1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/dax.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/memremap.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/sysctl.h> 63 #include "swap.h" 64 #include "internal.h" 65 #include "ras/ras_event.h" 66 67 static int sysctl_memory_failure_early_kill __read_mostly; 68 69 static int sysctl_memory_failure_recovery __read_mostly = 1; 70 71 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 72 73 static bool hw_memory_failure __read_mostly = false; 74 75 static DEFINE_MUTEX(mf_mutex); 76 77 void num_poisoned_pages_inc(unsigned long pfn) 78 { 79 atomic_long_inc(&num_poisoned_pages); 80 memblk_nr_poison_inc(pfn); 81 } 82 83 void num_poisoned_pages_sub(unsigned long pfn, long i) 84 { 85 atomic_long_sub(i, &num_poisoned_pages); 86 if (pfn != -1UL) 87 memblk_nr_poison_sub(pfn, i); 88 } 89 90 /** 91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 92 * @_name: name of the file in the per NUMA sysfs directory. 93 */ 94 #define MF_ATTR_RO(_name) \ 95 static ssize_t _name##_show(struct device *dev, \ 96 struct device_attribute *attr, \ 97 char *buf) \ 98 { \ 99 struct memory_failure_stats *mf_stats = \ 100 &NODE_DATA(dev->id)->mf_stats; \ 101 return sprintf(buf, "%lu\n", mf_stats->_name); \ 102 } \ 103 static DEVICE_ATTR_RO(_name) 104 105 MF_ATTR_RO(total); 106 MF_ATTR_RO(ignored); 107 MF_ATTR_RO(failed); 108 MF_ATTR_RO(delayed); 109 MF_ATTR_RO(recovered); 110 111 static struct attribute *memory_failure_attr[] = { 112 &dev_attr_total.attr, 113 &dev_attr_ignored.attr, 114 &dev_attr_failed.attr, 115 &dev_attr_delayed.attr, 116 &dev_attr_recovered.attr, 117 NULL, 118 }; 119 120 const struct attribute_group memory_failure_attr_group = { 121 .name = "memory_failure", 122 .attrs = memory_failure_attr, 123 }; 124 125 static struct ctl_table memory_failure_table[] = { 126 { 127 .procname = "memory_failure_early_kill", 128 .data = &sysctl_memory_failure_early_kill, 129 .maxlen = sizeof(sysctl_memory_failure_early_kill), 130 .mode = 0644, 131 .proc_handler = proc_dointvec_minmax, 132 .extra1 = SYSCTL_ZERO, 133 .extra2 = SYSCTL_ONE, 134 }, 135 { 136 .procname = "memory_failure_recovery", 137 .data = &sysctl_memory_failure_recovery, 138 .maxlen = sizeof(sysctl_memory_failure_recovery), 139 .mode = 0644, 140 .proc_handler = proc_dointvec_minmax, 141 .extra1 = SYSCTL_ZERO, 142 .extra2 = SYSCTL_ONE, 143 }, 144 { } 145 }; 146 147 /* 148 * Return values: 149 * 1: the page is dissolved (if needed) and taken off from buddy, 150 * 0: the page is dissolved (if needed) and not taken off from buddy, 151 * < 0: failed to dissolve. 152 */ 153 static int __page_handle_poison(struct page *page) 154 { 155 int ret; 156 157 /* 158 * zone_pcp_disable() can't be used here. It will 159 * hold pcp_batch_high_lock and dissolve_free_huge_page() might hold 160 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap 161 * optimization is enabled. This will break current lock dependency 162 * chain and leads to deadlock. 163 * Disabling pcp before dissolving the page was a deterministic 164 * approach because we made sure that those pages cannot end up in any 165 * PCP list. Draining PCP lists expels those pages to the buddy system, 166 * but nothing guarantees that those pages do not get back to a PCP 167 * queue if we need to refill those. 168 */ 169 ret = dissolve_free_huge_page(page); 170 if (!ret) { 171 drain_all_pages(page_zone(page)); 172 ret = take_page_off_buddy(page); 173 } 174 175 return ret; 176 } 177 178 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 179 { 180 if (hugepage_or_freepage) { 181 /* 182 * Doing this check for free pages is also fine since dissolve_free_huge_page 183 * returns 0 for non-hugetlb pages as well. 184 */ 185 if (__page_handle_poison(page) <= 0) 186 /* 187 * We could fail to take off the target page from buddy 188 * for example due to racy page allocation, but that's 189 * acceptable because soft-offlined page is not broken 190 * and if someone really want to use it, they should 191 * take it. 192 */ 193 return false; 194 } 195 196 SetPageHWPoison(page); 197 if (release) 198 put_page(page); 199 page_ref_inc(page); 200 num_poisoned_pages_inc(page_to_pfn(page)); 201 202 return true; 203 } 204 205 #if IS_ENABLED(CONFIG_HWPOISON_INJECT) 206 207 u32 hwpoison_filter_enable = 0; 208 u32 hwpoison_filter_dev_major = ~0U; 209 u32 hwpoison_filter_dev_minor = ~0U; 210 u64 hwpoison_filter_flags_mask; 211 u64 hwpoison_filter_flags_value; 212 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 213 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 214 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 215 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 216 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 217 218 static int hwpoison_filter_dev(struct page *p) 219 { 220 struct address_space *mapping; 221 dev_t dev; 222 223 if (hwpoison_filter_dev_major == ~0U && 224 hwpoison_filter_dev_minor == ~0U) 225 return 0; 226 227 mapping = page_mapping(p); 228 if (mapping == NULL || mapping->host == NULL) 229 return -EINVAL; 230 231 dev = mapping->host->i_sb->s_dev; 232 if (hwpoison_filter_dev_major != ~0U && 233 hwpoison_filter_dev_major != MAJOR(dev)) 234 return -EINVAL; 235 if (hwpoison_filter_dev_minor != ~0U && 236 hwpoison_filter_dev_minor != MINOR(dev)) 237 return -EINVAL; 238 239 return 0; 240 } 241 242 static int hwpoison_filter_flags(struct page *p) 243 { 244 if (!hwpoison_filter_flags_mask) 245 return 0; 246 247 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 248 hwpoison_filter_flags_value) 249 return 0; 250 else 251 return -EINVAL; 252 } 253 254 /* 255 * This allows stress tests to limit test scope to a collection of tasks 256 * by putting them under some memcg. This prevents killing unrelated/important 257 * processes such as /sbin/init. Note that the target task may share clean 258 * pages with init (eg. libc text), which is harmless. If the target task 259 * share _dirty_ pages with another task B, the test scheme must make sure B 260 * is also included in the memcg. At last, due to race conditions this filter 261 * can only guarantee that the page either belongs to the memcg tasks, or is 262 * a freed page. 263 */ 264 #ifdef CONFIG_MEMCG 265 u64 hwpoison_filter_memcg; 266 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 267 static int hwpoison_filter_task(struct page *p) 268 { 269 if (!hwpoison_filter_memcg) 270 return 0; 271 272 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 273 return -EINVAL; 274 275 return 0; 276 } 277 #else 278 static int hwpoison_filter_task(struct page *p) { return 0; } 279 #endif 280 281 int hwpoison_filter(struct page *p) 282 { 283 if (!hwpoison_filter_enable) 284 return 0; 285 286 if (hwpoison_filter_dev(p)) 287 return -EINVAL; 288 289 if (hwpoison_filter_flags(p)) 290 return -EINVAL; 291 292 if (hwpoison_filter_task(p)) 293 return -EINVAL; 294 295 return 0; 296 } 297 #else 298 int hwpoison_filter(struct page *p) 299 { 300 return 0; 301 } 302 #endif 303 304 EXPORT_SYMBOL_GPL(hwpoison_filter); 305 306 /* 307 * Kill all processes that have a poisoned page mapped and then isolate 308 * the page. 309 * 310 * General strategy: 311 * Find all processes having the page mapped and kill them. 312 * But we keep a page reference around so that the page is not 313 * actually freed yet. 314 * Then stash the page away 315 * 316 * There's no convenient way to get back to mapped processes 317 * from the VMAs. So do a brute-force search over all 318 * running processes. 319 * 320 * Remember that machine checks are not common (or rather 321 * if they are common you have other problems), so this shouldn't 322 * be a performance issue. 323 * 324 * Also there are some races possible while we get from the 325 * error detection to actually handle it. 326 */ 327 328 struct to_kill { 329 struct list_head nd; 330 struct task_struct *tsk; 331 unsigned long addr; 332 short size_shift; 333 }; 334 335 /* 336 * Send all the processes who have the page mapped a signal. 337 * ``action optional'' if they are not immediately affected by the error 338 * ``action required'' if error happened in current execution context 339 */ 340 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 341 { 342 struct task_struct *t = tk->tsk; 343 short addr_lsb = tk->size_shift; 344 int ret = 0; 345 346 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 347 pfn, t->comm, t->pid); 348 349 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 350 ret = force_sig_mceerr(BUS_MCEERR_AR, 351 (void __user *)tk->addr, addr_lsb); 352 else 353 /* 354 * Signal other processes sharing the page if they have 355 * PF_MCE_EARLY set. 356 * Don't use force here, it's convenient if the signal 357 * can be temporarily blocked. 358 * This could cause a loop when the user sets SIGBUS 359 * to SIG_IGN, but hopefully no one will do that? 360 */ 361 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 362 addr_lsb, t); 363 if (ret < 0) 364 pr_info("Error sending signal to %s:%d: %d\n", 365 t->comm, t->pid, ret); 366 return ret; 367 } 368 369 /* 370 * Unknown page type encountered. Try to check whether it can turn PageLRU by 371 * lru_add_drain_all. 372 */ 373 void shake_page(struct page *p) 374 { 375 if (PageHuge(p)) 376 return; 377 /* 378 * TODO: Could shrink slab caches here if a lightweight range-based 379 * shrinker will be available. 380 */ 381 if (PageSlab(p)) 382 return; 383 384 lru_add_drain_all(); 385 } 386 EXPORT_SYMBOL_GPL(shake_page); 387 388 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 389 unsigned long address) 390 { 391 unsigned long ret = 0; 392 pgd_t *pgd; 393 p4d_t *p4d; 394 pud_t *pud; 395 pmd_t *pmd; 396 pte_t *pte; 397 pte_t ptent; 398 399 VM_BUG_ON_VMA(address == -EFAULT, vma); 400 pgd = pgd_offset(vma->vm_mm, address); 401 if (!pgd_present(*pgd)) 402 return 0; 403 p4d = p4d_offset(pgd, address); 404 if (!p4d_present(*p4d)) 405 return 0; 406 pud = pud_offset(p4d, address); 407 if (!pud_present(*pud)) 408 return 0; 409 if (pud_devmap(*pud)) 410 return PUD_SHIFT; 411 pmd = pmd_offset(pud, address); 412 if (!pmd_present(*pmd)) 413 return 0; 414 if (pmd_devmap(*pmd)) 415 return PMD_SHIFT; 416 pte = pte_offset_map(pmd, address); 417 if (!pte) 418 return 0; 419 ptent = ptep_get(pte); 420 if (pte_present(ptent) && pte_devmap(ptent)) 421 ret = PAGE_SHIFT; 422 pte_unmap(pte); 423 return ret; 424 } 425 426 /* 427 * Failure handling: if we can't find or can't kill a process there's 428 * not much we can do. We just print a message and ignore otherwise. 429 */ 430 431 #define FSDAX_INVALID_PGOFF ULONG_MAX 432 433 /* 434 * Schedule a process for later kill. 435 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 436 * 437 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a 438 * filesystem with a memory failure handler has claimed the 439 * memory_failure event. In all other cases, page->index and 440 * page->mapping are sufficient for mapping the page back to its 441 * corresponding user virtual address. 442 */ 443 static void __add_to_kill(struct task_struct *tsk, struct page *p, 444 struct vm_area_struct *vma, struct list_head *to_kill, 445 unsigned long ksm_addr, pgoff_t fsdax_pgoff) 446 { 447 struct to_kill *tk; 448 449 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 450 if (!tk) { 451 pr_err("Out of memory while machine check handling\n"); 452 return; 453 } 454 455 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma); 456 if (is_zone_device_page(p)) { 457 if (fsdax_pgoff != FSDAX_INVALID_PGOFF) 458 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma); 459 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 460 } else 461 tk->size_shift = page_shift(compound_head(p)); 462 463 /* 464 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 465 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 466 * so "tk->size_shift == 0" effectively checks no mapping on 467 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 468 * to a process' address space, it's possible not all N VMAs 469 * contain mappings for the page, but at least one VMA does. 470 * Only deliver SIGBUS with payload derived from the VMA that 471 * has a mapping for the page. 472 */ 473 if (tk->addr == -EFAULT) { 474 pr_info("Unable to find user space address %lx in %s\n", 475 page_to_pfn(p), tsk->comm); 476 } else if (tk->size_shift == 0) { 477 kfree(tk); 478 return; 479 } 480 481 get_task_struct(tsk); 482 tk->tsk = tsk; 483 list_add_tail(&tk->nd, to_kill); 484 } 485 486 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p, 487 struct vm_area_struct *vma, 488 struct list_head *to_kill) 489 { 490 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF); 491 } 492 493 #ifdef CONFIG_KSM 494 static bool task_in_to_kill_list(struct list_head *to_kill, 495 struct task_struct *tsk) 496 { 497 struct to_kill *tk, *next; 498 499 list_for_each_entry_safe(tk, next, to_kill, nd) { 500 if (tk->tsk == tsk) 501 return true; 502 } 503 504 return false; 505 } 506 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 507 struct vm_area_struct *vma, struct list_head *to_kill, 508 unsigned long ksm_addr) 509 { 510 if (!task_in_to_kill_list(to_kill, tsk)) 511 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF); 512 } 513 #endif 514 /* 515 * Kill the processes that have been collected earlier. 516 * 517 * Only do anything when FORCEKILL is set, otherwise just free the 518 * list (this is used for clean pages which do not need killing) 519 * Also when FAIL is set do a force kill because something went 520 * wrong earlier. 521 */ 522 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 523 unsigned long pfn, int flags) 524 { 525 struct to_kill *tk, *next; 526 527 list_for_each_entry_safe(tk, next, to_kill, nd) { 528 if (forcekill) { 529 /* 530 * In case something went wrong with munmapping 531 * make sure the process doesn't catch the 532 * signal and then access the memory. Just kill it. 533 */ 534 if (fail || tk->addr == -EFAULT) { 535 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 536 pfn, tk->tsk->comm, tk->tsk->pid); 537 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 538 tk->tsk, PIDTYPE_PID); 539 } 540 541 /* 542 * In theory the process could have mapped 543 * something else on the address in-between. We could 544 * check for that, but we need to tell the 545 * process anyways. 546 */ 547 else if (kill_proc(tk, pfn, flags) < 0) 548 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 549 pfn, tk->tsk->comm, tk->tsk->pid); 550 } 551 list_del(&tk->nd); 552 put_task_struct(tk->tsk); 553 kfree(tk); 554 } 555 } 556 557 /* 558 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 559 * on behalf of the thread group. Return task_struct of the (first found) 560 * dedicated thread if found, and return NULL otherwise. 561 * 562 * We already hold rcu lock in the caller, so we don't have to call 563 * rcu_read_lock/unlock() in this function. 564 */ 565 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 566 { 567 struct task_struct *t; 568 569 for_each_thread(tsk, t) { 570 if (t->flags & PF_MCE_PROCESS) { 571 if (t->flags & PF_MCE_EARLY) 572 return t; 573 } else { 574 if (sysctl_memory_failure_early_kill) 575 return t; 576 } 577 } 578 return NULL; 579 } 580 581 /* 582 * Determine whether a given process is "early kill" process which expects 583 * to be signaled when some page under the process is hwpoisoned. 584 * Return task_struct of the dedicated thread (main thread unless explicitly 585 * specified) if the process is "early kill" and otherwise returns NULL. 586 * 587 * Note that the above is true for Action Optional case. For Action Required 588 * case, it's only meaningful to the current thread which need to be signaled 589 * with SIGBUS, this error is Action Optional for other non current 590 * processes sharing the same error page,if the process is "early kill", the 591 * task_struct of the dedicated thread will also be returned. 592 */ 593 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 594 { 595 if (!tsk->mm) 596 return NULL; 597 /* 598 * Comparing ->mm here because current task might represent 599 * a subthread, while tsk always points to the main thread. 600 */ 601 if (force_early && tsk->mm == current->mm) 602 return current; 603 604 return find_early_kill_thread(tsk); 605 } 606 607 /* 608 * Collect processes when the error hit an anonymous page. 609 */ 610 static void collect_procs_anon(struct folio *folio, struct page *page, 611 struct list_head *to_kill, int force_early) 612 { 613 struct vm_area_struct *vma; 614 struct task_struct *tsk; 615 struct anon_vma *av; 616 pgoff_t pgoff; 617 618 av = folio_lock_anon_vma_read(folio, NULL); 619 if (av == NULL) /* Not actually mapped anymore */ 620 return; 621 622 pgoff = page_to_pgoff(page); 623 rcu_read_lock(); 624 for_each_process(tsk) { 625 struct anon_vma_chain *vmac; 626 struct task_struct *t = task_early_kill(tsk, force_early); 627 628 if (!t) 629 continue; 630 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 631 pgoff, pgoff) { 632 vma = vmac->vma; 633 if (vma->vm_mm != t->mm) 634 continue; 635 if (!page_mapped_in_vma(page, vma)) 636 continue; 637 add_to_kill_anon_file(t, page, vma, to_kill); 638 } 639 } 640 rcu_read_unlock(); 641 anon_vma_unlock_read(av); 642 } 643 644 /* 645 * Collect processes when the error hit a file mapped page. 646 */ 647 static void collect_procs_file(struct folio *folio, struct page *page, 648 struct list_head *to_kill, int force_early) 649 { 650 struct vm_area_struct *vma; 651 struct task_struct *tsk; 652 struct address_space *mapping = folio->mapping; 653 pgoff_t pgoff; 654 655 i_mmap_lock_read(mapping); 656 rcu_read_lock(); 657 pgoff = page_to_pgoff(page); 658 for_each_process(tsk) { 659 struct task_struct *t = task_early_kill(tsk, force_early); 660 661 if (!t) 662 continue; 663 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 664 pgoff) { 665 /* 666 * Send early kill signal to tasks where a vma covers 667 * the page but the corrupted page is not necessarily 668 * mapped in its pte. 669 * Assume applications who requested early kill want 670 * to be informed of all such data corruptions. 671 */ 672 if (vma->vm_mm == t->mm) 673 add_to_kill_anon_file(t, page, vma, to_kill); 674 } 675 } 676 rcu_read_unlock(); 677 i_mmap_unlock_read(mapping); 678 } 679 680 #ifdef CONFIG_FS_DAX 681 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p, 682 struct vm_area_struct *vma, 683 struct list_head *to_kill, pgoff_t pgoff) 684 { 685 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff); 686 } 687 688 /* 689 * Collect processes when the error hit a fsdax page. 690 */ 691 static void collect_procs_fsdax(struct page *page, 692 struct address_space *mapping, pgoff_t pgoff, 693 struct list_head *to_kill, bool pre_remove) 694 { 695 struct vm_area_struct *vma; 696 struct task_struct *tsk; 697 698 i_mmap_lock_read(mapping); 699 rcu_read_lock(); 700 for_each_process(tsk) { 701 struct task_struct *t = tsk; 702 703 /* 704 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because 705 * the current may not be the one accessing the fsdax page. 706 * Otherwise, search for the current task. 707 */ 708 if (!pre_remove) 709 t = task_early_kill(tsk, true); 710 if (!t) 711 continue; 712 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 713 if (vma->vm_mm == t->mm) 714 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 715 } 716 } 717 rcu_read_unlock(); 718 i_mmap_unlock_read(mapping); 719 } 720 #endif /* CONFIG_FS_DAX */ 721 722 /* 723 * Collect the processes who have the corrupted page mapped to kill. 724 */ 725 static void collect_procs(struct folio *folio, struct page *page, 726 struct list_head *tokill, int force_early) 727 { 728 if (!folio->mapping) 729 return; 730 if (unlikely(PageKsm(page))) 731 collect_procs_ksm(page, tokill, force_early); 732 else if (PageAnon(page)) 733 collect_procs_anon(folio, page, tokill, force_early); 734 else 735 collect_procs_file(folio, page, tokill, force_early); 736 } 737 738 struct hwpoison_walk { 739 struct to_kill tk; 740 unsigned long pfn; 741 int flags; 742 }; 743 744 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 745 { 746 tk->addr = addr; 747 tk->size_shift = shift; 748 } 749 750 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 751 unsigned long poisoned_pfn, struct to_kill *tk) 752 { 753 unsigned long pfn = 0; 754 755 if (pte_present(pte)) { 756 pfn = pte_pfn(pte); 757 } else { 758 swp_entry_t swp = pte_to_swp_entry(pte); 759 760 if (is_hwpoison_entry(swp)) 761 pfn = swp_offset_pfn(swp); 762 } 763 764 if (!pfn || pfn != poisoned_pfn) 765 return 0; 766 767 set_to_kill(tk, addr, shift); 768 return 1; 769 } 770 771 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 772 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 773 struct hwpoison_walk *hwp) 774 { 775 pmd_t pmd = *pmdp; 776 unsigned long pfn; 777 unsigned long hwpoison_vaddr; 778 779 if (!pmd_present(pmd)) 780 return 0; 781 pfn = pmd_pfn(pmd); 782 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 783 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 784 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 785 return 1; 786 } 787 return 0; 788 } 789 #else 790 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 791 struct hwpoison_walk *hwp) 792 { 793 return 0; 794 } 795 #endif 796 797 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 798 unsigned long end, struct mm_walk *walk) 799 { 800 struct hwpoison_walk *hwp = walk->private; 801 int ret = 0; 802 pte_t *ptep, *mapped_pte; 803 spinlock_t *ptl; 804 805 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 806 if (ptl) { 807 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 808 spin_unlock(ptl); 809 goto out; 810 } 811 812 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 813 addr, &ptl); 814 if (!ptep) 815 goto out; 816 817 for (; addr != end; ptep++, addr += PAGE_SIZE) { 818 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, 819 hwp->pfn, &hwp->tk); 820 if (ret == 1) 821 break; 822 } 823 pte_unmap_unlock(mapped_pte, ptl); 824 out: 825 cond_resched(); 826 return ret; 827 } 828 829 #ifdef CONFIG_HUGETLB_PAGE 830 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 831 unsigned long addr, unsigned long end, 832 struct mm_walk *walk) 833 { 834 struct hwpoison_walk *hwp = walk->private; 835 pte_t pte = huge_ptep_get(ptep); 836 struct hstate *h = hstate_vma(walk->vma); 837 838 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 839 hwp->pfn, &hwp->tk); 840 } 841 #else 842 #define hwpoison_hugetlb_range NULL 843 #endif 844 845 static const struct mm_walk_ops hwpoison_walk_ops = { 846 .pmd_entry = hwpoison_pte_range, 847 .hugetlb_entry = hwpoison_hugetlb_range, 848 .walk_lock = PGWALK_RDLOCK, 849 }; 850 851 /* 852 * Sends SIGBUS to the current process with error info. 853 * 854 * This function is intended to handle "Action Required" MCEs on already 855 * hardware poisoned pages. They could happen, for example, when 856 * memory_failure() failed to unmap the error page at the first call, or 857 * when multiple local machine checks happened on different CPUs. 858 * 859 * MCE handler currently has no easy access to the error virtual address, 860 * so this function walks page table to find it. The returned virtual address 861 * is proper in most cases, but it could be wrong when the application 862 * process has multiple entries mapping the error page. 863 */ 864 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 865 int flags) 866 { 867 int ret; 868 struct hwpoison_walk priv = { 869 .pfn = pfn, 870 }; 871 priv.tk.tsk = p; 872 873 if (!p->mm) 874 return -EFAULT; 875 876 mmap_read_lock(p->mm); 877 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops, 878 (void *)&priv); 879 if (ret == 1 && priv.tk.addr) 880 kill_proc(&priv.tk, pfn, flags); 881 else 882 ret = 0; 883 mmap_read_unlock(p->mm); 884 return ret > 0 ? -EHWPOISON : -EFAULT; 885 } 886 887 static const char *action_name[] = { 888 [MF_IGNORED] = "Ignored", 889 [MF_FAILED] = "Failed", 890 [MF_DELAYED] = "Delayed", 891 [MF_RECOVERED] = "Recovered", 892 }; 893 894 static const char * const action_page_types[] = { 895 [MF_MSG_KERNEL] = "reserved kernel page", 896 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 897 [MF_MSG_SLAB] = "kernel slab page", 898 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 899 [MF_MSG_HUGE] = "huge page", 900 [MF_MSG_FREE_HUGE] = "free huge page", 901 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 902 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 903 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 904 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 905 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 906 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 907 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 908 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 909 [MF_MSG_CLEAN_LRU] = "clean LRU page", 910 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 911 [MF_MSG_BUDDY] = "free buddy page", 912 [MF_MSG_DAX] = "dax page", 913 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 914 [MF_MSG_UNKNOWN] = "unknown page", 915 }; 916 917 /* 918 * XXX: It is possible that a page is isolated from LRU cache, 919 * and then kept in swap cache or failed to remove from page cache. 920 * The page count will stop it from being freed by unpoison. 921 * Stress tests should be aware of this memory leak problem. 922 */ 923 static int delete_from_lru_cache(struct folio *folio) 924 { 925 if (folio_isolate_lru(folio)) { 926 /* 927 * Clear sensible page flags, so that the buddy system won't 928 * complain when the folio is unpoison-and-freed. 929 */ 930 folio_clear_active(folio); 931 folio_clear_unevictable(folio); 932 933 /* 934 * Poisoned page might never drop its ref count to 0 so we have 935 * to uncharge it manually from its memcg. 936 */ 937 mem_cgroup_uncharge(folio); 938 939 /* 940 * drop the refcount elevated by folio_isolate_lru() 941 */ 942 folio_put(folio); 943 return 0; 944 } 945 return -EIO; 946 } 947 948 static int truncate_error_folio(struct folio *folio, unsigned long pfn, 949 struct address_space *mapping) 950 { 951 int ret = MF_FAILED; 952 953 if (mapping->a_ops->error_remove_folio) { 954 int err = mapping->a_ops->error_remove_folio(mapping, folio); 955 956 if (err != 0) 957 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 958 else if (!filemap_release_folio(folio, GFP_NOIO)) 959 pr_info("%#lx: failed to release buffers\n", pfn); 960 else 961 ret = MF_RECOVERED; 962 } else { 963 /* 964 * If the file system doesn't support it just invalidate 965 * This fails on dirty or anything with private pages 966 */ 967 if (mapping_evict_folio(mapping, folio)) 968 ret = MF_RECOVERED; 969 else 970 pr_info("%#lx: Failed to invalidate\n", pfn); 971 } 972 973 return ret; 974 } 975 976 struct page_state { 977 unsigned long mask; 978 unsigned long res; 979 enum mf_action_page_type type; 980 981 /* Callback ->action() has to unlock the relevant page inside it. */ 982 int (*action)(struct page_state *ps, struct page *p); 983 }; 984 985 /* 986 * Return true if page is still referenced by others, otherwise return 987 * false. 988 * 989 * The extra_pins is true when one extra refcount is expected. 990 */ 991 static bool has_extra_refcount(struct page_state *ps, struct page *p, 992 bool extra_pins) 993 { 994 int count = page_count(p) - 1; 995 996 if (extra_pins) 997 count -= folio_nr_pages(page_folio(p)); 998 999 if (count > 0) { 1000 pr_err("%#lx: %s still referenced by %d users\n", 1001 page_to_pfn(p), action_page_types[ps->type], count); 1002 return true; 1003 } 1004 1005 return false; 1006 } 1007 1008 /* 1009 * Error hit kernel page. 1010 * Do nothing, try to be lucky and not touch this instead. For a few cases we 1011 * could be more sophisticated. 1012 */ 1013 static int me_kernel(struct page_state *ps, struct page *p) 1014 { 1015 unlock_page(p); 1016 return MF_IGNORED; 1017 } 1018 1019 /* 1020 * Page in unknown state. Do nothing. 1021 */ 1022 static int me_unknown(struct page_state *ps, struct page *p) 1023 { 1024 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1025 unlock_page(p); 1026 return MF_FAILED; 1027 } 1028 1029 /* 1030 * Clean (or cleaned) page cache page. 1031 */ 1032 static int me_pagecache_clean(struct page_state *ps, struct page *p) 1033 { 1034 struct folio *folio = page_folio(p); 1035 int ret; 1036 struct address_space *mapping; 1037 bool extra_pins; 1038 1039 delete_from_lru_cache(folio); 1040 1041 /* 1042 * For anonymous folios the only reference left 1043 * should be the one m_f() holds. 1044 */ 1045 if (folio_test_anon(folio)) { 1046 ret = MF_RECOVERED; 1047 goto out; 1048 } 1049 1050 /* 1051 * Now truncate the page in the page cache. This is really 1052 * more like a "temporary hole punch" 1053 * Don't do this for block devices when someone else 1054 * has a reference, because it could be file system metadata 1055 * and that's not safe to truncate. 1056 */ 1057 mapping = folio_mapping(folio); 1058 if (!mapping) { 1059 /* Folio has been torn down in the meantime */ 1060 ret = MF_FAILED; 1061 goto out; 1062 } 1063 1064 /* 1065 * The shmem page is kept in page cache instead of truncating 1066 * so is expected to have an extra refcount after error-handling. 1067 */ 1068 extra_pins = shmem_mapping(mapping); 1069 1070 /* 1071 * Truncation is a bit tricky. Enable it per file system for now. 1072 * 1073 * Open: to take i_rwsem or not for this? Right now we don't. 1074 */ 1075 ret = truncate_error_folio(folio, page_to_pfn(p), mapping); 1076 if (has_extra_refcount(ps, p, extra_pins)) 1077 ret = MF_FAILED; 1078 1079 out: 1080 folio_unlock(folio); 1081 1082 return ret; 1083 } 1084 1085 /* 1086 * Dirty pagecache page 1087 * Issues: when the error hit a hole page the error is not properly 1088 * propagated. 1089 */ 1090 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1091 { 1092 struct address_space *mapping = page_mapping(p); 1093 1094 SetPageError(p); 1095 /* TBD: print more information about the file. */ 1096 if (mapping) { 1097 /* 1098 * IO error will be reported by write(), fsync(), etc. 1099 * who check the mapping. 1100 * This way the application knows that something went 1101 * wrong with its dirty file data. 1102 * 1103 * There's one open issue: 1104 * 1105 * The EIO will be only reported on the next IO 1106 * operation and then cleared through the IO map. 1107 * Normally Linux has two mechanisms to pass IO error 1108 * first through the AS_EIO flag in the address space 1109 * and then through the PageError flag in the page. 1110 * Since we drop pages on memory failure handling the 1111 * only mechanism open to use is through AS_AIO. 1112 * 1113 * This has the disadvantage that it gets cleared on 1114 * the first operation that returns an error, while 1115 * the PageError bit is more sticky and only cleared 1116 * when the page is reread or dropped. If an 1117 * application assumes it will always get error on 1118 * fsync, but does other operations on the fd before 1119 * and the page is dropped between then the error 1120 * will not be properly reported. 1121 * 1122 * This can already happen even without hwpoisoned 1123 * pages: first on metadata IO errors (which only 1124 * report through AS_EIO) or when the page is dropped 1125 * at the wrong time. 1126 * 1127 * So right now we assume that the application DTRT on 1128 * the first EIO, but we're not worse than other parts 1129 * of the kernel. 1130 */ 1131 mapping_set_error(mapping, -EIO); 1132 } 1133 1134 return me_pagecache_clean(ps, p); 1135 } 1136 1137 /* 1138 * Clean and dirty swap cache. 1139 * 1140 * Dirty swap cache page is tricky to handle. The page could live both in page 1141 * cache and swap cache(ie. page is freshly swapped in). So it could be 1142 * referenced concurrently by 2 types of PTEs: 1143 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1144 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1145 * and then 1146 * - clear dirty bit to prevent IO 1147 * - remove from LRU 1148 * - but keep in the swap cache, so that when we return to it on 1149 * a later page fault, we know the application is accessing 1150 * corrupted data and shall be killed (we installed simple 1151 * interception code in do_swap_page to catch it). 1152 * 1153 * Clean swap cache pages can be directly isolated. A later page fault will 1154 * bring in the known good data from disk. 1155 */ 1156 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1157 { 1158 struct folio *folio = page_folio(p); 1159 int ret; 1160 bool extra_pins = false; 1161 1162 folio_clear_dirty(folio); 1163 /* Trigger EIO in shmem: */ 1164 folio_clear_uptodate(folio); 1165 1166 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED; 1167 folio_unlock(folio); 1168 1169 if (ret == MF_DELAYED) 1170 extra_pins = true; 1171 1172 if (has_extra_refcount(ps, p, extra_pins)) 1173 ret = MF_FAILED; 1174 1175 return ret; 1176 } 1177 1178 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1179 { 1180 struct folio *folio = page_folio(p); 1181 int ret; 1182 1183 delete_from_swap_cache(folio); 1184 1185 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED; 1186 folio_unlock(folio); 1187 1188 if (has_extra_refcount(ps, p, false)) 1189 ret = MF_FAILED; 1190 1191 return ret; 1192 } 1193 1194 /* 1195 * Huge pages. Needs work. 1196 * Issues: 1197 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1198 * To narrow down kill region to one page, we need to break up pmd. 1199 */ 1200 static int me_huge_page(struct page_state *ps, struct page *p) 1201 { 1202 struct folio *folio = page_folio(p); 1203 int res; 1204 struct address_space *mapping; 1205 bool extra_pins = false; 1206 1207 mapping = folio_mapping(folio); 1208 if (mapping) { 1209 res = truncate_error_folio(folio, page_to_pfn(p), mapping); 1210 /* The page is kept in page cache. */ 1211 extra_pins = true; 1212 folio_unlock(folio); 1213 } else { 1214 folio_unlock(folio); 1215 /* 1216 * migration entry prevents later access on error hugepage, 1217 * so we can free and dissolve it into buddy to save healthy 1218 * subpages. 1219 */ 1220 folio_put(folio); 1221 if (__page_handle_poison(p) >= 0) { 1222 page_ref_inc(p); 1223 res = MF_RECOVERED; 1224 } else { 1225 res = MF_FAILED; 1226 } 1227 } 1228 1229 if (has_extra_refcount(ps, p, extra_pins)) 1230 res = MF_FAILED; 1231 1232 return res; 1233 } 1234 1235 /* 1236 * Various page states we can handle. 1237 * 1238 * A page state is defined by its current page->flags bits. 1239 * The table matches them in order and calls the right handler. 1240 * 1241 * This is quite tricky because we can access page at any time 1242 * in its live cycle, so all accesses have to be extremely careful. 1243 * 1244 * This is not complete. More states could be added. 1245 * For any missing state don't attempt recovery. 1246 */ 1247 1248 #define dirty (1UL << PG_dirty) 1249 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1250 #define unevict (1UL << PG_unevictable) 1251 #define mlock (1UL << PG_mlocked) 1252 #define lru (1UL << PG_lru) 1253 #define head (1UL << PG_head) 1254 #define slab (1UL << PG_slab) 1255 #define reserved (1UL << PG_reserved) 1256 1257 static struct page_state error_states[] = { 1258 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1259 /* 1260 * free pages are specially detected outside this table: 1261 * PG_buddy pages only make a small fraction of all free pages. 1262 */ 1263 1264 /* 1265 * Could in theory check if slab page is free or if we can drop 1266 * currently unused objects without touching them. But just 1267 * treat it as standard kernel for now. 1268 */ 1269 { slab, slab, MF_MSG_SLAB, me_kernel }, 1270 1271 { head, head, MF_MSG_HUGE, me_huge_page }, 1272 1273 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1274 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1275 1276 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1277 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1278 1279 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1280 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1281 1282 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1283 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1284 1285 /* 1286 * Catchall entry: must be at end. 1287 */ 1288 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1289 }; 1290 1291 #undef dirty 1292 #undef sc 1293 #undef unevict 1294 #undef mlock 1295 #undef lru 1296 #undef head 1297 #undef slab 1298 #undef reserved 1299 1300 static void update_per_node_mf_stats(unsigned long pfn, 1301 enum mf_result result) 1302 { 1303 int nid = MAX_NUMNODES; 1304 struct memory_failure_stats *mf_stats = NULL; 1305 1306 nid = pfn_to_nid(pfn); 1307 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1308 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1309 return; 1310 } 1311 1312 mf_stats = &NODE_DATA(nid)->mf_stats; 1313 switch (result) { 1314 case MF_IGNORED: 1315 ++mf_stats->ignored; 1316 break; 1317 case MF_FAILED: 1318 ++mf_stats->failed; 1319 break; 1320 case MF_DELAYED: 1321 ++mf_stats->delayed; 1322 break; 1323 case MF_RECOVERED: 1324 ++mf_stats->recovered; 1325 break; 1326 default: 1327 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1328 break; 1329 } 1330 ++mf_stats->total; 1331 } 1332 1333 /* 1334 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1335 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1336 */ 1337 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1338 enum mf_result result) 1339 { 1340 trace_memory_failure_event(pfn, type, result); 1341 1342 num_poisoned_pages_inc(pfn); 1343 1344 update_per_node_mf_stats(pfn, result); 1345 1346 pr_err("%#lx: recovery action for %s: %s\n", 1347 pfn, action_page_types[type], action_name[result]); 1348 1349 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1350 } 1351 1352 static int page_action(struct page_state *ps, struct page *p, 1353 unsigned long pfn) 1354 { 1355 int result; 1356 1357 /* page p should be unlocked after returning from ps->action(). */ 1358 result = ps->action(ps, p); 1359 1360 /* Could do more checks here if page looks ok */ 1361 /* 1362 * Could adjust zone counters here to correct for the missing page. 1363 */ 1364 1365 return action_result(pfn, ps->type, result); 1366 } 1367 1368 static inline bool PageHWPoisonTakenOff(struct page *page) 1369 { 1370 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1371 } 1372 1373 void SetPageHWPoisonTakenOff(struct page *page) 1374 { 1375 set_page_private(page, MAGIC_HWPOISON); 1376 } 1377 1378 void ClearPageHWPoisonTakenOff(struct page *page) 1379 { 1380 if (PageHWPoison(page)) 1381 set_page_private(page, 0); 1382 } 1383 1384 /* 1385 * Return true if a page type of a given page is supported by hwpoison 1386 * mechanism (while handling could fail), otherwise false. This function 1387 * does not return true for hugetlb or device memory pages, so it's assumed 1388 * to be called only in the context where we never have such pages. 1389 */ 1390 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1391 { 1392 if (PageSlab(page)) 1393 return false; 1394 1395 /* Soft offline could migrate non-LRU movable pages */ 1396 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1397 return true; 1398 1399 return PageLRU(page) || is_free_buddy_page(page); 1400 } 1401 1402 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1403 { 1404 struct folio *folio = page_folio(page); 1405 int ret = 0; 1406 bool hugetlb = false; 1407 1408 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1409 if (hugetlb) { 1410 /* Make sure hugetlb demotion did not happen from under us. */ 1411 if (folio == page_folio(page)) 1412 return ret; 1413 if (ret > 0) { 1414 folio_put(folio); 1415 folio = page_folio(page); 1416 } 1417 } 1418 1419 /* 1420 * This check prevents from calling folio_try_get() for any 1421 * unsupported type of folio in order to reduce the risk of unexpected 1422 * races caused by taking a folio refcount. 1423 */ 1424 if (!HWPoisonHandlable(&folio->page, flags)) 1425 return -EBUSY; 1426 1427 if (folio_try_get(folio)) { 1428 if (folio == page_folio(page)) 1429 return 1; 1430 1431 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1432 folio_put(folio); 1433 } 1434 1435 return 0; 1436 } 1437 1438 static int get_any_page(struct page *p, unsigned long flags) 1439 { 1440 int ret = 0, pass = 0; 1441 bool count_increased = false; 1442 1443 if (flags & MF_COUNT_INCREASED) 1444 count_increased = true; 1445 1446 try_again: 1447 if (!count_increased) { 1448 ret = __get_hwpoison_page(p, flags); 1449 if (!ret) { 1450 if (page_count(p)) { 1451 /* We raced with an allocation, retry. */ 1452 if (pass++ < 3) 1453 goto try_again; 1454 ret = -EBUSY; 1455 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1456 /* We raced with put_page, retry. */ 1457 if (pass++ < 3) 1458 goto try_again; 1459 ret = -EIO; 1460 } 1461 goto out; 1462 } else if (ret == -EBUSY) { 1463 /* 1464 * We raced with (possibly temporary) unhandlable 1465 * page, retry. 1466 */ 1467 if (pass++ < 3) { 1468 shake_page(p); 1469 goto try_again; 1470 } 1471 ret = -EIO; 1472 goto out; 1473 } 1474 } 1475 1476 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1477 ret = 1; 1478 } else { 1479 /* 1480 * A page we cannot handle. Check whether we can turn 1481 * it into something we can handle. 1482 */ 1483 if (pass++ < 3) { 1484 put_page(p); 1485 shake_page(p); 1486 count_increased = false; 1487 goto try_again; 1488 } 1489 put_page(p); 1490 ret = -EIO; 1491 } 1492 out: 1493 if (ret == -EIO) 1494 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1495 1496 return ret; 1497 } 1498 1499 static int __get_unpoison_page(struct page *page) 1500 { 1501 struct folio *folio = page_folio(page); 1502 int ret = 0; 1503 bool hugetlb = false; 1504 1505 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1506 if (hugetlb) { 1507 /* Make sure hugetlb demotion did not happen from under us. */ 1508 if (folio == page_folio(page)) 1509 return ret; 1510 if (ret > 0) 1511 folio_put(folio); 1512 } 1513 1514 /* 1515 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1516 * but also isolated from buddy freelist, so need to identify the 1517 * state and have to cancel both operations to unpoison. 1518 */ 1519 if (PageHWPoisonTakenOff(page)) 1520 return -EHWPOISON; 1521 1522 return get_page_unless_zero(page) ? 1 : 0; 1523 } 1524 1525 /** 1526 * get_hwpoison_page() - Get refcount for memory error handling 1527 * @p: Raw error page (hit by memory error) 1528 * @flags: Flags controlling behavior of error handling 1529 * 1530 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1531 * error on it, after checking that the error page is in a well-defined state 1532 * (defined as a page-type we can successfully handle the memory error on it, 1533 * such as LRU page and hugetlb page). 1534 * 1535 * Memory error handling could be triggered at any time on any type of page, 1536 * so it's prone to race with typical memory management lifecycle (like 1537 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1538 * extra care for the error page's state (as done in __get_hwpoison_page()), 1539 * and has some retry logic in get_any_page(). 1540 * 1541 * When called from unpoison_memory(), the caller should already ensure that 1542 * the given page has PG_hwpoison. So it's never reused for other page 1543 * allocations, and __get_unpoison_page() never races with them. 1544 * 1545 * Return: 0 on failure, 1546 * 1 on success for in-use pages in a well-defined state, 1547 * -EIO for pages on which we can not handle memory errors, 1548 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1549 * operations like allocation and free, 1550 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1551 */ 1552 static int get_hwpoison_page(struct page *p, unsigned long flags) 1553 { 1554 int ret; 1555 1556 zone_pcp_disable(page_zone(p)); 1557 if (flags & MF_UNPOISON) 1558 ret = __get_unpoison_page(p); 1559 else 1560 ret = get_any_page(p, flags); 1561 zone_pcp_enable(page_zone(p)); 1562 1563 return ret; 1564 } 1565 1566 /* 1567 * Do all that is necessary to remove user space mappings. Unmap 1568 * the pages and send SIGBUS to the processes if the data was dirty. 1569 */ 1570 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1571 int flags, struct page *hpage) 1572 { 1573 struct folio *folio = page_folio(hpage); 1574 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1575 struct address_space *mapping; 1576 LIST_HEAD(tokill); 1577 bool unmap_success; 1578 int forcekill; 1579 bool mlocked = PageMlocked(hpage); 1580 1581 /* 1582 * Here we are interested only in user-mapped pages, so skip any 1583 * other types of pages. 1584 */ 1585 if (PageReserved(p) || PageSlab(p) || PageTable(p) || PageOffline(p)) 1586 return true; 1587 if (!(PageLRU(hpage) || PageHuge(p))) 1588 return true; 1589 1590 /* 1591 * This check implies we don't kill processes if their pages 1592 * are in the swap cache early. Those are always late kills. 1593 */ 1594 if (!page_mapped(p)) 1595 return true; 1596 1597 if (PageSwapCache(p)) { 1598 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1599 ttu &= ~TTU_HWPOISON; 1600 } 1601 1602 /* 1603 * Propagate the dirty bit from PTEs to struct page first, because we 1604 * need this to decide if we should kill or just drop the page. 1605 * XXX: the dirty test could be racy: set_page_dirty() may not always 1606 * be called inside page lock (it's recommended but not enforced). 1607 */ 1608 mapping = page_mapping(hpage); 1609 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1610 mapping_can_writeback(mapping)) { 1611 if (page_mkclean(hpage)) { 1612 SetPageDirty(hpage); 1613 } else { 1614 ttu &= ~TTU_HWPOISON; 1615 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1616 pfn); 1617 } 1618 } 1619 1620 /* 1621 * First collect all the processes that have the page 1622 * mapped in dirty form. This has to be done before try_to_unmap, 1623 * because ttu takes the rmap data structures down. 1624 */ 1625 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 1626 1627 if (PageHuge(hpage) && !PageAnon(hpage)) { 1628 /* 1629 * For hugetlb pages in shared mappings, try_to_unmap 1630 * could potentially call huge_pmd_unshare. Because of 1631 * this, take semaphore in write mode here and set 1632 * TTU_RMAP_LOCKED to indicate we have taken the lock 1633 * at this higher level. 1634 */ 1635 mapping = hugetlb_page_mapping_lock_write(hpage); 1636 if (mapping) { 1637 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1638 i_mmap_unlock_write(mapping); 1639 } else 1640 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); 1641 } else { 1642 try_to_unmap(folio, ttu); 1643 } 1644 1645 unmap_success = !page_mapped(p); 1646 if (!unmap_success) 1647 pr_err("%#lx: failed to unmap page (mapcount=%d)\n", 1648 pfn, page_mapcount(p)); 1649 1650 /* 1651 * try_to_unmap() might put mlocked page in lru cache, so call 1652 * shake_page() again to ensure that it's flushed. 1653 */ 1654 if (mlocked) 1655 shake_page(hpage); 1656 1657 /* 1658 * Now that the dirty bit has been propagated to the 1659 * struct page and all unmaps done we can decide if 1660 * killing is needed or not. Only kill when the page 1661 * was dirty or the process is not restartable, 1662 * otherwise the tokill list is merely 1663 * freed. When there was a problem unmapping earlier 1664 * use a more force-full uncatchable kill to prevent 1665 * any accesses to the poisoned memory. 1666 */ 1667 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) || 1668 !unmap_success; 1669 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1670 1671 return unmap_success; 1672 } 1673 1674 static int identify_page_state(unsigned long pfn, struct page *p, 1675 unsigned long page_flags) 1676 { 1677 struct page_state *ps; 1678 1679 /* 1680 * The first check uses the current page flags which may not have any 1681 * relevant information. The second check with the saved page flags is 1682 * carried out only if the first check can't determine the page status. 1683 */ 1684 for (ps = error_states;; ps++) 1685 if ((p->flags & ps->mask) == ps->res) 1686 break; 1687 1688 page_flags |= (p->flags & (1UL << PG_dirty)); 1689 1690 if (!ps->mask) 1691 for (ps = error_states;; ps++) 1692 if ((page_flags & ps->mask) == ps->res) 1693 break; 1694 return page_action(ps, p, pfn); 1695 } 1696 1697 static int try_to_split_thp_page(struct page *page) 1698 { 1699 int ret; 1700 1701 lock_page(page); 1702 ret = split_huge_page(page); 1703 unlock_page(page); 1704 1705 if (unlikely(ret)) 1706 put_page(page); 1707 1708 return ret; 1709 } 1710 1711 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1712 struct address_space *mapping, pgoff_t index, int flags) 1713 { 1714 struct to_kill *tk; 1715 unsigned long size = 0; 1716 1717 list_for_each_entry(tk, to_kill, nd) 1718 if (tk->size_shift) 1719 size = max(size, 1UL << tk->size_shift); 1720 1721 if (size) { 1722 /* 1723 * Unmap the largest mapping to avoid breaking up device-dax 1724 * mappings which are constant size. The actual size of the 1725 * mapping being torn down is communicated in siginfo, see 1726 * kill_proc() 1727 */ 1728 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1); 1729 1730 unmap_mapping_range(mapping, start, size, 0); 1731 } 1732 1733 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); 1734 } 1735 1736 /* 1737 * Only dev_pagemap pages get here, such as fsdax when the filesystem 1738 * either do not claim or fails to claim a hwpoison event, or devdax. 1739 * The fsdax pages are initialized per base page, and the devdax pages 1740 * could be initialized either as base pages, or as compound pages with 1741 * vmemmap optimization enabled. Devdax is simplistic in its dealing with 1742 * hwpoison, such that, if a subpage of a compound page is poisoned, 1743 * simply mark the compound head page is by far sufficient. 1744 */ 1745 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1746 struct dev_pagemap *pgmap) 1747 { 1748 struct folio *folio = pfn_folio(pfn); 1749 LIST_HEAD(to_kill); 1750 dax_entry_t cookie; 1751 int rc = 0; 1752 1753 /* 1754 * Prevent the inode from being freed while we are interrogating 1755 * the address_space, typically this would be handled by 1756 * lock_page(), but dax pages do not use the page lock. This 1757 * also prevents changes to the mapping of this pfn until 1758 * poison signaling is complete. 1759 */ 1760 cookie = dax_lock_folio(folio); 1761 if (!cookie) 1762 return -EBUSY; 1763 1764 if (hwpoison_filter(&folio->page)) { 1765 rc = -EOPNOTSUPP; 1766 goto unlock; 1767 } 1768 1769 switch (pgmap->type) { 1770 case MEMORY_DEVICE_PRIVATE: 1771 case MEMORY_DEVICE_COHERENT: 1772 /* 1773 * TODO: Handle device pages which may need coordination 1774 * with device-side memory. 1775 */ 1776 rc = -ENXIO; 1777 goto unlock; 1778 default: 1779 break; 1780 } 1781 1782 /* 1783 * Use this flag as an indication that the dax page has been 1784 * remapped UC to prevent speculative consumption of poison. 1785 */ 1786 SetPageHWPoison(&folio->page); 1787 1788 /* 1789 * Unlike System-RAM there is no possibility to swap in a 1790 * different physical page at a given virtual address, so all 1791 * userspace consumption of ZONE_DEVICE memory necessitates 1792 * SIGBUS (i.e. MF_MUST_KILL) 1793 */ 1794 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1795 collect_procs(folio, &folio->page, &to_kill, true); 1796 1797 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags); 1798 unlock: 1799 dax_unlock_folio(folio, cookie); 1800 return rc; 1801 } 1802 1803 #ifdef CONFIG_FS_DAX 1804 /** 1805 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1806 * @mapping: address_space of the file in use 1807 * @index: start pgoff of the range within the file 1808 * @count: length of the range, in unit of PAGE_SIZE 1809 * @mf_flags: memory failure flags 1810 */ 1811 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1812 unsigned long count, int mf_flags) 1813 { 1814 LIST_HEAD(to_kill); 1815 dax_entry_t cookie; 1816 struct page *page; 1817 size_t end = index + count; 1818 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE; 1819 1820 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1821 1822 for (; index < end; index++) { 1823 page = NULL; 1824 cookie = dax_lock_mapping_entry(mapping, index, &page); 1825 if (!cookie) 1826 return -EBUSY; 1827 if (!page) 1828 goto unlock; 1829 1830 if (!pre_remove) 1831 SetPageHWPoison(page); 1832 1833 /* 1834 * The pre_remove case is revoking access, the memory is still 1835 * good and could theoretically be put back into service. 1836 */ 1837 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove); 1838 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1839 index, mf_flags); 1840 unlock: 1841 dax_unlock_mapping_entry(mapping, index, cookie); 1842 } 1843 return 0; 1844 } 1845 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1846 #endif /* CONFIG_FS_DAX */ 1847 1848 #ifdef CONFIG_HUGETLB_PAGE 1849 1850 /* 1851 * Struct raw_hwp_page represents information about "raw error page", 1852 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1853 */ 1854 struct raw_hwp_page { 1855 struct llist_node node; 1856 struct page *page; 1857 }; 1858 1859 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1860 { 1861 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1862 } 1863 1864 bool is_raw_hwpoison_page_in_hugepage(struct page *page) 1865 { 1866 struct llist_head *raw_hwp_head; 1867 struct raw_hwp_page *p; 1868 struct folio *folio = page_folio(page); 1869 bool ret = false; 1870 1871 if (!folio_test_hwpoison(folio)) 1872 return false; 1873 1874 if (!folio_test_hugetlb(folio)) 1875 return PageHWPoison(page); 1876 1877 /* 1878 * When RawHwpUnreliable is set, kernel lost track of which subpages 1879 * are HWPOISON. So return as if ALL subpages are HWPOISONed. 1880 */ 1881 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1882 return true; 1883 1884 mutex_lock(&mf_mutex); 1885 1886 raw_hwp_head = raw_hwp_list_head(folio); 1887 llist_for_each_entry(p, raw_hwp_head->first, node) { 1888 if (page == p->page) { 1889 ret = true; 1890 break; 1891 } 1892 } 1893 1894 mutex_unlock(&mf_mutex); 1895 1896 return ret; 1897 } 1898 1899 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1900 { 1901 struct llist_node *head; 1902 struct raw_hwp_page *p, *next; 1903 unsigned long count = 0; 1904 1905 head = llist_del_all(raw_hwp_list_head(folio)); 1906 llist_for_each_entry_safe(p, next, head, node) { 1907 if (move_flag) 1908 SetPageHWPoison(p->page); 1909 else 1910 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1911 kfree(p); 1912 count++; 1913 } 1914 return count; 1915 } 1916 1917 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1918 { 1919 struct llist_head *head; 1920 struct raw_hwp_page *raw_hwp; 1921 struct raw_hwp_page *p, *next; 1922 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1923 1924 /* 1925 * Once the hwpoison hugepage has lost reliable raw error info, 1926 * there is little meaning to keep additional error info precisely, 1927 * so skip to add additional raw error info. 1928 */ 1929 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1930 return -EHWPOISON; 1931 head = raw_hwp_list_head(folio); 1932 llist_for_each_entry_safe(p, next, head->first, node) { 1933 if (p->page == page) 1934 return -EHWPOISON; 1935 } 1936 1937 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1938 if (raw_hwp) { 1939 raw_hwp->page = page; 1940 llist_add(&raw_hwp->node, head); 1941 /* the first error event will be counted in action_result(). */ 1942 if (ret) 1943 num_poisoned_pages_inc(page_to_pfn(page)); 1944 } else { 1945 /* 1946 * Failed to save raw error info. We no longer trace all 1947 * hwpoisoned subpages, and we need refuse to free/dissolve 1948 * this hwpoisoned hugepage. 1949 */ 1950 folio_set_hugetlb_raw_hwp_unreliable(folio); 1951 /* 1952 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1953 * used any more, so free it. 1954 */ 1955 __folio_free_raw_hwp(folio, false); 1956 } 1957 return ret; 1958 } 1959 1960 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1961 { 1962 /* 1963 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1964 * pages for tail pages are required but they don't exist. 1965 */ 1966 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1967 return 0; 1968 1969 /* 1970 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1971 * definition. 1972 */ 1973 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1974 return 0; 1975 1976 return __folio_free_raw_hwp(folio, move_flag); 1977 } 1978 1979 void folio_clear_hugetlb_hwpoison(struct folio *folio) 1980 { 1981 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1982 return; 1983 if (folio_test_hugetlb_vmemmap_optimized(folio)) 1984 return; 1985 folio_clear_hwpoison(folio); 1986 folio_free_raw_hwp(folio, true); 1987 } 1988 1989 /* 1990 * Called from hugetlb code with hugetlb_lock held. 1991 * 1992 * Return values: 1993 * 0 - free hugepage 1994 * 1 - in-use hugepage 1995 * 2 - not a hugepage 1996 * -EBUSY - the hugepage is busy (try to retry) 1997 * -EHWPOISON - the hugepage is already hwpoisoned 1998 */ 1999 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 2000 bool *migratable_cleared) 2001 { 2002 struct page *page = pfn_to_page(pfn); 2003 struct folio *folio = page_folio(page); 2004 int ret = 2; /* fallback to normal page handling */ 2005 bool count_increased = false; 2006 2007 if (!folio_test_hugetlb(folio)) 2008 goto out; 2009 2010 if (flags & MF_COUNT_INCREASED) { 2011 ret = 1; 2012 count_increased = true; 2013 } else if (folio_test_hugetlb_freed(folio)) { 2014 ret = 0; 2015 } else if (folio_test_hugetlb_migratable(folio)) { 2016 ret = folio_try_get(folio); 2017 if (ret) 2018 count_increased = true; 2019 } else { 2020 ret = -EBUSY; 2021 if (!(flags & MF_NO_RETRY)) 2022 goto out; 2023 } 2024 2025 if (folio_set_hugetlb_hwpoison(folio, page)) { 2026 ret = -EHWPOISON; 2027 goto out; 2028 } 2029 2030 /* 2031 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 2032 * from being migrated by memory hotremove. 2033 */ 2034 if (count_increased && folio_test_hugetlb_migratable(folio)) { 2035 folio_clear_hugetlb_migratable(folio); 2036 *migratable_cleared = true; 2037 } 2038 2039 return ret; 2040 out: 2041 if (count_increased) 2042 folio_put(folio); 2043 return ret; 2044 } 2045 2046 /* 2047 * Taking refcount of hugetlb pages needs extra care about race conditions 2048 * with basic operations like hugepage allocation/free/demotion. 2049 * So some of prechecks for hwpoison (pinning, and testing/setting 2050 * PageHWPoison) should be done in single hugetlb_lock range. 2051 */ 2052 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2053 { 2054 int res; 2055 struct page *p = pfn_to_page(pfn); 2056 struct folio *folio; 2057 unsigned long page_flags; 2058 bool migratable_cleared = false; 2059 2060 *hugetlb = 1; 2061 retry: 2062 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 2063 if (res == 2) { /* fallback to normal page handling */ 2064 *hugetlb = 0; 2065 return 0; 2066 } else if (res == -EHWPOISON) { 2067 pr_err("%#lx: already hardware poisoned\n", pfn); 2068 if (flags & MF_ACTION_REQUIRED) { 2069 folio = page_folio(p); 2070 res = kill_accessing_process(current, folio_pfn(folio), flags); 2071 } 2072 return res; 2073 } else if (res == -EBUSY) { 2074 if (!(flags & MF_NO_RETRY)) { 2075 flags |= MF_NO_RETRY; 2076 goto retry; 2077 } 2078 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2079 } 2080 2081 folio = page_folio(p); 2082 folio_lock(folio); 2083 2084 if (hwpoison_filter(p)) { 2085 folio_clear_hugetlb_hwpoison(folio); 2086 if (migratable_cleared) 2087 folio_set_hugetlb_migratable(folio); 2088 folio_unlock(folio); 2089 if (res == 1) 2090 folio_put(folio); 2091 return -EOPNOTSUPP; 2092 } 2093 2094 /* 2095 * Handling free hugepage. The possible race with hugepage allocation 2096 * or demotion can be prevented by PageHWPoison flag. 2097 */ 2098 if (res == 0) { 2099 folio_unlock(folio); 2100 if (__page_handle_poison(p) >= 0) { 2101 page_ref_inc(p); 2102 res = MF_RECOVERED; 2103 } else { 2104 res = MF_FAILED; 2105 } 2106 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2107 } 2108 2109 page_flags = folio->flags; 2110 2111 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) { 2112 folio_unlock(folio); 2113 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2114 } 2115 2116 return identify_page_state(pfn, p, page_flags); 2117 } 2118 2119 #else 2120 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2121 { 2122 return 0; 2123 } 2124 2125 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2126 { 2127 return 0; 2128 } 2129 #endif /* CONFIG_HUGETLB_PAGE */ 2130 2131 /* Drop the extra refcount in case we come from madvise() */ 2132 static void put_ref_page(unsigned long pfn, int flags) 2133 { 2134 struct page *page; 2135 2136 if (!(flags & MF_COUNT_INCREASED)) 2137 return; 2138 2139 page = pfn_to_page(pfn); 2140 if (page) 2141 put_page(page); 2142 } 2143 2144 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2145 struct dev_pagemap *pgmap) 2146 { 2147 int rc = -ENXIO; 2148 2149 /* device metadata space is not recoverable */ 2150 if (!pgmap_pfn_valid(pgmap, pfn)) 2151 goto out; 2152 2153 /* 2154 * Call driver's implementation to handle the memory failure, otherwise 2155 * fall back to generic handler. 2156 */ 2157 if (pgmap_has_memory_failure(pgmap)) { 2158 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2159 /* 2160 * Fall back to generic handler too if operation is not 2161 * supported inside the driver/device/filesystem. 2162 */ 2163 if (rc != -EOPNOTSUPP) 2164 goto out; 2165 } 2166 2167 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2168 out: 2169 /* drop pgmap ref acquired in caller */ 2170 put_dev_pagemap(pgmap); 2171 if (rc != -EOPNOTSUPP) 2172 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2173 return rc; 2174 } 2175 2176 /** 2177 * memory_failure - Handle memory failure of a page. 2178 * @pfn: Page Number of the corrupted page 2179 * @flags: fine tune action taken 2180 * 2181 * This function is called by the low level machine check code 2182 * of an architecture when it detects hardware memory corruption 2183 * of a page. It tries its best to recover, which includes 2184 * dropping pages, killing processes etc. 2185 * 2186 * The function is primarily of use for corruptions that 2187 * happen outside the current execution context (e.g. when 2188 * detected by a background scrubber) 2189 * 2190 * Must run in process context (e.g. a work queue) with interrupts 2191 * enabled and no spinlocks held. 2192 * 2193 * Return: 0 for successfully handled the memory error, 2194 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 2195 * < 0(except -EOPNOTSUPP) on failure. 2196 */ 2197 int memory_failure(unsigned long pfn, int flags) 2198 { 2199 struct page *p; 2200 struct page *hpage; 2201 struct dev_pagemap *pgmap; 2202 int res = 0; 2203 unsigned long page_flags; 2204 bool retry = true; 2205 int hugetlb = 0; 2206 2207 if (!sysctl_memory_failure_recovery) 2208 panic("Memory failure on page %lx", pfn); 2209 2210 mutex_lock(&mf_mutex); 2211 2212 if (!(flags & MF_SW_SIMULATED)) 2213 hw_memory_failure = true; 2214 2215 p = pfn_to_online_page(pfn); 2216 if (!p) { 2217 res = arch_memory_failure(pfn, flags); 2218 if (res == 0) 2219 goto unlock_mutex; 2220 2221 if (pfn_valid(pfn)) { 2222 pgmap = get_dev_pagemap(pfn, NULL); 2223 put_ref_page(pfn, flags); 2224 if (pgmap) { 2225 res = memory_failure_dev_pagemap(pfn, flags, 2226 pgmap); 2227 goto unlock_mutex; 2228 } 2229 } 2230 pr_err("%#lx: memory outside kernel control\n", pfn); 2231 res = -ENXIO; 2232 goto unlock_mutex; 2233 } 2234 2235 try_again: 2236 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2237 if (hugetlb) 2238 goto unlock_mutex; 2239 2240 if (TestSetPageHWPoison(p)) { 2241 pr_err("%#lx: already hardware poisoned\n", pfn); 2242 res = -EHWPOISON; 2243 if (flags & MF_ACTION_REQUIRED) 2244 res = kill_accessing_process(current, pfn, flags); 2245 if (flags & MF_COUNT_INCREASED) 2246 put_page(p); 2247 goto unlock_mutex; 2248 } 2249 2250 /* 2251 * We need/can do nothing about count=0 pages. 2252 * 1) it's a free page, and therefore in safe hand: 2253 * check_new_page() will be the gate keeper. 2254 * 2) it's part of a non-compound high order page. 2255 * Implies some kernel user: cannot stop them from 2256 * R/W the page; let's pray that the page has been 2257 * used and will be freed some time later. 2258 * In fact it's dangerous to directly bump up page count from 0, 2259 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2260 */ 2261 if (!(flags & MF_COUNT_INCREASED)) { 2262 res = get_hwpoison_page(p, flags); 2263 if (!res) { 2264 if (is_free_buddy_page(p)) { 2265 if (take_page_off_buddy(p)) { 2266 page_ref_inc(p); 2267 res = MF_RECOVERED; 2268 } else { 2269 /* We lost the race, try again */ 2270 if (retry) { 2271 ClearPageHWPoison(p); 2272 retry = false; 2273 goto try_again; 2274 } 2275 res = MF_FAILED; 2276 } 2277 res = action_result(pfn, MF_MSG_BUDDY, res); 2278 } else { 2279 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2280 } 2281 goto unlock_mutex; 2282 } else if (res < 0) { 2283 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2284 goto unlock_mutex; 2285 } 2286 } 2287 2288 hpage = compound_head(p); 2289 if (PageTransHuge(hpage)) { 2290 /* 2291 * The flag must be set after the refcount is bumped 2292 * otherwise it may race with THP split. 2293 * And the flag can't be set in get_hwpoison_page() since 2294 * it is called by soft offline too and it is just called 2295 * for !MF_COUNT_INCREASED. So here seems to be the best 2296 * place. 2297 * 2298 * Don't need care about the above error handling paths for 2299 * get_hwpoison_page() since they handle either free page 2300 * or unhandlable page. The refcount is bumped iff the 2301 * page is a valid handlable page. 2302 */ 2303 SetPageHasHWPoisoned(hpage); 2304 if (try_to_split_thp_page(p) < 0) { 2305 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 2306 goto unlock_mutex; 2307 } 2308 VM_BUG_ON_PAGE(!page_count(p), p); 2309 } 2310 2311 /* 2312 * We ignore non-LRU pages for good reasons. 2313 * - PG_locked is only well defined for LRU pages and a few others 2314 * - to avoid races with __SetPageLocked() 2315 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2316 * The check (unnecessarily) ignores LRU pages being isolated and 2317 * walked by the page reclaim code, however that's not a big loss. 2318 */ 2319 shake_page(p); 2320 2321 lock_page(p); 2322 2323 /* 2324 * We're only intended to deal with the non-Compound page here. 2325 * However, the page could have changed compound pages due to 2326 * race window. If this happens, we could try again to hopefully 2327 * handle the page next round. 2328 */ 2329 if (PageCompound(p)) { 2330 if (retry) { 2331 ClearPageHWPoison(p); 2332 unlock_page(p); 2333 put_page(p); 2334 flags &= ~MF_COUNT_INCREASED; 2335 retry = false; 2336 goto try_again; 2337 } 2338 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 2339 goto unlock_page; 2340 } 2341 2342 /* 2343 * We use page flags to determine what action should be taken, but 2344 * the flags can be modified by the error containment action. One 2345 * example is an mlocked page, where PG_mlocked is cleared by 2346 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page 2347 * status correctly, we save a copy of the page flags at this time. 2348 */ 2349 page_flags = p->flags; 2350 2351 if (hwpoison_filter(p)) { 2352 ClearPageHWPoison(p); 2353 unlock_page(p); 2354 put_page(p); 2355 res = -EOPNOTSUPP; 2356 goto unlock_mutex; 2357 } 2358 2359 /* 2360 * __munlock_folio() may clear a writeback page's LRU flag without 2361 * page_lock. We need wait writeback completion for this page or it 2362 * may trigger vfs BUG while evict inode. 2363 */ 2364 if (!PageLRU(p) && !PageWriteback(p)) 2365 goto identify_page_state; 2366 2367 /* 2368 * It's very difficult to mess with pages currently under IO 2369 * and in many cases impossible, so we just avoid it here. 2370 */ 2371 wait_on_page_writeback(p); 2372 2373 /* 2374 * Now take care of user space mappings. 2375 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2376 */ 2377 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 2378 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2379 goto unlock_page; 2380 } 2381 2382 /* 2383 * Torn down by someone else? 2384 */ 2385 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 2386 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2387 goto unlock_page; 2388 } 2389 2390 identify_page_state: 2391 res = identify_page_state(pfn, p, page_flags); 2392 mutex_unlock(&mf_mutex); 2393 return res; 2394 unlock_page: 2395 unlock_page(p); 2396 unlock_mutex: 2397 mutex_unlock(&mf_mutex); 2398 return res; 2399 } 2400 EXPORT_SYMBOL_GPL(memory_failure); 2401 2402 #define MEMORY_FAILURE_FIFO_ORDER 4 2403 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2404 2405 struct memory_failure_entry { 2406 unsigned long pfn; 2407 int flags; 2408 }; 2409 2410 struct memory_failure_cpu { 2411 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2412 MEMORY_FAILURE_FIFO_SIZE); 2413 spinlock_t lock; 2414 struct work_struct work; 2415 }; 2416 2417 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2418 2419 /** 2420 * memory_failure_queue - Schedule handling memory failure of a page. 2421 * @pfn: Page Number of the corrupted page 2422 * @flags: Flags for memory failure handling 2423 * 2424 * This function is called by the low level hardware error handler 2425 * when it detects hardware memory corruption of a page. It schedules 2426 * the recovering of error page, including dropping pages, killing 2427 * processes etc. 2428 * 2429 * The function is primarily of use for corruptions that 2430 * happen outside the current execution context (e.g. when 2431 * detected by a background scrubber) 2432 * 2433 * Can run in IRQ context. 2434 */ 2435 void memory_failure_queue(unsigned long pfn, int flags) 2436 { 2437 struct memory_failure_cpu *mf_cpu; 2438 unsigned long proc_flags; 2439 struct memory_failure_entry entry = { 2440 .pfn = pfn, 2441 .flags = flags, 2442 }; 2443 2444 mf_cpu = &get_cpu_var(memory_failure_cpu); 2445 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2446 if (kfifo_put(&mf_cpu->fifo, entry)) 2447 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2448 else 2449 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2450 pfn); 2451 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2452 put_cpu_var(memory_failure_cpu); 2453 } 2454 EXPORT_SYMBOL_GPL(memory_failure_queue); 2455 2456 static void memory_failure_work_func(struct work_struct *work) 2457 { 2458 struct memory_failure_cpu *mf_cpu; 2459 struct memory_failure_entry entry = { 0, }; 2460 unsigned long proc_flags; 2461 int gotten; 2462 2463 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2464 for (;;) { 2465 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2466 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2467 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2468 if (!gotten) 2469 break; 2470 if (entry.flags & MF_SOFT_OFFLINE) 2471 soft_offline_page(entry.pfn, entry.flags); 2472 else 2473 memory_failure(entry.pfn, entry.flags); 2474 } 2475 } 2476 2477 /* 2478 * Process memory_failure work queued on the specified CPU. 2479 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2480 */ 2481 void memory_failure_queue_kick(int cpu) 2482 { 2483 struct memory_failure_cpu *mf_cpu; 2484 2485 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2486 cancel_work_sync(&mf_cpu->work); 2487 memory_failure_work_func(&mf_cpu->work); 2488 } 2489 2490 static int __init memory_failure_init(void) 2491 { 2492 struct memory_failure_cpu *mf_cpu; 2493 int cpu; 2494 2495 for_each_possible_cpu(cpu) { 2496 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2497 spin_lock_init(&mf_cpu->lock); 2498 INIT_KFIFO(mf_cpu->fifo); 2499 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2500 } 2501 2502 register_sysctl_init("vm", memory_failure_table); 2503 2504 return 0; 2505 } 2506 core_initcall(memory_failure_init); 2507 2508 #undef pr_fmt 2509 #define pr_fmt(fmt) "" fmt 2510 #define unpoison_pr_info(fmt, pfn, rs) \ 2511 ({ \ 2512 if (__ratelimit(rs)) \ 2513 pr_info(fmt, pfn); \ 2514 }) 2515 2516 /** 2517 * unpoison_memory - Unpoison a previously poisoned page 2518 * @pfn: Page number of the to be unpoisoned page 2519 * 2520 * Software-unpoison a page that has been poisoned by 2521 * memory_failure() earlier. 2522 * 2523 * This is only done on the software-level, so it only works 2524 * for linux injected failures, not real hardware failures 2525 * 2526 * Returns 0 for success, otherwise -errno. 2527 */ 2528 int unpoison_memory(unsigned long pfn) 2529 { 2530 struct folio *folio; 2531 struct page *p; 2532 int ret = -EBUSY, ghp; 2533 unsigned long count = 1; 2534 bool huge = false; 2535 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2536 DEFAULT_RATELIMIT_BURST); 2537 2538 if (!pfn_valid(pfn)) 2539 return -ENXIO; 2540 2541 p = pfn_to_page(pfn); 2542 folio = page_folio(p); 2543 2544 mutex_lock(&mf_mutex); 2545 2546 if (hw_memory_failure) { 2547 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", 2548 pfn, &unpoison_rs); 2549 ret = -EOPNOTSUPP; 2550 goto unlock_mutex; 2551 } 2552 2553 if (!PageHWPoison(p)) { 2554 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2555 pfn, &unpoison_rs); 2556 goto unlock_mutex; 2557 } 2558 2559 if (folio_ref_count(folio) > 1) { 2560 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2561 pfn, &unpoison_rs); 2562 goto unlock_mutex; 2563 } 2564 2565 if (folio_test_slab(folio) || PageTable(&folio->page) || 2566 folio_test_reserved(folio) || PageOffline(&folio->page)) 2567 goto unlock_mutex; 2568 2569 /* 2570 * Note that folio->_mapcount is overloaded in SLAB, so the simple test 2571 * in folio_mapped() has to be done after folio_test_slab() is checked. 2572 */ 2573 if (folio_mapped(folio)) { 2574 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2575 pfn, &unpoison_rs); 2576 goto unlock_mutex; 2577 } 2578 2579 if (folio_mapping(folio)) { 2580 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2581 pfn, &unpoison_rs); 2582 goto unlock_mutex; 2583 } 2584 2585 ghp = get_hwpoison_page(p, MF_UNPOISON); 2586 if (!ghp) { 2587 if (PageHuge(p)) { 2588 huge = true; 2589 count = folio_free_raw_hwp(folio, false); 2590 if (count == 0) 2591 goto unlock_mutex; 2592 } 2593 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2594 } else if (ghp < 0) { 2595 if (ghp == -EHWPOISON) { 2596 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2597 } else { 2598 ret = ghp; 2599 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2600 pfn, &unpoison_rs); 2601 } 2602 } else { 2603 if (PageHuge(p)) { 2604 huge = true; 2605 count = folio_free_raw_hwp(folio, false); 2606 if (count == 0) { 2607 folio_put(folio); 2608 goto unlock_mutex; 2609 } 2610 } 2611 2612 folio_put(folio); 2613 if (TestClearPageHWPoison(p)) { 2614 folio_put(folio); 2615 ret = 0; 2616 } 2617 } 2618 2619 unlock_mutex: 2620 mutex_unlock(&mf_mutex); 2621 if (!ret) { 2622 if (!huge) 2623 num_poisoned_pages_sub(pfn, 1); 2624 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2625 page_to_pfn(p), &unpoison_rs); 2626 } 2627 return ret; 2628 } 2629 EXPORT_SYMBOL(unpoison_memory); 2630 2631 static bool mf_isolate_folio(struct folio *folio, struct list_head *pagelist) 2632 { 2633 bool isolated = false; 2634 2635 if (folio_test_hugetlb(folio)) { 2636 isolated = isolate_hugetlb(folio, pagelist); 2637 } else { 2638 bool lru = !__folio_test_movable(folio); 2639 2640 if (lru) 2641 isolated = folio_isolate_lru(folio); 2642 else 2643 isolated = isolate_movable_page(&folio->page, 2644 ISOLATE_UNEVICTABLE); 2645 2646 if (isolated) { 2647 list_add(&folio->lru, pagelist); 2648 if (lru) 2649 node_stat_add_folio(folio, NR_ISOLATED_ANON + 2650 folio_is_file_lru(folio)); 2651 } 2652 } 2653 2654 /* 2655 * If we succeed to isolate the folio, we grabbed another refcount on 2656 * the folio, so we can safely drop the one we got from get_any_page(). 2657 * If we failed to isolate the folio, it means that we cannot go further 2658 * and we will return an error, so drop the reference we got from 2659 * get_any_page() as well. 2660 */ 2661 folio_put(folio); 2662 return isolated; 2663 } 2664 2665 /* 2666 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2667 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2668 * If the page is mapped, it migrates the contents over. 2669 */ 2670 static int soft_offline_in_use_page(struct page *page) 2671 { 2672 long ret = 0; 2673 unsigned long pfn = page_to_pfn(page); 2674 struct folio *folio = page_folio(page); 2675 char const *msg_page[] = {"page", "hugepage"}; 2676 bool huge = folio_test_hugetlb(folio); 2677 LIST_HEAD(pagelist); 2678 struct migration_target_control mtc = { 2679 .nid = NUMA_NO_NODE, 2680 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2681 }; 2682 2683 if (!huge && folio_test_large(folio)) { 2684 if (try_to_split_thp_page(page)) { 2685 pr_info("soft offline: %#lx: thp split failed\n", pfn); 2686 return -EBUSY; 2687 } 2688 folio = page_folio(page); 2689 } 2690 2691 folio_lock(folio); 2692 if (!huge) 2693 folio_wait_writeback(folio); 2694 if (PageHWPoison(page)) { 2695 folio_unlock(folio); 2696 folio_put(folio); 2697 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2698 return 0; 2699 } 2700 2701 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio)) 2702 /* 2703 * Try to invalidate first. This should work for 2704 * non dirty unmapped page cache pages. 2705 */ 2706 ret = mapping_evict_folio(folio_mapping(folio), folio); 2707 folio_unlock(folio); 2708 2709 if (ret) { 2710 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2711 page_handle_poison(page, false, true); 2712 return 0; 2713 } 2714 2715 if (mf_isolate_folio(folio, &pagelist)) { 2716 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2717 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2718 if (!ret) { 2719 bool release = !huge; 2720 2721 if (!page_handle_poison(page, huge, release)) 2722 ret = -EBUSY; 2723 } else { 2724 if (!list_empty(&pagelist)) 2725 putback_movable_pages(&pagelist); 2726 2727 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2728 pfn, msg_page[huge], ret, &page->flags); 2729 if (ret > 0) 2730 ret = -EBUSY; 2731 } 2732 } else { 2733 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2734 pfn, msg_page[huge], page_count(page), &page->flags); 2735 ret = -EBUSY; 2736 } 2737 return ret; 2738 } 2739 2740 /** 2741 * soft_offline_page - Soft offline a page. 2742 * @pfn: pfn to soft-offline 2743 * @flags: flags. Same as memory_failure(). 2744 * 2745 * Returns 0 on success 2746 * -EOPNOTSUPP for hwpoison_filter() filtered the error event 2747 * < 0 otherwise negated errno. 2748 * 2749 * Soft offline a page, by migration or invalidation, 2750 * without killing anything. This is for the case when 2751 * a page is not corrupted yet (so it's still valid to access), 2752 * but has had a number of corrected errors and is better taken 2753 * out. 2754 * 2755 * The actual policy on when to do that is maintained by 2756 * user space. 2757 * 2758 * This should never impact any application or cause data loss, 2759 * however it might take some time. 2760 * 2761 * This is not a 100% solution for all memory, but tries to be 2762 * ``good enough'' for the majority of memory. 2763 */ 2764 int soft_offline_page(unsigned long pfn, int flags) 2765 { 2766 int ret; 2767 bool try_again = true; 2768 struct page *page; 2769 2770 if (!pfn_valid(pfn)) { 2771 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2772 return -ENXIO; 2773 } 2774 2775 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2776 page = pfn_to_online_page(pfn); 2777 if (!page) { 2778 put_ref_page(pfn, flags); 2779 return -EIO; 2780 } 2781 2782 mutex_lock(&mf_mutex); 2783 2784 if (PageHWPoison(page)) { 2785 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2786 put_ref_page(pfn, flags); 2787 mutex_unlock(&mf_mutex); 2788 return 0; 2789 } 2790 2791 retry: 2792 get_online_mems(); 2793 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2794 put_online_mems(); 2795 2796 if (hwpoison_filter(page)) { 2797 if (ret > 0) 2798 put_page(page); 2799 2800 mutex_unlock(&mf_mutex); 2801 return -EOPNOTSUPP; 2802 } 2803 2804 if (ret > 0) { 2805 ret = soft_offline_in_use_page(page); 2806 } else if (ret == 0) { 2807 if (!page_handle_poison(page, true, false)) { 2808 if (try_again) { 2809 try_again = false; 2810 flags &= ~MF_COUNT_INCREASED; 2811 goto retry; 2812 } 2813 ret = -EBUSY; 2814 } 2815 } 2816 2817 mutex_unlock(&mf_mutex); 2818 2819 return ret; 2820 } 2821