xref: /linux/mm/memory-failure.c (revision 5ee46bfbb65fd971b734c3972ea9cc123fc869d1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/dax.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/suspend.h>
51 #include <linux/slab.h>
52 #include <linux/swapops.h>
53 #include <linux/hugetlb.h>
54 #include <linux/memory_hotplug.h>
55 #include <linux/mm_inline.h>
56 #include <linux/memremap.h>
57 #include <linux/kfifo.h>
58 #include <linux/ratelimit.h>
59 #include <linux/page-isolation.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include "swap.h"
63 #include "internal.h"
64 #include "ras/ras_event.h"
65 
66 int sysctl_memory_failure_early_kill __read_mostly = 0;
67 
68 int sysctl_memory_failure_recovery __read_mostly = 1;
69 
70 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
71 
72 static bool hw_memory_failure __read_mostly = false;
73 
74 static bool __page_handle_poison(struct page *page)
75 {
76 	int ret;
77 
78 	zone_pcp_disable(page_zone(page));
79 	ret = dissolve_free_huge_page(page);
80 	if (!ret)
81 		ret = take_page_off_buddy(page);
82 	zone_pcp_enable(page_zone(page));
83 
84 	return ret > 0;
85 }
86 
87 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
88 {
89 	if (hugepage_or_freepage) {
90 		/*
91 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
92 		 * returns 0 for non-hugetlb pages as well.
93 		 */
94 		if (!__page_handle_poison(page))
95 			/*
96 			 * We could fail to take off the target page from buddy
97 			 * for example due to racy page allocation, but that's
98 			 * acceptable because soft-offlined page is not broken
99 			 * and if someone really want to use it, they should
100 			 * take it.
101 			 */
102 			return false;
103 	}
104 
105 	SetPageHWPoison(page);
106 	if (release)
107 		put_page(page);
108 	page_ref_inc(page);
109 	num_poisoned_pages_inc();
110 
111 	return true;
112 }
113 
114 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
115 
116 u32 hwpoison_filter_enable = 0;
117 u32 hwpoison_filter_dev_major = ~0U;
118 u32 hwpoison_filter_dev_minor = ~0U;
119 u64 hwpoison_filter_flags_mask;
120 u64 hwpoison_filter_flags_value;
121 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
122 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
123 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
124 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
125 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
126 
127 static int hwpoison_filter_dev(struct page *p)
128 {
129 	struct address_space *mapping;
130 	dev_t dev;
131 
132 	if (hwpoison_filter_dev_major == ~0U &&
133 	    hwpoison_filter_dev_minor == ~0U)
134 		return 0;
135 
136 	mapping = page_mapping(p);
137 	if (mapping == NULL || mapping->host == NULL)
138 		return -EINVAL;
139 
140 	dev = mapping->host->i_sb->s_dev;
141 	if (hwpoison_filter_dev_major != ~0U &&
142 	    hwpoison_filter_dev_major != MAJOR(dev))
143 		return -EINVAL;
144 	if (hwpoison_filter_dev_minor != ~0U &&
145 	    hwpoison_filter_dev_minor != MINOR(dev))
146 		return -EINVAL;
147 
148 	return 0;
149 }
150 
151 static int hwpoison_filter_flags(struct page *p)
152 {
153 	if (!hwpoison_filter_flags_mask)
154 		return 0;
155 
156 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
157 				    hwpoison_filter_flags_value)
158 		return 0;
159 	else
160 		return -EINVAL;
161 }
162 
163 /*
164  * This allows stress tests to limit test scope to a collection of tasks
165  * by putting them under some memcg. This prevents killing unrelated/important
166  * processes such as /sbin/init. Note that the target task may share clean
167  * pages with init (eg. libc text), which is harmless. If the target task
168  * share _dirty_ pages with another task B, the test scheme must make sure B
169  * is also included in the memcg. At last, due to race conditions this filter
170  * can only guarantee that the page either belongs to the memcg tasks, or is
171  * a freed page.
172  */
173 #ifdef CONFIG_MEMCG
174 u64 hwpoison_filter_memcg;
175 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
176 static int hwpoison_filter_task(struct page *p)
177 {
178 	if (!hwpoison_filter_memcg)
179 		return 0;
180 
181 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
182 		return -EINVAL;
183 
184 	return 0;
185 }
186 #else
187 static int hwpoison_filter_task(struct page *p) { return 0; }
188 #endif
189 
190 int hwpoison_filter(struct page *p)
191 {
192 	if (!hwpoison_filter_enable)
193 		return 0;
194 
195 	if (hwpoison_filter_dev(p))
196 		return -EINVAL;
197 
198 	if (hwpoison_filter_flags(p))
199 		return -EINVAL;
200 
201 	if (hwpoison_filter_task(p))
202 		return -EINVAL;
203 
204 	return 0;
205 }
206 #else
207 int hwpoison_filter(struct page *p)
208 {
209 	return 0;
210 }
211 #endif
212 
213 EXPORT_SYMBOL_GPL(hwpoison_filter);
214 
215 /*
216  * Kill all processes that have a poisoned page mapped and then isolate
217  * the page.
218  *
219  * General strategy:
220  * Find all processes having the page mapped and kill them.
221  * But we keep a page reference around so that the page is not
222  * actually freed yet.
223  * Then stash the page away
224  *
225  * There's no convenient way to get back to mapped processes
226  * from the VMAs. So do a brute-force search over all
227  * running processes.
228  *
229  * Remember that machine checks are not common (or rather
230  * if they are common you have other problems), so this shouldn't
231  * be a performance issue.
232  *
233  * Also there are some races possible while we get from the
234  * error detection to actually handle it.
235  */
236 
237 struct to_kill {
238 	struct list_head nd;
239 	struct task_struct *tsk;
240 	unsigned long addr;
241 	short size_shift;
242 };
243 
244 /*
245  * Send all the processes who have the page mapped a signal.
246  * ``action optional'' if they are not immediately affected by the error
247  * ``action required'' if error happened in current execution context
248  */
249 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
250 {
251 	struct task_struct *t = tk->tsk;
252 	short addr_lsb = tk->size_shift;
253 	int ret = 0;
254 
255 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
256 			pfn, t->comm, t->pid);
257 
258 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
259 		ret = force_sig_mceerr(BUS_MCEERR_AR,
260 				 (void __user *)tk->addr, addr_lsb);
261 	else
262 		/*
263 		 * Signal other processes sharing the page if they have
264 		 * PF_MCE_EARLY set.
265 		 * Don't use force here, it's convenient if the signal
266 		 * can be temporarily blocked.
267 		 * This could cause a loop when the user sets SIGBUS
268 		 * to SIG_IGN, but hopefully no one will do that?
269 		 */
270 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
271 				      addr_lsb, t);  /* synchronous? */
272 	if (ret < 0)
273 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
274 			t->comm, t->pid, ret);
275 	return ret;
276 }
277 
278 /*
279  * Unknown page type encountered. Try to check whether it can turn PageLRU by
280  * lru_add_drain_all.
281  */
282 void shake_page(struct page *p)
283 {
284 	if (PageHuge(p))
285 		return;
286 
287 	if (!PageSlab(p)) {
288 		lru_add_drain_all();
289 		if (PageLRU(p) || is_free_buddy_page(p))
290 			return;
291 	}
292 
293 	/*
294 	 * TODO: Could shrink slab caches here if a lightweight range-based
295 	 * shrinker will be available.
296 	 */
297 }
298 EXPORT_SYMBOL_GPL(shake_page);
299 
300 static unsigned long dev_pagemap_mapping_shift(struct page *page,
301 		struct vm_area_struct *vma)
302 {
303 	unsigned long address = vma_address(page, vma);
304 	unsigned long ret = 0;
305 	pgd_t *pgd;
306 	p4d_t *p4d;
307 	pud_t *pud;
308 	pmd_t *pmd;
309 	pte_t *pte;
310 
311 	VM_BUG_ON_VMA(address == -EFAULT, vma);
312 	pgd = pgd_offset(vma->vm_mm, address);
313 	if (!pgd_present(*pgd))
314 		return 0;
315 	p4d = p4d_offset(pgd, address);
316 	if (!p4d_present(*p4d))
317 		return 0;
318 	pud = pud_offset(p4d, address);
319 	if (!pud_present(*pud))
320 		return 0;
321 	if (pud_devmap(*pud))
322 		return PUD_SHIFT;
323 	pmd = pmd_offset(pud, address);
324 	if (!pmd_present(*pmd))
325 		return 0;
326 	if (pmd_devmap(*pmd))
327 		return PMD_SHIFT;
328 	pte = pte_offset_map(pmd, address);
329 	if (pte_present(*pte) && pte_devmap(*pte))
330 		ret = PAGE_SHIFT;
331 	pte_unmap(pte);
332 	return ret;
333 }
334 
335 /*
336  * Failure handling: if we can't find or can't kill a process there's
337  * not much we can do.	We just print a message and ignore otherwise.
338  */
339 
340 /*
341  * Schedule a process for later kill.
342  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
343  */
344 static void add_to_kill(struct task_struct *tsk, struct page *p,
345 		       struct vm_area_struct *vma,
346 		       struct list_head *to_kill)
347 {
348 	struct to_kill *tk;
349 
350 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
351 	if (!tk) {
352 		pr_err("Memory failure: Out of memory while machine check handling\n");
353 		return;
354 	}
355 
356 	tk->addr = page_address_in_vma(p, vma);
357 	if (is_zone_device_page(p))
358 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
359 	else
360 		tk->size_shift = page_shift(compound_head(p));
361 
362 	/*
363 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
364 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
365 	 * so "tk->size_shift == 0" effectively checks no mapping on
366 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
367 	 * to a process' address space, it's possible not all N VMAs
368 	 * contain mappings for the page, but at least one VMA does.
369 	 * Only deliver SIGBUS with payload derived from the VMA that
370 	 * has a mapping for the page.
371 	 */
372 	if (tk->addr == -EFAULT) {
373 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
374 			page_to_pfn(p), tsk->comm);
375 	} else if (tk->size_shift == 0) {
376 		kfree(tk);
377 		return;
378 	}
379 
380 	get_task_struct(tsk);
381 	tk->tsk = tsk;
382 	list_add_tail(&tk->nd, to_kill);
383 }
384 
385 /*
386  * Kill the processes that have been collected earlier.
387  *
388  * Only do anything when FORCEKILL is set, otherwise just free the
389  * list (this is used for clean pages which do not need killing)
390  * Also when FAIL is set do a force kill because something went
391  * wrong earlier.
392  */
393 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
394 		unsigned long pfn, int flags)
395 {
396 	struct to_kill *tk, *next;
397 
398 	list_for_each_entry_safe (tk, next, to_kill, nd) {
399 		if (forcekill) {
400 			/*
401 			 * In case something went wrong with munmapping
402 			 * make sure the process doesn't catch the
403 			 * signal and then access the memory. Just kill it.
404 			 */
405 			if (fail || tk->addr == -EFAULT) {
406 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
407 				       pfn, tk->tsk->comm, tk->tsk->pid);
408 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
409 						 tk->tsk, PIDTYPE_PID);
410 			}
411 
412 			/*
413 			 * In theory the process could have mapped
414 			 * something else on the address in-between. We could
415 			 * check for that, but we need to tell the
416 			 * process anyways.
417 			 */
418 			else if (kill_proc(tk, pfn, flags) < 0)
419 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
420 				       pfn, tk->tsk->comm, tk->tsk->pid);
421 		}
422 		put_task_struct(tk->tsk);
423 		kfree(tk);
424 	}
425 }
426 
427 /*
428  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
429  * on behalf of the thread group. Return task_struct of the (first found)
430  * dedicated thread if found, and return NULL otherwise.
431  *
432  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
433  * have to call rcu_read_lock/unlock() in this function.
434  */
435 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
436 {
437 	struct task_struct *t;
438 
439 	for_each_thread(tsk, t) {
440 		if (t->flags & PF_MCE_PROCESS) {
441 			if (t->flags & PF_MCE_EARLY)
442 				return t;
443 		} else {
444 			if (sysctl_memory_failure_early_kill)
445 				return t;
446 		}
447 	}
448 	return NULL;
449 }
450 
451 /*
452  * Determine whether a given process is "early kill" process which expects
453  * to be signaled when some page under the process is hwpoisoned.
454  * Return task_struct of the dedicated thread (main thread unless explicitly
455  * specified) if the process is "early kill" and otherwise returns NULL.
456  *
457  * Note that the above is true for Action Optional case. For Action Required
458  * case, it's only meaningful to the current thread which need to be signaled
459  * with SIGBUS, this error is Action Optional for other non current
460  * processes sharing the same error page,if the process is "early kill", the
461  * task_struct of the dedicated thread will also be returned.
462  */
463 static struct task_struct *task_early_kill(struct task_struct *tsk,
464 					   int force_early)
465 {
466 	if (!tsk->mm)
467 		return NULL;
468 	/*
469 	 * Comparing ->mm here because current task might represent
470 	 * a subthread, while tsk always points to the main thread.
471 	 */
472 	if (force_early && tsk->mm == current->mm)
473 		return current;
474 
475 	return find_early_kill_thread(tsk);
476 }
477 
478 /*
479  * Collect processes when the error hit an anonymous page.
480  */
481 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
482 				int force_early)
483 {
484 	struct folio *folio = page_folio(page);
485 	struct vm_area_struct *vma;
486 	struct task_struct *tsk;
487 	struct anon_vma *av;
488 	pgoff_t pgoff;
489 
490 	av = folio_lock_anon_vma_read(folio, NULL);
491 	if (av == NULL)	/* Not actually mapped anymore */
492 		return;
493 
494 	pgoff = page_to_pgoff(page);
495 	read_lock(&tasklist_lock);
496 	for_each_process (tsk) {
497 		struct anon_vma_chain *vmac;
498 		struct task_struct *t = task_early_kill(tsk, force_early);
499 
500 		if (!t)
501 			continue;
502 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
503 					       pgoff, pgoff) {
504 			vma = vmac->vma;
505 			if (!page_mapped_in_vma(page, vma))
506 				continue;
507 			if (vma->vm_mm == t->mm)
508 				add_to_kill(t, page, vma, to_kill);
509 		}
510 	}
511 	read_unlock(&tasklist_lock);
512 	page_unlock_anon_vma_read(av);
513 }
514 
515 /*
516  * Collect processes when the error hit a file mapped page.
517  */
518 static void collect_procs_file(struct page *page, struct list_head *to_kill,
519 				int force_early)
520 {
521 	struct vm_area_struct *vma;
522 	struct task_struct *tsk;
523 	struct address_space *mapping = page->mapping;
524 	pgoff_t pgoff;
525 
526 	i_mmap_lock_read(mapping);
527 	read_lock(&tasklist_lock);
528 	pgoff = page_to_pgoff(page);
529 	for_each_process(tsk) {
530 		struct task_struct *t = task_early_kill(tsk, force_early);
531 
532 		if (!t)
533 			continue;
534 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
535 				      pgoff) {
536 			/*
537 			 * Send early kill signal to tasks where a vma covers
538 			 * the page but the corrupted page is not necessarily
539 			 * mapped it in its pte.
540 			 * Assume applications who requested early kill want
541 			 * to be informed of all such data corruptions.
542 			 */
543 			if (vma->vm_mm == t->mm)
544 				add_to_kill(t, page, vma, to_kill);
545 		}
546 	}
547 	read_unlock(&tasklist_lock);
548 	i_mmap_unlock_read(mapping);
549 }
550 
551 /*
552  * Collect the processes who have the corrupted page mapped to kill.
553  */
554 static void collect_procs(struct page *page, struct list_head *tokill,
555 				int force_early)
556 {
557 	if (!page->mapping)
558 		return;
559 
560 	if (PageAnon(page))
561 		collect_procs_anon(page, tokill, force_early);
562 	else
563 		collect_procs_file(page, tokill, force_early);
564 }
565 
566 struct hwp_walk {
567 	struct to_kill tk;
568 	unsigned long pfn;
569 	int flags;
570 };
571 
572 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
573 {
574 	tk->addr = addr;
575 	tk->size_shift = shift;
576 }
577 
578 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
579 				unsigned long poisoned_pfn, struct to_kill *tk)
580 {
581 	unsigned long pfn = 0;
582 
583 	if (pte_present(pte)) {
584 		pfn = pte_pfn(pte);
585 	} else {
586 		swp_entry_t swp = pte_to_swp_entry(pte);
587 
588 		if (is_hwpoison_entry(swp))
589 			pfn = hwpoison_entry_to_pfn(swp);
590 	}
591 
592 	if (!pfn || pfn != poisoned_pfn)
593 		return 0;
594 
595 	set_to_kill(tk, addr, shift);
596 	return 1;
597 }
598 
599 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
600 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
601 				      struct hwp_walk *hwp)
602 {
603 	pmd_t pmd = *pmdp;
604 	unsigned long pfn;
605 	unsigned long hwpoison_vaddr;
606 
607 	if (!pmd_present(pmd))
608 		return 0;
609 	pfn = pmd_pfn(pmd);
610 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
611 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
612 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
613 		return 1;
614 	}
615 	return 0;
616 }
617 #else
618 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
619 				      struct hwp_walk *hwp)
620 {
621 	return 0;
622 }
623 #endif
624 
625 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
626 			      unsigned long end, struct mm_walk *walk)
627 {
628 	struct hwp_walk *hwp = walk->private;
629 	int ret = 0;
630 	pte_t *ptep, *mapped_pte;
631 	spinlock_t *ptl;
632 
633 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
634 	if (ptl) {
635 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
636 		spin_unlock(ptl);
637 		goto out;
638 	}
639 
640 	if (pmd_trans_unstable(pmdp))
641 		goto out;
642 
643 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
644 						addr, &ptl);
645 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
646 		ret = check_hwpoisoned_entry(*ptep, addr, PAGE_SHIFT,
647 					     hwp->pfn, &hwp->tk);
648 		if (ret == 1)
649 			break;
650 	}
651 	pte_unmap_unlock(mapped_pte, ptl);
652 out:
653 	cond_resched();
654 	return ret;
655 }
656 
657 #ifdef CONFIG_HUGETLB_PAGE
658 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
659 			    unsigned long addr, unsigned long end,
660 			    struct mm_walk *walk)
661 {
662 	struct hwp_walk *hwp = walk->private;
663 	pte_t pte = huge_ptep_get(ptep);
664 	struct hstate *h = hstate_vma(walk->vma);
665 
666 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
667 				      hwp->pfn, &hwp->tk);
668 }
669 #else
670 #define hwpoison_hugetlb_range	NULL
671 #endif
672 
673 static const struct mm_walk_ops hwp_walk_ops = {
674 	.pmd_entry = hwpoison_pte_range,
675 	.hugetlb_entry = hwpoison_hugetlb_range,
676 };
677 
678 /*
679  * Sends SIGBUS to the current process with error info.
680  *
681  * This function is intended to handle "Action Required" MCEs on already
682  * hardware poisoned pages. They could happen, for example, when
683  * memory_failure() failed to unmap the error page at the first call, or
684  * when multiple local machine checks happened on different CPUs.
685  *
686  * MCE handler currently has no easy access to the error virtual address,
687  * so this function walks page table to find it. The returned virtual address
688  * is proper in most cases, but it could be wrong when the application
689  * process has multiple entries mapping the error page.
690  */
691 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
692 				  int flags)
693 {
694 	int ret;
695 	struct hwp_walk priv = {
696 		.pfn = pfn,
697 	};
698 	priv.tk.tsk = p;
699 
700 	mmap_read_lock(p->mm);
701 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
702 			      (void *)&priv);
703 	if (ret == 1 && priv.tk.addr)
704 		kill_proc(&priv.tk, pfn, flags);
705 	else
706 		ret = 0;
707 	mmap_read_unlock(p->mm);
708 	return ret > 0 ? -EHWPOISON : -EFAULT;
709 }
710 
711 static const char *action_name[] = {
712 	[MF_IGNORED] = "Ignored",
713 	[MF_FAILED] = "Failed",
714 	[MF_DELAYED] = "Delayed",
715 	[MF_RECOVERED] = "Recovered",
716 };
717 
718 static const char * const action_page_types[] = {
719 	[MF_MSG_KERNEL]			= "reserved kernel page",
720 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
721 	[MF_MSG_SLAB]			= "kernel slab page",
722 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
723 	[MF_MSG_HUGE]			= "huge page",
724 	[MF_MSG_FREE_HUGE]		= "free huge page",
725 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
726 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
727 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
728 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
729 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
730 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
731 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
732 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
733 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
734 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
735 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
736 	[MF_MSG_BUDDY]			= "free buddy page",
737 	[MF_MSG_DAX]			= "dax page",
738 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
739 	[MF_MSG_UNKNOWN]		= "unknown page",
740 };
741 
742 /*
743  * XXX: It is possible that a page is isolated from LRU cache,
744  * and then kept in swap cache or failed to remove from page cache.
745  * The page count will stop it from being freed by unpoison.
746  * Stress tests should be aware of this memory leak problem.
747  */
748 static int delete_from_lru_cache(struct page *p)
749 {
750 	if (!isolate_lru_page(p)) {
751 		/*
752 		 * Clear sensible page flags, so that the buddy system won't
753 		 * complain when the page is unpoison-and-freed.
754 		 */
755 		ClearPageActive(p);
756 		ClearPageUnevictable(p);
757 
758 		/*
759 		 * Poisoned page might never drop its ref count to 0 so we have
760 		 * to uncharge it manually from its memcg.
761 		 */
762 		mem_cgroup_uncharge(page_folio(p));
763 
764 		/*
765 		 * drop the page count elevated by isolate_lru_page()
766 		 */
767 		put_page(p);
768 		return 0;
769 	}
770 	return -EIO;
771 }
772 
773 static int truncate_error_page(struct page *p, unsigned long pfn,
774 				struct address_space *mapping)
775 {
776 	int ret = MF_FAILED;
777 
778 	if (mapping->a_ops->error_remove_page) {
779 		int err = mapping->a_ops->error_remove_page(mapping, p);
780 
781 		if (err != 0) {
782 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
783 				pfn, err);
784 		} else if (page_has_private(p) &&
785 			   !try_to_release_page(p, GFP_NOIO)) {
786 			pr_info("Memory failure: %#lx: failed to release buffers\n",
787 				pfn);
788 		} else {
789 			ret = MF_RECOVERED;
790 		}
791 	} else {
792 		/*
793 		 * If the file system doesn't support it just invalidate
794 		 * This fails on dirty or anything with private pages
795 		 */
796 		if (invalidate_inode_page(p))
797 			ret = MF_RECOVERED;
798 		else
799 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
800 				pfn);
801 	}
802 
803 	return ret;
804 }
805 
806 struct page_state {
807 	unsigned long mask;
808 	unsigned long res;
809 	enum mf_action_page_type type;
810 
811 	/* Callback ->action() has to unlock the relevant page inside it. */
812 	int (*action)(struct page_state *ps, struct page *p);
813 };
814 
815 /*
816  * Return true if page is still referenced by others, otherwise return
817  * false.
818  *
819  * The extra_pins is true when one extra refcount is expected.
820  */
821 static bool has_extra_refcount(struct page_state *ps, struct page *p,
822 			       bool extra_pins)
823 {
824 	int count = page_count(p) - 1;
825 
826 	if (extra_pins)
827 		count -= 1;
828 
829 	if (count > 0) {
830 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
831 		       page_to_pfn(p), action_page_types[ps->type], count);
832 		return true;
833 	}
834 
835 	return false;
836 }
837 
838 /*
839  * Error hit kernel page.
840  * Do nothing, try to be lucky and not touch this instead. For a few cases we
841  * could be more sophisticated.
842  */
843 static int me_kernel(struct page_state *ps, struct page *p)
844 {
845 	unlock_page(p);
846 	return MF_IGNORED;
847 }
848 
849 /*
850  * Page in unknown state. Do nothing.
851  */
852 static int me_unknown(struct page_state *ps, struct page *p)
853 {
854 	pr_err("Memory failure: %#lx: Unknown page state\n", page_to_pfn(p));
855 	unlock_page(p);
856 	return MF_FAILED;
857 }
858 
859 /*
860  * Clean (or cleaned) page cache page.
861  */
862 static int me_pagecache_clean(struct page_state *ps, struct page *p)
863 {
864 	int ret;
865 	struct address_space *mapping;
866 	bool extra_pins;
867 
868 	delete_from_lru_cache(p);
869 
870 	/*
871 	 * For anonymous pages we're done the only reference left
872 	 * should be the one m_f() holds.
873 	 */
874 	if (PageAnon(p)) {
875 		ret = MF_RECOVERED;
876 		goto out;
877 	}
878 
879 	/*
880 	 * Now truncate the page in the page cache. This is really
881 	 * more like a "temporary hole punch"
882 	 * Don't do this for block devices when someone else
883 	 * has a reference, because it could be file system metadata
884 	 * and that's not safe to truncate.
885 	 */
886 	mapping = page_mapping(p);
887 	if (!mapping) {
888 		/*
889 		 * Page has been teared down in the meanwhile
890 		 */
891 		ret = MF_FAILED;
892 		goto out;
893 	}
894 
895 	/*
896 	 * The shmem page is kept in page cache instead of truncating
897 	 * so is expected to have an extra refcount after error-handling.
898 	 */
899 	extra_pins = shmem_mapping(mapping);
900 
901 	/*
902 	 * Truncation is a bit tricky. Enable it per file system for now.
903 	 *
904 	 * Open: to take i_rwsem or not for this? Right now we don't.
905 	 */
906 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
907 	if (has_extra_refcount(ps, p, extra_pins))
908 		ret = MF_FAILED;
909 
910 out:
911 	unlock_page(p);
912 
913 	return ret;
914 }
915 
916 /*
917  * Dirty pagecache page
918  * Issues: when the error hit a hole page the error is not properly
919  * propagated.
920  */
921 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
922 {
923 	struct address_space *mapping = page_mapping(p);
924 
925 	SetPageError(p);
926 	/* TBD: print more information about the file. */
927 	if (mapping) {
928 		/*
929 		 * IO error will be reported by write(), fsync(), etc.
930 		 * who check the mapping.
931 		 * This way the application knows that something went
932 		 * wrong with its dirty file data.
933 		 *
934 		 * There's one open issue:
935 		 *
936 		 * The EIO will be only reported on the next IO
937 		 * operation and then cleared through the IO map.
938 		 * Normally Linux has two mechanisms to pass IO error
939 		 * first through the AS_EIO flag in the address space
940 		 * and then through the PageError flag in the page.
941 		 * Since we drop pages on memory failure handling the
942 		 * only mechanism open to use is through AS_AIO.
943 		 *
944 		 * This has the disadvantage that it gets cleared on
945 		 * the first operation that returns an error, while
946 		 * the PageError bit is more sticky and only cleared
947 		 * when the page is reread or dropped.  If an
948 		 * application assumes it will always get error on
949 		 * fsync, but does other operations on the fd before
950 		 * and the page is dropped between then the error
951 		 * will not be properly reported.
952 		 *
953 		 * This can already happen even without hwpoisoned
954 		 * pages: first on metadata IO errors (which only
955 		 * report through AS_EIO) or when the page is dropped
956 		 * at the wrong time.
957 		 *
958 		 * So right now we assume that the application DTRT on
959 		 * the first EIO, but we're not worse than other parts
960 		 * of the kernel.
961 		 */
962 		mapping_set_error(mapping, -EIO);
963 	}
964 
965 	return me_pagecache_clean(ps, p);
966 }
967 
968 /*
969  * Clean and dirty swap cache.
970  *
971  * Dirty swap cache page is tricky to handle. The page could live both in page
972  * cache and swap cache(ie. page is freshly swapped in). So it could be
973  * referenced concurrently by 2 types of PTEs:
974  * normal PTEs and swap PTEs. We try to handle them consistently by calling
975  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
976  * and then
977  *      - clear dirty bit to prevent IO
978  *      - remove from LRU
979  *      - but keep in the swap cache, so that when we return to it on
980  *        a later page fault, we know the application is accessing
981  *        corrupted data and shall be killed (we installed simple
982  *        interception code in do_swap_page to catch it).
983  *
984  * Clean swap cache pages can be directly isolated. A later page fault will
985  * bring in the known good data from disk.
986  */
987 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
988 {
989 	int ret;
990 	bool extra_pins = false;
991 
992 	ClearPageDirty(p);
993 	/* Trigger EIO in shmem: */
994 	ClearPageUptodate(p);
995 
996 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
997 	unlock_page(p);
998 
999 	if (ret == MF_DELAYED)
1000 		extra_pins = true;
1001 
1002 	if (has_extra_refcount(ps, p, extra_pins))
1003 		ret = MF_FAILED;
1004 
1005 	return ret;
1006 }
1007 
1008 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1009 {
1010 	int ret;
1011 
1012 	delete_from_swap_cache(p);
1013 
1014 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1015 	unlock_page(p);
1016 
1017 	if (has_extra_refcount(ps, p, false))
1018 		ret = MF_FAILED;
1019 
1020 	return ret;
1021 }
1022 
1023 /*
1024  * Huge pages. Needs work.
1025  * Issues:
1026  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1027  *   To narrow down kill region to one page, we need to break up pmd.
1028  */
1029 static int me_huge_page(struct page_state *ps, struct page *p)
1030 {
1031 	int res;
1032 	struct page *hpage = compound_head(p);
1033 	struct address_space *mapping;
1034 
1035 	if (!PageHuge(hpage))
1036 		return MF_DELAYED;
1037 
1038 	mapping = page_mapping(hpage);
1039 	if (mapping) {
1040 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1041 		unlock_page(hpage);
1042 	} else {
1043 		res = MF_FAILED;
1044 		unlock_page(hpage);
1045 		/*
1046 		 * migration entry prevents later access on error hugepage,
1047 		 * so we can free and dissolve it into buddy to save healthy
1048 		 * subpages.
1049 		 */
1050 		put_page(hpage);
1051 		if (__page_handle_poison(p)) {
1052 			page_ref_inc(p);
1053 			res = MF_RECOVERED;
1054 		}
1055 	}
1056 
1057 	if (has_extra_refcount(ps, p, false))
1058 		res = MF_FAILED;
1059 
1060 	return res;
1061 }
1062 
1063 /*
1064  * Various page states we can handle.
1065  *
1066  * A page state is defined by its current page->flags bits.
1067  * The table matches them in order and calls the right handler.
1068  *
1069  * This is quite tricky because we can access page at any time
1070  * in its live cycle, so all accesses have to be extremely careful.
1071  *
1072  * This is not complete. More states could be added.
1073  * For any missing state don't attempt recovery.
1074  */
1075 
1076 #define dirty		(1UL << PG_dirty)
1077 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1078 #define unevict		(1UL << PG_unevictable)
1079 #define mlock		(1UL << PG_mlocked)
1080 #define lru		(1UL << PG_lru)
1081 #define head		(1UL << PG_head)
1082 #define slab		(1UL << PG_slab)
1083 #define reserved	(1UL << PG_reserved)
1084 
1085 static struct page_state error_states[] = {
1086 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1087 	/*
1088 	 * free pages are specially detected outside this table:
1089 	 * PG_buddy pages only make a small fraction of all free pages.
1090 	 */
1091 
1092 	/*
1093 	 * Could in theory check if slab page is free or if we can drop
1094 	 * currently unused objects without touching them. But just
1095 	 * treat it as standard kernel for now.
1096 	 */
1097 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1098 
1099 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1100 
1101 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1102 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1103 
1104 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1105 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1106 
1107 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1108 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1109 
1110 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1111 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1112 
1113 	/*
1114 	 * Catchall entry: must be at end.
1115 	 */
1116 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1117 };
1118 
1119 #undef dirty
1120 #undef sc
1121 #undef unevict
1122 #undef mlock
1123 #undef lru
1124 #undef head
1125 #undef slab
1126 #undef reserved
1127 
1128 /*
1129  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1130  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1131  */
1132 static void action_result(unsigned long pfn, enum mf_action_page_type type,
1133 			  enum mf_result result)
1134 {
1135 	trace_memory_failure_event(pfn, type, result);
1136 
1137 	num_poisoned_pages_inc();
1138 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
1139 		pfn, action_page_types[type], action_name[result]);
1140 }
1141 
1142 static int page_action(struct page_state *ps, struct page *p,
1143 			unsigned long pfn)
1144 {
1145 	int result;
1146 
1147 	/* page p should be unlocked after returning from ps->action().  */
1148 	result = ps->action(ps, p);
1149 
1150 	action_result(pfn, ps->type, result);
1151 
1152 	/* Could do more checks here if page looks ok */
1153 	/*
1154 	 * Could adjust zone counters here to correct for the missing page.
1155 	 */
1156 
1157 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1158 }
1159 
1160 static inline bool PageHWPoisonTakenOff(struct page *page)
1161 {
1162 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1163 }
1164 
1165 void SetPageHWPoisonTakenOff(struct page *page)
1166 {
1167 	set_page_private(page, MAGIC_HWPOISON);
1168 }
1169 
1170 void ClearPageHWPoisonTakenOff(struct page *page)
1171 {
1172 	if (PageHWPoison(page))
1173 		set_page_private(page, 0);
1174 }
1175 
1176 /*
1177  * Return true if a page type of a given page is supported by hwpoison
1178  * mechanism (while handling could fail), otherwise false.  This function
1179  * does not return true for hugetlb or device memory pages, so it's assumed
1180  * to be called only in the context where we never have such pages.
1181  */
1182 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1183 {
1184 	/* Soft offline could migrate non-LRU movable pages */
1185 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1186 		return true;
1187 
1188 	return PageLRU(page) || is_free_buddy_page(page);
1189 }
1190 
1191 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1192 {
1193 	struct page *head = compound_head(page);
1194 	int ret = 0;
1195 	bool hugetlb = false;
1196 
1197 	ret = get_hwpoison_huge_page(head, &hugetlb);
1198 	if (hugetlb)
1199 		return ret;
1200 
1201 	/*
1202 	 * This check prevents from calling get_hwpoison_unless_zero()
1203 	 * for any unsupported type of page in order to reduce the risk of
1204 	 * unexpected races caused by taking a page refcount.
1205 	 */
1206 	if (!HWPoisonHandlable(head, flags))
1207 		return -EBUSY;
1208 
1209 	if (get_page_unless_zero(head)) {
1210 		if (head == compound_head(page))
1211 			return 1;
1212 
1213 		pr_info("Memory failure: %#lx cannot catch tail\n",
1214 			page_to_pfn(page));
1215 		put_page(head);
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 static int get_any_page(struct page *p, unsigned long flags)
1222 {
1223 	int ret = 0, pass = 0;
1224 	bool count_increased = false;
1225 
1226 	if (flags & MF_COUNT_INCREASED)
1227 		count_increased = true;
1228 
1229 try_again:
1230 	if (!count_increased) {
1231 		ret = __get_hwpoison_page(p, flags);
1232 		if (!ret) {
1233 			if (page_count(p)) {
1234 				/* We raced with an allocation, retry. */
1235 				if (pass++ < 3)
1236 					goto try_again;
1237 				ret = -EBUSY;
1238 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1239 				/* We raced with put_page, retry. */
1240 				if (pass++ < 3)
1241 					goto try_again;
1242 				ret = -EIO;
1243 			}
1244 			goto out;
1245 		} else if (ret == -EBUSY) {
1246 			/*
1247 			 * We raced with (possibly temporary) unhandlable
1248 			 * page, retry.
1249 			 */
1250 			if (pass++ < 3) {
1251 				shake_page(p);
1252 				goto try_again;
1253 			}
1254 			ret = -EIO;
1255 			goto out;
1256 		}
1257 	}
1258 
1259 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1260 		ret = 1;
1261 	} else {
1262 		/*
1263 		 * A page we cannot handle. Check whether we can turn
1264 		 * it into something we can handle.
1265 		 */
1266 		if (pass++ < 3) {
1267 			put_page(p);
1268 			shake_page(p);
1269 			count_increased = false;
1270 			goto try_again;
1271 		}
1272 		put_page(p);
1273 		ret = -EIO;
1274 	}
1275 out:
1276 	if (ret == -EIO)
1277 		pr_err("Memory failure: %#lx: unhandlable page.\n", page_to_pfn(p));
1278 
1279 	return ret;
1280 }
1281 
1282 static int __get_unpoison_page(struct page *page)
1283 {
1284 	struct page *head = compound_head(page);
1285 	int ret = 0;
1286 	bool hugetlb = false;
1287 
1288 	ret = get_hwpoison_huge_page(head, &hugetlb);
1289 	if (hugetlb)
1290 		return ret;
1291 
1292 	/*
1293 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1294 	 * but also isolated from buddy freelist, so need to identify the
1295 	 * state and have to cancel both operations to unpoison.
1296 	 */
1297 	if (PageHWPoisonTakenOff(page))
1298 		return -EHWPOISON;
1299 
1300 	return get_page_unless_zero(page) ? 1 : 0;
1301 }
1302 
1303 /**
1304  * get_hwpoison_page() - Get refcount for memory error handling
1305  * @p:		Raw error page (hit by memory error)
1306  * @flags:	Flags controlling behavior of error handling
1307  *
1308  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1309  * error on it, after checking that the error page is in a well-defined state
1310  * (defined as a page-type we can successfully handle the memory error on it,
1311  * such as LRU page and hugetlb page).
1312  *
1313  * Memory error handling could be triggered at any time on any type of page,
1314  * so it's prone to race with typical memory management lifecycle (like
1315  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1316  * extra care for the error page's state (as done in __get_hwpoison_page()),
1317  * and has some retry logic in get_any_page().
1318  *
1319  * When called from unpoison_memory(), the caller should already ensure that
1320  * the given page has PG_hwpoison. So it's never reused for other page
1321  * allocations, and __get_unpoison_page() never races with them.
1322  *
1323  * Return: 0 on failure,
1324  *         1 on success for in-use pages in a well-defined state,
1325  *         -EIO for pages on which we can not handle memory errors,
1326  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1327  *         operations like allocation and free,
1328  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1329  */
1330 static int get_hwpoison_page(struct page *p, unsigned long flags)
1331 {
1332 	int ret;
1333 
1334 	zone_pcp_disable(page_zone(p));
1335 	if (flags & MF_UNPOISON)
1336 		ret = __get_unpoison_page(p);
1337 	else
1338 		ret = get_any_page(p, flags);
1339 	zone_pcp_enable(page_zone(p));
1340 
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Do all that is necessary to remove user space mappings. Unmap
1346  * the pages and send SIGBUS to the processes if the data was dirty.
1347  */
1348 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1349 				  int flags, struct page *hpage)
1350 {
1351 	struct folio *folio = page_folio(hpage);
1352 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC;
1353 	struct address_space *mapping;
1354 	LIST_HEAD(tokill);
1355 	bool unmap_success;
1356 	int kill = 1, forcekill;
1357 	bool mlocked = PageMlocked(hpage);
1358 
1359 	/*
1360 	 * Here we are interested only in user-mapped pages, so skip any
1361 	 * other types of pages.
1362 	 */
1363 	if (PageReserved(p) || PageSlab(p))
1364 		return true;
1365 	if (!(PageLRU(hpage) || PageHuge(p)))
1366 		return true;
1367 
1368 	/*
1369 	 * This check implies we don't kill processes if their pages
1370 	 * are in the swap cache early. Those are always late kills.
1371 	 */
1372 	if (!page_mapped(hpage))
1373 		return true;
1374 
1375 	if (PageKsm(p)) {
1376 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
1377 		return false;
1378 	}
1379 
1380 	if (PageSwapCache(p)) {
1381 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
1382 			pfn);
1383 		ttu |= TTU_IGNORE_HWPOISON;
1384 	}
1385 
1386 	/*
1387 	 * Propagate the dirty bit from PTEs to struct page first, because we
1388 	 * need this to decide if we should kill or just drop the page.
1389 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1390 	 * be called inside page lock (it's recommended but not enforced).
1391 	 */
1392 	mapping = page_mapping(hpage);
1393 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1394 	    mapping_can_writeback(mapping)) {
1395 		if (page_mkclean(hpage)) {
1396 			SetPageDirty(hpage);
1397 		} else {
1398 			kill = 0;
1399 			ttu |= TTU_IGNORE_HWPOISON;
1400 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1401 				pfn);
1402 		}
1403 	}
1404 
1405 	/*
1406 	 * First collect all the processes that have the page
1407 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1408 	 * because ttu takes the rmap data structures down.
1409 	 *
1410 	 * Error handling: We ignore errors here because
1411 	 * there's nothing that can be done.
1412 	 */
1413 	if (kill)
1414 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1415 
1416 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1417 		/*
1418 		 * For hugetlb pages in shared mappings, try_to_unmap
1419 		 * could potentially call huge_pmd_unshare.  Because of
1420 		 * this, take semaphore in write mode here and set
1421 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1422 		 * at this higher level.
1423 		 */
1424 		mapping = hugetlb_page_mapping_lock_write(hpage);
1425 		if (mapping) {
1426 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1427 			i_mmap_unlock_write(mapping);
1428 		} else
1429 			pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn);
1430 	} else {
1431 		try_to_unmap(folio, ttu);
1432 	}
1433 
1434 	unmap_success = !page_mapped(hpage);
1435 	if (!unmap_success)
1436 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1437 		       pfn, page_mapcount(hpage));
1438 
1439 	/*
1440 	 * try_to_unmap() might put mlocked page in lru cache, so call
1441 	 * shake_page() again to ensure that it's flushed.
1442 	 */
1443 	if (mlocked)
1444 		shake_page(hpage);
1445 
1446 	/*
1447 	 * Now that the dirty bit has been propagated to the
1448 	 * struct page and all unmaps done we can decide if
1449 	 * killing is needed or not.  Only kill when the page
1450 	 * was dirty or the process is not restartable,
1451 	 * otherwise the tokill list is merely
1452 	 * freed.  When there was a problem unmapping earlier
1453 	 * use a more force-full uncatchable kill to prevent
1454 	 * any accesses to the poisoned memory.
1455 	 */
1456 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1457 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1458 
1459 	return unmap_success;
1460 }
1461 
1462 static int identify_page_state(unsigned long pfn, struct page *p,
1463 				unsigned long page_flags)
1464 {
1465 	struct page_state *ps;
1466 
1467 	/*
1468 	 * The first check uses the current page flags which may not have any
1469 	 * relevant information. The second check with the saved page flags is
1470 	 * carried out only if the first check can't determine the page status.
1471 	 */
1472 	for (ps = error_states;; ps++)
1473 		if ((p->flags & ps->mask) == ps->res)
1474 			break;
1475 
1476 	page_flags |= (p->flags & (1UL << PG_dirty));
1477 
1478 	if (!ps->mask)
1479 		for (ps = error_states;; ps++)
1480 			if ((page_flags & ps->mask) == ps->res)
1481 				break;
1482 	return page_action(ps, p, pfn);
1483 }
1484 
1485 static int try_to_split_thp_page(struct page *page, const char *msg)
1486 {
1487 	lock_page(page);
1488 	if (unlikely(split_huge_page(page))) {
1489 		unsigned long pfn = page_to_pfn(page);
1490 
1491 		unlock_page(page);
1492 		pr_info("%s: %#lx: thp split failed\n", msg, pfn);
1493 		put_page(page);
1494 		return -EBUSY;
1495 	}
1496 	unlock_page(page);
1497 
1498 	return 0;
1499 }
1500 
1501 /*
1502  * Called from hugetlb code with hugetlb_lock held.
1503  *
1504  * Return values:
1505  *   0             - free hugepage
1506  *   1             - in-use hugepage
1507  *   2             - not a hugepage
1508  *   -EBUSY        - the hugepage is busy (try to retry)
1509  *   -EHWPOISON    - the hugepage is already hwpoisoned
1510  */
1511 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
1512 {
1513 	struct page *page = pfn_to_page(pfn);
1514 	struct page *head = compound_head(page);
1515 	int ret = 2;	/* fallback to normal page handling */
1516 	bool count_increased = false;
1517 
1518 	if (!PageHeadHuge(head))
1519 		goto out;
1520 
1521 	if (flags & MF_COUNT_INCREASED) {
1522 		ret = 1;
1523 		count_increased = true;
1524 	} else if (HPageFreed(head)) {
1525 		ret = 0;
1526 	} else if (HPageMigratable(head)) {
1527 		ret = get_page_unless_zero(head);
1528 		if (ret)
1529 			count_increased = true;
1530 	} else {
1531 		ret = -EBUSY;
1532 		goto out;
1533 	}
1534 
1535 	if (TestSetPageHWPoison(head)) {
1536 		ret = -EHWPOISON;
1537 		goto out;
1538 	}
1539 
1540 	return ret;
1541 out:
1542 	if (count_increased)
1543 		put_page(head);
1544 	return ret;
1545 }
1546 
1547 #ifdef CONFIG_HUGETLB_PAGE
1548 /*
1549  * Taking refcount of hugetlb pages needs extra care about race conditions
1550  * with basic operations like hugepage allocation/free/demotion.
1551  * So some of prechecks for hwpoison (pinning, and testing/setting
1552  * PageHWPoison) should be done in single hugetlb_lock range.
1553  */
1554 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1555 {
1556 	int res;
1557 	struct page *p = pfn_to_page(pfn);
1558 	struct page *head;
1559 	unsigned long page_flags;
1560 	bool retry = true;
1561 
1562 	*hugetlb = 1;
1563 retry:
1564 	res = get_huge_page_for_hwpoison(pfn, flags);
1565 	if (res == 2) { /* fallback to normal page handling */
1566 		*hugetlb = 0;
1567 		return 0;
1568 	} else if (res == -EHWPOISON) {
1569 		pr_err("Memory failure: %#lx: already hardware poisoned\n", pfn);
1570 		if (flags & MF_ACTION_REQUIRED) {
1571 			head = compound_head(p);
1572 			res = kill_accessing_process(current, page_to_pfn(head), flags);
1573 		}
1574 		return res;
1575 	} else if (res == -EBUSY) {
1576 		if (retry) {
1577 			retry = false;
1578 			goto retry;
1579 		}
1580 		action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1581 		return res;
1582 	}
1583 
1584 	head = compound_head(p);
1585 	lock_page(head);
1586 
1587 	if (hwpoison_filter(p)) {
1588 		ClearPageHWPoison(head);
1589 		res = -EOPNOTSUPP;
1590 		goto out;
1591 	}
1592 
1593 	/*
1594 	 * Handling free hugepage.  The possible race with hugepage allocation
1595 	 * or demotion can be prevented by PageHWPoison flag.
1596 	 */
1597 	if (res == 0) {
1598 		unlock_page(head);
1599 		res = MF_FAILED;
1600 		if (__page_handle_poison(p)) {
1601 			page_ref_inc(p);
1602 			res = MF_RECOVERED;
1603 		}
1604 		action_result(pfn, MF_MSG_FREE_HUGE, res);
1605 		return res == MF_RECOVERED ? 0 : -EBUSY;
1606 	}
1607 
1608 	page_flags = head->flags;
1609 
1610 	/*
1611 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1612 	 * simply disable it. In order to make it work properly, we need
1613 	 * make sure that:
1614 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1615 	 *    entry properly works, and
1616 	 *  - other mm code walking over page table is aware of pud-aligned
1617 	 *    hwpoison entries.
1618 	 */
1619 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1620 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1621 		res = -EBUSY;
1622 		goto out;
1623 	}
1624 
1625 	if (!hwpoison_user_mappings(p, pfn, flags, head)) {
1626 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1627 		res = -EBUSY;
1628 		goto out;
1629 	}
1630 
1631 	return identify_page_state(pfn, p, page_flags);
1632 out:
1633 	unlock_page(head);
1634 	return res;
1635 }
1636 #else
1637 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1638 {
1639 	return 0;
1640 }
1641 #endif
1642 
1643 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1644 		struct dev_pagemap *pgmap)
1645 {
1646 	struct page *page = pfn_to_page(pfn);
1647 	unsigned long size = 0;
1648 	struct to_kill *tk;
1649 	LIST_HEAD(tokill);
1650 	int rc = -EBUSY;
1651 	loff_t start;
1652 	dax_entry_t cookie;
1653 
1654 	if (flags & MF_COUNT_INCREASED)
1655 		/*
1656 		 * Drop the extra refcount in case we come from madvise().
1657 		 */
1658 		put_page(page);
1659 
1660 	/* device metadata space is not recoverable */
1661 	if (!pgmap_pfn_valid(pgmap, pfn)) {
1662 		rc = -ENXIO;
1663 		goto out;
1664 	}
1665 
1666 	/*
1667 	 * Pages instantiated by device-dax (not filesystem-dax)
1668 	 * may be compound pages.
1669 	 */
1670 	page = compound_head(page);
1671 
1672 	/*
1673 	 * Prevent the inode from being freed while we are interrogating
1674 	 * the address_space, typically this would be handled by
1675 	 * lock_page(), but dax pages do not use the page lock. This
1676 	 * also prevents changes to the mapping of this pfn until
1677 	 * poison signaling is complete.
1678 	 */
1679 	cookie = dax_lock_page(page);
1680 	if (!cookie)
1681 		goto out;
1682 
1683 	if (hwpoison_filter(page)) {
1684 		rc = -EOPNOTSUPP;
1685 		goto unlock;
1686 	}
1687 
1688 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1689 		/*
1690 		 * TODO: Handle HMM pages which may need coordination
1691 		 * with device-side memory.
1692 		 */
1693 		goto unlock;
1694 	}
1695 
1696 	/*
1697 	 * Use this flag as an indication that the dax page has been
1698 	 * remapped UC to prevent speculative consumption of poison.
1699 	 */
1700 	SetPageHWPoison(page);
1701 
1702 	/*
1703 	 * Unlike System-RAM there is no possibility to swap in a
1704 	 * different physical page at a given virtual address, so all
1705 	 * userspace consumption of ZONE_DEVICE memory necessitates
1706 	 * SIGBUS (i.e. MF_MUST_KILL)
1707 	 */
1708 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1709 	collect_procs(page, &tokill, true);
1710 
1711 	list_for_each_entry(tk, &tokill, nd)
1712 		if (tk->size_shift)
1713 			size = max(size, 1UL << tk->size_shift);
1714 	if (size) {
1715 		/*
1716 		 * Unmap the largest mapping to avoid breaking up
1717 		 * device-dax mappings which are constant size. The
1718 		 * actual size of the mapping being torn down is
1719 		 * communicated in siginfo, see kill_proc()
1720 		 */
1721 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1722 		unmap_mapping_range(page->mapping, start, size, 0);
1723 	}
1724 	kill_procs(&tokill, true, false, pfn, flags);
1725 	rc = 0;
1726 unlock:
1727 	dax_unlock_page(page, cookie);
1728 out:
1729 	/* drop pgmap ref acquired in caller */
1730 	put_dev_pagemap(pgmap);
1731 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1732 	return rc;
1733 }
1734 
1735 static DEFINE_MUTEX(mf_mutex);
1736 
1737 /**
1738  * memory_failure - Handle memory failure of a page.
1739  * @pfn: Page Number of the corrupted page
1740  * @flags: fine tune action taken
1741  *
1742  * This function is called by the low level machine check code
1743  * of an architecture when it detects hardware memory corruption
1744  * of a page. It tries its best to recover, which includes
1745  * dropping pages, killing processes etc.
1746  *
1747  * The function is primarily of use for corruptions that
1748  * happen outside the current execution context (e.g. when
1749  * detected by a background scrubber)
1750  *
1751  * Must run in process context (e.g. a work queue) with interrupts
1752  * enabled and no spinlocks hold.
1753  *
1754  * Return: 0 for successfully handled the memory error,
1755  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
1756  *         < 0(except -EOPNOTSUPP) on failure.
1757  */
1758 int memory_failure(unsigned long pfn, int flags)
1759 {
1760 	struct page *p;
1761 	struct page *hpage;
1762 	struct dev_pagemap *pgmap;
1763 	int res = 0;
1764 	unsigned long page_flags;
1765 	bool retry = true;
1766 	int hugetlb = 0;
1767 
1768 	if (!sysctl_memory_failure_recovery)
1769 		panic("Memory failure on page %lx", pfn);
1770 
1771 	mutex_lock(&mf_mutex);
1772 
1773 	if (!(flags & MF_SW_SIMULATED))
1774 		hw_memory_failure = true;
1775 
1776 	p = pfn_to_online_page(pfn);
1777 	if (!p) {
1778 		res = arch_memory_failure(pfn, flags);
1779 		if (res == 0)
1780 			goto unlock_mutex;
1781 
1782 		if (pfn_valid(pfn)) {
1783 			pgmap = get_dev_pagemap(pfn, NULL);
1784 			if (pgmap) {
1785 				res = memory_failure_dev_pagemap(pfn, flags,
1786 								 pgmap);
1787 				goto unlock_mutex;
1788 			}
1789 		}
1790 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1791 			pfn);
1792 		res = -ENXIO;
1793 		goto unlock_mutex;
1794 	}
1795 
1796 try_again:
1797 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
1798 	if (hugetlb)
1799 		goto unlock_mutex;
1800 
1801 	if (TestSetPageHWPoison(p)) {
1802 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1803 			pfn);
1804 		res = -EHWPOISON;
1805 		if (flags & MF_ACTION_REQUIRED)
1806 			res = kill_accessing_process(current, pfn, flags);
1807 		if (flags & MF_COUNT_INCREASED)
1808 			put_page(p);
1809 		goto unlock_mutex;
1810 	}
1811 
1812 	hpage = compound_head(p);
1813 
1814 	/*
1815 	 * We need/can do nothing about count=0 pages.
1816 	 * 1) it's a free page, and therefore in safe hand:
1817 	 *    prep_new_page() will be the gate keeper.
1818 	 * 2) it's part of a non-compound high order page.
1819 	 *    Implies some kernel user: cannot stop them from
1820 	 *    R/W the page; let's pray that the page has been
1821 	 *    used and will be freed some time later.
1822 	 * In fact it's dangerous to directly bump up page count from 0,
1823 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1824 	 */
1825 	if (!(flags & MF_COUNT_INCREASED)) {
1826 		res = get_hwpoison_page(p, flags);
1827 		if (!res) {
1828 			if (is_free_buddy_page(p)) {
1829 				if (take_page_off_buddy(p)) {
1830 					page_ref_inc(p);
1831 					res = MF_RECOVERED;
1832 				} else {
1833 					/* We lost the race, try again */
1834 					if (retry) {
1835 						ClearPageHWPoison(p);
1836 						retry = false;
1837 						goto try_again;
1838 					}
1839 					res = MF_FAILED;
1840 				}
1841 				action_result(pfn, MF_MSG_BUDDY, res);
1842 				res = res == MF_RECOVERED ? 0 : -EBUSY;
1843 			} else {
1844 				action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1845 				res = -EBUSY;
1846 			}
1847 			goto unlock_mutex;
1848 		} else if (res < 0) {
1849 			action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
1850 			res = -EBUSY;
1851 			goto unlock_mutex;
1852 		}
1853 	}
1854 
1855 	if (PageTransHuge(hpage)) {
1856 		/*
1857 		 * The flag must be set after the refcount is bumped
1858 		 * otherwise it may race with THP split.
1859 		 * And the flag can't be set in get_hwpoison_page() since
1860 		 * it is called by soft offline too and it is just called
1861 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
1862 		 * place.
1863 		 *
1864 		 * Don't need care about the above error handling paths for
1865 		 * get_hwpoison_page() since they handle either free page
1866 		 * or unhandlable page.  The refcount is bumped iff the
1867 		 * page is a valid handlable page.
1868 		 */
1869 		SetPageHasHWPoisoned(hpage);
1870 		if (try_to_split_thp_page(p, "Memory Failure") < 0) {
1871 			action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
1872 			res = -EBUSY;
1873 			goto unlock_mutex;
1874 		}
1875 		VM_BUG_ON_PAGE(!page_count(p), p);
1876 	}
1877 
1878 	/*
1879 	 * We ignore non-LRU pages for good reasons.
1880 	 * - PG_locked is only well defined for LRU pages and a few others
1881 	 * - to avoid races with __SetPageLocked()
1882 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1883 	 * The check (unnecessarily) ignores LRU pages being isolated and
1884 	 * walked by the page reclaim code, however that's not a big loss.
1885 	 */
1886 	shake_page(p);
1887 
1888 	lock_page(p);
1889 
1890 	/*
1891 	 * We're only intended to deal with the non-Compound page here.
1892 	 * However, the page could have changed compound pages due to
1893 	 * race window. If this happens, we could try again to hopefully
1894 	 * handle the page next round.
1895 	 */
1896 	if (PageCompound(p)) {
1897 		if (retry) {
1898 			ClearPageHWPoison(p);
1899 			unlock_page(p);
1900 			put_page(p);
1901 			flags &= ~MF_COUNT_INCREASED;
1902 			retry = false;
1903 			goto try_again;
1904 		}
1905 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1906 		res = -EBUSY;
1907 		goto unlock_page;
1908 	}
1909 
1910 	/*
1911 	 * We use page flags to determine what action should be taken, but
1912 	 * the flags can be modified by the error containment action.  One
1913 	 * example is an mlocked page, where PG_mlocked is cleared by
1914 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1915 	 * correctly, we save a copy of the page flags at this time.
1916 	 */
1917 	page_flags = p->flags;
1918 
1919 	if (hwpoison_filter(p)) {
1920 		TestClearPageHWPoison(p);
1921 		unlock_page(p);
1922 		put_page(p);
1923 		res = -EOPNOTSUPP;
1924 		goto unlock_mutex;
1925 	}
1926 
1927 	/*
1928 	 * __munlock_pagevec may clear a writeback page's LRU flag without
1929 	 * page_lock. We need wait writeback completion for this page or it
1930 	 * may trigger vfs BUG while evict inode.
1931 	 */
1932 	if (!PageLRU(p) && !PageWriteback(p))
1933 		goto identify_page_state;
1934 
1935 	/*
1936 	 * It's very difficult to mess with pages currently under IO
1937 	 * and in many cases impossible, so we just avoid it here.
1938 	 */
1939 	wait_on_page_writeback(p);
1940 
1941 	/*
1942 	 * Now take care of user space mappings.
1943 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1944 	 */
1945 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
1946 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1947 		res = -EBUSY;
1948 		goto unlock_page;
1949 	}
1950 
1951 	/*
1952 	 * Torn down by someone else?
1953 	 */
1954 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1955 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1956 		res = -EBUSY;
1957 		goto unlock_page;
1958 	}
1959 
1960 identify_page_state:
1961 	res = identify_page_state(pfn, p, page_flags);
1962 	mutex_unlock(&mf_mutex);
1963 	return res;
1964 unlock_page:
1965 	unlock_page(p);
1966 unlock_mutex:
1967 	mutex_unlock(&mf_mutex);
1968 	return res;
1969 }
1970 EXPORT_SYMBOL_GPL(memory_failure);
1971 
1972 #define MEMORY_FAILURE_FIFO_ORDER	4
1973 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1974 
1975 struct memory_failure_entry {
1976 	unsigned long pfn;
1977 	int flags;
1978 };
1979 
1980 struct memory_failure_cpu {
1981 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1982 		      MEMORY_FAILURE_FIFO_SIZE);
1983 	spinlock_t lock;
1984 	struct work_struct work;
1985 };
1986 
1987 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1988 
1989 /**
1990  * memory_failure_queue - Schedule handling memory failure of a page.
1991  * @pfn: Page Number of the corrupted page
1992  * @flags: Flags for memory failure handling
1993  *
1994  * This function is called by the low level hardware error handler
1995  * when it detects hardware memory corruption of a page. It schedules
1996  * the recovering of error page, including dropping pages, killing
1997  * processes etc.
1998  *
1999  * The function is primarily of use for corruptions that
2000  * happen outside the current execution context (e.g. when
2001  * detected by a background scrubber)
2002  *
2003  * Can run in IRQ context.
2004  */
2005 void memory_failure_queue(unsigned long pfn, int flags)
2006 {
2007 	struct memory_failure_cpu *mf_cpu;
2008 	unsigned long proc_flags;
2009 	struct memory_failure_entry entry = {
2010 		.pfn =		pfn,
2011 		.flags =	flags,
2012 	};
2013 
2014 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2015 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2016 	if (kfifo_put(&mf_cpu->fifo, entry))
2017 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2018 	else
2019 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
2020 		       pfn);
2021 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2022 	put_cpu_var(memory_failure_cpu);
2023 }
2024 EXPORT_SYMBOL_GPL(memory_failure_queue);
2025 
2026 static void memory_failure_work_func(struct work_struct *work)
2027 {
2028 	struct memory_failure_cpu *mf_cpu;
2029 	struct memory_failure_entry entry = { 0, };
2030 	unsigned long proc_flags;
2031 	int gotten;
2032 
2033 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2034 	for (;;) {
2035 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2036 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2037 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2038 		if (!gotten)
2039 			break;
2040 		if (entry.flags & MF_SOFT_OFFLINE)
2041 			soft_offline_page(entry.pfn, entry.flags);
2042 		else
2043 			memory_failure(entry.pfn, entry.flags);
2044 	}
2045 }
2046 
2047 /*
2048  * Process memory_failure work queued on the specified CPU.
2049  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2050  */
2051 void memory_failure_queue_kick(int cpu)
2052 {
2053 	struct memory_failure_cpu *mf_cpu;
2054 
2055 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2056 	cancel_work_sync(&mf_cpu->work);
2057 	memory_failure_work_func(&mf_cpu->work);
2058 }
2059 
2060 static int __init memory_failure_init(void)
2061 {
2062 	struct memory_failure_cpu *mf_cpu;
2063 	int cpu;
2064 
2065 	for_each_possible_cpu(cpu) {
2066 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2067 		spin_lock_init(&mf_cpu->lock);
2068 		INIT_KFIFO(mf_cpu->fifo);
2069 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2070 	}
2071 
2072 	return 0;
2073 }
2074 core_initcall(memory_failure_init);
2075 
2076 #define unpoison_pr_info(fmt, pfn, rs)			\
2077 ({							\
2078 	if (__ratelimit(rs))				\
2079 		pr_info(fmt, pfn);			\
2080 })
2081 
2082 /**
2083  * unpoison_memory - Unpoison a previously poisoned page
2084  * @pfn: Page number of the to be unpoisoned page
2085  *
2086  * Software-unpoison a page that has been poisoned by
2087  * memory_failure() earlier.
2088  *
2089  * This is only done on the software-level, so it only works
2090  * for linux injected failures, not real hardware failures
2091  *
2092  * Returns 0 for success, otherwise -errno.
2093  */
2094 int unpoison_memory(unsigned long pfn)
2095 {
2096 	struct page *page;
2097 	struct page *p;
2098 	int ret = -EBUSY;
2099 	int freeit = 0;
2100 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2101 					DEFAULT_RATELIMIT_BURST);
2102 
2103 	if (!pfn_valid(pfn))
2104 		return -ENXIO;
2105 
2106 	p = pfn_to_page(pfn);
2107 	page = compound_head(p);
2108 
2109 	mutex_lock(&mf_mutex);
2110 
2111 	if (hw_memory_failure) {
2112 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2113 				 pfn, &unpoison_rs);
2114 		ret = -EOPNOTSUPP;
2115 		goto unlock_mutex;
2116 	}
2117 
2118 	if (!PageHWPoison(p)) {
2119 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2120 				 pfn, &unpoison_rs);
2121 		goto unlock_mutex;
2122 	}
2123 
2124 	if (page_count(page) > 1) {
2125 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2126 				 pfn, &unpoison_rs);
2127 		goto unlock_mutex;
2128 	}
2129 
2130 	if (page_mapped(page)) {
2131 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2132 				 pfn, &unpoison_rs);
2133 		goto unlock_mutex;
2134 	}
2135 
2136 	if (page_mapping(page)) {
2137 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2138 				 pfn, &unpoison_rs);
2139 		goto unlock_mutex;
2140 	}
2141 
2142 	if (PageSlab(page) || PageTable(page))
2143 		goto unlock_mutex;
2144 
2145 	ret = get_hwpoison_page(p, MF_UNPOISON);
2146 	if (!ret) {
2147 		ret = TestClearPageHWPoison(page) ? 0 : -EBUSY;
2148 	} else if (ret < 0) {
2149 		if (ret == -EHWPOISON) {
2150 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2151 		} else
2152 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2153 					 pfn, &unpoison_rs);
2154 	} else {
2155 		freeit = !!TestClearPageHWPoison(p);
2156 
2157 		put_page(page);
2158 		if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) {
2159 			put_page(page);
2160 			ret = 0;
2161 		}
2162 	}
2163 
2164 unlock_mutex:
2165 	mutex_unlock(&mf_mutex);
2166 	if (!ret || freeit) {
2167 		num_poisoned_pages_dec();
2168 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2169 				 page_to_pfn(p), &unpoison_rs);
2170 	}
2171 	return ret;
2172 }
2173 EXPORT_SYMBOL(unpoison_memory);
2174 
2175 static bool isolate_page(struct page *page, struct list_head *pagelist)
2176 {
2177 	bool isolated = false;
2178 	bool lru = PageLRU(page);
2179 
2180 	if (PageHuge(page)) {
2181 		isolated = isolate_huge_page(page, pagelist);
2182 	} else {
2183 		if (lru)
2184 			isolated = !isolate_lru_page(page);
2185 		else
2186 			isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE);
2187 
2188 		if (isolated)
2189 			list_add(&page->lru, pagelist);
2190 	}
2191 
2192 	if (isolated && lru)
2193 		inc_node_page_state(page, NR_ISOLATED_ANON +
2194 				    page_is_file_lru(page));
2195 
2196 	/*
2197 	 * If we succeed to isolate the page, we grabbed another refcount on
2198 	 * the page, so we can safely drop the one we got from get_any_pages().
2199 	 * If we failed to isolate the page, it means that we cannot go further
2200 	 * and we will return an error, so drop the reference we got from
2201 	 * get_any_pages() as well.
2202 	 */
2203 	put_page(page);
2204 	return isolated;
2205 }
2206 
2207 /*
2208  * __soft_offline_page handles hugetlb-pages and non-hugetlb pages.
2209  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2210  * If the page is mapped, it migrates the contents over.
2211  */
2212 static int __soft_offline_page(struct page *page)
2213 {
2214 	long ret = 0;
2215 	unsigned long pfn = page_to_pfn(page);
2216 	struct page *hpage = compound_head(page);
2217 	char const *msg_page[] = {"page", "hugepage"};
2218 	bool huge = PageHuge(page);
2219 	LIST_HEAD(pagelist);
2220 	struct migration_target_control mtc = {
2221 		.nid = NUMA_NO_NODE,
2222 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2223 	};
2224 
2225 	lock_page(page);
2226 	if (!PageHuge(page))
2227 		wait_on_page_writeback(page);
2228 	if (PageHWPoison(page)) {
2229 		unlock_page(page);
2230 		put_page(page);
2231 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2232 		return 0;
2233 	}
2234 
2235 	if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2236 		/*
2237 		 * Try to invalidate first. This should work for
2238 		 * non dirty unmapped page cache pages.
2239 		 */
2240 		ret = invalidate_inode_page(page);
2241 	unlock_page(page);
2242 
2243 	if (ret) {
2244 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2245 		page_handle_poison(page, false, true);
2246 		return 0;
2247 	}
2248 
2249 	if (isolate_page(hpage, &pagelist)) {
2250 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2251 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2252 		if (!ret) {
2253 			bool release = !huge;
2254 
2255 			if (!page_handle_poison(page, huge, release))
2256 				ret = -EBUSY;
2257 		} else {
2258 			if (!list_empty(&pagelist))
2259 				putback_movable_pages(&pagelist);
2260 
2261 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2262 				pfn, msg_page[huge], ret, &page->flags);
2263 			if (ret > 0)
2264 				ret = -EBUSY;
2265 		}
2266 	} else {
2267 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2268 			pfn, msg_page[huge], page_count(page), &page->flags);
2269 		ret = -EBUSY;
2270 	}
2271 	return ret;
2272 }
2273 
2274 static int soft_offline_in_use_page(struct page *page)
2275 {
2276 	struct page *hpage = compound_head(page);
2277 
2278 	if (!PageHuge(page) && PageTransHuge(hpage))
2279 		if (try_to_split_thp_page(page, "soft offline") < 0)
2280 			return -EBUSY;
2281 	return __soft_offline_page(page);
2282 }
2283 
2284 static int soft_offline_free_page(struct page *page)
2285 {
2286 	int rc = 0;
2287 
2288 	if (!page_handle_poison(page, true, false))
2289 		rc = -EBUSY;
2290 
2291 	return rc;
2292 }
2293 
2294 static void put_ref_page(struct page *page)
2295 {
2296 	if (page)
2297 		put_page(page);
2298 }
2299 
2300 /**
2301  * soft_offline_page - Soft offline a page.
2302  * @pfn: pfn to soft-offline
2303  * @flags: flags. Same as memory_failure().
2304  *
2305  * Returns 0 on success
2306  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2307  *         < 0 otherwise negated errno.
2308  *
2309  * Soft offline a page, by migration or invalidation,
2310  * without killing anything. This is for the case when
2311  * a page is not corrupted yet (so it's still valid to access),
2312  * but has had a number of corrected errors and is better taken
2313  * out.
2314  *
2315  * The actual policy on when to do that is maintained by
2316  * user space.
2317  *
2318  * This should never impact any application or cause data loss,
2319  * however it might take some time.
2320  *
2321  * This is not a 100% solution for all memory, but tries to be
2322  * ``good enough'' for the majority of memory.
2323  */
2324 int soft_offline_page(unsigned long pfn, int flags)
2325 {
2326 	int ret;
2327 	bool try_again = true;
2328 	struct page *page, *ref_page = NULL;
2329 
2330 	WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED));
2331 
2332 	if (!pfn_valid(pfn))
2333 		return -ENXIO;
2334 	if (flags & MF_COUNT_INCREASED)
2335 		ref_page = pfn_to_page(pfn);
2336 
2337 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2338 	page = pfn_to_online_page(pfn);
2339 	if (!page) {
2340 		put_ref_page(ref_page);
2341 		return -EIO;
2342 	}
2343 
2344 	mutex_lock(&mf_mutex);
2345 
2346 	if (PageHWPoison(page)) {
2347 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2348 		put_ref_page(ref_page);
2349 		mutex_unlock(&mf_mutex);
2350 		return 0;
2351 	}
2352 
2353 retry:
2354 	get_online_mems();
2355 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2356 	put_online_mems();
2357 
2358 	if (hwpoison_filter(page)) {
2359 		if (ret > 0)
2360 			put_page(page);
2361 		else
2362 			put_ref_page(ref_page);
2363 
2364 		mutex_unlock(&mf_mutex);
2365 		return -EOPNOTSUPP;
2366 	}
2367 
2368 	if (ret > 0) {
2369 		ret = soft_offline_in_use_page(page);
2370 	} else if (ret == 0) {
2371 		if (soft_offline_free_page(page) && try_again) {
2372 			try_again = false;
2373 			flags &= ~MF_COUNT_INCREASED;
2374 			goto retry;
2375 		}
2376 	}
2377 
2378 	mutex_unlock(&mf_mutex);
2379 
2380 	return ret;
2381 }
2382 
2383 void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
2384 {
2385 	int i;
2386 
2387 	/*
2388 	 * A further optimization is to have per section refcounted
2389 	 * num_poisoned_pages.  But that would need more space per memmap, so
2390 	 * for now just do a quick global check to speed up this routine in the
2391 	 * absence of bad pages.
2392 	 */
2393 	if (atomic_long_read(&num_poisoned_pages) == 0)
2394 		return;
2395 
2396 	for (i = 0; i < nr_pages; i++) {
2397 		if (PageHWPoison(&memmap[i])) {
2398 			num_poisoned_pages_dec();
2399 			ClearPageHWPoison(&memmap[i]);
2400 		}
2401 	}
2402 }
2403