xref: /linux/mm/memory-failure.c (revision 455f9726244cb5de2b6a99f540743ba155633cc8)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * There are several operations here with exponential complexity because
25  * of unsuitable VM data structures. For example the operation to map back
26  * from RMAP chains to processes has to walk the complete process list and
27  * has non linear complexity with the number. But since memory corruptions
28  * are rare we hope to get away with this. This avoids impacting the core
29  * VM.
30  */
31 
32 /*
33  * Notebook:
34  * - hugetlb needs more code
35  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36  * - pass bad pages to kdump next kernel
37  */
38 #include <linux/kernel.h>
39 #include <linux/mm.h>
40 #include <linux/page-flags.h>
41 #include <linux/kernel-page-flags.h>
42 #include <linux/sched.h>
43 #include <linux/ksm.h>
44 #include <linux/rmap.h>
45 #include <linux/export.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/backing-dev.h>
49 #include <linux/migrate.h>
50 #include <linux/page-isolation.h>
51 #include <linux/suspend.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/kfifo.h>
58 #include "internal.h"
59 
60 int sysctl_memory_failure_early_kill __read_mostly = 0;
61 
62 int sysctl_memory_failure_recovery __read_mostly = 1;
63 
64 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
65 
66 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
67 
68 u32 hwpoison_filter_enable = 0;
69 u32 hwpoison_filter_dev_major = ~0U;
70 u32 hwpoison_filter_dev_minor = ~0U;
71 u64 hwpoison_filter_flags_mask;
72 u64 hwpoison_filter_flags_value;
73 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
74 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
75 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
78 
79 static int hwpoison_filter_dev(struct page *p)
80 {
81 	struct address_space *mapping;
82 	dev_t dev;
83 
84 	if (hwpoison_filter_dev_major == ~0U &&
85 	    hwpoison_filter_dev_minor == ~0U)
86 		return 0;
87 
88 	/*
89 	 * page_mapping() does not accept slab pages.
90 	 */
91 	if (PageSlab(p))
92 		return -EINVAL;
93 
94 	mapping = page_mapping(p);
95 	if (mapping == NULL || mapping->host == NULL)
96 		return -EINVAL;
97 
98 	dev = mapping->host->i_sb->s_dev;
99 	if (hwpoison_filter_dev_major != ~0U &&
100 	    hwpoison_filter_dev_major != MAJOR(dev))
101 		return -EINVAL;
102 	if (hwpoison_filter_dev_minor != ~0U &&
103 	    hwpoison_filter_dev_minor != MINOR(dev))
104 		return -EINVAL;
105 
106 	return 0;
107 }
108 
109 static int hwpoison_filter_flags(struct page *p)
110 {
111 	if (!hwpoison_filter_flags_mask)
112 		return 0;
113 
114 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
115 				    hwpoison_filter_flags_value)
116 		return 0;
117 	else
118 		return -EINVAL;
119 }
120 
121 /*
122  * This allows stress tests to limit test scope to a collection of tasks
123  * by putting them under some memcg. This prevents killing unrelated/important
124  * processes such as /sbin/init. Note that the target task may share clean
125  * pages with init (eg. libc text), which is harmless. If the target task
126  * share _dirty_ pages with another task B, the test scheme must make sure B
127  * is also included in the memcg. At last, due to race conditions this filter
128  * can only guarantee that the page either belongs to the memcg tasks, or is
129  * a freed page.
130  */
131 #ifdef	CONFIG_MEMCG_SWAP
132 u64 hwpoison_filter_memcg;
133 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
134 static int hwpoison_filter_task(struct page *p)
135 {
136 	struct mem_cgroup *mem;
137 	struct cgroup_subsys_state *css;
138 	unsigned long ino;
139 
140 	if (!hwpoison_filter_memcg)
141 		return 0;
142 
143 	mem = try_get_mem_cgroup_from_page(p);
144 	if (!mem)
145 		return -EINVAL;
146 
147 	css = mem_cgroup_css(mem);
148 	ino = cgroup_ino(css->cgroup);
149 	css_put(css);
150 
151 	if (!ino || ino != hwpoison_filter_memcg)
152 		return -EINVAL;
153 
154 	return 0;
155 }
156 #else
157 static int hwpoison_filter_task(struct page *p) { return 0; }
158 #endif
159 
160 int hwpoison_filter(struct page *p)
161 {
162 	if (!hwpoison_filter_enable)
163 		return 0;
164 
165 	if (hwpoison_filter_dev(p))
166 		return -EINVAL;
167 
168 	if (hwpoison_filter_flags(p))
169 		return -EINVAL;
170 
171 	if (hwpoison_filter_task(p))
172 		return -EINVAL;
173 
174 	return 0;
175 }
176 #else
177 int hwpoison_filter(struct page *p)
178 {
179 	return 0;
180 }
181 #endif
182 
183 EXPORT_SYMBOL_GPL(hwpoison_filter);
184 
185 /*
186  * Send all the processes who have the page mapped a signal.
187  * ``action optional'' if they are not immediately affected by the error
188  * ``action required'' if error happened in current execution context
189  */
190 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
191 			unsigned long pfn, struct page *page, int flags)
192 {
193 	struct siginfo si;
194 	int ret;
195 
196 	printk(KERN_ERR
197 		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
198 		pfn, t->comm, t->pid);
199 	si.si_signo = SIGBUS;
200 	si.si_errno = 0;
201 	si.si_addr = (void *)addr;
202 #ifdef __ARCH_SI_TRAPNO
203 	si.si_trapno = trapno;
204 #endif
205 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
206 
207 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
208 		si.si_code = BUS_MCEERR_AR;
209 		ret = force_sig_info(SIGBUS, &si, current);
210 	} else {
211 		/*
212 		 * Don't use force here, it's convenient if the signal
213 		 * can be temporarily blocked.
214 		 * This could cause a loop when the user sets SIGBUS
215 		 * to SIG_IGN, but hopefully no one will do that?
216 		 */
217 		si.si_code = BUS_MCEERR_AO;
218 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
219 	}
220 	if (ret < 0)
221 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
222 		       t->comm, t->pid, ret);
223 	return ret;
224 }
225 
226 /*
227  * When a unknown page type is encountered drain as many buffers as possible
228  * in the hope to turn the page into a LRU or free page, which we can handle.
229  */
230 void shake_page(struct page *p, int access)
231 {
232 	if (!PageSlab(p)) {
233 		lru_add_drain_all();
234 		if (PageLRU(p))
235 			return;
236 		drain_all_pages();
237 		if (PageLRU(p) || is_free_buddy_page(p))
238 			return;
239 	}
240 
241 	/*
242 	 * Only call shrink_slab here (which would also shrink other caches) if
243 	 * access is not potentially fatal.
244 	 */
245 	if (access) {
246 		int nr;
247 		int nid = page_to_nid(p);
248 		do {
249 			struct shrink_control shrink = {
250 				.gfp_mask = GFP_KERNEL,
251 			};
252 			node_set(nid, shrink.nodes_to_scan);
253 
254 			nr = shrink_slab(&shrink, 1000, 1000);
255 			if (page_count(p) == 1)
256 				break;
257 		} while (nr > 10);
258 	}
259 }
260 EXPORT_SYMBOL_GPL(shake_page);
261 
262 /*
263  * Kill all processes that have a poisoned page mapped and then isolate
264  * the page.
265  *
266  * General strategy:
267  * Find all processes having the page mapped and kill them.
268  * But we keep a page reference around so that the page is not
269  * actually freed yet.
270  * Then stash the page away
271  *
272  * There's no convenient way to get back to mapped processes
273  * from the VMAs. So do a brute-force search over all
274  * running processes.
275  *
276  * Remember that machine checks are not common (or rather
277  * if they are common you have other problems), so this shouldn't
278  * be a performance issue.
279  *
280  * Also there are some races possible while we get from the
281  * error detection to actually handle it.
282  */
283 
284 struct to_kill {
285 	struct list_head nd;
286 	struct task_struct *tsk;
287 	unsigned long addr;
288 	char addr_valid;
289 };
290 
291 /*
292  * Failure handling: if we can't find or can't kill a process there's
293  * not much we can do.	We just print a message and ignore otherwise.
294  */
295 
296 /*
297  * Schedule a process for later kill.
298  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
299  * TBD would GFP_NOIO be enough?
300  */
301 static void add_to_kill(struct task_struct *tsk, struct page *p,
302 		       struct vm_area_struct *vma,
303 		       struct list_head *to_kill,
304 		       struct to_kill **tkc)
305 {
306 	struct to_kill *tk;
307 
308 	if (*tkc) {
309 		tk = *tkc;
310 		*tkc = NULL;
311 	} else {
312 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
313 		if (!tk) {
314 			printk(KERN_ERR
315 		"MCE: Out of memory while machine check handling\n");
316 			return;
317 		}
318 	}
319 	tk->addr = page_address_in_vma(p, vma);
320 	tk->addr_valid = 1;
321 
322 	/*
323 	 * In theory we don't have to kill when the page was
324 	 * munmaped. But it could be also a mremap. Since that's
325 	 * likely very rare kill anyways just out of paranoia, but use
326 	 * a SIGKILL because the error is not contained anymore.
327 	 */
328 	if (tk->addr == -EFAULT) {
329 		pr_info("MCE: Unable to find user space address %lx in %s\n",
330 			page_to_pfn(p), tsk->comm);
331 		tk->addr_valid = 0;
332 	}
333 	get_task_struct(tsk);
334 	tk->tsk = tsk;
335 	list_add_tail(&tk->nd, to_kill);
336 }
337 
338 /*
339  * Kill the processes that have been collected earlier.
340  *
341  * Only do anything when DOIT is set, otherwise just free the list
342  * (this is used for clean pages which do not need killing)
343  * Also when FAIL is set do a force kill because something went
344  * wrong earlier.
345  */
346 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
347 			  int fail, struct page *page, unsigned long pfn,
348 			  int flags)
349 {
350 	struct to_kill *tk, *next;
351 
352 	list_for_each_entry_safe (tk, next, to_kill, nd) {
353 		if (forcekill) {
354 			/*
355 			 * In case something went wrong with munmapping
356 			 * make sure the process doesn't catch the
357 			 * signal and then access the memory. Just kill it.
358 			 */
359 			if (fail || tk->addr_valid == 0) {
360 				printk(KERN_ERR
361 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
362 					pfn, tk->tsk->comm, tk->tsk->pid);
363 				force_sig(SIGKILL, tk->tsk);
364 			}
365 
366 			/*
367 			 * In theory the process could have mapped
368 			 * something else on the address in-between. We could
369 			 * check for that, but we need to tell the
370 			 * process anyways.
371 			 */
372 			else if (kill_proc(tk->tsk, tk->addr, trapno,
373 					      pfn, page, flags) < 0)
374 				printk(KERN_ERR
375 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
376 					pfn, tk->tsk->comm, tk->tsk->pid);
377 		}
378 		put_task_struct(tk->tsk);
379 		kfree(tk);
380 	}
381 }
382 
383 /*
384  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
385  * on behalf of the thread group. Return task_struct of the (first found)
386  * dedicated thread if found, and return NULL otherwise.
387  *
388  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
389  * have to call rcu_read_lock/unlock() in this function.
390  */
391 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
392 {
393 	struct task_struct *t;
394 
395 	for_each_thread(tsk, t)
396 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
397 			return t;
398 	return NULL;
399 }
400 
401 /*
402  * Determine whether a given process is "early kill" process which expects
403  * to be signaled when some page under the process is hwpoisoned.
404  * Return task_struct of the dedicated thread (main thread unless explicitly
405  * specified) if the process is "early kill," and otherwise returns NULL.
406  */
407 static struct task_struct *task_early_kill(struct task_struct *tsk,
408 					   int force_early)
409 {
410 	struct task_struct *t;
411 	if (!tsk->mm)
412 		return NULL;
413 	if (force_early)
414 		return tsk;
415 	t = find_early_kill_thread(tsk);
416 	if (t)
417 		return t;
418 	if (sysctl_memory_failure_early_kill)
419 		return tsk;
420 	return NULL;
421 }
422 
423 /*
424  * Collect processes when the error hit an anonymous page.
425  */
426 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
427 			      struct to_kill **tkc, int force_early)
428 {
429 	struct vm_area_struct *vma;
430 	struct task_struct *tsk;
431 	struct anon_vma *av;
432 	pgoff_t pgoff;
433 
434 	av = page_lock_anon_vma_read(page);
435 	if (av == NULL)	/* Not actually mapped anymore */
436 		return;
437 
438 	pgoff = page_to_pgoff(page);
439 	read_lock(&tasklist_lock);
440 	for_each_process (tsk) {
441 		struct anon_vma_chain *vmac;
442 		struct task_struct *t = task_early_kill(tsk, force_early);
443 
444 		if (!t)
445 			continue;
446 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
447 					       pgoff, pgoff) {
448 			vma = vmac->vma;
449 			if (!page_mapped_in_vma(page, vma))
450 				continue;
451 			if (vma->vm_mm == t->mm)
452 				add_to_kill(t, page, vma, to_kill, tkc);
453 		}
454 	}
455 	read_unlock(&tasklist_lock);
456 	page_unlock_anon_vma_read(av);
457 }
458 
459 /*
460  * Collect processes when the error hit a file mapped page.
461  */
462 static void collect_procs_file(struct page *page, struct list_head *to_kill,
463 			      struct to_kill **tkc, int force_early)
464 {
465 	struct vm_area_struct *vma;
466 	struct task_struct *tsk;
467 	struct address_space *mapping = page->mapping;
468 
469 	mutex_lock(&mapping->i_mmap_mutex);
470 	read_lock(&tasklist_lock);
471 	for_each_process(tsk) {
472 		pgoff_t pgoff = page_to_pgoff(page);
473 		struct task_struct *t = task_early_kill(tsk, force_early);
474 
475 		if (!t)
476 			continue;
477 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
478 				      pgoff) {
479 			/*
480 			 * Send early kill signal to tasks where a vma covers
481 			 * the page but the corrupted page is not necessarily
482 			 * mapped it in its pte.
483 			 * Assume applications who requested early kill want
484 			 * to be informed of all such data corruptions.
485 			 */
486 			if (vma->vm_mm == t->mm)
487 				add_to_kill(t, page, vma, to_kill, tkc);
488 		}
489 	}
490 	read_unlock(&tasklist_lock);
491 	mutex_unlock(&mapping->i_mmap_mutex);
492 }
493 
494 /*
495  * Collect the processes who have the corrupted page mapped to kill.
496  * This is done in two steps for locking reasons.
497  * First preallocate one tokill structure outside the spin locks,
498  * so that we can kill at least one process reasonably reliable.
499  */
500 static void collect_procs(struct page *page, struct list_head *tokill,
501 				int force_early)
502 {
503 	struct to_kill *tk;
504 
505 	if (!page->mapping)
506 		return;
507 
508 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
509 	if (!tk)
510 		return;
511 	if (PageAnon(page))
512 		collect_procs_anon(page, tokill, &tk, force_early);
513 	else
514 		collect_procs_file(page, tokill, &tk, force_early);
515 	kfree(tk);
516 }
517 
518 /*
519  * Error handlers for various types of pages.
520  */
521 
522 enum outcome {
523 	IGNORED,	/* Error: cannot be handled */
524 	FAILED,		/* Error: handling failed */
525 	DELAYED,	/* Will be handled later */
526 	RECOVERED,	/* Successfully recovered */
527 };
528 
529 static const char *action_name[] = {
530 	[IGNORED] = "Ignored",
531 	[FAILED] = "Failed",
532 	[DELAYED] = "Delayed",
533 	[RECOVERED] = "Recovered",
534 };
535 
536 /*
537  * XXX: It is possible that a page is isolated from LRU cache,
538  * and then kept in swap cache or failed to remove from page cache.
539  * The page count will stop it from being freed by unpoison.
540  * Stress tests should be aware of this memory leak problem.
541  */
542 static int delete_from_lru_cache(struct page *p)
543 {
544 	if (!isolate_lru_page(p)) {
545 		/*
546 		 * Clear sensible page flags, so that the buddy system won't
547 		 * complain when the page is unpoison-and-freed.
548 		 */
549 		ClearPageActive(p);
550 		ClearPageUnevictable(p);
551 		/*
552 		 * drop the page count elevated by isolate_lru_page()
553 		 */
554 		page_cache_release(p);
555 		return 0;
556 	}
557 	return -EIO;
558 }
559 
560 /*
561  * Error hit kernel page.
562  * Do nothing, try to be lucky and not touch this instead. For a few cases we
563  * could be more sophisticated.
564  */
565 static int me_kernel(struct page *p, unsigned long pfn)
566 {
567 	return IGNORED;
568 }
569 
570 /*
571  * Page in unknown state. Do nothing.
572  */
573 static int me_unknown(struct page *p, unsigned long pfn)
574 {
575 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
576 	return FAILED;
577 }
578 
579 /*
580  * Clean (or cleaned) page cache page.
581  */
582 static int me_pagecache_clean(struct page *p, unsigned long pfn)
583 {
584 	int err;
585 	int ret = FAILED;
586 	struct address_space *mapping;
587 
588 	delete_from_lru_cache(p);
589 
590 	/*
591 	 * For anonymous pages we're done the only reference left
592 	 * should be the one m_f() holds.
593 	 */
594 	if (PageAnon(p))
595 		return RECOVERED;
596 
597 	/*
598 	 * Now truncate the page in the page cache. This is really
599 	 * more like a "temporary hole punch"
600 	 * Don't do this for block devices when someone else
601 	 * has a reference, because it could be file system metadata
602 	 * and that's not safe to truncate.
603 	 */
604 	mapping = page_mapping(p);
605 	if (!mapping) {
606 		/*
607 		 * Page has been teared down in the meanwhile
608 		 */
609 		return FAILED;
610 	}
611 
612 	/*
613 	 * Truncation is a bit tricky. Enable it per file system for now.
614 	 *
615 	 * Open: to take i_mutex or not for this? Right now we don't.
616 	 */
617 	if (mapping->a_ops->error_remove_page) {
618 		err = mapping->a_ops->error_remove_page(mapping, p);
619 		if (err != 0) {
620 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
621 					pfn, err);
622 		} else if (page_has_private(p) &&
623 				!try_to_release_page(p, GFP_NOIO)) {
624 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
625 		} else {
626 			ret = RECOVERED;
627 		}
628 	} else {
629 		/*
630 		 * If the file system doesn't support it just invalidate
631 		 * This fails on dirty or anything with private pages
632 		 */
633 		if (invalidate_inode_page(p))
634 			ret = RECOVERED;
635 		else
636 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
637 				pfn);
638 	}
639 	return ret;
640 }
641 
642 /*
643  * Dirty pagecache page
644  * Issues: when the error hit a hole page the error is not properly
645  * propagated.
646  */
647 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
648 {
649 	struct address_space *mapping = page_mapping(p);
650 
651 	SetPageError(p);
652 	/* TBD: print more information about the file. */
653 	if (mapping) {
654 		/*
655 		 * IO error will be reported by write(), fsync(), etc.
656 		 * who check the mapping.
657 		 * This way the application knows that something went
658 		 * wrong with its dirty file data.
659 		 *
660 		 * There's one open issue:
661 		 *
662 		 * The EIO will be only reported on the next IO
663 		 * operation and then cleared through the IO map.
664 		 * Normally Linux has two mechanisms to pass IO error
665 		 * first through the AS_EIO flag in the address space
666 		 * and then through the PageError flag in the page.
667 		 * Since we drop pages on memory failure handling the
668 		 * only mechanism open to use is through AS_AIO.
669 		 *
670 		 * This has the disadvantage that it gets cleared on
671 		 * the first operation that returns an error, while
672 		 * the PageError bit is more sticky and only cleared
673 		 * when the page is reread or dropped.  If an
674 		 * application assumes it will always get error on
675 		 * fsync, but does other operations on the fd before
676 		 * and the page is dropped between then the error
677 		 * will not be properly reported.
678 		 *
679 		 * This can already happen even without hwpoisoned
680 		 * pages: first on metadata IO errors (which only
681 		 * report through AS_EIO) or when the page is dropped
682 		 * at the wrong time.
683 		 *
684 		 * So right now we assume that the application DTRT on
685 		 * the first EIO, but we're not worse than other parts
686 		 * of the kernel.
687 		 */
688 		mapping_set_error(mapping, EIO);
689 	}
690 
691 	return me_pagecache_clean(p, pfn);
692 }
693 
694 /*
695  * Clean and dirty swap cache.
696  *
697  * Dirty swap cache page is tricky to handle. The page could live both in page
698  * cache and swap cache(ie. page is freshly swapped in). So it could be
699  * referenced concurrently by 2 types of PTEs:
700  * normal PTEs and swap PTEs. We try to handle them consistently by calling
701  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
702  * and then
703  *      - clear dirty bit to prevent IO
704  *      - remove from LRU
705  *      - but keep in the swap cache, so that when we return to it on
706  *        a later page fault, we know the application is accessing
707  *        corrupted data and shall be killed (we installed simple
708  *        interception code in do_swap_page to catch it).
709  *
710  * Clean swap cache pages can be directly isolated. A later page fault will
711  * bring in the known good data from disk.
712  */
713 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
714 {
715 	ClearPageDirty(p);
716 	/* Trigger EIO in shmem: */
717 	ClearPageUptodate(p);
718 
719 	if (!delete_from_lru_cache(p))
720 		return DELAYED;
721 	else
722 		return FAILED;
723 }
724 
725 static int me_swapcache_clean(struct page *p, unsigned long pfn)
726 {
727 	delete_from_swap_cache(p);
728 
729 	if (!delete_from_lru_cache(p))
730 		return RECOVERED;
731 	else
732 		return FAILED;
733 }
734 
735 /*
736  * Huge pages. Needs work.
737  * Issues:
738  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
739  *   To narrow down kill region to one page, we need to break up pmd.
740  */
741 static int me_huge_page(struct page *p, unsigned long pfn)
742 {
743 	int res = 0;
744 	struct page *hpage = compound_head(p);
745 	/*
746 	 * We can safely recover from error on free or reserved (i.e.
747 	 * not in-use) hugepage by dequeuing it from freelist.
748 	 * To check whether a hugepage is in-use or not, we can't use
749 	 * page->lru because it can be used in other hugepage operations,
750 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
751 	 * So instead we use page_mapping() and PageAnon().
752 	 * We assume that this function is called with page lock held,
753 	 * so there is no race between isolation and mapping/unmapping.
754 	 */
755 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
756 		res = dequeue_hwpoisoned_huge_page(hpage);
757 		if (!res)
758 			return RECOVERED;
759 	}
760 	return DELAYED;
761 }
762 
763 /*
764  * Various page states we can handle.
765  *
766  * A page state is defined by its current page->flags bits.
767  * The table matches them in order and calls the right handler.
768  *
769  * This is quite tricky because we can access page at any time
770  * in its live cycle, so all accesses have to be extremely careful.
771  *
772  * This is not complete. More states could be added.
773  * For any missing state don't attempt recovery.
774  */
775 
776 #define dirty		(1UL << PG_dirty)
777 #define sc		(1UL << PG_swapcache)
778 #define unevict		(1UL << PG_unevictable)
779 #define mlock		(1UL << PG_mlocked)
780 #define writeback	(1UL << PG_writeback)
781 #define lru		(1UL << PG_lru)
782 #define swapbacked	(1UL << PG_swapbacked)
783 #define head		(1UL << PG_head)
784 #define tail		(1UL << PG_tail)
785 #define compound	(1UL << PG_compound)
786 #define slab		(1UL << PG_slab)
787 #define reserved	(1UL << PG_reserved)
788 
789 static struct page_state {
790 	unsigned long mask;
791 	unsigned long res;
792 	char *msg;
793 	int (*action)(struct page *p, unsigned long pfn);
794 } error_states[] = {
795 	{ reserved,	reserved,	"reserved kernel",	me_kernel },
796 	/*
797 	 * free pages are specially detected outside this table:
798 	 * PG_buddy pages only make a small fraction of all free pages.
799 	 */
800 
801 	/*
802 	 * Could in theory check if slab page is free or if we can drop
803 	 * currently unused objects without touching them. But just
804 	 * treat it as standard kernel for now.
805 	 */
806 	{ slab,		slab,		"kernel slab",	me_kernel },
807 
808 #ifdef CONFIG_PAGEFLAGS_EXTENDED
809 	{ head,		head,		"huge",		me_huge_page },
810 	{ tail,		tail,		"huge",		me_huge_page },
811 #else
812 	{ compound,	compound,	"huge",		me_huge_page },
813 #endif
814 
815 	{ sc|dirty,	sc|dirty,	"dirty swapcache",	me_swapcache_dirty },
816 	{ sc|dirty,	sc,		"clean swapcache",	me_swapcache_clean },
817 
818 	{ mlock|dirty,	mlock|dirty,	"dirty mlocked LRU",	me_pagecache_dirty },
819 	{ mlock|dirty,	mlock,		"clean mlocked LRU",	me_pagecache_clean },
820 
821 	{ unevict|dirty, unevict|dirty,	"dirty unevictable LRU", me_pagecache_dirty },
822 	{ unevict|dirty, unevict,	"clean unevictable LRU", me_pagecache_clean },
823 
824 	{ lru|dirty,	lru|dirty,	"dirty LRU",	me_pagecache_dirty },
825 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
826 
827 	/*
828 	 * Catchall entry: must be at end.
829 	 */
830 	{ 0,		0,		"unknown page state",	me_unknown },
831 };
832 
833 #undef dirty
834 #undef sc
835 #undef unevict
836 #undef mlock
837 #undef writeback
838 #undef lru
839 #undef swapbacked
840 #undef head
841 #undef tail
842 #undef compound
843 #undef slab
844 #undef reserved
845 
846 /*
847  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
848  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
849  */
850 static void action_result(unsigned long pfn, char *msg, int result)
851 {
852 	pr_err("MCE %#lx: %s page recovery: %s\n",
853 		pfn, msg, action_name[result]);
854 }
855 
856 static int page_action(struct page_state *ps, struct page *p,
857 			unsigned long pfn)
858 {
859 	int result;
860 	int count;
861 
862 	result = ps->action(p, pfn);
863 	action_result(pfn, ps->msg, result);
864 
865 	count = page_count(p) - 1;
866 	if (ps->action == me_swapcache_dirty && result == DELAYED)
867 		count--;
868 	if (count != 0) {
869 		printk(KERN_ERR
870 		       "MCE %#lx: %s page still referenced by %d users\n",
871 		       pfn, ps->msg, count);
872 		result = FAILED;
873 	}
874 
875 	/* Could do more checks here if page looks ok */
876 	/*
877 	 * Could adjust zone counters here to correct for the missing page.
878 	 */
879 
880 	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
881 }
882 
883 /*
884  * Do all that is necessary to remove user space mappings. Unmap
885  * the pages and send SIGBUS to the processes if the data was dirty.
886  */
887 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
888 				  int trapno, int flags, struct page **hpagep)
889 {
890 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
891 	struct address_space *mapping;
892 	LIST_HEAD(tokill);
893 	int ret;
894 	int kill = 1, forcekill;
895 	struct page *hpage = *hpagep;
896 	struct page *ppage;
897 
898 	/*
899 	 * Here we are interested only in user-mapped pages, so skip any
900 	 * other types of pages.
901 	 */
902 	if (PageReserved(p) || PageSlab(p))
903 		return SWAP_SUCCESS;
904 	if (!(PageLRU(hpage) || PageHuge(p)))
905 		return SWAP_SUCCESS;
906 
907 	/*
908 	 * This check implies we don't kill processes if their pages
909 	 * are in the swap cache early. Those are always late kills.
910 	 */
911 	if (!page_mapped(hpage))
912 		return SWAP_SUCCESS;
913 
914 	if (PageKsm(p)) {
915 		pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
916 		return SWAP_FAIL;
917 	}
918 
919 	if (PageSwapCache(p)) {
920 		printk(KERN_ERR
921 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
922 		ttu |= TTU_IGNORE_HWPOISON;
923 	}
924 
925 	/*
926 	 * Propagate the dirty bit from PTEs to struct page first, because we
927 	 * need this to decide if we should kill or just drop the page.
928 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
929 	 * be called inside page lock (it's recommended but not enforced).
930 	 */
931 	mapping = page_mapping(hpage);
932 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
933 	    mapping_cap_writeback_dirty(mapping)) {
934 		if (page_mkclean(hpage)) {
935 			SetPageDirty(hpage);
936 		} else {
937 			kill = 0;
938 			ttu |= TTU_IGNORE_HWPOISON;
939 			printk(KERN_INFO
940 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
941 				pfn);
942 		}
943 	}
944 
945 	/*
946 	 * ppage: poisoned page
947 	 *   if p is regular page(4k page)
948 	 *        ppage == real poisoned page;
949 	 *   else p is hugetlb or THP, ppage == head page.
950 	 */
951 	ppage = hpage;
952 
953 	if (PageTransHuge(hpage)) {
954 		/*
955 		 * Verify that this isn't a hugetlbfs head page, the check for
956 		 * PageAnon is just for avoid tripping a split_huge_page
957 		 * internal debug check, as split_huge_page refuses to deal with
958 		 * anything that isn't an anon page. PageAnon can't go away fro
959 		 * under us because we hold a refcount on the hpage, without a
960 		 * refcount on the hpage. split_huge_page can't be safely called
961 		 * in the first place, having a refcount on the tail isn't
962 		 * enough * to be safe.
963 		 */
964 		if (!PageHuge(hpage) && PageAnon(hpage)) {
965 			if (unlikely(split_huge_page(hpage))) {
966 				/*
967 				 * FIXME: if splitting THP is failed, it is
968 				 * better to stop the following operation rather
969 				 * than causing panic by unmapping. System might
970 				 * survive if the page is freed later.
971 				 */
972 				printk(KERN_INFO
973 					"MCE %#lx: failed to split THP\n", pfn);
974 
975 				BUG_ON(!PageHWPoison(p));
976 				return SWAP_FAIL;
977 			}
978 			/*
979 			 * We pinned the head page for hwpoison handling,
980 			 * now we split the thp and we are interested in
981 			 * the hwpoisoned raw page, so move the refcount
982 			 * to it. Similarly, page lock is shifted.
983 			 */
984 			if (hpage != p) {
985 				if (!(flags & MF_COUNT_INCREASED)) {
986 					put_page(hpage);
987 					get_page(p);
988 				}
989 				lock_page(p);
990 				unlock_page(hpage);
991 				*hpagep = p;
992 			}
993 			/* THP is split, so ppage should be the real poisoned page. */
994 			ppage = p;
995 		}
996 	}
997 
998 	/*
999 	 * First collect all the processes that have the page
1000 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1001 	 * because ttu takes the rmap data structures down.
1002 	 *
1003 	 * Error handling: We ignore errors here because
1004 	 * there's nothing that can be done.
1005 	 */
1006 	if (kill)
1007 		collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
1008 
1009 	ret = try_to_unmap(ppage, ttu);
1010 	if (ret != SWAP_SUCCESS)
1011 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1012 				pfn, page_mapcount(ppage));
1013 
1014 	/*
1015 	 * Now that the dirty bit has been propagated to the
1016 	 * struct page and all unmaps done we can decide if
1017 	 * killing is needed or not.  Only kill when the page
1018 	 * was dirty or the process is not restartable,
1019 	 * otherwise the tokill list is merely
1020 	 * freed.  When there was a problem unmapping earlier
1021 	 * use a more force-full uncatchable kill to prevent
1022 	 * any accesses to the poisoned memory.
1023 	 */
1024 	forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
1025 	kill_procs(&tokill, forcekill, trapno,
1026 		      ret != SWAP_SUCCESS, p, pfn, flags);
1027 
1028 	return ret;
1029 }
1030 
1031 static void set_page_hwpoison_huge_page(struct page *hpage)
1032 {
1033 	int i;
1034 	int nr_pages = 1 << compound_order(hpage);
1035 	for (i = 0; i < nr_pages; i++)
1036 		SetPageHWPoison(hpage + i);
1037 }
1038 
1039 static void clear_page_hwpoison_huge_page(struct page *hpage)
1040 {
1041 	int i;
1042 	int nr_pages = 1 << compound_order(hpage);
1043 	for (i = 0; i < nr_pages; i++)
1044 		ClearPageHWPoison(hpage + i);
1045 }
1046 
1047 /**
1048  * memory_failure - Handle memory failure of a page.
1049  * @pfn: Page Number of the corrupted page
1050  * @trapno: Trap number reported in the signal to user space.
1051  * @flags: fine tune action taken
1052  *
1053  * This function is called by the low level machine check code
1054  * of an architecture when it detects hardware memory corruption
1055  * of a page. It tries its best to recover, which includes
1056  * dropping pages, killing processes etc.
1057  *
1058  * The function is primarily of use for corruptions that
1059  * happen outside the current execution context (e.g. when
1060  * detected by a background scrubber)
1061  *
1062  * Must run in process context (e.g. a work queue) with interrupts
1063  * enabled and no spinlocks hold.
1064  */
1065 int memory_failure(unsigned long pfn, int trapno, int flags)
1066 {
1067 	struct page_state *ps;
1068 	struct page *p;
1069 	struct page *hpage;
1070 	int res;
1071 	unsigned int nr_pages;
1072 	unsigned long page_flags;
1073 
1074 	if (!sysctl_memory_failure_recovery)
1075 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1076 
1077 	if (!pfn_valid(pfn)) {
1078 		printk(KERN_ERR
1079 		       "MCE %#lx: memory outside kernel control\n",
1080 		       pfn);
1081 		return -ENXIO;
1082 	}
1083 
1084 	p = pfn_to_page(pfn);
1085 	hpage = compound_head(p);
1086 	if (TestSetPageHWPoison(p)) {
1087 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1088 		return 0;
1089 	}
1090 
1091 	/*
1092 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1093 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1094 	 * transparent hugepages, they are supposed to be split and error
1095 	 * measurement is done in normal page units.  So nr_pages should be one
1096 	 * in this case.
1097 	 */
1098 	if (PageHuge(p))
1099 		nr_pages = 1 << compound_order(hpage);
1100 	else /* normal page or thp */
1101 		nr_pages = 1;
1102 	atomic_long_add(nr_pages, &num_poisoned_pages);
1103 
1104 	/*
1105 	 * We need/can do nothing about count=0 pages.
1106 	 * 1) it's a free page, and therefore in safe hand:
1107 	 *    prep_new_page() will be the gate keeper.
1108 	 * 2) it's a free hugepage, which is also safe:
1109 	 *    an affected hugepage will be dequeued from hugepage freelist,
1110 	 *    so there's no concern about reusing it ever after.
1111 	 * 3) it's part of a non-compound high order page.
1112 	 *    Implies some kernel user: cannot stop them from
1113 	 *    R/W the page; let's pray that the page has been
1114 	 *    used and will be freed some time later.
1115 	 * In fact it's dangerous to directly bump up page count from 0,
1116 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1117 	 */
1118 	if (!(flags & MF_COUNT_INCREASED) &&
1119 		!get_page_unless_zero(hpage)) {
1120 		if (is_free_buddy_page(p)) {
1121 			action_result(pfn, "free buddy", DELAYED);
1122 			return 0;
1123 		} else if (PageHuge(hpage)) {
1124 			/*
1125 			 * Check "filter hit" and "race with other subpage."
1126 			 */
1127 			lock_page(hpage);
1128 			if (PageHWPoison(hpage)) {
1129 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1130 				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1131 					atomic_long_sub(nr_pages, &num_poisoned_pages);
1132 					unlock_page(hpage);
1133 					return 0;
1134 				}
1135 			}
1136 			set_page_hwpoison_huge_page(hpage);
1137 			res = dequeue_hwpoisoned_huge_page(hpage);
1138 			action_result(pfn, "free huge",
1139 				      res ? IGNORED : DELAYED);
1140 			unlock_page(hpage);
1141 			return res;
1142 		} else {
1143 			action_result(pfn, "high order kernel", IGNORED);
1144 			return -EBUSY;
1145 		}
1146 	}
1147 
1148 	/*
1149 	 * We ignore non-LRU pages for good reasons.
1150 	 * - PG_locked is only well defined for LRU pages and a few others
1151 	 * - to avoid races with __set_page_locked()
1152 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1153 	 * The check (unnecessarily) ignores LRU pages being isolated and
1154 	 * walked by the page reclaim code, however that's not a big loss.
1155 	 */
1156 	if (!PageHuge(p) && !PageTransTail(p)) {
1157 		if (!PageLRU(p))
1158 			shake_page(p, 0);
1159 		if (!PageLRU(p)) {
1160 			/*
1161 			 * shake_page could have turned it free.
1162 			 */
1163 			if (is_free_buddy_page(p)) {
1164 				if (flags & MF_COUNT_INCREASED)
1165 					action_result(pfn, "free buddy", DELAYED);
1166 				else
1167 					action_result(pfn, "free buddy, 2nd try", DELAYED);
1168 				return 0;
1169 			}
1170 		}
1171 	}
1172 
1173 	lock_page(hpage);
1174 
1175 	/*
1176 	 * We use page flags to determine what action should be taken, but
1177 	 * the flags can be modified by the error containment action.  One
1178 	 * example is an mlocked page, where PG_mlocked is cleared by
1179 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1180 	 * correctly, we save a copy of the page flags at this time.
1181 	 */
1182 	page_flags = p->flags;
1183 
1184 	/*
1185 	 * unpoison always clear PG_hwpoison inside page lock
1186 	 */
1187 	if (!PageHWPoison(p)) {
1188 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1189 		atomic_long_sub(nr_pages, &num_poisoned_pages);
1190 		put_page(hpage);
1191 		res = 0;
1192 		goto out;
1193 	}
1194 	if (hwpoison_filter(p)) {
1195 		if (TestClearPageHWPoison(p))
1196 			atomic_long_sub(nr_pages, &num_poisoned_pages);
1197 		unlock_page(hpage);
1198 		put_page(hpage);
1199 		return 0;
1200 	}
1201 
1202 	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1203 		goto identify_page_state;
1204 
1205 	/*
1206 	 * For error on the tail page, we should set PG_hwpoison
1207 	 * on the head page to show that the hugepage is hwpoisoned
1208 	 */
1209 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1210 		action_result(pfn, "hugepage already hardware poisoned",
1211 				IGNORED);
1212 		unlock_page(hpage);
1213 		put_page(hpage);
1214 		return 0;
1215 	}
1216 	/*
1217 	 * Set PG_hwpoison on all pages in an error hugepage,
1218 	 * because containment is done in hugepage unit for now.
1219 	 * Since we have done TestSetPageHWPoison() for the head page with
1220 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1221 	 */
1222 	if (PageHuge(p))
1223 		set_page_hwpoison_huge_page(hpage);
1224 
1225 	/*
1226 	 * It's very difficult to mess with pages currently under IO
1227 	 * and in many cases impossible, so we just avoid it here.
1228 	 */
1229 	wait_on_page_writeback(p);
1230 
1231 	/*
1232 	 * Now take care of user space mappings.
1233 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1234 	 *
1235 	 * When the raw error page is thp tail page, hpage points to the raw
1236 	 * page after thp split.
1237 	 */
1238 	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1239 	    != SWAP_SUCCESS) {
1240 		action_result(pfn, "unmapping failed", IGNORED);
1241 		res = -EBUSY;
1242 		goto out;
1243 	}
1244 
1245 	/*
1246 	 * Torn down by someone else?
1247 	 */
1248 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1249 		action_result(pfn, "already truncated LRU", IGNORED);
1250 		res = -EBUSY;
1251 		goto out;
1252 	}
1253 
1254 identify_page_state:
1255 	res = -EBUSY;
1256 	/*
1257 	 * The first check uses the current page flags which may not have any
1258 	 * relevant information. The second check with the saved page flagss is
1259 	 * carried out only if the first check can't determine the page status.
1260 	 */
1261 	for (ps = error_states;; ps++)
1262 		if ((p->flags & ps->mask) == ps->res)
1263 			break;
1264 
1265 	page_flags |= (p->flags & (1UL << PG_dirty));
1266 
1267 	if (!ps->mask)
1268 		for (ps = error_states;; ps++)
1269 			if ((page_flags & ps->mask) == ps->res)
1270 				break;
1271 	res = page_action(ps, p, pfn);
1272 out:
1273 	unlock_page(hpage);
1274 	return res;
1275 }
1276 EXPORT_SYMBOL_GPL(memory_failure);
1277 
1278 #define MEMORY_FAILURE_FIFO_ORDER	4
1279 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1280 
1281 struct memory_failure_entry {
1282 	unsigned long pfn;
1283 	int trapno;
1284 	int flags;
1285 };
1286 
1287 struct memory_failure_cpu {
1288 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1289 		      MEMORY_FAILURE_FIFO_SIZE);
1290 	spinlock_t lock;
1291 	struct work_struct work;
1292 };
1293 
1294 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1295 
1296 /**
1297  * memory_failure_queue - Schedule handling memory failure of a page.
1298  * @pfn: Page Number of the corrupted page
1299  * @trapno: Trap number reported in the signal to user space.
1300  * @flags: Flags for memory failure handling
1301  *
1302  * This function is called by the low level hardware error handler
1303  * when it detects hardware memory corruption of a page. It schedules
1304  * the recovering of error page, including dropping pages, killing
1305  * processes etc.
1306  *
1307  * The function is primarily of use for corruptions that
1308  * happen outside the current execution context (e.g. when
1309  * detected by a background scrubber)
1310  *
1311  * Can run in IRQ context.
1312  */
1313 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1314 {
1315 	struct memory_failure_cpu *mf_cpu;
1316 	unsigned long proc_flags;
1317 	struct memory_failure_entry entry = {
1318 		.pfn =		pfn,
1319 		.trapno =	trapno,
1320 		.flags =	flags,
1321 	};
1322 
1323 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1324 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1325 	if (kfifo_put(&mf_cpu->fifo, entry))
1326 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1327 	else
1328 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1329 		       pfn);
1330 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1331 	put_cpu_var(memory_failure_cpu);
1332 }
1333 EXPORT_SYMBOL_GPL(memory_failure_queue);
1334 
1335 static void memory_failure_work_func(struct work_struct *work)
1336 {
1337 	struct memory_failure_cpu *mf_cpu;
1338 	struct memory_failure_entry entry = { 0, };
1339 	unsigned long proc_flags;
1340 	int gotten;
1341 
1342 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1343 	for (;;) {
1344 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1345 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1346 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1347 		if (!gotten)
1348 			break;
1349 		if (entry.flags & MF_SOFT_OFFLINE)
1350 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1351 		else
1352 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1353 	}
1354 }
1355 
1356 static int __init memory_failure_init(void)
1357 {
1358 	struct memory_failure_cpu *mf_cpu;
1359 	int cpu;
1360 
1361 	for_each_possible_cpu(cpu) {
1362 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1363 		spin_lock_init(&mf_cpu->lock);
1364 		INIT_KFIFO(mf_cpu->fifo);
1365 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1366 	}
1367 
1368 	return 0;
1369 }
1370 core_initcall(memory_failure_init);
1371 
1372 /**
1373  * unpoison_memory - Unpoison a previously poisoned page
1374  * @pfn: Page number of the to be unpoisoned page
1375  *
1376  * Software-unpoison a page that has been poisoned by
1377  * memory_failure() earlier.
1378  *
1379  * This is only done on the software-level, so it only works
1380  * for linux injected failures, not real hardware failures
1381  *
1382  * Returns 0 for success, otherwise -errno.
1383  */
1384 int unpoison_memory(unsigned long pfn)
1385 {
1386 	struct page *page;
1387 	struct page *p;
1388 	int freeit = 0;
1389 	unsigned int nr_pages;
1390 
1391 	if (!pfn_valid(pfn))
1392 		return -ENXIO;
1393 
1394 	p = pfn_to_page(pfn);
1395 	page = compound_head(p);
1396 
1397 	if (!PageHWPoison(p)) {
1398 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1399 		return 0;
1400 	}
1401 
1402 	/*
1403 	 * unpoison_memory() can encounter thp only when the thp is being
1404 	 * worked by memory_failure() and the page lock is not held yet.
1405 	 * In such case, we yield to memory_failure() and make unpoison fail.
1406 	 */
1407 	if (!PageHuge(page) && PageTransHuge(page)) {
1408 		pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1409 			return 0;
1410 	}
1411 
1412 	nr_pages = 1 << compound_order(page);
1413 
1414 	if (!get_page_unless_zero(page)) {
1415 		/*
1416 		 * Since HWPoisoned hugepage should have non-zero refcount,
1417 		 * race between memory failure and unpoison seems to happen.
1418 		 * In such case unpoison fails and memory failure runs
1419 		 * to the end.
1420 		 */
1421 		if (PageHuge(page)) {
1422 			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1423 			return 0;
1424 		}
1425 		if (TestClearPageHWPoison(p))
1426 			atomic_long_dec(&num_poisoned_pages);
1427 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1428 		return 0;
1429 	}
1430 
1431 	lock_page(page);
1432 	/*
1433 	 * This test is racy because PG_hwpoison is set outside of page lock.
1434 	 * That's acceptable because that won't trigger kernel panic. Instead,
1435 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1436 	 * the free buddy page pool.
1437 	 */
1438 	if (TestClearPageHWPoison(page)) {
1439 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1440 		atomic_long_sub(nr_pages, &num_poisoned_pages);
1441 		freeit = 1;
1442 		if (PageHuge(page))
1443 			clear_page_hwpoison_huge_page(page);
1444 	}
1445 	unlock_page(page);
1446 
1447 	put_page(page);
1448 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1449 		put_page(page);
1450 
1451 	return 0;
1452 }
1453 EXPORT_SYMBOL(unpoison_memory);
1454 
1455 static struct page *new_page(struct page *p, unsigned long private, int **x)
1456 {
1457 	int nid = page_to_nid(p);
1458 	if (PageHuge(p))
1459 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1460 						   nid);
1461 	else
1462 		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1463 }
1464 
1465 /*
1466  * Safely get reference count of an arbitrary page.
1467  * Returns 0 for a free page, -EIO for a zero refcount page
1468  * that is not free, and 1 for any other page type.
1469  * For 1 the page is returned with increased page count, otherwise not.
1470  */
1471 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1472 {
1473 	int ret;
1474 
1475 	if (flags & MF_COUNT_INCREASED)
1476 		return 1;
1477 
1478 	/*
1479 	 * When the target page is a free hugepage, just remove it
1480 	 * from free hugepage list.
1481 	 */
1482 	if (!get_page_unless_zero(compound_head(p))) {
1483 		if (PageHuge(p)) {
1484 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1485 			ret = 0;
1486 		} else if (is_free_buddy_page(p)) {
1487 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1488 			ret = 0;
1489 		} else {
1490 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1491 				__func__, pfn, p->flags);
1492 			ret = -EIO;
1493 		}
1494 	} else {
1495 		/* Not a free page */
1496 		ret = 1;
1497 	}
1498 	return ret;
1499 }
1500 
1501 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1502 {
1503 	int ret = __get_any_page(page, pfn, flags);
1504 
1505 	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1506 		/*
1507 		 * Try to free it.
1508 		 */
1509 		put_page(page);
1510 		shake_page(page, 1);
1511 
1512 		/*
1513 		 * Did it turn free?
1514 		 */
1515 		ret = __get_any_page(page, pfn, 0);
1516 		if (!PageLRU(page)) {
1517 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1518 				pfn, page->flags);
1519 			return -EIO;
1520 		}
1521 	}
1522 	return ret;
1523 }
1524 
1525 static int soft_offline_huge_page(struct page *page, int flags)
1526 {
1527 	int ret;
1528 	unsigned long pfn = page_to_pfn(page);
1529 	struct page *hpage = compound_head(page);
1530 	LIST_HEAD(pagelist);
1531 
1532 	/*
1533 	 * This double-check of PageHWPoison is to avoid the race with
1534 	 * memory_failure(). See also comment in __soft_offline_page().
1535 	 */
1536 	lock_page(hpage);
1537 	if (PageHWPoison(hpage)) {
1538 		unlock_page(hpage);
1539 		put_page(hpage);
1540 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1541 		return -EBUSY;
1542 	}
1543 	unlock_page(hpage);
1544 
1545 	/* Keep page count to indicate a given hugepage is isolated. */
1546 	list_move(&hpage->lru, &pagelist);
1547 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1548 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1549 	if (ret) {
1550 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1551 			pfn, ret, page->flags);
1552 		/*
1553 		 * We know that soft_offline_huge_page() tries to migrate
1554 		 * only one hugepage pointed to by hpage, so we need not
1555 		 * run through the pagelist here.
1556 		 */
1557 		putback_active_hugepage(hpage);
1558 		if (ret > 0)
1559 			ret = -EIO;
1560 	} else {
1561 		/* overcommit hugetlb page will be freed to buddy */
1562 		if (PageHuge(page)) {
1563 			set_page_hwpoison_huge_page(hpage);
1564 			dequeue_hwpoisoned_huge_page(hpage);
1565 			atomic_long_add(1 << compound_order(hpage),
1566 					&num_poisoned_pages);
1567 		} else {
1568 			SetPageHWPoison(page);
1569 			atomic_long_inc(&num_poisoned_pages);
1570 		}
1571 	}
1572 	return ret;
1573 }
1574 
1575 static int __soft_offline_page(struct page *page, int flags)
1576 {
1577 	int ret;
1578 	unsigned long pfn = page_to_pfn(page);
1579 
1580 	/*
1581 	 * Check PageHWPoison again inside page lock because PageHWPoison
1582 	 * is set by memory_failure() outside page lock. Note that
1583 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1584 	 * so there's no race between soft_offline_page() and memory_failure().
1585 	 */
1586 	lock_page(page);
1587 	wait_on_page_writeback(page);
1588 	if (PageHWPoison(page)) {
1589 		unlock_page(page);
1590 		put_page(page);
1591 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1592 		return -EBUSY;
1593 	}
1594 	/*
1595 	 * Try to invalidate first. This should work for
1596 	 * non dirty unmapped page cache pages.
1597 	 */
1598 	ret = invalidate_inode_page(page);
1599 	unlock_page(page);
1600 	/*
1601 	 * RED-PEN would be better to keep it isolated here, but we
1602 	 * would need to fix isolation locking first.
1603 	 */
1604 	if (ret == 1) {
1605 		put_page(page);
1606 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1607 		SetPageHWPoison(page);
1608 		atomic_long_inc(&num_poisoned_pages);
1609 		return 0;
1610 	}
1611 
1612 	/*
1613 	 * Simple invalidation didn't work.
1614 	 * Try to migrate to a new page instead. migrate.c
1615 	 * handles a large number of cases for us.
1616 	 */
1617 	ret = isolate_lru_page(page);
1618 	/*
1619 	 * Drop page reference which is came from get_any_page()
1620 	 * successful isolate_lru_page() already took another one.
1621 	 */
1622 	put_page(page);
1623 	if (!ret) {
1624 		LIST_HEAD(pagelist);
1625 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1626 					page_is_file_cache(page));
1627 		list_add(&page->lru, &pagelist);
1628 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1629 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1630 		if (ret) {
1631 			if (!list_empty(&pagelist)) {
1632 				list_del(&page->lru);
1633 				dec_zone_page_state(page, NR_ISOLATED_ANON +
1634 						page_is_file_cache(page));
1635 				putback_lru_page(page);
1636 			}
1637 
1638 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1639 				pfn, ret, page->flags);
1640 			if (ret > 0)
1641 				ret = -EIO;
1642 		} else {
1643 			/*
1644 			 * After page migration succeeds, the source page can
1645 			 * be trapped in pagevec and actual freeing is delayed.
1646 			 * Freeing code works differently based on PG_hwpoison,
1647 			 * so there's a race. We need to make sure that the
1648 			 * source page should be freed back to buddy before
1649 			 * setting PG_hwpoison.
1650 			 */
1651 			if (!is_free_buddy_page(page))
1652 				lru_add_drain_all();
1653 			if (!is_free_buddy_page(page))
1654 				drain_all_pages();
1655 			SetPageHWPoison(page);
1656 			if (!is_free_buddy_page(page))
1657 				pr_info("soft offline: %#lx: page leaked\n",
1658 					pfn);
1659 			atomic_long_inc(&num_poisoned_pages);
1660 		}
1661 	} else {
1662 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1663 			pfn, ret, page_count(page), page->flags);
1664 	}
1665 	return ret;
1666 }
1667 
1668 /**
1669  * soft_offline_page - Soft offline a page.
1670  * @page: page to offline
1671  * @flags: flags. Same as memory_failure().
1672  *
1673  * Returns 0 on success, otherwise negated errno.
1674  *
1675  * Soft offline a page, by migration or invalidation,
1676  * without killing anything. This is for the case when
1677  * a page is not corrupted yet (so it's still valid to access),
1678  * but has had a number of corrected errors and is better taken
1679  * out.
1680  *
1681  * The actual policy on when to do that is maintained by
1682  * user space.
1683  *
1684  * This should never impact any application or cause data loss,
1685  * however it might take some time.
1686  *
1687  * This is not a 100% solution for all memory, but tries to be
1688  * ``good enough'' for the majority of memory.
1689  */
1690 int soft_offline_page(struct page *page, int flags)
1691 {
1692 	int ret;
1693 	unsigned long pfn = page_to_pfn(page);
1694 	struct page *hpage = compound_head(page);
1695 
1696 	if (PageHWPoison(page)) {
1697 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1698 		return -EBUSY;
1699 	}
1700 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1701 		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1702 			pr_info("soft offline: %#lx: failed to split THP\n",
1703 				pfn);
1704 			return -EBUSY;
1705 		}
1706 	}
1707 
1708 	get_online_mems();
1709 
1710 	/*
1711 	 * Isolate the page, so that it doesn't get reallocated if it
1712 	 * was free. This flag should be kept set until the source page
1713 	 * is freed and PG_hwpoison on it is set.
1714 	 */
1715 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
1716 		set_migratetype_isolate(page, true);
1717 
1718 	ret = get_any_page(page, pfn, flags);
1719 	put_online_mems();
1720 	if (ret > 0) { /* for in-use pages */
1721 		if (PageHuge(page))
1722 			ret = soft_offline_huge_page(page, flags);
1723 		else
1724 			ret = __soft_offline_page(page, flags);
1725 	} else if (ret == 0) { /* for free pages */
1726 		if (PageHuge(page)) {
1727 			set_page_hwpoison_huge_page(hpage);
1728 			dequeue_hwpoisoned_huge_page(hpage);
1729 			atomic_long_add(1 << compound_order(hpage),
1730 					&num_poisoned_pages);
1731 		} else {
1732 			SetPageHWPoison(page);
1733 			atomic_long_inc(&num_poisoned_pages);
1734 		}
1735 	}
1736 	unset_migratetype_isolate(page, MIGRATE_MOVABLE);
1737 	return ret;
1738 }
1739