xref: /linux/mm/memory-failure.c (revision 5027ec19f1049a07df5b0a37b1f462514cf2724b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
66 
67 static int sysctl_memory_failure_early_kill __read_mostly;
68 
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
70 
71 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
72 
73 static bool hw_memory_failure __read_mostly = false;
74 
75 static DEFINE_MUTEX(mf_mutex);
76 
77 void num_poisoned_pages_inc(unsigned long pfn)
78 {
79 	atomic_long_inc(&num_poisoned_pages);
80 	memblk_nr_poison_inc(pfn);
81 }
82 
83 void num_poisoned_pages_sub(unsigned long pfn, long i)
84 {
85 	atomic_long_sub(i, &num_poisoned_pages);
86 	if (pfn != -1UL)
87 		memblk_nr_poison_sub(pfn, i);
88 }
89 
90 /**
91  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
92  * @_name: name of the file in the per NUMA sysfs directory.
93  */
94 #define MF_ATTR_RO(_name)					\
95 static ssize_t _name##_show(struct device *dev,			\
96 			    struct device_attribute *attr,	\
97 			    char *buf)				\
98 {								\
99 	struct memory_failure_stats *mf_stats =			\
100 		&NODE_DATA(dev->id)->mf_stats;			\
101 	return sprintf(buf, "%lu\n", mf_stats->_name);		\
102 }								\
103 static DEVICE_ATTR_RO(_name)
104 
105 MF_ATTR_RO(total);
106 MF_ATTR_RO(ignored);
107 MF_ATTR_RO(failed);
108 MF_ATTR_RO(delayed);
109 MF_ATTR_RO(recovered);
110 
111 static struct attribute *memory_failure_attr[] = {
112 	&dev_attr_total.attr,
113 	&dev_attr_ignored.attr,
114 	&dev_attr_failed.attr,
115 	&dev_attr_delayed.attr,
116 	&dev_attr_recovered.attr,
117 	NULL,
118 };
119 
120 const struct attribute_group memory_failure_attr_group = {
121 	.name = "memory_failure",
122 	.attrs = memory_failure_attr,
123 };
124 
125 static struct ctl_table memory_failure_table[] = {
126 	{
127 		.procname	= "memory_failure_early_kill",
128 		.data		= &sysctl_memory_failure_early_kill,
129 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
130 		.mode		= 0644,
131 		.proc_handler	= proc_dointvec_minmax,
132 		.extra1		= SYSCTL_ZERO,
133 		.extra2		= SYSCTL_ONE,
134 	},
135 	{
136 		.procname	= "memory_failure_recovery",
137 		.data		= &sysctl_memory_failure_recovery,
138 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
139 		.mode		= 0644,
140 		.proc_handler	= proc_dointvec_minmax,
141 		.extra1		= SYSCTL_ZERO,
142 		.extra2		= SYSCTL_ONE,
143 	},
144 	{ }
145 };
146 
147 /*
148  * Return values:
149  *   1:   the page is dissolved (if needed) and taken off from buddy,
150  *   0:   the page is dissolved (if needed) and not taken off from buddy,
151  *   < 0: failed to dissolve.
152  */
153 static int __page_handle_poison(struct page *page)
154 {
155 	int ret;
156 
157 	zone_pcp_disable(page_zone(page));
158 	ret = dissolve_free_huge_page(page);
159 	if (!ret)
160 		ret = take_page_off_buddy(page);
161 	zone_pcp_enable(page_zone(page));
162 
163 	return ret;
164 }
165 
166 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
167 {
168 	if (hugepage_or_freepage) {
169 		/*
170 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
171 		 * returns 0 for non-hugetlb pages as well.
172 		 */
173 		if (__page_handle_poison(page) <= 0)
174 			/*
175 			 * We could fail to take off the target page from buddy
176 			 * for example due to racy page allocation, but that's
177 			 * acceptable because soft-offlined page is not broken
178 			 * and if someone really want to use it, they should
179 			 * take it.
180 			 */
181 			return false;
182 	}
183 
184 	SetPageHWPoison(page);
185 	if (release)
186 		put_page(page);
187 	page_ref_inc(page);
188 	num_poisoned_pages_inc(page_to_pfn(page));
189 
190 	return true;
191 }
192 
193 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
194 
195 u32 hwpoison_filter_enable = 0;
196 u32 hwpoison_filter_dev_major = ~0U;
197 u32 hwpoison_filter_dev_minor = ~0U;
198 u64 hwpoison_filter_flags_mask;
199 u64 hwpoison_filter_flags_value;
200 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
201 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
202 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
203 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
204 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
205 
206 static int hwpoison_filter_dev(struct page *p)
207 {
208 	struct address_space *mapping;
209 	dev_t dev;
210 
211 	if (hwpoison_filter_dev_major == ~0U &&
212 	    hwpoison_filter_dev_minor == ~0U)
213 		return 0;
214 
215 	mapping = page_mapping(p);
216 	if (mapping == NULL || mapping->host == NULL)
217 		return -EINVAL;
218 
219 	dev = mapping->host->i_sb->s_dev;
220 	if (hwpoison_filter_dev_major != ~0U &&
221 	    hwpoison_filter_dev_major != MAJOR(dev))
222 		return -EINVAL;
223 	if (hwpoison_filter_dev_minor != ~0U &&
224 	    hwpoison_filter_dev_minor != MINOR(dev))
225 		return -EINVAL;
226 
227 	return 0;
228 }
229 
230 static int hwpoison_filter_flags(struct page *p)
231 {
232 	if (!hwpoison_filter_flags_mask)
233 		return 0;
234 
235 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
236 				    hwpoison_filter_flags_value)
237 		return 0;
238 	else
239 		return -EINVAL;
240 }
241 
242 /*
243  * This allows stress tests to limit test scope to a collection of tasks
244  * by putting them under some memcg. This prevents killing unrelated/important
245  * processes such as /sbin/init. Note that the target task may share clean
246  * pages with init (eg. libc text), which is harmless. If the target task
247  * share _dirty_ pages with another task B, the test scheme must make sure B
248  * is also included in the memcg. At last, due to race conditions this filter
249  * can only guarantee that the page either belongs to the memcg tasks, or is
250  * a freed page.
251  */
252 #ifdef CONFIG_MEMCG
253 u64 hwpoison_filter_memcg;
254 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
255 static int hwpoison_filter_task(struct page *p)
256 {
257 	if (!hwpoison_filter_memcg)
258 		return 0;
259 
260 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
261 		return -EINVAL;
262 
263 	return 0;
264 }
265 #else
266 static int hwpoison_filter_task(struct page *p) { return 0; }
267 #endif
268 
269 int hwpoison_filter(struct page *p)
270 {
271 	if (!hwpoison_filter_enable)
272 		return 0;
273 
274 	if (hwpoison_filter_dev(p))
275 		return -EINVAL;
276 
277 	if (hwpoison_filter_flags(p))
278 		return -EINVAL;
279 
280 	if (hwpoison_filter_task(p))
281 		return -EINVAL;
282 
283 	return 0;
284 }
285 #else
286 int hwpoison_filter(struct page *p)
287 {
288 	return 0;
289 }
290 #endif
291 
292 EXPORT_SYMBOL_GPL(hwpoison_filter);
293 
294 /*
295  * Kill all processes that have a poisoned page mapped and then isolate
296  * the page.
297  *
298  * General strategy:
299  * Find all processes having the page mapped and kill them.
300  * But we keep a page reference around so that the page is not
301  * actually freed yet.
302  * Then stash the page away
303  *
304  * There's no convenient way to get back to mapped processes
305  * from the VMAs. So do a brute-force search over all
306  * running processes.
307  *
308  * Remember that machine checks are not common (or rather
309  * if they are common you have other problems), so this shouldn't
310  * be a performance issue.
311  *
312  * Also there are some races possible while we get from the
313  * error detection to actually handle it.
314  */
315 
316 struct to_kill {
317 	struct list_head nd;
318 	struct task_struct *tsk;
319 	unsigned long addr;
320 	short size_shift;
321 };
322 
323 /*
324  * Send all the processes who have the page mapped a signal.
325  * ``action optional'' if they are not immediately affected by the error
326  * ``action required'' if error happened in current execution context
327  */
328 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
329 {
330 	struct task_struct *t = tk->tsk;
331 	short addr_lsb = tk->size_shift;
332 	int ret = 0;
333 
334 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
335 			pfn, t->comm, t->pid);
336 
337 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
338 		ret = force_sig_mceerr(BUS_MCEERR_AR,
339 				 (void __user *)tk->addr, addr_lsb);
340 	else
341 		/*
342 		 * Signal other processes sharing the page if they have
343 		 * PF_MCE_EARLY set.
344 		 * Don't use force here, it's convenient if the signal
345 		 * can be temporarily blocked.
346 		 * This could cause a loop when the user sets SIGBUS
347 		 * to SIG_IGN, but hopefully no one will do that?
348 		 */
349 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
350 				      addr_lsb, t);
351 	if (ret < 0)
352 		pr_info("Error sending signal to %s:%d: %d\n",
353 			t->comm, t->pid, ret);
354 	return ret;
355 }
356 
357 /*
358  * Unknown page type encountered. Try to check whether it can turn PageLRU by
359  * lru_add_drain_all.
360  */
361 void shake_page(struct page *p)
362 {
363 	if (PageHuge(p))
364 		return;
365 	/*
366 	 * TODO: Could shrink slab caches here if a lightweight range-based
367 	 * shrinker will be available.
368 	 */
369 	if (PageSlab(p))
370 		return;
371 
372 	lru_add_drain_all();
373 }
374 EXPORT_SYMBOL_GPL(shake_page);
375 
376 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
377 		unsigned long address)
378 {
379 	unsigned long ret = 0;
380 	pgd_t *pgd;
381 	p4d_t *p4d;
382 	pud_t *pud;
383 	pmd_t *pmd;
384 	pte_t *pte;
385 	pte_t ptent;
386 
387 	VM_BUG_ON_VMA(address == -EFAULT, vma);
388 	pgd = pgd_offset(vma->vm_mm, address);
389 	if (!pgd_present(*pgd))
390 		return 0;
391 	p4d = p4d_offset(pgd, address);
392 	if (!p4d_present(*p4d))
393 		return 0;
394 	pud = pud_offset(p4d, address);
395 	if (!pud_present(*pud))
396 		return 0;
397 	if (pud_devmap(*pud))
398 		return PUD_SHIFT;
399 	pmd = pmd_offset(pud, address);
400 	if (!pmd_present(*pmd))
401 		return 0;
402 	if (pmd_devmap(*pmd))
403 		return PMD_SHIFT;
404 	pte = pte_offset_map(pmd, address);
405 	if (!pte)
406 		return 0;
407 	ptent = ptep_get(pte);
408 	if (pte_present(ptent) && pte_devmap(ptent))
409 		ret = PAGE_SHIFT;
410 	pte_unmap(pte);
411 	return ret;
412 }
413 
414 /*
415  * Failure handling: if we can't find or can't kill a process there's
416  * not much we can do.	We just print a message and ignore otherwise.
417  */
418 
419 #define FSDAX_INVALID_PGOFF ULONG_MAX
420 
421 /*
422  * Schedule a process for later kill.
423  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
424  *
425  * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
426  * filesystem with a memory failure handler has claimed the
427  * memory_failure event. In all other cases, page->index and
428  * page->mapping are sufficient for mapping the page back to its
429  * corresponding user virtual address.
430  */
431 static void __add_to_kill(struct task_struct *tsk, struct page *p,
432 			  struct vm_area_struct *vma, struct list_head *to_kill,
433 			  unsigned long ksm_addr, pgoff_t fsdax_pgoff)
434 {
435 	struct to_kill *tk;
436 
437 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
438 	if (!tk) {
439 		pr_err("Out of memory while machine check handling\n");
440 		return;
441 	}
442 
443 	tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
444 	if (is_zone_device_page(p)) {
445 		if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
446 			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
447 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
448 	} else
449 		tk->size_shift = page_shift(compound_head(p));
450 
451 	/*
452 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
453 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
454 	 * so "tk->size_shift == 0" effectively checks no mapping on
455 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
456 	 * to a process' address space, it's possible not all N VMAs
457 	 * contain mappings for the page, but at least one VMA does.
458 	 * Only deliver SIGBUS with payload derived from the VMA that
459 	 * has a mapping for the page.
460 	 */
461 	if (tk->addr == -EFAULT) {
462 		pr_info("Unable to find user space address %lx in %s\n",
463 			page_to_pfn(p), tsk->comm);
464 	} else if (tk->size_shift == 0) {
465 		kfree(tk);
466 		return;
467 	}
468 
469 	get_task_struct(tsk);
470 	tk->tsk = tsk;
471 	list_add_tail(&tk->nd, to_kill);
472 }
473 
474 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
475 				  struct vm_area_struct *vma,
476 				  struct list_head *to_kill)
477 {
478 	__add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
479 }
480 
481 #ifdef CONFIG_KSM
482 static bool task_in_to_kill_list(struct list_head *to_kill,
483 				 struct task_struct *tsk)
484 {
485 	struct to_kill *tk, *next;
486 
487 	list_for_each_entry_safe(tk, next, to_kill, nd) {
488 		if (tk->tsk == tsk)
489 			return true;
490 	}
491 
492 	return false;
493 }
494 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
495 		     struct vm_area_struct *vma, struct list_head *to_kill,
496 		     unsigned long ksm_addr)
497 {
498 	if (!task_in_to_kill_list(to_kill, tsk))
499 		__add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
500 }
501 #endif
502 /*
503  * Kill the processes that have been collected earlier.
504  *
505  * Only do anything when FORCEKILL is set, otherwise just free the
506  * list (this is used for clean pages which do not need killing)
507  * Also when FAIL is set do a force kill because something went
508  * wrong earlier.
509  */
510 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
511 		unsigned long pfn, int flags)
512 {
513 	struct to_kill *tk, *next;
514 
515 	list_for_each_entry_safe(tk, next, to_kill, nd) {
516 		if (forcekill) {
517 			/*
518 			 * In case something went wrong with munmapping
519 			 * make sure the process doesn't catch the
520 			 * signal and then access the memory. Just kill it.
521 			 */
522 			if (fail || tk->addr == -EFAULT) {
523 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
524 				       pfn, tk->tsk->comm, tk->tsk->pid);
525 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
526 						 tk->tsk, PIDTYPE_PID);
527 			}
528 
529 			/*
530 			 * In theory the process could have mapped
531 			 * something else on the address in-between. We could
532 			 * check for that, but we need to tell the
533 			 * process anyways.
534 			 */
535 			else if (kill_proc(tk, pfn, flags) < 0)
536 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
537 				       pfn, tk->tsk->comm, tk->tsk->pid);
538 		}
539 		list_del(&tk->nd);
540 		put_task_struct(tk->tsk);
541 		kfree(tk);
542 	}
543 }
544 
545 /*
546  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
547  * on behalf of the thread group. Return task_struct of the (first found)
548  * dedicated thread if found, and return NULL otherwise.
549  *
550  * We already hold rcu lock in the caller, so we don't have to call
551  * rcu_read_lock/unlock() in this function.
552  */
553 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
554 {
555 	struct task_struct *t;
556 
557 	for_each_thread(tsk, t) {
558 		if (t->flags & PF_MCE_PROCESS) {
559 			if (t->flags & PF_MCE_EARLY)
560 				return t;
561 		} else {
562 			if (sysctl_memory_failure_early_kill)
563 				return t;
564 		}
565 	}
566 	return NULL;
567 }
568 
569 /*
570  * Determine whether a given process is "early kill" process which expects
571  * to be signaled when some page under the process is hwpoisoned.
572  * Return task_struct of the dedicated thread (main thread unless explicitly
573  * specified) if the process is "early kill" and otherwise returns NULL.
574  *
575  * Note that the above is true for Action Optional case. For Action Required
576  * case, it's only meaningful to the current thread which need to be signaled
577  * with SIGBUS, this error is Action Optional for other non current
578  * processes sharing the same error page,if the process is "early kill", the
579  * task_struct of the dedicated thread will also be returned.
580  */
581 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
582 {
583 	if (!tsk->mm)
584 		return NULL;
585 	/*
586 	 * Comparing ->mm here because current task might represent
587 	 * a subthread, while tsk always points to the main thread.
588 	 */
589 	if (force_early && tsk->mm == current->mm)
590 		return current;
591 
592 	return find_early_kill_thread(tsk);
593 }
594 
595 /*
596  * Collect processes when the error hit an anonymous page.
597  */
598 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
599 				int force_early)
600 {
601 	struct folio *folio = page_folio(page);
602 	struct vm_area_struct *vma;
603 	struct task_struct *tsk;
604 	struct anon_vma *av;
605 	pgoff_t pgoff;
606 
607 	av = folio_lock_anon_vma_read(folio, NULL);
608 	if (av == NULL)	/* Not actually mapped anymore */
609 		return;
610 
611 	pgoff = page_to_pgoff(page);
612 	rcu_read_lock();
613 	for_each_process(tsk) {
614 		struct anon_vma_chain *vmac;
615 		struct task_struct *t = task_early_kill(tsk, force_early);
616 
617 		if (!t)
618 			continue;
619 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
620 					       pgoff, pgoff) {
621 			vma = vmac->vma;
622 			if (vma->vm_mm != t->mm)
623 				continue;
624 			if (!page_mapped_in_vma(page, vma))
625 				continue;
626 			add_to_kill_anon_file(t, page, vma, to_kill);
627 		}
628 	}
629 	rcu_read_unlock();
630 	anon_vma_unlock_read(av);
631 }
632 
633 /*
634  * Collect processes when the error hit a file mapped page.
635  */
636 static void collect_procs_file(struct page *page, struct list_head *to_kill,
637 				int force_early)
638 {
639 	struct vm_area_struct *vma;
640 	struct task_struct *tsk;
641 	struct address_space *mapping = page->mapping;
642 	pgoff_t pgoff;
643 
644 	i_mmap_lock_read(mapping);
645 	rcu_read_lock();
646 	pgoff = page_to_pgoff(page);
647 	for_each_process(tsk) {
648 		struct task_struct *t = task_early_kill(tsk, force_early);
649 
650 		if (!t)
651 			continue;
652 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
653 				      pgoff) {
654 			/*
655 			 * Send early kill signal to tasks where a vma covers
656 			 * the page but the corrupted page is not necessarily
657 			 * mapped in its pte.
658 			 * Assume applications who requested early kill want
659 			 * to be informed of all such data corruptions.
660 			 */
661 			if (vma->vm_mm == t->mm)
662 				add_to_kill_anon_file(t, page, vma, to_kill);
663 		}
664 	}
665 	rcu_read_unlock();
666 	i_mmap_unlock_read(mapping);
667 }
668 
669 #ifdef CONFIG_FS_DAX
670 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
671 			      struct vm_area_struct *vma,
672 			      struct list_head *to_kill, pgoff_t pgoff)
673 {
674 	__add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
675 }
676 
677 /*
678  * Collect processes when the error hit a fsdax page.
679  */
680 static void collect_procs_fsdax(struct page *page,
681 		struct address_space *mapping, pgoff_t pgoff,
682 		struct list_head *to_kill)
683 {
684 	struct vm_area_struct *vma;
685 	struct task_struct *tsk;
686 
687 	i_mmap_lock_read(mapping);
688 	rcu_read_lock();
689 	for_each_process(tsk) {
690 		struct task_struct *t = task_early_kill(tsk, true);
691 
692 		if (!t)
693 			continue;
694 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
695 			if (vma->vm_mm == t->mm)
696 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
697 		}
698 	}
699 	rcu_read_unlock();
700 	i_mmap_unlock_read(mapping);
701 }
702 #endif /* CONFIG_FS_DAX */
703 
704 /*
705  * Collect the processes who have the corrupted page mapped to kill.
706  */
707 static void collect_procs(struct page *page, struct list_head *tokill,
708 				int force_early)
709 {
710 	if (!page->mapping)
711 		return;
712 	if (unlikely(PageKsm(page)))
713 		collect_procs_ksm(page, tokill, force_early);
714 	else if (PageAnon(page))
715 		collect_procs_anon(page, tokill, force_early);
716 	else
717 		collect_procs_file(page, tokill, force_early);
718 }
719 
720 struct hwpoison_walk {
721 	struct to_kill tk;
722 	unsigned long pfn;
723 	int flags;
724 };
725 
726 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
727 {
728 	tk->addr = addr;
729 	tk->size_shift = shift;
730 }
731 
732 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
733 				unsigned long poisoned_pfn, struct to_kill *tk)
734 {
735 	unsigned long pfn = 0;
736 
737 	if (pte_present(pte)) {
738 		pfn = pte_pfn(pte);
739 	} else {
740 		swp_entry_t swp = pte_to_swp_entry(pte);
741 
742 		if (is_hwpoison_entry(swp))
743 			pfn = swp_offset_pfn(swp);
744 	}
745 
746 	if (!pfn || pfn != poisoned_pfn)
747 		return 0;
748 
749 	set_to_kill(tk, addr, shift);
750 	return 1;
751 }
752 
753 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
754 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
755 				      struct hwpoison_walk *hwp)
756 {
757 	pmd_t pmd = *pmdp;
758 	unsigned long pfn;
759 	unsigned long hwpoison_vaddr;
760 
761 	if (!pmd_present(pmd))
762 		return 0;
763 	pfn = pmd_pfn(pmd);
764 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
765 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
766 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
767 		return 1;
768 	}
769 	return 0;
770 }
771 #else
772 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
773 				      struct hwpoison_walk *hwp)
774 {
775 	return 0;
776 }
777 #endif
778 
779 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
780 			      unsigned long end, struct mm_walk *walk)
781 {
782 	struct hwpoison_walk *hwp = walk->private;
783 	int ret = 0;
784 	pte_t *ptep, *mapped_pte;
785 	spinlock_t *ptl;
786 
787 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
788 	if (ptl) {
789 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
790 		spin_unlock(ptl);
791 		goto out;
792 	}
793 
794 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
795 						addr, &ptl);
796 	if (!ptep)
797 		goto out;
798 
799 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
800 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
801 					     hwp->pfn, &hwp->tk);
802 		if (ret == 1)
803 			break;
804 	}
805 	pte_unmap_unlock(mapped_pte, ptl);
806 out:
807 	cond_resched();
808 	return ret;
809 }
810 
811 #ifdef CONFIG_HUGETLB_PAGE
812 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
813 			    unsigned long addr, unsigned long end,
814 			    struct mm_walk *walk)
815 {
816 	struct hwpoison_walk *hwp = walk->private;
817 	pte_t pte = huge_ptep_get(ptep);
818 	struct hstate *h = hstate_vma(walk->vma);
819 
820 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
821 				      hwp->pfn, &hwp->tk);
822 }
823 #else
824 #define hwpoison_hugetlb_range	NULL
825 #endif
826 
827 static const struct mm_walk_ops hwpoison_walk_ops = {
828 	.pmd_entry = hwpoison_pte_range,
829 	.hugetlb_entry = hwpoison_hugetlb_range,
830 	.walk_lock = PGWALK_RDLOCK,
831 };
832 
833 /*
834  * Sends SIGBUS to the current process with error info.
835  *
836  * This function is intended to handle "Action Required" MCEs on already
837  * hardware poisoned pages. They could happen, for example, when
838  * memory_failure() failed to unmap the error page at the first call, or
839  * when multiple local machine checks happened on different CPUs.
840  *
841  * MCE handler currently has no easy access to the error virtual address,
842  * so this function walks page table to find it. The returned virtual address
843  * is proper in most cases, but it could be wrong when the application
844  * process has multiple entries mapping the error page.
845  */
846 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
847 				  int flags)
848 {
849 	int ret;
850 	struct hwpoison_walk priv = {
851 		.pfn = pfn,
852 	};
853 	priv.tk.tsk = p;
854 
855 	if (!p->mm)
856 		return -EFAULT;
857 
858 	mmap_read_lock(p->mm);
859 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
860 			      (void *)&priv);
861 	if (ret == 1 && priv.tk.addr)
862 		kill_proc(&priv.tk, pfn, flags);
863 	else
864 		ret = 0;
865 	mmap_read_unlock(p->mm);
866 	return ret > 0 ? -EHWPOISON : -EFAULT;
867 }
868 
869 static const char *action_name[] = {
870 	[MF_IGNORED] = "Ignored",
871 	[MF_FAILED] = "Failed",
872 	[MF_DELAYED] = "Delayed",
873 	[MF_RECOVERED] = "Recovered",
874 };
875 
876 static const char * const action_page_types[] = {
877 	[MF_MSG_KERNEL]			= "reserved kernel page",
878 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
879 	[MF_MSG_SLAB]			= "kernel slab page",
880 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
881 	[MF_MSG_HUGE]			= "huge page",
882 	[MF_MSG_FREE_HUGE]		= "free huge page",
883 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
884 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
885 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
886 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
887 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
888 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
889 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
890 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
891 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
892 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
893 	[MF_MSG_BUDDY]			= "free buddy page",
894 	[MF_MSG_DAX]			= "dax page",
895 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
896 	[MF_MSG_UNKNOWN]		= "unknown page",
897 };
898 
899 /*
900  * XXX: It is possible that a page is isolated from LRU cache,
901  * and then kept in swap cache or failed to remove from page cache.
902  * The page count will stop it from being freed by unpoison.
903  * Stress tests should be aware of this memory leak problem.
904  */
905 static int delete_from_lru_cache(struct page *p)
906 {
907 	if (isolate_lru_page(p)) {
908 		/*
909 		 * Clear sensible page flags, so that the buddy system won't
910 		 * complain when the page is unpoison-and-freed.
911 		 */
912 		ClearPageActive(p);
913 		ClearPageUnevictable(p);
914 
915 		/*
916 		 * Poisoned page might never drop its ref count to 0 so we have
917 		 * to uncharge it manually from its memcg.
918 		 */
919 		mem_cgroup_uncharge(page_folio(p));
920 
921 		/*
922 		 * drop the page count elevated by isolate_lru_page()
923 		 */
924 		put_page(p);
925 		return 0;
926 	}
927 	return -EIO;
928 }
929 
930 static int truncate_error_page(struct page *p, unsigned long pfn,
931 				struct address_space *mapping)
932 {
933 	int ret = MF_FAILED;
934 
935 	if (mapping->a_ops->error_remove_page) {
936 		struct folio *folio = page_folio(p);
937 		int err = mapping->a_ops->error_remove_page(mapping, p);
938 
939 		if (err != 0)
940 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
941 		else if (!filemap_release_folio(folio, GFP_NOIO))
942 			pr_info("%#lx: failed to release buffers\n", pfn);
943 		else
944 			ret = MF_RECOVERED;
945 	} else {
946 		/*
947 		 * If the file system doesn't support it just invalidate
948 		 * This fails on dirty or anything with private pages
949 		 */
950 		if (invalidate_inode_page(p))
951 			ret = MF_RECOVERED;
952 		else
953 			pr_info("%#lx: Failed to invalidate\n",	pfn);
954 	}
955 
956 	return ret;
957 }
958 
959 struct page_state {
960 	unsigned long mask;
961 	unsigned long res;
962 	enum mf_action_page_type type;
963 
964 	/* Callback ->action() has to unlock the relevant page inside it. */
965 	int (*action)(struct page_state *ps, struct page *p);
966 };
967 
968 /*
969  * Return true if page is still referenced by others, otherwise return
970  * false.
971  *
972  * The extra_pins is true when one extra refcount is expected.
973  */
974 static bool has_extra_refcount(struct page_state *ps, struct page *p,
975 			       bool extra_pins)
976 {
977 	int count = page_count(p) - 1;
978 
979 	if (extra_pins)
980 		count -= 1;
981 
982 	if (count > 0) {
983 		pr_err("%#lx: %s still referenced by %d users\n",
984 		       page_to_pfn(p), action_page_types[ps->type], count);
985 		return true;
986 	}
987 
988 	return false;
989 }
990 
991 /*
992  * Error hit kernel page.
993  * Do nothing, try to be lucky and not touch this instead. For a few cases we
994  * could be more sophisticated.
995  */
996 static int me_kernel(struct page_state *ps, struct page *p)
997 {
998 	unlock_page(p);
999 	return MF_IGNORED;
1000 }
1001 
1002 /*
1003  * Page in unknown state. Do nothing.
1004  */
1005 static int me_unknown(struct page_state *ps, struct page *p)
1006 {
1007 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1008 	unlock_page(p);
1009 	return MF_FAILED;
1010 }
1011 
1012 /*
1013  * Clean (or cleaned) page cache page.
1014  */
1015 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1016 {
1017 	int ret;
1018 	struct address_space *mapping;
1019 	bool extra_pins;
1020 
1021 	delete_from_lru_cache(p);
1022 
1023 	/*
1024 	 * For anonymous pages we're done the only reference left
1025 	 * should be the one m_f() holds.
1026 	 */
1027 	if (PageAnon(p)) {
1028 		ret = MF_RECOVERED;
1029 		goto out;
1030 	}
1031 
1032 	/*
1033 	 * Now truncate the page in the page cache. This is really
1034 	 * more like a "temporary hole punch"
1035 	 * Don't do this for block devices when someone else
1036 	 * has a reference, because it could be file system metadata
1037 	 * and that's not safe to truncate.
1038 	 */
1039 	mapping = page_mapping(p);
1040 	if (!mapping) {
1041 		/*
1042 		 * Page has been teared down in the meanwhile
1043 		 */
1044 		ret = MF_FAILED;
1045 		goto out;
1046 	}
1047 
1048 	/*
1049 	 * The shmem page is kept in page cache instead of truncating
1050 	 * so is expected to have an extra refcount after error-handling.
1051 	 */
1052 	extra_pins = shmem_mapping(mapping);
1053 
1054 	/*
1055 	 * Truncation is a bit tricky. Enable it per file system for now.
1056 	 *
1057 	 * Open: to take i_rwsem or not for this? Right now we don't.
1058 	 */
1059 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
1060 	if (has_extra_refcount(ps, p, extra_pins))
1061 		ret = MF_FAILED;
1062 
1063 out:
1064 	unlock_page(p);
1065 
1066 	return ret;
1067 }
1068 
1069 /*
1070  * Dirty pagecache page
1071  * Issues: when the error hit a hole page the error is not properly
1072  * propagated.
1073  */
1074 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1075 {
1076 	struct address_space *mapping = page_mapping(p);
1077 
1078 	SetPageError(p);
1079 	/* TBD: print more information about the file. */
1080 	if (mapping) {
1081 		/*
1082 		 * IO error will be reported by write(), fsync(), etc.
1083 		 * who check the mapping.
1084 		 * This way the application knows that something went
1085 		 * wrong with its dirty file data.
1086 		 *
1087 		 * There's one open issue:
1088 		 *
1089 		 * The EIO will be only reported on the next IO
1090 		 * operation and then cleared through the IO map.
1091 		 * Normally Linux has two mechanisms to pass IO error
1092 		 * first through the AS_EIO flag in the address space
1093 		 * and then through the PageError flag in the page.
1094 		 * Since we drop pages on memory failure handling the
1095 		 * only mechanism open to use is through AS_AIO.
1096 		 *
1097 		 * This has the disadvantage that it gets cleared on
1098 		 * the first operation that returns an error, while
1099 		 * the PageError bit is more sticky and only cleared
1100 		 * when the page is reread or dropped.  If an
1101 		 * application assumes it will always get error on
1102 		 * fsync, but does other operations on the fd before
1103 		 * and the page is dropped between then the error
1104 		 * will not be properly reported.
1105 		 *
1106 		 * This can already happen even without hwpoisoned
1107 		 * pages: first on metadata IO errors (which only
1108 		 * report through AS_EIO) or when the page is dropped
1109 		 * at the wrong time.
1110 		 *
1111 		 * So right now we assume that the application DTRT on
1112 		 * the first EIO, but we're not worse than other parts
1113 		 * of the kernel.
1114 		 */
1115 		mapping_set_error(mapping, -EIO);
1116 	}
1117 
1118 	return me_pagecache_clean(ps, p);
1119 }
1120 
1121 /*
1122  * Clean and dirty swap cache.
1123  *
1124  * Dirty swap cache page is tricky to handle. The page could live both in page
1125  * cache and swap cache(ie. page is freshly swapped in). So it could be
1126  * referenced concurrently by 2 types of PTEs:
1127  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1128  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1129  * and then
1130  *      - clear dirty bit to prevent IO
1131  *      - remove from LRU
1132  *      - but keep in the swap cache, so that when we return to it on
1133  *        a later page fault, we know the application is accessing
1134  *        corrupted data and shall be killed (we installed simple
1135  *        interception code in do_swap_page to catch it).
1136  *
1137  * Clean swap cache pages can be directly isolated. A later page fault will
1138  * bring in the known good data from disk.
1139  */
1140 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1141 {
1142 	int ret;
1143 	bool extra_pins = false;
1144 
1145 	ClearPageDirty(p);
1146 	/* Trigger EIO in shmem: */
1147 	ClearPageUptodate(p);
1148 
1149 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1150 	unlock_page(p);
1151 
1152 	if (ret == MF_DELAYED)
1153 		extra_pins = true;
1154 
1155 	if (has_extra_refcount(ps, p, extra_pins))
1156 		ret = MF_FAILED;
1157 
1158 	return ret;
1159 }
1160 
1161 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1162 {
1163 	struct folio *folio = page_folio(p);
1164 	int ret;
1165 
1166 	delete_from_swap_cache(folio);
1167 
1168 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1169 	folio_unlock(folio);
1170 
1171 	if (has_extra_refcount(ps, p, false))
1172 		ret = MF_FAILED;
1173 
1174 	return ret;
1175 }
1176 
1177 /*
1178  * Huge pages. Needs work.
1179  * Issues:
1180  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1181  *   To narrow down kill region to one page, we need to break up pmd.
1182  */
1183 static int me_huge_page(struct page_state *ps, struct page *p)
1184 {
1185 	int res;
1186 	struct page *hpage = compound_head(p);
1187 	struct address_space *mapping;
1188 	bool extra_pins = false;
1189 
1190 	mapping = page_mapping(hpage);
1191 	if (mapping) {
1192 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1193 		/* The page is kept in page cache. */
1194 		extra_pins = true;
1195 		unlock_page(hpage);
1196 	} else {
1197 		unlock_page(hpage);
1198 		/*
1199 		 * migration entry prevents later access on error hugepage,
1200 		 * so we can free and dissolve it into buddy to save healthy
1201 		 * subpages.
1202 		 */
1203 		put_page(hpage);
1204 		if (__page_handle_poison(p) >= 0) {
1205 			page_ref_inc(p);
1206 			res = MF_RECOVERED;
1207 		} else {
1208 			res = MF_FAILED;
1209 		}
1210 	}
1211 
1212 	if (has_extra_refcount(ps, p, extra_pins))
1213 		res = MF_FAILED;
1214 
1215 	return res;
1216 }
1217 
1218 /*
1219  * Various page states we can handle.
1220  *
1221  * A page state is defined by its current page->flags bits.
1222  * The table matches them in order and calls the right handler.
1223  *
1224  * This is quite tricky because we can access page at any time
1225  * in its live cycle, so all accesses have to be extremely careful.
1226  *
1227  * This is not complete. More states could be added.
1228  * For any missing state don't attempt recovery.
1229  */
1230 
1231 #define dirty		(1UL << PG_dirty)
1232 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1233 #define unevict		(1UL << PG_unevictable)
1234 #define mlock		(1UL << PG_mlocked)
1235 #define lru		(1UL << PG_lru)
1236 #define head		(1UL << PG_head)
1237 #define slab		(1UL << PG_slab)
1238 #define reserved	(1UL << PG_reserved)
1239 
1240 static struct page_state error_states[] = {
1241 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1242 	/*
1243 	 * free pages are specially detected outside this table:
1244 	 * PG_buddy pages only make a small fraction of all free pages.
1245 	 */
1246 
1247 	/*
1248 	 * Could in theory check if slab page is free or if we can drop
1249 	 * currently unused objects without touching them. But just
1250 	 * treat it as standard kernel for now.
1251 	 */
1252 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1253 
1254 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1255 
1256 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1257 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1258 
1259 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1260 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1261 
1262 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1263 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1264 
1265 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1266 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1267 
1268 	/*
1269 	 * Catchall entry: must be at end.
1270 	 */
1271 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1272 };
1273 
1274 #undef dirty
1275 #undef sc
1276 #undef unevict
1277 #undef mlock
1278 #undef lru
1279 #undef head
1280 #undef slab
1281 #undef reserved
1282 
1283 static void update_per_node_mf_stats(unsigned long pfn,
1284 				     enum mf_result result)
1285 {
1286 	int nid = MAX_NUMNODES;
1287 	struct memory_failure_stats *mf_stats = NULL;
1288 
1289 	nid = pfn_to_nid(pfn);
1290 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1291 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1292 		return;
1293 	}
1294 
1295 	mf_stats = &NODE_DATA(nid)->mf_stats;
1296 	switch (result) {
1297 	case MF_IGNORED:
1298 		++mf_stats->ignored;
1299 		break;
1300 	case MF_FAILED:
1301 		++mf_stats->failed;
1302 		break;
1303 	case MF_DELAYED:
1304 		++mf_stats->delayed;
1305 		break;
1306 	case MF_RECOVERED:
1307 		++mf_stats->recovered;
1308 		break;
1309 	default:
1310 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1311 		break;
1312 	}
1313 	++mf_stats->total;
1314 }
1315 
1316 /*
1317  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1318  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1319  */
1320 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1321 			 enum mf_result result)
1322 {
1323 	trace_memory_failure_event(pfn, type, result);
1324 
1325 	num_poisoned_pages_inc(pfn);
1326 
1327 	update_per_node_mf_stats(pfn, result);
1328 
1329 	pr_err("%#lx: recovery action for %s: %s\n",
1330 		pfn, action_page_types[type], action_name[result]);
1331 
1332 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1333 }
1334 
1335 static int page_action(struct page_state *ps, struct page *p,
1336 			unsigned long pfn)
1337 {
1338 	int result;
1339 
1340 	/* page p should be unlocked after returning from ps->action().  */
1341 	result = ps->action(ps, p);
1342 
1343 	/* Could do more checks here if page looks ok */
1344 	/*
1345 	 * Could adjust zone counters here to correct for the missing page.
1346 	 */
1347 
1348 	return action_result(pfn, ps->type, result);
1349 }
1350 
1351 static inline bool PageHWPoisonTakenOff(struct page *page)
1352 {
1353 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1354 }
1355 
1356 void SetPageHWPoisonTakenOff(struct page *page)
1357 {
1358 	set_page_private(page, MAGIC_HWPOISON);
1359 }
1360 
1361 void ClearPageHWPoisonTakenOff(struct page *page)
1362 {
1363 	if (PageHWPoison(page))
1364 		set_page_private(page, 0);
1365 }
1366 
1367 /*
1368  * Return true if a page type of a given page is supported by hwpoison
1369  * mechanism (while handling could fail), otherwise false.  This function
1370  * does not return true for hugetlb or device memory pages, so it's assumed
1371  * to be called only in the context where we never have such pages.
1372  */
1373 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1374 {
1375 	/* Soft offline could migrate non-LRU movable pages */
1376 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1377 		return true;
1378 
1379 	return PageLRU(page) || is_free_buddy_page(page);
1380 }
1381 
1382 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1383 {
1384 	struct folio *folio = page_folio(page);
1385 	int ret = 0;
1386 	bool hugetlb = false;
1387 
1388 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1389 	if (hugetlb) {
1390 		/* Make sure hugetlb demotion did not happen from under us. */
1391 		if (folio == page_folio(page))
1392 			return ret;
1393 		if (ret > 0) {
1394 			folio_put(folio);
1395 			folio = page_folio(page);
1396 		}
1397 	}
1398 
1399 	/*
1400 	 * This check prevents from calling folio_try_get() for any
1401 	 * unsupported type of folio in order to reduce the risk of unexpected
1402 	 * races caused by taking a folio refcount.
1403 	 */
1404 	if (!HWPoisonHandlable(&folio->page, flags))
1405 		return -EBUSY;
1406 
1407 	if (folio_try_get(folio)) {
1408 		if (folio == page_folio(page))
1409 			return 1;
1410 
1411 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1412 		folio_put(folio);
1413 	}
1414 
1415 	return 0;
1416 }
1417 
1418 static int get_any_page(struct page *p, unsigned long flags)
1419 {
1420 	int ret = 0, pass = 0;
1421 	bool count_increased = false;
1422 
1423 	if (flags & MF_COUNT_INCREASED)
1424 		count_increased = true;
1425 
1426 try_again:
1427 	if (!count_increased) {
1428 		ret = __get_hwpoison_page(p, flags);
1429 		if (!ret) {
1430 			if (page_count(p)) {
1431 				/* We raced with an allocation, retry. */
1432 				if (pass++ < 3)
1433 					goto try_again;
1434 				ret = -EBUSY;
1435 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1436 				/* We raced with put_page, retry. */
1437 				if (pass++ < 3)
1438 					goto try_again;
1439 				ret = -EIO;
1440 			}
1441 			goto out;
1442 		} else if (ret == -EBUSY) {
1443 			/*
1444 			 * We raced with (possibly temporary) unhandlable
1445 			 * page, retry.
1446 			 */
1447 			if (pass++ < 3) {
1448 				shake_page(p);
1449 				goto try_again;
1450 			}
1451 			ret = -EIO;
1452 			goto out;
1453 		}
1454 	}
1455 
1456 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1457 		ret = 1;
1458 	} else {
1459 		/*
1460 		 * A page we cannot handle. Check whether we can turn
1461 		 * it into something we can handle.
1462 		 */
1463 		if (pass++ < 3) {
1464 			put_page(p);
1465 			shake_page(p);
1466 			count_increased = false;
1467 			goto try_again;
1468 		}
1469 		put_page(p);
1470 		ret = -EIO;
1471 	}
1472 out:
1473 	if (ret == -EIO)
1474 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1475 
1476 	return ret;
1477 }
1478 
1479 static int __get_unpoison_page(struct page *page)
1480 {
1481 	struct folio *folio = page_folio(page);
1482 	int ret = 0;
1483 	bool hugetlb = false;
1484 
1485 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1486 	if (hugetlb) {
1487 		/* Make sure hugetlb demotion did not happen from under us. */
1488 		if (folio == page_folio(page))
1489 			return ret;
1490 		if (ret > 0)
1491 			folio_put(folio);
1492 	}
1493 
1494 	/*
1495 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1496 	 * but also isolated from buddy freelist, so need to identify the
1497 	 * state and have to cancel both operations to unpoison.
1498 	 */
1499 	if (PageHWPoisonTakenOff(page))
1500 		return -EHWPOISON;
1501 
1502 	return get_page_unless_zero(page) ? 1 : 0;
1503 }
1504 
1505 /**
1506  * get_hwpoison_page() - Get refcount for memory error handling
1507  * @p:		Raw error page (hit by memory error)
1508  * @flags:	Flags controlling behavior of error handling
1509  *
1510  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1511  * error on it, after checking that the error page is in a well-defined state
1512  * (defined as a page-type we can successfully handle the memory error on it,
1513  * such as LRU page and hugetlb page).
1514  *
1515  * Memory error handling could be triggered at any time on any type of page,
1516  * so it's prone to race with typical memory management lifecycle (like
1517  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1518  * extra care for the error page's state (as done in __get_hwpoison_page()),
1519  * and has some retry logic in get_any_page().
1520  *
1521  * When called from unpoison_memory(), the caller should already ensure that
1522  * the given page has PG_hwpoison. So it's never reused for other page
1523  * allocations, and __get_unpoison_page() never races with them.
1524  *
1525  * Return: 0 on failure,
1526  *         1 on success for in-use pages in a well-defined state,
1527  *         -EIO for pages on which we can not handle memory errors,
1528  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1529  *         operations like allocation and free,
1530  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1531  */
1532 static int get_hwpoison_page(struct page *p, unsigned long flags)
1533 {
1534 	int ret;
1535 
1536 	zone_pcp_disable(page_zone(p));
1537 	if (flags & MF_UNPOISON)
1538 		ret = __get_unpoison_page(p);
1539 	else
1540 		ret = get_any_page(p, flags);
1541 	zone_pcp_enable(page_zone(p));
1542 
1543 	return ret;
1544 }
1545 
1546 /*
1547  * Do all that is necessary to remove user space mappings. Unmap
1548  * the pages and send SIGBUS to the processes if the data was dirty.
1549  */
1550 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1551 				  int flags, struct page *hpage)
1552 {
1553 	struct folio *folio = page_folio(hpage);
1554 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1555 	struct address_space *mapping;
1556 	LIST_HEAD(tokill);
1557 	bool unmap_success;
1558 	int forcekill;
1559 	bool mlocked = PageMlocked(hpage);
1560 
1561 	/*
1562 	 * Here we are interested only in user-mapped pages, so skip any
1563 	 * other types of pages.
1564 	 */
1565 	if (PageReserved(p) || PageSlab(p) || PageTable(p) || PageOffline(p))
1566 		return true;
1567 	if (!(PageLRU(hpage) || PageHuge(p)))
1568 		return true;
1569 
1570 	/*
1571 	 * This check implies we don't kill processes if their pages
1572 	 * are in the swap cache early. Those are always late kills.
1573 	 */
1574 	if (!page_mapped(hpage))
1575 		return true;
1576 
1577 	if (PageSwapCache(p)) {
1578 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1579 		ttu &= ~TTU_HWPOISON;
1580 	}
1581 
1582 	/*
1583 	 * Propagate the dirty bit from PTEs to struct page first, because we
1584 	 * need this to decide if we should kill or just drop the page.
1585 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1586 	 * be called inside page lock (it's recommended but not enforced).
1587 	 */
1588 	mapping = page_mapping(hpage);
1589 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1590 	    mapping_can_writeback(mapping)) {
1591 		if (page_mkclean(hpage)) {
1592 			SetPageDirty(hpage);
1593 		} else {
1594 			ttu &= ~TTU_HWPOISON;
1595 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1596 				pfn);
1597 		}
1598 	}
1599 
1600 	/*
1601 	 * First collect all the processes that have the page
1602 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1603 	 * because ttu takes the rmap data structures down.
1604 	 */
1605 	collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1606 
1607 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1608 		/*
1609 		 * For hugetlb pages in shared mappings, try_to_unmap
1610 		 * could potentially call huge_pmd_unshare.  Because of
1611 		 * this, take semaphore in write mode here and set
1612 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1613 		 * at this higher level.
1614 		 */
1615 		mapping = hugetlb_page_mapping_lock_write(hpage);
1616 		if (mapping) {
1617 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1618 			i_mmap_unlock_write(mapping);
1619 		} else
1620 			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1621 	} else {
1622 		try_to_unmap(folio, ttu);
1623 	}
1624 
1625 	unmap_success = !page_mapped(hpage);
1626 	if (!unmap_success)
1627 		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1628 		       pfn, page_mapcount(hpage));
1629 
1630 	/*
1631 	 * try_to_unmap() might put mlocked page in lru cache, so call
1632 	 * shake_page() again to ensure that it's flushed.
1633 	 */
1634 	if (mlocked)
1635 		shake_page(hpage);
1636 
1637 	/*
1638 	 * Now that the dirty bit has been propagated to the
1639 	 * struct page and all unmaps done we can decide if
1640 	 * killing is needed or not.  Only kill when the page
1641 	 * was dirty or the process is not restartable,
1642 	 * otherwise the tokill list is merely
1643 	 * freed.  When there was a problem unmapping earlier
1644 	 * use a more force-full uncatchable kill to prevent
1645 	 * any accesses to the poisoned memory.
1646 	 */
1647 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1648 		    !unmap_success;
1649 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1650 
1651 	return unmap_success;
1652 }
1653 
1654 static int identify_page_state(unsigned long pfn, struct page *p,
1655 				unsigned long page_flags)
1656 {
1657 	struct page_state *ps;
1658 
1659 	/*
1660 	 * The first check uses the current page flags which may not have any
1661 	 * relevant information. The second check with the saved page flags is
1662 	 * carried out only if the first check can't determine the page status.
1663 	 */
1664 	for (ps = error_states;; ps++)
1665 		if ((p->flags & ps->mask) == ps->res)
1666 			break;
1667 
1668 	page_flags |= (p->flags & (1UL << PG_dirty));
1669 
1670 	if (!ps->mask)
1671 		for (ps = error_states;; ps++)
1672 			if ((page_flags & ps->mask) == ps->res)
1673 				break;
1674 	return page_action(ps, p, pfn);
1675 }
1676 
1677 static int try_to_split_thp_page(struct page *page)
1678 {
1679 	int ret;
1680 
1681 	lock_page(page);
1682 	ret = split_huge_page(page);
1683 	unlock_page(page);
1684 
1685 	if (unlikely(ret))
1686 		put_page(page);
1687 
1688 	return ret;
1689 }
1690 
1691 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1692 		struct address_space *mapping, pgoff_t index, int flags)
1693 {
1694 	struct to_kill *tk;
1695 	unsigned long size = 0;
1696 
1697 	list_for_each_entry(tk, to_kill, nd)
1698 		if (tk->size_shift)
1699 			size = max(size, 1UL << tk->size_shift);
1700 
1701 	if (size) {
1702 		/*
1703 		 * Unmap the largest mapping to avoid breaking up device-dax
1704 		 * mappings which are constant size. The actual size of the
1705 		 * mapping being torn down is communicated in siginfo, see
1706 		 * kill_proc()
1707 		 */
1708 		loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1709 
1710 		unmap_mapping_range(mapping, start, size, 0);
1711 	}
1712 
1713 	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1714 }
1715 
1716 /*
1717  * Only dev_pagemap pages get here, such as fsdax when the filesystem
1718  * either do not claim or fails to claim a hwpoison event, or devdax.
1719  * The fsdax pages are initialized per base page, and the devdax pages
1720  * could be initialized either as base pages, or as compound pages with
1721  * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1722  * hwpoison, such that, if a subpage of a compound page is poisoned,
1723  * simply mark the compound head page is by far sufficient.
1724  */
1725 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1726 		struct dev_pagemap *pgmap)
1727 {
1728 	struct folio *folio = pfn_folio(pfn);
1729 	LIST_HEAD(to_kill);
1730 	dax_entry_t cookie;
1731 	int rc = 0;
1732 
1733 	/*
1734 	 * Prevent the inode from being freed while we are interrogating
1735 	 * the address_space, typically this would be handled by
1736 	 * lock_page(), but dax pages do not use the page lock. This
1737 	 * also prevents changes to the mapping of this pfn until
1738 	 * poison signaling is complete.
1739 	 */
1740 	cookie = dax_lock_folio(folio);
1741 	if (!cookie)
1742 		return -EBUSY;
1743 
1744 	if (hwpoison_filter(&folio->page)) {
1745 		rc = -EOPNOTSUPP;
1746 		goto unlock;
1747 	}
1748 
1749 	switch (pgmap->type) {
1750 	case MEMORY_DEVICE_PRIVATE:
1751 	case MEMORY_DEVICE_COHERENT:
1752 		/*
1753 		 * TODO: Handle device pages which may need coordination
1754 		 * with device-side memory.
1755 		 */
1756 		rc = -ENXIO;
1757 		goto unlock;
1758 	default:
1759 		break;
1760 	}
1761 
1762 	/*
1763 	 * Use this flag as an indication that the dax page has been
1764 	 * remapped UC to prevent speculative consumption of poison.
1765 	 */
1766 	SetPageHWPoison(&folio->page);
1767 
1768 	/*
1769 	 * Unlike System-RAM there is no possibility to swap in a
1770 	 * different physical page at a given virtual address, so all
1771 	 * userspace consumption of ZONE_DEVICE memory necessitates
1772 	 * SIGBUS (i.e. MF_MUST_KILL)
1773 	 */
1774 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1775 	collect_procs(&folio->page, &to_kill, true);
1776 
1777 	unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1778 unlock:
1779 	dax_unlock_folio(folio, cookie);
1780 	return rc;
1781 }
1782 
1783 #ifdef CONFIG_FS_DAX
1784 /**
1785  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1786  * @mapping:	address_space of the file in use
1787  * @index:	start pgoff of the range within the file
1788  * @count:	length of the range, in unit of PAGE_SIZE
1789  * @mf_flags:	memory failure flags
1790  */
1791 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1792 		unsigned long count, int mf_flags)
1793 {
1794 	LIST_HEAD(to_kill);
1795 	dax_entry_t cookie;
1796 	struct page *page;
1797 	size_t end = index + count;
1798 
1799 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1800 
1801 	for (; index < end; index++) {
1802 		page = NULL;
1803 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1804 		if (!cookie)
1805 			return -EBUSY;
1806 		if (!page)
1807 			goto unlock;
1808 
1809 		SetPageHWPoison(page);
1810 
1811 		collect_procs_fsdax(page, mapping, index, &to_kill);
1812 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1813 				index, mf_flags);
1814 unlock:
1815 		dax_unlock_mapping_entry(mapping, index, cookie);
1816 	}
1817 	return 0;
1818 }
1819 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1820 #endif /* CONFIG_FS_DAX */
1821 
1822 #ifdef CONFIG_HUGETLB_PAGE
1823 
1824 /*
1825  * Struct raw_hwp_page represents information about "raw error page",
1826  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1827  */
1828 struct raw_hwp_page {
1829 	struct llist_node node;
1830 	struct page *page;
1831 };
1832 
1833 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1834 {
1835 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1836 }
1837 
1838 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1839 {
1840 	struct llist_head *raw_hwp_head;
1841 	struct raw_hwp_page *p;
1842 	struct folio *folio = page_folio(page);
1843 	bool ret = false;
1844 
1845 	if (!folio_test_hwpoison(folio))
1846 		return false;
1847 
1848 	if (!folio_test_hugetlb(folio))
1849 		return PageHWPoison(page);
1850 
1851 	/*
1852 	 * When RawHwpUnreliable is set, kernel lost track of which subpages
1853 	 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1854 	 */
1855 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1856 		return true;
1857 
1858 	mutex_lock(&mf_mutex);
1859 
1860 	raw_hwp_head = raw_hwp_list_head(folio);
1861 	llist_for_each_entry(p, raw_hwp_head->first, node) {
1862 		if (page == p->page) {
1863 			ret = true;
1864 			break;
1865 		}
1866 	}
1867 
1868 	mutex_unlock(&mf_mutex);
1869 
1870 	return ret;
1871 }
1872 
1873 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1874 {
1875 	struct llist_node *head;
1876 	struct raw_hwp_page *p, *next;
1877 	unsigned long count = 0;
1878 
1879 	head = llist_del_all(raw_hwp_list_head(folio));
1880 	llist_for_each_entry_safe(p, next, head, node) {
1881 		if (move_flag)
1882 			SetPageHWPoison(p->page);
1883 		else
1884 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1885 		kfree(p);
1886 		count++;
1887 	}
1888 	return count;
1889 }
1890 
1891 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1892 {
1893 	struct llist_head *head;
1894 	struct raw_hwp_page *raw_hwp;
1895 	struct raw_hwp_page *p, *next;
1896 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1897 
1898 	/*
1899 	 * Once the hwpoison hugepage has lost reliable raw error info,
1900 	 * there is little meaning to keep additional error info precisely,
1901 	 * so skip to add additional raw error info.
1902 	 */
1903 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1904 		return -EHWPOISON;
1905 	head = raw_hwp_list_head(folio);
1906 	llist_for_each_entry_safe(p, next, head->first, node) {
1907 		if (p->page == page)
1908 			return -EHWPOISON;
1909 	}
1910 
1911 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1912 	if (raw_hwp) {
1913 		raw_hwp->page = page;
1914 		llist_add(&raw_hwp->node, head);
1915 		/* the first error event will be counted in action_result(). */
1916 		if (ret)
1917 			num_poisoned_pages_inc(page_to_pfn(page));
1918 	} else {
1919 		/*
1920 		 * Failed to save raw error info.  We no longer trace all
1921 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1922 		 * this hwpoisoned hugepage.
1923 		 */
1924 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1925 		/*
1926 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1927 		 * used any more, so free it.
1928 		 */
1929 		__folio_free_raw_hwp(folio, false);
1930 	}
1931 	return ret;
1932 }
1933 
1934 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1935 {
1936 	/*
1937 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1938 	 * pages for tail pages are required but they don't exist.
1939 	 */
1940 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1941 		return 0;
1942 
1943 	/*
1944 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1945 	 * definition.
1946 	 */
1947 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1948 		return 0;
1949 
1950 	return __folio_free_raw_hwp(folio, move_flag);
1951 }
1952 
1953 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1954 {
1955 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1956 		return;
1957 	if (folio_test_hugetlb_vmemmap_optimized(folio))
1958 		return;
1959 	folio_clear_hwpoison(folio);
1960 	folio_free_raw_hwp(folio, true);
1961 }
1962 
1963 /*
1964  * Called from hugetlb code with hugetlb_lock held.
1965  *
1966  * Return values:
1967  *   0             - free hugepage
1968  *   1             - in-use hugepage
1969  *   2             - not a hugepage
1970  *   -EBUSY        - the hugepage is busy (try to retry)
1971  *   -EHWPOISON    - the hugepage is already hwpoisoned
1972  */
1973 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1974 				 bool *migratable_cleared)
1975 {
1976 	struct page *page = pfn_to_page(pfn);
1977 	struct folio *folio = page_folio(page);
1978 	int ret = 2;	/* fallback to normal page handling */
1979 	bool count_increased = false;
1980 
1981 	if (!folio_test_hugetlb(folio))
1982 		goto out;
1983 
1984 	if (flags & MF_COUNT_INCREASED) {
1985 		ret = 1;
1986 		count_increased = true;
1987 	} else if (folio_test_hugetlb_freed(folio)) {
1988 		ret = 0;
1989 	} else if (folio_test_hugetlb_migratable(folio)) {
1990 		ret = folio_try_get(folio);
1991 		if (ret)
1992 			count_increased = true;
1993 	} else {
1994 		ret = -EBUSY;
1995 		if (!(flags & MF_NO_RETRY))
1996 			goto out;
1997 	}
1998 
1999 	if (folio_set_hugetlb_hwpoison(folio, page)) {
2000 		ret = -EHWPOISON;
2001 		goto out;
2002 	}
2003 
2004 	/*
2005 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2006 	 * from being migrated by memory hotremove.
2007 	 */
2008 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
2009 		folio_clear_hugetlb_migratable(folio);
2010 		*migratable_cleared = true;
2011 	}
2012 
2013 	return ret;
2014 out:
2015 	if (count_increased)
2016 		folio_put(folio);
2017 	return ret;
2018 }
2019 
2020 /*
2021  * Taking refcount of hugetlb pages needs extra care about race conditions
2022  * with basic operations like hugepage allocation/free/demotion.
2023  * So some of prechecks for hwpoison (pinning, and testing/setting
2024  * PageHWPoison) should be done in single hugetlb_lock range.
2025  */
2026 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2027 {
2028 	int res;
2029 	struct page *p = pfn_to_page(pfn);
2030 	struct folio *folio;
2031 	unsigned long page_flags;
2032 	bool migratable_cleared = false;
2033 
2034 	*hugetlb = 1;
2035 retry:
2036 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2037 	if (res == 2) { /* fallback to normal page handling */
2038 		*hugetlb = 0;
2039 		return 0;
2040 	} else if (res == -EHWPOISON) {
2041 		pr_err("%#lx: already hardware poisoned\n", pfn);
2042 		if (flags & MF_ACTION_REQUIRED) {
2043 			folio = page_folio(p);
2044 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2045 		}
2046 		return res;
2047 	} else if (res == -EBUSY) {
2048 		if (!(flags & MF_NO_RETRY)) {
2049 			flags |= MF_NO_RETRY;
2050 			goto retry;
2051 		}
2052 		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2053 	}
2054 
2055 	folio = page_folio(p);
2056 	folio_lock(folio);
2057 
2058 	if (hwpoison_filter(p)) {
2059 		folio_clear_hugetlb_hwpoison(folio);
2060 		if (migratable_cleared)
2061 			folio_set_hugetlb_migratable(folio);
2062 		folio_unlock(folio);
2063 		if (res == 1)
2064 			folio_put(folio);
2065 		return -EOPNOTSUPP;
2066 	}
2067 
2068 	/*
2069 	 * Handling free hugepage.  The possible race with hugepage allocation
2070 	 * or demotion can be prevented by PageHWPoison flag.
2071 	 */
2072 	if (res == 0) {
2073 		folio_unlock(folio);
2074 		if (__page_handle_poison(p) >= 0) {
2075 			page_ref_inc(p);
2076 			res = MF_RECOVERED;
2077 		} else {
2078 			res = MF_FAILED;
2079 		}
2080 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2081 	}
2082 
2083 	page_flags = folio->flags;
2084 
2085 	if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2086 		folio_unlock(folio);
2087 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2088 	}
2089 
2090 	return identify_page_state(pfn, p, page_flags);
2091 }
2092 
2093 #else
2094 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2095 {
2096 	return 0;
2097 }
2098 
2099 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2100 {
2101 	return 0;
2102 }
2103 #endif	/* CONFIG_HUGETLB_PAGE */
2104 
2105 /* Drop the extra refcount in case we come from madvise() */
2106 static void put_ref_page(unsigned long pfn, int flags)
2107 {
2108 	struct page *page;
2109 
2110 	if (!(flags & MF_COUNT_INCREASED))
2111 		return;
2112 
2113 	page = pfn_to_page(pfn);
2114 	if (page)
2115 		put_page(page);
2116 }
2117 
2118 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2119 		struct dev_pagemap *pgmap)
2120 {
2121 	int rc = -ENXIO;
2122 
2123 	/* device metadata space is not recoverable */
2124 	if (!pgmap_pfn_valid(pgmap, pfn))
2125 		goto out;
2126 
2127 	/*
2128 	 * Call driver's implementation to handle the memory failure, otherwise
2129 	 * fall back to generic handler.
2130 	 */
2131 	if (pgmap_has_memory_failure(pgmap)) {
2132 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2133 		/*
2134 		 * Fall back to generic handler too if operation is not
2135 		 * supported inside the driver/device/filesystem.
2136 		 */
2137 		if (rc != -EOPNOTSUPP)
2138 			goto out;
2139 	}
2140 
2141 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2142 out:
2143 	/* drop pgmap ref acquired in caller */
2144 	put_dev_pagemap(pgmap);
2145 	if (rc != -EOPNOTSUPP)
2146 		action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2147 	return rc;
2148 }
2149 
2150 /**
2151  * memory_failure - Handle memory failure of a page.
2152  * @pfn: Page Number of the corrupted page
2153  * @flags: fine tune action taken
2154  *
2155  * This function is called by the low level machine check code
2156  * of an architecture when it detects hardware memory corruption
2157  * of a page. It tries its best to recover, which includes
2158  * dropping pages, killing processes etc.
2159  *
2160  * The function is primarily of use for corruptions that
2161  * happen outside the current execution context (e.g. when
2162  * detected by a background scrubber)
2163  *
2164  * Must run in process context (e.g. a work queue) with interrupts
2165  * enabled and no spinlocks held.
2166  *
2167  * Return: 0 for successfully handled the memory error,
2168  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2169  *         < 0(except -EOPNOTSUPP) on failure.
2170  */
2171 int memory_failure(unsigned long pfn, int flags)
2172 {
2173 	struct page *p;
2174 	struct page *hpage;
2175 	struct dev_pagemap *pgmap;
2176 	int res = 0;
2177 	unsigned long page_flags;
2178 	bool retry = true;
2179 	int hugetlb = 0;
2180 
2181 	if (!sysctl_memory_failure_recovery)
2182 		panic("Memory failure on page %lx", pfn);
2183 
2184 	mutex_lock(&mf_mutex);
2185 
2186 	if (!(flags & MF_SW_SIMULATED))
2187 		hw_memory_failure = true;
2188 
2189 	p = pfn_to_online_page(pfn);
2190 	if (!p) {
2191 		res = arch_memory_failure(pfn, flags);
2192 		if (res == 0)
2193 			goto unlock_mutex;
2194 
2195 		if (pfn_valid(pfn)) {
2196 			pgmap = get_dev_pagemap(pfn, NULL);
2197 			put_ref_page(pfn, flags);
2198 			if (pgmap) {
2199 				res = memory_failure_dev_pagemap(pfn, flags,
2200 								 pgmap);
2201 				goto unlock_mutex;
2202 			}
2203 		}
2204 		pr_err("%#lx: memory outside kernel control\n", pfn);
2205 		res = -ENXIO;
2206 		goto unlock_mutex;
2207 	}
2208 
2209 try_again:
2210 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2211 	if (hugetlb)
2212 		goto unlock_mutex;
2213 
2214 	if (TestSetPageHWPoison(p)) {
2215 		pr_err("%#lx: already hardware poisoned\n", pfn);
2216 		res = -EHWPOISON;
2217 		if (flags & MF_ACTION_REQUIRED)
2218 			res = kill_accessing_process(current, pfn, flags);
2219 		if (flags & MF_COUNT_INCREASED)
2220 			put_page(p);
2221 		goto unlock_mutex;
2222 	}
2223 
2224 	/*
2225 	 * We need/can do nothing about count=0 pages.
2226 	 * 1) it's a free page, and therefore in safe hand:
2227 	 *    check_new_page() will be the gate keeper.
2228 	 * 2) it's part of a non-compound high order page.
2229 	 *    Implies some kernel user: cannot stop them from
2230 	 *    R/W the page; let's pray that the page has been
2231 	 *    used and will be freed some time later.
2232 	 * In fact it's dangerous to directly bump up page count from 0,
2233 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2234 	 */
2235 	if (!(flags & MF_COUNT_INCREASED)) {
2236 		res = get_hwpoison_page(p, flags);
2237 		if (!res) {
2238 			if (is_free_buddy_page(p)) {
2239 				if (take_page_off_buddy(p)) {
2240 					page_ref_inc(p);
2241 					res = MF_RECOVERED;
2242 				} else {
2243 					/* We lost the race, try again */
2244 					if (retry) {
2245 						ClearPageHWPoison(p);
2246 						retry = false;
2247 						goto try_again;
2248 					}
2249 					res = MF_FAILED;
2250 				}
2251 				res = action_result(pfn, MF_MSG_BUDDY, res);
2252 			} else {
2253 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2254 			}
2255 			goto unlock_mutex;
2256 		} else if (res < 0) {
2257 			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2258 			goto unlock_mutex;
2259 		}
2260 	}
2261 
2262 	hpage = compound_head(p);
2263 	if (PageTransHuge(hpage)) {
2264 		/*
2265 		 * The flag must be set after the refcount is bumped
2266 		 * otherwise it may race with THP split.
2267 		 * And the flag can't be set in get_hwpoison_page() since
2268 		 * it is called by soft offline too and it is just called
2269 		 * for !MF_COUNT_INCREASED.  So here seems to be the best
2270 		 * place.
2271 		 *
2272 		 * Don't need care about the above error handling paths for
2273 		 * get_hwpoison_page() since they handle either free page
2274 		 * or unhandlable page.  The refcount is bumped iff the
2275 		 * page is a valid handlable page.
2276 		 */
2277 		SetPageHasHWPoisoned(hpage);
2278 		if (try_to_split_thp_page(p) < 0) {
2279 			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2280 			goto unlock_mutex;
2281 		}
2282 		VM_BUG_ON_PAGE(!page_count(p), p);
2283 	}
2284 
2285 	/*
2286 	 * We ignore non-LRU pages for good reasons.
2287 	 * - PG_locked is only well defined for LRU pages and a few others
2288 	 * - to avoid races with __SetPageLocked()
2289 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2290 	 * The check (unnecessarily) ignores LRU pages being isolated and
2291 	 * walked by the page reclaim code, however that's not a big loss.
2292 	 */
2293 	shake_page(p);
2294 
2295 	lock_page(p);
2296 
2297 	/*
2298 	 * We're only intended to deal with the non-Compound page here.
2299 	 * However, the page could have changed compound pages due to
2300 	 * race window. If this happens, we could try again to hopefully
2301 	 * handle the page next round.
2302 	 */
2303 	if (PageCompound(p)) {
2304 		if (retry) {
2305 			ClearPageHWPoison(p);
2306 			unlock_page(p);
2307 			put_page(p);
2308 			flags &= ~MF_COUNT_INCREASED;
2309 			retry = false;
2310 			goto try_again;
2311 		}
2312 		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2313 		goto unlock_page;
2314 	}
2315 
2316 	/*
2317 	 * We use page flags to determine what action should be taken, but
2318 	 * the flags can be modified by the error containment action.  One
2319 	 * example is an mlocked page, where PG_mlocked is cleared by
2320 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2321 	 * correctly, we save a copy of the page flags at this time.
2322 	 */
2323 	page_flags = p->flags;
2324 
2325 	if (hwpoison_filter(p)) {
2326 		ClearPageHWPoison(p);
2327 		unlock_page(p);
2328 		put_page(p);
2329 		res = -EOPNOTSUPP;
2330 		goto unlock_mutex;
2331 	}
2332 
2333 	/*
2334 	 * __munlock_folio() may clear a writeback page's LRU flag without
2335 	 * page_lock. We need wait writeback completion for this page or it
2336 	 * may trigger vfs BUG while evict inode.
2337 	 */
2338 	if (!PageLRU(p) && !PageWriteback(p))
2339 		goto identify_page_state;
2340 
2341 	/*
2342 	 * It's very difficult to mess with pages currently under IO
2343 	 * and in many cases impossible, so we just avoid it here.
2344 	 */
2345 	wait_on_page_writeback(p);
2346 
2347 	/*
2348 	 * Now take care of user space mappings.
2349 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2350 	 */
2351 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2352 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2353 		goto unlock_page;
2354 	}
2355 
2356 	/*
2357 	 * Torn down by someone else?
2358 	 */
2359 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2360 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2361 		goto unlock_page;
2362 	}
2363 
2364 identify_page_state:
2365 	res = identify_page_state(pfn, p, page_flags);
2366 	mutex_unlock(&mf_mutex);
2367 	return res;
2368 unlock_page:
2369 	unlock_page(p);
2370 unlock_mutex:
2371 	mutex_unlock(&mf_mutex);
2372 	return res;
2373 }
2374 EXPORT_SYMBOL_GPL(memory_failure);
2375 
2376 #define MEMORY_FAILURE_FIFO_ORDER	4
2377 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2378 
2379 struct memory_failure_entry {
2380 	unsigned long pfn;
2381 	int flags;
2382 };
2383 
2384 struct memory_failure_cpu {
2385 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2386 		      MEMORY_FAILURE_FIFO_SIZE);
2387 	spinlock_t lock;
2388 	struct work_struct work;
2389 };
2390 
2391 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2392 
2393 /**
2394  * memory_failure_queue - Schedule handling memory failure of a page.
2395  * @pfn: Page Number of the corrupted page
2396  * @flags: Flags for memory failure handling
2397  *
2398  * This function is called by the low level hardware error handler
2399  * when it detects hardware memory corruption of a page. It schedules
2400  * the recovering of error page, including dropping pages, killing
2401  * processes etc.
2402  *
2403  * The function is primarily of use for corruptions that
2404  * happen outside the current execution context (e.g. when
2405  * detected by a background scrubber)
2406  *
2407  * Can run in IRQ context.
2408  */
2409 void memory_failure_queue(unsigned long pfn, int flags)
2410 {
2411 	struct memory_failure_cpu *mf_cpu;
2412 	unsigned long proc_flags;
2413 	struct memory_failure_entry entry = {
2414 		.pfn =		pfn,
2415 		.flags =	flags,
2416 	};
2417 
2418 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2419 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2420 	if (kfifo_put(&mf_cpu->fifo, entry))
2421 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2422 	else
2423 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2424 		       pfn);
2425 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2426 	put_cpu_var(memory_failure_cpu);
2427 }
2428 EXPORT_SYMBOL_GPL(memory_failure_queue);
2429 
2430 static void memory_failure_work_func(struct work_struct *work)
2431 {
2432 	struct memory_failure_cpu *mf_cpu;
2433 	struct memory_failure_entry entry = { 0, };
2434 	unsigned long proc_flags;
2435 	int gotten;
2436 
2437 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2438 	for (;;) {
2439 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2440 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2441 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2442 		if (!gotten)
2443 			break;
2444 		if (entry.flags & MF_SOFT_OFFLINE)
2445 			soft_offline_page(entry.pfn, entry.flags);
2446 		else
2447 			memory_failure(entry.pfn, entry.flags);
2448 	}
2449 }
2450 
2451 /*
2452  * Process memory_failure work queued on the specified CPU.
2453  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2454  */
2455 void memory_failure_queue_kick(int cpu)
2456 {
2457 	struct memory_failure_cpu *mf_cpu;
2458 
2459 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2460 	cancel_work_sync(&mf_cpu->work);
2461 	memory_failure_work_func(&mf_cpu->work);
2462 }
2463 
2464 static int __init memory_failure_init(void)
2465 {
2466 	struct memory_failure_cpu *mf_cpu;
2467 	int cpu;
2468 
2469 	for_each_possible_cpu(cpu) {
2470 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2471 		spin_lock_init(&mf_cpu->lock);
2472 		INIT_KFIFO(mf_cpu->fifo);
2473 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2474 	}
2475 
2476 	register_sysctl_init("vm", memory_failure_table);
2477 
2478 	return 0;
2479 }
2480 core_initcall(memory_failure_init);
2481 
2482 #undef pr_fmt
2483 #define pr_fmt(fmt)	"" fmt
2484 #define unpoison_pr_info(fmt, pfn, rs)			\
2485 ({							\
2486 	if (__ratelimit(rs))				\
2487 		pr_info(fmt, pfn);			\
2488 })
2489 
2490 /**
2491  * unpoison_memory - Unpoison a previously poisoned page
2492  * @pfn: Page number of the to be unpoisoned page
2493  *
2494  * Software-unpoison a page that has been poisoned by
2495  * memory_failure() earlier.
2496  *
2497  * This is only done on the software-level, so it only works
2498  * for linux injected failures, not real hardware failures
2499  *
2500  * Returns 0 for success, otherwise -errno.
2501  */
2502 int unpoison_memory(unsigned long pfn)
2503 {
2504 	struct folio *folio;
2505 	struct page *p;
2506 	int ret = -EBUSY, ghp;
2507 	unsigned long count = 1;
2508 	bool huge = false;
2509 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2510 					DEFAULT_RATELIMIT_BURST);
2511 
2512 	if (!pfn_valid(pfn))
2513 		return -ENXIO;
2514 
2515 	p = pfn_to_page(pfn);
2516 	folio = page_folio(p);
2517 
2518 	mutex_lock(&mf_mutex);
2519 
2520 	if (hw_memory_failure) {
2521 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2522 				 pfn, &unpoison_rs);
2523 		ret = -EOPNOTSUPP;
2524 		goto unlock_mutex;
2525 	}
2526 
2527 	if (!PageHWPoison(p)) {
2528 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2529 				 pfn, &unpoison_rs);
2530 		goto unlock_mutex;
2531 	}
2532 
2533 	if (folio_ref_count(folio) > 1) {
2534 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2535 				 pfn, &unpoison_rs);
2536 		goto unlock_mutex;
2537 	}
2538 
2539 	if (folio_test_slab(folio) || PageTable(&folio->page) ||
2540 	    folio_test_reserved(folio) || PageOffline(&folio->page))
2541 		goto unlock_mutex;
2542 
2543 	/*
2544 	 * Note that folio->_mapcount is overloaded in SLAB, so the simple test
2545 	 * in folio_mapped() has to be done after folio_test_slab() is checked.
2546 	 */
2547 	if (folio_mapped(folio)) {
2548 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2549 				 pfn, &unpoison_rs);
2550 		goto unlock_mutex;
2551 	}
2552 
2553 	if (folio_mapping(folio)) {
2554 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2555 				 pfn, &unpoison_rs);
2556 		goto unlock_mutex;
2557 	}
2558 
2559 	ghp = get_hwpoison_page(p, MF_UNPOISON);
2560 	if (!ghp) {
2561 		if (PageHuge(p)) {
2562 			huge = true;
2563 			count = folio_free_raw_hwp(folio, false);
2564 			if (count == 0)
2565 				goto unlock_mutex;
2566 		}
2567 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2568 	} else if (ghp < 0) {
2569 		if (ghp == -EHWPOISON) {
2570 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2571 		} else {
2572 			ret = ghp;
2573 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2574 					 pfn, &unpoison_rs);
2575 		}
2576 	} else {
2577 		if (PageHuge(p)) {
2578 			huge = true;
2579 			count = folio_free_raw_hwp(folio, false);
2580 			if (count == 0) {
2581 				folio_put(folio);
2582 				goto unlock_mutex;
2583 			}
2584 		}
2585 
2586 		folio_put(folio);
2587 		if (TestClearPageHWPoison(p)) {
2588 			folio_put(folio);
2589 			ret = 0;
2590 		}
2591 	}
2592 
2593 unlock_mutex:
2594 	mutex_unlock(&mf_mutex);
2595 	if (!ret) {
2596 		if (!huge)
2597 			num_poisoned_pages_sub(pfn, 1);
2598 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2599 				 page_to_pfn(p), &unpoison_rs);
2600 	}
2601 	return ret;
2602 }
2603 EXPORT_SYMBOL(unpoison_memory);
2604 
2605 static bool isolate_page(struct page *page, struct list_head *pagelist)
2606 {
2607 	bool isolated = false;
2608 
2609 	if (PageHuge(page)) {
2610 		isolated = isolate_hugetlb(page_folio(page), pagelist);
2611 	} else {
2612 		bool lru = !__PageMovable(page);
2613 
2614 		if (lru)
2615 			isolated = isolate_lru_page(page);
2616 		else
2617 			isolated = isolate_movable_page(page,
2618 							ISOLATE_UNEVICTABLE);
2619 
2620 		if (isolated) {
2621 			list_add(&page->lru, pagelist);
2622 			if (lru)
2623 				inc_node_page_state(page, NR_ISOLATED_ANON +
2624 						    page_is_file_lru(page));
2625 		}
2626 	}
2627 
2628 	/*
2629 	 * If we succeed to isolate the page, we grabbed another refcount on
2630 	 * the page, so we can safely drop the one we got from get_any_page().
2631 	 * If we failed to isolate the page, it means that we cannot go further
2632 	 * and we will return an error, so drop the reference we got from
2633 	 * get_any_page() as well.
2634 	 */
2635 	put_page(page);
2636 	return isolated;
2637 }
2638 
2639 /*
2640  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2641  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2642  * If the page is mapped, it migrates the contents over.
2643  */
2644 static int soft_offline_in_use_page(struct page *page)
2645 {
2646 	long ret = 0;
2647 	unsigned long pfn = page_to_pfn(page);
2648 	struct page *hpage = compound_head(page);
2649 	char const *msg_page[] = {"page", "hugepage"};
2650 	bool huge = PageHuge(page);
2651 	LIST_HEAD(pagelist);
2652 	struct migration_target_control mtc = {
2653 		.nid = NUMA_NO_NODE,
2654 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2655 	};
2656 
2657 	if (!huge && PageTransHuge(hpage)) {
2658 		if (try_to_split_thp_page(page)) {
2659 			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2660 			return -EBUSY;
2661 		}
2662 		hpage = page;
2663 	}
2664 
2665 	lock_page(page);
2666 	if (!huge)
2667 		wait_on_page_writeback(page);
2668 	if (PageHWPoison(page)) {
2669 		unlock_page(page);
2670 		put_page(page);
2671 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2672 		return 0;
2673 	}
2674 
2675 	if (!huge && PageLRU(page) && !PageSwapCache(page))
2676 		/*
2677 		 * Try to invalidate first. This should work for
2678 		 * non dirty unmapped page cache pages.
2679 		 */
2680 		ret = invalidate_inode_page(page);
2681 	unlock_page(page);
2682 
2683 	if (ret) {
2684 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2685 		page_handle_poison(page, false, true);
2686 		return 0;
2687 	}
2688 
2689 	if (isolate_page(hpage, &pagelist)) {
2690 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2691 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2692 		if (!ret) {
2693 			bool release = !huge;
2694 
2695 			if (!page_handle_poison(page, huge, release))
2696 				ret = -EBUSY;
2697 		} else {
2698 			if (!list_empty(&pagelist))
2699 				putback_movable_pages(&pagelist);
2700 
2701 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2702 				pfn, msg_page[huge], ret, &page->flags);
2703 			if (ret > 0)
2704 				ret = -EBUSY;
2705 		}
2706 	} else {
2707 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2708 			pfn, msg_page[huge], page_count(page), &page->flags);
2709 		ret = -EBUSY;
2710 	}
2711 	return ret;
2712 }
2713 
2714 /**
2715  * soft_offline_page - Soft offline a page.
2716  * @pfn: pfn to soft-offline
2717  * @flags: flags. Same as memory_failure().
2718  *
2719  * Returns 0 on success
2720  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2721  *         < 0 otherwise negated errno.
2722  *
2723  * Soft offline a page, by migration or invalidation,
2724  * without killing anything. This is for the case when
2725  * a page is not corrupted yet (so it's still valid to access),
2726  * but has had a number of corrected errors and is better taken
2727  * out.
2728  *
2729  * The actual policy on when to do that is maintained by
2730  * user space.
2731  *
2732  * This should never impact any application or cause data loss,
2733  * however it might take some time.
2734  *
2735  * This is not a 100% solution for all memory, but tries to be
2736  * ``good enough'' for the majority of memory.
2737  */
2738 int soft_offline_page(unsigned long pfn, int flags)
2739 {
2740 	int ret;
2741 	bool try_again = true;
2742 	struct page *page;
2743 
2744 	if (!pfn_valid(pfn)) {
2745 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2746 		return -ENXIO;
2747 	}
2748 
2749 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2750 	page = pfn_to_online_page(pfn);
2751 	if (!page) {
2752 		put_ref_page(pfn, flags);
2753 		return -EIO;
2754 	}
2755 
2756 	mutex_lock(&mf_mutex);
2757 
2758 	if (PageHWPoison(page)) {
2759 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2760 		put_ref_page(pfn, flags);
2761 		mutex_unlock(&mf_mutex);
2762 		return 0;
2763 	}
2764 
2765 retry:
2766 	get_online_mems();
2767 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2768 	put_online_mems();
2769 
2770 	if (hwpoison_filter(page)) {
2771 		if (ret > 0)
2772 			put_page(page);
2773 
2774 		mutex_unlock(&mf_mutex);
2775 		return -EOPNOTSUPP;
2776 	}
2777 
2778 	if (ret > 0) {
2779 		ret = soft_offline_in_use_page(page);
2780 	} else if (ret == 0) {
2781 		if (!page_handle_poison(page, true, false)) {
2782 			if (try_again) {
2783 				try_again = false;
2784 				flags &= ~MF_COUNT_INCREASED;
2785 				goto retry;
2786 			}
2787 			ret = -EBUSY;
2788 		}
2789 	}
2790 
2791 	mutex_unlock(&mf_mutex);
2792 
2793 	return ret;
2794 }
2795