xref: /linux/mm/memory-failure.c (revision 7025bec9125b0a02edcaf22c2dce753bf2c95480)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a 2bit ECC memory or cache
11  * failure.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronous to other VM
15  * users, because memory failures could happen anytime and anywhere,
16  * possibly violating some of their assumptions. This is why this code
17  * has to be extremely careful. Generally it tries to use normal locking
18  * rules, as in get the standard locks, even if that means the
19  * error handling takes potentially a long time.
20  *
21  * The operation to map back from RMAP chains to processes has to walk
22  * the complete process list and has non linear complexity with the number
23  * mappings. In short it can be quite slow. But since memory corruptions
24  * are rare we hope to get away with this.
25  */
26 
27 /*
28  * Notebook:
29  * - hugetlb needs more code
30  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31  * - pass bad pages to kdump next kernel
32  */
33 #define DEBUG 1		/* remove me in 2.6.34 */
34 #include <linux/kernel.h>
35 #include <linux/mm.h>
36 #include <linux/page-flags.h>
37 #include <linux/kernel-page-flags.h>
38 #include <linux/sched.h>
39 #include <linux/ksm.h>
40 #include <linux/rmap.h>
41 #include <linux/pagemap.h>
42 #include <linux/swap.h>
43 #include <linux/backing-dev.h>
44 #include <linux/migrate.h>
45 #include <linux/page-isolation.h>
46 #include <linux/suspend.h>
47 #include "internal.h"
48 
49 int sysctl_memory_failure_early_kill __read_mostly = 0;
50 
51 int sysctl_memory_failure_recovery __read_mostly = 1;
52 
53 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
54 
55 u32 hwpoison_filter_enable = 0;
56 u32 hwpoison_filter_dev_major = ~0U;
57 u32 hwpoison_filter_dev_minor = ~0U;
58 u64 hwpoison_filter_flags_mask;
59 u64 hwpoison_filter_flags_value;
60 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
61 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
62 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
63 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
64 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
65 
66 static int hwpoison_filter_dev(struct page *p)
67 {
68 	struct address_space *mapping;
69 	dev_t dev;
70 
71 	if (hwpoison_filter_dev_major == ~0U &&
72 	    hwpoison_filter_dev_minor == ~0U)
73 		return 0;
74 
75 	/*
76 	 * page_mapping() does not accept slab page
77 	 */
78 	if (PageSlab(p))
79 		return -EINVAL;
80 
81 	mapping = page_mapping(p);
82 	if (mapping == NULL || mapping->host == NULL)
83 		return -EINVAL;
84 
85 	dev = mapping->host->i_sb->s_dev;
86 	if (hwpoison_filter_dev_major != ~0U &&
87 	    hwpoison_filter_dev_major != MAJOR(dev))
88 		return -EINVAL;
89 	if (hwpoison_filter_dev_minor != ~0U &&
90 	    hwpoison_filter_dev_minor != MINOR(dev))
91 		return -EINVAL;
92 
93 	return 0;
94 }
95 
96 static int hwpoison_filter_flags(struct page *p)
97 {
98 	if (!hwpoison_filter_flags_mask)
99 		return 0;
100 
101 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
102 				    hwpoison_filter_flags_value)
103 		return 0;
104 	else
105 		return -EINVAL;
106 }
107 
108 /*
109  * This allows stress tests to limit test scope to a collection of tasks
110  * by putting them under some memcg. This prevents killing unrelated/important
111  * processes such as /sbin/init. Note that the target task may share clean
112  * pages with init (eg. libc text), which is harmless. If the target task
113  * share _dirty_ pages with another task B, the test scheme must make sure B
114  * is also included in the memcg. At last, due to race conditions this filter
115  * can only guarantee that the page either belongs to the memcg tasks, or is
116  * a freed page.
117  */
118 #ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
119 u64 hwpoison_filter_memcg;
120 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
121 static int hwpoison_filter_task(struct page *p)
122 {
123 	struct mem_cgroup *mem;
124 	struct cgroup_subsys_state *css;
125 	unsigned long ino;
126 
127 	if (!hwpoison_filter_memcg)
128 		return 0;
129 
130 	mem = try_get_mem_cgroup_from_page(p);
131 	if (!mem)
132 		return -EINVAL;
133 
134 	css = mem_cgroup_css(mem);
135 	/* root_mem_cgroup has NULL dentries */
136 	if (!css->cgroup->dentry)
137 		return -EINVAL;
138 
139 	ino = css->cgroup->dentry->d_inode->i_ino;
140 	css_put(css);
141 
142 	if (ino != hwpoison_filter_memcg)
143 		return -EINVAL;
144 
145 	return 0;
146 }
147 #else
148 static int hwpoison_filter_task(struct page *p) { return 0; }
149 #endif
150 
151 int hwpoison_filter(struct page *p)
152 {
153 	if (!hwpoison_filter_enable)
154 		return 0;
155 
156 	if (hwpoison_filter_dev(p))
157 		return -EINVAL;
158 
159 	if (hwpoison_filter_flags(p))
160 		return -EINVAL;
161 
162 	if (hwpoison_filter_task(p))
163 		return -EINVAL;
164 
165 	return 0;
166 }
167 EXPORT_SYMBOL_GPL(hwpoison_filter);
168 
169 /*
170  * Send all the processes who have the page mapped an ``action optional''
171  * signal.
172  */
173 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
174 			unsigned long pfn)
175 {
176 	struct siginfo si;
177 	int ret;
178 
179 	printk(KERN_ERR
180 		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
181 		pfn, t->comm, t->pid);
182 	si.si_signo = SIGBUS;
183 	si.si_errno = 0;
184 	si.si_code = BUS_MCEERR_AO;
185 	si.si_addr = (void *)addr;
186 #ifdef __ARCH_SI_TRAPNO
187 	si.si_trapno = trapno;
188 #endif
189 	si.si_addr_lsb = PAGE_SHIFT;
190 	/*
191 	 * Don't use force here, it's convenient if the signal
192 	 * can be temporarily blocked.
193 	 * This could cause a loop when the user sets SIGBUS
194 	 * to SIG_IGN, but hopefully noone will do that?
195 	 */
196 	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
197 	if (ret < 0)
198 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
199 		       t->comm, t->pid, ret);
200 	return ret;
201 }
202 
203 /*
204  * When a unknown page type is encountered drain as many buffers as possible
205  * in the hope to turn the page into a LRU or free page, which we can handle.
206  */
207 void shake_page(struct page *p, int access)
208 {
209 	if (!PageSlab(p)) {
210 		lru_add_drain_all();
211 		if (PageLRU(p))
212 			return;
213 		drain_all_pages();
214 		if (PageLRU(p) || is_free_buddy_page(p))
215 			return;
216 	}
217 
218 	/*
219 	 * Only all shrink_slab here (which would also
220 	 * shrink other caches) if access is not potentially fatal.
221 	 */
222 	if (access) {
223 		int nr;
224 		do {
225 			nr = shrink_slab(1000, GFP_KERNEL, 1000);
226 			if (page_count(p) == 0)
227 				break;
228 		} while (nr > 10);
229 	}
230 }
231 EXPORT_SYMBOL_GPL(shake_page);
232 
233 /*
234  * Kill all processes that have a poisoned page mapped and then isolate
235  * the page.
236  *
237  * General strategy:
238  * Find all processes having the page mapped and kill them.
239  * But we keep a page reference around so that the page is not
240  * actually freed yet.
241  * Then stash the page away
242  *
243  * There's no convenient way to get back to mapped processes
244  * from the VMAs. So do a brute-force search over all
245  * running processes.
246  *
247  * Remember that machine checks are not common (or rather
248  * if they are common you have other problems), so this shouldn't
249  * be a performance issue.
250  *
251  * Also there are some races possible while we get from the
252  * error detection to actually handle it.
253  */
254 
255 struct to_kill {
256 	struct list_head nd;
257 	struct task_struct *tsk;
258 	unsigned long addr;
259 	unsigned addr_valid:1;
260 };
261 
262 /*
263  * Failure handling: if we can't find or can't kill a process there's
264  * not much we can do.	We just print a message and ignore otherwise.
265  */
266 
267 /*
268  * Schedule a process for later kill.
269  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
270  * TBD would GFP_NOIO be enough?
271  */
272 static void add_to_kill(struct task_struct *tsk, struct page *p,
273 		       struct vm_area_struct *vma,
274 		       struct list_head *to_kill,
275 		       struct to_kill **tkc)
276 {
277 	struct to_kill *tk;
278 
279 	if (*tkc) {
280 		tk = *tkc;
281 		*tkc = NULL;
282 	} else {
283 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
284 		if (!tk) {
285 			printk(KERN_ERR
286 		"MCE: Out of memory while machine check handling\n");
287 			return;
288 		}
289 	}
290 	tk->addr = page_address_in_vma(p, vma);
291 	tk->addr_valid = 1;
292 
293 	/*
294 	 * In theory we don't have to kill when the page was
295 	 * munmaped. But it could be also a mremap. Since that's
296 	 * likely very rare kill anyways just out of paranoia, but use
297 	 * a SIGKILL because the error is not contained anymore.
298 	 */
299 	if (tk->addr == -EFAULT) {
300 		pr_debug("MCE: Unable to find user space address %lx in %s\n",
301 			page_to_pfn(p), tsk->comm);
302 		tk->addr_valid = 0;
303 	}
304 	get_task_struct(tsk);
305 	tk->tsk = tsk;
306 	list_add_tail(&tk->nd, to_kill);
307 }
308 
309 /*
310  * Kill the processes that have been collected earlier.
311  *
312  * Only do anything when DOIT is set, otherwise just free the list
313  * (this is used for clean pages which do not need killing)
314  * Also when FAIL is set do a force kill because something went
315  * wrong earlier.
316  */
317 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
318 			  int fail, unsigned long pfn)
319 {
320 	struct to_kill *tk, *next;
321 
322 	list_for_each_entry_safe (tk, next, to_kill, nd) {
323 		if (doit) {
324 			/*
325 			 * In case something went wrong with munmapping
326 			 * make sure the process doesn't catch the
327 			 * signal and then access the memory. Just kill it.
328 			 */
329 			if (fail || tk->addr_valid == 0) {
330 				printk(KERN_ERR
331 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
332 					pfn, tk->tsk->comm, tk->tsk->pid);
333 				force_sig(SIGKILL, tk->tsk);
334 			}
335 
336 			/*
337 			 * In theory the process could have mapped
338 			 * something else on the address in-between. We could
339 			 * check for that, but we need to tell the
340 			 * process anyways.
341 			 */
342 			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
343 					      pfn) < 0)
344 				printk(KERN_ERR
345 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
346 					pfn, tk->tsk->comm, tk->tsk->pid);
347 		}
348 		put_task_struct(tk->tsk);
349 		kfree(tk);
350 	}
351 }
352 
353 static int task_early_kill(struct task_struct *tsk)
354 {
355 	if (!tsk->mm)
356 		return 0;
357 	if (tsk->flags & PF_MCE_PROCESS)
358 		return !!(tsk->flags & PF_MCE_EARLY);
359 	return sysctl_memory_failure_early_kill;
360 }
361 
362 /*
363  * Collect processes when the error hit an anonymous page.
364  */
365 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
366 			      struct to_kill **tkc)
367 {
368 	struct vm_area_struct *vma;
369 	struct task_struct *tsk;
370 	struct anon_vma *av;
371 
372 	read_lock(&tasklist_lock);
373 	av = page_lock_anon_vma(page);
374 	if (av == NULL)	/* Not actually mapped anymore */
375 		goto out;
376 	for_each_process (tsk) {
377 		if (!task_early_kill(tsk))
378 			continue;
379 		list_for_each_entry (vma, &av->head, anon_vma_node) {
380 			if (!page_mapped_in_vma(page, vma))
381 				continue;
382 			if (vma->vm_mm == tsk->mm)
383 				add_to_kill(tsk, page, vma, to_kill, tkc);
384 		}
385 	}
386 	page_unlock_anon_vma(av);
387 out:
388 	read_unlock(&tasklist_lock);
389 }
390 
391 /*
392  * Collect processes when the error hit a file mapped page.
393  */
394 static void collect_procs_file(struct page *page, struct list_head *to_kill,
395 			      struct to_kill **tkc)
396 {
397 	struct vm_area_struct *vma;
398 	struct task_struct *tsk;
399 	struct prio_tree_iter iter;
400 	struct address_space *mapping = page->mapping;
401 
402 	/*
403 	 * A note on the locking order between the two locks.
404 	 * We don't rely on this particular order.
405 	 * If you have some other code that needs a different order
406 	 * feel free to switch them around. Or add a reverse link
407 	 * from mm_struct to task_struct, then this could be all
408 	 * done without taking tasklist_lock and looping over all tasks.
409 	 */
410 
411 	read_lock(&tasklist_lock);
412 	spin_lock(&mapping->i_mmap_lock);
413 	for_each_process(tsk) {
414 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
415 
416 		if (!task_early_kill(tsk))
417 			continue;
418 
419 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
420 				      pgoff) {
421 			/*
422 			 * Send early kill signal to tasks where a vma covers
423 			 * the page but the corrupted page is not necessarily
424 			 * mapped it in its pte.
425 			 * Assume applications who requested early kill want
426 			 * to be informed of all such data corruptions.
427 			 */
428 			if (vma->vm_mm == tsk->mm)
429 				add_to_kill(tsk, page, vma, to_kill, tkc);
430 		}
431 	}
432 	spin_unlock(&mapping->i_mmap_lock);
433 	read_unlock(&tasklist_lock);
434 }
435 
436 /*
437  * Collect the processes who have the corrupted page mapped to kill.
438  * This is done in two steps for locking reasons.
439  * First preallocate one tokill structure outside the spin locks,
440  * so that we can kill at least one process reasonably reliable.
441  */
442 static void collect_procs(struct page *page, struct list_head *tokill)
443 {
444 	struct to_kill *tk;
445 
446 	if (!page->mapping)
447 		return;
448 
449 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
450 	if (!tk)
451 		return;
452 	if (PageAnon(page))
453 		collect_procs_anon(page, tokill, &tk);
454 	else
455 		collect_procs_file(page, tokill, &tk);
456 	kfree(tk);
457 }
458 
459 /*
460  * Error handlers for various types of pages.
461  */
462 
463 enum outcome {
464 	IGNORED,	/* Error: cannot be handled */
465 	FAILED,		/* Error: handling failed */
466 	DELAYED,	/* Will be handled later */
467 	RECOVERED,	/* Successfully recovered */
468 };
469 
470 static const char *action_name[] = {
471 	[IGNORED] = "Ignored",
472 	[FAILED] = "Failed",
473 	[DELAYED] = "Delayed",
474 	[RECOVERED] = "Recovered",
475 };
476 
477 /*
478  * XXX: It is possible that a page is isolated from LRU cache,
479  * and then kept in swap cache or failed to remove from page cache.
480  * The page count will stop it from being freed by unpoison.
481  * Stress tests should be aware of this memory leak problem.
482  */
483 static int delete_from_lru_cache(struct page *p)
484 {
485 	if (!isolate_lru_page(p)) {
486 		/*
487 		 * Clear sensible page flags, so that the buddy system won't
488 		 * complain when the page is unpoison-and-freed.
489 		 */
490 		ClearPageActive(p);
491 		ClearPageUnevictable(p);
492 		/*
493 		 * drop the page count elevated by isolate_lru_page()
494 		 */
495 		page_cache_release(p);
496 		return 0;
497 	}
498 	return -EIO;
499 }
500 
501 /*
502  * Error hit kernel page.
503  * Do nothing, try to be lucky and not touch this instead. For a few cases we
504  * could be more sophisticated.
505  */
506 static int me_kernel(struct page *p, unsigned long pfn)
507 {
508 	return IGNORED;
509 }
510 
511 /*
512  * Page in unknown state. Do nothing.
513  */
514 static int me_unknown(struct page *p, unsigned long pfn)
515 {
516 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
517 	return FAILED;
518 }
519 
520 /*
521  * Clean (or cleaned) page cache page.
522  */
523 static int me_pagecache_clean(struct page *p, unsigned long pfn)
524 {
525 	int err;
526 	int ret = FAILED;
527 	struct address_space *mapping;
528 
529 	delete_from_lru_cache(p);
530 
531 	/*
532 	 * For anonymous pages we're done the only reference left
533 	 * should be the one m_f() holds.
534 	 */
535 	if (PageAnon(p))
536 		return RECOVERED;
537 
538 	/*
539 	 * Now truncate the page in the page cache. This is really
540 	 * more like a "temporary hole punch"
541 	 * Don't do this for block devices when someone else
542 	 * has a reference, because it could be file system metadata
543 	 * and that's not safe to truncate.
544 	 */
545 	mapping = page_mapping(p);
546 	if (!mapping) {
547 		/*
548 		 * Page has been teared down in the meanwhile
549 		 */
550 		return FAILED;
551 	}
552 
553 	/*
554 	 * Truncation is a bit tricky. Enable it per file system for now.
555 	 *
556 	 * Open: to take i_mutex or not for this? Right now we don't.
557 	 */
558 	if (mapping->a_ops->error_remove_page) {
559 		err = mapping->a_ops->error_remove_page(mapping, p);
560 		if (err != 0) {
561 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
562 					pfn, err);
563 		} else if (page_has_private(p) &&
564 				!try_to_release_page(p, GFP_NOIO)) {
565 			pr_debug("MCE %#lx: failed to release buffers\n", pfn);
566 		} else {
567 			ret = RECOVERED;
568 		}
569 	} else {
570 		/*
571 		 * If the file system doesn't support it just invalidate
572 		 * This fails on dirty or anything with private pages
573 		 */
574 		if (invalidate_inode_page(p))
575 			ret = RECOVERED;
576 		else
577 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
578 				pfn);
579 	}
580 	return ret;
581 }
582 
583 /*
584  * Dirty cache page page
585  * Issues: when the error hit a hole page the error is not properly
586  * propagated.
587  */
588 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
589 {
590 	struct address_space *mapping = page_mapping(p);
591 
592 	SetPageError(p);
593 	/* TBD: print more information about the file. */
594 	if (mapping) {
595 		/*
596 		 * IO error will be reported by write(), fsync(), etc.
597 		 * who check the mapping.
598 		 * This way the application knows that something went
599 		 * wrong with its dirty file data.
600 		 *
601 		 * There's one open issue:
602 		 *
603 		 * The EIO will be only reported on the next IO
604 		 * operation and then cleared through the IO map.
605 		 * Normally Linux has two mechanisms to pass IO error
606 		 * first through the AS_EIO flag in the address space
607 		 * and then through the PageError flag in the page.
608 		 * Since we drop pages on memory failure handling the
609 		 * only mechanism open to use is through AS_AIO.
610 		 *
611 		 * This has the disadvantage that it gets cleared on
612 		 * the first operation that returns an error, while
613 		 * the PageError bit is more sticky and only cleared
614 		 * when the page is reread or dropped.  If an
615 		 * application assumes it will always get error on
616 		 * fsync, but does other operations on the fd before
617 		 * and the page is dropped inbetween then the error
618 		 * will not be properly reported.
619 		 *
620 		 * This can already happen even without hwpoisoned
621 		 * pages: first on metadata IO errors (which only
622 		 * report through AS_EIO) or when the page is dropped
623 		 * at the wrong time.
624 		 *
625 		 * So right now we assume that the application DTRT on
626 		 * the first EIO, but we're not worse than other parts
627 		 * of the kernel.
628 		 */
629 		mapping_set_error(mapping, EIO);
630 	}
631 
632 	return me_pagecache_clean(p, pfn);
633 }
634 
635 /*
636  * Clean and dirty swap cache.
637  *
638  * Dirty swap cache page is tricky to handle. The page could live both in page
639  * cache and swap cache(ie. page is freshly swapped in). So it could be
640  * referenced concurrently by 2 types of PTEs:
641  * normal PTEs and swap PTEs. We try to handle them consistently by calling
642  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
643  * and then
644  *      - clear dirty bit to prevent IO
645  *      - remove from LRU
646  *      - but keep in the swap cache, so that when we return to it on
647  *        a later page fault, we know the application is accessing
648  *        corrupted data and shall be killed (we installed simple
649  *        interception code in do_swap_page to catch it).
650  *
651  * Clean swap cache pages can be directly isolated. A later page fault will
652  * bring in the known good data from disk.
653  */
654 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
655 {
656 	ClearPageDirty(p);
657 	/* Trigger EIO in shmem: */
658 	ClearPageUptodate(p);
659 
660 	if (!delete_from_lru_cache(p))
661 		return DELAYED;
662 	else
663 		return FAILED;
664 }
665 
666 static int me_swapcache_clean(struct page *p, unsigned long pfn)
667 {
668 	delete_from_swap_cache(p);
669 
670 	if (!delete_from_lru_cache(p))
671 		return RECOVERED;
672 	else
673 		return FAILED;
674 }
675 
676 /*
677  * Huge pages. Needs work.
678  * Issues:
679  * No rmap support so we cannot find the original mapper. In theory could walk
680  * all MMs and look for the mappings, but that would be non atomic and racy.
681  * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
682  * like just walking the current process and hoping it has it mapped (that
683  * should be usually true for the common "shared database cache" case)
684  * Should handle free huge pages and dequeue them too, but this needs to
685  * handle huge page accounting correctly.
686  */
687 static int me_huge_page(struct page *p, unsigned long pfn)
688 {
689 	return FAILED;
690 }
691 
692 /*
693  * Various page states we can handle.
694  *
695  * A page state is defined by its current page->flags bits.
696  * The table matches them in order and calls the right handler.
697  *
698  * This is quite tricky because we can access page at any time
699  * in its live cycle, so all accesses have to be extremly careful.
700  *
701  * This is not complete. More states could be added.
702  * For any missing state don't attempt recovery.
703  */
704 
705 #define dirty		(1UL << PG_dirty)
706 #define sc		(1UL << PG_swapcache)
707 #define unevict		(1UL << PG_unevictable)
708 #define mlock		(1UL << PG_mlocked)
709 #define writeback	(1UL << PG_writeback)
710 #define lru		(1UL << PG_lru)
711 #define swapbacked	(1UL << PG_swapbacked)
712 #define head		(1UL << PG_head)
713 #define tail		(1UL << PG_tail)
714 #define compound	(1UL << PG_compound)
715 #define slab		(1UL << PG_slab)
716 #define reserved	(1UL << PG_reserved)
717 
718 static struct page_state {
719 	unsigned long mask;
720 	unsigned long res;
721 	char *msg;
722 	int (*action)(struct page *p, unsigned long pfn);
723 } error_states[] = {
724 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
725 	/*
726 	 * free pages are specially detected outside this table:
727 	 * PG_buddy pages only make a small fraction of all free pages.
728 	 */
729 
730 	/*
731 	 * Could in theory check if slab page is free or if we can drop
732 	 * currently unused objects without touching them. But just
733 	 * treat it as standard kernel for now.
734 	 */
735 	{ slab,		slab,		"kernel slab",	me_kernel },
736 
737 #ifdef CONFIG_PAGEFLAGS_EXTENDED
738 	{ head,		head,		"huge",		me_huge_page },
739 	{ tail,		tail,		"huge",		me_huge_page },
740 #else
741 	{ compound,	compound,	"huge",		me_huge_page },
742 #endif
743 
744 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
745 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
746 
747 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
748 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
749 
750 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
751 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
752 
753 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
754 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
755 
756 	/*
757 	 * Catchall entry: must be at end.
758 	 */
759 	{ 0,		0,		"unknown page state",	me_unknown },
760 };
761 
762 #undef dirty
763 #undef sc
764 #undef unevict
765 #undef mlock
766 #undef writeback
767 #undef lru
768 #undef swapbacked
769 #undef head
770 #undef tail
771 #undef compound
772 #undef slab
773 #undef reserved
774 
775 static void action_result(unsigned long pfn, char *msg, int result)
776 {
777 	struct page *page = pfn_to_page(pfn);
778 
779 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
780 		pfn,
781 		PageDirty(page) ? "dirty " : "",
782 		msg, action_name[result]);
783 }
784 
785 static int page_action(struct page_state *ps, struct page *p,
786 			unsigned long pfn)
787 {
788 	int result;
789 	int count;
790 
791 	result = ps->action(p, pfn);
792 	action_result(pfn, ps->msg, result);
793 
794 	count = page_count(p) - 1;
795 	if (ps->action == me_swapcache_dirty && result == DELAYED)
796 		count--;
797 	if (count != 0) {
798 		printk(KERN_ERR
799 		       "MCE %#lx: %s page still referenced by %d users\n",
800 		       pfn, ps->msg, count);
801 		result = FAILED;
802 	}
803 
804 	/* Could do more checks here if page looks ok */
805 	/*
806 	 * Could adjust zone counters here to correct for the missing page.
807 	 */
808 
809 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
810 }
811 
812 #define N_UNMAP_TRIES 5
813 
814 /*
815  * Do all that is necessary to remove user space mappings. Unmap
816  * the pages and send SIGBUS to the processes if the data was dirty.
817  */
818 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
819 				  int trapno)
820 {
821 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
822 	struct address_space *mapping;
823 	LIST_HEAD(tokill);
824 	int ret;
825 	int i;
826 	int kill = 1;
827 
828 	if (PageReserved(p) || PageSlab(p))
829 		return SWAP_SUCCESS;
830 
831 	/*
832 	 * This check implies we don't kill processes if their pages
833 	 * are in the swap cache early. Those are always late kills.
834 	 */
835 	if (!page_mapped(p))
836 		return SWAP_SUCCESS;
837 
838 	if (PageCompound(p) || PageKsm(p))
839 		return SWAP_FAIL;
840 
841 	if (PageSwapCache(p)) {
842 		printk(KERN_ERR
843 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
844 		ttu |= TTU_IGNORE_HWPOISON;
845 	}
846 
847 	/*
848 	 * Propagate the dirty bit from PTEs to struct page first, because we
849 	 * need this to decide if we should kill or just drop the page.
850 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
851 	 * be called inside page lock (it's recommended but not enforced).
852 	 */
853 	mapping = page_mapping(p);
854 	if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
855 		if (page_mkclean(p)) {
856 			SetPageDirty(p);
857 		} else {
858 			kill = 0;
859 			ttu |= TTU_IGNORE_HWPOISON;
860 			printk(KERN_INFO
861 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
862 				pfn);
863 		}
864 	}
865 
866 	/*
867 	 * First collect all the processes that have the page
868 	 * mapped in dirty form.  This has to be done before try_to_unmap,
869 	 * because ttu takes the rmap data structures down.
870 	 *
871 	 * Error handling: We ignore errors here because
872 	 * there's nothing that can be done.
873 	 */
874 	if (kill)
875 		collect_procs(p, &tokill);
876 
877 	/*
878 	 * try_to_unmap can fail temporarily due to races.
879 	 * Try a few times (RED-PEN better strategy?)
880 	 */
881 	for (i = 0; i < N_UNMAP_TRIES; i++) {
882 		ret = try_to_unmap(p, ttu);
883 		if (ret == SWAP_SUCCESS)
884 			break;
885 		pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn,  ret);
886 	}
887 
888 	if (ret != SWAP_SUCCESS)
889 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
890 				pfn, page_mapcount(p));
891 
892 	/*
893 	 * Now that the dirty bit has been propagated to the
894 	 * struct page and all unmaps done we can decide if
895 	 * killing is needed or not.  Only kill when the page
896 	 * was dirty, otherwise the tokill list is merely
897 	 * freed.  When there was a problem unmapping earlier
898 	 * use a more force-full uncatchable kill to prevent
899 	 * any accesses to the poisoned memory.
900 	 */
901 	kill_procs_ao(&tokill, !!PageDirty(p), trapno,
902 		      ret != SWAP_SUCCESS, pfn);
903 
904 	return ret;
905 }
906 
907 int __memory_failure(unsigned long pfn, int trapno, int flags)
908 {
909 	struct page_state *ps;
910 	struct page *p;
911 	int res;
912 
913 	if (!sysctl_memory_failure_recovery)
914 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
915 
916 	if (!pfn_valid(pfn)) {
917 		printk(KERN_ERR
918 		       "MCE %#lx: memory outside kernel control\n",
919 		       pfn);
920 		return -ENXIO;
921 	}
922 
923 	p = pfn_to_page(pfn);
924 	if (TestSetPageHWPoison(p)) {
925 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
926 		return 0;
927 	}
928 
929 	atomic_long_add(1, &mce_bad_pages);
930 
931 	/*
932 	 * We need/can do nothing about count=0 pages.
933 	 * 1) it's a free page, and therefore in safe hand:
934 	 *    prep_new_page() will be the gate keeper.
935 	 * 2) it's part of a non-compound high order page.
936 	 *    Implies some kernel user: cannot stop them from
937 	 *    R/W the page; let's pray that the page has been
938 	 *    used and will be freed some time later.
939 	 * In fact it's dangerous to directly bump up page count from 0,
940 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
941 	 */
942 	if (!(flags & MF_COUNT_INCREASED) &&
943 		!get_page_unless_zero(compound_head(p))) {
944 		if (is_free_buddy_page(p)) {
945 			action_result(pfn, "free buddy", DELAYED);
946 			return 0;
947 		} else {
948 			action_result(pfn, "high order kernel", IGNORED);
949 			return -EBUSY;
950 		}
951 	}
952 
953 	/*
954 	 * We ignore non-LRU pages for good reasons.
955 	 * - PG_locked is only well defined for LRU pages and a few others
956 	 * - to avoid races with __set_page_locked()
957 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
958 	 * The check (unnecessarily) ignores LRU pages being isolated and
959 	 * walked by the page reclaim code, however that's not a big loss.
960 	 */
961 	if (!PageLRU(p))
962 		shake_page(p, 0);
963 	if (!PageLRU(p)) {
964 		/*
965 		 * shake_page could have turned it free.
966 		 */
967 		if (is_free_buddy_page(p)) {
968 			action_result(pfn, "free buddy, 2nd try", DELAYED);
969 			return 0;
970 		}
971 		action_result(pfn, "non LRU", IGNORED);
972 		put_page(p);
973 		return -EBUSY;
974 	}
975 
976 	/*
977 	 * Lock the page and wait for writeback to finish.
978 	 * It's very difficult to mess with pages currently under IO
979 	 * and in many cases impossible, so we just avoid it here.
980 	 */
981 	lock_page_nosync(p);
982 
983 	/*
984 	 * unpoison always clear PG_hwpoison inside page lock
985 	 */
986 	if (!PageHWPoison(p)) {
987 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
988 		res = 0;
989 		goto out;
990 	}
991 	if (hwpoison_filter(p)) {
992 		if (TestClearPageHWPoison(p))
993 			atomic_long_dec(&mce_bad_pages);
994 		unlock_page(p);
995 		put_page(p);
996 		return 0;
997 	}
998 
999 	wait_on_page_writeback(p);
1000 
1001 	/*
1002 	 * Now take care of user space mappings.
1003 	 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
1004 	 */
1005 	if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1006 		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1007 		res = -EBUSY;
1008 		goto out;
1009 	}
1010 
1011 	/*
1012 	 * Torn down by someone else?
1013 	 */
1014 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1015 		action_result(pfn, "already truncated LRU", IGNORED);
1016 		res = -EBUSY;
1017 		goto out;
1018 	}
1019 
1020 	res = -EBUSY;
1021 	for (ps = error_states;; ps++) {
1022 		if ((p->flags & ps->mask) == ps->res) {
1023 			res = page_action(ps, p, pfn);
1024 			break;
1025 		}
1026 	}
1027 out:
1028 	unlock_page(p);
1029 	return res;
1030 }
1031 EXPORT_SYMBOL_GPL(__memory_failure);
1032 
1033 /**
1034  * memory_failure - Handle memory failure of a page.
1035  * @pfn: Page Number of the corrupted page
1036  * @trapno: Trap number reported in the signal to user space.
1037  *
1038  * This function is called by the low level machine check code
1039  * of an architecture when it detects hardware memory corruption
1040  * of a page. It tries its best to recover, which includes
1041  * dropping pages, killing processes etc.
1042  *
1043  * The function is primarily of use for corruptions that
1044  * happen outside the current execution context (e.g. when
1045  * detected by a background scrubber)
1046  *
1047  * Must run in process context (e.g. a work queue) with interrupts
1048  * enabled and no spinlocks hold.
1049  */
1050 void memory_failure(unsigned long pfn, int trapno)
1051 {
1052 	__memory_failure(pfn, trapno, 0);
1053 }
1054 
1055 /**
1056  * unpoison_memory - Unpoison a previously poisoned page
1057  * @pfn: Page number of the to be unpoisoned page
1058  *
1059  * Software-unpoison a page that has been poisoned by
1060  * memory_failure() earlier.
1061  *
1062  * This is only done on the software-level, so it only works
1063  * for linux injected failures, not real hardware failures
1064  *
1065  * Returns 0 for success, otherwise -errno.
1066  */
1067 int unpoison_memory(unsigned long pfn)
1068 {
1069 	struct page *page;
1070 	struct page *p;
1071 	int freeit = 0;
1072 
1073 	if (!pfn_valid(pfn))
1074 		return -ENXIO;
1075 
1076 	p = pfn_to_page(pfn);
1077 	page = compound_head(p);
1078 
1079 	if (!PageHWPoison(p)) {
1080 		pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
1081 		return 0;
1082 	}
1083 
1084 	if (!get_page_unless_zero(page)) {
1085 		if (TestClearPageHWPoison(p))
1086 			atomic_long_dec(&mce_bad_pages);
1087 		pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
1088 		return 0;
1089 	}
1090 
1091 	lock_page_nosync(page);
1092 	/*
1093 	 * This test is racy because PG_hwpoison is set outside of page lock.
1094 	 * That's acceptable because that won't trigger kernel panic. Instead,
1095 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1096 	 * the free buddy page pool.
1097 	 */
1098 	if (TestClearPageHWPoison(p)) {
1099 		pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
1100 		atomic_long_dec(&mce_bad_pages);
1101 		freeit = 1;
1102 	}
1103 	unlock_page(page);
1104 
1105 	put_page(page);
1106 	if (freeit)
1107 		put_page(page);
1108 
1109 	return 0;
1110 }
1111 EXPORT_SYMBOL(unpoison_memory);
1112 
1113 static struct page *new_page(struct page *p, unsigned long private, int **x)
1114 {
1115 	int nid = page_to_nid(p);
1116 	return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1117 }
1118 
1119 /*
1120  * Safely get reference count of an arbitrary page.
1121  * Returns 0 for a free page, -EIO for a zero refcount page
1122  * that is not free, and 1 for any other page type.
1123  * For 1 the page is returned with increased page count, otherwise not.
1124  */
1125 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1126 {
1127 	int ret;
1128 
1129 	if (flags & MF_COUNT_INCREASED)
1130 		return 1;
1131 
1132 	/*
1133 	 * The lock_system_sleep prevents a race with memory hotplug,
1134 	 * because the isolation assumes there's only a single user.
1135 	 * This is a big hammer, a better would be nicer.
1136 	 */
1137 	lock_system_sleep();
1138 
1139 	/*
1140 	 * Isolate the page, so that it doesn't get reallocated if it
1141 	 * was free.
1142 	 */
1143 	set_migratetype_isolate(p);
1144 	if (!get_page_unless_zero(compound_head(p))) {
1145 		if (is_free_buddy_page(p)) {
1146 			pr_debug("get_any_page: %#lx free buddy page\n", pfn);
1147 			/* Set hwpoison bit while page is still isolated */
1148 			SetPageHWPoison(p);
1149 			ret = 0;
1150 		} else {
1151 			pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1152 				pfn, p->flags);
1153 			ret = -EIO;
1154 		}
1155 	} else {
1156 		/* Not a free page */
1157 		ret = 1;
1158 	}
1159 	unset_migratetype_isolate(p);
1160 	unlock_system_sleep();
1161 	return ret;
1162 }
1163 
1164 /**
1165  * soft_offline_page - Soft offline a page.
1166  * @page: page to offline
1167  * @flags: flags. Same as memory_failure().
1168  *
1169  * Returns 0 on success, otherwise negated errno.
1170  *
1171  * Soft offline a page, by migration or invalidation,
1172  * without killing anything. This is for the case when
1173  * a page is not corrupted yet (so it's still valid to access),
1174  * but has had a number of corrected errors and is better taken
1175  * out.
1176  *
1177  * The actual policy on when to do that is maintained by
1178  * user space.
1179  *
1180  * This should never impact any application or cause data loss,
1181  * however it might take some time.
1182  *
1183  * This is not a 100% solution for all memory, but tries to be
1184  * ``good enough'' for the majority of memory.
1185  */
1186 int soft_offline_page(struct page *page, int flags)
1187 {
1188 	int ret;
1189 	unsigned long pfn = page_to_pfn(page);
1190 
1191 	ret = get_any_page(page, pfn, flags);
1192 	if (ret < 0)
1193 		return ret;
1194 	if (ret == 0)
1195 		goto done;
1196 
1197 	/*
1198 	 * Page cache page we can handle?
1199 	 */
1200 	if (!PageLRU(page)) {
1201 		/*
1202 		 * Try to free it.
1203 		 */
1204 		put_page(page);
1205 		shake_page(page, 1);
1206 
1207 		/*
1208 		 * Did it turn free?
1209 		 */
1210 		ret = get_any_page(page, pfn, 0);
1211 		if (ret < 0)
1212 			return ret;
1213 		if (ret == 0)
1214 			goto done;
1215 	}
1216 	if (!PageLRU(page)) {
1217 		pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
1218 				pfn, page->flags);
1219 		return -EIO;
1220 	}
1221 
1222 	lock_page(page);
1223 	wait_on_page_writeback(page);
1224 
1225 	/*
1226 	 * Synchronized using the page lock with memory_failure()
1227 	 */
1228 	if (PageHWPoison(page)) {
1229 		unlock_page(page);
1230 		put_page(page);
1231 		pr_debug("soft offline: %#lx page already poisoned\n", pfn);
1232 		return -EBUSY;
1233 	}
1234 
1235 	/*
1236 	 * Try to invalidate first. This should work for
1237 	 * non dirty unmapped page cache pages.
1238 	 */
1239 	ret = invalidate_inode_page(page);
1240 	unlock_page(page);
1241 
1242 	/*
1243 	 * Drop count because page migration doesn't like raised
1244 	 * counts. The page could get re-allocated, but if it becomes
1245 	 * LRU the isolation will just fail.
1246 	 * RED-PEN would be better to keep it isolated here, but we
1247 	 * would need to fix isolation locking first.
1248 	 */
1249 	put_page(page);
1250 	if (ret == 1) {
1251 		ret = 0;
1252 		pr_debug("soft_offline: %#lx: invalidated\n", pfn);
1253 		goto done;
1254 	}
1255 
1256 	/*
1257 	 * Simple invalidation didn't work.
1258 	 * Try to migrate to a new page instead. migrate.c
1259 	 * handles a large number of cases for us.
1260 	 */
1261 	ret = isolate_lru_page(page);
1262 	if (!ret) {
1263 		LIST_HEAD(pagelist);
1264 
1265 		list_add(&page->lru, &pagelist);
1266 		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1267 		if (ret) {
1268 			pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1269 				pfn, ret, page->flags);
1270 			if (ret > 0)
1271 				ret = -EIO;
1272 		}
1273 	} else {
1274 		pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1275 				pfn, ret, page_count(page), page->flags);
1276 	}
1277 	if (ret)
1278 		return ret;
1279 
1280 done:
1281 	atomic_long_add(1, &mce_bad_pages);
1282 	SetPageHWPoison(page);
1283 	/* keep elevated page count for bad page */
1284 	return ret;
1285 }
1286