1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a 2bit ECC memory or cache 11 * failure. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronous to other VM 15 * users, because memory failures could happen anytime and anywhere, 16 * possibly violating some of their assumptions. This is why this code 17 * has to be extremely careful. Generally it tries to use normal locking 18 * rules, as in get the standard locks, even if that means the 19 * error handling takes potentially a long time. 20 * 21 * The operation to map back from RMAP chains to processes has to walk 22 * the complete process list and has non linear complexity with the number 23 * mappings. In short it can be quite slow. But since memory corruptions 24 * are rare we hope to get away with this. 25 */ 26 27 /* 28 * Notebook: 29 * - hugetlb needs more code 30 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages 31 * - pass bad pages to kdump next kernel 32 */ 33 #define DEBUG 1 /* remove me in 2.6.34 */ 34 #include <linux/kernel.h> 35 #include <linux/mm.h> 36 #include <linux/page-flags.h> 37 #include <linux/kernel-page-flags.h> 38 #include <linux/sched.h> 39 #include <linux/ksm.h> 40 #include <linux/rmap.h> 41 #include <linux/pagemap.h> 42 #include <linux/swap.h> 43 #include <linux/backing-dev.h> 44 #include <linux/migrate.h> 45 #include <linux/page-isolation.h> 46 #include <linux/suspend.h> 47 #include "internal.h" 48 49 int sysctl_memory_failure_early_kill __read_mostly = 0; 50 51 int sysctl_memory_failure_recovery __read_mostly = 1; 52 53 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0); 54 55 u32 hwpoison_filter_enable = 0; 56 u32 hwpoison_filter_dev_major = ~0U; 57 u32 hwpoison_filter_dev_minor = ~0U; 58 u64 hwpoison_filter_flags_mask; 59 u64 hwpoison_filter_flags_value; 60 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 61 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 62 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 63 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 64 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 65 66 static int hwpoison_filter_dev(struct page *p) 67 { 68 struct address_space *mapping; 69 dev_t dev; 70 71 if (hwpoison_filter_dev_major == ~0U && 72 hwpoison_filter_dev_minor == ~0U) 73 return 0; 74 75 /* 76 * page_mapping() does not accept slab page 77 */ 78 if (PageSlab(p)) 79 return -EINVAL; 80 81 mapping = page_mapping(p); 82 if (mapping == NULL || mapping->host == NULL) 83 return -EINVAL; 84 85 dev = mapping->host->i_sb->s_dev; 86 if (hwpoison_filter_dev_major != ~0U && 87 hwpoison_filter_dev_major != MAJOR(dev)) 88 return -EINVAL; 89 if (hwpoison_filter_dev_minor != ~0U && 90 hwpoison_filter_dev_minor != MINOR(dev)) 91 return -EINVAL; 92 93 return 0; 94 } 95 96 static int hwpoison_filter_flags(struct page *p) 97 { 98 if (!hwpoison_filter_flags_mask) 99 return 0; 100 101 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 102 hwpoison_filter_flags_value) 103 return 0; 104 else 105 return -EINVAL; 106 } 107 108 /* 109 * This allows stress tests to limit test scope to a collection of tasks 110 * by putting them under some memcg. This prevents killing unrelated/important 111 * processes such as /sbin/init. Note that the target task may share clean 112 * pages with init (eg. libc text), which is harmless. If the target task 113 * share _dirty_ pages with another task B, the test scheme must make sure B 114 * is also included in the memcg. At last, due to race conditions this filter 115 * can only guarantee that the page either belongs to the memcg tasks, or is 116 * a freed page. 117 */ 118 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP 119 u64 hwpoison_filter_memcg; 120 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 121 static int hwpoison_filter_task(struct page *p) 122 { 123 struct mem_cgroup *mem; 124 struct cgroup_subsys_state *css; 125 unsigned long ino; 126 127 if (!hwpoison_filter_memcg) 128 return 0; 129 130 mem = try_get_mem_cgroup_from_page(p); 131 if (!mem) 132 return -EINVAL; 133 134 css = mem_cgroup_css(mem); 135 /* root_mem_cgroup has NULL dentries */ 136 if (!css->cgroup->dentry) 137 return -EINVAL; 138 139 ino = css->cgroup->dentry->d_inode->i_ino; 140 css_put(css); 141 142 if (ino != hwpoison_filter_memcg) 143 return -EINVAL; 144 145 return 0; 146 } 147 #else 148 static int hwpoison_filter_task(struct page *p) { return 0; } 149 #endif 150 151 int hwpoison_filter(struct page *p) 152 { 153 if (!hwpoison_filter_enable) 154 return 0; 155 156 if (hwpoison_filter_dev(p)) 157 return -EINVAL; 158 159 if (hwpoison_filter_flags(p)) 160 return -EINVAL; 161 162 if (hwpoison_filter_task(p)) 163 return -EINVAL; 164 165 return 0; 166 } 167 EXPORT_SYMBOL_GPL(hwpoison_filter); 168 169 /* 170 * Send all the processes who have the page mapped an ``action optional'' 171 * signal. 172 */ 173 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno, 174 unsigned long pfn) 175 { 176 struct siginfo si; 177 int ret; 178 179 printk(KERN_ERR 180 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n", 181 pfn, t->comm, t->pid); 182 si.si_signo = SIGBUS; 183 si.si_errno = 0; 184 si.si_code = BUS_MCEERR_AO; 185 si.si_addr = (void *)addr; 186 #ifdef __ARCH_SI_TRAPNO 187 si.si_trapno = trapno; 188 #endif 189 si.si_addr_lsb = PAGE_SHIFT; 190 /* 191 * Don't use force here, it's convenient if the signal 192 * can be temporarily blocked. 193 * This could cause a loop when the user sets SIGBUS 194 * to SIG_IGN, but hopefully noone will do that? 195 */ 196 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */ 197 if (ret < 0) 198 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n", 199 t->comm, t->pid, ret); 200 return ret; 201 } 202 203 /* 204 * When a unknown page type is encountered drain as many buffers as possible 205 * in the hope to turn the page into a LRU or free page, which we can handle. 206 */ 207 void shake_page(struct page *p, int access) 208 { 209 if (!PageSlab(p)) { 210 lru_add_drain_all(); 211 if (PageLRU(p)) 212 return; 213 drain_all_pages(); 214 if (PageLRU(p) || is_free_buddy_page(p)) 215 return; 216 } 217 218 /* 219 * Only all shrink_slab here (which would also 220 * shrink other caches) if access is not potentially fatal. 221 */ 222 if (access) { 223 int nr; 224 do { 225 nr = shrink_slab(1000, GFP_KERNEL, 1000); 226 if (page_count(p) == 0) 227 break; 228 } while (nr > 10); 229 } 230 } 231 EXPORT_SYMBOL_GPL(shake_page); 232 233 /* 234 * Kill all processes that have a poisoned page mapped and then isolate 235 * the page. 236 * 237 * General strategy: 238 * Find all processes having the page mapped and kill them. 239 * But we keep a page reference around so that the page is not 240 * actually freed yet. 241 * Then stash the page away 242 * 243 * There's no convenient way to get back to mapped processes 244 * from the VMAs. So do a brute-force search over all 245 * running processes. 246 * 247 * Remember that machine checks are not common (or rather 248 * if they are common you have other problems), so this shouldn't 249 * be a performance issue. 250 * 251 * Also there are some races possible while we get from the 252 * error detection to actually handle it. 253 */ 254 255 struct to_kill { 256 struct list_head nd; 257 struct task_struct *tsk; 258 unsigned long addr; 259 unsigned addr_valid:1; 260 }; 261 262 /* 263 * Failure handling: if we can't find or can't kill a process there's 264 * not much we can do. We just print a message and ignore otherwise. 265 */ 266 267 /* 268 * Schedule a process for later kill. 269 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 270 * TBD would GFP_NOIO be enough? 271 */ 272 static void add_to_kill(struct task_struct *tsk, struct page *p, 273 struct vm_area_struct *vma, 274 struct list_head *to_kill, 275 struct to_kill **tkc) 276 { 277 struct to_kill *tk; 278 279 if (*tkc) { 280 tk = *tkc; 281 *tkc = NULL; 282 } else { 283 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 284 if (!tk) { 285 printk(KERN_ERR 286 "MCE: Out of memory while machine check handling\n"); 287 return; 288 } 289 } 290 tk->addr = page_address_in_vma(p, vma); 291 tk->addr_valid = 1; 292 293 /* 294 * In theory we don't have to kill when the page was 295 * munmaped. But it could be also a mremap. Since that's 296 * likely very rare kill anyways just out of paranoia, but use 297 * a SIGKILL because the error is not contained anymore. 298 */ 299 if (tk->addr == -EFAULT) { 300 pr_debug("MCE: Unable to find user space address %lx in %s\n", 301 page_to_pfn(p), tsk->comm); 302 tk->addr_valid = 0; 303 } 304 get_task_struct(tsk); 305 tk->tsk = tsk; 306 list_add_tail(&tk->nd, to_kill); 307 } 308 309 /* 310 * Kill the processes that have been collected earlier. 311 * 312 * Only do anything when DOIT is set, otherwise just free the list 313 * (this is used for clean pages which do not need killing) 314 * Also when FAIL is set do a force kill because something went 315 * wrong earlier. 316 */ 317 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno, 318 int fail, unsigned long pfn) 319 { 320 struct to_kill *tk, *next; 321 322 list_for_each_entry_safe (tk, next, to_kill, nd) { 323 if (doit) { 324 /* 325 * In case something went wrong with munmapping 326 * make sure the process doesn't catch the 327 * signal and then access the memory. Just kill it. 328 */ 329 if (fail || tk->addr_valid == 0) { 330 printk(KERN_ERR 331 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 332 pfn, tk->tsk->comm, tk->tsk->pid); 333 force_sig(SIGKILL, tk->tsk); 334 } 335 336 /* 337 * In theory the process could have mapped 338 * something else on the address in-between. We could 339 * check for that, but we need to tell the 340 * process anyways. 341 */ 342 else if (kill_proc_ao(tk->tsk, tk->addr, trapno, 343 pfn) < 0) 344 printk(KERN_ERR 345 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n", 346 pfn, tk->tsk->comm, tk->tsk->pid); 347 } 348 put_task_struct(tk->tsk); 349 kfree(tk); 350 } 351 } 352 353 static int task_early_kill(struct task_struct *tsk) 354 { 355 if (!tsk->mm) 356 return 0; 357 if (tsk->flags & PF_MCE_PROCESS) 358 return !!(tsk->flags & PF_MCE_EARLY); 359 return sysctl_memory_failure_early_kill; 360 } 361 362 /* 363 * Collect processes when the error hit an anonymous page. 364 */ 365 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 366 struct to_kill **tkc) 367 { 368 struct vm_area_struct *vma; 369 struct task_struct *tsk; 370 struct anon_vma *av; 371 372 read_lock(&tasklist_lock); 373 av = page_lock_anon_vma(page); 374 if (av == NULL) /* Not actually mapped anymore */ 375 goto out; 376 for_each_process (tsk) { 377 if (!task_early_kill(tsk)) 378 continue; 379 list_for_each_entry (vma, &av->head, anon_vma_node) { 380 if (!page_mapped_in_vma(page, vma)) 381 continue; 382 if (vma->vm_mm == tsk->mm) 383 add_to_kill(tsk, page, vma, to_kill, tkc); 384 } 385 } 386 page_unlock_anon_vma(av); 387 out: 388 read_unlock(&tasklist_lock); 389 } 390 391 /* 392 * Collect processes when the error hit a file mapped page. 393 */ 394 static void collect_procs_file(struct page *page, struct list_head *to_kill, 395 struct to_kill **tkc) 396 { 397 struct vm_area_struct *vma; 398 struct task_struct *tsk; 399 struct prio_tree_iter iter; 400 struct address_space *mapping = page->mapping; 401 402 /* 403 * A note on the locking order between the two locks. 404 * We don't rely on this particular order. 405 * If you have some other code that needs a different order 406 * feel free to switch them around. Or add a reverse link 407 * from mm_struct to task_struct, then this could be all 408 * done without taking tasklist_lock and looping over all tasks. 409 */ 410 411 read_lock(&tasklist_lock); 412 spin_lock(&mapping->i_mmap_lock); 413 for_each_process(tsk) { 414 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); 415 416 if (!task_early_kill(tsk)) 417 continue; 418 419 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, 420 pgoff) { 421 /* 422 * Send early kill signal to tasks where a vma covers 423 * the page but the corrupted page is not necessarily 424 * mapped it in its pte. 425 * Assume applications who requested early kill want 426 * to be informed of all such data corruptions. 427 */ 428 if (vma->vm_mm == tsk->mm) 429 add_to_kill(tsk, page, vma, to_kill, tkc); 430 } 431 } 432 spin_unlock(&mapping->i_mmap_lock); 433 read_unlock(&tasklist_lock); 434 } 435 436 /* 437 * Collect the processes who have the corrupted page mapped to kill. 438 * This is done in two steps for locking reasons. 439 * First preallocate one tokill structure outside the spin locks, 440 * so that we can kill at least one process reasonably reliable. 441 */ 442 static void collect_procs(struct page *page, struct list_head *tokill) 443 { 444 struct to_kill *tk; 445 446 if (!page->mapping) 447 return; 448 449 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 450 if (!tk) 451 return; 452 if (PageAnon(page)) 453 collect_procs_anon(page, tokill, &tk); 454 else 455 collect_procs_file(page, tokill, &tk); 456 kfree(tk); 457 } 458 459 /* 460 * Error handlers for various types of pages. 461 */ 462 463 enum outcome { 464 IGNORED, /* Error: cannot be handled */ 465 FAILED, /* Error: handling failed */ 466 DELAYED, /* Will be handled later */ 467 RECOVERED, /* Successfully recovered */ 468 }; 469 470 static const char *action_name[] = { 471 [IGNORED] = "Ignored", 472 [FAILED] = "Failed", 473 [DELAYED] = "Delayed", 474 [RECOVERED] = "Recovered", 475 }; 476 477 /* 478 * XXX: It is possible that a page is isolated from LRU cache, 479 * and then kept in swap cache or failed to remove from page cache. 480 * The page count will stop it from being freed by unpoison. 481 * Stress tests should be aware of this memory leak problem. 482 */ 483 static int delete_from_lru_cache(struct page *p) 484 { 485 if (!isolate_lru_page(p)) { 486 /* 487 * Clear sensible page flags, so that the buddy system won't 488 * complain when the page is unpoison-and-freed. 489 */ 490 ClearPageActive(p); 491 ClearPageUnevictable(p); 492 /* 493 * drop the page count elevated by isolate_lru_page() 494 */ 495 page_cache_release(p); 496 return 0; 497 } 498 return -EIO; 499 } 500 501 /* 502 * Error hit kernel page. 503 * Do nothing, try to be lucky and not touch this instead. For a few cases we 504 * could be more sophisticated. 505 */ 506 static int me_kernel(struct page *p, unsigned long pfn) 507 { 508 return IGNORED; 509 } 510 511 /* 512 * Page in unknown state. Do nothing. 513 */ 514 static int me_unknown(struct page *p, unsigned long pfn) 515 { 516 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn); 517 return FAILED; 518 } 519 520 /* 521 * Clean (or cleaned) page cache page. 522 */ 523 static int me_pagecache_clean(struct page *p, unsigned long pfn) 524 { 525 int err; 526 int ret = FAILED; 527 struct address_space *mapping; 528 529 delete_from_lru_cache(p); 530 531 /* 532 * For anonymous pages we're done the only reference left 533 * should be the one m_f() holds. 534 */ 535 if (PageAnon(p)) 536 return RECOVERED; 537 538 /* 539 * Now truncate the page in the page cache. This is really 540 * more like a "temporary hole punch" 541 * Don't do this for block devices when someone else 542 * has a reference, because it could be file system metadata 543 * and that's not safe to truncate. 544 */ 545 mapping = page_mapping(p); 546 if (!mapping) { 547 /* 548 * Page has been teared down in the meanwhile 549 */ 550 return FAILED; 551 } 552 553 /* 554 * Truncation is a bit tricky. Enable it per file system for now. 555 * 556 * Open: to take i_mutex or not for this? Right now we don't. 557 */ 558 if (mapping->a_ops->error_remove_page) { 559 err = mapping->a_ops->error_remove_page(mapping, p); 560 if (err != 0) { 561 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n", 562 pfn, err); 563 } else if (page_has_private(p) && 564 !try_to_release_page(p, GFP_NOIO)) { 565 pr_debug("MCE %#lx: failed to release buffers\n", pfn); 566 } else { 567 ret = RECOVERED; 568 } 569 } else { 570 /* 571 * If the file system doesn't support it just invalidate 572 * This fails on dirty or anything with private pages 573 */ 574 if (invalidate_inode_page(p)) 575 ret = RECOVERED; 576 else 577 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n", 578 pfn); 579 } 580 return ret; 581 } 582 583 /* 584 * Dirty cache page page 585 * Issues: when the error hit a hole page the error is not properly 586 * propagated. 587 */ 588 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 589 { 590 struct address_space *mapping = page_mapping(p); 591 592 SetPageError(p); 593 /* TBD: print more information about the file. */ 594 if (mapping) { 595 /* 596 * IO error will be reported by write(), fsync(), etc. 597 * who check the mapping. 598 * This way the application knows that something went 599 * wrong with its dirty file data. 600 * 601 * There's one open issue: 602 * 603 * The EIO will be only reported on the next IO 604 * operation and then cleared through the IO map. 605 * Normally Linux has two mechanisms to pass IO error 606 * first through the AS_EIO flag in the address space 607 * and then through the PageError flag in the page. 608 * Since we drop pages on memory failure handling the 609 * only mechanism open to use is through AS_AIO. 610 * 611 * This has the disadvantage that it gets cleared on 612 * the first operation that returns an error, while 613 * the PageError bit is more sticky and only cleared 614 * when the page is reread or dropped. If an 615 * application assumes it will always get error on 616 * fsync, but does other operations on the fd before 617 * and the page is dropped inbetween then the error 618 * will not be properly reported. 619 * 620 * This can already happen even without hwpoisoned 621 * pages: first on metadata IO errors (which only 622 * report through AS_EIO) or when the page is dropped 623 * at the wrong time. 624 * 625 * So right now we assume that the application DTRT on 626 * the first EIO, but we're not worse than other parts 627 * of the kernel. 628 */ 629 mapping_set_error(mapping, EIO); 630 } 631 632 return me_pagecache_clean(p, pfn); 633 } 634 635 /* 636 * Clean and dirty swap cache. 637 * 638 * Dirty swap cache page is tricky to handle. The page could live both in page 639 * cache and swap cache(ie. page is freshly swapped in). So it could be 640 * referenced concurrently by 2 types of PTEs: 641 * normal PTEs and swap PTEs. We try to handle them consistently by calling 642 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 643 * and then 644 * - clear dirty bit to prevent IO 645 * - remove from LRU 646 * - but keep in the swap cache, so that when we return to it on 647 * a later page fault, we know the application is accessing 648 * corrupted data and shall be killed (we installed simple 649 * interception code in do_swap_page to catch it). 650 * 651 * Clean swap cache pages can be directly isolated. A later page fault will 652 * bring in the known good data from disk. 653 */ 654 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 655 { 656 ClearPageDirty(p); 657 /* Trigger EIO in shmem: */ 658 ClearPageUptodate(p); 659 660 if (!delete_from_lru_cache(p)) 661 return DELAYED; 662 else 663 return FAILED; 664 } 665 666 static int me_swapcache_clean(struct page *p, unsigned long pfn) 667 { 668 delete_from_swap_cache(p); 669 670 if (!delete_from_lru_cache(p)) 671 return RECOVERED; 672 else 673 return FAILED; 674 } 675 676 /* 677 * Huge pages. Needs work. 678 * Issues: 679 * No rmap support so we cannot find the original mapper. In theory could walk 680 * all MMs and look for the mappings, but that would be non atomic and racy. 681 * Need rmap for hugepages for this. Alternatively we could employ a heuristic, 682 * like just walking the current process and hoping it has it mapped (that 683 * should be usually true for the common "shared database cache" case) 684 * Should handle free huge pages and dequeue them too, but this needs to 685 * handle huge page accounting correctly. 686 */ 687 static int me_huge_page(struct page *p, unsigned long pfn) 688 { 689 return FAILED; 690 } 691 692 /* 693 * Various page states we can handle. 694 * 695 * A page state is defined by its current page->flags bits. 696 * The table matches them in order and calls the right handler. 697 * 698 * This is quite tricky because we can access page at any time 699 * in its live cycle, so all accesses have to be extremly careful. 700 * 701 * This is not complete. More states could be added. 702 * For any missing state don't attempt recovery. 703 */ 704 705 #define dirty (1UL << PG_dirty) 706 #define sc (1UL << PG_swapcache) 707 #define unevict (1UL << PG_unevictable) 708 #define mlock (1UL << PG_mlocked) 709 #define writeback (1UL << PG_writeback) 710 #define lru (1UL << PG_lru) 711 #define swapbacked (1UL << PG_swapbacked) 712 #define head (1UL << PG_head) 713 #define tail (1UL << PG_tail) 714 #define compound (1UL << PG_compound) 715 #define slab (1UL << PG_slab) 716 #define reserved (1UL << PG_reserved) 717 718 static struct page_state { 719 unsigned long mask; 720 unsigned long res; 721 char *msg; 722 int (*action)(struct page *p, unsigned long pfn); 723 } error_states[] = { 724 { reserved, reserved, "reserved kernel", me_kernel }, 725 /* 726 * free pages are specially detected outside this table: 727 * PG_buddy pages only make a small fraction of all free pages. 728 */ 729 730 /* 731 * Could in theory check if slab page is free or if we can drop 732 * currently unused objects without touching them. But just 733 * treat it as standard kernel for now. 734 */ 735 { slab, slab, "kernel slab", me_kernel }, 736 737 #ifdef CONFIG_PAGEFLAGS_EXTENDED 738 { head, head, "huge", me_huge_page }, 739 { tail, tail, "huge", me_huge_page }, 740 #else 741 { compound, compound, "huge", me_huge_page }, 742 #endif 743 744 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty }, 745 { sc|dirty, sc, "swapcache", me_swapcache_clean }, 746 747 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty}, 748 { unevict, unevict, "unevictable LRU", me_pagecache_clean}, 749 750 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty }, 751 { mlock, mlock, "mlocked LRU", me_pagecache_clean }, 752 753 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty }, 754 { lru|dirty, lru, "clean LRU", me_pagecache_clean }, 755 756 /* 757 * Catchall entry: must be at end. 758 */ 759 { 0, 0, "unknown page state", me_unknown }, 760 }; 761 762 #undef dirty 763 #undef sc 764 #undef unevict 765 #undef mlock 766 #undef writeback 767 #undef lru 768 #undef swapbacked 769 #undef head 770 #undef tail 771 #undef compound 772 #undef slab 773 #undef reserved 774 775 static void action_result(unsigned long pfn, char *msg, int result) 776 { 777 struct page *page = pfn_to_page(pfn); 778 779 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n", 780 pfn, 781 PageDirty(page) ? "dirty " : "", 782 msg, action_name[result]); 783 } 784 785 static int page_action(struct page_state *ps, struct page *p, 786 unsigned long pfn) 787 { 788 int result; 789 int count; 790 791 result = ps->action(p, pfn); 792 action_result(pfn, ps->msg, result); 793 794 count = page_count(p) - 1; 795 if (ps->action == me_swapcache_dirty && result == DELAYED) 796 count--; 797 if (count != 0) { 798 printk(KERN_ERR 799 "MCE %#lx: %s page still referenced by %d users\n", 800 pfn, ps->msg, count); 801 result = FAILED; 802 } 803 804 /* Could do more checks here if page looks ok */ 805 /* 806 * Could adjust zone counters here to correct for the missing page. 807 */ 808 809 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY; 810 } 811 812 #define N_UNMAP_TRIES 5 813 814 /* 815 * Do all that is necessary to remove user space mappings. Unmap 816 * the pages and send SIGBUS to the processes if the data was dirty. 817 */ 818 static int hwpoison_user_mappings(struct page *p, unsigned long pfn, 819 int trapno) 820 { 821 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 822 struct address_space *mapping; 823 LIST_HEAD(tokill); 824 int ret; 825 int i; 826 int kill = 1; 827 828 if (PageReserved(p) || PageSlab(p)) 829 return SWAP_SUCCESS; 830 831 /* 832 * This check implies we don't kill processes if their pages 833 * are in the swap cache early. Those are always late kills. 834 */ 835 if (!page_mapped(p)) 836 return SWAP_SUCCESS; 837 838 if (PageCompound(p) || PageKsm(p)) 839 return SWAP_FAIL; 840 841 if (PageSwapCache(p)) { 842 printk(KERN_ERR 843 "MCE %#lx: keeping poisoned page in swap cache\n", pfn); 844 ttu |= TTU_IGNORE_HWPOISON; 845 } 846 847 /* 848 * Propagate the dirty bit from PTEs to struct page first, because we 849 * need this to decide if we should kill or just drop the page. 850 * XXX: the dirty test could be racy: set_page_dirty() may not always 851 * be called inside page lock (it's recommended but not enforced). 852 */ 853 mapping = page_mapping(p); 854 if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) { 855 if (page_mkclean(p)) { 856 SetPageDirty(p); 857 } else { 858 kill = 0; 859 ttu |= TTU_IGNORE_HWPOISON; 860 printk(KERN_INFO 861 "MCE %#lx: corrupted page was clean: dropped without side effects\n", 862 pfn); 863 } 864 } 865 866 /* 867 * First collect all the processes that have the page 868 * mapped in dirty form. This has to be done before try_to_unmap, 869 * because ttu takes the rmap data structures down. 870 * 871 * Error handling: We ignore errors here because 872 * there's nothing that can be done. 873 */ 874 if (kill) 875 collect_procs(p, &tokill); 876 877 /* 878 * try_to_unmap can fail temporarily due to races. 879 * Try a few times (RED-PEN better strategy?) 880 */ 881 for (i = 0; i < N_UNMAP_TRIES; i++) { 882 ret = try_to_unmap(p, ttu); 883 if (ret == SWAP_SUCCESS) 884 break; 885 pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret); 886 } 887 888 if (ret != SWAP_SUCCESS) 889 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n", 890 pfn, page_mapcount(p)); 891 892 /* 893 * Now that the dirty bit has been propagated to the 894 * struct page and all unmaps done we can decide if 895 * killing is needed or not. Only kill when the page 896 * was dirty, otherwise the tokill list is merely 897 * freed. When there was a problem unmapping earlier 898 * use a more force-full uncatchable kill to prevent 899 * any accesses to the poisoned memory. 900 */ 901 kill_procs_ao(&tokill, !!PageDirty(p), trapno, 902 ret != SWAP_SUCCESS, pfn); 903 904 return ret; 905 } 906 907 int __memory_failure(unsigned long pfn, int trapno, int flags) 908 { 909 struct page_state *ps; 910 struct page *p; 911 int res; 912 913 if (!sysctl_memory_failure_recovery) 914 panic("Memory failure from trap %d on page %lx", trapno, pfn); 915 916 if (!pfn_valid(pfn)) { 917 printk(KERN_ERR 918 "MCE %#lx: memory outside kernel control\n", 919 pfn); 920 return -ENXIO; 921 } 922 923 p = pfn_to_page(pfn); 924 if (TestSetPageHWPoison(p)) { 925 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn); 926 return 0; 927 } 928 929 atomic_long_add(1, &mce_bad_pages); 930 931 /* 932 * We need/can do nothing about count=0 pages. 933 * 1) it's a free page, and therefore in safe hand: 934 * prep_new_page() will be the gate keeper. 935 * 2) it's part of a non-compound high order page. 936 * Implies some kernel user: cannot stop them from 937 * R/W the page; let's pray that the page has been 938 * used and will be freed some time later. 939 * In fact it's dangerous to directly bump up page count from 0, 940 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 941 */ 942 if (!(flags & MF_COUNT_INCREASED) && 943 !get_page_unless_zero(compound_head(p))) { 944 if (is_free_buddy_page(p)) { 945 action_result(pfn, "free buddy", DELAYED); 946 return 0; 947 } else { 948 action_result(pfn, "high order kernel", IGNORED); 949 return -EBUSY; 950 } 951 } 952 953 /* 954 * We ignore non-LRU pages for good reasons. 955 * - PG_locked is only well defined for LRU pages and a few others 956 * - to avoid races with __set_page_locked() 957 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 958 * The check (unnecessarily) ignores LRU pages being isolated and 959 * walked by the page reclaim code, however that's not a big loss. 960 */ 961 if (!PageLRU(p)) 962 shake_page(p, 0); 963 if (!PageLRU(p)) { 964 /* 965 * shake_page could have turned it free. 966 */ 967 if (is_free_buddy_page(p)) { 968 action_result(pfn, "free buddy, 2nd try", DELAYED); 969 return 0; 970 } 971 action_result(pfn, "non LRU", IGNORED); 972 put_page(p); 973 return -EBUSY; 974 } 975 976 /* 977 * Lock the page and wait for writeback to finish. 978 * It's very difficult to mess with pages currently under IO 979 * and in many cases impossible, so we just avoid it here. 980 */ 981 lock_page_nosync(p); 982 983 /* 984 * unpoison always clear PG_hwpoison inside page lock 985 */ 986 if (!PageHWPoison(p)) { 987 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn); 988 res = 0; 989 goto out; 990 } 991 if (hwpoison_filter(p)) { 992 if (TestClearPageHWPoison(p)) 993 atomic_long_dec(&mce_bad_pages); 994 unlock_page(p); 995 put_page(p); 996 return 0; 997 } 998 999 wait_on_page_writeback(p); 1000 1001 /* 1002 * Now take care of user space mappings. 1003 * Abort on fail: __remove_from_page_cache() assumes unmapped page. 1004 */ 1005 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) { 1006 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn); 1007 res = -EBUSY; 1008 goto out; 1009 } 1010 1011 /* 1012 * Torn down by someone else? 1013 */ 1014 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1015 action_result(pfn, "already truncated LRU", IGNORED); 1016 res = -EBUSY; 1017 goto out; 1018 } 1019 1020 res = -EBUSY; 1021 for (ps = error_states;; ps++) { 1022 if ((p->flags & ps->mask) == ps->res) { 1023 res = page_action(ps, p, pfn); 1024 break; 1025 } 1026 } 1027 out: 1028 unlock_page(p); 1029 return res; 1030 } 1031 EXPORT_SYMBOL_GPL(__memory_failure); 1032 1033 /** 1034 * memory_failure - Handle memory failure of a page. 1035 * @pfn: Page Number of the corrupted page 1036 * @trapno: Trap number reported in the signal to user space. 1037 * 1038 * This function is called by the low level machine check code 1039 * of an architecture when it detects hardware memory corruption 1040 * of a page. It tries its best to recover, which includes 1041 * dropping pages, killing processes etc. 1042 * 1043 * The function is primarily of use for corruptions that 1044 * happen outside the current execution context (e.g. when 1045 * detected by a background scrubber) 1046 * 1047 * Must run in process context (e.g. a work queue) with interrupts 1048 * enabled and no spinlocks hold. 1049 */ 1050 void memory_failure(unsigned long pfn, int trapno) 1051 { 1052 __memory_failure(pfn, trapno, 0); 1053 } 1054 1055 /** 1056 * unpoison_memory - Unpoison a previously poisoned page 1057 * @pfn: Page number of the to be unpoisoned page 1058 * 1059 * Software-unpoison a page that has been poisoned by 1060 * memory_failure() earlier. 1061 * 1062 * This is only done on the software-level, so it only works 1063 * for linux injected failures, not real hardware failures 1064 * 1065 * Returns 0 for success, otherwise -errno. 1066 */ 1067 int unpoison_memory(unsigned long pfn) 1068 { 1069 struct page *page; 1070 struct page *p; 1071 int freeit = 0; 1072 1073 if (!pfn_valid(pfn)) 1074 return -ENXIO; 1075 1076 p = pfn_to_page(pfn); 1077 page = compound_head(p); 1078 1079 if (!PageHWPoison(p)) { 1080 pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn); 1081 return 0; 1082 } 1083 1084 if (!get_page_unless_zero(page)) { 1085 if (TestClearPageHWPoison(p)) 1086 atomic_long_dec(&mce_bad_pages); 1087 pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn); 1088 return 0; 1089 } 1090 1091 lock_page_nosync(page); 1092 /* 1093 * This test is racy because PG_hwpoison is set outside of page lock. 1094 * That's acceptable because that won't trigger kernel panic. Instead, 1095 * the PG_hwpoison page will be caught and isolated on the entrance to 1096 * the free buddy page pool. 1097 */ 1098 if (TestClearPageHWPoison(p)) { 1099 pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn); 1100 atomic_long_dec(&mce_bad_pages); 1101 freeit = 1; 1102 } 1103 unlock_page(page); 1104 1105 put_page(page); 1106 if (freeit) 1107 put_page(page); 1108 1109 return 0; 1110 } 1111 EXPORT_SYMBOL(unpoison_memory); 1112 1113 static struct page *new_page(struct page *p, unsigned long private, int **x) 1114 { 1115 int nid = page_to_nid(p); 1116 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0); 1117 } 1118 1119 /* 1120 * Safely get reference count of an arbitrary page. 1121 * Returns 0 for a free page, -EIO for a zero refcount page 1122 * that is not free, and 1 for any other page type. 1123 * For 1 the page is returned with increased page count, otherwise not. 1124 */ 1125 static int get_any_page(struct page *p, unsigned long pfn, int flags) 1126 { 1127 int ret; 1128 1129 if (flags & MF_COUNT_INCREASED) 1130 return 1; 1131 1132 /* 1133 * The lock_system_sleep prevents a race with memory hotplug, 1134 * because the isolation assumes there's only a single user. 1135 * This is a big hammer, a better would be nicer. 1136 */ 1137 lock_system_sleep(); 1138 1139 /* 1140 * Isolate the page, so that it doesn't get reallocated if it 1141 * was free. 1142 */ 1143 set_migratetype_isolate(p); 1144 if (!get_page_unless_zero(compound_head(p))) { 1145 if (is_free_buddy_page(p)) { 1146 pr_debug("get_any_page: %#lx free buddy page\n", pfn); 1147 /* Set hwpoison bit while page is still isolated */ 1148 SetPageHWPoison(p); 1149 ret = 0; 1150 } else { 1151 pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n", 1152 pfn, p->flags); 1153 ret = -EIO; 1154 } 1155 } else { 1156 /* Not a free page */ 1157 ret = 1; 1158 } 1159 unset_migratetype_isolate(p); 1160 unlock_system_sleep(); 1161 return ret; 1162 } 1163 1164 /** 1165 * soft_offline_page - Soft offline a page. 1166 * @page: page to offline 1167 * @flags: flags. Same as memory_failure(). 1168 * 1169 * Returns 0 on success, otherwise negated errno. 1170 * 1171 * Soft offline a page, by migration or invalidation, 1172 * without killing anything. This is for the case when 1173 * a page is not corrupted yet (so it's still valid to access), 1174 * but has had a number of corrected errors and is better taken 1175 * out. 1176 * 1177 * The actual policy on when to do that is maintained by 1178 * user space. 1179 * 1180 * This should never impact any application or cause data loss, 1181 * however it might take some time. 1182 * 1183 * This is not a 100% solution for all memory, but tries to be 1184 * ``good enough'' for the majority of memory. 1185 */ 1186 int soft_offline_page(struct page *page, int flags) 1187 { 1188 int ret; 1189 unsigned long pfn = page_to_pfn(page); 1190 1191 ret = get_any_page(page, pfn, flags); 1192 if (ret < 0) 1193 return ret; 1194 if (ret == 0) 1195 goto done; 1196 1197 /* 1198 * Page cache page we can handle? 1199 */ 1200 if (!PageLRU(page)) { 1201 /* 1202 * Try to free it. 1203 */ 1204 put_page(page); 1205 shake_page(page, 1); 1206 1207 /* 1208 * Did it turn free? 1209 */ 1210 ret = get_any_page(page, pfn, 0); 1211 if (ret < 0) 1212 return ret; 1213 if (ret == 0) 1214 goto done; 1215 } 1216 if (!PageLRU(page)) { 1217 pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n", 1218 pfn, page->flags); 1219 return -EIO; 1220 } 1221 1222 lock_page(page); 1223 wait_on_page_writeback(page); 1224 1225 /* 1226 * Synchronized using the page lock with memory_failure() 1227 */ 1228 if (PageHWPoison(page)) { 1229 unlock_page(page); 1230 put_page(page); 1231 pr_debug("soft offline: %#lx page already poisoned\n", pfn); 1232 return -EBUSY; 1233 } 1234 1235 /* 1236 * Try to invalidate first. This should work for 1237 * non dirty unmapped page cache pages. 1238 */ 1239 ret = invalidate_inode_page(page); 1240 unlock_page(page); 1241 1242 /* 1243 * Drop count because page migration doesn't like raised 1244 * counts. The page could get re-allocated, but if it becomes 1245 * LRU the isolation will just fail. 1246 * RED-PEN would be better to keep it isolated here, but we 1247 * would need to fix isolation locking first. 1248 */ 1249 put_page(page); 1250 if (ret == 1) { 1251 ret = 0; 1252 pr_debug("soft_offline: %#lx: invalidated\n", pfn); 1253 goto done; 1254 } 1255 1256 /* 1257 * Simple invalidation didn't work. 1258 * Try to migrate to a new page instead. migrate.c 1259 * handles a large number of cases for us. 1260 */ 1261 ret = isolate_lru_page(page); 1262 if (!ret) { 1263 LIST_HEAD(pagelist); 1264 1265 list_add(&page->lru, &pagelist); 1266 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0); 1267 if (ret) { 1268 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n", 1269 pfn, ret, page->flags); 1270 if (ret > 0) 1271 ret = -EIO; 1272 } 1273 } else { 1274 pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n", 1275 pfn, ret, page_count(page), page->flags); 1276 } 1277 if (ret) 1278 return ret; 1279 1280 done: 1281 atomic_long_add(1, &mce_bad_pages); 1282 SetPageHWPoison(page); 1283 /* keep elevated page count for bad page */ 1284 return ret; 1285 } 1286