xref: /linux/mm/memory-failure.c (revision 656fe3ee455e8d8dfa1c18292c508da26b29a39c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66 
67 static int sysctl_memory_failure_early_kill __read_mostly;
68 
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70 
71 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
72 
73 static bool hw_memory_failure __read_mostly = false;
74 
75 static DEFINE_MUTEX(mf_mutex);
76 
77 void num_poisoned_pages_inc(unsigned long pfn)
78 {
79 	atomic_long_inc(&num_poisoned_pages);
80 	memblk_nr_poison_inc(pfn);
81 }
82 
83 void num_poisoned_pages_sub(unsigned long pfn, long i)
84 {
85 	atomic_long_sub(i, &num_poisoned_pages);
86 	if (pfn != -1UL)
87 		memblk_nr_poison_sub(pfn, i);
88 }
89 
90 /**
91  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92  * @_name: name of the file in the per NUMA sysfs directory.
93  */
94 #define MF_ATTR_RO(_name)					\
95 static ssize_t _name##_show(struct device *dev,			\
96 			    struct device_attribute *attr,	\
97 			    char *buf)				\
98 {								\
99 	struct memory_failure_stats *mf_stats =			\
100 		&NODE_DATA(dev->id)->mf_stats;			\
101 	return sprintf(buf, "%lu\n", mf_stats->_name);		\
102 }								\
103 static DEVICE_ATTR_RO(_name)
104 
105 MF_ATTR_RO(total);
106 MF_ATTR_RO(ignored);
107 MF_ATTR_RO(failed);
108 MF_ATTR_RO(delayed);
109 MF_ATTR_RO(recovered);
110 
111 static struct attribute *memory_failure_attr[] = {
112 	&dev_attr_total.attr,
113 	&dev_attr_ignored.attr,
114 	&dev_attr_failed.attr,
115 	&dev_attr_delayed.attr,
116 	&dev_attr_recovered.attr,
117 	NULL,
118 };
119 
120 const struct attribute_group memory_failure_attr_group = {
121 	.name = "memory_failure",
122 	.attrs = memory_failure_attr,
123 };
124 
125 static struct ctl_table memory_failure_table[] = {
126 	{
127 		.procname	= "memory_failure_early_kill",
128 		.data		= &sysctl_memory_failure_early_kill,
129 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
130 		.mode		= 0644,
131 		.proc_handler	= proc_dointvec_minmax,
132 		.extra1		= SYSCTL_ZERO,
133 		.extra2		= SYSCTL_ONE,
134 	},
135 	{
136 		.procname	= "memory_failure_recovery",
137 		.data		= &sysctl_memory_failure_recovery,
138 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
139 		.mode		= 0644,
140 		.proc_handler	= proc_dointvec_minmax,
141 		.extra1		= SYSCTL_ZERO,
142 		.extra2		= SYSCTL_ONE,
143 	},
144 };
145 
146 /*
147  * Return values:
148  *   1:   the page is dissolved (if needed) and taken off from buddy,
149  *   0:   the page is dissolved (if needed) and not taken off from buddy,
150  *   < 0: failed to dissolve.
151  */
152 static int __page_handle_poison(struct page *page)
153 {
154 	int ret;
155 
156 	/*
157 	 * zone_pcp_disable() can't be used here. It will
158 	 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
159 	 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
160 	 * optimization is enabled. This will break current lock dependency
161 	 * chain and leads to deadlock.
162 	 * Disabling pcp before dissolving the page was a deterministic
163 	 * approach because we made sure that those pages cannot end up in any
164 	 * PCP list. Draining PCP lists expels those pages to the buddy system,
165 	 * but nothing guarantees that those pages do not get back to a PCP
166 	 * queue if we need to refill those.
167 	 */
168 	ret = dissolve_free_hugetlb_folio(page_folio(page));
169 	if (!ret) {
170 		drain_all_pages(page_zone(page));
171 		ret = take_page_off_buddy(page);
172 	}
173 
174 	return ret;
175 }
176 
177 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
178 {
179 	if (hugepage_or_freepage) {
180 		/*
181 		 * Doing this check for free pages is also fine since
182 		 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
183 		 */
184 		if (__page_handle_poison(page) <= 0)
185 			/*
186 			 * We could fail to take off the target page from buddy
187 			 * for example due to racy page allocation, but that's
188 			 * acceptable because soft-offlined page is not broken
189 			 * and if someone really want to use it, they should
190 			 * take it.
191 			 */
192 			return false;
193 	}
194 
195 	SetPageHWPoison(page);
196 	if (release)
197 		put_page(page);
198 	page_ref_inc(page);
199 	num_poisoned_pages_inc(page_to_pfn(page));
200 
201 	return true;
202 }
203 
204 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
205 
206 u32 hwpoison_filter_enable = 0;
207 u32 hwpoison_filter_dev_major = ~0U;
208 u32 hwpoison_filter_dev_minor = ~0U;
209 u64 hwpoison_filter_flags_mask;
210 u64 hwpoison_filter_flags_value;
211 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
212 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
213 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
214 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
215 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
216 
217 static int hwpoison_filter_dev(struct page *p)
218 {
219 	struct folio *folio = page_folio(p);
220 	struct address_space *mapping;
221 	dev_t dev;
222 
223 	if (hwpoison_filter_dev_major == ~0U &&
224 	    hwpoison_filter_dev_minor == ~0U)
225 		return 0;
226 
227 	mapping = folio_mapping(folio);
228 	if (mapping == NULL || mapping->host == NULL)
229 		return -EINVAL;
230 
231 	dev = mapping->host->i_sb->s_dev;
232 	if (hwpoison_filter_dev_major != ~0U &&
233 	    hwpoison_filter_dev_major != MAJOR(dev))
234 		return -EINVAL;
235 	if (hwpoison_filter_dev_minor != ~0U &&
236 	    hwpoison_filter_dev_minor != MINOR(dev))
237 		return -EINVAL;
238 
239 	return 0;
240 }
241 
242 static int hwpoison_filter_flags(struct page *p)
243 {
244 	if (!hwpoison_filter_flags_mask)
245 		return 0;
246 
247 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
248 				    hwpoison_filter_flags_value)
249 		return 0;
250 	else
251 		return -EINVAL;
252 }
253 
254 /*
255  * This allows stress tests to limit test scope to a collection of tasks
256  * by putting them under some memcg. This prevents killing unrelated/important
257  * processes such as /sbin/init. Note that the target task may share clean
258  * pages with init (eg. libc text), which is harmless. If the target task
259  * share _dirty_ pages with another task B, the test scheme must make sure B
260  * is also included in the memcg. At last, due to race conditions this filter
261  * can only guarantee that the page either belongs to the memcg tasks, or is
262  * a freed page.
263  */
264 #ifdef CONFIG_MEMCG
265 u64 hwpoison_filter_memcg;
266 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
267 static int hwpoison_filter_task(struct page *p)
268 {
269 	if (!hwpoison_filter_memcg)
270 		return 0;
271 
272 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
273 		return -EINVAL;
274 
275 	return 0;
276 }
277 #else
278 static int hwpoison_filter_task(struct page *p) { return 0; }
279 #endif
280 
281 int hwpoison_filter(struct page *p)
282 {
283 	if (!hwpoison_filter_enable)
284 		return 0;
285 
286 	if (hwpoison_filter_dev(p))
287 		return -EINVAL;
288 
289 	if (hwpoison_filter_flags(p))
290 		return -EINVAL;
291 
292 	if (hwpoison_filter_task(p))
293 		return -EINVAL;
294 
295 	return 0;
296 }
297 #else
298 int hwpoison_filter(struct page *p)
299 {
300 	return 0;
301 }
302 #endif
303 
304 EXPORT_SYMBOL_GPL(hwpoison_filter);
305 
306 /*
307  * Kill all processes that have a poisoned page mapped and then isolate
308  * the page.
309  *
310  * General strategy:
311  * Find all processes having the page mapped and kill them.
312  * But we keep a page reference around so that the page is not
313  * actually freed yet.
314  * Then stash the page away
315  *
316  * There's no convenient way to get back to mapped processes
317  * from the VMAs. So do a brute-force search over all
318  * running processes.
319  *
320  * Remember that machine checks are not common (or rather
321  * if they are common you have other problems), so this shouldn't
322  * be a performance issue.
323  *
324  * Also there are some races possible while we get from the
325  * error detection to actually handle it.
326  */
327 
328 struct to_kill {
329 	struct list_head nd;
330 	struct task_struct *tsk;
331 	unsigned long addr;
332 	short size_shift;
333 };
334 
335 /*
336  * Send all the processes who have the page mapped a signal.
337  * ``action optional'' if they are not immediately affected by the error
338  * ``action required'' if error happened in current execution context
339  */
340 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
341 {
342 	struct task_struct *t = tk->tsk;
343 	short addr_lsb = tk->size_shift;
344 	int ret = 0;
345 
346 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
347 			pfn, t->comm, t->pid);
348 
349 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
350 		ret = force_sig_mceerr(BUS_MCEERR_AR,
351 				 (void __user *)tk->addr, addr_lsb);
352 	else
353 		/*
354 		 * Signal other processes sharing the page if they have
355 		 * PF_MCE_EARLY set.
356 		 * Don't use force here, it's convenient if the signal
357 		 * can be temporarily blocked.
358 		 * This could cause a loop when the user sets SIGBUS
359 		 * to SIG_IGN, but hopefully no one will do that?
360 		 */
361 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
362 				      addr_lsb, t);
363 	if (ret < 0)
364 		pr_info("Error sending signal to %s:%d: %d\n",
365 			t->comm, t->pid, ret);
366 	return ret;
367 }
368 
369 /*
370  * Unknown page type encountered. Try to check whether it can turn PageLRU by
371  * lru_add_drain_all.
372  */
373 void shake_folio(struct folio *folio)
374 {
375 	if (folio_test_hugetlb(folio))
376 		return;
377 	/*
378 	 * TODO: Could shrink slab caches here if a lightweight range-based
379 	 * shrinker will be available.
380 	 */
381 	if (folio_test_slab(folio))
382 		return;
383 
384 	lru_add_drain_all();
385 }
386 EXPORT_SYMBOL_GPL(shake_folio);
387 
388 static void shake_page(struct page *page)
389 {
390 	shake_folio(page_folio(page));
391 }
392 
393 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
394 		unsigned long address)
395 {
396 	unsigned long ret = 0;
397 	pgd_t *pgd;
398 	p4d_t *p4d;
399 	pud_t *pud;
400 	pmd_t *pmd;
401 	pte_t *pte;
402 	pte_t ptent;
403 
404 	VM_BUG_ON_VMA(address == -EFAULT, vma);
405 	pgd = pgd_offset(vma->vm_mm, address);
406 	if (!pgd_present(*pgd))
407 		return 0;
408 	p4d = p4d_offset(pgd, address);
409 	if (!p4d_present(*p4d))
410 		return 0;
411 	pud = pud_offset(p4d, address);
412 	if (!pud_present(*pud))
413 		return 0;
414 	if (pud_devmap(*pud))
415 		return PUD_SHIFT;
416 	pmd = pmd_offset(pud, address);
417 	if (!pmd_present(*pmd))
418 		return 0;
419 	if (pmd_devmap(*pmd))
420 		return PMD_SHIFT;
421 	pte = pte_offset_map(pmd, address);
422 	if (!pte)
423 		return 0;
424 	ptent = ptep_get(pte);
425 	if (pte_present(ptent) && pte_devmap(ptent))
426 		ret = PAGE_SHIFT;
427 	pte_unmap(pte);
428 	return ret;
429 }
430 
431 /*
432  * Failure handling: if we can't find or can't kill a process there's
433  * not much we can do.	We just print a message and ignore otherwise.
434  */
435 
436 /*
437  * Schedule a process for later kill.
438  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
439  */
440 static void __add_to_kill(struct task_struct *tsk, struct page *p,
441 			  struct vm_area_struct *vma, struct list_head *to_kill,
442 			  unsigned long addr)
443 {
444 	struct to_kill *tk;
445 
446 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
447 	if (!tk) {
448 		pr_err("Out of memory while machine check handling\n");
449 		return;
450 	}
451 
452 	tk->addr = addr;
453 	if (is_zone_device_page(p))
454 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
455 	else
456 		tk->size_shift = page_shift(compound_head(p));
457 
458 	/*
459 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
460 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
461 	 * so "tk->size_shift == 0" effectively checks no mapping on
462 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
463 	 * to a process' address space, it's possible not all N VMAs
464 	 * contain mappings for the page, but at least one VMA does.
465 	 * Only deliver SIGBUS with payload derived from the VMA that
466 	 * has a mapping for the page.
467 	 */
468 	if (tk->addr == -EFAULT) {
469 		pr_info("Unable to find user space address %lx in %s\n",
470 			page_to_pfn(p), tsk->comm);
471 	} else if (tk->size_shift == 0) {
472 		kfree(tk);
473 		return;
474 	}
475 
476 	get_task_struct(tsk);
477 	tk->tsk = tsk;
478 	list_add_tail(&tk->nd, to_kill);
479 }
480 
481 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
482 		struct vm_area_struct *vma, struct list_head *to_kill,
483 		unsigned long addr)
484 {
485 	if (addr == -EFAULT)
486 		return;
487 	__add_to_kill(tsk, p, vma, to_kill, addr);
488 }
489 
490 #ifdef CONFIG_KSM
491 static bool task_in_to_kill_list(struct list_head *to_kill,
492 				 struct task_struct *tsk)
493 {
494 	struct to_kill *tk, *next;
495 
496 	list_for_each_entry_safe(tk, next, to_kill, nd) {
497 		if (tk->tsk == tsk)
498 			return true;
499 	}
500 
501 	return false;
502 }
503 
504 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
505 		     struct vm_area_struct *vma, struct list_head *to_kill,
506 		     unsigned long addr)
507 {
508 	if (!task_in_to_kill_list(to_kill, tsk))
509 		__add_to_kill(tsk, p, vma, to_kill, addr);
510 }
511 #endif
512 /*
513  * Kill the processes that have been collected earlier.
514  *
515  * Only do anything when FORCEKILL is set, otherwise just free the
516  * list (this is used for clean pages which do not need killing)
517  */
518 static void kill_procs(struct list_head *to_kill, int forcekill,
519 		unsigned long pfn, int flags)
520 {
521 	struct to_kill *tk, *next;
522 
523 	list_for_each_entry_safe(tk, next, to_kill, nd) {
524 		if (forcekill) {
525 			if (tk->addr == -EFAULT) {
526 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
527 				       pfn, tk->tsk->comm, tk->tsk->pid);
528 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
529 						 tk->tsk, PIDTYPE_PID);
530 			}
531 
532 			/*
533 			 * In theory the process could have mapped
534 			 * something else on the address in-between. We could
535 			 * check for that, but we need to tell the
536 			 * process anyways.
537 			 */
538 			else if (kill_proc(tk, pfn, flags) < 0)
539 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
540 				       pfn, tk->tsk->comm, tk->tsk->pid);
541 		}
542 		list_del(&tk->nd);
543 		put_task_struct(tk->tsk);
544 		kfree(tk);
545 	}
546 }
547 
548 /*
549  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
550  * on behalf of the thread group. Return task_struct of the (first found)
551  * dedicated thread if found, and return NULL otherwise.
552  *
553  * We already hold rcu lock in the caller, so we don't have to call
554  * rcu_read_lock/unlock() in this function.
555  */
556 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
557 {
558 	struct task_struct *t;
559 
560 	for_each_thread(tsk, t) {
561 		if (t->flags & PF_MCE_PROCESS) {
562 			if (t->flags & PF_MCE_EARLY)
563 				return t;
564 		} else {
565 			if (sysctl_memory_failure_early_kill)
566 				return t;
567 		}
568 	}
569 	return NULL;
570 }
571 
572 /*
573  * Determine whether a given process is "early kill" process which expects
574  * to be signaled when some page under the process is hwpoisoned.
575  * Return task_struct of the dedicated thread (main thread unless explicitly
576  * specified) if the process is "early kill" and otherwise returns NULL.
577  *
578  * Note that the above is true for Action Optional case. For Action Required
579  * case, it's only meaningful to the current thread which need to be signaled
580  * with SIGBUS, this error is Action Optional for other non current
581  * processes sharing the same error page,if the process is "early kill", the
582  * task_struct of the dedicated thread will also be returned.
583  */
584 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
585 {
586 	if (!tsk->mm)
587 		return NULL;
588 	/*
589 	 * Comparing ->mm here because current task might represent
590 	 * a subthread, while tsk always points to the main thread.
591 	 */
592 	if (force_early && tsk->mm == current->mm)
593 		return current;
594 
595 	return find_early_kill_thread(tsk);
596 }
597 
598 /*
599  * Collect processes when the error hit an anonymous page.
600  */
601 static void collect_procs_anon(struct folio *folio, struct page *page,
602 		struct list_head *to_kill, int force_early)
603 {
604 	struct task_struct *tsk;
605 	struct anon_vma *av;
606 	pgoff_t pgoff;
607 
608 	av = folio_lock_anon_vma_read(folio, NULL);
609 	if (av == NULL)	/* Not actually mapped anymore */
610 		return;
611 
612 	pgoff = page_to_pgoff(page);
613 	rcu_read_lock();
614 	for_each_process(tsk) {
615 		struct vm_area_struct *vma;
616 		struct anon_vma_chain *vmac;
617 		struct task_struct *t = task_early_kill(tsk, force_early);
618 		unsigned long addr;
619 
620 		if (!t)
621 			continue;
622 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
623 					       pgoff, pgoff) {
624 			vma = vmac->vma;
625 			if (vma->vm_mm != t->mm)
626 				continue;
627 			addr = page_mapped_in_vma(page, vma);
628 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
629 		}
630 	}
631 	rcu_read_unlock();
632 	anon_vma_unlock_read(av);
633 }
634 
635 /*
636  * Collect processes when the error hit a file mapped page.
637  */
638 static void collect_procs_file(struct folio *folio, struct page *page,
639 		struct list_head *to_kill, int force_early)
640 {
641 	struct vm_area_struct *vma;
642 	struct task_struct *tsk;
643 	struct address_space *mapping = folio->mapping;
644 	pgoff_t pgoff;
645 
646 	i_mmap_lock_read(mapping);
647 	rcu_read_lock();
648 	pgoff = page_to_pgoff(page);
649 	for_each_process(tsk) {
650 		struct task_struct *t = task_early_kill(tsk, force_early);
651 		unsigned long addr;
652 
653 		if (!t)
654 			continue;
655 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
656 				      pgoff) {
657 			/*
658 			 * Send early kill signal to tasks where a vma covers
659 			 * the page but the corrupted page is not necessarily
660 			 * mapped in its pte.
661 			 * Assume applications who requested early kill want
662 			 * to be informed of all such data corruptions.
663 			 */
664 			if (vma->vm_mm != t->mm)
665 				continue;
666 			addr = page_address_in_vma(page, vma);
667 			add_to_kill_anon_file(t, page, vma, to_kill, addr);
668 		}
669 	}
670 	rcu_read_unlock();
671 	i_mmap_unlock_read(mapping);
672 }
673 
674 #ifdef CONFIG_FS_DAX
675 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
676 			      struct vm_area_struct *vma,
677 			      struct list_head *to_kill, pgoff_t pgoff)
678 {
679 	unsigned long addr = vma_address(vma, pgoff, 1);
680 	__add_to_kill(tsk, p, vma, to_kill, addr);
681 }
682 
683 /*
684  * Collect processes when the error hit a fsdax page.
685  */
686 static void collect_procs_fsdax(struct page *page,
687 		struct address_space *mapping, pgoff_t pgoff,
688 		struct list_head *to_kill, bool pre_remove)
689 {
690 	struct vm_area_struct *vma;
691 	struct task_struct *tsk;
692 
693 	i_mmap_lock_read(mapping);
694 	rcu_read_lock();
695 	for_each_process(tsk) {
696 		struct task_struct *t = tsk;
697 
698 		/*
699 		 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
700 		 * the current may not be the one accessing the fsdax page.
701 		 * Otherwise, search for the current task.
702 		 */
703 		if (!pre_remove)
704 			t = task_early_kill(tsk, true);
705 		if (!t)
706 			continue;
707 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
708 			if (vma->vm_mm == t->mm)
709 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
710 		}
711 	}
712 	rcu_read_unlock();
713 	i_mmap_unlock_read(mapping);
714 }
715 #endif /* CONFIG_FS_DAX */
716 
717 /*
718  * Collect the processes who have the corrupted page mapped to kill.
719  */
720 static void collect_procs(struct folio *folio, struct page *page,
721 		struct list_head *tokill, int force_early)
722 {
723 	if (!folio->mapping)
724 		return;
725 	if (unlikely(folio_test_ksm(folio)))
726 		collect_procs_ksm(folio, page, tokill, force_early);
727 	else if (folio_test_anon(folio))
728 		collect_procs_anon(folio, page, tokill, force_early);
729 	else
730 		collect_procs_file(folio, page, tokill, force_early);
731 }
732 
733 struct hwpoison_walk {
734 	struct to_kill tk;
735 	unsigned long pfn;
736 	int flags;
737 };
738 
739 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
740 {
741 	tk->addr = addr;
742 	tk->size_shift = shift;
743 }
744 
745 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
746 				unsigned long poisoned_pfn, struct to_kill *tk)
747 {
748 	unsigned long pfn = 0;
749 
750 	if (pte_present(pte)) {
751 		pfn = pte_pfn(pte);
752 	} else {
753 		swp_entry_t swp = pte_to_swp_entry(pte);
754 
755 		if (is_hwpoison_entry(swp))
756 			pfn = swp_offset_pfn(swp);
757 	}
758 
759 	if (!pfn || pfn != poisoned_pfn)
760 		return 0;
761 
762 	set_to_kill(tk, addr, shift);
763 	return 1;
764 }
765 
766 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
767 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
768 				      struct hwpoison_walk *hwp)
769 {
770 	pmd_t pmd = *pmdp;
771 	unsigned long pfn;
772 	unsigned long hwpoison_vaddr;
773 
774 	if (!pmd_present(pmd))
775 		return 0;
776 	pfn = pmd_pfn(pmd);
777 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
778 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
779 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
780 		return 1;
781 	}
782 	return 0;
783 }
784 #else
785 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
786 				      struct hwpoison_walk *hwp)
787 {
788 	return 0;
789 }
790 #endif
791 
792 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
793 			      unsigned long end, struct mm_walk *walk)
794 {
795 	struct hwpoison_walk *hwp = walk->private;
796 	int ret = 0;
797 	pte_t *ptep, *mapped_pte;
798 	spinlock_t *ptl;
799 
800 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
801 	if (ptl) {
802 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
803 		spin_unlock(ptl);
804 		goto out;
805 	}
806 
807 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
808 						addr, &ptl);
809 	if (!ptep)
810 		goto out;
811 
812 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
813 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
814 					     hwp->pfn, &hwp->tk);
815 		if (ret == 1)
816 			break;
817 	}
818 	pte_unmap_unlock(mapped_pte, ptl);
819 out:
820 	cond_resched();
821 	return ret;
822 }
823 
824 #ifdef CONFIG_HUGETLB_PAGE
825 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
826 			    unsigned long addr, unsigned long end,
827 			    struct mm_walk *walk)
828 {
829 	struct hwpoison_walk *hwp = walk->private;
830 	pte_t pte = huge_ptep_get(ptep);
831 	struct hstate *h = hstate_vma(walk->vma);
832 
833 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
834 				      hwp->pfn, &hwp->tk);
835 }
836 #else
837 #define hwpoison_hugetlb_range	NULL
838 #endif
839 
840 static const struct mm_walk_ops hwpoison_walk_ops = {
841 	.pmd_entry = hwpoison_pte_range,
842 	.hugetlb_entry = hwpoison_hugetlb_range,
843 	.walk_lock = PGWALK_RDLOCK,
844 };
845 
846 /*
847  * Sends SIGBUS to the current process with error info.
848  *
849  * This function is intended to handle "Action Required" MCEs on already
850  * hardware poisoned pages. They could happen, for example, when
851  * memory_failure() failed to unmap the error page at the first call, or
852  * when multiple local machine checks happened on different CPUs.
853  *
854  * MCE handler currently has no easy access to the error virtual address,
855  * so this function walks page table to find it. The returned virtual address
856  * is proper in most cases, but it could be wrong when the application
857  * process has multiple entries mapping the error page.
858  */
859 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
860 				  int flags)
861 {
862 	int ret;
863 	struct hwpoison_walk priv = {
864 		.pfn = pfn,
865 	};
866 	priv.tk.tsk = p;
867 
868 	if (!p->mm)
869 		return -EFAULT;
870 
871 	mmap_read_lock(p->mm);
872 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
873 			      (void *)&priv);
874 	if (ret == 1 && priv.tk.addr)
875 		kill_proc(&priv.tk, pfn, flags);
876 	else
877 		ret = 0;
878 	mmap_read_unlock(p->mm);
879 	return ret > 0 ? -EHWPOISON : -EFAULT;
880 }
881 
882 /*
883  * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
884  * But it could not do more to isolate the page from being accessed again,
885  * nor does it kill the process. This is extremely rare and one of the
886  * potential causes is that the page state has been changed due to
887  * underlying race condition. This is the most severe outcomes.
888  *
889  * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
890  * It should have killed the process, but it can't isolate the page,
891  * due to conditions such as extra pin, unmap failure, etc. Accessing
892  * the page again may trigger another MCE and the process will be killed
893  * by the m-f() handler immediately.
894  *
895  * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
896  * The page is unmapped, and is removed from the LRU or file mapping.
897  * An attempt to access the page again will trigger page fault and the
898  * PF handler will kill the process.
899  *
900  * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
901  * The page has been completely isolated, that is, unmapped, taken out of
902  * the buddy system, or hole-punnched out of the file mapping.
903  */
904 static const char *action_name[] = {
905 	[MF_IGNORED] = "Ignored",
906 	[MF_FAILED] = "Failed",
907 	[MF_DELAYED] = "Delayed",
908 	[MF_RECOVERED] = "Recovered",
909 };
910 
911 static const char * const action_page_types[] = {
912 	[MF_MSG_KERNEL]			= "reserved kernel page",
913 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
914 	[MF_MSG_SLAB]			= "kernel slab page",
915 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
916 	[MF_MSG_HUGE]			= "huge page",
917 	[MF_MSG_FREE_HUGE]		= "free huge page",
918 	[MF_MSG_GET_HWPOISON]		= "get hwpoison page",
919 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
920 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
921 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
922 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
923 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
924 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
925 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
926 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
927 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
928 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
929 	[MF_MSG_BUDDY]			= "free buddy page",
930 	[MF_MSG_DAX]			= "dax page",
931 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
932 	[MF_MSG_ALREADY_POISONED]	= "already poisoned",
933 	[MF_MSG_UNKNOWN]		= "unknown page",
934 };
935 
936 /*
937  * XXX: It is possible that a page is isolated from LRU cache,
938  * and then kept in swap cache or failed to remove from page cache.
939  * The page count will stop it from being freed by unpoison.
940  * Stress tests should be aware of this memory leak problem.
941  */
942 static int delete_from_lru_cache(struct folio *folio)
943 {
944 	if (folio_isolate_lru(folio)) {
945 		/*
946 		 * Clear sensible page flags, so that the buddy system won't
947 		 * complain when the folio is unpoison-and-freed.
948 		 */
949 		folio_clear_active(folio);
950 		folio_clear_unevictable(folio);
951 
952 		/*
953 		 * Poisoned page might never drop its ref count to 0 so we have
954 		 * to uncharge it manually from its memcg.
955 		 */
956 		mem_cgroup_uncharge(folio);
957 
958 		/*
959 		 * drop the refcount elevated by folio_isolate_lru()
960 		 */
961 		folio_put(folio);
962 		return 0;
963 	}
964 	return -EIO;
965 }
966 
967 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
968 				struct address_space *mapping)
969 {
970 	int ret = MF_FAILED;
971 
972 	if (mapping->a_ops->error_remove_folio) {
973 		int err = mapping->a_ops->error_remove_folio(mapping, folio);
974 
975 		if (err != 0)
976 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
977 		else if (!filemap_release_folio(folio, GFP_NOIO))
978 			pr_info("%#lx: failed to release buffers\n", pfn);
979 		else
980 			ret = MF_RECOVERED;
981 	} else {
982 		/*
983 		 * If the file system doesn't support it just invalidate
984 		 * This fails on dirty or anything with private pages
985 		 */
986 		if (mapping_evict_folio(mapping, folio))
987 			ret = MF_RECOVERED;
988 		else
989 			pr_info("%#lx: Failed to invalidate\n",	pfn);
990 	}
991 
992 	return ret;
993 }
994 
995 struct page_state {
996 	unsigned long mask;
997 	unsigned long res;
998 	enum mf_action_page_type type;
999 
1000 	/* Callback ->action() has to unlock the relevant page inside it. */
1001 	int (*action)(struct page_state *ps, struct page *p);
1002 };
1003 
1004 /*
1005  * Return true if page is still referenced by others, otherwise return
1006  * false.
1007  *
1008  * The extra_pins is true when one extra refcount is expected.
1009  */
1010 static bool has_extra_refcount(struct page_state *ps, struct page *p,
1011 			       bool extra_pins)
1012 {
1013 	int count = page_count(p) - 1;
1014 
1015 	if (extra_pins)
1016 		count -= folio_nr_pages(page_folio(p));
1017 
1018 	if (count > 0) {
1019 		pr_err("%#lx: %s still referenced by %d users\n",
1020 		       page_to_pfn(p), action_page_types[ps->type], count);
1021 		return true;
1022 	}
1023 
1024 	return false;
1025 }
1026 
1027 /*
1028  * Error hit kernel page.
1029  * Do nothing, try to be lucky and not touch this instead. For a few cases we
1030  * could be more sophisticated.
1031  */
1032 static int me_kernel(struct page_state *ps, struct page *p)
1033 {
1034 	unlock_page(p);
1035 	return MF_IGNORED;
1036 }
1037 
1038 /*
1039  * Page in unknown state. Do nothing.
1040  * This is a catch-all in case we fail to make sense of the page state.
1041  */
1042 static int me_unknown(struct page_state *ps, struct page *p)
1043 {
1044 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1045 	unlock_page(p);
1046 	return MF_IGNORED;
1047 }
1048 
1049 /*
1050  * Clean (or cleaned) page cache page.
1051  */
1052 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1053 {
1054 	struct folio *folio = page_folio(p);
1055 	int ret;
1056 	struct address_space *mapping;
1057 	bool extra_pins;
1058 
1059 	delete_from_lru_cache(folio);
1060 
1061 	/*
1062 	 * For anonymous folios the only reference left
1063 	 * should be the one m_f() holds.
1064 	 */
1065 	if (folio_test_anon(folio)) {
1066 		ret = MF_RECOVERED;
1067 		goto out;
1068 	}
1069 
1070 	/*
1071 	 * Now truncate the page in the page cache. This is really
1072 	 * more like a "temporary hole punch"
1073 	 * Don't do this for block devices when someone else
1074 	 * has a reference, because it could be file system metadata
1075 	 * and that's not safe to truncate.
1076 	 */
1077 	mapping = folio_mapping(folio);
1078 	if (!mapping) {
1079 		/* Folio has been torn down in the meantime */
1080 		ret = MF_FAILED;
1081 		goto out;
1082 	}
1083 
1084 	/*
1085 	 * The shmem page is kept in page cache instead of truncating
1086 	 * so is expected to have an extra refcount after error-handling.
1087 	 */
1088 	extra_pins = shmem_mapping(mapping);
1089 
1090 	/*
1091 	 * Truncation is a bit tricky. Enable it per file system for now.
1092 	 *
1093 	 * Open: to take i_rwsem or not for this? Right now we don't.
1094 	 */
1095 	ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1096 	if (has_extra_refcount(ps, p, extra_pins))
1097 		ret = MF_FAILED;
1098 
1099 out:
1100 	folio_unlock(folio);
1101 
1102 	return ret;
1103 }
1104 
1105 /*
1106  * Dirty pagecache page
1107  * Issues: when the error hit a hole page the error is not properly
1108  * propagated.
1109  */
1110 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1111 {
1112 	struct folio *folio = page_folio(p);
1113 	struct address_space *mapping = folio_mapping(folio);
1114 
1115 	/* TBD: print more information about the file. */
1116 	if (mapping) {
1117 		/*
1118 		 * IO error will be reported by write(), fsync(), etc.
1119 		 * who check the mapping.
1120 		 * This way the application knows that something went
1121 		 * wrong with its dirty file data.
1122 		 */
1123 		mapping_set_error(mapping, -EIO);
1124 	}
1125 
1126 	return me_pagecache_clean(ps, p);
1127 }
1128 
1129 /*
1130  * Clean and dirty swap cache.
1131  *
1132  * Dirty swap cache page is tricky to handle. The page could live both in page
1133  * cache and swap cache(ie. page is freshly swapped in). So it could be
1134  * referenced concurrently by 2 types of PTEs:
1135  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1136  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1137  * and then
1138  *      - clear dirty bit to prevent IO
1139  *      - remove from LRU
1140  *      - but keep in the swap cache, so that when we return to it on
1141  *        a later page fault, we know the application is accessing
1142  *        corrupted data and shall be killed (we installed simple
1143  *        interception code in do_swap_page to catch it).
1144  *
1145  * Clean swap cache pages can be directly isolated. A later page fault will
1146  * bring in the known good data from disk.
1147  */
1148 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1149 {
1150 	struct folio *folio = page_folio(p);
1151 	int ret;
1152 	bool extra_pins = false;
1153 
1154 	folio_clear_dirty(folio);
1155 	/* Trigger EIO in shmem: */
1156 	folio_clear_uptodate(folio);
1157 
1158 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1159 	folio_unlock(folio);
1160 
1161 	if (ret == MF_DELAYED)
1162 		extra_pins = true;
1163 
1164 	if (has_extra_refcount(ps, p, extra_pins))
1165 		ret = MF_FAILED;
1166 
1167 	return ret;
1168 }
1169 
1170 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1171 {
1172 	struct folio *folio = page_folio(p);
1173 	int ret;
1174 
1175 	delete_from_swap_cache(folio);
1176 
1177 	ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1178 	folio_unlock(folio);
1179 
1180 	if (has_extra_refcount(ps, p, false))
1181 		ret = MF_FAILED;
1182 
1183 	return ret;
1184 }
1185 
1186 /*
1187  * Huge pages. Needs work.
1188  * Issues:
1189  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1190  *   To narrow down kill region to one page, we need to break up pmd.
1191  */
1192 static int me_huge_page(struct page_state *ps, struct page *p)
1193 {
1194 	struct folio *folio = page_folio(p);
1195 	int res;
1196 	struct address_space *mapping;
1197 	bool extra_pins = false;
1198 
1199 	mapping = folio_mapping(folio);
1200 	if (mapping) {
1201 		res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1202 		/* The page is kept in page cache. */
1203 		extra_pins = true;
1204 		folio_unlock(folio);
1205 	} else {
1206 		folio_unlock(folio);
1207 		/*
1208 		 * migration entry prevents later access on error hugepage,
1209 		 * so we can free and dissolve it into buddy to save healthy
1210 		 * subpages.
1211 		 */
1212 		folio_put(folio);
1213 		if (__page_handle_poison(p) > 0) {
1214 			page_ref_inc(p);
1215 			res = MF_RECOVERED;
1216 		} else {
1217 			res = MF_FAILED;
1218 		}
1219 	}
1220 
1221 	if (has_extra_refcount(ps, p, extra_pins))
1222 		res = MF_FAILED;
1223 
1224 	return res;
1225 }
1226 
1227 /*
1228  * Various page states we can handle.
1229  *
1230  * A page state is defined by its current page->flags bits.
1231  * The table matches them in order and calls the right handler.
1232  *
1233  * This is quite tricky because we can access page at any time
1234  * in its live cycle, so all accesses have to be extremely careful.
1235  *
1236  * This is not complete. More states could be added.
1237  * For any missing state don't attempt recovery.
1238  */
1239 
1240 #define dirty		(1UL << PG_dirty)
1241 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1242 #define unevict		(1UL << PG_unevictable)
1243 #define mlock		(1UL << PG_mlocked)
1244 #define lru		(1UL << PG_lru)
1245 #define head		(1UL << PG_head)
1246 #define reserved	(1UL << PG_reserved)
1247 
1248 static struct page_state error_states[] = {
1249 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1250 	/*
1251 	 * free pages are specially detected outside this table:
1252 	 * PG_buddy pages only make a small fraction of all free pages.
1253 	 */
1254 
1255 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1256 
1257 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1258 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1259 
1260 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1261 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1262 
1263 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1264 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1265 
1266 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1267 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1268 
1269 	/*
1270 	 * Catchall entry: must be at end.
1271 	 */
1272 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1273 };
1274 
1275 #undef dirty
1276 #undef sc
1277 #undef unevict
1278 #undef mlock
1279 #undef lru
1280 #undef head
1281 #undef reserved
1282 
1283 static void update_per_node_mf_stats(unsigned long pfn,
1284 				     enum mf_result result)
1285 {
1286 	int nid = MAX_NUMNODES;
1287 	struct memory_failure_stats *mf_stats = NULL;
1288 
1289 	nid = pfn_to_nid(pfn);
1290 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1291 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1292 		return;
1293 	}
1294 
1295 	mf_stats = &NODE_DATA(nid)->mf_stats;
1296 	switch (result) {
1297 	case MF_IGNORED:
1298 		++mf_stats->ignored;
1299 		break;
1300 	case MF_FAILED:
1301 		++mf_stats->failed;
1302 		break;
1303 	case MF_DELAYED:
1304 		++mf_stats->delayed;
1305 		break;
1306 	case MF_RECOVERED:
1307 		++mf_stats->recovered;
1308 		break;
1309 	default:
1310 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1311 		break;
1312 	}
1313 	++mf_stats->total;
1314 }
1315 
1316 /*
1317  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1318  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1319  */
1320 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1321 			 enum mf_result result)
1322 {
1323 	trace_memory_failure_event(pfn, type, result);
1324 
1325 	num_poisoned_pages_inc(pfn);
1326 
1327 	update_per_node_mf_stats(pfn, result);
1328 
1329 	pr_err("%#lx: recovery action for %s: %s\n",
1330 		pfn, action_page_types[type], action_name[result]);
1331 
1332 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1333 }
1334 
1335 static int page_action(struct page_state *ps, struct page *p,
1336 			unsigned long pfn)
1337 {
1338 	int result;
1339 
1340 	/* page p should be unlocked after returning from ps->action().  */
1341 	result = ps->action(ps, p);
1342 
1343 	/* Could do more checks here if page looks ok */
1344 	/*
1345 	 * Could adjust zone counters here to correct for the missing page.
1346 	 */
1347 
1348 	return action_result(pfn, ps->type, result);
1349 }
1350 
1351 static inline bool PageHWPoisonTakenOff(struct page *page)
1352 {
1353 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1354 }
1355 
1356 void SetPageHWPoisonTakenOff(struct page *page)
1357 {
1358 	set_page_private(page, MAGIC_HWPOISON);
1359 }
1360 
1361 void ClearPageHWPoisonTakenOff(struct page *page)
1362 {
1363 	if (PageHWPoison(page))
1364 		set_page_private(page, 0);
1365 }
1366 
1367 /*
1368  * Return true if a page type of a given page is supported by hwpoison
1369  * mechanism (while handling could fail), otherwise false.  This function
1370  * does not return true for hugetlb or device memory pages, so it's assumed
1371  * to be called only in the context where we never have such pages.
1372  */
1373 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1374 {
1375 	if (PageSlab(page))
1376 		return false;
1377 
1378 	/* Soft offline could migrate non-LRU movable pages */
1379 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1380 		return true;
1381 
1382 	return PageLRU(page) || is_free_buddy_page(page);
1383 }
1384 
1385 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1386 {
1387 	struct folio *folio = page_folio(page);
1388 	int ret = 0;
1389 	bool hugetlb = false;
1390 
1391 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1392 	if (hugetlb) {
1393 		/* Make sure hugetlb demotion did not happen from under us. */
1394 		if (folio == page_folio(page))
1395 			return ret;
1396 		if (ret > 0) {
1397 			folio_put(folio);
1398 			folio = page_folio(page);
1399 		}
1400 	}
1401 
1402 	/*
1403 	 * This check prevents from calling folio_try_get() for any
1404 	 * unsupported type of folio in order to reduce the risk of unexpected
1405 	 * races caused by taking a folio refcount.
1406 	 */
1407 	if (!HWPoisonHandlable(&folio->page, flags))
1408 		return -EBUSY;
1409 
1410 	if (folio_try_get(folio)) {
1411 		if (folio == page_folio(page))
1412 			return 1;
1413 
1414 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1415 		folio_put(folio);
1416 	}
1417 
1418 	return 0;
1419 }
1420 
1421 static int get_any_page(struct page *p, unsigned long flags)
1422 {
1423 	int ret = 0, pass = 0;
1424 	bool count_increased = false;
1425 
1426 	if (flags & MF_COUNT_INCREASED)
1427 		count_increased = true;
1428 
1429 try_again:
1430 	if (!count_increased) {
1431 		ret = __get_hwpoison_page(p, flags);
1432 		if (!ret) {
1433 			if (page_count(p)) {
1434 				/* We raced with an allocation, retry. */
1435 				if (pass++ < 3)
1436 					goto try_again;
1437 				ret = -EBUSY;
1438 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1439 				/* We raced with put_page, retry. */
1440 				if (pass++ < 3)
1441 					goto try_again;
1442 				ret = -EIO;
1443 			}
1444 			goto out;
1445 		} else if (ret == -EBUSY) {
1446 			/*
1447 			 * We raced with (possibly temporary) unhandlable
1448 			 * page, retry.
1449 			 */
1450 			if (pass++ < 3) {
1451 				shake_page(p);
1452 				goto try_again;
1453 			}
1454 			ret = -EIO;
1455 			goto out;
1456 		}
1457 	}
1458 
1459 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1460 		ret = 1;
1461 	} else {
1462 		/*
1463 		 * A page we cannot handle. Check whether we can turn
1464 		 * it into something we can handle.
1465 		 */
1466 		if (pass++ < 3) {
1467 			put_page(p);
1468 			shake_page(p);
1469 			count_increased = false;
1470 			goto try_again;
1471 		}
1472 		put_page(p);
1473 		ret = -EIO;
1474 	}
1475 out:
1476 	if (ret == -EIO)
1477 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1478 
1479 	return ret;
1480 }
1481 
1482 static int __get_unpoison_page(struct page *page)
1483 {
1484 	struct folio *folio = page_folio(page);
1485 	int ret = 0;
1486 	bool hugetlb = false;
1487 
1488 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1489 	if (hugetlb) {
1490 		/* Make sure hugetlb demotion did not happen from under us. */
1491 		if (folio == page_folio(page))
1492 			return ret;
1493 		if (ret > 0)
1494 			folio_put(folio);
1495 	}
1496 
1497 	/*
1498 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1499 	 * but also isolated from buddy freelist, so need to identify the
1500 	 * state and have to cancel both operations to unpoison.
1501 	 */
1502 	if (PageHWPoisonTakenOff(page))
1503 		return -EHWPOISON;
1504 
1505 	return get_page_unless_zero(page) ? 1 : 0;
1506 }
1507 
1508 /**
1509  * get_hwpoison_page() - Get refcount for memory error handling
1510  * @p:		Raw error page (hit by memory error)
1511  * @flags:	Flags controlling behavior of error handling
1512  *
1513  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1514  * error on it, after checking that the error page is in a well-defined state
1515  * (defined as a page-type we can successfully handle the memory error on it,
1516  * such as LRU page and hugetlb page).
1517  *
1518  * Memory error handling could be triggered at any time on any type of page,
1519  * so it's prone to race with typical memory management lifecycle (like
1520  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1521  * extra care for the error page's state (as done in __get_hwpoison_page()),
1522  * and has some retry logic in get_any_page().
1523  *
1524  * When called from unpoison_memory(), the caller should already ensure that
1525  * the given page has PG_hwpoison. So it's never reused for other page
1526  * allocations, and __get_unpoison_page() never races with them.
1527  *
1528  * Return: 0 on failure,
1529  *         1 on success for in-use pages in a well-defined state,
1530  *         -EIO for pages on which we can not handle memory errors,
1531  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1532  *         operations like allocation and free,
1533  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1534  */
1535 static int get_hwpoison_page(struct page *p, unsigned long flags)
1536 {
1537 	int ret;
1538 
1539 	zone_pcp_disable(page_zone(p));
1540 	if (flags & MF_UNPOISON)
1541 		ret = __get_unpoison_page(p);
1542 	else
1543 		ret = get_any_page(p, flags);
1544 	zone_pcp_enable(page_zone(p));
1545 
1546 	return ret;
1547 }
1548 
1549 /*
1550  * Do all that is necessary to remove user space mappings. Unmap
1551  * the pages and send SIGBUS to the processes if the data was dirty.
1552  */
1553 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1554 		unsigned long pfn, int flags)
1555 {
1556 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1557 	struct address_space *mapping;
1558 	LIST_HEAD(tokill);
1559 	bool unmap_success;
1560 	int forcekill;
1561 	bool mlocked = folio_test_mlocked(folio);
1562 
1563 	/*
1564 	 * Here we are interested only in user-mapped pages, so skip any
1565 	 * other types of pages.
1566 	 */
1567 	if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1568 	    folio_test_pgtable(folio) || folio_test_offline(folio))
1569 		return true;
1570 	if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1571 		return true;
1572 
1573 	/*
1574 	 * This check implies we don't kill processes if their pages
1575 	 * are in the swap cache early. Those are always late kills.
1576 	 */
1577 	if (!page_mapped(p))
1578 		return true;
1579 
1580 	if (folio_test_swapcache(folio)) {
1581 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1582 		ttu &= ~TTU_HWPOISON;
1583 	}
1584 
1585 	/*
1586 	 * Propagate the dirty bit from PTEs to struct page first, because we
1587 	 * need this to decide if we should kill or just drop the page.
1588 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1589 	 * be called inside page lock (it's recommended but not enforced).
1590 	 */
1591 	mapping = folio_mapping(folio);
1592 	if (!(flags & MF_MUST_KILL) && !folio_test_dirty(folio) && mapping &&
1593 	    mapping_can_writeback(mapping)) {
1594 		if (folio_mkclean(folio)) {
1595 			folio_set_dirty(folio);
1596 		} else {
1597 			ttu &= ~TTU_HWPOISON;
1598 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1599 				pfn);
1600 		}
1601 	}
1602 
1603 	/*
1604 	 * First collect all the processes that have the page
1605 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1606 	 * because ttu takes the rmap data structures down.
1607 	 */
1608 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1609 
1610 	if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1611 		/*
1612 		 * For hugetlb pages in shared mappings, try_to_unmap
1613 		 * could potentially call huge_pmd_unshare.  Because of
1614 		 * this, take semaphore in write mode here and set
1615 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1616 		 * at this higher level.
1617 		 */
1618 		mapping = hugetlb_folio_mapping_lock_write(folio);
1619 		if (mapping) {
1620 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1621 			i_mmap_unlock_write(mapping);
1622 		} else
1623 			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1624 	} else {
1625 		try_to_unmap(folio, ttu);
1626 	}
1627 
1628 	unmap_success = !page_mapped(p);
1629 	if (!unmap_success)
1630 		pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1631 		       pfn, folio_mapcount(page_folio(p)));
1632 
1633 	/*
1634 	 * try_to_unmap() might put mlocked page in lru cache, so call
1635 	 * shake_page() again to ensure that it's flushed.
1636 	 */
1637 	if (mlocked)
1638 		shake_folio(folio);
1639 
1640 	/*
1641 	 * Now that the dirty bit has been propagated to the
1642 	 * struct page and all unmaps done we can decide if
1643 	 * killing is needed or not.  Only kill when the page
1644 	 * was dirty or the process is not restartable,
1645 	 * otherwise the tokill list is merely
1646 	 * freed.  When there was a problem unmapping earlier
1647 	 * use a more force-full uncatchable kill to prevent
1648 	 * any accesses to the poisoned memory.
1649 	 */
1650 	forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1651 		    !unmap_success;
1652 	kill_procs(&tokill, forcekill, pfn, flags);
1653 
1654 	return unmap_success;
1655 }
1656 
1657 static int identify_page_state(unsigned long pfn, struct page *p,
1658 				unsigned long page_flags)
1659 {
1660 	struct page_state *ps;
1661 
1662 	/*
1663 	 * The first check uses the current page flags which may not have any
1664 	 * relevant information. The second check with the saved page flags is
1665 	 * carried out only if the first check can't determine the page status.
1666 	 */
1667 	for (ps = error_states;; ps++)
1668 		if ((p->flags & ps->mask) == ps->res)
1669 			break;
1670 
1671 	page_flags |= (p->flags & (1UL << PG_dirty));
1672 
1673 	if (!ps->mask)
1674 		for (ps = error_states;; ps++)
1675 			if ((page_flags & ps->mask) == ps->res)
1676 				break;
1677 	return page_action(ps, p, pfn);
1678 }
1679 
1680 /*
1681  * When 'release' is 'false', it means that if thp split has failed,
1682  * there is still more to do, hence the page refcount we took earlier
1683  * is still needed.
1684  */
1685 static int try_to_split_thp_page(struct page *page, bool release)
1686 {
1687 	int ret;
1688 
1689 	lock_page(page);
1690 	ret = split_huge_page(page);
1691 	unlock_page(page);
1692 
1693 	if (ret && release)
1694 		put_page(page);
1695 
1696 	return ret;
1697 }
1698 
1699 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1700 		struct address_space *mapping, pgoff_t index, int flags)
1701 {
1702 	struct to_kill *tk;
1703 	unsigned long size = 0;
1704 
1705 	list_for_each_entry(tk, to_kill, nd)
1706 		if (tk->size_shift)
1707 			size = max(size, 1UL << tk->size_shift);
1708 
1709 	if (size) {
1710 		/*
1711 		 * Unmap the largest mapping to avoid breaking up device-dax
1712 		 * mappings which are constant size. The actual size of the
1713 		 * mapping being torn down is communicated in siginfo, see
1714 		 * kill_proc()
1715 		 */
1716 		loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1717 
1718 		unmap_mapping_range(mapping, start, size, 0);
1719 	}
1720 
1721 	kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1722 }
1723 
1724 /*
1725  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1726  * either do not claim or fails to claim a hwpoison event, or devdax.
1727  * The fsdax pages are initialized per base page, and the devdax pages
1728  * could be initialized either as base pages, or as compound pages with
1729  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1730  * hwpoison, such that, if a subpage of a compound page is poisoned,
1731  * simply mark the compound head page is by far sufficient.
1732  */
1733 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1734 		struct dev_pagemap *pgmap)
1735 {
1736 	struct folio *folio = pfn_folio(pfn);
1737 	LIST_HEAD(to_kill);
1738 	dax_entry_t cookie;
1739 	int rc = 0;
1740 
1741 	/*
1742 	 * Prevent the inode from being freed while we are interrogating
1743 	 * the address_space, typically this would be handled by
1744 	 * lock_page(), but dax pages do not use the page lock. This
1745 	 * also prevents changes to the mapping of this pfn until
1746 	 * poison signaling is complete.
1747 	 */
1748 	cookie = dax_lock_folio(folio);
1749 	if (!cookie)
1750 		return -EBUSY;
1751 
1752 	if (hwpoison_filter(&folio->page)) {
1753 		rc = -EOPNOTSUPP;
1754 		goto unlock;
1755 	}
1756 
1757 	switch (pgmap->type) {
1758 	case MEMORY_DEVICE_PRIVATE:
1759 	case MEMORY_DEVICE_COHERENT:
1760 		/*
1761 		 * TODO: Handle device pages which may need coordination
1762 		 * with device-side memory.
1763 		 */
1764 		rc = -ENXIO;
1765 		goto unlock;
1766 	default:
1767 		break;
1768 	}
1769 
1770 	/*
1771 	 * Use this flag as an indication that the dax page has been
1772 	 * remapped UC to prevent speculative consumption of poison.
1773 	 */
1774 	SetPageHWPoison(&folio->page);
1775 
1776 	/*
1777 	 * Unlike System-RAM there is no possibility to swap in a
1778 	 * different physical page at a given virtual address, so all
1779 	 * userspace consumption of ZONE_DEVICE memory necessitates
1780 	 * SIGBUS (i.e. MF_MUST_KILL)
1781 	 */
1782 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1783 	collect_procs(folio, &folio->page, &to_kill, true);
1784 
1785 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1786 unlock:
1787 	dax_unlock_folio(folio, cookie);
1788 	return rc;
1789 }
1790 
1791 #ifdef CONFIG_FS_DAX
1792 /**
1793  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1794  * @mapping:	address_space of the file in use
1795  * @index:	start pgoff of the range within the file
1796  * @count:	length of the range, in unit of PAGE_SIZE
1797  * @mf_flags:	memory failure flags
1798  */
1799 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1800 		unsigned long count, int mf_flags)
1801 {
1802 	LIST_HEAD(to_kill);
1803 	dax_entry_t cookie;
1804 	struct page *page;
1805 	size_t end = index + count;
1806 	bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1807 
1808 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1809 
1810 	for (; index < end; index++) {
1811 		page = NULL;
1812 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1813 		if (!cookie)
1814 			return -EBUSY;
1815 		if (!page)
1816 			goto unlock;
1817 
1818 		if (!pre_remove)
1819 			SetPageHWPoison(page);
1820 
1821 		/*
1822 		 * The pre_remove case is revoking access, the memory is still
1823 		 * good and could theoretically be put back into service.
1824 		 */
1825 		collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1826 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1827 				index, mf_flags);
1828 unlock:
1829 		dax_unlock_mapping_entry(mapping, index, cookie);
1830 	}
1831 	return 0;
1832 }
1833 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1834 #endif /* CONFIG_FS_DAX */
1835 
1836 #ifdef CONFIG_HUGETLB_PAGE
1837 
1838 /*
1839  * Struct raw_hwp_page represents information about "raw error page",
1840  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1841  */
1842 struct raw_hwp_page {
1843 	struct llist_node node;
1844 	struct page *page;
1845 };
1846 
1847 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1848 {
1849 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1850 }
1851 
1852 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1853 {
1854 	struct llist_head *raw_hwp_head;
1855 	struct raw_hwp_page *p;
1856 	struct folio *folio = page_folio(page);
1857 	bool ret = false;
1858 
1859 	if (!folio_test_hwpoison(folio))
1860 		return false;
1861 
1862 	if (!folio_test_hugetlb(folio))
1863 		return PageHWPoison(page);
1864 
1865 	/*
1866 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1867 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1868 	 */
1869 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1870 		return true;
1871 
1872 	mutex_lock(&mf_mutex);
1873 
1874 	raw_hwp_head = raw_hwp_list_head(folio);
1875 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1876 		if (page == p->page) {
1877 			ret = true;
1878 			break;
1879 		}
1880 	}
1881 
1882 	mutex_unlock(&mf_mutex);
1883 
1884 	return ret;
1885 }
1886 
1887 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1888 {
1889 	struct llist_node *head;
1890 	struct raw_hwp_page *p, *next;
1891 	unsigned long count = 0;
1892 
1893 	head = llist_del_all(raw_hwp_list_head(folio));
1894 	llist_for_each_entry_safe(p, next, head, node) {
1895 		if (move_flag)
1896 			SetPageHWPoison(p->page);
1897 		else
1898 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1899 		kfree(p);
1900 		count++;
1901 	}
1902 	return count;
1903 }
1904 
1905 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1906 {
1907 	struct llist_head *head;
1908 	struct raw_hwp_page *raw_hwp;
1909 	struct raw_hwp_page *p;
1910 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1911 
1912 	/*
1913 	 * Once the hwpoison hugepage has lost reliable raw error info,
1914 	 * there is little meaning to keep additional error info precisely,
1915 	 * so skip to add additional raw error info.
1916 	 */
1917 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1918 		return -EHWPOISON;
1919 	head = raw_hwp_list_head(folio);
1920 	llist_for_each_entry(p, head->first, node) {
1921 		if (p->page == page)
1922 			return -EHWPOISON;
1923 	}
1924 
1925 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1926 	if (raw_hwp) {
1927 		raw_hwp->page = page;
1928 		llist_add(&raw_hwp->node, head);
1929 		/* the first error event will be counted in action_result(). */
1930 		if (ret)
1931 			num_poisoned_pages_inc(page_to_pfn(page));
1932 	} else {
1933 		/*
1934 		 * Failed to save raw error info.  We no longer trace all
1935 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1936 		 * this hwpoisoned hugepage.
1937 		 */
1938 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1939 		/*
1940 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1941 		 * used any more, so free it.
1942 		 */
1943 		__folio_free_raw_hwp(folio, false);
1944 	}
1945 	return ret;
1946 }
1947 
1948 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1949 {
1950 	/*
1951 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1952 	 * pages for tail pages are required but they don't exist.
1953 	 */
1954 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1955 		return 0;
1956 
1957 	/*
1958 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1959 	 * definition.
1960 	 */
1961 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1962 		return 0;
1963 
1964 	return __folio_free_raw_hwp(folio, move_flag);
1965 }
1966 
1967 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1968 {
1969 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1970 		return;
1971 	if (folio_test_hugetlb_vmemmap_optimized(folio))
1972 		return;
1973 	folio_clear_hwpoison(folio);
1974 	folio_free_raw_hwp(folio, true);
1975 }
1976 
1977 /*
1978  * Called from hugetlb code with hugetlb_lock held.
1979  *
1980  * Return values:
1981  *   0             - free hugepage
1982  *   1             - in-use hugepage
1983  *   2             - not a hugepage
1984  *   -EBUSY        - the hugepage is busy (try to retry)
1985  *   -EHWPOISON    - the hugepage is already hwpoisoned
1986  */
1987 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1988 				 bool *migratable_cleared)
1989 {
1990 	struct page *page = pfn_to_page(pfn);
1991 	struct folio *folio = page_folio(page);
1992 	int ret = 2;	/* fallback to normal page handling */
1993 	bool count_increased = false;
1994 
1995 	if (!folio_test_hugetlb(folio))
1996 		goto out;
1997 
1998 	if (flags & MF_COUNT_INCREASED) {
1999 		ret = 1;
2000 		count_increased = true;
2001 	} else if (folio_test_hugetlb_freed(folio)) {
2002 		ret = 0;
2003 	} else if (folio_test_hugetlb_migratable(folio)) {
2004 		ret = folio_try_get(folio);
2005 		if (ret)
2006 			count_increased = true;
2007 	} else {
2008 		ret = -EBUSY;
2009 		if (!(flags & MF_NO_RETRY))
2010 			goto out;
2011 	}
2012 
2013 	if (folio_set_hugetlb_hwpoison(folio, page)) {
2014 		ret = -EHWPOISON;
2015 		goto out;
2016 	}
2017 
2018 	/*
2019 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2020 	 * from being migrated by memory hotremove.
2021 	 */
2022 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2023 		folio_clear_hugetlb_migratable(folio);
2024 		*migratable_cleared = true;
2025 	}
2026 
2027 	return ret;
2028 out:
2029 	if (count_increased)
2030 		folio_put(folio);
2031 	return ret;
2032 }
2033 
2034 /*
2035  * Taking refcount of hugetlb pages needs extra care about race conditions
2036  * with basic operations like hugepage allocation/free/demotion.
2037  * So some of prechecks for hwpoison (pinning, and testing/setting
2038  * PageHWPoison) should be done in single hugetlb_lock range.
2039  */
2040 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2041 {
2042 	int res;
2043 	struct page *p = pfn_to_page(pfn);
2044 	struct folio *folio;
2045 	unsigned long page_flags;
2046 	bool migratable_cleared = false;
2047 
2048 	*hugetlb = 1;
2049 retry:
2050 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2051 	if (res == 2) { /* fallback to normal page handling */
2052 		*hugetlb = 0;
2053 		return 0;
2054 	} else if (res == -EHWPOISON) {
2055 		pr_err("%#lx: already hardware poisoned\n", pfn);
2056 		if (flags & MF_ACTION_REQUIRED) {
2057 			folio = page_folio(p);
2058 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2059 			action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2060 		}
2061 		return res;
2062 	} else if (res == -EBUSY) {
2063 		if (!(flags & MF_NO_RETRY)) {
2064 			flags |= MF_NO_RETRY;
2065 			goto retry;
2066 		}
2067 		return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2068 	}
2069 
2070 	folio = page_folio(p);
2071 	folio_lock(folio);
2072 
2073 	if (hwpoison_filter(p)) {
2074 		folio_clear_hugetlb_hwpoison(folio);
2075 		if (migratable_cleared)
2076 			folio_set_hugetlb_migratable(folio);
2077 		folio_unlock(folio);
2078 		if (res == 1)
2079 			folio_put(folio);
2080 		return -EOPNOTSUPP;
2081 	}
2082 
2083 	/*
2084 	 * Handling free hugepage.  The possible race with hugepage allocation
2085 	 * or demotion can be prevented by PageHWPoison flag.
2086 	 */
2087 	if (res == 0) {
2088 		folio_unlock(folio);
2089 		if (__page_handle_poison(p) > 0) {
2090 			page_ref_inc(p);
2091 			res = MF_RECOVERED;
2092 		} else {
2093 			res = MF_FAILED;
2094 		}
2095 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2096 	}
2097 
2098 	page_flags = folio->flags;
2099 
2100 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2101 		folio_unlock(folio);
2102 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2103 	}
2104 
2105 	return identify_page_state(pfn, p, page_flags);
2106 }
2107 
2108 #else
2109 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2110 {
2111 	return 0;
2112 }
2113 
2114 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2115 {
2116 	return 0;
2117 }
2118 #endif	/* CONFIG_HUGETLB_PAGE */
2119 
2120 /* Drop the extra refcount in case we come from madvise() */
2121 static void put_ref_page(unsigned long pfn, int flags)
2122 {
2123 	struct page *page;
2124 
2125 	if (!(flags & MF_COUNT_INCREASED))
2126 		return;
2127 
2128 	page = pfn_to_page(pfn);
2129 	if (page)
2130 		put_page(page);
2131 }
2132 
2133 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2134 		struct dev_pagemap *pgmap)
2135 {
2136 	int rc = -ENXIO;
2137 
2138 	/* device metadata space is not recoverable */
2139 	if (!pgmap_pfn_valid(pgmap, pfn))
2140 		goto out;
2141 
2142 	/*
2143 	 * Call driver's implementation to handle the memory failure, otherwise
2144 	 * fall back to generic handler.
2145 	 */
2146 	if (pgmap_has_memory_failure(pgmap)) {
2147 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2148 		/*
2149 		 * Fall back to generic handler too if operation is not
2150 		 * supported inside the driver/device/filesystem.
2151 		 */
2152 		if (rc != -EOPNOTSUPP)
2153 			goto out;
2154 	}
2155 
2156 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2157 out:
2158 	/* drop pgmap ref acquired in caller */
2159 	put_dev_pagemap(pgmap);
2160 	if (rc != -EOPNOTSUPP)
2161 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2162 	return rc;
2163 }
2164 
2165 /*
2166  * The calling condition is as such: thp split failed, page might have
2167  * been RDMA pinned, not much can be done for recovery.
2168  * But a SIGBUS should be delivered with vaddr provided so that the user
2169  * application has a chance to recover. Also, application processes'
2170  * election for MCE early killed will be honored.
2171  */
2172 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2173 				struct folio *folio)
2174 {
2175 	LIST_HEAD(tokill);
2176 
2177 	collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2178 	kill_procs(&tokill, true, pfn, flags);
2179 }
2180 
2181 /**
2182  * memory_failure - Handle memory failure of a page.
2183  * @pfn: Page Number of the corrupted page
2184  * @flags: fine tune action taken
2185  *
2186  * This function is called by the low level machine check code
2187  * of an architecture when it detects hardware memory corruption
2188  * of a page. It tries its best to recover, which includes
2189  * dropping pages, killing processes etc.
2190  *
2191  * The function is primarily of use for corruptions that
2192  * happen outside the current execution context (e.g. when
2193  * detected by a background scrubber)
2194  *
2195  * Must run in process context (e.g. a work queue) with interrupts
2196  * enabled and no spinlocks held.
2197  *
2198  * Return: 0 for successfully handled the memory error,
2199  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2200  *         < 0(except -EOPNOTSUPP) on failure.
2201  */
2202 int memory_failure(unsigned long pfn, int flags)
2203 {
2204 	struct page *p;
2205 	struct folio *folio;
2206 	struct dev_pagemap *pgmap;
2207 	int res = 0;
2208 	unsigned long page_flags;
2209 	bool retry = true;
2210 	int hugetlb = 0;
2211 
2212 	if (!sysctl_memory_failure_recovery)
2213 		panic("Memory failure on page %lx", pfn);
2214 
2215 	mutex_lock(&mf_mutex);
2216 
2217 	if (!(flags & MF_SW_SIMULATED))
2218 		hw_memory_failure = true;
2219 
2220 	p = pfn_to_online_page(pfn);
2221 	if (!p) {
2222 		res = arch_memory_failure(pfn, flags);
2223 		if (res == 0)
2224 			goto unlock_mutex;
2225 
2226 		if (pfn_valid(pfn)) {
2227 			pgmap = get_dev_pagemap(pfn, NULL);
2228 			put_ref_page(pfn, flags);
2229 			if (pgmap) {
2230 				res = memory_failure_dev_pagemap(pfn, flags,
2231 								 pgmap);
2232 				goto unlock_mutex;
2233 			}
2234 		}
2235 		pr_err("%#lx: memory outside kernel control\n", pfn);
2236 		res = -ENXIO;
2237 		goto unlock_mutex;
2238 	}
2239 
2240 try_again:
2241 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2242 	if (hugetlb)
2243 		goto unlock_mutex;
2244 
2245 	if (TestSetPageHWPoison(p)) {
2246 		pr_err("%#lx: already hardware poisoned\n", pfn);
2247 		res = -EHWPOISON;
2248 		if (flags & MF_ACTION_REQUIRED)
2249 			res = kill_accessing_process(current, pfn, flags);
2250 		if (flags & MF_COUNT_INCREASED)
2251 			put_page(p);
2252 		action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2253 		goto unlock_mutex;
2254 	}
2255 
2256 	/*
2257 	 * We need/can do nothing about count=0 pages.
2258 	 * 1) it's a free page, and therefore in safe hand:
2259 	 *    check_new_page() will be the gate keeper.
2260 	 * 2) it's part of a non-compound high order page.
2261 	 *    Implies some kernel user: cannot stop them from
2262 	 *    R/W the page; let's pray that the page has been
2263 	 *    used and will be freed some time later.
2264 	 * In fact it's dangerous to directly bump up page count from 0,
2265 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2266 	 */
2267 	if (!(flags & MF_COUNT_INCREASED)) {
2268 		res = get_hwpoison_page(p, flags);
2269 		if (!res) {
2270 			if (is_free_buddy_page(p)) {
2271 				if (take_page_off_buddy(p)) {
2272 					page_ref_inc(p);
2273 					res = MF_RECOVERED;
2274 				} else {
2275 					/* We lost the race, try again */
2276 					if (retry) {
2277 						ClearPageHWPoison(p);
2278 						retry = false;
2279 						goto try_again;
2280 					}
2281 					res = MF_FAILED;
2282 				}
2283 				res = action_result(pfn, MF_MSG_BUDDY, res);
2284 			} else {
2285 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2286 			}
2287 			goto unlock_mutex;
2288 		} else if (res < 0) {
2289 			res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2290 			goto unlock_mutex;
2291 		}
2292 	}
2293 
2294 	folio = page_folio(p);
2295 
2296 	/* filter pages that are protected from hwpoison test by users */
2297 	folio_lock(folio);
2298 	if (hwpoison_filter(p)) {
2299 		ClearPageHWPoison(p);
2300 		folio_unlock(folio);
2301 		folio_put(folio);
2302 		res = -EOPNOTSUPP;
2303 		goto unlock_mutex;
2304 	}
2305 	folio_unlock(folio);
2306 
2307 	if (folio_test_large(folio)) {
2308 		/*
2309 		 * The flag must be set after the refcount is bumped
2310 		 * otherwise it may race with THP split.
2311 		 * And the flag can't be set in get_hwpoison_page() since
2312 		 * it is called by soft offline too and it is just called
2313 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2314 		 * place.
2315 		 *
2316 		 * Don't need care about the above error handling paths for
2317 		 * get_hwpoison_page() since they handle either free page
2318 		 * or unhandlable page.  The refcount is bumped iff the
2319 		 * page is a valid handlable page.
2320 		 */
2321 		folio_set_has_hwpoisoned(folio);
2322 		if (try_to_split_thp_page(p, false) < 0) {
2323 			res = -EHWPOISON;
2324 			kill_procs_now(p, pfn, flags, folio);
2325 			put_page(p);
2326 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2327 			goto unlock_mutex;
2328 		}
2329 		VM_BUG_ON_PAGE(!page_count(p), p);
2330 		folio = page_folio(p);
2331 	}
2332 
2333 	/*
2334 	 * We ignore non-LRU pages for good reasons.
2335 	 * - PG_locked is only well defined for LRU pages and a few others
2336 	 * - to avoid races with __SetPageLocked()
2337 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2338 	 * The check (unnecessarily) ignores LRU pages being isolated and
2339 	 * walked by the page reclaim code, however that's not a big loss.
2340 	 */
2341 	shake_folio(folio);
2342 
2343 	folio_lock(folio);
2344 
2345 	/*
2346 	 * We're only intended to deal with the non-Compound page here.
2347 	 * However, the page could have changed compound pages due to
2348 	 * race window. If this happens, we could try again to hopefully
2349 	 * handle the page next round.
2350 	 */
2351 	if (folio_test_large(folio)) {
2352 		if (retry) {
2353 			ClearPageHWPoison(p);
2354 			folio_unlock(folio);
2355 			folio_put(folio);
2356 			flags &= ~MF_COUNT_INCREASED;
2357 			retry = false;
2358 			goto try_again;
2359 		}
2360 		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2361 		goto unlock_page;
2362 	}
2363 
2364 	/*
2365 	 * We use page flags to determine what action should be taken, but
2366 	 * the flags can be modified by the error containment action.  One
2367 	 * example is an mlocked page, where PG_mlocked is cleared by
2368 	 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2369 	 * status correctly, we save a copy of the page flags at this time.
2370 	 */
2371 	page_flags = folio->flags;
2372 
2373 	/*
2374 	 * __munlock_folio() may clear a writeback folio's LRU flag without
2375 	 * the folio lock. We need to wait for writeback completion for this
2376 	 * folio or it may trigger a vfs BUG while evicting inode.
2377 	 */
2378 	if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2379 		goto identify_page_state;
2380 
2381 	/*
2382 	 * It's very difficult to mess with pages currently under IO
2383 	 * and in many cases impossible, so we just avoid it here.
2384 	 */
2385 	folio_wait_writeback(folio);
2386 
2387 	/*
2388 	 * Now take care of user space mappings.
2389 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2390 	 */
2391 	if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2392 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2393 		goto unlock_page;
2394 	}
2395 
2396 	/*
2397 	 * Torn down by someone else?
2398 	 */
2399 	if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2400 	    folio->mapping == NULL) {
2401 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2402 		goto unlock_page;
2403 	}
2404 
2405 identify_page_state:
2406 	res = identify_page_state(pfn, p, page_flags);
2407 	mutex_unlock(&mf_mutex);
2408 	return res;
2409 unlock_page:
2410 	folio_unlock(folio);
2411 unlock_mutex:
2412 	mutex_unlock(&mf_mutex);
2413 	return res;
2414 }
2415 EXPORT_SYMBOL_GPL(memory_failure);
2416 
2417 #define MEMORY_FAILURE_FIFO_ORDER	4
2418 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2419 
2420 struct memory_failure_entry {
2421 	unsigned long pfn;
2422 	int flags;
2423 };
2424 
2425 struct memory_failure_cpu {
2426 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2427 		      MEMORY_FAILURE_FIFO_SIZE);
2428 	spinlock_t lock;
2429 	struct work_struct work;
2430 };
2431 
2432 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2433 
2434 /**
2435  * memory_failure_queue - Schedule handling memory failure of a page.
2436  * @pfn: Page Number of the corrupted page
2437  * @flags: Flags for memory failure handling
2438  *
2439  * This function is called by the low level hardware error handler
2440  * when it detects hardware memory corruption of a page. It schedules
2441  * the recovering of error page, including dropping pages, killing
2442  * processes etc.
2443  *
2444  * The function is primarily of use for corruptions that
2445  * happen outside the current execution context (e.g. when
2446  * detected by a background scrubber)
2447  *
2448  * Can run in IRQ context.
2449  */
2450 void memory_failure_queue(unsigned long pfn, int flags)
2451 {
2452 	struct memory_failure_cpu *mf_cpu;
2453 	unsigned long proc_flags;
2454 	struct memory_failure_entry entry = {
2455 		.pfn =		pfn,
2456 		.flags =	flags,
2457 	};
2458 
2459 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2460 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2461 	if (kfifo_put(&mf_cpu->fifo, entry))
2462 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2463 	else
2464 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2465 		       pfn);
2466 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2467 	put_cpu_var(memory_failure_cpu);
2468 }
2469 EXPORT_SYMBOL_GPL(memory_failure_queue);
2470 
2471 static void memory_failure_work_func(struct work_struct *work)
2472 {
2473 	struct memory_failure_cpu *mf_cpu;
2474 	struct memory_failure_entry entry = { 0, };
2475 	unsigned long proc_flags;
2476 	int gotten;
2477 
2478 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2479 	for (;;) {
2480 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2481 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2482 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2483 		if (!gotten)
2484 			break;
2485 		if (entry.flags & MF_SOFT_OFFLINE)
2486 			soft_offline_page(entry.pfn, entry.flags);
2487 		else
2488 			memory_failure(entry.pfn, entry.flags);
2489 	}
2490 }
2491 
2492 /*
2493  * Process memory_failure work queued on the specified CPU.
2494  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2495  */
2496 void memory_failure_queue_kick(int cpu)
2497 {
2498 	struct memory_failure_cpu *mf_cpu;
2499 
2500 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2501 	cancel_work_sync(&mf_cpu->work);
2502 	memory_failure_work_func(&mf_cpu->work);
2503 }
2504 
2505 static int __init memory_failure_init(void)
2506 {
2507 	struct memory_failure_cpu *mf_cpu;
2508 	int cpu;
2509 
2510 	for_each_possible_cpu(cpu) {
2511 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2512 		spin_lock_init(&mf_cpu->lock);
2513 		INIT_KFIFO(mf_cpu->fifo);
2514 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2515 	}
2516 
2517 	register_sysctl_init("vm", memory_failure_table);
2518 
2519 	return 0;
2520 }
2521 core_initcall(memory_failure_init);
2522 
2523 #undef pr_fmt
2524 #define pr_fmt(fmt)	"" fmt
2525 #define unpoison_pr_info(fmt, pfn, rs)			\
2526 ({							\
2527 	if (__ratelimit(rs))				\
2528 		pr_info(fmt, pfn);			\
2529 })
2530 
2531 /**
2532  * unpoison_memory - Unpoison a previously poisoned page
2533  * @pfn: Page number of the to be unpoisoned page
2534  *
2535  * Software-unpoison a page that has been poisoned by
2536  * memory_failure() earlier.
2537  *
2538  * This is only done on the software-level, so it only works
2539  * for linux injected failures, not real hardware failures
2540  *
2541  * Returns 0 for success, otherwise -errno.
2542  */
2543 int unpoison_memory(unsigned long pfn)
2544 {
2545 	struct folio *folio;
2546 	struct page *p;
2547 	int ret = -EBUSY, ghp;
2548 	unsigned long count = 1;
2549 	bool huge = false;
2550 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2551 					DEFAULT_RATELIMIT_BURST);
2552 
2553 	if (!pfn_valid(pfn))
2554 		return -ENXIO;
2555 
2556 	p = pfn_to_page(pfn);
2557 	folio = page_folio(p);
2558 
2559 	mutex_lock(&mf_mutex);
2560 
2561 	if (hw_memory_failure) {
2562 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2563 				 pfn, &unpoison_rs);
2564 		ret = -EOPNOTSUPP;
2565 		goto unlock_mutex;
2566 	}
2567 
2568 	if (is_huge_zero_folio(folio)) {
2569 		unpoison_pr_info("Unpoison: huge zero page is not supported %#lx\n",
2570 				 pfn, &unpoison_rs);
2571 		ret = -EOPNOTSUPP;
2572 		goto unlock_mutex;
2573 	}
2574 
2575 	if (!PageHWPoison(p)) {
2576 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2577 				 pfn, &unpoison_rs);
2578 		goto unlock_mutex;
2579 	}
2580 
2581 	if (folio_ref_count(folio) > 1) {
2582 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2583 				 pfn, &unpoison_rs);
2584 		goto unlock_mutex;
2585 	}
2586 
2587 	if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2588 	    folio_test_reserved(folio) || folio_test_offline(folio))
2589 		goto unlock_mutex;
2590 
2591 	/*
2592 	 * Note that folio->_mapcount is overloaded in SLAB, so the simple test
2593 	 * in folio_mapped() has to be done after folio_test_slab() is checked.
2594 	 */
2595 	if (folio_mapped(folio)) {
2596 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2597 				 pfn, &unpoison_rs);
2598 		goto unlock_mutex;
2599 	}
2600 
2601 	if (folio_mapping(folio)) {
2602 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2603 				 pfn, &unpoison_rs);
2604 		goto unlock_mutex;
2605 	}
2606 
2607 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2608 	if (!ghp) {
2609 		if (folio_test_hugetlb(folio)) {
2610 			huge = true;
2611 			count = folio_free_raw_hwp(folio, false);
2612 			if (count == 0)
2613 				goto unlock_mutex;
2614 		}
2615 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2616 	} else if (ghp < 0) {
2617 		if (ghp == -EHWPOISON) {
2618 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2619 		} else {
2620 			ret = ghp;
2621 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2622 					 pfn, &unpoison_rs);
2623 		}
2624 	} else {
2625 		if (folio_test_hugetlb(folio)) {
2626 			huge = true;
2627 			count = folio_free_raw_hwp(folio, false);
2628 			if (count == 0) {
2629 				folio_put(folio);
2630 				goto unlock_mutex;
2631 			}
2632 		}
2633 
2634 		folio_put(folio);
2635 		if (TestClearPageHWPoison(p)) {
2636 			folio_put(folio);
2637 			ret = 0;
2638 		}
2639 	}
2640 
2641 unlock_mutex:
2642 	mutex_unlock(&mf_mutex);
2643 	if (!ret) {
2644 		if (!huge)
2645 			num_poisoned_pages_sub(pfn, 1);
2646 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2647 				 page_to_pfn(p), &unpoison_rs);
2648 	}
2649 	return ret;
2650 }
2651 EXPORT_SYMBOL(unpoison_memory);
2652 
2653 static bool mf_isolate_folio(struct folio *folio, struct list_head *pagelist)
2654 {
2655 	bool isolated = false;
2656 
2657 	if (folio_test_hugetlb(folio)) {
2658 		isolated = isolate_hugetlb(folio, pagelist);
2659 	} else {
2660 		bool lru = !__folio_test_movable(folio);
2661 
2662 		if (lru)
2663 			isolated = folio_isolate_lru(folio);
2664 		else
2665 			isolated = isolate_movable_page(&folio->page,
2666 							ISOLATE_UNEVICTABLE);
2667 
2668 		if (isolated) {
2669 			list_add(&folio->lru, pagelist);
2670 			if (lru)
2671 				node_stat_add_folio(folio, NR_ISOLATED_ANON +
2672 						    folio_is_file_lru(folio));
2673 		}
2674 	}
2675 
2676 	/*
2677 	 * If we succeed to isolate the folio, we grabbed another refcount on
2678 	 * the folio, so we can safely drop the one we got from get_any_page().
2679 	 * If we failed to isolate the folio, it means that we cannot go further
2680 	 * and we will return an error, so drop the reference we got from
2681 	 * get_any_page() as well.
2682 	 */
2683 	folio_put(folio);
2684 	return isolated;
2685 }
2686 
2687 /*
2688  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2689  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2690  * If the page is mapped, it migrates the contents over.
2691  */
2692 static int soft_offline_in_use_page(struct page *page)
2693 {
2694 	long ret = 0;
2695 	unsigned long pfn = page_to_pfn(page);
2696 	struct folio *folio = page_folio(page);
2697 	char const *msg_page[] = {"page", "hugepage"};
2698 	bool huge = folio_test_hugetlb(folio);
2699 	LIST_HEAD(pagelist);
2700 	struct migration_target_control mtc = {
2701 		.nid = NUMA_NO_NODE,
2702 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2703 		.reason = MR_MEMORY_FAILURE,
2704 	};
2705 
2706 	if (!huge && folio_test_large(folio)) {
2707 		if (try_to_split_thp_page(page, true)) {
2708 			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2709 			return -EBUSY;
2710 		}
2711 		folio = page_folio(page);
2712 	}
2713 
2714 	folio_lock(folio);
2715 	if (!huge)
2716 		folio_wait_writeback(folio);
2717 	if (PageHWPoison(page)) {
2718 		folio_unlock(folio);
2719 		folio_put(folio);
2720 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2721 		return 0;
2722 	}
2723 
2724 	if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2725 		/*
2726 		 * Try to invalidate first. This should work for
2727 		 * non dirty unmapped page cache pages.
2728 		 */
2729 		ret = mapping_evict_folio(folio_mapping(folio), folio);
2730 	folio_unlock(folio);
2731 
2732 	if (ret) {
2733 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2734 		page_handle_poison(page, false, true);
2735 		return 0;
2736 	}
2737 
2738 	if (mf_isolate_folio(folio, &pagelist)) {
2739 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2740 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2741 		if (!ret) {
2742 			bool release = !huge;
2743 
2744 			if (!page_handle_poison(page, huge, release))
2745 				ret = -EBUSY;
2746 		} else {
2747 			if (!list_empty(&pagelist))
2748 				putback_movable_pages(&pagelist);
2749 
2750 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2751 				pfn, msg_page[huge], ret, &page->flags);
2752 			if (ret > 0)
2753 				ret = -EBUSY;
2754 		}
2755 	} else {
2756 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2757 			pfn, msg_page[huge], page_count(page), &page->flags);
2758 		ret = -EBUSY;
2759 	}
2760 	return ret;
2761 }
2762 
2763 /**
2764  * soft_offline_page - Soft offline a page.
2765  * @pfn: pfn to soft-offline
2766  * @flags: flags. Same as memory_failure().
2767  *
2768  * Returns 0 on success
2769  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2770  *         < 0 otherwise negated errno.
2771  *
2772  * Soft offline a page, by migration or invalidation,
2773  * without killing anything. This is for the case when
2774  * a page is not corrupted yet (so it's still valid to access),
2775  * but has had a number of corrected errors and is better taken
2776  * out.
2777  *
2778  * The actual policy on when to do that is maintained by
2779  * user space.
2780  *
2781  * This should never impact any application or cause data loss,
2782  * however it might take some time.
2783  *
2784  * This is not a 100% solution for all memory, but tries to be
2785  * ``good enough'' for the majority of memory.
2786  */
2787 int soft_offline_page(unsigned long pfn, int flags)
2788 {
2789 	int ret;
2790 	bool try_again = true;
2791 	struct page *page;
2792 
2793 	if (!pfn_valid(pfn)) {
2794 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2795 		return -ENXIO;
2796 	}
2797 
2798 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2799 	page = pfn_to_online_page(pfn);
2800 	if (!page) {
2801 		put_ref_page(pfn, flags);
2802 		return -EIO;
2803 	}
2804 
2805 	mutex_lock(&mf_mutex);
2806 
2807 	if (PageHWPoison(page)) {
2808 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2809 		put_ref_page(pfn, flags);
2810 		mutex_unlock(&mf_mutex);
2811 		return 0;
2812 	}
2813 
2814 retry:
2815 	get_online_mems();
2816 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2817 	put_online_mems();
2818 
2819 	if (hwpoison_filter(page)) {
2820 		if (ret > 0)
2821 			put_page(page);
2822 
2823 		mutex_unlock(&mf_mutex);
2824 		return -EOPNOTSUPP;
2825 	}
2826 
2827 	if (ret > 0) {
2828 		ret = soft_offline_in_use_page(page);
2829 	} else if (ret == 0) {
2830 		if (!page_handle_poison(page, true, false)) {
2831 			if (try_again) {
2832 				try_again = false;
2833 				flags &= ~MF_COUNT_INCREASED;
2834 				goto retry;
2835 			}
2836 			ret = -EBUSY;
2837 		}
2838 	}
2839 
2840 	mutex_unlock(&mf_mutex);
2841 
2842 	return ret;
2843 }
2844