT) { 466 pr_info("Unable to find user space address %lx in %s\n", 467 page_to_pfn(p), tsk->comm); 468 } else if (tk->size_shift == 0) { 469 kfree(tk); 470 return; 471 } 472 473 get_task_struct(tsk); 474 tk->tsk = tsk; 475 list_add_tail(&tk->nd, to_kill); 476 } 477 478 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p, 479 struct vm_area_struct *vma, 480 struct list_head *to_kill) 481 { 482 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF); 483 } 484 485 #ifdef CONFIG_KSM 486 static bool task_in_to_kill_list(struct list_head *to_kill, 487 struct task_struct *tsk) 488 { 489 struct to_kill *tk, *next; 490 491 list_for_each_entry_safe(tk, next, to_kill, nd) { 492 if (tk->tsk == tsk) 493 return true; 494 } 495 496 return false; 497 } 498 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 499 struct vm_area_struct *vma, struct list_head *to_kill, 500 unsigned long ksm_addr) 501 { 502 if (!task_in_to_kill_list(to_kill, tsk)) 503 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF); 504 } 505 #endif 506 /* 507 * Kill the processes that have been collected earlier. 508 * 509 * Only do anything when FORCEKILL is set, otherwise just free the 510 * list (this is used for clean pages which do not need killing) 511 * Also when FAIL is set do a force kill because something went 512 * wrong earlier. 513 */ 514 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 515 unsigned long pfn, int flags) 516 { 517 struct to_kill *tk, *next; 518 519 list_for_each_entry_safe(tk, next, to_kill, nd) { 520 if (forcekill) { 521 /* 522 * In case something went wrong with munmapping 523 * make sure the process doesn't catch the 524 * signal and then access the memory. Just kill it. 525 */ 526 if (fail || tk->addr == -EFAULT) { 527 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 528 pfn, tk->tsk->comm, tk->tsk->pid); 529 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 530 tk->tsk, PIDTYPE_PID); 531 } 532 533 /* 534 * In theory the process could have mapped 535 * something else on the address in-between. We could 536 * check for that, but we need to tell the 537 * process anyways. 538 */ 539 else if (kill_proc(tk, pfn, flags) < 0) 540 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 541 pfn, tk->tsk->comm, tk->tsk->pid); 542 } 543 list_del(&tk->nd); 544 put_task_struct(tk->tsk); 545 kfree(tk); 546 } 547 } 548 549 /* 550 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 551 * on behalf of the thread group. Return task_struct of the (first found) 552 * dedicated thread if found, and return NULL otherwise. 553 * 554 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 555 * have to call rcu_read_lock/unlock() in this function. 556 */ 557 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 558 { 559 struct task_struct *t; 560 561 for_each_thread(tsk, t) { 562 if (t->flags & PF_MCE_PROCESS) { 563 if (t->flags & PF_MCE_EARLY) 564 return t; 565 } else { 566 if (sysctl_memory_failure_early_kill) 567 return t; 568 } 569 } 570 return NULL; 571 } 572 573 /* 574 * Determine whether a given process is "early kill" process which expects 575 * to be signaled when some page under the process is hwpoisoned. 576 * Return task_struct of the dedicated thread (main thread unless explicitly 577 * specified) if the process is "early kill" and otherwise returns NULL. 578 * 579 * Note that the above is true for Action Optional case. For Action Required 580 * case, it's only meaningful to the current thread which need to be signaled 581 * with SIGBUS, this error is Action Optional for other non current 582 * processes sharing the same error page,if the process is "early kill", the 583 * task_struct of the dedicated thread will also be returned. 584 */ 585 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 586 { 587 if (!tsk->mm) 588 return NULL; 589 /* 590 * Comparing ->mm here because current task might represent 591 * a subthread, while tsk always points to the main thread. 592 */ 593 if (force_early && tsk->mm == current->mm) 594 return current; 595 596 return find_early_kill_thread(tsk); 597 } 598 599 /* 600 * Collect processes when the error hit an anonymous page. 601 */ 602 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 603 int force_early) 604 { 605 struct folio *folio = page_folio(page); 606 struct vm_area_struct *vma; 607 struct task_struct *tsk; 608 struct anon_vma *av; 609 pgoff_t pgoff; 610 611 av = folio_lock_anon_vma_read(folio, NULL); 612 if (av == NULL) /* Not actually mapped anymore */ 613 return; 614 615 pgoff = page_to_pgoff(page); 616 read_lock(&tasklist_lock); 617 for_each_process (tsk) { 618 struct anon_vma_chain *vmac; 619 struct task_struct *t = task_early_kill(tsk, force_early); 620 621 if (!t) 622 continue; 623 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 624 pgoff, pgoff) { 625 vma = vmac->vma; 626 if (vma->vm_mm != t->mm) 627 continue; 628 if (!page_mapped_in_vma(page, vma)) 629 continue; 630 add_to_kill_anon_file(t, page, vma, to_kill); 631 } 632 } 633 read_unlock(&tasklist_lock); 634 anon_vma_unlock_read(av); 635 } 636 637 /* 638 * Collect processes when the error hit a file mapped page. 639 */ 640 static void collect_procs_file(struct page *page, struct list_head *to_kill, 641 int force_early) 642 { 643 struct vm_area_struct *vma; 644 struct task_struct *tsk; 645 struct address_space *mapping = page->mapping; 646 pgoff_t pgoff; 647 648 i_mmap_lock_read(mapping); 649 read_lock(&tasklist_lock); 650 pgoff = page_to_pgoff(page); 651 for_each_process(tsk) { 652 struct task_struct *t = task_early_kill(tsk, force_early); 653 654 if (!t) 655 continue; 656 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 657 pgoff) { 658 /* 659 * Send early kill signal to tasks where a vma covers 660 * the page but the corrupted page is not necessarily 661 * mapped it in its pte. 662 * Assume applications who requested early kill want 663 * to be informed of all such data corruptions. 664 */ 665 if (vma->vm_mm == t->mm) 666 add_to_kill_anon_file(t, page, vma, to_kill); 667 } 668 } 669 read_unlock(&tasklist_lock); 670 i_mmap_unlock_read(mapping); 671 } 672 673 #ifdef CONFIG_FS_DAX 674 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p, 675 struct vm_area_struct *vma, 676 struct list_head *to_kill, pgoff_t pgoff) 677 { 678 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff); 679 } 680 681 /* 682 * Collect processes when the error hit a fsdax page. 683 */ 684 static void collect_procs_fsdax(struct page *page, 685 struct address_space *mapping, pgoff_t pgoff, 686 struct list_head *to_kill) 687 { 688 struct vm_area_struct *vma; 689 struct task_struct *tsk; 690 691 i_mmap_lock_read(mapping); 692 read_lock(&tasklist_lock); 693 for_each_process(tsk) { 694 struct task_struct *t = task_early_kill(tsk, true); 695 696 if (!t) 697 continue; 698 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 699 if (vma->vm_mm == t->mm) 700 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 701 } 702 } 703 read_unlock(&tasklist_lock); 704 i_mmap_unlock_read(mapping); 705 } 706 #endif /* CONFIG_FS_DAX */ 707 708 /* 709 * Collect the processes who have the corrupted page mapped to kill. 710 */ 711 static void collect_procs(struct page *page, struct list_head *tokill, 712 int force_early) 713 { 714 if (!page->mapping) 715 return; 716 if (unlikely(PageKsm(page))) 717 collect_procs_ksm(page, tokill, force_early); 718 else if (PageAnon(page)) 719 collect_procs_anon(page, tokill, force_early); 720 else 721 collect_procs_file(page, tokill, force_early); 722 } 723 724 struct hwp_walk { 725 struct to_kill tk; 726 unsigned long pfn; 727 int flags; 728 }; 729 730 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 731 { 732 tk->addr = addr; 733 tk->size_shift = shift; 734 } 735 736 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 737 unsigned long poisoned_pfn, struct to_kill *tk) 738 { 739 unsigned long pfn = 0; 740 741 if (pte_present(pte)) { 742 pfn = pte_pfn(pte); 743 } else { 744 swp_entry_t swp = pte_to_swp_entry(pte); 745 746 if (is_hwpoison_entry(swp)) 747 pfn = swp_offset_pfn(swp); 748 } 749 750 if (!pfn || pfn != poisoned_pfn) 751 return 0; 752 753 set_to_kill(tk, addr, shift); 754 return 1; 755 } 756 757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 758 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 759 struct hwp_walk *hwp) 760 { 761 pmd_t pmd = *pmdp; 762 unsigned long pfn; 763 unsigned long hwpoison_vaddr; 764 765 if (!pmd_present(pmd)) 766 return 0; 767 pfn = pmd_pfn(pmd); 768 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 769 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 770 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 771 return 1; 772 } 773 return 0; 774 } 775 #else 776 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 777 struct hwp_walk *hwp) 778 { 779 return 0; 780 } 781 #endif 782 783 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 784 unsigned long end, struct mm_walk *walk) 785 { 786 struct hwp_walk *hwp = walk->private; 787 int ret = 0; 788 pte_t *ptep, *mapped_pte; 789 spinlock_t *ptl; 790 791 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 792 if (ptl) { 793 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 794 spin_unlock(ptl); 795 goto out; 796 } 797 798 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 799 addr, &ptl); 800 if (!ptep) 801 goto out; 802 803 for (; addr != end; ptep++, addr += PAGE_SIZE) { 804 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, 805 hwp->pfn, &hwp->tk); 806 if (ret == 1) 807 break; 808 } 809 pte_unmap_unlock(mapped_pte, ptl); 810 out: 811 cond_resched(); 812 return ret; 813 } 814 815 #ifdef CONFIG_HUGETLB_PAGE 816 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 817 unsigned long addr, unsigned long end, 818 struct mm_walk *walk) 819 { 820 struct hwp_walk *hwp = walk->private; 821 pte_t pte = huge_ptep_get(ptep); 822 struct hstate *h = hstate_vma(walk->vma); 823 824 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 825 hwp->pfn, &hwp->tk); 826 } 827 #else 828 #define hwpoison_hugetlb_range NULL 829 #endif 830 831 static const struct mm_walk_ops hwp_walk_ops = { 832 .pmd_entry = hwpoison_pte_range, 833 .hugetlb_entry = hwpoison_hugetlb_range, 834 }; 835 836 /* 837 * Sends SIGBUS to the current process with error info. 838 * 839 * This function is intended to handle "Action Required" MCEs on already 840 * hardware poisoned pages. They could happen, for example, when 841 * memory_failure() failed to unmap the error page at the first call, or 842 * when multiple local machine checks happened on different CPUs. 843 * 844 * MCE handler currently has no easy access to the error virtual address, 845 * so this function walks page table to find it. The returned virtual address 846 * is proper in most cases, but it could be wrong when the application 847 * process has multiple entries mapping the error page. 848 */ 849 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 850 int flags) 851 { 852 int ret; 853 struct hwp_walk priv = { 854 .pfn = pfn, 855 }; 856 priv.tk.tsk = p; 857 858 if (!p->mm) 859 return -EFAULT; 860 861 mmap_read_lock(p->mm); 862 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 863 (void *)&priv); 864 if (ret == 1 && priv.tk.addr) 865 kill_proc(&priv.tk, pfn, flags); 866 else 867 ret = 0; 868 mmap_read_unlock(p->mm); 869 return ret > 0 ? -EHWPOISON : -EFAULT; 870 } 871 872 static const char *action_name[] = { 873 [MF_IGNORED] = "Ignored", 874 [MF_FAILED] = "Failed", 875 [MF_DELAYED] = "Delayed", 876 [MF_RECOVERED] = "Recovered", 877 }; 878 879 static const char * const action_page_types[] = { 880 [MF_MSG_KERNEL] = "reserved kernel page", 881 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 882 [MF_MSG_SLAB] = "kernel slab page", 883 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 884 [MF_MSG_HUGE] = "huge page", 885 [MF_MSG_FREE_HUGE] = "free huge page", 886 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 887 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 888 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 889 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 890 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 891 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 892 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 893 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 894 [MF_MSG_CLEAN_LRU] = "clean LRU page", 895 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 896 [MF_MSG_BUDDY] = "free buddy page", 897 [MF_MSG_DAX] = "dax page", 898 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 899 [MF_MSG_UNKNOWN] = "unknown page", 900 }; 901 902 /* 903 * XXX: It is possible that a page is isolated from LRU cache, 904 * and then kept in swap cache or failed to remove from page cache. 905 * The page count will stop it from being freed by unpoison. 906 * Stress tests should be aware of this memory leak problem. 907 */ 908 static int delete_from_lru_cache(struct page *p) 909 { 910 if (isolate_lru_page(p)) { 911 /* 912 * Clear sensible page flags, so that the buddy system won't 913 * complain when the page is unpoison-and-freed. 914 */ 915 ClearPageActive(p); 916 ClearPageUnevictable(p); 917 918 /* 919 * Poisoned page might never drop its ref count to 0 so we have 920 * to uncharge it manually from its memcg. 921 */ 922 mem_cgroup_uncharge(page_folio(p)); 923 924 /* 925 * drop the page count elevated by isolate_lru_page() 926 */ 927 put_page(p); 928 return 0; 929 } 930 return -EIO; 931 } 932 933 static int truncate_error_page(struct page *p, unsigned long pfn, 934 struct address_space *mapping) 935 { 936 int ret = MF_FAILED; 937 938 if (mapping->a_ops->error_remove_page) { 939 struct folio *folio = page_folio(p); 940 int err = mapping->a_ops->error_remove_page(mapping, p); 941 942 if (err != 0) { 943 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 944 } else if (folio_has_private(folio) && 945 !filemap_release_folio(folio, GFP_NOIO)) { 946 pr_info("%#lx: failed to release buffers\n", pfn); 947 } else { 948 ret = MF_RECOVERED; 949 } 950 } else { 951 /* 952 * If the file system doesn't support it just invalidate 953 * This fails on dirty or anything with private pages 954 */ 955 if (invalidate_inode_page(p)) 956 ret = MF_RECOVERED; 957 else 958 pr_info("%#lx: Failed to invalidate\n", pfn); 959 } 960 961 return ret; 962 } 963 964 struct page_state { 965 unsigned long mask; 966 unsigned long res; 967 enum mf_action_page_type type; 968 969 /* Callback ->action() has to unlock the relevant page inside it. */ 970 int (*action)(struct page_state *ps, struct page *p); 971 }; 972 973 /* 974 * Return true if page is still referenced by others, otherwise return 975 * false. 976 * 977 * The extra_pins is true when one extra refcount is expected. 978 */ 979 static bool has_extra_refcount(struct page_state *ps, struct page *p, 980 bool extra_pins) 981 { 982 int count = page_count(p) - 1; 983 984 if (extra_pins) 985 count -= 1; 986 987 if (count > 0) { 988 pr_err("%#lx: %s still referenced by %d users\n", 989 page_to_pfn(p), action_page_types[ps->type], count); 990 return true; 991 } 992 993 return false; 994 } 995 996 /* 997 * Error hit kernel page. 998 * Do nothing, try to be lucky and not touch this instead. For a few cases we 999 * could be more sophisticated. 1000 */ 1001 static int me_kernel(struct page_state *ps, struct page *p) 1002 { 1003 unlock_page(p); 1004 return MF_IGNORED; 1005 } 1006 1007 /* 1008 * Page in unknown state. Do nothing. 1009 */ 1010 static int me_unknown(struct page_state *ps, struct page *p) 1011 { 1012 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1013 unlock_page(p); 1014 return MF_FAILED; 1015 } 1016 1017 /* 1018 * Clean (or cleaned) page cache page. 1019 */ 1020 static int me_pagecache_clean(struct page_state *ps, struct page *p) 1021 { 1022 int ret; 1023 struct address_space *mapping; 1024 bool extra_pins; 1025 1026 delete_from_lru_cache(p); 1027 1028 /* 1029 * For anonymous pages we're done the only reference left 1030 * should be the one m_f() holds. 1031 */ 1032 if (PageAnon(p)) { 1033 ret = MF_RECOVERED; 1034 goto out; 1035 } 1036 1037 /* 1038 * Now truncate the page in the page cache. This is really 1039 * more like a "temporary hole punch" 1040 * Don't do this for block devices when someone else 1041 * has a reference, because it could be file system metadata 1042 * and that's not safe to truncate. 1043 */ 1044 mapping = page_mapping(p); 1045 if (!mapping) { 1046 /* 1047 * Page has been teared down in the meanwhile 1048 */ 1049 ret = MF_FAILED; 1050 goto out; 1051 } 1052 1053 /* 1054 * The shmem page is kept in page cache instead of truncating 1055 * so is expected to have an extra refcount after error-handling. 1056 */ 1057 extra_pins = shmem_mapping(mapping); 1058 1059 /* 1060 * Truncation is a bit tricky. Enable it per file system for now. 1061 * 1062 * Open: to take i_rwsem or not for this? Right now we don't. 1063 */ 1064 ret = truncate_error_page(p, page_to_pfn(p), mapping); 1065 if (has_extra_refcount(ps, p, extra_pins)) 1066 ret = MF_FAILED; 1067 1068 out: 1069 unlock_page(p); 1070 1071 return ret; 1072 } 1073 1074 /* 1075 * Dirty pagecache page 1076 * Issues: when the error hit a hole page the error is not properly 1077 * propagated. 1078 */ 1079 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1080 { 1081 struct address_space *mapping = page_mapping(p); 1082 1083 SetPageError(p); 1084 /* TBD: print more information about the file. */ 1085 if (mapping) { 1086 /* 1087 * IO error will be reported by write(), fsync(), etc. 1088 * who check the mapping. 1089 * This way the application knows that something went 1090 * wrong with its dirty file data. 1091 * 1092 * There's one open issue: 1093 * 1094 * The EIO will be only reported on the next IO 1095 * operation and then cleared through the IO map. 1096 * Normally Linux has two mechanisms to pass IO error 1097 * first through the AS_EIO flag in the address space 1098 * and then through the PageError flag in the page. 1099 * Since we drop pages on memory failure handling the 1100 * only mechanism open to use is through AS_AIO. 1101 * 1102 * This has the disadvantage that it gets cleared on 1103 * the first operation that returns an error, while 1104 * the PageError bit is more sticky and only cleared 1105 * when the page is reread or dropped. If an 1106 * application assumes it will always get error on 1107 * fsync, but does other operations on the fd before 1108 * and the page is dropped between then the error 1109 * will not be properly reported. 1110 * 1111 * This can already happen even without hwpoisoned 1112 * pages: first on metadata IO errors (which only 1113 * report through AS_EIO) or when the page is dropped 1114 * at the wrong time. 1115 * 1116 * So right now we assume that the application DTRT on 1117 * the first EIO, but we're not worse than other parts 1118 * of the kernel. 1119 */ 1120 mapping_set_error(mapping, -EIO); 1121 } 1122 1123 return me_pagecache_clean(ps, p); 1124 } 1125 1126 /* 1127 * Clean and dirty swap cache. 1128 * 1129 * Dirty swap cache page is tricky to handle. The page could live both in page 1130 * cache and swap cache(ie. page is freshly swapped in). So it could be 1131 * referenced concurrently by 2 types of PTEs: 1132 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1133 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1134 * and then 1135 * - clear dirty bit to prevent IO 1136 * - remove from LRU 1137 * - but keep in the swap cache, so that when we return to it on 1138 * a later page fault, we know the application is accessing 1139 * corrupted data and shall be killed (we installed simple 1140 * interception code in do_swap_page to catch it). 1141 * 1142 * Clean swap cache pages can be directly isolated. A later page fault will 1143 * bring in the known good data from disk. 1144 */ 1145 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1146 { 1147 int ret; 1148 bool extra_pins = false; 1149 1150 ClearPageDirty(p); 1151 /* Trigger EIO in shmem: */ 1152 ClearPageUptodate(p); 1153 1154 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 1155 unlock_page(p); 1156 1157 if (ret == MF_DELAYED) 1158 extra_pins = true; 1159 1160 if (has_extra_refcount(ps, p, extra_pins)) 1161 ret = MF_FAILED; 1162 1163 return ret; 1164 } 1165 1166 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1167 { 1168 struct folio *folio = page_folio(p); 1169 int ret; 1170 1171 delete_from_swap_cache(folio); 1172 1173 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1174 folio_unlock(folio); 1175 1176 if (has_extra_refcount(ps, p, false)) 1177 ret = MF_FAILED; 1178 1179 return ret; 1180 } 1181 1182 /* 1183 * Huge pages. Needs work. 1184 * Issues: 1185 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1186 * To narrow down kill region to one page, we need to break up pmd. 1187 */ 1188 static int me_huge_page(struct page_state *ps, struct page *p) 1189 { 1190 int res; 1191 struct page *hpage = compound_head(p); 1192 struct address_space *mapping; 1193 bool extra_pins = false; 1194 1195 if (!PageHuge(hpage)) 1196 return MF_DELAYED; 1197 1198 mapping = page_mapping(hpage); 1199 if (mapping) { 1200 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1201 /* The page is kept in page cache. */ 1202 extra_pins = true; 1203 unlock_page(hpage); 1204 } else { 1205 unlock_page(hpage); 1206 /* 1207 * migration entry prevents later access on error hugepage, 1208 * so we can free and dissolve it into buddy to save healthy 1209 * subpages. 1210 */ 1211 put_page(hpage); 1212 if (__page_handle_poison(p) >= 0) { 1213 page_ref_inc(p); 1214 res = MF_RECOVERED; 1215 } else { 1216 res = MF_FAILED; 1217 } 1218 } 1219 1220 if (has_extra_refcount(ps, p, extra_pins)) 1221 res = MF_FAILED; 1222 1223 return res; 1224 } 1225 1226 /* 1227 * Various page states we can handle. 1228 * 1229 * A page state is defined by its current page->flags bits. 1230 * The table matches them in order and calls the right handler. 1231 * 1232 * This is quite tricky because we can access page at any time 1233 * in its live cycle, so all accesses have to be extremely careful. 1234 * 1235 * This is not complete. More states could be added. 1236 * For any missing state don't attempt recovery. 1237 */ 1238 1239 #define dirty (1UL << PG_dirty) 1240 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1241 #define unevict (1UL << PG_unevictable) 1242 #define mlock (1UL << PG_mlocked) 1243 #define lru (1UL << PG_lru) 1244 #define head (1UL << PG_head) 1245 #define slab (1UL << PG_slab) 1246 #define reserved (1UL << PG_reserved) 1247 1248 static struct page_state error_states[] = { 1249 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1250 /* 1251 * free pages are specially detected outside this table: 1252 * PG_buddy pages only make a small fraction of all free pages. 1253 */ 1254 1255 /* 1256 * Could in theory check if slab page is free or if we can drop 1257 * currently unused objects without touching them. But just 1258 * treat it as standard kernel for now. 1259 */ 1260 { slab, slab, MF_MSG_SLAB, me_kernel }, 1261 1262 { head, head, MF_MSG_HUGE, me_huge_page }, 1263 1264 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1265 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1266 1267 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1268 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1269 1270 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1271 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1272 1273 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1274 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1275 1276 /* 1277 * Catchall entry: must be at end. 1278 */ 1279 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1280 }; 1281 1282 #undef dirty 1283 #undef sc 1284 #undef unevict 1285 #undef mlock 1286 #undef lru 1287 #undef head 1288 #undef slab 1289 #undef reserved 1290 1291 static void update_per_node_mf_stats(unsigned long pfn, 1292 enum mf_result result) 1293 { 1294 int nid = MAX_NUMNODES; 1295 struct memory_failure_stats *mf_stats = NULL; 1296 1297 nid = pfn_to_nid(pfn); 1298 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1299 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1300 return; 1301 } 1302 1303 mf_stats = &NODE_DATA(nid)->mf_stats; 1304 switch (result) { 1305 case MF_IGNORED: 1306 ++mf_stats->ignored; 1307 break; 1308 case MF_FAILED: 1309 ++mf_stats->failed; 1310 break; 1311 case MF_DELAYED: 1312 ++mf_stats->delayed; 1313 break; 1314 case MF_RECOVERED: 1315 ++mf_stats->recovered; 1316 break; 1317 default: 1318 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1319 break; 1320 } 1321 ++mf_stats->total; 1322 } 1323 1324 /* 1325 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1326 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1327 */ 1328 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1329 enum mf_result result) 1330 { 1331 trace_memory_failure_event(pfn, type, result); 1332 1333 num_poisoned_pages_inc(pfn); 1334 1335 update_per_node_mf_stats(pfn, result); 1336 1337 pr_err("%#lx: recovery action for %s: %s\n", 1338 pfn, action_page_types[type], action_name[result]); 1339 1340 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1341 } 1342 1343 static int page_action(struct page_state *ps, struct page *p, 1344 unsigned long pfn) 1345 { 1346 int result; 1347 1348 /* page p should be unlocked after returning from ps->action(). */ 1349 result = ps->action(ps, p); 1350 1351 /* Could do more checks here if page looks ok */ 1352 /* 1353 * Could adjust zone counters here to correct for the missing page. 1354 */ 1355 1356 return action_result(pfn, ps->type, result); 1357 } 1358 1359 static inline bool PageHWPoisonTakenOff(struct page *page) 1360 { 1361 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1362 } 1363 1364 void SetPageHWPoisonTakenOff(struct page *page) 1365 { 1366 set_page_private(page, MAGIC_HWPOISON); 1367 } 1368 1369 void ClearPageHWPoisonTakenOff(struct page *page) 1370 { 1371 if (PageHWPoison(page)) 1372 set_page_private(page, 0); 1373 } 1374 1375 /* 1376 * Return true if a page type of a given page is supported by hwpoison 1377 * mechanism (while handling could fail), otherwise false. This function 1378 * does not return true for hugetlb or device memory pages, so it's assumed 1379 * to be called only in the context where we never have such pages. 1380 */ 1381 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1382 { 1383 /* Soft offline could migrate non-LRU movable pages */ 1384 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1385 return true; 1386 1387 return PageLRU(page) || is_free_buddy_page(page); 1388 } 1389 1390 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1391 { 1392 struct folio *folio = page_folio(page); 1393 int ret = 0; 1394 bool hugetlb = false; 1395 1396 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1397 if (hugetlb) 1398 return ret; 1399 1400 /* 1401 * This check prevents from calling folio_try_get() for any 1402 * unsupported type of folio in order to reduce the risk of unexpected 1403 * races caused by taking a folio refcount. 1404 */ 1405 if (!HWPoisonHandlable(&folio->page, flags)) 1406 return -EBUSY; 1407 1408 if (folio_try_get(folio)) { 1409 if (folio == page_folio(page)) 1410 return 1; 1411 1412 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1413 folio_put(folio); 1414 } 1415 1416 return 0; 1417 } 1418 1419 static int get_any_page(struct page *p, unsigned long flags) 1420 { 1421 int ret = 0, pass = 0; 1422 bool count_increased = false; 1423 1424 if (flags & MF_COUNT_INCREASED) 1425 count_increased = true; 1426 1427 try_again: 1428 if (!count_increased) { 1429 ret = __get_hwpoison_page(p, flags); 1430 if (!ret) { 1431 if (page_count(p)) { 1432 /* We raced with an allocation, retry. */ 1433 if (pass++ < 3) 1434 goto try_again; 1435 ret = -EBUSY; 1436 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1437 /* We raced with put_page, retry. */ 1438 if (pass++ < 3) 1439 goto try_again; 1440 ret = -EIO; 1441 } 1442 goto out; 1443 } else if (ret == -EBUSY) { 1444 /* 1445 * We raced with (possibly temporary) unhandlable 1446 * page, retry. 1447 */ 1448 if (pass++ < 3) { 1449 shake_page(p); 1450 goto try_again; 1451 } 1452 ret = -EIO; 1453 goto out; 1454 } 1455 } 1456 1457 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1458 ret = 1; 1459 } else { 1460 /* 1461 * A page we cannot handle. Check whether we can turn 1462 * it into something we can handle. 1463 */ 1464 if (pass++ < 3) { 1465 put_page(p); 1466 shake_page(p); 1467 count_increased = false; 1468 goto try_again; 1469 } 1470 put_page(p); 1471 ret = -EIO; 1472 } 1473 out: 1474 if (ret == -EIO) 1475 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1476 1477 return ret; 1478 } 1479 1480 static int __get_unpoison_page(struct page *page) 1481 { 1482 struct folio *folio = page_folio(page); 1483 int ret = 0; 1484 bool hugetlb = false; 1485 1486 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1487 if (hugetlb) 1488 return ret; 1489 1490 /* 1491 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1492 * but also isolated from buddy freelist, so need to identify the 1493 * state and have to cancel both operations to unpoison. 1494 */ 1495 if (PageHWPoisonTakenOff(page)) 1496 return -EHWPOISON; 1497 1498 return get_page_unless_zero(page) ? 1 : 0; 1499 } 1500 1501 /** 1502 * get_hwpoison_page() - Get refcount for memory error handling 1503 * @p: Raw error page (hit by memory error) 1504 * @flags: Flags controlling behavior of error handling 1505 * 1506 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1507 * error on it, after checking that the error page is in a well-defined state 1508 * (defined as a page-type we can successfully handle the memory error on it, 1509 * such as LRU page and hugetlb page). 1510 * 1511 * Memory error handling could be triggered at any time on any type of page, 1512 * so it's prone to race with typical memory management lifecycle (like 1513 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1514 * extra care for the error page's state (as done in __get_hwpoison_page()), 1515 * and has some retry logic in get_any_page(). 1516 * 1517 * When called from unpoison_memory(), the caller should already ensure that 1518 * the given page has PG_hwpoison. So it's never reused for other page 1519 * allocations, and __get_unpoison_page() never races with them. 1520 * 1521 * Return: 0 on failure, 1522 * 1 on success for in-use pages in a well-defined state, 1523 * -EIO for pages on which we can not handle memory errors, 1524 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1525 * operations like allocation and free, 1526 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1527 */ 1528 static int get_hwpoison_page(struct page *p, unsigned long flags) 1529 { 1530 int ret; 1531 1532 zone_pcp_disable(page_zone(p)); 1533 if (flags & MF_UNPOISON) 1534 ret = __get_unpoison_page(p); 1535 else 1536 ret = get_any_page(p, flags); 1537 zone_pcp_enable(page_zone(p)); 1538 1539 return ret; 1540 } 1541 1542 /* 1543 * Do all that is necessary to remove user space mappings. Unmap 1544 * the pages and send SIGBUS to the processes if the data was dirty. 1545 */ 1546 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1547 int flags, struct page *hpage) 1548 { 1549 struct folio *folio = page_folio(hpage); 1550 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1551 struct address_space *mapping; 1552 LIST_HEAD(tokill); 1553 bool unmap_success; 1554 int forcekill; 1555 bool mlocked = PageMlocked(hpage); 1556 1557 /* 1558 * Here we are interested only in user-mapped pages, so skip any 1559 * other types of pages. 1560 */ 1561 if (PageReserved(p) || PageSlab(p) || PageTable(p)) 1562 return true; 1563 if (!(PageLRU(hpage) || PageHuge(p))) 1564 return true; 1565 1566 /* 1567 * This check implies we don't kill processes if their pages 1568 * are in the swap cache early. Those are always late kills. 1569 */ 1570 if (!page_mapped(hpage)) 1571 return true; 1572 1573 if (PageSwapCache(p)) { 1574 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1575 ttu &= ~TTU_HWPOISON; 1576 } 1577 1578 /* 1579 * Propagate the dirty bit from PTEs to struct page first, because we 1580 * need this to decide if we should kill or just drop the page. 1581 * XXX: the dirty test could be racy: set_page_dirty() may not always 1582 * be called inside page lock (it's recommended but not enforced). 1583 */ 1584 mapping = page_mapping(hpage); 1585 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1586 mapping_can_writeback(mapping)) { 1587 if (page_mkclean(hpage)) { 1588 SetPageDirty(hpage); 1589 } else { 1590 ttu &= ~TTU_HWPOISON; 1591 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1592 pfn); 1593 } 1594 } 1595 1596 /* 1597 * First collect all the processes that have the page 1598 * mapped in dirty form. This has to be done before try_to_unmap, 1599 * because ttu takes the rmap data structures down. 1600 */ 1601 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1602 1603 if (PageHuge(hpage) && !PageAnon(hpage)) { 1604 /* 1605 * For hugetlb pages in shared mappings, try_to_unmap 1606 * could potentially call huge_pmd_unshare. Because of 1607 * this, take semaphore in write mode here and set 1608 * TTU_RMAP_LOCKED to indicate we have taken the lock 1609 * at this higher level. 1610 */ 1611 mapping = hugetlb_page_mapping_lock_write(hpage); 1612 if (mapping) { 1613 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1614 i_mmap_unlock_write(mapping); 1615 } else 1616 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); 1617 } else { 1618 try_to_unmap(folio, ttu); 1619 } 1620 1621 unmap_success = !page_mapped(hpage); 1622 if (!unmap_success) 1623 pr_err("%#lx: failed to unmap page (mapcount=%d)\n", 1624 pfn, page_mapcount(hpage)); 1625 1626 /* 1627 * try_to_unmap() might put mlocked page in lru cache, so call 1628 * shake_page() again to ensure that it's flushed. 1629 */ 1630 if (mlocked) 1631 shake_page(hpage); 1632 1633 /* 1634 * Now that the dirty bit has been propagated to the 1635 * struct page and all unmaps done we can decide if 1636 * killing is needed or not. Only kill when the page 1637 * was dirty or the process is not restartable, 1638 * otherwise the tokill list is merely 1639 * freed. When there was a problem unmapping earlier 1640 * use a more force-full uncatchable kill to prevent 1641 * any accesses to the poisoned memory. 1642 */ 1643 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) || 1644 !unmap_success; 1645 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1646 1647 return unmap_success; 1648 } 1649 1650 static int identify_page_state(unsigned long pfn, struct page *p, 1651 unsigned long page_flags) 1652 { 1653 struct page_state *ps; 1654 1655 /* 1656 * The first check uses the current page flags which may not have any 1657 * relevant information. The second check with the saved page flags is 1658 * carried out only if the first check can't determine the page status. 1659 */ 1660 for (ps = error_states;; ps++) 1661 if ((p->flags & ps->mask) == ps->res) 1662 break; 1663 1664 page_flags |= (p->flags & (1UL << PG_dirty)); 1665 1666 if (!ps->mask) 1667 for (ps = error_states;; ps++) 1668 if ((page_flags & ps->mask) == ps->res) 1669 break; 1670 return page_action(ps, p, pfn); 1671 } 1672 1673 static int try_to_split_thp_page(struct page *page) 1674 { 1675 int ret; 1676 1677 lock_page(page); 1678 ret = split_huge_page(page); 1679 unlock_page(page); 1680 1681 if (unlikely(ret)) 1682 put_page(page); 1683 1684 return ret; 1685 } 1686 1687 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1688 struct address_space *mapping, pgoff_t index, int flags) 1689 { 1690 struct to_kill *tk; 1691 unsigned long size = 0; 1692 1693 list_for_each_entry(tk, to_kill, nd) 1694 if (tk->size_shift) 1695 size = max(size, 1UL << tk->size_shift); 1696 1697 if (size) { 1698 /* 1699 * Unmap the largest mapping to avoid breaking up device-dax 1700 * mappings which are constant size. The actual size of the 1701 * mapping being torn down is communicated in siginfo, see 1702 * kill_proc() 1703 */ 1704 loff_t start = (index << PAGE_SHIFT) & ~(size - 1); 1705 1706 unmap_mapping_range(mapping, start, size, 0); 1707 } 1708 1709 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); 1710 } 1711 1712 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1713 struct dev_pagemap *pgmap) 1714 { 1715 struct page *page = pfn_to_page(pfn); 1716 LIST_HEAD(to_kill); 1717 dax_entry_t cookie; 1718 int rc = 0; 1719 1720 /* 1721 * Pages instantiated by device-dax (not filesystem-dax) 1722 * may be compound pages. 1723 */ 1724 page = compound_head(page); 1725 1726 /* 1727 * Prevent the inode from being freed while we are interrogating 1728 * the address_space, typically this would be handled by 1729 * lock_page(), but dax pages do not use the page lock. This 1730 * also prevents changes to the mapping of this pfn until 1731 * poison signaling is complete. 1732 */ 1733 cookie = dax_lock_page(page); 1734 if (!cookie) 1735 return -EBUSY; 1736 1737 if (hwpoison_filter(page)) { 1738 rc = -EOPNOTSUPP; 1739 goto unlock; 1740 } 1741 1742 switch (pgmap->type) { 1743 case MEMORY_DEVICE_PRIVATE: 1744 case MEMORY_DEVICE_COHERENT: 1745 /* 1746 * TODO: Handle device pages which may need coordination 1747 * with device-side memory. 1748 */ 1749 rc = -ENXIO; 1750 goto unlock; 1751 default: 1752 break; 1753 } 1754 1755 /* 1756 * Use this flag as an indication that the dax page has been 1757 * remapped UC to prevent speculative consumption of poison. 1758 */ 1759 SetPageHWPoison(page); 1760 1761 /* 1762 * Unlike System-RAM there is no possibility to swap in a 1763 * different physical page at a given virtual address, so all 1764 * userspace consumption of ZONE_DEVICE memory necessitates 1765 * SIGBUS (i.e. MF_MUST_KILL) 1766 */ 1767 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1768 collect_procs(page, &to_kill, true); 1769 1770 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags); 1771 unlock: 1772 dax_unlock_page(page, cookie); 1773 return rc; 1774 } 1775 1776 #ifdef CONFIG_FS_DAX 1777 /** 1778 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1779 * @mapping: address_space of the file in use 1780 * @index: start pgoff of the range within the file 1781 * @count: length of the range, in unit of PAGE_SIZE 1782 * @mf_flags: memory failure flags 1783 */ 1784 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1785 unsigned long count, int mf_flags) 1786 { 1787 LIST_HEAD(to_kill); 1788 dax_entry_t cookie; 1789 struct page *page; 1790 size_t end = index + count; 1791 1792 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1793 1794 for (; index < end; index++) { 1795 page = NULL; 1796 cookie = dax_lock_mapping_entry(mapping, index, &page); 1797 if (!cookie) 1798 return -EBUSY; 1799 if (!page) 1800 goto unlock; 1801 1802 SetPageHWPoison(page); 1803 1804 collect_procs_fsdax(page, mapping, index, &to_kill); 1805 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1806 index, mf_flags); 1807 unlock: 1808 dax_unlock_mapping_entry(mapping, index, cookie); 1809 } 1810 return 0; 1811 } 1812 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1813 #endif /* CONFIG_FS_DAX */ 1814 1815 #ifdef CONFIG_HUGETLB_PAGE 1816 /* 1817 * Struct raw_hwp_page represents information about "raw error page", 1818 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1819 */ 1820 struct raw_hwp_page { 1821 struct llist_node node; 1822 struct page *page; 1823 }; 1824 1825 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1826 { 1827 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1828 } 1829 1830 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1831 { 1832 struct llist_head *head; 1833 struct llist_node *t, *tnode; 1834 unsigned long count = 0; 1835 1836 head = raw_hwp_list_head(folio); 1837 llist_for_each_safe(tnode, t, head->first) { 1838 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1839 1840 if (move_flag) 1841 SetPageHWPoison(p->page); 1842 else 1843 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1844 kfree(p); 1845 count++; 1846 } 1847 llist_del_all(head); 1848 return count; 1849 } 1850 1851 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1852 { 1853 struct llist_head *head; 1854 struct raw_hwp_page *raw_hwp; 1855 struct llist_node *t, *tnode; 1856 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1857 1858 /* 1859 * Once the hwpoison hugepage has lost reliable raw error info, 1860 * there is little meaning to keep additional error info precisely, 1861 * so skip to add additional raw error info. 1862 */ 1863 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1864 return -EHWPOISON; 1865 head = raw_hwp_list_head(folio); 1866 llist_for_each_safe(tnode, t, head->first) { 1867 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1868 1869 if (p->page == page) 1870 return -EHWPOISON; 1871 } 1872 1873 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1874 if (raw_hwp) { 1875 raw_hwp->page = page; 1876 llist_add(&raw_hwp->node, head); 1877 /* the first error event will be counted in action_result(). */ 1878 if (ret) 1879 num_poisoned_pages_inc(page_to_pfn(page)); 1880 } else { 1881 /* 1882 * Failed to save raw error info. We no longer trace all 1883 * hwpoisoned subpages, and we need refuse to free/dissolve 1884 * this hwpoisoned hugepage. 1885 */ 1886 folio_set_hugetlb_raw_hwp_unreliable(folio); 1887 /* 1888 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1889 * used any more, so free it. 1890 */ 1891 __folio_free_raw_hwp(folio, false); 1892 } 1893 return ret; 1894 } 1895 1896 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1897 { 1898 /* 1899 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1900 * pages for tail pages are required but they don't exist. 1901 */ 1902 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1903 return 0; 1904 1905 /* 1906 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1907 * definition. 1908 */ 1909 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1910 return 0; 1911 1912 return __folio_free_raw_hwp(folio, move_flag); 1913 } 1914 1915 void folio_clear_hugetlb_hwpoison(struct folio *folio) 1916 { 1917 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1918 return; 1919 folio_clear_hwpoison(folio); 1920 folio_free_raw_hwp(folio, true); 1921 } 1922 1923 /* 1924 * Called from hugetlb code with hugetlb_lock held. 1925 * 1926 * Return values: 1927 * 0 - free hugepage 1928 * 1 - in-use hugepage 1929 * 2 - not a hugepage 1930 * -EBUSY - the hugepage is busy (try to retry) 1931 * -EHWPOISON - the hugepage is already hwpoisoned 1932 */ 1933 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 1934 bool *migratable_cleared) 1935 { 1936 struct page *page = pfn_to_page(pfn); 1937 struct folio *folio = page_folio(page); 1938 int ret = 2; /* fallback to normal page handling */ 1939 bool count_increased = false; 1940 1941 if (!folio_test_hugetlb(folio)) 1942 goto out; 1943 1944 if (flags & MF_COUNT_INCREASED) { 1945 ret = 1; 1946 count_increased = true; 1947 } else if (folio_test_hugetlb_freed(folio)) { 1948 ret = 0; 1949 } else if (folio_test_hugetlb_migratable(folio)) { 1950 ret = folio_try_get(folio); 1951 if (ret) 1952 count_increased = true; 1953 } else { 1954 ret = -EBUSY; 1955 if (!(flags & MF_NO_RETRY)) 1956 goto out; 1957 } 1958 1959 if (folio_set_hugetlb_hwpoison(folio, page)) { 1960 ret = -EHWPOISON; 1961 goto out; 1962 } 1963 1964 /* 1965 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 1966 * from being migrated by memory hotremove. 1967 */ 1968 if (count_increased && folio_test_hugetlb_migratable(folio)) { 1969 folio_clear_hugetlb_migratable(folio); 1970 *migratable_cleared = true; 1971 } 1972 1973 return ret; 1974 out: 1975 if (count_increased) 1976 folio_put(folio); 1977 return ret; 1978 } 1979 1980 /* 1981 * Taking refcount of hugetlb pages needs extra care about race conditions 1982 * with basic operations like hugepage allocation/free/demotion. 1983 * So some of prechecks for hwpoison (pinning, and testing/setting 1984 * PageHWPoison) should be done in single hugetlb_lock range. 1985 */ 1986 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1987 { 1988 int res; 1989 struct page *p = pfn_to_page(pfn); 1990 struct folio *folio; 1991 unsigned long page_flags; 1992 bool migratable_cleared = false; 1993 1994 *hugetlb = 1; 1995 retry: 1996 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 1997 if (res == 2) { /* fallback to normal page handling */ 1998 *hugetlb = 0; 1999 return 0; 2000 } else if (res == -EHWPOISON) { 2001 pr_err("%#lx: already hardware poisoned\n", pfn); 2002 if (flags & MF_ACTION_REQUIRED) { 2003 folio = page_folio(p); 2004 res = kill_accessing_process(current, folio_pfn(folio), flags); 2005 } 2006 return res; 2007 } else if (res == -EBUSY) { 2008 if (!(flags & MF_NO_RETRY)) { 2009 flags |= MF_NO_RETRY; 2010 goto retry; 2011 } 2012 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2013 } 2014 2015 folio = page_folio(p); 2016 folio_lock(folio); 2017 2018 if (hwpoison_filter(p)) { 2019 folio_clear_hugetlb_hwpoison(folio); 2020 if (migratable_cleared) 2021 folio_set_hugetlb_migratable(folio); 2022 folio_unlock(folio); 2023 if (res == 1) 2024 folio_put(folio); 2025 return -EOPNOTSUPP; 2026 } 2027 2028 /* 2029 * Handling free hugepage. The possible race with hugepage allocation 2030 * or demotion can be prevented by PageHWPoison flag. 2031 */ 2032 if (res == 0) { 2033 folio_unlock(folio); 2034 if (__page_handle_poison(p) >= 0) { 2035 page_ref_inc(p); 2036 res = MF_RECOVERED; 2037 } else { 2038 res = MF_FAILED; 2039 } 2040 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2041 } 2042 2043 page_flags = folio->flags; 2044 2045 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) { 2046 folio_unlock(folio); 2047 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2048 } 2049 2050 return identify_page_state(pfn, p, page_flags); 2051 } 2052 2053 #else 2054 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2055 { 2056 return 0; 2057 } 2058 2059 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2060 { 2061 return 0; 2062 } 2063 #endif /* CONFIG_HUGETLB_PAGE */ 2064 2065 /* Drop the extra refcount in case we come from madvise() */ 2066 static void put_ref_page(unsigned long pfn, int flags) 2067 { 2068 struct page *page; 2069 2070 if (!(flags & MF_COUNT_INCREASED)) 2071 return; 2072 2073 page = pfn_to_page(pfn); 2074 if (page) 2075 put_page(page); 2076 } 2077 2078 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2079 struct dev_pagemap *pgmap) 2080 { 2081 int rc = -ENXIO; 2082 2083 put_ref_page(pfn, flags); 2084 2085 /* device metadata space is not recoverable */ 2086 if (!pgmap_pfn_valid(pgmap, pfn)) 2087 goto out; 2088 2089 /* 2090 * Call driver's implementation to handle the memory failure, otherwise 2091 * fall back to generic handler. 2092 */ 2093 if (pgmap_has_memory_failure(pgmap)) { 2094 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2095 /* 2096 * Fall back to generic handler too if operation is not 2097 * supported inside the driver/device/filesystem. 2098 */ 2099 if (rc != -EOPNOTSUPP) 2100 goto out; 2101 } 2102 2103 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2104 out: 2105 /* drop pgmap ref acquired in caller */ 2106 put_dev_pagemap(pgmap); 2107 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2108 return rc; 2109 } 2110 2111 static DEFINE_MUTEX(mf_mutex); 2112 2113 /** 2114 * memory_failure - Handle memory failure of a page. 2115 * @pfn: Page Number of the corrupted page 2116 * @flags: fine tune action taken 2117 * 2118 * This function is called by the low level machine check code 2119 * of an architecture when it detects hardware memory corruption 2120 * of a page. It tries its best to recover, which includes 2121 * dropping pages, killing processes etc. 2122 * 2123 * The function is primarily of use for corruptions that 2124 * happen outside the current execution context (e.g. when 2125 * detected by a background scrubber) 2126 * 2127 * Must run in process context (e.g. a work queue) with interrupts 2128 * enabled and no spinlocks hold. 2129 * 2130 * Return: 0 for successfully handled the memory error, 2131 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 2132 * < 0(except -EOPNOTSUPP) on failure. 2133 */ 2134 int memory_failure(unsigned long pfn, int flags) 2135 { 2136 struct page *p; 2137 struct page *hpage; 2138 struct dev_pagemap *pgmap; 2139 int res = 0; 2140 unsigned long page_flags; 2141 bool retry = true; 2142 int hugetlb = 0; 2143 2144 if (!sysctl_memory_failure_recovery) 2145 panic("Memory failure on page %lx", pfn); 2146 2147 mutex_lock(&mf_mutex); 2148 2149 if (!(flags & MF_SW_SIMULATED)) 2150 hw_memory_failure = true; 2151 2152 p = pfn_to_online_page(pfn); 2153 if (!p) { 2154 res = arch_memory_failure(pfn, flags); 2155 if (res == 0) 2156 goto unlock_mutex; 2157 2158 if (pfn_valid(pfn)) { 2159 pgmap = get_dev_pagemap(pfn, NULL); 2160 if (pgmap) { 2161 res = memory_failure_dev_pagemap(pfn, flags, 2162 pgmap); 2163 goto unlock_mutex; 2164 } 2165 } 2166 pr_err("%#lx: memory outside kernel control\n", pfn); 2167 res = -ENXIO; 2168 goto unlock_mutex; 2169 } 2170 2171 try_again: 2172 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2173 if (hugetlb) 2174 goto unlock_mutex; 2175 2176 if (TestSetPageHWPoison(p)) { 2177 pr_err("%#lx: already hardware poisoned\n", pfn); 2178 res = -EHWPOISON; 2179 if (flags & MF_ACTION_REQUIRED) 2180 res = kill_accessing_process(current, pfn, flags); 2181 if (flags & MF_COUNT_INCREASED) 2182 put_page(p); 2183 goto unlock_mutex; 2184 } 2185 2186 hpage = compound_head(p); 2187 2188 /* 2189 * We need/can do nothing about count=0 pages. 2190 * 1) it's a free page, and therefore in safe hand: 2191 * check_new_page() will be the gate keeper. 2192 * 2) it's part of a non-compound high order page. 2193 * Implies some kernel user: cannot stop them from 2194 * R/W the page; let's pray that the page has been 2195 * used and will be freed some time later. 2196 * In fact it's dangerous to directly bump up page count from 0, 2197 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2198 */ 2199 if (!(flags & MF_COUNT_INCREASED)) { 2200 res = get_hwpoison_page(p, flags); 2201 if (!res) { 2202 if (is_free_buddy_page(p)) { 2203 if (take_page_off_buddy(p)) { 2204 page_ref_inc(p); 2205 res = MF_RECOVERED; 2206 } else { 2207 /* We lost the race, try again */ 2208 if (retry) { 2209 ClearPageHWPoison(p); 2210 retry = false; 2211 goto try_again; 2212 } 2213 res = MF_FAILED; 2214 } 2215 res = action_result(pfn, MF_MSG_BUDDY, res); 2216 } else { 2217 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2218 } 2219 goto unlock_mutex; 2220 } else if (res < 0) { 2221 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2222 goto unlock_mutex; 2223 } 2224 } 2225 2226 if (PageTransHuge(hpage)) { 2227 /* 2228 * The flag must be set after the refcount is bumped 2229 * otherwise it may race with THP split. 2230 * And the flag can't be set in get_hwpoison_page() since 2231 * it is called by soft offline too and it is just called 2232 * for !MF_COUNT_INCREASE. So here seems to be the best 2233 * place. 2234 * 2235 * Don't need care about the above error handling paths for 2236 * get_hwpoison_page() since they handle either free page 2237 * or unhandlable page. The refcount is bumped iff the 2238 * page is a valid handlable page. 2239 */ 2240 SetPageHasHWPoisoned(hpage); 2241 if (try_to_split_thp_page(p) < 0) { 2242 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 2243 goto unlock_mutex; 2244 } 2245 VM_BUG_ON_PAGE(!page_count(p), p); 2246 } 2247 2248 /* 2249 * We ignore non-LRU pages for good reasons. 2250 * - PG_locked is only well defined for LRU pages and a few others 2251 * - to avoid races with __SetPageLocked() 2252 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2253 * The check (unnecessarily) ignores LRU pages being isolated and 2254 * walked by the page reclaim code, however that's not a big loss. 2255 */ 2256 shake_page(p); 2257 2258 lock_page(p); 2259 2260 /* 2261 * We're only intended to deal with the non-Compound page here. 2262 * However, the page could have changed compound pages due to 2263 * race window. If this happens, we could try again to hopefully 2264 * handle the page next round. 2265 */ 2266 if (PageCompound(p)) { 2267 if (retry) { 2268 ClearPageHWPoison(p); 2269 unlock_page(p); 2270 put_page(p); 2271 flags &= ~MF_COUNT_INCREASED; 2272 retry = false; 2273 goto try_again; 2274 } 2275 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 2276 goto unlock_page; 2277 } 2278 2279 /* 2280 * We use page flags to determine what action should be taken, but 2281 * the flags can be modified by the error containment action. One 2282 * example is an mlocked page, where PG_mlocked is cleared by 2283 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 2284 * correctly, we save a copy of the page flags at this time. 2285 */ 2286 page_flags = p->flags; 2287 2288 if (hwpoison_filter(p)) { 2289 ClearPageHWPoison(p); 2290 unlock_page(p); 2291 put_page(p); 2292 res = -EOPNOTSUPP; 2293 goto unlock_mutex; 2294 } 2295 2296 /* 2297 * __munlock_folio() may clear a writeback page's LRU flag without 2298 * page_lock. We need wait writeback completion for this page or it 2299 * may trigger vfs BUG while evict inode. 2300 */ 2301 if (!PageLRU(p) && !PageWriteback(p)) 2302 goto identify_page_state; 2303 2304 /* 2305 * It's very difficult to mess with pages currently under IO 2306 * and in many cases impossible, so we just avoid it here. 2307 */ 2308 wait_on_page_writeback(p); 2309 2310 /* 2311 * Now take care of user space mappings. 2312 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2313 */ 2314 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 2315 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2316 goto unlock_page; 2317 } 2318 2319 /* 2320 * Torn down by someone else? 2321 */ 2322 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 2323 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2324 goto unlock_page; 2325 } 2326 2327 identify_page_state: 2328 res = identify_page_state(pfn, p, page_flags); 2329 mutex_unlock(&mf_mutex); 2330 return res; 2331 unlock_page: 2332 unlock_page(p); 2333 unlock_mutex: 2334 mutex_unlock(&mf_mutex); 2335 return res; 2336 } 2337 EXPORT_SYMBOL_GPL(memory_failure); 2338 2339 #define MEMORY_FAILURE_FIFO_ORDER 4 2340 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2341 2342 struct memory_failure_entry { 2343 unsigned long pfn; 2344 int flags; 2345 }; 2346 2347 struct memory_failure_cpu { 2348 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2349 MEMORY_FAILURE_FIFO_SIZE); 2350 spinlock_t lock; 2351 struct work_struct work; 2352 }; 2353 2354 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2355 2356 /** 2357 * memory_failure_queue - Schedule handling memory failure of a page. 2358 * @pfn: Page Number of the corrupted page 2359 * @flags: Flags for memory failure handling 2360 * 2361 * This function is called by the low level hardware error handler 2362 * when it detects hardware memory corruption of a page. It schedules 2363 * the recovering of error page, including dropping pages, killing 2364 * processes etc. 2365 * 2366 * The function is primarily of use for corruptions that 2367 * happen outside the current execution context (e.g. when 2368 * detected by a background scrubber) 2369 * 2370 * Can run in IRQ context. 2371 */ 2372 void memory_failure_queue(unsigned long pfn, int flags) 2373 { 2374 struct memory_failure_cpu *mf_cpu; 2375 unsigned long proc_flags; 2376 struct memory_failure_entry entry = { 2377 .pfn = pfn, 2378 .flags = flags, 2379 }; 2380 2381 mf_cpu = &get_cpu_var(memory_failure_cpu); 2382 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2383 if (kfifo_put(&mf_cpu->fifo, entry)) 2384 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2385 else 2386 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2387 pfn); 2388 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2389 put_cpu_var(memory_failure_cpu); 2390 } 2391 EXPORT_SYMBOL_GPL(memory_failure_queue); 2392 2393 static void memory_failure_work_func(struct work_struct *work) 2394 { 2395 struct memory_failure_cpu *mf_cpu; 2396 struct memory_failure_entry entry = { 0, }; 2397 unsigned long proc_flags; 2398 int gotten; 2399 2400 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2401 for (;;) { 2402 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2403 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2404 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2405 if (!gotten) 2406 break; 2407 if (entry.flags & MF_SOFT_OFFLINE) 2408 soft_offline_page(entry.pfn, entry.flags); 2409 else 2410 memory_failure(entry.pfn, entry.flags); 2411 } 2412 } 2413 2414 /* 2415 * Process memory_failure work queued on the specified CPU. 2416 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2417 */ 2418 void memory_failure_queue_kick(int cpu) 2419 { 2420 struct memory_failure_cpu *mf_cpu; 2421 2422 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2423 cancel_work_sync(&mf_cpu->work); 2424 memory_failure_work_func(&mf_cpu->work); 2425 } 2426 2427 static int __init memory_failure_init(void) 2428 { 2429 struct memory_failure_cpu *mf_cpu; 2430 int cpu; 2431 2432 for_each_possible_cpu(cpu) { 2433 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2434 spin_lock_init(&mf_cpu->lock); 2435 INIT_KFIFO(mf_cpu->fifo); 2436 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2437 } 2438 2439 register_sysctl_init("vm", memory_failure_table); 2440 2441 return 0; 2442 } 2443 core_initcall(memory_failure_init); 2444 2445 #undef pr_fmt 2446 #define pr_fmt(fmt) "" fmt 2447 #define unpoison_pr_info(fmt, pfn, rs) \ 2448 ({ \ 2449 if (__ratelimit(rs)) \ 2450 pr_info(fmt, pfn); \ 2451 }) 2452 2453 /** 2454 * unpoison_memory - Unpoison a previously poisoned page 2455 * @pfn: Page number of the to be unpoisoned page 2456 * 2457 * Software-unpoison a page that has been poisoned by 2458 * memory_failure() earlier. 2459 * 2460 * This is only done on the software-level, so it only works 2461 * for linux injected failures, not real hardware failures 2462 * 2463 * Returns 0 for success, otherwise -errno. 2464 */ 2465 int unpoison_memory(unsigned long pfn) 2466 { 2467 struct folio *folio; 2468 struct page *p; 2469 int ret = -EBUSY; 2470 unsigned long count = 1; 2471 bool huge = false; 2472 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2473 DEFAULT_RATELIMIT_BURST); 2474 2475 if (!pfn_valid(pfn)) 2476 return -ENXIO; 2477 2478 p = pfn_to_page(pfn); 2479 folio = page_folio(p); 2480 2481 mutex_lock(&mf_mutex); 2482 2483 if (hw_memory_failure) { 2484 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", 2485 pfn, &unpoison_rs); 2486 ret = -EOPNOTSUPP; 2487 goto unlock_mutex; 2488 } 2489 2490 if (!folio_test_hwpoison(folio)) { 2491 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2492 pfn, &unpoison_rs); 2493 goto unlock_mutex; 2494 } 2495 2496 if (folio_ref_count(folio) > 1) { 2497 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2498 pfn, &unpoison_rs); 2499 goto unlock_mutex; 2500 } 2501 2502 if (folio_mapped(folio)) { 2503 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2504 pfn, &unpoison_rs); 2505 goto unlock_mutex; 2506 } 2507 2508 if (folio_mapping(folio)) { 2509 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2510 pfn, &unpoison_rs); 2511 goto unlock_mutex; 2512 } 2513 2514 if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio)) 2515 goto unlock_mutex; 2516 2517 ret = get_hwpoison_page(p, MF_UNPOISON); 2518 if (!ret) { 2519 if (PageHuge(p)) { 2520 huge = true; 2521 count = folio_free_raw_hwp(folio, false); 2522 if (count == 0) { 2523 ret = -EBUSY; 2524 goto unlock_mutex; 2525 } 2526 } 2527 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2528 } else if (ret < 0) { 2529 if (ret == -EHWPOISON) { 2530 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2531 } else 2532 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2533 pfn, &unpoison_rs); 2534 } else { 2535 if (PageHuge(p)) { 2536 huge = true; 2537 count = folio_free_raw_hwp(folio, false); 2538 if (count == 0) { 2539 ret = -EBUSY; 2540 folio_put(folio); 2541 goto unlock_mutex; 2542 } 2543 } 2544 2545 folio_put(folio); 2546 if (TestClearPageHWPoison(p)) { 2547 folio_put(folio); 2548 ret = 0; 2549 } 2550 } 2551 2552 unlock_mutex: 2553 mutex_unlock(&mf_mutex); 2554 if (!ret) { 2555 if (!huge) 2556 num_poisoned_pages_sub(pfn, 1); 2557 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2558 page_to_pfn(p), &unpoison_rs); 2559 } 2560 return ret; 2561 } 2562 EXPORT_SYMBOL(unpoison_memory); 2563 2564 static bool isolate_page(struct page *page, struct list_head *pagelist) 2565 { 2566 bool isolated = false; 2567 2568 if (PageHuge(page)) { 2569 isolated = isolate_hugetlb(page_folio(page), pagelist); 2570 } else { 2571 bool lru = !__PageMovable(page); 2572 2573 if (lru) 2574 isolated = isolate_lru_page(page); 2575 else 2576 isolated = isolate_movable_page(page, 2577 ISOLATE_UNEVICTABLE); 2578 2579 if (isolated) { 2580 list_add(&page->lru, pagelist); 2581 if (lru) 2582 inc_node_page_state(page, NR_ISOLATED_ANON + 2583 page_is_file_lru(page)); 2584 } 2585 } 2586 2587 /* 2588 * If we succeed to isolate the page, we grabbed another refcount on 2589 * the page, so we can safely drop the one we got from get_any_pages(). 2590 * If we failed to isolate the page, it means that we cannot go further 2591 * and we will return an error, so drop the reference we got from 2592 * get_any_pages() as well. 2593 */ 2594 put_page(page); 2595 return isolated; 2596 } 2597 2598 /* 2599 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2600 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2601 * If the page is mapped, it migrates the contents over. 2602 */ 2603 static int soft_offline_in_use_page(struct page *page) 2604 { 2605 long ret = 0; 2606 unsigned long pfn = page_to_pfn(page); 2607 struct page *hpage = compound_head(page); 2608 char const *msg_page[] = {"page", "hugepage"}; 2609 bool huge = PageHuge(page); 2610 LIST_HEAD(pagelist); 2611 struct migration_target_control mtc = { 2612 .nid = NUMA_NO_NODE, 2613 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2614 }; 2615 2616 if (!huge && PageTransHuge(hpage)) { 2617 if (try_to_split_thp_page(page)) { 2618 pr_info("soft offline: %#lx: thp split failed\n", pfn); 2619 return -EBUSY; 2620 } 2621 hpage = page; 2622 } 2623 2624 lock_page(page); 2625 if (!PageHuge(page)) 2626 wait_on_page_writeback(page); 2627 if (PageHWPoison(page)) { 2628 unlock_page(page); 2629 put_page(page); 2630 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2631 return 0; 2632 } 2633 2634 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page)) 2635 /* 2636 * Try to invalidate first. This should work for 2637 * non dirty unmapped page cache pages. 2638 */ 2639 ret = invalidate_inode_page(page); 2640 unlock_page(page); 2641 2642 if (ret) { 2643 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2644 page_handle_poison(page, false, true); 2645 return 0; 2646 } 2647 2648 if (isolate_page(hpage, &pagelist)) { 2649 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2650 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2651 if (!ret) { 2652 bool release = !huge; 2653 2654 if (!page_handle_poison(page, huge, release)) 2655 ret = -EBUSY; 2656 } else { 2657 if (!list_empty(&pagelist)) 2658 putback_movable_pages(&pagelist); 2659 2660 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2661 pfn, msg_page[huge], ret, &page->flags); 2662 if (ret > 0) 2663 ret = -EBUSY; 2664 } 2665 } else { 2666 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2667 pfn, msg_page[huge], page_count(page), &page->flags); 2668 ret = -EBUSY; 2669 } 2670 return ret; 2671 } 2672 2673 /** 2674 * soft_offline_page - Soft offline a page. 2675 * @pfn: pfn to soft-offline 2676 * @flags: flags. Same as memory_failure(). 2677 * 2678 * Returns 0 on success 2679 * -EOPNOTSUPP for hwpoison_filter() filtered the error event 2680 * < 0 otherwise negated errno. 2681 * 2682 * Soft offline a page, by migration or invalidation, 2683 * without killing anything. This is for the case when 2684 * a page is not corrupted yet (so it's still valid to access), 2685 * but has had a number of corrected errors and is better taken 2686 * out. 2687 * 2688 * The actual policy on when to do that is maintained by 2689 * user space. 2690 * 2691 * This should never impact any application or cause data loss, 2692 * however it might take some time. 2693 * 2694 * This is not a 100% solution for all memory, but tries to be 2695 * ``good enough'' for the majority of memory. 2696 */ 2697 int soft_offline_page(unsigned long pfn, int flags) 2698 { 2699 int ret; 2700 bool try_again = true; 2701 struct page *page; 2702 2703 if (!pfn_valid(pfn)) { 2704 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2705 return -ENXIO; 2706 } 2707 2708 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2709 page = pfn_to_online_page(pfn); 2710 if (!page) { 2711 put_ref_page(pfn, flags); 2712 return -EIO; 2713 } 2714 2715 mutex_lock(&mf_mutex); 2716 2717 if (PageHWPoison(page)) { 2718 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2719 put_ref_page(pfn, flags); 2720 mutex_unlock(&mf_mutex); 2721 return 0; 2722 } 2723 2724 retry: 2725 get_online_mems(); 2726 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2727 put_online_mems(); 2728 2729 if (hwpoison_filter(page)) { 2730 if (ret > 0) 2731 put_page(page); 2732 2733 mutex_unlock(&mf_mutex); 2734 return -EOPNOTSUPP; 2735 } 2736 2737 if (ret > 0) { 2738 ret = soft_offline_in_use_page(page); 2739 } else if (ret == 0) { 2740 if (!page_handle_poison(page, true, false) && try_again) { 2741 try_again = false; 2742 flags &= ~MF_COUNT_INCREASED; 2743 goto retry; 2744 } 2745 } 2746 2747 mutex_unlock(&mf_mutex); 2748 2749 return ret; 2750 } 2751