1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/dax.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/memremap.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/sysctl.h> 63 #include "swap.h" 64 #include "internal.h" 65 #include "ras/ras_event.h" 66 67 static int sysctl_memory_failure_early_kill __read_mostly; 68 69 static int sysctl_memory_failure_recovery __read_mostly = 1; 70 71 static int sysctl_enable_soft_offline __read_mostly = 1; 72 73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 74 75 static bool hw_memory_failure __read_mostly = false; 76 77 static DEFINE_MUTEX(mf_mutex); 78 79 void num_poisoned_pages_inc(unsigned long pfn) 80 { 81 atomic_long_inc(&num_poisoned_pages); 82 memblk_nr_poison_inc(pfn); 83 } 84 85 void num_poisoned_pages_sub(unsigned long pfn, long i) 86 { 87 atomic_long_sub(i, &num_poisoned_pages); 88 if (pfn != -1UL) 89 memblk_nr_poison_sub(pfn, i); 90 } 91 92 /** 93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 94 * @_name: name of the file in the per NUMA sysfs directory. 95 */ 96 #define MF_ATTR_RO(_name) \ 97 static ssize_t _name##_show(struct device *dev, \ 98 struct device_attribute *attr, \ 99 char *buf) \ 100 { \ 101 struct memory_failure_stats *mf_stats = \ 102 &NODE_DATA(dev->id)->mf_stats; \ 103 return sysfs_emit(buf, "%lu\n", mf_stats->_name); \ 104 } \ 105 static DEVICE_ATTR_RO(_name) 106 107 MF_ATTR_RO(total); 108 MF_ATTR_RO(ignored); 109 MF_ATTR_RO(failed); 110 MF_ATTR_RO(delayed); 111 MF_ATTR_RO(recovered); 112 113 static struct attribute *memory_failure_attr[] = { 114 &dev_attr_total.attr, 115 &dev_attr_ignored.attr, 116 &dev_attr_failed.attr, 117 &dev_attr_delayed.attr, 118 &dev_attr_recovered.attr, 119 NULL, 120 }; 121 122 const struct attribute_group memory_failure_attr_group = { 123 .name = "memory_failure", 124 .attrs = memory_failure_attr, 125 }; 126 127 static const struct ctl_table memory_failure_table[] = { 128 { 129 .procname = "memory_failure_early_kill", 130 .data = &sysctl_memory_failure_early_kill, 131 .maxlen = sizeof(sysctl_memory_failure_early_kill), 132 .mode = 0644, 133 .proc_handler = proc_dointvec_minmax, 134 .extra1 = SYSCTL_ZERO, 135 .extra2 = SYSCTL_ONE, 136 }, 137 { 138 .procname = "memory_failure_recovery", 139 .data = &sysctl_memory_failure_recovery, 140 .maxlen = sizeof(sysctl_memory_failure_recovery), 141 .mode = 0644, 142 .proc_handler = proc_dointvec_minmax, 143 .extra1 = SYSCTL_ZERO, 144 .extra2 = SYSCTL_ONE, 145 }, 146 { 147 .procname = "enable_soft_offline", 148 .data = &sysctl_enable_soft_offline, 149 .maxlen = sizeof(sysctl_enable_soft_offline), 150 .mode = 0644, 151 .proc_handler = proc_dointvec_minmax, 152 .extra1 = SYSCTL_ZERO, 153 .extra2 = SYSCTL_ONE, 154 } 155 }; 156 157 /* 158 * Return values: 159 * 1: the page is dissolved (if needed) and taken off from buddy, 160 * 0: the page is dissolved (if needed) and not taken off from buddy, 161 * < 0: failed to dissolve. 162 */ 163 static int __page_handle_poison(struct page *page) 164 { 165 int ret; 166 167 /* 168 * zone_pcp_disable() can't be used here. It will 169 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold 170 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap 171 * optimization is enabled. This will break current lock dependency 172 * chain and leads to deadlock. 173 * Disabling pcp before dissolving the page was a deterministic 174 * approach because we made sure that those pages cannot end up in any 175 * PCP list. Draining PCP lists expels those pages to the buddy system, 176 * but nothing guarantees that those pages do not get back to a PCP 177 * queue if we need to refill those. 178 */ 179 ret = dissolve_free_hugetlb_folio(page_folio(page)); 180 if (!ret) { 181 drain_all_pages(page_zone(page)); 182 ret = take_page_off_buddy(page); 183 } 184 185 return ret; 186 } 187 188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 189 { 190 if (hugepage_or_freepage) { 191 /* 192 * Doing this check for free pages is also fine since 193 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well. 194 */ 195 if (__page_handle_poison(page) <= 0) 196 /* 197 * We could fail to take off the target page from buddy 198 * for example due to racy page allocation, but that's 199 * acceptable because soft-offlined page is not broken 200 * and if someone really want to use it, they should 201 * take it. 202 */ 203 return false; 204 } 205 206 SetPageHWPoison(page); 207 if (release) 208 put_page(page); 209 page_ref_inc(page); 210 num_poisoned_pages_inc(page_to_pfn(page)); 211 212 return true; 213 } 214 215 static hwpoison_filter_func_t __rcu *hwpoison_filter_func __read_mostly; 216 217 void hwpoison_filter_register(hwpoison_filter_func_t *filter) 218 { 219 rcu_assign_pointer(hwpoison_filter_func, filter); 220 } 221 EXPORT_SYMBOL_GPL(hwpoison_filter_register); 222 223 void hwpoison_filter_unregister(void) 224 { 225 RCU_INIT_POINTER(hwpoison_filter_func, NULL); 226 synchronize_rcu(); 227 } 228 EXPORT_SYMBOL_GPL(hwpoison_filter_unregister); 229 230 static int hwpoison_filter(struct page *p) 231 { 232 int ret = 0; 233 hwpoison_filter_func_t *filter; 234 235 rcu_read_lock(); 236 filter = rcu_dereference(hwpoison_filter_func); 237 if (filter) 238 ret = filter(p); 239 rcu_read_unlock(); 240 241 return ret; 242 } 243 244 /* 245 * Kill all processes that have a poisoned page mapped and then isolate 246 * the page. 247 * 248 * General strategy: 249 * Find all processes having the page mapped and kill them. 250 * But we keep a page reference around so that the page is not 251 * actually freed yet. 252 * Then stash the page away 253 * 254 * There's no convenient way to get back to mapped processes 255 * from the VMAs. So do a brute-force search over all 256 * running processes. 257 * 258 * Remember that machine checks are not common (or rather 259 * if they are common you have other problems), so this shouldn't 260 * be a performance issue. 261 * 262 * Also there are some races possible while we get from the 263 * error detection to actually handle it. 264 */ 265 266 struct to_kill { 267 struct list_head nd; 268 struct task_struct *tsk; 269 unsigned long addr; 270 short size_shift; 271 }; 272 273 /* 274 * Send all the processes who have the page mapped a signal. 275 * ``action optional'' if they are not immediately affected by the error 276 * ``action required'' if error happened in current execution context 277 */ 278 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 279 { 280 struct task_struct *t = tk->tsk; 281 short addr_lsb = tk->size_shift; 282 int ret = 0; 283 284 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 285 pfn, t->comm, task_pid_nr(t)); 286 287 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 288 ret = force_sig_mceerr(BUS_MCEERR_AR, 289 (void __user *)tk->addr, addr_lsb); 290 else 291 /* 292 * Signal other processes sharing the page if they have 293 * PF_MCE_EARLY set. 294 * Don't use force here, it's convenient if the signal 295 * can be temporarily blocked. 296 */ 297 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 298 addr_lsb, t); 299 if (ret < 0) 300 pr_info("Error sending signal to %s:%d: %d\n", 301 t->comm, task_pid_nr(t), ret); 302 return ret; 303 } 304 305 /* 306 * Unknown page type encountered. Try to check whether it can turn PageLRU by 307 * lru_add_drain_all. 308 */ 309 void shake_folio(struct folio *folio) 310 { 311 if (folio_test_hugetlb(folio)) 312 return; 313 /* 314 * TODO: Could shrink slab caches here if a lightweight range-based 315 * shrinker will be available. 316 */ 317 if (folio_test_slab(folio)) 318 return; 319 320 lru_add_drain_all(); 321 } 322 EXPORT_SYMBOL_GPL(shake_folio); 323 324 static void shake_page(struct page *page) 325 { 326 shake_folio(page_folio(page)); 327 } 328 329 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 330 unsigned long address) 331 { 332 unsigned long ret = 0; 333 pgd_t *pgd; 334 p4d_t *p4d; 335 pud_t *pud; 336 pmd_t *pmd; 337 pte_t *pte; 338 pte_t ptent; 339 340 VM_BUG_ON_VMA(address == -EFAULT, vma); 341 pgd = pgd_offset(vma->vm_mm, address); 342 if (!pgd_present(*pgd)) 343 return 0; 344 p4d = p4d_offset(pgd, address); 345 if (!p4d_present(*p4d)) 346 return 0; 347 pud = pud_offset(p4d, address); 348 if (!pud_present(*pud)) 349 return 0; 350 if (pud_trans_huge(*pud)) 351 return PUD_SHIFT; 352 pmd = pmd_offset(pud, address); 353 if (!pmd_present(*pmd)) 354 return 0; 355 if (pmd_trans_huge(*pmd)) 356 return PMD_SHIFT; 357 pte = pte_offset_map(pmd, address); 358 if (!pte) 359 return 0; 360 ptent = ptep_get(pte); 361 if (pte_present(ptent)) 362 ret = PAGE_SHIFT; 363 pte_unmap(pte); 364 return ret; 365 } 366 367 /* 368 * Failure handling: if we can't find or can't kill a process there's 369 * not much we can do. We just print a message and ignore otherwise. 370 */ 371 372 /* 373 * Schedule a process for later kill. 374 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 375 */ 376 static void __add_to_kill(struct task_struct *tsk, const struct page *p, 377 struct vm_area_struct *vma, struct list_head *to_kill, 378 unsigned long addr) 379 { 380 struct to_kill *tk; 381 382 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 383 if (!tk) { 384 pr_err("Out of memory while machine check handling\n"); 385 return; 386 } 387 388 tk->addr = addr; 389 if (is_zone_device_page(p)) 390 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 391 else 392 tk->size_shift = folio_shift(page_folio(p)); 393 394 /* 395 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 396 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 397 * so "tk->size_shift == 0" effectively checks no mapping on 398 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 399 * to a process' address space, it's possible not all N VMAs 400 * contain mappings for the page, but at least one VMA does. 401 * Only deliver SIGBUS with payload derived from the VMA that 402 * has a mapping for the page. 403 */ 404 if (tk->addr == -EFAULT) { 405 pr_info("Unable to find user space address %lx in %s\n", 406 page_to_pfn(p), tsk->comm); 407 } else if (tk->size_shift == 0) { 408 kfree(tk); 409 return; 410 } 411 412 get_task_struct(tsk); 413 tk->tsk = tsk; 414 list_add_tail(&tk->nd, to_kill); 415 } 416 417 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p, 418 struct vm_area_struct *vma, struct list_head *to_kill, 419 unsigned long addr) 420 { 421 if (addr == -EFAULT) 422 return; 423 __add_to_kill(tsk, p, vma, to_kill, addr); 424 } 425 426 #ifdef CONFIG_KSM 427 static bool task_in_to_kill_list(struct list_head *to_kill, 428 struct task_struct *tsk) 429 { 430 struct to_kill *tk, *next; 431 432 list_for_each_entry_safe(tk, next, to_kill, nd) { 433 if (tk->tsk == tsk) 434 return true; 435 } 436 437 return false; 438 } 439 440 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p, 441 struct vm_area_struct *vma, struct list_head *to_kill, 442 unsigned long addr) 443 { 444 if (!task_in_to_kill_list(to_kill, tsk)) 445 __add_to_kill(tsk, p, vma, to_kill, addr); 446 } 447 #endif 448 /* 449 * Kill the processes that have been collected earlier. 450 * 451 * Only do anything when FORCEKILL is set, otherwise just free the 452 * list (this is used for clean pages which do not need killing) 453 */ 454 static void kill_procs(struct list_head *to_kill, int forcekill, 455 unsigned long pfn, int flags) 456 { 457 struct to_kill *tk, *next; 458 459 list_for_each_entry_safe(tk, next, to_kill, nd) { 460 if (forcekill) { 461 if (tk->addr == -EFAULT) { 462 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 463 pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); 464 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 465 tk->tsk, PIDTYPE_PID); 466 } 467 468 /* 469 * In theory the process could have mapped 470 * something else on the address in-between. We could 471 * check for that, but we need to tell the 472 * process anyways. 473 */ 474 else if (kill_proc(tk, pfn, flags) < 0) 475 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 476 pfn, tk->tsk->comm, task_pid_nr(tk->tsk)); 477 } 478 list_del(&tk->nd); 479 put_task_struct(tk->tsk); 480 kfree(tk); 481 } 482 } 483 484 /* 485 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 486 * on behalf of the thread group. Return task_struct of the (first found) 487 * dedicated thread if found, and return NULL otherwise. 488 * 489 * We already hold rcu lock in the caller, so we don't have to call 490 * rcu_read_lock/unlock() in this function. 491 */ 492 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 493 { 494 struct task_struct *t; 495 496 for_each_thread(tsk, t) { 497 if (t->flags & PF_MCE_PROCESS) { 498 if (t->flags & PF_MCE_EARLY) 499 return t; 500 } else { 501 if (sysctl_memory_failure_early_kill) 502 return t; 503 } 504 } 505 return NULL; 506 } 507 508 /* 509 * Determine whether a given process is "early kill" process which expects 510 * to be signaled when some page under the process is hwpoisoned. 511 * Return task_struct of the dedicated thread (main thread unless explicitly 512 * specified) if the process is "early kill" and otherwise returns NULL. 513 * 514 * Note that the above is true for Action Optional case. For Action Required 515 * case, it's only meaningful to the current thread which need to be signaled 516 * with SIGBUS, this error is Action Optional for other non current 517 * processes sharing the same error page,if the process is "early kill", the 518 * task_struct of the dedicated thread will also be returned. 519 */ 520 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 521 { 522 if (!tsk->mm) 523 return NULL; 524 /* 525 * Comparing ->mm here because current task might represent 526 * a subthread, while tsk always points to the main thread. 527 */ 528 if (force_early && tsk->mm == current->mm) 529 return current; 530 531 return find_early_kill_thread(tsk); 532 } 533 534 /* 535 * Collect processes when the error hit an anonymous page. 536 */ 537 static void collect_procs_anon(const struct folio *folio, 538 const struct page *page, struct list_head *to_kill, 539 int force_early) 540 { 541 struct task_struct *tsk; 542 struct anon_vma *av; 543 pgoff_t pgoff; 544 545 av = folio_lock_anon_vma_read(folio, NULL); 546 if (av == NULL) /* Not actually mapped anymore */ 547 return; 548 549 pgoff = page_pgoff(folio, page); 550 rcu_read_lock(); 551 for_each_process(tsk) { 552 struct vm_area_struct *vma; 553 struct anon_vma_chain *vmac; 554 struct task_struct *t = task_early_kill(tsk, force_early); 555 unsigned long addr; 556 557 if (!t) 558 continue; 559 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 560 pgoff, pgoff) { 561 vma = vmac->vma; 562 if (vma->vm_mm != t->mm) 563 continue; 564 addr = page_mapped_in_vma(page, vma); 565 add_to_kill_anon_file(t, page, vma, to_kill, addr); 566 } 567 } 568 rcu_read_unlock(); 569 anon_vma_unlock_read(av); 570 } 571 572 /* 573 * Collect processes when the error hit a file mapped page. 574 */ 575 static void collect_procs_file(const struct folio *folio, 576 const struct page *page, struct list_head *to_kill, 577 int force_early) 578 { 579 struct vm_area_struct *vma; 580 struct task_struct *tsk; 581 struct address_space *mapping = folio->mapping; 582 pgoff_t pgoff; 583 584 i_mmap_lock_read(mapping); 585 rcu_read_lock(); 586 pgoff = page_pgoff(folio, page); 587 for_each_process(tsk) { 588 struct task_struct *t = task_early_kill(tsk, force_early); 589 unsigned long addr; 590 591 if (!t) 592 continue; 593 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 594 pgoff) { 595 /* 596 * Send early kill signal to tasks where a vma covers 597 * the page but the corrupted page is not necessarily 598 * mapped in its pte. 599 * Assume applications who requested early kill want 600 * to be informed of all such data corruptions. 601 */ 602 if (vma->vm_mm != t->mm) 603 continue; 604 addr = page_address_in_vma(folio, page, vma); 605 add_to_kill_anon_file(t, page, vma, to_kill, addr); 606 } 607 } 608 rcu_read_unlock(); 609 i_mmap_unlock_read(mapping); 610 } 611 612 #ifdef CONFIG_FS_DAX 613 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p, 614 struct vm_area_struct *vma, 615 struct list_head *to_kill, pgoff_t pgoff) 616 { 617 unsigned long addr = vma_address(vma, pgoff, 1); 618 __add_to_kill(tsk, p, vma, to_kill, addr); 619 } 620 621 /* 622 * Collect processes when the error hit a fsdax page. 623 */ 624 static void collect_procs_fsdax(const struct page *page, 625 struct address_space *mapping, pgoff_t pgoff, 626 struct list_head *to_kill, bool pre_remove) 627 { 628 struct vm_area_struct *vma; 629 struct task_struct *tsk; 630 631 i_mmap_lock_read(mapping); 632 rcu_read_lock(); 633 for_each_process(tsk) { 634 struct task_struct *t = tsk; 635 636 /* 637 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because 638 * the current may not be the one accessing the fsdax page. 639 * Otherwise, search for the current task. 640 */ 641 if (!pre_remove) 642 t = task_early_kill(tsk, true); 643 if (!t) 644 continue; 645 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 646 if (vma->vm_mm == t->mm) 647 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 648 } 649 } 650 rcu_read_unlock(); 651 i_mmap_unlock_read(mapping); 652 } 653 #endif /* CONFIG_FS_DAX */ 654 655 /* 656 * Collect the processes who have the corrupted page mapped to kill. 657 */ 658 static void collect_procs(const struct folio *folio, const struct page *page, 659 struct list_head *tokill, int force_early) 660 { 661 if (!folio->mapping) 662 return; 663 if (unlikely(folio_test_ksm(folio))) 664 collect_procs_ksm(folio, page, tokill, force_early); 665 else if (folio_test_anon(folio)) 666 collect_procs_anon(folio, page, tokill, force_early); 667 else 668 collect_procs_file(folio, page, tokill, force_early); 669 } 670 671 struct hwpoison_walk { 672 struct to_kill tk; 673 unsigned long pfn; 674 int flags; 675 }; 676 677 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 678 { 679 tk->addr = addr; 680 tk->size_shift = shift; 681 } 682 683 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 684 unsigned long poisoned_pfn, struct to_kill *tk) 685 { 686 unsigned long pfn = 0; 687 688 if (pte_present(pte)) { 689 pfn = pte_pfn(pte); 690 } else { 691 swp_entry_t swp = pte_to_swp_entry(pte); 692 693 if (is_hwpoison_entry(swp)) 694 pfn = swp_offset_pfn(swp); 695 } 696 697 if (!pfn || pfn != poisoned_pfn) 698 return 0; 699 700 set_to_kill(tk, addr, shift); 701 return 1; 702 } 703 704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 705 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 706 struct hwpoison_walk *hwp) 707 { 708 pmd_t pmd = *pmdp; 709 unsigned long pfn; 710 unsigned long hwpoison_vaddr; 711 712 if (!pmd_present(pmd)) 713 return 0; 714 pfn = pmd_pfn(pmd); 715 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 716 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 717 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 718 return 1; 719 } 720 return 0; 721 } 722 #else 723 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 724 struct hwpoison_walk *hwp) 725 { 726 return 0; 727 } 728 #endif 729 730 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 731 unsigned long end, struct mm_walk *walk) 732 { 733 struct hwpoison_walk *hwp = walk->private; 734 int ret = 0; 735 pte_t *ptep, *mapped_pte; 736 spinlock_t *ptl; 737 738 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 739 if (ptl) { 740 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 741 spin_unlock(ptl); 742 goto out; 743 } 744 745 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 746 addr, &ptl); 747 if (!ptep) 748 goto out; 749 750 for (; addr != end; ptep++, addr += PAGE_SIZE) { 751 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, 752 hwp->pfn, &hwp->tk); 753 if (ret == 1) 754 break; 755 } 756 pte_unmap_unlock(mapped_pte, ptl); 757 out: 758 cond_resched(); 759 return ret; 760 } 761 762 #ifdef CONFIG_HUGETLB_PAGE 763 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 764 unsigned long addr, unsigned long end, 765 struct mm_walk *walk) 766 { 767 struct hwpoison_walk *hwp = walk->private; 768 struct hstate *h = hstate_vma(walk->vma); 769 spinlock_t *ptl; 770 pte_t pte; 771 int ret; 772 773 ptl = huge_pte_lock(h, walk->mm, ptep); 774 pte = huge_ptep_get(walk->mm, addr, ptep); 775 ret = check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 776 hwp->pfn, &hwp->tk); 777 spin_unlock(ptl); 778 return ret; 779 } 780 #else 781 #define hwpoison_hugetlb_range NULL 782 #endif 783 784 static int hwpoison_test_walk(unsigned long start, unsigned long end, 785 struct mm_walk *walk) 786 { 787 /* We also want to consider pages mapped into VM_PFNMAP. */ 788 return 0; 789 } 790 791 static const struct mm_walk_ops hwpoison_walk_ops = { 792 .pmd_entry = hwpoison_pte_range, 793 .hugetlb_entry = hwpoison_hugetlb_range, 794 .test_walk = hwpoison_test_walk, 795 .walk_lock = PGWALK_RDLOCK, 796 }; 797 798 /* 799 * Sends SIGBUS to the current process with error info. 800 * 801 * This function is intended to handle "Action Required" MCEs on already 802 * hardware poisoned pages. They could happen, for example, when 803 * memory_failure() failed to unmap the error page at the first call, or 804 * when multiple local machine checks happened on different CPUs. 805 * 806 * MCE handler currently has no easy access to the error virtual address, 807 * so this function walks page table to find it. The returned virtual address 808 * is proper in most cases, but it could be wrong when the application 809 * process has multiple entries mapping the error page. 810 */ 811 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 812 int flags) 813 { 814 int ret; 815 struct hwpoison_walk priv = { 816 .pfn = pfn, 817 }; 818 priv.tk.tsk = p; 819 820 if (!p->mm) 821 return -EFAULT; 822 823 mmap_read_lock(p->mm); 824 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops, 825 (void *)&priv); 826 /* 827 * ret = 1 when CMCI wins, regardless of whether try_to_unmap() 828 * succeeds or fails, then kill the process with SIGBUS. 829 * ret = 0 when poison page is a clean page and it's dropped, no 830 * SIGBUS is needed. 831 */ 832 if (ret == 1 && priv.tk.addr) 833 kill_proc(&priv.tk, pfn, flags); 834 mmap_read_unlock(p->mm); 835 836 return ret > 0 ? -EHWPOISON : 0; 837 } 838 839 /* 840 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed. 841 * But it could not do more to isolate the page from being accessed again, 842 * nor does it kill the process. This is extremely rare and one of the 843 * potential causes is that the page state has been changed due to 844 * underlying race condition. This is the most severe outcomes. 845 * 846 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed. 847 * It should have killed the process, but it can't isolate the page, 848 * due to conditions such as extra pin, unmap failure, etc. Accessing 849 * the page again may trigger another MCE and the process will be killed 850 * by the m-f() handler immediately. 851 * 852 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed. 853 * The page is unmapped, and is removed from the LRU or file mapping. 854 * An attempt to access the page again will trigger page fault and the 855 * PF handler will kill the process. 856 * 857 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed. 858 * The page has been completely isolated, that is, unmapped, taken out of 859 * the buddy system, or hole-punnched out of the file mapping. 860 */ 861 static const char *action_name[] = { 862 [MF_IGNORED] = "Ignored", 863 [MF_FAILED] = "Failed", 864 [MF_DELAYED] = "Delayed", 865 [MF_RECOVERED] = "Recovered", 866 }; 867 868 static const char * const action_page_types[] = { 869 [MF_MSG_KERNEL] = "reserved kernel page", 870 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 871 [MF_MSG_HUGE] = "huge page", 872 [MF_MSG_FREE_HUGE] = "free huge page", 873 [MF_MSG_GET_HWPOISON] = "get hwpoison page", 874 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 875 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 876 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 877 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 878 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 879 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 880 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 881 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 882 [MF_MSG_CLEAN_LRU] = "clean LRU page", 883 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 884 [MF_MSG_BUDDY] = "free buddy page", 885 [MF_MSG_DAX] = "dax page", 886 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 887 [MF_MSG_ALREADY_POISONED] = "already poisoned page", 888 [MF_MSG_UNKNOWN] = "unknown page", 889 }; 890 891 /* 892 * XXX: It is possible that a page is isolated from LRU cache, 893 * and then kept in swap cache or failed to remove from page cache. 894 * The page count will stop it from being freed by unpoison. 895 * Stress tests should be aware of this memory leak problem. 896 */ 897 static int delete_from_lru_cache(struct folio *folio) 898 { 899 if (folio_isolate_lru(folio)) { 900 /* 901 * Clear sensible page flags, so that the buddy system won't 902 * complain when the folio is unpoison-and-freed. 903 */ 904 folio_clear_active(folio); 905 folio_clear_unevictable(folio); 906 907 /* 908 * Poisoned page might never drop its ref count to 0 so we have 909 * to uncharge it manually from its memcg. 910 */ 911 mem_cgroup_uncharge(folio); 912 913 /* 914 * drop the refcount elevated by folio_isolate_lru() 915 */ 916 folio_put(folio); 917 return 0; 918 } 919 return -EIO; 920 } 921 922 static int truncate_error_folio(struct folio *folio, unsigned long pfn, 923 struct address_space *mapping) 924 { 925 int ret = MF_FAILED; 926 927 if (mapping->a_ops->error_remove_folio) { 928 int err = mapping->a_ops->error_remove_folio(mapping, folio); 929 930 if (err != 0) 931 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 932 else if (!filemap_release_folio(folio, GFP_NOIO)) 933 pr_info("%#lx: failed to release buffers\n", pfn); 934 else 935 ret = MF_RECOVERED; 936 } else { 937 /* 938 * If the file system doesn't support it just invalidate 939 * This fails on dirty or anything with private pages 940 */ 941 if (mapping_evict_folio(mapping, folio)) 942 ret = MF_RECOVERED; 943 else 944 pr_info("%#lx: Failed to invalidate\n", pfn); 945 } 946 947 return ret; 948 } 949 950 struct page_state { 951 unsigned long mask; 952 unsigned long res; 953 enum mf_action_page_type type; 954 955 /* Callback ->action() has to unlock the relevant page inside it. */ 956 int (*action)(struct page_state *ps, struct page *p); 957 }; 958 959 /* 960 * Return true if page is still referenced by others, otherwise return 961 * false. 962 * 963 * The extra_pins is true when one extra refcount is expected. 964 */ 965 static bool has_extra_refcount(struct page_state *ps, struct page *p, 966 bool extra_pins) 967 { 968 int count = page_count(p) - 1; 969 970 if (extra_pins) 971 count -= folio_nr_pages(page_folio(p)); 972 973 if (count > 0) { 974 pr_err("%#lx: %s still referenced by %d users\n", 975 page_to_pfn(p), action_page_types[ps->type], count); 976 return true; 977 } 978 979 return false; 980 } 981 982 /* 983 * Error hit kernel page. 984 * Do nothing, try to be lucky and not touch this instead. For a few cases we 985 * could be more sophisticated. 986 */ 987 static int me_kernel(struct page_state *ps, struct page *p) 988 { 989 unlock_page(p); 990 return MF_IGNORED; 991 } 992 993 /* 994 * Page in unknown state. Do nothing. 995 * This is a catch-all in case we fail to make sense of the page state. 996 */ 997 static int me_unknown(struct page_state *ps, struct page *p) 998 { 999 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1000 unlock_page(p); 1001 return MF_IGNORED; 1002 } 1003 1004 /* 1005 * Clean (or cleaned) page cache page. 1006 */ 1007 static int me_pagecache_clean(struct page_state *ps, struct page *p) 1008 { 1009 struct folio *folio = page_folio(p); 1010 int ret; 1011 struct address_space *mapping; 1012 bool extra_pins; 1013 1014 delete_from_lru_cache(folio); 1015 1016 /* 1017 * For anonymous folios the only reference left 1018 * should be the one m_f() holds. 1019 */ 1020 if (folio_test_anon(folio)) { 1021 ret = MF_RECOVERED; 1022 goto out; 1023 } 1024 1025 /* 1026 * Now truncate the page in the page cache. This is really 1027 * more like a "temporary hole punch" 1028 * Don't do this for block devices when someone else 1029 * has a reference, because it could be file system metadata 1030 * and that's not safe to truncate. 1031 */ 1032 mapping = folio_mapping(folio); 1033 if (!mapping) { 1034 /* Folio has been torn down in the meantime */ 1035 ret = MF_FAILED; 1036 goto out; 1037 } 1038 1039 /* 1040 * The shmem page is kept in page cache instead of truncating 1041 * so is expected to have an extra refcount after error-handling. 1042 */ 1043 extra_pins = shmem_mapping(mapping); 1044 1045 /* 1046 * Truncation is a bit tricky. Enable it per file system for now. 1047 * 1048 * Open: to take i_rwsem or not for this? Right now we don't. 1049 */ 1050 ret = truncate_error_folio(folio, page_to_pfn(p), mapping); 1051 if (has_extra_refcount(ps, p, extra_pins)) 1052 ret = MF_FAILED; 1053 1054 out: 1055 folio_unlock(folio); 1056 1057 return ret; 1058 } 1059 1060 /* 1061 * Dirty pagecache page 1062 * Issues: when the error hit a hole page the error is not properly 1063 * propagated. 1064 */ 1065 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1066 { 1067 struct folio *folio = page_folio(p); 1068 struct address_space *mapping = folio_mapping(folio); 1069 1070 /* TBD: print more information about the file. */ 1071 if (mapping) { 1072 /* 1073 * IO error will be reported by write(), fsync(), etc. 1074 * who check the mapping. 1075 * This way the application knows that something went 1076 * wrong with its dirty file data. 1077 */ 1078 mapping_set_error(mapping, -EIO); 1079 } 1080 1081 return me_pagecache_clean(ps, p); 1082 } 1083 1084 /* 1085 * Clean and dirty swap cache. 1086 * 1087 * Dirty swap cache page is tricky to handle. The page could live both in page 1088 * table and swap cache(ie. page is freshly swapped in). So it could be 1089 * referenced concurrently by 2 types of PTEs: 1090 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1091 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1092 * and then 1093 * - clear dirty bit to prevent IO 1094 * - remove from LRU 1095 * - but keep in the swap cache, so that when we return to it on 1096 * a later page fault, we know the application is accessing 1097 * corrupted data and shall be killed (we installed simple 1098 * interception code in do_swap_page to catch it). 1099 * 1100 * Clean swap cache pages can be directly isolated. A later page fault will 1101 * bring in the known good data from disk. 1102 */ 1103 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1104 { 1105 struct folio *folio = page_folio(p); 1106 int ret; 1107 bool extra_pins = false; 1108 1109 folio_clear_dirty(folio); 1110 /* Trigger EIO in shmem: */ 1111 folio_clear_uptodate(folio); 1112 1113 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED; 1114 folio_unlock(folio); 1115 1116 if (ret == MF_DELAYED) 1117 extra_pins = true; 1118 1119 if (has_extra_refcount(ps, p, extra_pins)) 1120 ret = MF_FAILED; 1121 1122 return ret; 1123 } 1124 1125 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1126 { 1127 struct folio *folio = page_folio(p); 1128 int ret; 1129 1130 swap_cache_del_folio(folio); 1131 1132 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED; 1133 folio_unlock(folio); 1134 1135 if (has_extra_refcount(ps, p, false)) 1136 ret = MF_FAILED; 1137 1138 return ret; 1139 } 1140 1141 /* 1142 * Huge pages. Needs work. 1143 * Issues: 1144 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1145 * To narrow down kill region to one page, we need to break up pmd. 1146 */ 1147 static int me_huge_page(struct page_state *ps, struct page *p) 1148 { 1149 struct folio *folio = page_folio(p); 1150 int res; 1151 struct address_space *mapping; 1152 bool extra_pins = false; 1153 1154 mapping = folio_mapping(folio); 1155 if (mapping) { 1156 res = truncate_error_folio(folio, page_to_pfn(p), mapping); 1157 /* The page is kept in page cache. */ 1158 extra_pins = true; 1159 folio_unlock(folio); 1160 } else { 1161 folio_unlock(folio); 1162 /* 1163 * migration entry prevents later access on error hugepage, 1164 * so we can free and dissolve it into buddy to save healthy 1165 * subpages. 1166 */ 1167 folio_put(folio); 1168 if (__page_handle_poison(p) > 0) { 1169 page_ref_inc(p); 1170 res = MF_RECOVERED; 1171 } else { 1172 res = MF_FAILED; 1173 } 1174 } 1175 1176 if (has_extra_refcount(ps, p, extra_pins)) 1177 res = MF_FAILED; 1178 1179 return res; 1180 } 1181 1182 /* 1183 * Various page states we can handle. 1184 * 1185 * A page state is defined by its current page->flags bits. 1186 * The table matches them in order and calls the right handler. 1187 * 1188 * This is quite tricky because we can access page at any time 1189 * in its live cycle, so all accesses have to be extremely careful. 1190 * 1191 * This is not complete. More states could be added. 1192 * For any missing state don't attempt recovery. 1193 */ 1194 1195 #define dirty (1UL << PG_dirty) 1196 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1197 #define unevict (1UL << PG_unevictable) 1198 #define mlock (1UL << PG_mlocked) 1199 #define lru (1UL << PG_lru) 1200 #define head (1UL << PG_head) 1201 #define reserved (1UL << PG_reserved) 1202 1203 static struct page_state error_states[] = { 1204 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1205 /* 1206 * free pages are specially detected outside this table: 1207 * PG_buddy pages only make a small fraction of all free pages. 1208 */ 1209 1210 { head, head, MF_MSG_HUGE, me_huge_page }, 1211 1212 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1213 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1214 1215 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1216 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1217 1218 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1219 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1220 1221 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1222 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1223 1224 /* 1225 * Catchall entry: must be at end. 1226 */ 1227 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1228 }; 1229 1230 #undef dirty 1231 #undef sc 1232 #undef unevict 1233 #undef mlock 1234 #undef lru 1235 #undef head 1236 #undef reserved 1237 1238 static void update_per_node_mf_stats(unsigned long pfn, 1239 enum mf_result result) 1240 { 1241 int nid = MAX_NUMNODES; 1242 struct memory_failure_stats *mf_stats = NULL; 1243 1244 nid = pfn_to_nid(pfn); 1245 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1246 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1247 return; 1248 } 1249 1250 mf_stats = &NODE_DATA(nid)->mf_stats; 1251 switch (result) { 1252 case MF_IGNORED: 1253 ++mf_stats->ignored; 1254 break; 1255 case MF_FAILED: 1256 ++mf_stats->failed; 1257 break; 1258 case MF_DELAYED: 1259 ++mf_stats->delayed; 1260 break; 1261 case MF_RECOVERED: 1262 ++mf_stats->recovered; 1263 break; 1264 default: 1265 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1266 break; 1267 } 1268 ++mf_stats->total; 1269 } 1270 1271 /* 1272 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1273 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1274 */ 1275 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1276 enum mf_result result) 1277 { 1278 trace_memory_failure_event(pfn, type, result); 1279 1280 if (type != MF_MSG_ALREADY_POISONED) { 1281 num_poisoned_pages_inc(pfn); 1282 update_per_node_mf_stats(pfn, result); 1283 } 1284 1285 pr_err("%#lx: recovery action for %s: %s\n", 1286 pfn, action_page_types[type], action_name[result]); 1287 1288 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1289 } 1290 1291 static int page_action(struct page_state *ps, struct page *p, 1292 unsigned long pfn) 1293 { 1294 int result; 1295 1296 /* page p should be unlocked after returning from ps->action(). */ 1297 result = ps->action(ps, p); 1298 1299 /* Could do more checks here if page looks ok */ 1300 /* 1301 * Could adjust zone counters here to correct for the missing page. 1302 */ 1303 1304 return action_result(pfn, ps->type, result); 1305 } 1306 1307 static inline bool PageHWPoisonTakenOff(struct page *page) 1308 { 1309 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1310 } 1311 1312 void SetPageHWPoisonTakenOff(struct page *page) 1313 { 1314 set_page_private(page, MAGIC_HWPOISON); 1315 } 1316 1317 void ClearPageHWPoisonTakenOff(struct page *page) 1318 { 1319 if (PageHWPoison(page)) 1320 set_page_private(page, 0); 1321 } 1322 1323 /* 1324 * Return true if a page type of a given page is supported by hwpoison 1325 * mechanism (while handling could fail), otherwise false. This function 1326 * does not return true for hugetlb or device memory pages, so it's assumed 1327 * to be called only in the context where we never have such pages. 1328 */ 1329 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1330 { 1331 if (PageSlab(page)) 1332 return false; 1333 1334 /* Soft offline could migrate movable_ops pages */ 1335 if ((flags & MF_SOFT_OFFLINE) && page_has_movable_ops(page)) 1336 return true; 1337 1338 return PageLRU(page) || is_free_buddy_page(page); 1339 } 1340 1341 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1342 { 1343 struct folio *folio = page_folio(page); 1344 int ret = 0; 1345 bool hugetlb = false; 1346 1347 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1348 if (hugetlb) { 1349 /* Make sure hugetlb demotion did not happen from under us. */ 1350 if (folio == page_folio(page)) 1351 return ret; 1352 if (ret > 0) { 1353 folio_put(folio); 1354 folio = page_folio(page); 1355 } 1356 } 1357 1358 /* 1359 * This check prevents from calling folio_try_get() for any 1360 * unsupported type of folio in order to reduce the risk of unexpected 1361 * races caused by taking a folio refcount. 1362 */ 1363 if (!HWPoisonHandlable(&folio->page, flags)) 1364 return -EBUSY; 1365 1366 if (folio_try_get(folio)) { 1367 if (folio == page_folio(page)) 1368 return 1; 1369 1370 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1371 folio_put(folio); 1372 } 1373 1374 return 0; 1375 } 1376 1377 #define GET_PAGE_MAX_RETRY_NUM 3 1378 1379 static int get_any_page(struct page *p, unsigned long flags) 1380 { 1381 int ret = 0, pass = 0; 1382 bool count_increased = false; 1383 1384 if (flags & MF_COUNT_INCREASED) 1385 count_increased = true; 1386 1387 try_again: 1388 if (!count_increased) { 1389 ret = __get_hwpoison_page(p, flags); 1390 if (!ret) { 1391 if (page_count(p)) { 1392 /* We raced with an allocation, retry. */ 1393 if (pass++ < GET_PAGE_MAX_RETRY_NUM) 1394 goto try_again; 1395 ret = -EBUSY; 1396 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1397 /* We raced with put_page, retry. */ 1398 if (pass++ < GET_PAGE_MAX_RETRY_NUM) 1399 goto try_again; 1400 ret = -EIO; 1401 } 1402 goto out; 1403 } else if (ret == -EBUSY) { 1404 /* 1405 * We raced with (possibly temporary) unhandlable 1406 * page, retry. 1407 */ 1408 if (pass++ < 3) { 1409 shake_page(p); 1410 goto try_again; 1411 } 1412 ret = -EIO; 1413 goto out; 1414 } 1415 } 1416 1417 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1418 ret = 1; 1419 } else { 1420 /* 1421 * A page we cannot handle. Check whether we can turn 1422 * it into something we can handle. 1423 */ 1424 if (pass++ < GET_PAGE_MAX_RETRY_NUM) { 1425 put_page(p); 1426 shake_page(p); 1427 count_increased = false; 1428 goto try_again; 1429 } 1430 put_page(p); 1431 ret = -EIO; 1432 } 1433 out: 1434 if (ret == -EIO) 1435 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1436 1437 return ret; 1438 } 1439 1440 static int __get_unpoison_page(struct page *page) 1441 { 1442 struct folio *folio = page_folio(page); 1443 int ret = 0; 1444 bool hugetlb = false; 1445 1446 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1447 if (hugetlb) { 1448 /* Make sure hugetlb demotion did not happen from under us. */ 1449 if (folio == page_folio(page)) 1450 return ret; 1451 if (ret > 0) 1452 folio_put(folio); 1453 } 1454 1455 /* 1456 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1457 * but also isolated from buddy freelist, so need to identify the 1458 * state and have to cancel both operations to unpoison. 1459 */ 1460 if (PageHWPoisonTakenOff(page)) 1461 return -EHWPOISON; 1462 1463 return get_page_unless_zero(page) ? 1 : 0; 1464 } 1465 1466 /** 1467 * get_hwpoison_page() - Get refcount for memory error handling 1468 * @p: Raw error page (hit by memory error) 1469 * @flags: Flags controlling behavior of error handling 1470 * 1471 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1472 * error on it, after checking that the error page is in a well-defined state 1473 * (defined as a page-type we can successfully handle the memory error on it, 1474 * such as LRU page and hugetlb page). 1475 * 1476 * Memory error handling could be triggered at any time on any type of page, 1477 * so it's prone to race with typical memory management lifecycle (like 1478 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1479 * extra care for the error page's state (as done in __get_hwpoison_page()), 1480 * and has some retry logic in get_any_page(). 1481 * 1482 * When called from unpoison_memory(), the caller should already ensure that 1483 * the given page has PG_hwpoison. So it's never reused for other page 1484 * allocations, and __get_unpoison_page() never races with them. 1485 * 1486 * Return: 0 on failure or free buddy (hugetlb) page, 1487 * 1 on success for in-use pages in a well-defined state, 1488 * -EIO for pages on which we can not handle memory errors, 1489 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1490 * operations like allocation and free, 1491 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1492 */ 1493 static int get_hwpoison_page(struct page *p, unsigned long flags) 1494 { 1495 int ret; 1496 1497 zone_pcp_disable(page_zone(p)); 1498 if (flags & MF_UNPOISON) 1499 ret = __get_unpoison_page(p); 1500 else 1501 ret = get_any_page(p, flags); 1502 zone_pcp_enable(page_zone(p)); 1503 1504 return ret; 1505 } 1506 1507 /* 1508 * The caller must guarantee the folio isn't large folio, except hugetlb. 1509 * try_to_unmap() can't handle it. 1510 */ 1511 int unmap_poisoned_folio(struct folio *folio, unsigned long pfn, bool must_kill) 1512 { 1513 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1514 struct address_space *mapping; 1515 1516 if (folio_test_swapcache(folio)) { 1517 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1518 ttu &= ~TTU_HWPOISON; 1519 } 1520 1521 /* 1522 * Propagate the dirty bit from PTEs to struct page first, because we 1523 * need this to decide if we should kill or just drop the page. 1524 * XXX: the dirty test could be racy: set_page_dirty() may not always 1525 * be called inside page lock (it's recommended but not enforced). 1526 */ 1527 mapping = folio_mapping(folio); 1528 if (!must_kill && !folio_test_dirty(folio) && mapping && 1529 mapping_can_writeback(mapping)) { 1530 if (folio_mkclean(folio)) { 1531 folio_set_dirty(folio); 1532 } else { 1533 ttu &= ~TTU_HWPOISON; 1534 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1535 pfn); 1536 } 1537 } 1538 1539 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) { 1540 /* 1541 * For hugetlb folios in shared mappings, try_to_unmap 1542 * could potentially call huge_pmd_unshare. Because of 1543 * this, take semaphore in write mode here and set 1544 * TTU_RMAP_LOCKED to indicate we have taken the lock 1545 * at this higher level. 1546 */ 1547 mapping = hugetlb_folio_mapping_lock_write(folio); 1548 if (!mapping) { 1549 pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n", 1550 folio_pfn(folio)); 1551 return -EBUSY; 1552 } 1553 1554 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1555 i_mmap_unlock_write(mapping); 1556 } else { 1557 try_to_unmap(folio, ttu); 1558 } 1559 1560 return folio_mapped(folio) ? -EBUSY : 0; 1561 } 1562 1563 /* 1564 * Do all that is necessary to remove user space mappings. Unmap 1565 * the pages and send SIGBUS to the processes if the data was dirty. 1566 */ 1567 static bool hwpoison_user_mappings(struct folio *folio, struct page *p, 1568 unsigned long pfn, int flags) 1569 { 1570 LIST_HEAD(tokill); 1571 bool unmap_success; 1572 int forcekill; 1573 bool mlocked = folio_test_mlocked(folio); 1574 1575 /* 1576 * Here we are interested only in user-mapped pages, so skip any 1577 * other types of pages. 1578 */ 1579 if (folio_test_reserved(folio) || folio_test_slab(folio) || 1580 folio_test_pgtable(folio) || folio_test_offline(folio)) 1581 return true; 1582 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio))) 1583 return true; 1584 1585 /* 1586 * This check implies we don't kill processes if their pages 1587 * are in the swap cache early. Those are always late kills. 1588 */ 1589 if (!folio_mapped(folio)) 1590 return true; 1591 1592 /* 1593 * First collect all the processes that have the page 1594 * mapped in dirty form. This has to be done before try_to_unmap, 1595 * because ttu takes the rmap data structures down. 1596 */ 1597 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 1598 1599 unmap_success = !unmap_poisoned_folio(folio, pfn, flags & MF_MUST_KILL); 1600 if (!unmap_success) 1601 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n", 1602 pfn, folio_mapcount(folio)); 1603 1604 /* 1605 * try_to_unmap() might put mlocked page in lru cache, so call 1606 * shake_page() again to ensure that it's flushed. 1607 */ 1608 if (mlocked) 1609 shake_folio(folio); 1610 1611 /* 1612 * Now that the dirty bit has been propagated to the 1613 * struct page and all unmaps done we can decide if 1614 * killing is needed or not. Only kill when the page 1615 * was dirty or the process is not restartable, 1616 * otherwise the tokill list is merely 1617 * freed. When there was a problem unmapping earlier 1618 * use a more force-full uncatchable kill to prevent 1619 * any accesses to the poisoned memory. 1620 */ 1621 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) || 1622 !unmap_success; 1623 kill_procs(&tokill, forcekill, pfn, flags); 1624 1625 return unmap_success; 1626 } 1627 1628 static int identify_page_state(unsigned long pfn, struct page *p, 1629 unsigned long page_flags) 1630 { 1631 struct page_state *ps; 1632 1633 /* 1634 * The first check uses the current page flags which may not have any 1635 * relevant information. The second check with the saved page flags is 1636 * carried out only if the first check can't determine the page status. 1637 */ 1638 for (ps = error_states;; ps++) 1639 if ((p->flags.f & ps->mask) == ps->res) 1640 break; 1641 1642 page_flags |= (p->flags.f & (1UL << PG_dirty)); 1643 1644 if (!ps->mask) 1645 for (ps = error_states;; ps++) 1646 if ((page_flags & ps->mask) == ps->res) 1647 break; 1648 return page_action(ps, p, pfn); 1649 } 1650 1651 /* 1652 * When 'release' is 'false', it means that if thp split has failed, 1653 * there is still more to do, hence the page refcount we took earlier 1654 * is still needed. 1655 */ 1656 static int try_to_split_thp_page(struct page *page, bool release) 1657 { 1658 int ret; 1659 1660 lock_page(page); 1661 ret = split_huge_page(page); 1662 unlock_page(page); 1663 1664 if (ret && release) 1665 put_page(page); 1666 1667 return ret; 1668 } 1669 1670 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1671 struct address_space *mapping, pgoff_t index, int flags) 1672 { 1673 struct to_kill *tk; 1674 unsigned long size = 0; 1675 1676 list_for_each_entry(tk, to_kill, nd) 1677 if (tk->size_shift) 1678 size = max(size, 1UL << tk->size_shift); 1679 1680 if (size) { 1681 /* 1682 * Unmap the largest mapping to avoid breaking up device-dax 1683 * mappings which are constant size. The actual size of the 1684 * mapping being torn down is communicated in siginfo, see 1685 * kill_proc() 1686 */ 1687 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1); 1688 1689 unmap_mapping_range(mapping, start, size, 0); 1690 } 1691 1692 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags); 1693 } 1694 1695 /* 1696 * Only dev_pagemap pages get here, such as fsdax when the filesystem 1697 * either do not claim or fails to claim a hwpoison event, or devdax. 1698 * The fsdax pages are initialized per base page, and the devdax pages 1699 * could be initialized either as base pages, or as compound pages with 1700 * vmemmap optimization enabled. Devdax is simplistic in its dealing with 1701 * hwpoison, such that, if a subpage of a compound page is poisoned, 1702 * simply mark the compound head page is by far sufficient. 1703 */ 1704 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1705 struct dev_pagemap *pgmap) 1706 { 1707 struct folio *folio = pfn_folio(pfn); 1708 LIST_HEAD(to_kill); 1709 dax_entry_t cookie; 1710 int rc = 0; 1711 1712 /* 1713 * Prevent the inode from being freed while we are interrogating 1714 * the address_space, typically this would be handled by 1715 * lock_page(), but dax pages do not use the page lock. This 1716 * also prevents changes to the mapping of this pfn until 1717 * poison signaling is complete. 1718 */ 1719 cookie = dax_lock_folio(folio); 1720 if (!cookie) 1721 return -EBUSY; 1722 1723 if (hwpoison_filter(&folio->page)) { 1724 rc = -EOPNOTSUPP; 1725 goto unlock; 1726 } 1727 1728 switch (pgmap->type) { 1729 case MEMORY_DEVICE_PRIVATE: 1730 case MEMORY_DEVICE_COHERENT: 1731 /* 1732 * TODO: Handle device pages which may need coordination 1733 * with device-side memory. 1734 */ 1735 rc = -ENXIO; 1736 goto unlock; 1737 default: 1738 break; 1739 } 1740 1741 /* 1742 * Use this flag as an indication that the dax page has been 1743 * remapped UC to prevent speculative consumption of poison. 1744 */ 1745 SetPageHWPoison(&folio->page); 1746 1747 /* 1748 * Unlike System-RAM there is no possibility to swap in a 1749 * different physical page at a given virtual address, so all 1750 * userspace consumption of ZONE_DEVICE memory necessitates 1751 * SIGBUS (i.e. MF_MUST_KILL) 1752 */ 1753 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1754 collect_procs(folio, &folio->page, &to_kill, true); 1755 1756 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags); 1757 unlock: 1758 dax_unlock_folio(folio, cookie); 1759 return rc; 1760 } 1761 1762 #ifdef CONFIG_FS_DAX 1763 /** 1764 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1765 * @mapping: address_space of the file in use 1766 * @index: start pgoff of the range within the file 1767 * @count: length of the range, in unit of PAGE_SIZE 1768 * @mf_flags: memory failure flags 1769 */ 1770 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1771 unsigned long count, int mf_flags) 1772 { 1773 LIST_HEAD(to_kill); 1774 dax_entry_t cookie; 1775 struct page *page; 1776 size_t end = index + count; 1777 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE; 1778 1779 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1780 1781 for (; index < end; index++) { 1782 page = NULL; 1783 cookie = dax_lock_mapping_entry(mapping, index, &page); 1784 if (!cookie) 1785 return -EBUSY; 1786 if (!page) 1787 goto unlock; 1788 1789 if (!pre_remove) 1790 SetPageHWPoison(page); 1791 1792 /* 1793 * The pre_remove case is revoking access, the memory is still 1794 * good and could theoretically be put back into service. 1795 */ 1796 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove); 1797 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1798 index, mf_flags); 1799 unlock: 1800 dax_unlock_mapping_entry(mapping, index, cookie); 1801 } 1802 return 0; 1803 } 1804 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1805 #endif /* CONFIG_FS_DAX */ 1806 1807 #ifdef CONFIG_HUGETLB_PAGE 1808 1809 /* 1810 * Struct raw_hwp_page represents information about "raw error page", 1811 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1812 */ 1813 struct raw_hwp_page { 1814 struct llist_node node; 1815 struct page *page; 1816 }; 1817 1818 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1819 { 1820 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1821 } 1822 1823 bool is_raw_hwpoison_page_in_hugepage(struct page *page) 1824 { 1825 struct llist_head *raw_hwp_head; 1826 struct raw_hwp_page *p; 1827 struct folio *folio = page_folio(page); 1828 bool ret = false; 1829 1830 if (!folio_test_hwpoison(folio)) 1831 return false; 1832 1833 if (!folio_test_hugetlb(folio)) 1834 return PageHWPoison(page); 1835 1836 /* 1837 * When RawHwpUnreliable is set, kernel lost track of which subpages 1838 * are HWPOISON. So return as if ALL subpages are HWPOISONed. 1839 */ 1840 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1841 return true; 1842 1843 mutex_lock(&mf_mutex); 1844 1845 raw_hwp_head = raw_hwp_list_head(folio); 1846 llist_for_each_entry(p, raw_hwp_head->first, node) { 1847 if (page == p->page) { 1848 ret = true; 1849 break; 1850 } 1851 } 1852 1853 mutex_unlock(&mf_mutex); 1854 1855 return ret; 1856 } 1857 1858 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1859 { 1860 struct llist_node *head; 1861 struct raw_hwp_page *p, *next; 1862 unsigned long count = 0; 1863 1864 head = llist_del_all(raw_hwp_list_head(folio)); 1865 llist_for_each_entry_safe(p, next, head, node) { 1866 if (move_flag) 1867 SetPageHWPoison(p->page); 1868 else 1869 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1870 kfree(p); 1871 count++; 1872 } 1873 return count; 1874 } 1875 1876 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1877 { 1878 struct llist_head *head; 1879 struct raw_hwp_page *raw_hwp; 1880 struct raw_hwp_page *p; 1881 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1882 1883 /* 1884 * Once the hwpoison hugepage has lost reliable raw error info, 1885 * there is little meaning to keep additional error info precisely, 1886 * so skip to add additional raw error info. 1887 */ 1888 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1889 return -EHWPOISON; 1890 head = raw_hwp_list_head(folio); 1891 llist_for_each_entry(p, head->first, node) { 1892 if (p->page == page) 1893 return -EHWPOISON; 1894 } 1895 1896 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1897 if (raw_hwp) { 1898 raw_hwp->page = page; 1899 llist_add(&raw_hwp->node, head); 1900 /* the first error event will be counted in action_result(). */ 1901 if (ret) 1902 num_poisoned_pages_inc(page_to_pfn(page)); 1903 } else { 1904 /* 1905 * Failed to save raw error info. We no longer trace all 1906 * hwpoisoned subpages, and we need refuse to free/dissolve 1907 * this hwpoisoned hugepage. 1908 */ 1909 folio_set_hugetlb_raw_hwp_unreliable(folio); 1910 /* 1911 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1912 * used any more, so free it. 1913 */ 1914 __folio_free_raw_hwp(folio, false); 1915 } 1916 return ret; 1917 } 1918 1919 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1920 { 1921 /* 1922 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1923 * pages for tail pages are required but they don't exist. 1924 */ 1925 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1926 return 0; 1927 1928 /* 1929 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1930 * definition. 1931 */ 1932 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1933 return 0; 1934 1935 return __folio_free_raw_hwp(folio, move_flag); 1936 } 1937 1938 void folio_clear_hugetlb_hwpoison(struct folio *folio) 1939 { 1940 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1941 return; 1942 if (folio_test_hugetlb_vmemmap_optimized(folio)) 1943 return; 1944 folio_clear_hwpoison(folio); 1945 folio_free_raw_hwp(folio, true); 1946 } 1947 1948 /* 1949 * Called from hugetlb code with hugetlb_lock held. 1950 * 1951 * Return values: 1952 * 0 - free hugepage 1953 * 1 - in-use hugepage 1954 * 2 - not a hugepage 1955 * -EBUSY - the hugepage is busy (try to retry) 1956 * -EHWPOISON - the hugepage is already hwpoisoned 1957 */ 1958 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 1959 bool *migratable_cleared) 1960 { 1961 struct page *page = pfn_to_page(pfn); 1962 struct folio *folio = page_folio(page); 1963 int ret = 2; /* fallback to normal page handling */ 1964 bool count_increased = false; 1965 1966 if (!folio_test_hugetlb(folio)) 1967 goto out; 1968 1969 if (flags & MF_COUNT_INCREASED) { 1970 ret = 1; 1971 count_increased = true; 1972 } else if (folio_test_hugetlb_freed(folio)) { 1973 ret = 0; 1974 } else if (folio_test_hugetlb_migratable(folio)) { 1975 ret = folio_try_get(folio); 1976 if (ret) 1977 count_increased = true; 1978 } else { 1979 ret = -EBUSY; 1980 if (!(flags & MF_NO_RETRY)) 1981 goto out; 1982 } 1983 1984 if (folio_set_hugetlb_hwpoison(folio, page)) { 1985 ret = -EHWPOISON; 1986 goto out; 1987 } 1988 1989 /* 1990 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 1991 * from being migrated by memory hotremove. 1992 */ 1993 if (count_increased && folio_test_hugetlb_migratable(folio)) { 1994 folio_clear_hugetlb_migratable(folio); 1995 *migratable_cleared = true; 1996 } 1997 1998 return ret; 1999 out: 2000 if (count_increased) 2001 folio_put(folio); 2002 return ret; 2003 } 2004 2005 /* 2006 * Taking refcount of hugetlb pages needs extra care about race conditions 2007 * with basic operations like hugepage allocation/free/demotion. 2008 * So some of prechecks for hwpoison (pinning, and testing/setting 2009 * PageHWPoison) should be done in single hugetlb_lock range. 2010 */ 2011 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2012 { 2013 int res; 2014 struct page *p = pfn_to_page(pfn); 2015 struct folio *folio; 2016 unsigned long page_flags; 2017 bool migratable_cleared = false; 2018 2019 *hugetlb = 1; 2020 retry: 2021 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 2022 if (res == 2) { /* fallback to normal page handling */ 2023 *hugetlb = 0; 2024 return 0; 2025 } else if (res == -EHWPOISON) { 2026 if (flags & MF_ACTION_REQUIRED) { 2027 folio = page_folio(p); 2028 res = kill_accessing_process(current, folio_pfn(folio), flags); 2029 } 2030 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); 2031 return res; 2032 } else if (res == -EBUSY) { 2033 if (!(flags & MF_NO_RETRY)) { 2034 flags |= MF_NO_RETRY; 2035 goto retry; 2036 } 2037 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); 2038 } 2039 2040 folio = page_folio(p); 2041 folio_lock(folio); 2042 2043 if (hwpoison_filter(p)) { 2044 folio_clear_hugetlb_hwpoison(folio); 2045 if (migratable_cleared) 2046 folio_set_hugetlb_migratable(folio); 2047 folio_unlock(folio); 2048 if (res == 1) 2049 folio_put(folio); 2050 return -EOPNOTSUPP; 2051 } 2052 2053 /* 2054 * Handling free hugepage. The possible race with hugepage allocation 2055 * or demotion can be prevented by PageHWPoison flag. 2056 */ 2057 if (res == 0) { 2058 folio_unlock(folio); 2059 if (__page_handle_poison(p) > 0) { 2060 page_ref_inc(p); 2061 res = MF_RECOVERED; 2062 } else { 2063 res = MF_FAILED; 2064 } 2065 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2066 } 2067 2068 page_flags = folio->flags.f; 2069 2070 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2071 folio_unlock(folio); 2072 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); 2073 } 2074 2075 return identify_page_state(pfn, p, page_flags); 2076 } 2077 2078 #else 2079 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2080 { 2081 return 0; 2082 } 2083 2084 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2085 { 2086 return 0; 2087 } 2088 #endif /* CONFIG_HUGETLB_PAGE */ 2089 2090 /* Drop the extra refcount in case we come from madvise() */ 2091 static void put_ref_page(unsigned long pfn, int flags) 2092 { 2093 if (!(flags & MF_COUNT_INCREASED)) 2094 return; 2095 2096 put_page(pfn_to_page(pfn)); 2097 } 2098 2099 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2100 struct dev_pagemap *pgmap) 2101 { 2102 int rc = -ENXIO; 2103 2104 /* device metadata space is not recoverable */ 2105 if (!pgmap_pfn_valid(pgmap, pfn)) 2106 goto out; 2107 2108 /* 2109 * Call driver's implementation to handle the memory failure, otherwise 2110 * fall back to generic handler. 2111 */ 2112 if (pgmap_has_memory_failure(pgmap)) { 2113 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2114 /* 2115 * Fall back to generic handler too if operation is not 2116 * supported inside the driver/device/filesystem. 2117 */ 2118 if (rc != -EOPNOTSUPP) 2119 goto out; 2120 } 2121 2122 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2123 out: 2124 /* drop pgmap ref acquired in caller */ 2125 put_dev_pagemap(pgmap); 2126 if (rc != -EOPNOTSUPP) 2127 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2128 return rc; 2129 } 2130 2131 /* 2132 * The calling condition is as such: thp split failed, page might have 2133 * been RDMA pinned, not much can be done for recovery. 2134 * But a SIGBUS should be delivered with vaddr provided so that the user 2135 * application has a chance to recover. Also, application processes' 2136 * election for MCE early killed will be honored. 2137 */ 2138 static void kill_procs_now(struct page *p, unsigned long pfn, int flags, 2139 struct folio *folio) 2140 { 2141 LIST_HEAD(tokill); 2142 2143 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 2144 kill_procs(&tokill, true, pfn, flags); 2145 } 2146 2147 /** 2148 * memory_failure - Handle memory failure of a page. 2149 * @pfn: Page Number of the corrupted page 2150 * @flags: fine tune action taken 2151 * 2152 * This function is called by the low level machine check code 2153 * of an architecture when it detects hardware memory corruption 2154 * of a page. It tries its best to recover, which includes 2155 * dropping pages, killing processes etc. 2156 * 2157 * The function is primarily of use for corruptions that 2158 * happen outside the current execution context (e.g. when 2159 * detected by a background scrubber) 2160 * 2161 * Must run in process context (e.g. a work queue) with interrupts 2162 * enabled and no spinlocks held. 2163 * 2164 * Return: 2165 * 0 - success, 2166 * -ENXIO - memory not managed by the kernel 2167 * -EOPNOTSUPP - hwpoison_filter() filtered the error event, 2168 * -EHWPOISON - the page was already poisoned, potentially 2169 * kill process, 2170 * other negative values - failure. 2171 */ 2172 int memory_failure(unsigned long pfn, int flags) 2173 { 2174 struct page *p; 2175 struct folio *folio; 2176 struct dev_pagemap *pgmap; 2177 int res = 0; 2178 unsigned long page_flags; 2179 bool retry = true; 2180 int hugetlb = 0; 2181 2182 if (!sysctl_memory_failure_recovery) 2183 panic("Memory failure on page %lx", pfn); 2184 2185 mutex_lock(&mf_mutex); 2186 2187 if (!(flags & MF_SW_SIMULATED)) 2188 hw_memory_failure = true; 2189 2190 p = pfn_to_online_page(pfn); 2191 if (!p) { 2192 res = arch_memory_failure(pfn, flags); 2193 if (res == 0) 2194 goto unlock_mutex; 2195 2196 if (pfn_valid(pfn)) { 2197 pgmap = get_dev_pagemap(pfn); 2198 put_ref_page(pfn, flags); 2199 if (pgmap) { 2200 res = memory_failure_dev_pagemap(pfn, flags, 2201 pgmap); 2202 goto unlock_mutex; 2203 } 2204 } 2205 pr_err("%#lx: memory outside kernel control\n", pfn); 2206 res = -ENXIO; 2207 goto unlock_mutex; 2208 } 2209 2210 try_again: 2211 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2212 if (hugetlb) 2213 goto unlock_mutex; 2214 2215 if (TestSetPageHWPoison(p)) { 2216 res = -EHWPOISON; 2217 if (flags & MF_ACTION_REQUIRED) 2218 res = kill_accessing_process(current, pfn, flags); 2219 if (flags & MF_COUNT_INCREASED) 2220 put_page(p); 2221 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED); 2222 goto unlock_mutex; 2223 } 2224 2225 /* 2226 * We need/can do nothing about count=0 pages. 2227 * 1) it's a free page, and therefore in safe hand: 2228 * check_new_page() will be the gate keeper. 2229 * 2) it's part of a non-compound high order page. 2230 * Implies some kernel user: cannot stop them from 2231 * R/W the page; let's pray that the page has been 2232 * used and will be freed some time later. 2233 * In fact it's dangerous to directly bump up page count from 0, 2234 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2235 */ 2236 if (!(flags & MF_COUNT_INCREASED)) { 2237 res = get_hwpoison_page(p, flags); 2238 if (!res) { 2239 if (is_free_buddy_page(p)) { 2240 if (take_page_off_buddy(p)) { 2241 page_ref_inc(p); 2242 res = MF_RECOVERED; 2243 } else { 2244 /* We lost the race, try again */ 2245 if (retry) { 2246 ClearPageHWPoison(p); 2247 retry = false; 2248 goto try_again; 2249 } 2250 res = MF_FAILED; 2251 } 2252 res = action_result(pfn, MF_MSG_BUDDY, res); 2253 } else { 2254 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2255 } 2256 goto unlock_mutex; 2257 } else if (res < 0) { 2258 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED); 2259 goto unlock_mutex; 2260 } 2261 } 2262 2263 folio = page_folio(p); 2264 2265 /* filter pages that are protected from hwpoison test by users */ 2266 folio_lock(folio); 2267 if (hwpoison_filter(p)) { 2268 ClearPageHWPoison(p); 2269 folio_unlock(folio); 2270 folio_put(folio); 2271 res = -EOPNOTSUPP; 2272 goto unlock_mutex; 2273 } 2274 folio_unlock(folio); 2275 2276 if (folio_test_large(folio)) { 2277 /* 2278 * The flag must be set after the refcount is bumped 2279 * otherwise it may race with THP split. 2280 * And the flag can't be set in get_hwpoison_page() since 2281 * it is called by soft offline too and it is just called 2282 * for !MF_COUNT_INCREASED. So here seems to be the best 2283 * place. 2284 * 2285 * Don't need care about the above error handling paths for 2286 * get_hwpoison_page() since they handle either free page 2287 * or unhandlable page. The refcount is bumped iff the 2288 * page is a valid handlable page. 2289 */ 2290 folio_set_has_hwpoisoned(folio); 2291 if (try_to_split_thp_page(p, false) < 0) { 2292 res = -EHWPOISON; 2293 kill_procs_now(p, pfn, flags, folio); 2294 put_page(p); 2295 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED); 2296 goto unlock_mutex; 2297 } 2298 VM_BUG_ON_PAGE(!page_count(p), p); 2299 folio = page_folio(p); 2300 } 2301 2302 /* 2303 * We ignore non-LRU pages for good reasons. 2304 * - PG_locked is only well defined for LRU pages and a few others 2305 * - to avoid races with __SetPageLocked() 2306 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2307 * The check (unnecessarily) ignores LRU pages being isolated and 2308 * walked by the page reclaim code, however that's not a big loss. 2309 */ 2310 shake_folio(folio); 2311 2312 folio_lock(folio); 2313 2314 /* 2315 * We're only intended to deal with the non-Compound page here. 2316 * The page cannot become compound pages again as folio has been 2317 * splited and extra refcnt is held. 2318 */ 2319 WARN_ON(folio_test_large(folio)); 2320 2321 /* 2322 * We use page flags to determine what action should be taken, but 2323 * the flags can be modified by the error containment action. One 2324 * example is an mlocked page, where PG_mlocked is cleared by 2325 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page 2326 * status correctly, we save a copy of the page flags at this time. 2327 */ 2328 page_flags = folio->flags.f; 2329 2330 /* 2331 * __munlock_folio() may clear a writeback folio's LRU flag without 2332 * the folio lock. We need to wait for writeback completion for this 2333 * folio or it may trigger a vfs BUG while evicting inode. 2334 */ 2335 if (!folio_test_lru(folio) && !folio_test_writeback(folio)) 2336 goto identify_page_state; 2337 2338 /* 2339 * It's very difficult to mess with pages currently under IO 2340 * and in many cases impossible, so we just avoid it here. 2341 */ 2342 folio_wait_writeback(folio); 2343 2344 /* 2345 * Now take care of user space mappings. 2346 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2347 */ 2348 if (!hwpoison_user_mappings(folio, p, pfn, flags)) { 2349 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED); 2350 goto unlock_page; 2351 } 2352 2353 /* 2354 * Torn down by someone else? 2355 */ 2356 if (folio_test_lru(folio) && !folio_test_swapcache(folio) && 2357 folio->mapping == NULL) { 2358 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2359 goto unlock_page; 2360 } 2361 2362 identify_page_state: 2363 res = identify_page_state(pfn, p, page_flags); 2364 mutex_unlock(&mf_mutex); 2365 return res; 2366 unlock_page: 2367 folio_unlock(folio); 2368 unlock_mutex: 2369 mutex_unlock(&mf_mutex); 2370 return res; 2371 } 2372 EXPORT_SYMBOL_GPL(memory_failure); 2373 2374 #define MEMORY_FAILURE_FIFO_ORDER 4 2375 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2376 2377 struct memory_failure_entry { 2378 unsigned long pfn; 2379 int flags; 2380 }; 2381 2382 struct memory_failure_cpu { 2383 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2384 MEMORY_FAILURE_FIFO_SIZE); 2385 raw_spinlock_t lock; 2386 struct work_struct work; 2387 }; 2388 2389 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2390 2391 /** 2392 * memory_failure_queue - Schedule handling memory failure of a page. 2393 * @pfn: Page Number of the corrupted page 2394 * @flags: Flags for memory failure handling 2395 * 2396 * This function is called by the low level hardware error handler 2397 * when it detects hardware memory corruption of a page. It schedules 2398 * the recovering of error page, including dropping pages, killing 2399 * processes etc. 2400 * 2401 * The function is primarily of use for corruptions that 2402 * happen outside the current execution context (e.g. when 2403 * detected by a background scrubber) 2404 * 2405 * Can run in IRQ context. 2406 */ 2407 void memory_failure_queue(unsigned long pfn, int flags) 2408 { 2409 struct memory_failure_cpu *mf_cpu; 2410 unsigned long proc_flags; 2411 bool buffer_overflow; 2412 struct memory_failure_entry entry = { 2413 .pfn = pfn, 2414 .flags = flags, 2415 }; 2416 2417 mf_cpu = &get_cpu_var(memory_failure_cpu); 2418 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2419 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry); 2420 if (!buffer_overflow) 2421 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2422 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2423 put_cpu_var(memory_failure_cpu); 2424 if (buffer_overflow) 2425 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2426 pfn); 2427 } 2428 EXPORT_SYMBOL_GPL(memory_failure_queue); 2429 2430 static void memory_failure_work_func(struct work_struct *work) 2431 { 2432 struct memory_failure_cpu *mf_cpu; 2433 struct memory_failure_entry entry = { 0, }; 2434 unsigned long proc_flags; 2435 int gotten; 2436 2437 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2438 for (;;) { 2439 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2440 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2441 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2442 if (!gotten) 2443 break; 2444 if (entry.flags & MF_SOFT_OFFLINE) 2445 soft_offline_page(entry.pfn, entry.flags); 2446 else 2447 memory_failure(entry.pfn, entry.flags); 2448 } 2449 } 2450 2451 static int __init memory_failure_init(void) 2452 { 2453 struct memory_failure_cpu *mf_cpu; 2454 int cpu; 2455 2456 for_each_possible_cpu(cpu) { 2457 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2458 raw_spin_lock_init(&mf_cpu->lock); 2459 INIT_KFIFO(mf_cpu->fifo); 2460 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2461 } 2462 2463 register_sysctl_init("vm", memory_failure_table); 2464 2465 return 0; 2466 } 2467 core_initcall(memory_failure_init); 2468 2469 #undef pr_fmt 2470 #define pr_fmt(fmt) "Unpoison: " fmt 2471 #define unpoison_pr_info(fmt, pfn, rs) \ 2472 ({ \ 2473 if (__ratelimit(rs)) \ 2474 pr_info(fmt, pfn); \ 2475 }) 2476 2477 /** 2478 * unpoison_memory - Unpoison a previously poisoned page 2479 * @pfn: Page number of the to be unpoisoned page 2480 * 2481 * Software-unpoison a page that has been poisoned by 2482 * memory_failure() earlier. 2483 * 2484 * This is only done on the software-level, so it only works 2485 * for linux injected failures, not real hardware failures 2486 * 2487 * Returns 0 for success, otherwise -errno. 2488 */ 2489 int unpoison_memory(unsigned long pfn) 2490 { 2491 struct folio *folio; 2492 struct page *p; 2493 int ret = -EBUSY, ghp; 2494 unsigned long count; 2495 bool huge = false; 2496 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2497 DEFAULT_RATELIMIT_BURST); 2498 2499 p = pfn_to_online_page(pfn); 2500 if (!p) 2501 return -EIO; 2502 folio = page_folio(p); 2503 2504 mutex_lock(&mf_mutex); 2505 2506 if (hw_memory_failure) { 2507 unpoison_pr_info("%#lx: disabled after HW memory failure\n", 2508 pfn, &unpoison_rs); 2509 ret = -EOPNOTSUPP; 2510 goto unlock_mutex; 2511 } 2512 2513 if (is_huge_zero_folio(folio)) { 2514 unpoison_pr_info("%#lx: huge zero page is not supported\n", 2515 pfn, &unpoison_rs); 2516 ret = -EOPNOTSUPP; 2517 goto unlock_mutex; 2518 } 2519 2520 if (!PageHWPoison(p)) { 2521 unpoison_pr_info("%#lx: page was already unpoisoned\n", 2522 pfn, &unpoison_rs); 2523 goto unlock_mutex; 2524 } 2525 2526 if (folio_ref_count(folio) > 1) { 2527 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n", 2528 pfn, &unpoison_rs); 2529 goto unlock_mutex; 2530 } 2531 2532 if (folio_test_slab(folio) || folio_test_pgtable(folio) || 2533 folio_test_reserved(folio) || folio_test_offline(folio)) 2534 goto unlock_mutex; 2535 2536 if (folio_mapped(folio)) { 2537 unpoison_pr_info("%#lx: someone maps the hwpoison page\n", 2538 pfn, &unpoison_rs); 2539 goto unlock_mutex; 2540 } 2541 2542 if (folio_mapping(folio)) { 2543 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n", 2544 pfn, &unpoison_rs); 2545 goto unlock_mutex; 2546 } 2547 2548 ghp = get_hwpoison_page(p, MF_UNPOISON); 2549 if (!ghp) { 2550 if (folio_test_hugetlb(folio)) { 2551 huge = true; 2552 count = folio_free_raw_hwp(folio, false); 2553 if (count == 0) 2554 goto unlock_mutex; 2555 } 2556 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2557 } else if (ghp < 0) { 2558 if (ghp == -EHWPOISON) { 2559 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2560 } else { 2561 ret = ghp; 2562 unpoison_pr_info("%#lx: failed to grab page\n", 2563 pfn, &unpoison_rs); 2564 } 2565 } else { 2566 if (folio_test_hugetlb(folio)) { 2567 huge = true; 2568 count = folio_free_raw_hwp(folio, false); 2569 if (count == 0) { 2570 folio_put(folio); 2571 goto unlock_mutex; 2572 } 2573 } 2574 2575 folio_put(folio); 2576 if (TestClearPageHWPoison(p)) { 2577 folio_put(folio); 2578 ret = 0; 2579 } 2580 } 2581 2582 unlock_mutex: 2583 mutex_unlock(&mf_mutex); 2584 if (!ret) { 2585 if (!huge) 2586 num_poisoned_pages_sub(pfn, 1); 2587 unpoison_pr_info("%#lx: software-unpoisoned page\n", 2588 page_to_pfn(p), &unpoison_rs); 2589 } 2590 return ret; 2591 } 2592 EXPORT_SYMBOL(unpoison_memory); 2593 2594 #undef pr_fmt 2595 #define pr_fmt(fmt) "Soft offline: " fmt 2596 2597 /* 2598 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2599 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2600 * If the page is mapped, it migrates the contents over. 2601 */ 2602 static int soft_offline_in_use_page(struct page *page) 2603 { 2604 long ret = 0; 2605 unsigned long pfn = page_to_pfn(page); 2606 struct folio *folio = page_folio(page); 2607 char const *msg_page[] = {"page", "hugepage"}; 2608 bool huge = folio_test_hugetlb(folio); 2609 bool isolated; 2610 LIST_HEAD(pagelist); 2611 struct migration_target_control mtc = { 2612 .nid = NUMA_NO_NODE, 2613 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2614 .reason = MR_MEMORY_FAILURE, 2615 }; 2616 2617 if (!huge && folio_test_large(folio)) { 2618 if (try_to_split_thp_page(page, true)) { 2619 pr_info("%#lx: thp split failed\n", pfn); 2620 return -EBUSY; 2621 } 2622 folio = page_folio(page); 2623 } 2624 2625 folio_lock(folio); 2626 if (!huge) 2627 folio_wait_writeback(folio); 2628 if (PageHWPoison(page)) { 2629 folio_unlock(folio); 2630 folio_put(folio); 2631 pr_info("%#lx: page already poisoned\n", pfn); 2632 return 0; 2633 } 2634 2635 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio)) 2636 /* 2637 * Try to invalidate first. This should work for 2638 * non dirty unmapped page cache pages. 2639 */ 2640 ret = mapping_evict_folio(folio_mapping(folio), folio); 2641 folio_unlock(folio); 2642 2643 if (ret) { 2644 pr_info("%#lx: invalidated\n", pfn); 2645 page_handle_poison(page, false, true); 2646 return 0; 2647 } 2648 2649 isolated = isolate_folio_to_list(folio, &pagelist); 2650 2651 /* 2652 * If we succeed to isolate the folio, we grabbed another refcount on 2653 * the folio, so we can safely drop the one we got from get_any_page(). 2654 * If we failed to isolate the folio, it means that we cannot go further 2655 * and we will return an error, so drop the reference we got from 2656 * get_any_page() as well. 2657 */ 2658 folio_put(folio); 2659 2660 if (isolated) { 2661 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2662 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2663 if (!ret) { 2664 bool release = !huge; 2665 2666 if (!page_handle_poison(page, huge, release)) 2667 ret = -EBUSY; 2668 } else { 2669 if (!list_empty(&pagelist)) 2670 putback_movable_pages(&pagelist); 2671 2672 pr_info("%#lx: %s migration failed %ld, type %pGp\n", 2673 pfn, msg_page[huge], ret, &page->flags.f); 2674 if (ret > 0) 2675 ret = -EBUSY; 2676 } 2677 } else { 2678 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n", 2679 pfn, msg_page[huge], page_count(page), &page->flags.f); 2680 ret = -EBUSY; 2681 } 2682 return ret; 2683 } 2684 2685 /** 2686 * soft_offline_page - Soft offline a page. 2687 * @pfn: pfn to soft-offline 2688 * @flags: flags. Same as memory_failure(). 2689 * 2690 * Returns 0 on success, 2691 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or 2692 * disabled by /proc/sys/vm/enable_soft_offline, 2693 * < 0 otherwise negated errno. 2694 * 2695 * Soft offline a page, by migration or invalidation, 2696 * without killing anything. This is for the case when 2697 * a page is not corrupted yet (so it's still valid to access), 2698 * but has had a number of corrected errors and is better taken 2699 * out. 2700 * 2701 * The actual policy on when to do that is maintained by 2702 * user space. 2703 * 2704 * This should never impact any application or cause data loss, 2705 * however it might take some time. 2706 * 2707 * This is not a 100% solution for all memory, but tries to be 2708 * ``good enough'' for the majority of memory. 2709 */ 2710 int soft_offline_page(unsigned long pfn, int flags) 2711 { 2712 int ret; 2713 bool try_again = true; 2714 struct page *page; 2715 2716 if (!pfn_valid(pfn)) { 2717 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2718 return -ENXIO; 2719 } 2720 2721 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2722 page = pfn_to_online_page(pfn); 2723 if (!page) { 2724 put_ref_page(pfn, flags); 2725 return -EIO; 2726 } 2727 2728 if (!sysctl_enable_soft_offline) { 2729 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n"); 2730 put_ref_page(pfn, flags); 2731 return -EOPNOTSUPP; 2732 } 2733 2734 mutex_lock(&mf_mutex); 2735 2736 if (PageHWPoison(page)) { 2737 pr_info("%#lx: page already poisoned\n", pfn); 2738 put_ref_page(pfn, flags); 2739 mutex_unlock(&mf_mutex); 2740 return 0; 2741 } 2742 2743 retry: 2744 get_online_mems(); 2745 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2746 put_online_mems(); 2747 2748 if (hwpoison_filter(page)) { 2749 if (ret > 0) 2750 put_page(page); 2751 2752 mutex_unlock(&mf_mutex); 2753 return -EOPNOTSUPP; 2754 } 2755 2756 if (ret > 0) { 2757 ret = soft_offline_in_use_page(page); 2758 } else if (ret == 0) { 2759 if (!page_handle_poison(page, true, false)) { 2760 if (try_again) { 2761 try_again = false; 2762 flags &= ~MF_COUNT_INCREASED; 2763 goto retry; 2764 } 2765 ret = -EBUSY; 2766 } 2767 } 2768 2769 mutex_unlock(&mf_mutex); 2770 2771 return ret; 2772 } 2773