1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/dax.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/memremap.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/sysctl.h> 63 #include "swap.h" 64 #include "internal.h" 65 #include "ras/ras_event.h" 66 67 static int sysctl_memory_failure_early_kill __read_mostly; 68 69 static int sysctl_memory_failure_recovery __read_mostly = 1; 70 71 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 72 73 static bool hw_memory_failure __read_mostly = false; 74 75 static DEFINE_MUTEX(mf_mutex); 76 77 void num_poisoned_pages_inc(unsigned long pfn) 78 { 79 atomic_long_inc(&num_poisoned_pages); 80 memblk_nr_poison_inc(pfn); 81 } 82 83 void num_poisoned_pages_sub(unsigned long pfn, long i) 84 { 85 atomic_long_sub(i, &num_poisoned_pages); 86 if (pfn != -1UL) 87 memblk_nr_poison_sub(pfn, i); 88 } 89 90 /** 91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 92 * @_name: name of the file in the per NUMA sysfs directory. 93 */ 94 #define MF_ATTR_RO(_name) \ 95 static ssize_t _name##_show(struct device *dev, \ 96 struct device_attribute *attr, \ 97 char *buf) \ 98 { \ 99 struct memory_failure_stats *mf_stats = \ 100 &NODE_DATA(dev->id)->mf_stats; \ 101 return sprintf(buf, "%lu\n", mf_stats->_name); \ 102 } \ 103 static DEVICE_ATTR_RO(_name) 104 105 MF_ATTR_RO(total); 106 MF_ATTR_RO(ignored); 107 MF_ATTR_RO(failed); 108 MF_ATTR_RO(delayed); 109 MF_ATTR_RO(recovered); 110 111 static struct attribute *memory_failure_attr[] = { 112 &dev_attr_total.attr, 113 &dev_attr_ignored.attr, 114 &dev_attr_failed.attr, 115 &dev_attr_delayed.attr, 116 &dev_attr_recovered.attr, 117 NULL, 118 }; 119 120 const struct attribute_group memory_failure_attr_group = { 121 .name = "memory_failure", 122 .attrs = memory_failure_attr, 123 }; 124 125 static struct ctl_table memory_failure_table[] = { 126 { 127 .procname = "memory_failure_early_kill", 128 .data = &sysctl_memory_failure_early_kill, 129 .maxlen = sizeof(sysctl_memory_failure_early_kill), 130 .mode = 0644, 131 .proc_handler = proc_dointvec_minmax, 132 .extra1 = SYSCTL_ZERO, 133 .extra2 = SYSCTL_ONE, 134 }, 135 { 136 .procname = "memory_failure_recovery", 137 .data = &sysctl_memory_failure_recovery, 138 .maxlen = sizeof(sysctl_memory_failure_recovery), 139 .mode = 0644, 140 .proc_handler = proc_dointvec_minmax, 141 .extra1 = SYSCTL_ZERO, 142 .extra2 = SYSCTL_ONE, 143 }, 144 }; 145 146 /* 147 * Return values: 148 * 1: the page is dissolved (if needed) and taken off from buddy, 149 * 0: the page is dissolved (if needed) and not taken off from buddy, 150 * < 0: failed to dissolve. 151 */ 152 static int __page_handle_poison(struct page *page) 153 { 154 int ret; 155 156 /* 157 * zone_pcp_disable() can't be used here. It will 158 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold 159 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap 160 * optimization is enabled. This will break current lock dependency 161 * chain and leads to deadlock. 162 * Disabling pcp before dissolving the page was a deterministic 163 * approach because we made sure that those pages cannot end up in any 164 * PCP list. Draining PCP lists expels those pages to the buddy system, 165 * but nothing guarantees that those pages do not get back to a PCP 166 * queue if we need to refill those. 167 */ 168 ret = dissolve_free_hugetlb_folio(page_folio(page)); 169 if (!ret) { 170 drain_all_pages(page_zone(page)); 171 ret = take_page_off_buddy(page); 172 } 173 174 return ret; 175 } 176 177 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 178 { 179 if (hugepage_or_freepage) { 180 /* 181 * Doing this check for free pages is also fine since 182 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well. 183 */ 184 if (__page_handle_poison(page) <= 0) 185 /* 186 * We could fail to take off the target page from buddy 187 * for example due to racy page allocation, but that's 188 * acceptable because soft-offlined page is not broken 189 * and if someone really want to use it, they should 190 * take it. 191 */ 192 return false; 193 } 194 195 SetPageHWPoison(page); 196 if (release) 197 put_page(page); 198 page_ref_inc(page); 199 num_poisoned_pages_inc(page_to_pfn(page)); 200 201 return true; 202 } 203 204 #if IS_ENABLED(CONFIG_HWPOISON_INJECT) 205 206 u32 hwpoison_filter_enable = 0; 207 u32 hwpoison_filter_dev_major = ~0U; 208 u32 hwpoison_filter_dev_minor = ~0U; 209 u64 hwpoison_filter_flags_mask; 210 u64 hwpoison_filter_flags_value; 211 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 212 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 213 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 214 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 215 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 216 217 static int hwpoison_filter_dev(struct page *p) 218 { 219 struct folio *folio = page_folio(p); 220 struct address_space *mapping; 221 dev_t dev; 222 223 if (hwpoison_filter_dev_major == ~0U && 224 hwpoison_filter_dev_minor == ~0U) 225 return 0; 226 227 mapping = folio_mapping(folio); 228 if (mapping == NULL || mapping->host == NULL) 229 return -EINVAL; 230 231 dev = mapping->host->i_sb->s_dev; 232 if (hwpoison_filter_dev_major != ~0U && 233 hwpoison_filter_dev_major != MAJOR(dev)) 234 return -EINVAL; 235 if (hwpoison_filter_dev_minor != ~0U && 236 hwpoison_filter_dev_minor != MINOR(dev)) 237 return -EINVAL; 238 239 return 0; 240 } 241 242 static int hwpoison_filter_flags(struct page *p) 243 { 244 if (!hwpoison_filter_flags_mask) 245 return 0; 246 247 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 248 hwpoison_filter_flags_value) 249 return 0; 250 else 251 return -EINVAL; 252 } 253 254 /* 255 * This allows stress tests to limit test scope to a collection of tasks 256 * by putting them under some memcg. This prevents killing unrelated/important 257 * processes such as /sbin/init. Note that the target task may share clean 258 * pages with init (eg. libc text), which is harmless. If the target task 259 * share _dirty_ pages with another task B, the test scheme must make sure B 260 * is also included in the memcg. At last, due to race conditions this filter 261 * can only guarantee that the page either belongs to the memcg tasks, or is 262 * a freed page. 263 */ 264 #ifdef CONFIG_MEMCG 265 u64 hwpoison_filter_memcg; 266 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 267 static int hwpoison_filter_task(struct page *p) 268 { 269 if (!hwpoison_filter_memcg) 270 return 0; 271 272 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 273 return -EINVAL; 274 275 return 0; 276 } 277 #else 278 static int hwpoison_filter_task(struct page *p) { return 0; } 279 #endif 280 281 int hwpoison_filter(struct page *p) 282 { 283 if (!hwpoison_filter_enable) 284 return 0; 285 286 if (hwpoison_filter_dev(p)) 287 return -EINVAL; 288 289 if (hwpoison_filter_flags(p)) 290 return -EINVAL; 291 292 if (hwpoison_filter_task(p)) 293 return -EINVAL; 294 295 return 0; 296 } 297 #else 298 int hwpoison_filter(struct page *p) 299 { 300 return 0; 301 } 302 #endif 303 304 EXPORT_SYMBOL_GPL(hwpoison_filter); 305 306 /* 307 * Kill all processes that have a poisoned page mapped and then isolate 308 * the page. 309 * 310 * General strategy: 311 * Find all processes having the page mapped and kill them. 312 * But we keep a page reference around so that the page is not 313 * actually freed yet. 314 * Then stash the page away 315 * 316 * There's no convenient way to get back to mapped processes 317 * from the VMAs. So do a brute-force search over all 318 * running processes. 319 * 320 * Remember that machine checks are not common (or rather 321 * if they are common you have other problems), so this shouldn't 322 * be a performance issue. 323 * 324 * Also there are some races possible while we get from the 325 * error detection to actually handle it. 326 */ 327 328 struct to_kill { 329 struct list_head nd; 330 struct task_struct *tsk; 331 unsigned long addr; 332 short size_shift; 333 }; 334 335 /* 336 * Send all the processes who have the page mapped a signal. 337 * ``action optional'' if they are not immediately affected by the error 338 * ``action required'' if error happened in current execution context 339 */ 340 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 341 { 342 struct task_struct *t = tk->tsk; 343 short addr_lsb = tk->size_shift; 344 int ret = 0; 345 346 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 347 pfn, t->comm, t->pid); 348 349 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 350 ret = force_sig_mceerr(BUS_MCEERR_AR, 351 (void __user *)tk->addr, addr_lsb); 352 else 353 /* 354 * Signal other processes sharing the page if they have 355 * PF_MCE_EARLY set. 356 * Don't use force here, it's convenient if the signal 357 * can be temporarily blocked. 358 * This could cause a loop when the user sets SIGBUS 359 * to SIG_IGN, but hopefully no one will do that? 360 */ 361 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 362 addr_lsb, t); 363 if (ret < 0) 364 pr_info("Error sending signal to %s:%d: %d\n", 365 t->comm, t->pid, ret); 366 return ret; 367 } 368 369 /* 370 * Unknown page type encountered. Try to check whether it can turn PageLRU by 371 * lru_add_drain_all. 372 */ 373 void shake_folio(struct folio *folio) 374 { 375 if (folio_test_hugetlb(folio)) 376 return; 377 /* 378 * TODO: Could shrink slab caches here if a lightweight range-based 379 * shrinker will be available. 380 */ 381 if (folio_test_slab(folio)) 382 return; 383 384 lru_add_drain_all(); 385 } 386 EXPORT_SYMBOL_GPL(shake_folio); 387 388 static void shake_page(struct page *page) 389 { 390 shake_folio(page_folio(page)); 391 } 392 393 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 394 unsigned long address) 395 { 396 unsigned long ret = 0; 397 pgd_t *pgd; 398 p4d_t *p4d; 399 pud_t *pud; 400 pmd_t *pmd; 401 pte_t *pte; 402 pte_t ptent; 403 404 VM_BUG_ON_VMA(address == -EFAULT, vma); 405 pgd = pgd_offset(vma->vm_mm, address); 406 if (!pgd_present(*pgd)) 407 return 0; 408 p4d = p4d_offset(pgd, address); 409 if (!p4d_present(*p4d)) 410 return 0; 411 pud = pud_offset(p4d, address); 412 if (!pud_present(*pud)) 413 return 0; 414 if (pud_devmap(*pud)) 415 return PUD_SHIFT; 416 pmd = pmd_offset(pud, address); 417 if (!pmd_present(*pmd)) 418 return 0; 419 if (pmd_devmap(*pmd)) 420 return PMD_SHIFT; 421 pte = pte_offset_map(pmd, address); 422 if (!pte) 423 return 0; 424 ptent = ptep_get(pte); 425 if (pte_present(ptent) && pte_devmap(ptent)) 426 ret = PAGE_SHIFT; 427 pte_unmap(pte); 428 return ret; 429 } 430 431 /* 432 * Failure handling: if we can't find or can't kill a process there's 433 * not much we can do. We just print a message and ignore otherwise. 434 */ 435 436 /* 437 * Schedule a process for later kill. 438 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 439 */ 440 static void __add_to_kill(struct task_struct *tsk, struct page *p, 441 struct vm_area_struct *vma, struct list_head *to_kill, 442 unsigned long addr) 443 { 444 struct to_kill *tk; 445 446 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 447 if (!tk) { 448 pr_err("Out of memory while machine check handling\n"); 449 return; 450 } 451 452 tk->addr = addr; 453 if (is_zone_device_page(p)) 454 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 455 else 456 tk->size_shift = page_shift(compound_head(p)); 457 458 /* 459 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 460 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 461 * so "tk->size_shift == 0" effectively checks no mapping on 462 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 463 * to a process' address space, it's possible not all N VMAs 464 * contain mappings for the page, but at least one VMA does. 465 * Only deliver SIGBUS with payload derived from the VMA that 466 * has a mapping for the page. 467 */ 468 if (tk->addr == -EFAULT) { 469 pr_info("Unable to find user space address %lx in %s\n", 470 page_to_pfn(p), tsk->comm); 471 } else if (tk->size_shift == 0) { 472 kfree(tk); 473 return; 474 } 475 476 get_task_struct(tsk); 477 tk->tsk = tsk; 478 list_add_tail(&tk->nd, to_kill); 479 } 480 481 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p, 482 struct vm_area_struct *vma, struct list_head *to_kill, 483 unsigned long addr) 484 { 485 if (addr == -EFAULT) 486 return; 487 __add_to_kill(tsk, p, vma, to_kill, addr); 488 } 489 490 #ifdef CONFIG_KSM 491 static bool task_in_to_kill_list(struct list_head *to_kill, 492 struct task_struct *tsk) 493 { 494 struct to_kill *tk, *next; 495 496 list_for_each_entry_safe(tk, next, to_kill, nd) { 497 if (tk->tsk == tsk) 498 return true; 499 } 500 501 return false; 502 } 503 504 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 505 struct vm_area_struct *vma, struct list_head *to_kill, 506 unsigned long addr) 507 { 508 if (!task_in_to_kill_list(to_kill, tsk)) 509 __add_to_kill(tsk, p, vma, to_kill, addr); 510 } 511 #endif 512 /* 513 * Kill the processes that have been collected earlier. 514 * 515 * Only do anything when FORCEKILL is set, otherwise just free the 516 * list (this is used for clean pages which do not need killing) 517 */ 518 static void kill_procs(struct list_head *to_kill, int forcekill, 519 unsigned long pfn, int flags) 520 { 521 struct to_kill *tk, *next; 522 523 list_for_each_entry_safe(tk, next, to_kill, nd) { 524 if (forcekill) { 525 if (tk->addr == -EFAULT) { 526 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 527 pfn, tk->tsk->comm, tk->tsk->pid); 528 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 529 tk->tsk, PIDTYPE_PID); 530 } 531 532 /* 533 * In theory the process could have mapped 534 * something else on the address in-between. We could 535 * check for that, but we need to tell the 536 * process anyways. 537 */ 538 else if (kill_proc(tk, pfn, flags) < 0) 539 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 540 pfn, tk->tsk->comm, tk->tsk->pid); 541 } 542 list_del(&tk->nd); 543 put_task_struct(tk->tsk); 544 kfree(tk); 545 } 546 } 547 548 /* 549 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 550 * on behalf of the thread group. Return task_struct of the (first found) 551 * dedicated thread if found, and return NULL otherwise. 552 * 553 * We already hold rcu lock in the caller, so we don't have to call 554 * rcu_read_lock/unlock() in this function. 555 */ 556 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 557 { 558 struct task_struct *t; 559 560 for_each_thread(tsk, t) { 561 if (t->flags & PF_MCE_PROCESS) { 562 if (t->flags & PF_MCE_EARLY) 563 return t; 564 } else { 565 if (sysctl_memory_failure_early_kill) 566 return t; 567 } 568 } 569 return NULL; 570 } 571 572 /* 573 * Determine whether a given process is "early kill" process which expects 574 * to be signaled when some page under the process is hwpoisoned. 575 * Return task_struct of the dedicated thread (main thread unless explicitly 576 * specified) if the process is "early kill" and otherwise returns NULL. 577 * 578 * Note that the above is true for Action Optional case. For Action Required 579 * case, it's only meaningful to the current thread which need to be signaled 580 * with SIGBUS, this error is Action Optional for other non current 581 * processes sharing the same error page,if the process is "early kill", the 582 * task_struct of the dedicated thread will also be returned. 583 */ 584 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 585 { 586 if (!tsk->mm) 587 return NULL; 588 /* 589 * Comparing ->mm here because current task might represent 590 * a subthread, while tsk always points to the main thread. 591 */ 592 if (force_early && tsk->mm == current->mm) 593 return current; 594 595 return find_early_kill_thread(tsk); 596 } 597 598 /* 599 * Collect processes when the error hit an anonymous page. 600 */ 601 static void collect_procs_anon(struct folio *folio, struct page *page, 602 struct list_head *to_kill, int force_early) 603 { 604 struct task_struct *tsk; 605 struct anon_vma *av; 606 pgoff_t pgoff; 607 608 av = folio_lock_anon_vma_read(folio, NULL); 609 if (av == NULL) /* Not actually mapped anymore */ 610 return; 611 612 pgoff = page_to_pgoff(page); 613 rcu_read_lock(); 614 for_each_process(tsk) { 615 struct vm_area_struct *vma; 616 struct anon_vma_chain *vmac; 617 struct task_struct *t = task_early_kill(tsk, force_early); 618 unsigned long addr; 619 620 if (!t) 621 continue; 622 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 623 pgoff, pgoff) { 624 vma = vmac->vma; 625 if (vma->vm_mm != t->mm) 626 continue; 627 addr = page_mapped_in_vma(page, vma); 628 add_to_kill_anon_file(t, page, vma, to_kill, addr); 629 } 630 } 631 rcu_read_unlock(); 632 anon_vma_unlock_read(av); 633 } 634 635 /* 636 * Collect processes when the error hit a file mapped page. 637 */ 638 static void collect_procs_file(struct folio *folio, struct page *page, 639 struct list_head *to_kill, int force_early) 640 { 641 struct vm_area_struct *vma; 642 struct task_struct *tsk; 643 struct address_space *mapping = folio->mapping; 644 pgoff_t pgoff; 645 646 i_mmap_lock_read(mapping); 647 rcu_read_lock(); 648 pgoff = page_to_pgoff(page); 649 for_each_process(tsk) { 650 struct task_struct *t = task_early_kill(tsk, force_early); 651 unsigned long addr; 652 653 if (!t) 654 continue; 655 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 656 pgoff) { 657 /* 658 * Send early kill signal to tasks where a vma covers 659 * the page but the corrupted page is not necessarily 660 * mapped in its pte. 661 * Assume applications who requested early kill want 662 * to be informed of all such data corruptions. 663 */ 664 if (vma->vm_mm != t->mm) 665 continue; 666 addr = page_address_in_vma(page, vma); 667 add_to_kill_anon_file(t, page, vma, to_kill, addr); 668 } 669 } 670 rcu_read_unlock(); 671 i_mmap_unlock_read(mapping); 672 } 673 674 #ifdef CONFIG_FS_DAX 675 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p, 676 struct vm_area_struct *vma, 677 struct list_head *to_kill, pgoff_t pgoff) 678 { 679 unsigned long addr = vma_address(vma, pgoff, 1); 680 __add_to_kill(tsk, p, vma, to_kill, addr); 681 } 682 683 /* 684 * Collect processes when the error hit a fsdax page. 685 */ 686 static void collect_procs_fsdax(struct page *page, 687 struct address_space *mapping, pgoff_t pgoff, 688 struct list_head *to_kill, bool pre_remove) 689 { 690 struct vm_area_struct *vma; 691 struct task_struct *tsk; 692 693 i_mmap_lock_read(mapping); 694 rcu_read_lock(); 695 for_each_process(tsk) { 696 struct task_struct *t = tsk; 697 698 /* 699 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because 700 * the current may not be the one accessing the fsdax page. 701 * Otherwise, search for the current task. 702 */ 703 if (!pre_remove) 704 t = task_early_kill(tsk, true); 705 if (!t) 706 continue; 707 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 708 if (vma->vm_mm == t->mm) 709 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 710 } 711 } 712 rcu_read_unlock(); 713 i_mmap_unlock_read(mapping); 714 } 715 #endif /* CONFIG_FS_DAX */ 716 717 /* 718 * Collect the processes who have the corrupted page mapped to kill. 719 */ 720 static void collect_procs(struct folio *folio, struct page *page, 721 struct list_head *tokill, int force_early) 722 { 723 if (!folio->mapping) 724 return; 725 if (unlikely(folio_test_ksm(folio))) 726 collect_procs_ksm(folio, page, tokill, force_early); 727 else if (folio_test_anon(folio)) 728 collect_procs_anon(folio, page, tokill, force_early); 729 else 730 collect_procs_file(folio, page, tokill, force_early); 731 } 732 733 struct hwpoison_walk { 734 struct to_kill tk; 735 unsigned long pfn; 736 int flags; 737 }; 738 739 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 740 { 741 tk->addr = addr; 742 tk->size_shift = shift; 743 } 744 745 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 746 unsigned long poisoned_pfn, struct to_kill *tk) 747 { 748 unsigned long pfn = 0; 749 750 if (pte_present(pte)) { 751 pfn = pte_pfn(pte); 752 } else { 753 swp_entry_t swp = pte_to_swp_entry(pte); 754 755 if (is_hwpoison_entry(swp)) 756 pfn = swp_offset_pfn(swp); 757 } 758 759 if (!pfn || pfn != poisoned_pfn) 760 return 0; 761 762 set_to_kill(tk, addr, shift); 763 return 1; 764 } 765 766 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 767 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 768 struct hwpoison_walk *hwp) 769 { 770 pmd_t pmd = *pmdp; 771 unsigned long pfn; 772 unsigned long hwpoison_vaddr; 773 774 if (!pmd_present(pmd)) 775 return 0; 776 pfn = pmd_pfn(pmd); 777 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 778 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 779 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 780 return 1; 781 } 782 return 0; 783 } 784 #else 785 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 786 struct hwpoison_walk *hwp) 787 { 788 return 0; 789 } 790 #endif 791 792 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 793 unsigned long end, struct mm_walk *walk) 794 { 795 struct hwpoison_walk *hwp = walk->private; 796 int ret = 0; 797 pte_t *ptep, *mapped_pte; 798 spinlock_t *ptl; 799 800 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 801 if (ptl) { 802 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 803 spin_unlock(ptl); 804 goto out; 805 } 806 807 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 808 addr, &ptl); 809 if (!ptep) 810 goto out; 811 812 for (; addr != end; ptep++, addr += PAGE_SIZE) { 813 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, 814 hwp->pfn, &hwp->tk); 815 if (ret == 1) 816 break; 817 } 818 pte_unmap_unlock(mapped_pte, ptl); 819 out: 820 cond_resched(); 821 return ret; 822 } 823 824 #ifdef CONFIG_HUGETLB_PAGE 825 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 826 unsigned long addr, unsigned long end, 827 struct mm_walk *walk) 828 { 829 struct hwpoison_walk *hwp = walk->private; 830 pte_t pte = huge_ptep_get(ptep); 831 struct hstate *h = hstate_vma(walk->vma); 832 833 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 834 hwp->pfn, &hwp->tk); 835 } 836 #else 837 #define hwpoison_hugetlb_range NULL 838 #endif 839 840 static const struct mm_walk_ops hwpoison_walk_ops = { 841 .pmd_entry = hwpoison_pte_range, 842 .hugetlb_entry = hwpoison_hugetlb_range, 843 .walk_lock = PGWALK_RDLOCK, 844 }; 845 846 /* 847 * Sends SIGBUS to the current process with error info. 848 * 849 * This function is intended to handle "Action Required" MCEs on already 850 * hardware poisoned pages. They could happen, for example, when 851 * memory_failure() failed to unmap the error page at the first call, or 852 * when multiple local machine checks happened on different CPUs. 853 * 854 * MCE handler currently has no easy access to the error virtual address, 855 * so this function walks page table to find it. The returned virtual address 856 * is proper in most cases, but it could be wrong when the application 857 * process has multiple entries mapping the error page. 858 */ 859 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 860 int flags) 861 { 862 int ret; 863 struct hwpoison_walk priv = { 864 .pfn = pfn, 865 }; 866 priv.tk.tsk = p; 867 868 if (!p->mm) 869 return -EFAULT; 870 871 mmap_read_lock(p->mm); 872 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops, 873 (void *)&priv); 874 if (ret == 1 && priv.tk.addr) 875 kill_proc(&priv.tk, pfn, flags); 876 else 877 ret = 0; 878 mmap_read_unlock(p->mm); 879 return ret > 0 ? -EHWPOISON : -EFAULT; 880 } 881 882 /* 883 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed. 884 * But it could not do more to isolate the page from being accessed again, 885 * nor does it kill the process. This is extremely rare and one of the 886 * potential causes is that the page state has been changed due to 887 * underlying race condition. This is the most severe outcomes. 888 * 889 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed. 890 * It should have killed the process, but it can't isolate the page, 891 * due to conditions such as extra pin, unmap failure, etc. Accessing 892 * the page again may trigger another MCE and the process will be killed 893 * by the m-f() handler immediately. 894 * 895 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed. 896 * The page is unmapped, and is removed from the LRU or file mapping. 897 * An attempt to access the page again will trigger page fault and the 898 * PF handler will kill the process. 899 * 900 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed. 901 * The page has been completely isolated, that is, unmapped, taken out of 902 * the buddy system, or hole-punnched out of the file mapping. 903 */ 904 static const char *action_name[] = { 905 [MF_IGNORED] = "Ignored", 906 [MF_FAILED] = "Failed", 907 [MF_DELAYED] = "Delayed", 908 [MF_RECOVERED] = "Recovered", 909 }; 910 911 static const char * const action_page_types[] = { 912 [MF_MSG_KERNEL] = "reserved kernel page", 913 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 914 [MF_MSG_SLAB] = "kernel slab page", 915 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 916 [MF_MSG_HUGE] = "huge page", 917 [MF_MSG_FREE_HUGE] = "free huge page", 918 [MF_MSG_GET_HWPOISON] = "get hwpoison page", 919 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 920 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 921 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 922 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 923 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 924 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 925 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 926 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 927 [MF_MSG_CLEAN_LRU] = "clean LRU page", 928 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 929 [MF_MSG_BUDDY] = "free buddy page", 930 [MF_MSG_DAX] = "dax page", 931 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 932 [MF_MSG_ALREADY_POISONED] = "already poisoned", 933 [MF_MSG_UNKNOWN] = "unknown page", 934 }; 935 936 /* 937 * XXX: It is possible that a page is isolated from LRU cache, 938 * and then kept in swap cache or failed to remove from page cache. 939 * The page count will stop it from being freed by unpoison. 940 * Stress tests should be aware of this memory leak problem. 941 */ 942 static int delete_from_lru_cache(struct folio *folio) 943 { 944 if (folio_isolate_lru(folio)) { 945 /* 946 * Clear sensible page flags, so that the buddy system won't 947 * complain when the folio is unpoison-and-freed. 948 */ 949 folio_clear_active(folio); 950 folio_clear_unevictable(folio); 951 952 /* 953 * Poisoned page might never drop its ref count to 0 so we have 954 * to uncharge it manually from its memcg. 955 */ 956 mem_cgroup_uncharge(folio); 957 958 /* 959 * drop the refcount elevated by folio_isolate_lru() 960 */ 961 folio_put(folio); 962 return 0; 963 } 964 return -EIO; 965 } 966 967 static int truncate_error_folio(struct folio *folio, unsigned long pfn, 968 struct address_space *mapping) 969 { 970 int ret = MF_FAILED; 971 972 if (mapping->a_ops->error_remove_folio) { 973 int err = mapping->a_ops->error_remove_folio(mapping, folio); 974 975 if (err != 0) 976 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 977 else if (!filemap_release_folio(folio, GFP_NOIO)) 978 pr_info("%#lx: failed to release buffers\n", pfn); 979 else 980 ret = MF_RECOVERED; 981 } else { 982 /* 983 * If the file system doesn't support it just invalidate 984 * This fails on dirty or anything with private pages 985 */ 986 if (mapping_evict_folio(mapping, folio)) 987 ret = MF_RECOVERED; 988 else 989 pr_info("%#lx: Failed to invalidate\n", pfn); 990 } 991 992 return ret; 993 } 994 995 struct page_state { 996 unsigned long mask; 997 unsigned long res; 998 enum mf_action_page_type type; 999 1000 /* Callback ->action() has to unlock the relevant page inside it. */ 1001 int (*action)(struct page_state *ps, struct page *p); 1002 }; 1003 1004 /* 1005 * Return true if page is still referenced by others, otherwise return 1006 * false. 1007 * 1008 * The extra_pins is true when one extra refcount is expected. 1009 */ 1010 static bool has_extra_refcount(struct page_state *ps, struct page *p, 1011 bool extra_pins) 1012 { 1013 int count = page_count(p) - 1; 1014 1015 if (extra_pins) 1016 count -= folio_nr_pages(page_folio(p)); 1017 1018 if (count > 0) { 1019 pr_err("%#lx: %s still referenced by %d users\n", 1020 page_to_pfn(p), action_page_types[ps->type], count); 1021 return true; 1022 } 1023 1024 return false; 1025 } 1026 1027 /* 1028 * Error hit kernel page. 1029 * Do nothing, try to be lucky and not touch this instead. For a few cases we 1030 * could be more sophisticated. 1031 */ 1032 static int me_kernel(struct page_state *ps, struct page *p) 1033 { 1034 unlock_page(p); 1035 return MF_IGNORED; 1036 } 1037 1038 /* 1039 * Page in unknown state. Do nothing. 1040 * This is a catch-all in case we fail to make sense of the page state. 1041 */ 1042 static int me_unknown(struct page_state *ps, struct page *p) 1043 { 1044 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1045 unlock_page(p); 1046 return MF_IGNORED; 1047 } 1048 1049 /* 1050 * Clean (or cleaned) page cache page. 1051 */ 1052 static int me_pagecache_clean(struct page_state *ps, struct page *p) 1053 { 1054 struct folio *folio = page_folio(p); 1055 int ret; 1056 struct address_space *mapping; 1057 bool extra_pins; 1058 1059 delete_from_lru_cache(folio); 1060 1061 /* 1062 * For anonymous folios the only reference left 1063 * should be the one m_f() holds. 1064 */ 1065 if (folio_test_anon(folio)) { 1066 ret = MF_RECOVERED; 1067 goto out; 1068 } 1069 1070 /* 1071 * Now truncate the page in the page cache. This is really 1072 * more like a "temporary hole punch" 1073 * Don't do this for block devices when someone else 1074 * has a reference, because it could be file system metadata 1075 * and that's not safe to truncate. 1076 */ 1077 mapping = folio_mapping(folio); 1078 if (!mapping) { 1079 /* Folio has been torn down in the meantime */ 1080 ret = MF_FAILED; 1081 goto out; 1082 } 1083 1084 /* 1085 * The shmem page is kept in page cache instead of truncating 1086 * so is expected to have an extra refcount after error-handling. 1087 */ 1088 extra_pins = shmem_mapping(mapping); 1089 1090 /* 1091 * Truncation is a bit tricky. Enable it per file system for now. 1092 * 1093 * Open: to take i_rwsem or not for this? Right now we don't. 1094 */ 1095 ret = truncate_error_folio(folio, page_to_pfn(p), mapping); 1096 if (has_extra_refcount(ps, p, extra_pins)) 1097 ret = MF_FAILED; 1098 1099 out: 1100 folio_unlock(folio); 1101 1102 return ret; 1103 } 1104 1105 /* 1106 * Dirty pagecache page 1107 * Issues: when the error hit a hole page the error is not properly 1108 * propagated. 1109 */ 1110 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1111 { 1112 struct folio *folio = page_folio(p); 1113 struct address_space *mapping = folio_mapping(folio); 1114 1115 /* TBD: print more information about the file. */ 1116 if (mapping) { 1117 /* 1118 * IO error will be reported by write(), fsync(), etc. 1119 * who check the mapping. 1120 * This way the application knows that something went 1121 * wrong with its dirty file data. 1122 */ 1123 mapping_set_error(mapping, -EIO); 1124 } 1125 1126 return me_pagecache_clean(ps, p); 1127 } 1128 1129 /* 1130 * Clean and dirty swap cache. 1131 * 1132 * Dirty swap cache page is tricky to handle. The page could live both in page 1133 * cache and swap cache(ie. page is freshly swapped in). So it could be 1134 * referenced concurrently by 2 types of PTEs: 1135 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1136 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1137 * and then 1138 * - clear dirty bit to prevent IO 1139 * - remove from LRU 1140 * - but keep in the swap cache, so that when we return to it on 1141 * a later page fault, we know the application is accessing 1142 * corrupted data and shall be killed (we installed simple 1143 * interception code in do_swap_page to catch it). 1144 * 1145 * Clean swap cache pages can be directly isolated. A later page fault will 1146 * bring in the known good data from disk. 1147 */ 1148 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1149 { 1150 struct folio *folio = page_folio(p); 1151 int ret; 1152 bool extra_pins = false; 1153 1154 folio_clear_dirty(folio); 1155 /* Trigger EIO in shmem: */ 1156 folio_clear_uptodate(folio); 1157 1158 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED; 1159 folio_unlock(folio); 1160 1161 if (ret == MF_DELAYED) 1162 extra_pins = true; 1163 1164 if (has_extra_refcount(ps, p, extra_pins)) 1165 ret = MF_FAILED; 1166 1167 return ret; 1168 } 1169 1170 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1171 { 1172 struct folio *folio = page_folio(p); 1173 int ret; 1174 1175 delete_from_swap_cache(folio); 1176 1177 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED; 1178 folio_unlock(folio); 1179 1180 if (has_extra_refcount(ps, p, false)) 1181 ret = MF_FAILED; 1182 1183 return ret; 1184 } 1185 1186 /* 1187 * Huge pages. Needs work. 1188 * Issues: 1189 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1190 * To narrow down kill region to one page, we need to break up pmd. 1191 */ 1192 static int me_huge_page(struct page_state *ps, struct page *p) 1193 { 1194 struct folio *folio = page_folio(p); 1195 int res; 1196 struct address_space *mapping; 1197 bool extra_pins = false; 1198 1199 mapping = folio_mapping(folio); 1200 if (mapping) { 1201 res = truncate_error_folio(folio, page_to_pfn(p), mapping); 1202 /* The page is kept in page cache. */ 1203 extra_pins = true; 1204 folio_unlock(folio); 1205 } else { 1206 folio_unlock(folio); 1207 /* 1208 * migration entry prevents later access on error hugepage, 1209 * so we can free and dissolve it into buddy to save healthy 1210 * subpages. 1211 */ 1212 folio_put(folio); 1213 if (__page_handle_poison(p) > 0) { 1214 page_ref_inc(p); 1215 res = MF_RECOVERED; 1216 } else { 1217 res = MF_FAILED; 1218 } 1219 } 1220 1221 if (has_extra_refcount(ps, p, extra_pins)) 1222 res = MF_FAILED; 1223 1224 return res; 1225 } 1226 1227 /* 1228 * Various page states we can handle. 1229 * 1230 * A page state is defined by its current page->flags bits. 1231 * The table matches them in order and calls the right handler. 1232 * 1233 * This is quite tricky because we can access page at any time 1234 * in its live cycle, so all accesses have to be extremely careful. 1235 * 1236 * This is not complete. More states could be added. 1237 * For any missing state don't attempt recovery. 1238 */ 1239 1240 #define dirty (1UL << PG_dirty) 1241 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1242 #define unevict (1UL << PG_unevictable) 1243 #define mlock (1UL << PG_mlocked) 1244 #define lru (1UL << PG_lru) 1245 #define head (1UL << PG_head) 1246 #define reserved (1UL << PG_reserved) 1247 1248 static struct page_state error_states[] = { 1249 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1250 /* 1251 * free pages are specially detected outside this table: 1252 * PG_buddy pages only make a small fraction of all free pages. 1253 */ 1254 1255 { head, head, MF_MSG_HUGE, me_huge_page }, 1256 1257 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1258 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1259 1260 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1261 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1262 1263 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1264 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1265 1266 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1267 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1268 1269 /* 1270 * Catchall entry: must be at end. 1271 */ 1272 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1273 }; 1274 1275 #undef dirty 1276 #undef sc 1277 #undef unevict 1278 #undef mlock 1279 #undef lru 1280 #undef head 1281 #undef reserved 1282 1283 static void update_per_node_mf_stats(unsigned long pfn, 1284 enum mf_result result) 1285 { 1286 int nid = MAX_NUMNODES; 1287 struct memory_failure_stats *mf_stats = NULL; 1288 1289 nid = pfn_to_nid(pfn); 1290 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1291 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1292 return; 1293 } 1294 1295 mf_stats = &NODE_DATA(nid)->mf_stats; 1296 switch (result) { 1297 case MF_IGNORED: 1298 ++mf_stats->ignored; 1299 break; 1300 case MF_FAILED: 1301 ++mf_stats->failed; 1302 break; 1303 case MF_DELAYED: 1304 ++mf_stats->delayed; 1305 break; 1306 case MF_RECOVERED: 1307 ++mf_stats->recovered; 1308 break; 1309 default: 1310 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1311 break; 1312 } 1313 ++mf_stats->total; 1314 } 1315 1316 /* 1317 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1318 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1319 */ 1320 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1321 enum mf_result result) 1322 { 1323 trace_memory_failure_event(pfn, type, result); 1324 1325 num_poisoned_pages_inc(pfn); 1326 1327 update_per_node_mf_stats(pfn, result); 1328 1329 pr_err("%#lx: recovery action for %s: %s\n", 1330 pfn, action_page_types[type], action_name[result]); 1331 1332 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1333 } 1334 1335 static int page_action(struct page_state *ps, struct page *p, 1336 unsigned long pfn) 1337 { 1338 int result; 1339 1340 /* page p should be unlocked after returning from ps->action(). */ 1341 result = ps->action(ps, p); 1342 1343 /* Could do more checks here if page looks ok */ 1344 /* 1345 * Could adjust zone counters here to correct for the missing page. 1346 */ 1347 1348 return action_result(pfn, ps->type, result); 1349 } 1350 1351 static inline bool PageHWPoisonTakenOff(struct page *page) 1352 { 1353 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1354 } 1355 1356 void SetPageHWPoisonTakenOff(struct page *page) 1357 { 1358 set_page_private(page, MAGIC_HWPOISON); 1359 } 1360 1361 void ClearPageHWPoisonTakenOff(struct page *page) 1362 { 1363 if (PageHWPoison(page)) 1364 set_page_private(page, 0); 1365 } 1366 1367 /* 1368 * Return true if a page type of a given page is supported by hwpoison 1369 * mechanism (while handling could fail), otherwise false. This function 1370 * does not return true for hugetlb or device memory pages, so it's assumed 1371 * to be called only in the context where we never have such pages. 1372 */ 1373 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1374 { 1375 if (PageSlab(page)) 1376 return false; 1377 1378 /* Soft offline could migrate non-LRU movable pages */ 1379 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1380 return true; 1381 1382 return PageLRU(page) || is_free_buddy_page(page); 1383 } 1384 1385 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1386 { 1387 struct folio *folio = page_folio(page); 1388 int ret = 0; 1389 bool hugetlb = false; 1390 1391 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1392 if (hugetlb) { 1393 /* Make sure hugetlb demotion did not happen from under us. */ 1394 if (folio == page_folio(page)) 1395 return ret; 1396 if (ret > 0) { 1397 folio_put(folio); 1398 folio = page_folio(page); 1399 } 1400 } 1401 1402 /* 1403 * This check prevents from calling folio_try_get() for any 1404 * unsupported type of folio in order to reduce the risk of unexpected 1405 * races caused by taking a folio refcount. 1406 */ 1407 if (!HWPoisonHandlable(&folio->page, flags)) 1408 return -EBUSY; 1409 1410 if (folio_try_get(folio)) { 1411 if (folio == page_folio(page)) 1412 return 1; 1413 1414 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1415 folio_put(folio); 1416 } 1417 1418 return 0; 1419 } 1420 1421 static int get_any_page(struct page *p, unsigned long flags) 1422 { 1423 int ret = 0, pass = 0; 1424 bool count_increased = false; 1425 1426 if (flags & MF_COUNT_INCREASED) 1427 count_increased = true; 1428 1429 try_again: 1430 if (!count_increased) { 1431 ret = __get_hwpoison_page(p, flags); 1432 if (!ret) { 1433 if (page_count(p)) { 1434 /* We raced with an allocation, retry. */ 1435 if (pass++ < 3) 1436 goto try_again; 1437 ret = -EBUSY; 1438 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1439 /* We raced with put_page, retry. */ 1440 if (pass++ < 3) 1441 goto try_again; 1442 ret = -EIO; 1443 } 1444 goto out; 1445 } else if (ret == -EBUSY) { 1446 /* 1447 * We raced with (possibly temporary) unhandlable 1448 * page, retry. 1449 */ 1450 if (pass++ < 3) { 1451 shake_page(p); 1452 goto try_again; 1453 } 1454 ret = -EIO; 1455 goto out; 1456 } 1457 } 1458 1459 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1460 ret = 1; 1461 } else { 1462 /* 1463 * A page we cannot handle. Check whether we can turn 1464 * it into something we can handle. 1465 */ 1466 if (pass++ < 3) { 1467 put_page(p); 1468 shake_page(p); 1469 count_increased = false; 1470 goto try_again; 1471 } 1472 put_page(p); 1473 ret = -EIO; 1474 } 1475 out: 1476 if (ret == -EIO) 1477 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1478 1479 return ret; 1480 } 1481 1482 static int __get_unpoison_page(struct page *page) 1483 { 1484 struct folio *folio = page_folio(page); 1485 int ret = 0; 1486 bool hugetlb = false; 1487 1488 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1489 if (hugetlb) { 1490 /* Make sure hugetlb demotion did not happen from under us. */ 1491 if (folio == page_folio(page)) 1492 return ret; 1493 if (ret > 0) 1494 folio_put(folio); 1495 } 1496 1497 /* 1498 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1499 * but also isolated from buddy freelist, so need to identify the 1500 * state and have to cancel both operations to unpoison. 1501 */ 1502 if (PageHWPoisonTakenOff(page)) 1503 return -EHWPOISON; 1504 1505 return get_page_unless_zero(page) ? 1 : 0; 1506 } 1507 1508 /** 1509 * get_hwpoison_page() - Get refcount for memory error handling 1510 * @p: Raw error page (hit by memory error) 1511 * @flags: Flags controlling behavior of error handling 1512 * 1513 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1514 * error on it, after checking that the error page is in a well-defined state 1515 * (defined as a page-type we can successfully handle the memory error on it, 1516 * such as LRU page and hugetlb page). 1517 * 1518 * Memory error handling could be triggered at any time on any type of page, 1519 * so it's prone to race with typical memory management lifecycle (like 1520 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1521 * extra care for the error page's state (as done in __get_hwpoison_page()), 1522 * and has some retry logic in get_any_page(). 1523 * 1524 * When called from unpoison_memory(), the caller should already ensure that 1525 * the given page has PG_hwpoison. So it's never reused for other page 1526 * allocations, and __get_unpoison_page() never races with them. 1527 * 1528 * Return: 0 on failure, 1529 * 1 on success for in-use pages in a well-defined state, 1530 * -EIO for pages on which we can not handle memory errors, 1531 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1532 * operations like allocation and free, 1533 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1534 */ 1535 static int get_hwpoison_page(struct page *p, unsigned long flags) 1536 { 1537 int ret; 1538 1539 zone_pcp_disable(page_zone(p)); 1540 if (flags & MF_UNPOISON) 1541 ret = __get_unpoison_page(p); 1542 else 1543 ret = get_any_page(p, flags); 1544 zone_pcp_enable(page_zone(p)); 1545 1546 return ret; 1547 } 1548 1549 /* 1550 * Do all that is necessary to remove user space mappings. Unmap 1551 * the pages and send SIGBUS to the processes if the data was dirty. 1552 */ 1553 static bool hwpoison_user_mappings(struct folio *folio, struct page *p, 1554 unsigned long pfn, int flags) 1555 { 1556 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1557 struct address_space *mapping; 1558 LIST_HEAD(tokill); 1559 bool unmap_success; 1560 int forcekill; 1561 bool mlocked = folio_test_mlocked(folio); 1562 1563 /* 1564 * Here we are interested only in user-mapped pages, so skip any 1565 * other types of pages. 1566 */ 1567 if (folio_test_reserved(folio) || folio_test_slab(folio) || 1568 folio_test_pgtable(folio) || folio_test_offline(folio)) 1569 return true; 1570 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio))) 1571 return true; 1572 1573 /* 1574 * This check implies we don't kill processes if their pages 1575 * are in the swap cache early. Those are always late kills. 1576 */ 1577 if (!page_mapped(p)) 1578 return true; 1579 1580 if (folio_test_swapcache(folio)) { 1581 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1582 ttu &= ~TTU_HWPOISON; 1583 } 1584 1585 /* 1586 * Propagate the dirty bit from PTEs to struct page first, because we 1587 * need this to decide if we should kill or just drop the page. 1588 * XXX: the dirty test could be racy: set_page_dirty() may not always 1589 * be called inside page lock (it's recommended but not enforced). 1590 */ 1591 mapping = folio_mapping(folio); 1592 if (!(flags & MF_MUST_KILL) && !folio_test_dirty(folio) && mapping && 1593 mapping_can_writeback(mapping)) { 1594 if (folio_mkclean(folio)) { 1595 folio_set_dirty(folio); 1596 } else { 1597 ttu &= ~TTU_HWPOISON; 1598 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1599 pfn); 1600 } 1601 } 1602 1603 /* 1604 * First collect all the processes that have the page 1605 * mapped in dirty form. This has to be done before try_to_unmap, 1606 * because ttu takes the rmap data structures down. 1607 */ 1608 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 1609 1610 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { 1611 /* 1612 * For hugetlb pages in shared mappings, try_to_unmap 1613 * could potentially call huge_pmd_unshare. Because of 1614 * this, take semaphore in write mode here and set 1615 * TTU_RMAP_LOCKED to indicate we have taken the lock 1616 * at this higher level. 1617 */ 1618 mapping = hugetlb_folio_mapping_lock_write(folio); 1619 if (mapping) { 1620 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1621 i_mmap_unlock_write(mapping); 1622 } else 1623 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); 1624 } else { 1625 try_to_unmap(folio, ttu); 1626 } 1627 1628 unmap_success = !page_mapped(p); 1629 if (!unmap_success) 1630 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n", 1631 pfn, folio_mapcount(page_folio(p))); 1632 1633 /* 1634 * try_to_unmap() might put mlocked page in lru cache, so call 1635 * shake_page() again to ensure that it's flushed. 1636 */ 1637 if (mlocked) 1638 shake_folio(folio); 1639 1640 /* 1641 * Now that the dirty bit has been propagated to the 1642 * struct page and all unmaps done we can decide if 1643 * killing is needed or not. Only kill when the page 1644 * was dirty or the process is not restartable, 1645 * otherwise the tokill list is merely 1646 * freed. When there was a problem unmapping earlier 1647 * use a more force-full uncatchable kill to prevent 1648 * any accesses to the poisoned memory. 1649 */ 1650 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) || 1651 !unmap_success; 1652 kill_procs(&tokill, forcekill, pfn, flags); 1653 1654 return unmap_success; 1655 } 1656 1657 static int identify_page_state(unsigned long pfn, struct page *p, 1658 unsigned long page_flags) 1659 { 1660 struct page_state *ps; 1661 1662 /* 1663 * The first check uses the current page flags which may not have any 1664 * relevant information. The second check with the saved page flags is 1665 * carried out only if the first check can't determine the page status. 1666 */ 1667 for (ps = error_states;; ps++) 1668 if ((p->flags & ps->mask) == ps->res) 1669 break; 1670 1671 page_flags |= (p->flags & (1UL << PG_dirty)); 1672 1673 if (!ps->mask) 1674 for (ps = error_states;; ps++) 1675 if ((page_flags & ps->mask) == ps->res) 1676 break; 1677 return page_action(ps, p, pfn); 1678 } 1679 1680 /* 1681 * When 'release' is 'false', it means that if thp split has failed, 1682 * there is still more to do, hence the page refcount we took earlier 1683 * is still needed. 1684 */ 1685 static int try_to_split_thp_page(struct page *page, bool release) 1686 { 1687 int ret; 1688 1689 lock_page(page); 1690 ret = split_huge_page(page); 1691 unlock_page(page); 1692 1693 if (ret && release) 1694 put_page(page); 1695 1696 return ret; 1697 } 1698 1699 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1700 struct address_space *mapping, pgoff_t index, int flags) 1701 { 1702 struct to_kill *tk; 1703 unsigned long size = 0; 1704 1705 list_for_each_entry(tk, to_kill, nd) 1706 if (tk->size_shift) 1707 size = max(size, 1UL << tk->size_shift); 1708 1709 if (size) { 1710 /* 1711 * Unmap the largest mapping to avoid breaking up device-dax 1712 * mappings which are constant size. The actual size of the 1713 * mapping being torn down is communicated in siginfo, see 1714 * kill_proc() 1715 */ 1716 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1); 1717 1718 unmap_mapping_range(mapping, start, size, 0); 1719 } 1720 1721 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags); 1722 } 1723 1724 /* 1725 * Only dev_pagemap pages get here, such as fsdax when the filesystem 1726 * either do not claim or fails to claim a hwpoison event, or devdax. 1727 * The fsdax pages are initialized per base page, and the devdax pages 1728 * could be initialized either as base pages, or as compound pages with 1729 * vmemmap optimization enabled. Devdax is simplistic in its dealing with 1730 * hwpoison, such that, if a subpage of a compound page is poisoned, 1731 * simply mark the compound head page is by far sufficient. 1732 */ 1733 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1734 struct dev_pagemap *pgmap) 1735 { 1736 struct folio *folio = pfn_folio(pfn); 1737 LIST_HEAD(to_kill); 1738 dax_entry_t cookie; 1739 int rc = 0; 1740 1741 /* 1742 * Prevent the inode from being freed while we are interrogating 1743 * the address_space, typically this would be handled by 1744 * lock_page(), but dax pages do not use the page lock. This 1745 * also prevents changes to the mapping of this pfn until 1746 * poison signaling is complete. 1747 */ 1748 cookie = dax_lock_folio(folio); 1749 if (!cookie) 1750 return -EBUSY; 1751 1752 if (hwpoison_filter(&folio->page)) { 1753 rc = -EOPNOTSUPP; 1754 goto unlock; 1755 } 1756 1757 switch (pgmap->type) { 1758 case MEMORY_DEVICE_PRIVATE: 1759 case MEMORY_DEVICE_COHERENT: 1760 /* 1761 * TODO: Handle device pages which may need coordination 1762 * with device-side memory. 1763 */ 1764 rc = -ENXIO; 1765 goto unlock; 1766 default: 1767 break; 1768 } 1769 1770 /* 1771 * Use this flag as an indication that the dax page has been 1772 * remapped UC to prevent speculative consumption of poison. 1773 */ 1774 SetPageHWPoison(&folio->page); 1775 1776 /* 1777 * Unlike System-RAM there is no possibility to swap in a 1778 * different physical page at a given virtual address, so all 1779 * userspace consumption of ZONE_DEVICE memory necessitates 1780 * SIGBUS (i.e. MF_MUST_KILL) 1781 */ 1782 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1783 collect_procs(folio, &folio->page, &to_kill, true); 1784 1785 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags); 1786 unlock: 1787 dax_unlock_folio(folio, cookie); 1788 return rc; 1789 } 1790 1791 #ifdef CONFIG_FS_DAX 1792 /** 1793 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1794 * @mapping: address_space of the file in use 1795 * @index: start pgoff of the range within the file 1796 * @count: length of the range, in unit of PAGE_SIZE 1797 * @mf_flags: memory failure flags 1798 */ 1799 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1800 unsigned long count, int mf_flags) 1801 { 1802 LIST_HEAD(to_kill); 1803 dax_entry_t cookie; 1804 struct page *page; 1805 size_t end = index + count; 1806 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE; 1807 1808 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1809 1810 for (; index < end; index++) { 1811 page = NULL; 1812 cookie = dax_lock_mapping_entry(mapping, index, &page); 1813 if (!cookie) 1814 return -EBUSY; 1815 if (!page) 1816 goto unlock; 1817 1818 if (!pre_remove) 1819 SetPageHWPoison(page); 1820 1821 /* 1822 * The pre_remove case is revoking access, the memory is still 1823 * good and could theoretically be put back into service. 1824 */ 1825 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove); 1826 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1827 index, mf_flags); 1828 unlock: 1829 dax_unlock_mapping_entry(mapping, index, cookie); 1830 } 1831 return 0; 1832 } 1833 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1834 #endif /* CONFIG_FS_DAX */ 1835 1836 #ifdef CONFIG_HUGETLB_PAGE 1837 1838 /* 1839 * Struct raw_hwp_page represents information about "raw error page", 1840 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1841 */ 1842 struct raw_hwp_page { 1843 struct llist_node node; 1844 struct page *page; 1845 }; 1846 1847 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1848 { 1849 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1850 } 1851 1852 bool is_raw_hwpoison_page_in_hugepage(struct page *page) 1853 { 1854 struct llist_head *raw_hwp_head; 1855 struct raw_hwp_page *p; 1856 struct folio *folio = page_folio(page); 1857 bool ret = false; 1858 1859 if (!folio_test_hwpoison(folio)) 1860 return false; 1861 1862 if (!folio_test_hugetlb(folio)) 1863 return PageHWPoison(page); 1864 1865 /* 1866 * When RawHwpUnreliable is set, kernel lost track of which subpages 1867 * are HWPOISON. So return as if ALL subpages are HWPOISONed. 1868 */ 1869 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1870 return true; 1871 1872 mutex_lock(&mf_mutex); 1873 1874 raw_hwp_head = raw_hwp_list_head(folio); 1875 llist_for_each_entry(p, raw_hwp_head->first, node) { 1876 if (page == p->page) { 1877 ret = true; 1878 break; 1879 } 1880 } 1881 1882 mutex_unlock(&mf_mutex); 1883 1884 return ret; 1885 } 1886 1887 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1888 { 1889 struct llist_node *head; 1890 struct raw_hwp_page *p, *next; 1891 unsigned long count = 0; 1892 1893 head = llist_del_all(raw_hwp_list_head(folio)); 1894 llist_for_each_entry_safe(p, next, head, node) { 1895 if (move_flag) 1896 SetPageHWPoison(p->page); 1897 else 1898 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1899 kfree(p); 1900 count++; 1901 } 1902 return count; 1903 } 1904 1905 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1906 { 1907 struct llist_head *head; 1908 struct raw_hwp_page *raw_hwp; 1909 struct raw_hwp_page *p; 1910 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1911 1912 /* 1913 * Once the hwpoison hugepage has lost reliable raw error info, 1914 * there is little meaning to keep additional error info precisely, 1915 * so skip to add additional raw error info. 1916 */ 1917 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1918 return -EHWPOISON; 1919 head = raw_hwp_list_head(folio); 1920 llist_for_each_entry(p, head->first, node) { 1921 if (p->page == page) 1922 return -EHWPOISON; 1923 } 1924 1925 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1926 if (raw_hwp) { 1927 raw_hwp->page = page; 1928 llist_add(&raw_hwp->node, head); 1929 /* the first error event will be counted in action_result(). */ 1930 if (ret) 1931 num_poisoned_pages_inc(page_to_pfn(page)); 1932 } else { 1933 /* 1934 * Failed to save raw error info. We no longer trace all 1935 * hwpoisoned subpages, and we need refuse to free/dissolve 1936 * this hwpoisoned hugepage. 1937 */ 1938 folio_set_hugetlb_raw_hwp_unreliable(folio); 1939 /* 1940 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1941 * used any more, so free it. 1942 */ 1943 __folio_free_raw_hwp(folio, false); 1944 } 1945 return ret; 1946 } 1947 1948 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1949 { 1950 /* 1951 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1952 * pages for tail pages are required but they don't exist. 1953 */ 1954 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1955 return 0; 1956 1957 /* 1958 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1959 * definition. 1960 */ 1961 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1962 return 0; 1963 1964 return __folio_free_raw_hwp(folio, move_flag); 1965 } 1966 1967 void folio_clear_hugetlb_hwpoison(struct folio *folio) 1968 { 1969 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1970 return; 1971 if (folio_test_hugetlb_vmemmap_optimized(folio)) 1972 return; 1973 folio_clear_hwpoison(folio); 1974 folio_free_raw_hwp(folio, true); 1975 } 1976 1977 /* 1978 * Called from hugetlb code with hugetlb_lock held. 1979 * 1980 * Return values: 1981 * 0 - free hugepage 1982 * 1 - in-use hugepage 1983 * 2 - not a hugepage 1984 * -EBUSY - the hugepage is busy (try to retry) 1985 * -EHWPOISON - the hugepage is already hwpoisoned 1986 */ 1987 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 1988 bool *migratable_cleared) 1989 { 1990 struct page *page = pfn_to_page(pfn); 1991 struct folio *folio = page_folio(page); 1992 int ret = 2; /* fallback to normal page handling */ 1993 bool count_increased = false; 1994 1995 if (!folio_test_hugetlb(folio)) 1996 goto out; 1997 1998 if (flags & MF_COUNT_INCREASED) { 1999 ret = 1; 2000 count_increased = true; 2001 } else if (folio_test_hugetlb_freed(folio)) { 2002 ret = 0; 2003 } else if (folio_test_hugetlb_migratable(folio)) { 2004 ret = folio_try_get(folio); 2005 if (ret) 2006 count_increased = true; 2007 } else { 2008 ret = -EBUSY; 2009 if (!(flags & MF_NO_RETRY)) 2010 goto out; 2011 } 2012 2013 if (folio_set_hugetlb_hwpoison(folio, page)) { 2014 ret = -EHWPOISON; 2015 goto out; 2016 } 2017 2018 /* 2019 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 2020 * from being migrated by memory hotremove. 2021 */ 2022 if (count_increased && folio_test_hugetlb_migratable(folio)) { 2023 folio_clear_hugetlb_migratable(folio); 2024 *migratable_cleared = true; 2025 } 2026 2027 return ret; 2028 out: 2029 if (count_increased) 2030 folio_put(folio); 2031 return ret; 2032 } 2033 2034 /* 2035 * Taking refcount of hugetlb pages needs extra care about race conditions 2036 * with basic operations like hugepage allocation/free/demotion. 2037 * So some of prechecks for hwpoison (pinning, and testing/setting 2038 * PageHWPoison) should be done in single hugetlb_lock range. 2039 */ 2040 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2041 { 2042 int res; 2043 struct page *p = pfn_to_page(pfn); 2044 struct folio *folio; 2045 unsigned long page_flags; 2046 bool migratable_cleared = false; 2047 2048 *hugetlb = 1; 2049 retry: 2050 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 2051 if (res == 2) { /* fallback to normal page handling */ 2052 *hugetlb = 0; 2053 return 0; 2054 } else if (res == -EHWPOISON) { 2055 pr_err("%#lx: already hardware poisoned\n", pfn); 2056 if (flags & MF_ACTION_REQUIRED) { 2057 folio = page_folio(p); 2058 res = kill_accessing_process(current, folio_pfn(folio), flags); 2059 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); 2060 } 2061 return res; 2062 } else if (res == -EBUSY) { 2063 if (!(flags & MF_NO_RETRY)) { 2064 flags |= MF_NO_RETRY; 2065 goto retry; 2066 } 2067 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); 2068 } 2069 2070 folio = page_folio(p); 2071 folio_lock(folio); 2072 2073 if (hwpoison_filter(p)) { 2074 folio_clear_hugetlb_hwpoison(folio); 2075 if (migratable_cleared) 2076 folio_set_hugetlb_migratable(folio); 2077 folio_unlock(folio); 2078 if (res == 1) 2079 folio_put(folio); 2080 return -EOPNOTSUPP; 2081 } 2082 2083 /* 2084 * Handling free hugepage. The possible race with hugepage allocation 2085 * or demotion can be prevented by PageHWPoison flag. 2086 */ 2087 if (res == 0) { 2088 folio_unlock(folio); 2089 if (__page_handle_poison(p) > 0) { 2090 page_ref_inc(p); 2091 res = MF_RECOVERED; 2092 } else { 2093 res = MF_FAILED; 2094 } 2095 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2096 } 2097 2098 page_flags = folio->flags; 2099 2100 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2101 folio_unlock(folio); 2102 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); 2103 } 2104 2105 return identify_page_state(pfn, p, page_flags); 2106 } 2107 2108 #else 2109 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2110 { 2111 return 0; 2112 } 2113 2114 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2115 { 2116 return 0; 2117 } 2118 #endif /* CONFIG_HUGETLB_PAGE */ 2119 2120 /* Drop the extra refcount in case we come from madvise() */ 2121 static void put_ref_page(unsigned long pfn, int flags) 2122 { 2123 struct page *page; 2124 2125 if (!(flags & MF_COUNT_INCREASED)) 2126 return; 2127 2128 page = pfn_to_page(pfn); 2129 if (page) 2130 put_page(page); 2131 } 2132 2133 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2134 struct dev_pagemap *pgmap) 2135 { 2136 int rc = -ENXIO; 2137 2138 /* device metadata space is not recoverable */ 2139 if (!pgmap_pfn_valid(pgmap, pfn)) 2140 goto out; 2141 2142 /* 2143 * Call driver's implementation to handle the memory failure, otherwise 2144 * fall back to generic handler. 2145 */ 2146 if (pgmap_has_memory_failure(pgmap)) { 2147 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2148 /* 2149 * Fall back to generic handler too if operation is not 2150 * supported inside the driver/device/filesystem. 2151 */ 2152 if (rc != -EOPNOTSUPP) 2153 goto out; 2154 } 2155 2156 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2157 out: 2158 /* drop pgmap ref acquired in caller */ 2159 put_dev_pagemap(pgmap); 2160 if (rc != -EOPNOTSUPP) 2161 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2162 return rc; 2163 } 2164 2165 /* 2166 * The calling condition is as such: thp split failed, page might have 2167 * been RDMA pinned, not much can be done for recovery. 2168 * But a SIGBUS should be delivered with vaddr provided so that the user 2169 * application has a chance to recover. Also, application processes' 2170 * election for MCE early killed will be honored. 2171 */ 2172 static void kill_procs_now(struct page *p, unsigned long pfn, int flags, 2173 struct folio *folio) 2174 { 2175 LIST_HEAD(tokill); 2176 2177 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 2178 kill_procs(&tokill, true, pfn, flags); 2179 } 2180 2181 /** 2182 * memory_failure - Handle memory failure of a page. 2183 * @pfn: Page Number of the corrupted page 2184 * @flags: fine tune action taken 2185 * 2186 * This function is called by the low level machine check code 2187 * of an architecture when it detects hardware memory corruption 2188 * of a page. It tries its best to recover, which includes 2189 * dropping pages, killing processes etc. 2190 * 2191 * The function is primarily of use for corruptions that 2192 * happen outside the current execution context (e.g. when 2193 * detected by a background scrubber) 2194 * 2195 * Must run in process context (e.g. a work queue) with interrupts 2196 * enabled and no spinlocks held. 2197 * 2198 * Return: 0 for successfully handled the memory error, 2199 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 2200 * < 0(except -EOPNOTSUPP) on failure. 2201 */ 2202 int memory_failure(unsigned long pfn, int flags) 2203 { 2204 struct page *p; 2205 struct folio *folio; 2206 struct dev_pagemap *pgmap; 2207 int res = 0; 2208 unsigned long page_flags; 2209 bool retry = true; 2210 int hugetlb = 0; 2211 2212 if (!sysctl_memory_failure_recovery) 2213 panic("Memory failure on page %lx", pfn); 2214 2215 mutex_lock(&mf_mutex); 2216 2217 if (!(flags & MF_SW_SIMULATED)) 2218 hw_memory_failure = true; 2219 2220 p = pfn_to_online_page(pfn); 2221 if (!p) { 2222 res = arch_memory_failure(pfn, flags); 2223 if (res == 0) 2224 goto unlock_mutex; 2225 2226 if (pfn_valid(pfn)) { 2227 pgmap = get_dev_pagemap(pfn, NULL); 2228 put_ref_page(pfn, flags); 2229 if (pgmap) { 2230 res = memory_failure_dev_pagemap(pfn, flags, 2231 pgmap); 2232 goto unlock_mutex; 2233 } 2234 } 2235 pr_err("%#lx: memory outside kernel control\n", pfn); 2236 res = -ENXIO; 2237 goto unlock_mutex; 2238 } 2239 2240 try_again: 2241 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2242 if (hugetlb) 2243 goto unlock_mutex; 2244 2245 if (TestSetPageHWPoison(p)) { 2246 pr_err("%#lx: already hardware poisoned\n", pfn); 2247 res = -EHWPOISON; 2248 if (flags & MF_ACTION_REQUIRED) 2249 res = kill_accessing_process(current, pfn, flags); 2250 if (flags & MF_COUNT_INCREASED) 2251 put_page(p); 2252 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); 2253 goto unlock_mutex; 2254 } 2255 2256 /* 2257 * We need/can do nothing about count=0 pages. 2258 * 1) it's a free page, and therefore in safe hand: 2259 * check_new_page() will be the gate keeper. 2260 * 2) it's part of a non-compound high order page. 2261 * Implies some kernel user: cannot stop them from 2262 * R/W the page; let's pray that the page has been 2263 * used and will be freed some time later. 2264 * In fact it's dangerous to directly bump up page count from 0, 2265 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2266 */ 2267 if (!(flags & MF_COUNT_INCREASED)) { 2268 res = get_hwpoison_page(p, flags); 2269 if (!res) { 2270 if (is_free_buddy_page(p)) { 2271 if (take_page_off_buddy(p)) { 2272 page_ref_inc(p); 2273 res = MF_RECOVERED; 2274 } else { 2275 /* We lost the race, try again */ 2276 if (retry) { 2277 ClearPageHWPoison(p); 2278 retry = false; 2279 goto try_again; 2280 } 2281 res = MF_FAILED; 2282 } 2283 res = action_result(pfn, MF_MSG_BUDDY, res); 2284 } else { 2285 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2286 } 2287 goto unlock_mutex; 2288 } else if (res < 0) { 2289 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); 2290 goto unlock_mutex; 2291 } 2292 } 2293 2294 folio = page_folio(p); 2295 2296 /* filter pages that are protected from hwpoison test by users */ 2297 folio_lock(folio); 2298 if (hwpoison_filter(p)) { 2299 ClearPageHWPoison(p); 2300 folio_unlock(folio); 2301 folio_put(folio); 2302 res = -EOPNOTSUPP; 2303 goto unlock_mutex; 2304 } 2305 folio_unlock(folio); 2306 2307 if (folio_test_large(folio)) { 2308 /* 2309 * The flag must be set after the refcount is bumped 2310 * otherwise it may race with THP split. 2311 * And the flag can't be set in get_hwpoison_page() since 2312 * it is called by soft offline too and it is just called 2313 * for !MF_COUNT_INCREASED. So here seems to be the best 2314 * place. 2315 * 2316 * Don't need care about the above error handling paths for 2317 * get_hwpoison_page() since they handle either free page 2318 * or unhandlable page. The refcount is bumped iff the 2319 * page is a valid handlable page. 2320 */ 2321 folio_set_has_hwpoisoned(folio); 2322 if (try_to_split_thp_page(p, false) < 0) { 2323 res = -EHWPOISON; 2324 kill_procs_now(p, pfn, flags, folio); 2325 put_page(p); 2326 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED); 2327 goto unlock_mutex; 2328 } 2329 VM_BUG_ON_PAGE(!page_count(p), p); 2330 folio = page_folio(p); 2331 } 2332 2333 /* 2334 * We ignore non-LRU pages for good reasons. 2335 * - PG_locked is only well defined for LRU pages and a few others 2336 * - to avoid races with __SetPageLocked() 2337 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2338 * The check (unnecessarily) ignores LRU pages being isolated and 2339 * walked by the page reclaim code, however that's not a big loss. 2340 */ 2341 shake_folio(folio); 2342 2343 folio_lock(folio); 2344 2345 /* 2346 * We're only intended to deal with the non-Compound page here. 2347 * However, the page could have changed compound pages due to 2348 * race window. If this happens, we could try again to hopefully 2349 * handle the page next round. 2350 */ 2351 if (folio_test_large(folio)) { 2352 if (retry) { 2353 ClearPageHWPoison(p); 2354 folio_unlock(folio); 2355 folio_put(folio); 2356 flags &= ~MF_COUNT_INCREASED; 2357 retry = false; 2358 goto try_again; 2359 } 2360 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 2361 goto unlock_page; 2362 } 2363 2364 /* 2365 * We use page flags to determine what action should be taken, but 2366 * the flags can be modified by the error containment action. One 2367 * example is an mlocked page, where PG_mlocked is cleared by 2368 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page 2369 * status correctly, we save a copy of the page flags at this time. 2370 */ 2371 page_flags = folio->flags; 2372 2373 /* 2374 * __munlock_folio() may clear a writeback folio's LRU flag without 2375 * the folio lock. We need to wait for writeback completion for this 2376 * folio or it may trigger a vfs BUG while evicting inode. 2377 */ 2378 if (!folio_test_lru(folio) && !folio_test_writeback(folio)) 2379 goto identify_page_state; 2380 2381 /* 2382 * It's very difficult to mess with pages currently under IO 2383 * and in many cases impossible, so we just avoid it here. 2384 */ 2385 folio_wait_writeback(folio); 2386 2387 /* 2388 * Now take care of user space mappings. 2389 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2390 */ 2391 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2392 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); 2393 goto unlock_page; 2394 } 2395 2396 /* 2397 * Torn down by someone else? 2398 */ 2399 if (folio_test_lru(folio) && !folio_test_swapcache(folio) && 2400 folio->mapping == NULL) { 2401 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2402 goto unlock_page; 2403 } 2404 2405 identify_page_state: 2406 res = identify_page_state(pfn, p, page_flags); 2407 mutex_unlock(&mf_mutex); 2408 return res; 2409 unlock_page: 2410 folio_unlock(folio); 2411 unlock_mutex: 2412 mutex_unlock(&mf_mutex); 2413 return res; 2414 } 2415 EXPORT_SYMBOL_GPL(memory_failure); 2416 2417 #define MEMORY_FAILURE_FIFO_ORDER 4 2418 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2419 2420 struct memory_failure_entry { 2421 unsigned long pfn; 2422 int flags; 2423 }; 2424 2425 struct memory_failure_cpu { 2426 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2427 MEMORY_FAILURE_FIFO_SIZE); 2428 spinlock_t lock; 2429 struct work_struct work; 2430 }; 2431 2432 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2433 2434 /** 2435 * memory_failure_queue - Schedule handling memory failure of a page. 2436 * @pfn: Page Number of the corrupted page 2437 * @flags: Flags for memory failure handling 2438 * 2439 * This function is called by the low level hardware error handler 2440 * when it detects hardware memory corruption of a page. It schedules 2441 * the recovering of error page, including dropping pages, killing 2442 * processes etc. 2443 * 2444 * The function is primarily of use for corruptions that 2445 * happen outside the current execution context (e.g. when 2446 * detected by a background scrubber) 2447 * 2448 * Can run in IRQ context. 2449 */ 2450 void memory_failure_queue(unsigned long pfn, int flags) 2451 { 2452 struct memory_failure_cpu *mf_cpu; 2453 unsigned long proc_flags; 2454 struct memory_failure_entry entry = { 2455 .pfn = pfn, 2456 .flags = flags, 2457 }; 2458 2459 mf_cpu = &get_cpu_var(memory_failure_cpu); 2460 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2461 if (kfifo_put(&mf_cpu->fifo, entry)) 2462 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2463 else 2464 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2465 pfn); 2466 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2467 put_cpu_var(memory_failure_cpu); 2468 } 2469 EXPORT_SYMBOL_GPL(memory_failure_queue); 2470 2471 static void memory_failure_work_func(struct work_struct *work) 2472 { 2473 struct memory_failure_cpu *mf_cpu; 2474 struct memory_failure_entry entry = { 0, }; 2475 unsigned long proc_flags; 2476 int gotten; 2477 2478 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2479 for (;;) { 2480 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2481 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2482 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2483 if (!gotten) 2484 break; 2485 if (entry.flags & MF_SOFT_OFFLINE) 2486 soft_offline_page(entry.pfn, entry.flags); 2487 else 2488 memory_failure(entry.pfn, entry.flags); 2489 } 2490 } 2491 2492 /* 2493 * Process memory_failure work queued on the specified CPU. 2494 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2495 */ 2496 void memory_failure_queue_kick(int cpu) 2497 { 2498 struct memory_failure_cpu *mf_cpu; 2499 2500 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2501 cancel_work_sync(&mf_cpu->work); 2502 memory_failure_work_func(&mf_cpu->work); 2503 } 2504 2505 static int __init memory_failure_init(void) 2506 { 2507 struct memory_failure_cpu *mf_cpu; 2508 int cpu; 2509 2510 for_each_possible_cpu(cpu) { 2511 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2512 spin_lock_init(&mf_cpu->lock); 2513 INIT_KFIFO(mf_cpu->fifo); 2514 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2515 } 2516 2517 register_sysctl_init("vm", memory_failure_table); 2518 2519 return 0; 2520 } 2521 core_initcall(memory_failure_init); 2522 2523 #undef pr_fmt 2524 #define pr_fmt(fmt) "" fmt 2525 #define unpoison_pr_info(fmt, pfn, rs) \ 2526 ({ \ 2527 if (__ratelimit(rs)) \ 2528 pr_info(fmt, pfn); \ 2529 }) 2530 2531 /** 2532 * unpoison_memory - Unpoison a previously poisoned page 2533 * @pfn: Page number of the to be unpoisoned page 2534 * 2535 * Software-unpoison a page that has been poisoned by 2536 * memory_failure() earlier. 2537 * 2538 * This is only done on the software-level, so it only works 2539 * for linux injected failures, not real hardware failures 2540 * 2541 * Returns 0 for success, otherwise -errno. 2542 */ 2543 int unpoison_memory(unsigned long pfn) 2544 { 2545 struct folio *folio; 2546 struct page *p; 2547 int ret = -EBUSY, ghp; 2548 unsigned long count = 1; 2549 bool huge = false; 2550 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2551 DEFAULT_RATELIMIT_BURST); 2552 2553 if (!pfn_valid(pfn)) 2554 return -ENXIO; 2555 2556 p = pfn_to_page(pfn); 2557 folio = page_folio(p); 2558 2559 mutex_lock(&mf_mutex); 2560 2561 if (hw_memory_failure) { 2562 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", 2563 pfn, &unpoison_rs); 2564 ret = -EOPNOTSUPP; 2565 goto unlock_mutex; 2566 } 2567 2568 if (is_huge_zero_folio(folio)) { 2569 unpoison_pr_info("Unpoison: huge zero page is not supported %#lx\n", 2570 pfn, &unpoison_rs); 2571 ret = -EOPNOTSUPP; 2572 goto unlock_mutex; 2573 } 2574 2575 if (!PageHWPoison(p)) { 2576 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2577 pfn, &unpoison_rs); 2578 goto unlock_mutex; 2579 } 2580 2581 if (folio_ref_count(folio) > 1) { 2582 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2583 pfn, &unpoison_rs); 2584 goto unlock_mutex; 2585 } 2586 2587 if (folio_test_slab(folio) || folio_test_pgtable(folio) || 2588 folio_test_reserved(folio) || folio_test_offline(folio)) 2589 goto unlock_mutex; 2590 2591 /* 2592 * Note that folio->_mapcount is overloaded in SLAB, so the simple test 2593 * in folio_mapped() has to be done after folio_test_slab() is checked. 2594 */ 2595 if (folio_mapped(folio)) { 2596 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2597 pfn, &unpoison_rs); 2598 goto unlock_mutex; 2599 } 2600 2601 if (folio_mapping(folio)) { 2602 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2603 pfn, &unpoison_rs); 2604 goto unlock_mutex; 2605 } 2606 2607 ghp = get_hwpoison_page(p, MF_UNPOISON); 2608 if (!ghp) { 2609 if (folio_test_hugetlb(folio)) { 2610 huge = true; 2611 count = folio_free_raw_hwp(folio, false); 2612 if (count == 0) 2613 goto unlock_mutex; 2614 } 2615 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2616 } else if (ghp < 0) { 2617 if (ghp == -EHWPOISON) { 2618 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2619 } else { 2620 ret = ghp; 2621 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2622 pfn, &unpoison_rs); 2623 } 2624 } else { 2625 if (folio_test_hugetlb(folio)) { 2626 huge = true; 2627 count = folio_free_raw_hwp(folio, false); 2628 if (count == 0) { 2629 folio_put(folio); 2630 goto unlock_mutex; 2631 } 2632 } 2633 2634 folio_put(folio); 2635 if (TestClearPageHWPoison(p)) { 2636 folio_put(folio); 2637 ret = 0; 2638 } 2639 } 2640 2641 unlock_mutex: 2642 mutex_unlock(&mf_mutex); 2643 if (!ret) { 2644 if (!huge) 2645 num_poisoned_pages_sub(pfn, 1); 2646 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2647 page_to_pfn(p), &unpoison_rs); 2648 } 2649 return ret; 2650 } 2651 EXPORT_SYMBOL(unpoison_memory); 2652 2653 static bool mf_isolate_folio(struct folio *folio, struct list_head *pagelist) 2654 { 2655 bool isolated = false; 2656 2657 if (folio_test_hugetlb(folio)) { 2658 isolated = isolate_hugetlb(folio, pagelist); 2659 } else { 2660 bool lru = !__folio_test_movable(folio); 2661 2662 if (lru) 2663 isolated = folio_isolate_lru(folio); 2664 else 2665 isolated = isolate_movable_page(&folio->page, 2666 ISOLATE_UNEVICTABLE); 2667 2668 if (isolated) { 2669 list_add(&folio->lru, pagelist); 2670 if (lru) 2671 node_stat_add_folio(folio, NR_ISOLATED_ANON + 2672 folio_is_file_lru(folio)); 2673 } 2674 } 2675 2676 /* 2677 * If we succeed to isolate the folio, we grabbed another refcount on 2678 * the folio, so we can safely drop the one we got from get_any_page(). 2679 * If we failed to isolate the folio, it means that we cannot go further 2680 * and we will return an error, so drop the reference we got from 2681 * get_any_page() as well. 2682 */ 2683 folio_put(folio); 2684 return isolated; 2685 } 2686 2687 /* 2688 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2689 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2690 * If the page is mapped, it migrates the contents over. 2691 */ 2692 static int soft_offline_in_use_page(struct page *page) 2693 { 2694 long ret = 0; 2695 unsigned long pfn = page_to_pfn(page); 2696 struct folio *folio = page_folio(page); 2697 char const *msg_page[] = {"page", "hugepage"}; 2698 bool huge = folio_test_hugetlb(folio); 2699 LIST_HEAD(pagelist); 2700 struct migration_target_control mtc = { 2701 .nid = NUMA_NO_NODE, 2702 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2703 .reason = MR_MEMORY_FAILURE, 2704 }; 2705 2706 if (!huge && folio_test_large(folio)) { 2707 if (try_to_split_thp_page(page, true)) { 2708 pr_info("soft offline: %#lx: thp split failed\n", pfn); 2709 return -EBUSY; 2710 } 2711 folio = page_folio(page); 2712 } 2713 2714 folio_lock(folio); 2715 if (!huge) 2716 folio_wait_writeback(folio); 2717 if (PageHWPoison(page)) { 2718 folio_unlock(folio); 2719 folio_put(folio); 2720 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2721 return 0; 2722 } 2723 2724 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio)) 2725 /* 2726 * Try to invalidate first. This should work for 2727 * non dirty unmapped page cache pages. 2728 */ 2729 ret = mapping_evict_folio(folio_mapping(folio), folio); 2730 folio_unlock(folio); 2731 2732 if (ret) { 2733 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2734 page_handle_poison(page, false, true); 2735 return 0; 2736 } 2737 2738 if (mf_isolate_folio(folio, &pagelist)) { 2739 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2740 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2741 if (!ret) { 2742 bool release = !huge; 2743 2744 if (!page_handle_poison(page, huge, release)) 2745 ret = -EBUSY; 2746 } else { 2747 if (!list_empty(&pagelist)) 2748 putback_movable_pages(&pagelist); 2749 2750 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2751 pfn, msg_page[huge], ret, &page->flags); 2752 if (ret > 0) 2753 ret = -EBUSY; 2754 } 2755 } else { 2756 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2757 pfn, msg_page[huge], page_count(page), &page->flags); 2758 ret = -EBUSY; 2759 } 2760 return ret; 2761 } 2762 2763 /** 2764 * soft_offline_page - Soft offline a page. 2765 * @pfn: pfn to soft-offline 2766 * @flags: flags. Same as memory_failure(). 2767 * 2768 * Returns 0 on success 2769 * -EOPNOTSUPP for hwpoison_filter() filtered the error event 2770 * < 0 otherwise negated errno. 2771 * 2772 * Soft offline a page, by migration or invalidation, 2773 * without killing anything. This is for the case when 2774 * a page is not corrupted yet (so it's still valid to access), 2775 * but has had a number of corrected errors and is better taken 2776 * out. 2777 * 2778 * The actual policy on when to do that is maintained by 2779 * user space. 2780 * 2781 * This should never impact any application or cause data loss, 2782 * however it might take some time. 2783 * 2784 * This is not a 100% solution for all memory, but tries to be 2785 * ``good enough'' for the majority of memory. 2786 */ 2787 int soft_offline_page(unsigned long pfn, int flags) 2788 { 2789 int ret; 2790 bool try_again = true; 2791 struct page *page; 2792 2793 if (!pfn_valid(pfn)) { 2794 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2795 return -ENXIO; 2796 } 2797 2798 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2799 page = pfn_to_online_page(pfn); 2800 if (!page) { 2801 put_ref_page(pfn, flags); 2802 return -EIO; 2803 } 2804 2805 mutex_lock(&mf_mutex); 2806 2807 if (PageHWPoison(page)) { 2808 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2809 put_ref_page(pfn, flags); 2810 mutex_unlock(&mf_mutex); 2811 return 0; 2812 } 2813 2814 retry: 2815 get_online_mems(); 2816 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2817 put_online_mems(); 2818 2819 if (hwpoison_filter(page)) { 2820 if (ret > 0) 2821 put_page(page); 2822 2823 mutex_unlock(&mf_mutex); 2824 return -EOPNOTSUPP; 2825 } 2826 2827 if (ret > 0) { 2828 ret = soft_offline_in_use_page(page); 2829 } else if (ret == 0) { 2830 if (!page_handle_poison(page, true, false)) { 2831 if (try_again) { 2832 try_again = false; 2833 flags &= ~MF_COUNT_INCREASED; 2834 goto retry; 2835 } 2836 ret = -EBUSY; 2837 } 2838 } 2839 2840 mutex_unlock(&mf_mutex); 2841 2842 return ret; 2843 } 2844